Science.gov

Sample records for principal skeleton algorithm

  1. A simple algorithm for computing positively weighted straight skeletons of monotone polygons.

    PubMed

    Biedl, Therese; Held, Martin; Huber, Stefan; Kaaser, Dominik; Palfrader, Peter

    2015-02-01

    We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in [Formula: see text] time and [Formula: see text] space, where n denotes the number of vertices of the polygon.

  2. Development and evaluation of an articulated registration algorithm for human skeleton registration.

    PubMed

    Yip, Stephen; Perk, Timothy; Jeraj, Robert

    2014-03-21

    Accurate registration over multiple scans is necessary to assess treatment response of bone diseases (e.g. metastatic bone lesions). This study aimed to develop and evaluate an articulated registration algorithm for the whole-body skeleton registration in human patients. In articulated registration, whole-body skeletons are registered by auto-segmenting into individual bones using atlas-based segmentation, and then rigidly aligning them. Sixteen patients (weight = 80-117 kg, height = 168-191 cm) with advanced prostate cancer underwent the pre- and mid-treatment PET/CT scans over a course of cancer therapy. Skeletons were extracted from the CT images by thresholding (HU>150). Skeletons were registered using the articulated, rigid, and deformable registration algorithms to account for position and postural variability between scans. The inter-observers agreement in the atlas creation, the agreement between the manually and atlas-based segmented bones, and the registration performances of all three registration algorithms were all assessed using the Dice similarity index-DSIobserved, DSIatlas, and DSIregister. Hausdorff distance (dHausdorff) of the registered skeletons was also used for registration evaluation. Nearly negligible inter-observers variability was found in the bone atlases creation as the DSIobserver was 96 ± 2%. Atlas-based and manual segmented bones were in excellent agreement with DSIatlas of 90 ± 3%. Articulated (DSIregsiter = 75 ± 2%, dHausdorff = 0.37 ± 0.08 cm) and deformable registration algorithms (DSIregister = 77 ± 3%, dHausdorff = 0.34 ± 0.08 cm) considerably outperformed the rigid registration algorithm (DSIregsiter = 59 ± 9%, dHausdorff = 0.69 ± 0.20 cm) in the skeleton registration as the rigid registration algorithm failed to capture the skeleton flexibility in the joints. Despite superior skeleton registration performance, deformable registration algorithm failed to preserve the local rigidity of bones as over 60% of the skeletons

  3. Development and evaluation of an articulated registration algorithm for human skeleton registration

    NASA Astrophysics Data System (ADS)

    Yip, Stephen; Perk, Timothy; Jeraj, Robert

    2014-03-01

    Accurate registration over multiple scans is necessary to assess treatment response of bone diseases (e.g. metastatic bone lesions). This study aimed to develop and evaluate an articulated registration algorithm for the whole-body skeleton registration in human patients. In articulated registration, whole-body skeletons are registered by auto-segmenting into individual bones using atlas-based segmentation, and then rigidly aligning them. Sixteen patients (weight = 80-117 kg, height = 168-191 cm) with advanced prostate cancer underwent the pre- and mid-treatment PET/CT scans over a course of cancer therapy. Skeletons were extracted from the CT images by thresholding (HU>150). Skeletons were registered using the articulated, rigid, and deformable registration algorithms to account for position and postural variability between scans. The inter-observers agreement in the atlas creation, the agreement between the manually and atlas-based segmented bones, and the registration performances of all three registration algorithms were all assessed using the Dice similarity index—DSIobserved, DSIatlas, and DSIregister. Hausdorff distance (dHausdorff) of the registered skeletons was also used for registration evaluation. Nearly negligible inter-observers variability was found in the bone atlases creation as the DSIobserver was 96 ± 2%. Atlas-based and manual segmented bones were in excellent agreement with DSIatlas of 90 ± 3%. Articulated (DSIregsiter = 75 ± 2%, dHausdorff = 0.37 ± 0.08 cm) and deformable registration algorithms (DSIregister = 77 ± 3%, dHausdorff = 0.34 ± 0.08 cm) considerably outperformed the rigid registration algorithm (DSIregsiter = 59 ± 9%, dHausdorff = 0.69 ± 0.20 cm) in the skeleton registration as the rigid registration algorithm failed to capture the skeleton flexibility in the joints. Despite superior skeleton registration performance, deformable registration algorithm failed to preserve the local rigidity of bones as over 60% of the

  4. Skil: An imperative language with algorithmic skeletons for efficient distributed programming

    SciTech Connect

    Botorog, G.H.; Kuchen, H.

    1996-12-31

    In this paper we present Skil, an imperative language enhanced with higher-order functions and currying, as well as with a polymorphic type system. The high level of Skil allows the integration of algorithmic skeletons, i.e. of higher-order functions representing parallel computation patterns. At the same time, the language can be efficiently implemented. After describing a series of skeletons which work with distributed arrays, we give two examples of parallel programs implemented on the basis of skeletons, namely shortest paths in graphs and Gaussian elimination. Runtime measurements show that we approach the efficiency of message-passing C up to a factor between 1 and 2.5.

  5. A principal component analysis of the relationship between the external body shape and internal skeleton for the upper body.

    PubMed

    Nerot, A; Skalli, W; Wang, X

    2016-10-03

    Recent progress in 3D scanning technologies allows easy access to 3D human body envelope. To create personalized human models with an articulated linkage for realistic re-posturing and motion analyses, an accurate estimation of internal skeleton points, including joint centers, from the external envelope is required. For this research project, 3D reconstructions of both internal skeleton and external envelope from low dose biplanar X-rays of 40 male adults were obtained. Using principal component analysis technique (PCA), a low-dimensional dataset was used to predict internal points of the upper body from the trunk envelope. A least squares method was used to find PC scores that fit the PCA-based model to the envelope of a new subject. To validate the proposed approach, estimated internal points were evaluated using a leave-one-out (LOO) procedure, i.e. successively considering each individual from our dataset as an extra-subject. In addition, different methods were proposed to reduce the variability in data and improve the performance of the PCA-based prediction. The best method was considered as the one providing the smallest errors between estimated and reference internal points with an average error of 8.3mm anterior-posteriorly, 6.7mm laterally and 6.5mm vertically. As the proposed approach relies on few or no bony landmarks, it could be easily applicable and generalizable to surface scans from any devices. Combined with automatic body scanning techniques, this study could potentially constitute a new step towards automatic generation of external/internal subject-specific manikins.

  6. A constrained EM algorithm for principal component analysis.

    PubMed

    Ahn, Jong-Hoon; Oh, Jong-Hoon

    2003-01-01

    We propose a constrained EM algorithm for principal component analysis (PCA) using a coupled probability model derived from single-standard factor analysis models with isotropic noise structure. The single probabilistic PCA, especially for the case where there is no noise, can find only a vector set that is a linear superposition of principal components and requires postprocessing, such as diagonalization of symmetric matrices. By contrast, the proposed algorithm finds the actual principal components, which are sorted in descending order of eigenvalue size and require no additional calculation or postprocessing. The method is easily applied to kernel PCA. It is also shown that the new EM algorithm is derived from a generalized least-squares formulation.

  7. An Algorithm for Constructing Principal Geodesics in Phylogenetic Treespace.

    PubMed

    Nye, Tom M W

    2014-01-01

    Most phylogenetic analyses result in a sample of trees, but summarizing and visualizing these samples can be challenging. Consensus trees often provide limited information about a sample, and so methods such as consensus networks, clustering and multidimensional scaling have been developed and applied to tree samples. This paper describes a stochastic algorithm for constructing a principal geodesic or line through treespace which is analogous to the first principal component in standard principal components analysis. A principal geodesic summarizes the most variable features of a sample of trees, in terms of both tree topology and branch lengths, and it can be visualized as an animation of smoothly changing trees. The algorithm performs a stochastic search through parameter space for a geodesic which minimizes the sum of squared projected distances of the data points. This procedure aims to identify the globally optimal principal geodesic, though convergence to locally optimal geodesics is possible. The methodology is illustrated by constructing principal geodesics for experimental and simulated data sets, demonstrating the insight into samples of trees that can be gained and how the method improves on a previously published approach. A java package called GeoPhytter for constructing and visualizing principal geodesics is freely available from www.ncl.ac.uk/ ntmwn/geophytter.

  8. A combined approach to cartographic displacement for buildings based on skeleton and improved elastic beam algorithm.

    PubMed

    Liu, Yuangang; Guo, Qingsheng; Sun, Yageng; Ma, Xiaoya

    2014-01-01

    Scale reduction from source to target maps inevitably leads to conflicts of map symbols in cartography and geographic information systems (GIS). Displacement is one of the most important map generalization operators and it can be used to resolve the problems that arise from conflict among two or more map objects. In this paper, we propose a combined approach based on constraint Delaunay triangulation (CDT) skeleton and improved elastic beam algorithm for automated building displacement. In this approach, map data sets are first partitioned. Then the displacement operation is conducted in each partition as a cyclic and iterative process of conflict detection and resolution. In the iteration, the skeleton of the gap spaces is extracted using CDT. It then serves as an enhanced data model to detect conflicts and construct the proximity graph. Then, the proximity graph is adjusted using local grouping information. Under the action of forces derived from the detected conflicts, the proximity graph is deformed using the improved elastic beam algorithm. In this way, buildings are displaced to find an optimal compromise between related cartographic constraints. To validate this approach, two topographic map data sets (i.e., urban and suburban areas) were tested. The results were reasonable with respect to each constraint when the density of the map was not extremely high. In summary, the improvements include (1) an automated parameter-setting method for elastic beams, (2) explicit enforcement regarding the positional accuracy constraint, added by introducing drag forces, (3) preservation of local building groups through displacement over an adjusted proximity graph, and (4) an iterative strategy that is more likely to resolve the proximity conflicts than the one used in the existing elastic beam algorithm.

  9. A Combined Approach to Cartographic Displacement for Buildings Based on Skeleton and Improved Elastic Beam Algorithm

    PubMed Central

    Liu, Yuangang; Guo, Qingsheng; Sun, Yageng; Ma, Xiaoya

    2014-01-01

    Scale reduction from source to target maps inevitably leads to conflicts of map symbols in cartography and geographic information systems (GIS). Displacement is one of the most important map generalization operators and it can be used to resolve the problems that arise from conflict among two or more map objects. In this paper, we propose a combined approach based on constraint Delaunay triangulation (CDT) skeleton and improved elastic beam algorithm for automated building displacement. In this approach, map data sets are first partitioned. Then the displacement operation is conducted in each partition as a cyclic and iterative process of conflict detection and resolution. In the iteration, the skeleton of the gap spaces is extracted using CDT. It then serves as an enhanced data model to detect conflicts and construct the proximity graph. Then, the proximity graph is adjusted using local grouping information. Under the action of forces derived from the detected conflicts, the proximity graph is deformed using the improved elastic beam algorithm. In this way, buildings are displaced to find an optimal compromise between related cartographic constraints. To validate this approach, two topographic map data sets (i.e., urban and suburban areas) were tested. The results were reasonable with respect to each constraint when the density of the map was not extremely high. In summary, the improvements include (1) an automated parameter-setting method for elastic beams, (2) explicit enforcement regarding the positional accuracy constraint, added by introducing drag forces, (3) preservation of local building groups through displacement over an adjusted proximity graph, and (4) an iterative strategy that is more likely to resolve the proximity conflicts than the one used in the existing elastic beam algorithm. PMID:25470727

  10. MDL constrained 3-D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images.

    PubMed

    Yuan, Xiaosong; Trachtenberg, Joshua T; Potter, Steve M; Roysam, Badrinath

    2009-12-01

    This paper presents a method for improved automatic delineation of dendrites and spines from three-dimensional (3-D) images of neurons acquired by confocal or multi-photon fluorescence microscopy. The core advance presented here is a direct grayscale skeletonization algorithm that is constrained by a structural complexity penalty using the minimum description length (MDL) principle, and additional neuroanatomy-specific constraints. The 3-D skeleton is extracted directly from the grayscale image data, avoiding errors introduced by image binarization. The MDL method achieves a practical tradeoff between the complexity of the skeleton and its coverage of the fluorescence signal. Additional advances include the use of 3-D spline smoothing of dendrites to improve spine detection, and graph-theoretic algorithms to explore and extract the dendritic structure from the grayscale skeleton using an intensity-weighted minimum spanning tree (IW-MST) algorithm. This algorithm was evaluated on 30 datasets organized in 8 groups from multiple laboratories. Spines were detected with false negative rates less than 10% on most datasets (the average is 7.1%), and the average false positive rate was 11.8%. The software is available in open source form.

  11. Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Meiburger, K. M.; Nam, S. Y.; Chung, E.; Suggs, L. J.; Emelianov, S. Y.; Molinari, F.

    2016-11-01

    Blood vessels are the only system to provide nutrients and oxygen to every part of the body. Many diseases can have significant effects on blood vessel formation, so that the vascular network can be a cue to assess malicious tumor and ischemic tissues. Various imaging techniques can visualize blood vessel structure, but their applications are often constrained by either expensive costs, contrast agents, ionizing radiations, or a combination of the above. Photoacoustic imaging combines the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging, and image contrast depends on optical absorption. This enables the detection of light absorbing chromophores such as hemoglobin with a greater penetration depth compared to purely optical techniques. We present here a skeletonization algorithm for vessel architectural analysis using non-invasive photoacoustic 3D images acquired without the administration of any exogenous contrast agents. 3D photoacoustic images were acquired on rats (n  =  4) in two different time points: before and after a burn surgery. A skeletonization technique based on the application of a vesselness filter and medial axis extraction is proposed to extract the vessel structure from the image data and six vascular parameters (number of vascular trees (NT), vascular density (VD), number of branches (NB), 2D distance metric (DM), inflection count metric (ICM), and sum of angles metric (SOAM)) were calculated from the skeleton. The parameters were compared (1) in locations with and without the burn wound on the same day and (2) in the same anatomic location before (control) and after the burn surgery. Four out of the six descriptors were statistically different (VD, NB, DM, ICM, p  <  0.05) when comparing two anatomic locations on the same day and when considering the same anatomic location at two separate times (i.e. before and after burn surgery). The study demonstrates an

  12. Managing Algorithmic Skeleton Nesting Requirements in Realistic Image Processing Applications: The Case of the SKiPPER-II Parallel Programming Environment's Operating Model

    NASA Astrophysics Data System (ADS)

    Coudarcher, Rémi; Duculty, Florent; Serot, Jocelyn; Jurie, Frédéric; Derutin, Jean-Pierre; Dhome, Michel

    2005-12-01

    SKiPPER is a SKeleton-based Parallel Programming EnviRonment being developed since 1996 and running at LASMEA Laboratory, the Blaise-Pascal University, France. The main goal of the project was to demonstrate the applicability of skeleton-based parallel programming techniques to the fast prototyping of reactive vision applications. This paper deals with the special features embedded in the latest version of the project: algorithmic skeleton nesting capabilities and a fully dynamic operating model. Throughout the case study of a complete and realistic image processing application, in which we have pointed out the requirement for skeleton nesting, we are presenting the operating model of this feature. The work described here is one of the few reported experiments showing the application of skeleton nesting facilities for the parallelisation of a realistic application, especially in the area of image processing. The image processing application we have chosen is a 3D face-tracking algorithm from appearance.

  13. [Skeleton extractions and applications].

    SciTech Connect

    Quadros, William Roshan

    2010-05-01

    This paper focuses on the extraction of skeletons of CAD models and its applications in finite element (FE) mesh generation. The term 'skeleton of a CAD model' can be visualized as analogous to the 'skeleton of a human body'. The skeletal representations covered in this paper include medial axis transform (MAT), Voronoi diagram (VD), chordal axis transform (CAT), mid surface, digital skeletons, and disconnected skeletons. In the literature, the properties of a skeleton have been utilized in developing various algorithms for extracting skeletons. Three main approaches include: (1) the bisection method where the skeleton exists at equidistant from at least two points on boundary, (2) the grassfire propagation method in which the skeleton exists where the opposing fronts meet, and (3) the duality method where the skeleton is a dual of the object. In the last decade, the author has applied different skeletal representations in all-quad meshing, hex meshing, mid-surface meshing, mesh size function generation, defeaturing, and decomposition. A brief discussion on the related work from other researchers in the area of tri meshing, tet meshing, and anisotropic meshing is also included. This paper concludes by summarizing the strengths and weaknesses of the skeleton-based approaches in solving various geometry-centered problems in FE mesh generation. The skeletons have proved to be a great shape abstraction tool in analyzing the geometric complexity of CAD models as they are symmetric, simpler (reduced dimension), and provide local thickness information. However, skeletons generally require some cleanup, and stability and sensitivity of the skeletons should be controlled during extraction. Also, selecting a suitable application-specific skeleton and a computationally efficient method of extraction is critical.

  14. Recovery of a spectrum based on a compressive-sensing algorithm with weighted principal component analysis

    NASA Astrophysics Data System (ADS)

    Dafu, Shen; Leihong, Zhang; Dong, Liang; Bei, Li; Yi, Kang

    2017-07-01

    The purpose of this study is to improve the reconstruction precision and better copy the color of spectral image surfaces. A new spectral reflectance reconstruction algorithm based on an iterative threshold combined with weighted principal component space is presented in this paper, and the principal component with weighted visual features is the sparse basis. Different numbers of color cards are selected as the training samples, a multispectral image is the testing sample, and the color differences in the reconstructions are compared. The channel response value is obtained by a Mega Vision high-accuracy, multi-channel imaging system. The results show that spectral reconstruction based on weighted principal component space is superior in performance to that based on traditional principal component space. Therefore, the color difference obtained using the compressive-sensing algorithm with weighted principal component analysis is less than that obtained using the algorithm with traditional principal component analysis, and better reconstructed color consistency with human eye vision is achieved.

  15. Fast and stable algorithms for computing the principal square root of a complex matrix

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Lian, Sui R.; Mcinnis, Bayliss C.

    1987-01-01

    This note presents recursive algorithms that are rapidly convergent and more stable for finding the principal square root of a complex matrix. Also, the developed algorithms are utilized to derive the fast and stable matrix sign algorithms which are useful in developing applications to control system problems.

  16. Time-oriented hierarchical method for computation of principal components using subspace learning algorithm.

    PubMed

    Jankovic, Marko; Ogawa, Hidemitsu

    2004-10-01

    Principal Component Analysis (PCA) and Principal Subspace Analysis (PSA) are classic techniques in statistical data analysis, feature extraction and data compression. Given a set of multivariate measurements, PCA and PSA provide a smaller set of "basis vectors" with less redundancy, and a subspace spanned by them, respectively. Artificial neurons and neural networks have been shown to perform PSA and PCA when gradient ascent (descent) learning rules are used, which is related to the constrained maximization (minimization) of statistical objective functions. Due to their low complexity, such algorithms and their implementation in neural networks are potentially useful in cases of tracking slow changes of correlations in the input data or in updating eigenvectors with new samples. In this paper we propose PCA learning algorithm that is fully homogeneous with respect to neurons. The algorithm is obtained by modification of one of the most famous PSA learning algorithms--Subspace Learning Algorithm (SLA). Modification of the algorithm is based on Time-Oriented Hierarchical Method (TOHM). The method uses two distinct time scales. On a faster time scale PSA algorithm is responsible for the "behavior" of all output neurons. On a slower scale, output neurons will compete for fulfillment of their "own interests". On this scale, basis vectors in the principal subspace are rotated toward the principal eigenvectors. At the end of the paper it will be briefly analyzed how (or why) time-oriented hierarchical method can be used for transformation of any of the existing neural network PSA method, into PCA method.

  17. Image segmentation and registration algorithm to collect thoracic skeleton semilandmarks for characterization of age and sex-based thoracic morphology variation.

    PubMed

    Weaver, Ashley A; Nguyen, Callistus M; Schoell, Samantha L; Maldjian, Joseph A; Stitzel, Joel D

    2015-12-01

    Thoracic anthropometry variations with age and sex have been reported and likely relate to thoracic injury risk and outcome. The objective of this study was to collect a large volume of homologous semilandmark data from the thoracic skeleton for the purpose of quantifying thoracic morphology variations for males and females of ages 0-100 years. A semi-automated image segmentation and registration algorithm was applied to collect homologous thoracic skeleton semilandmarks from 343 normal computed tomography (CT) scans. Rigid, affine, and symmetric diffeomorphic transformations were used to register semilandmarks from an atlas to homologous locations in the subject-specific coordinate system. Homologous semilandmarks were successfully collected from 92% (7077) of the ribs and 100% (187) of the sternums included in the study. Between 2700 and 11,000 semilandmarks were collected from each rib and sternum and over 55 million total semilandmarks were collected from all subjects. The extensive landmark data collected more fully characterizes thoracic skeleton morphology across ages and sexes. Characterization of thoracic morphology with age and sex may help explain variations in thoracic injury risk and has important implications for vulnerable populations such as pediatrics and the elderly.

  18. Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis

    PubMed Central

    Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao

    2015-01-01

    Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis. PMID:26196383

  19. Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis.

    PubMed

    Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao

    2015-01-01

    Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis.

  20. Orbiter's Skeleton

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The structure of NASA's Mars Reconnaissance Orbiter spacecraft is constructed from composite panels of carbon layers over aluminum honeycomb, lightweight yet strong. This forms a basic structure or skeleton on which the instruments, electronics, propulsion and power systems can be mounted. The propellant tank is contained in the center of the orbiter's structure. This photo was taken at Lockheed Martin Space Systems, Denver, during construction of the spacecraft.

  1. Intensity-Based Skeletonization of CryoEM Gray-Scale Images Using a True Segmentation-Free Algorithm

    PubMed Central

    Nasr, Kamal Al; Liu, Chunmei; Rwebangira, Mugizi; Burge, Legand; He, Jing

    2014-01-01

    Cryo-electron microscopy is an experimental technique that is able to produce 3D gray-scale images of protein molecules. In contrast to other experimental techniques, cryo-electron microscopy is capable of visualizing large molecular complexes such as viruses and ribosomes. At medium resolution, the positions of the atoms are not visible and the process cannot proceed. The medium-resolution images produced by cryo-electron microscopy are used to derive the atomic structure of the proteins in de novo modeling. The skeletons of the 3D gray-scale images are used to interpret important information that is helpful in de novo modeling. Unfortunately, not all features of the image can be captured using a single segmentation. In this paper, we present a segmentation-free approach to extract the gray-scale curve-like skeletons. The approach relies on a novel representation of the 3D image, where the image is modeled as a graph and a set of volume trees. A test containing 36 synthesized maps and one authentic map shows that our approach can improve the performance of the two tested tools used in de novo modeling. The improvements were 62 and 13 percent for Gorgon and DP-TOSS, respectively. PMID:24384713

  2. Accelerated convergence of neural network system identification algorithms via principal component analysis

    NASA Astrophysics Data System (ADS)

    Hyland, David C.; Davis, Lawrence D.; Denoyer, Keith K.

    1998-12-01

    While significant theoretical and experimental progress has been made in the development of neural network-based systems for the autonomous identification and control of space platforms, there remain important unresolved issues associated with the reliable prediction of convergence speed and the avoidance of inordinately slow convergence. To speed convergence of neural identifiers, we introduce the preprocessing of identifier inputs using Principal Component Analysis (PCA) algorithms. Which automatically transform the neural identifier's external inputs so as to make the correlation matrix identity, resulting in enormous improvements in the convergence speed of the neural identifier. From a study of several such algorithms, we developed a new PCA approach which exhibits excellent convergence properties, insensitivity to noise and reliable accuracy.

  3. A robust principal component analysis algorithm for EEG-based vigilance estimation.

    PubMed

    Shi, Li-Chen; Duan, Ruo-Nan; Lu, Bao-Liang

    2013-01-01

    Feature dimensionality reduction methods with robustness have a great significance for making better use of EEG data, since EEG features are usually high-dimensional and contain a lot of noise. In this paper, a robust principal component analysis (PCA) algorithm is introduced to reduce the dimension of EEG features for vigilance estimation. The performance is compared with that of standard PCA, L1-norm PCA, sparse PCA, and robust PCA in feature dimension reduction on an EEG data set of twenty-three subjects. To evaluate the performance of these algorithms, smoothed differential entropy features are used as the vigilance related EEG features. Experimental results demonstrate that the robustness and performance of robust PCA are better than other algorithms for both off-line and on-line vigilance estimation. The average RMSE (root mean square errors) of vigilance estimation was 0.158 when robust PCA was applied to reduce the dimensionality of features, while the average RMSE was 0.172 when standard PCA was used in the same task.

  4. Wavelet-based approach to character skeleton.

    PubMed

    You, Xinge; Tang, Yuan Yan

    2007-05-01

    Character skeleton plays a significant role in character recognition. The strokes of a character may consist of two regions, i.e., singular and regular regions. The intersections and junctions of the strokes belong to singular region, while the straight and smooth parts of the strokes are categorized to regular region. Therefore, a skeletonization method requires two different processes to treat the skeletons in theses two different regions. All traditional skeletonization algorithms are based on the symmetry analysis technique. The major problems of these methods are as follows. 1) The computation of the primary skeleton in the regular region is indirect, so that its implementation is sophisticated and costly. 2) The extracted skeleton cannot be exactly located on the central line of the stroke. 3) The captured skeleton in the singular region may be distorted by artifacts and branches. To overcome these problems, a novel scheme of extracting the skeleton of character based on wavelet transform is presented in this paper. This scheme consists of two main steps, namely: a) extraction of primary skeleton in the regular region and b) amendment processing of the primary skeletons and connection of them in the singular region. A direct technique is used in the first step, where a new wavelet-based symmetry analysis is developed for finding the central line of the stroke directly. A novel method called smooth interpolation is designed in the second step, where a smooth operation is applied to the primary skeleton, and, thereafter, the interpolation compensation technique is proposed to link the primary skeleton, so that the skeleton in the singular region can be produced. Experiments are conducted and positive results are achieved, which show that the proposed skeletonization scheme is applicable to not only binary image but also gray-level image, and the skeleton is robust against noise and affine transform.

  5. Diagnosis of atherosclerosis in human carotid artery by FT-Raman spectroscopy: Principal Components Analysis algorithm

    NASA Astrophysics Data System (ADS)

    Nogueira, Grazielle V.; Silveira, Landulfo, Jr.; Martin, Airton A.; Zangaro, Renato A.; Pacheco, Marcos T.; Chavantes, Maria C.; Zampieri, Marcelo; Pasqualucci, Carlos A. G.

    2004-07-01

    FT- Raman Spectroscopy (FT-Raman) could allow identification and evaluation of human atherosclerotic lesions. A Raman spectrum can provide biochemical information of arteries which can help identifying the disease status and evolution. In this study, it is shown the results of FT-Raman for identification of human carotid arteries in vitro. Fragments of human carotid arteries were analyzed using a FT-Raman spectrometer with a Nd:YAG laser at 1064nm operating at an excitation power of 300mW. Spectra were obtained with 250 scans and spectral resolution of 4 cm-1. Each collection time was approximately 8 min. A total of 75 carotid fragments were spectroscopically scanned and FT-Raman results were compared with histopathology. Principal Components Analysis (PCA) was used to model an algorithm for tissue classification into three categories: normal, atherosclerotic plaque without calcification and atherosclerotic plaque with calcification. Non-atherosclerotic (normal) artery, atherosclerotic plaque and calcified plaque exhibit different spectral signatures related to biochemicals presented in each tissue type, such as, bands of collagen and elastin (proteins), cholesterol and its esters and calcium hydroxyapatite and carbonate apatite respectively. Results show that there is 96% match between classifications based on PCA algorithm and histopathology. The diagnostic applied over all 75 samples had sensitivity and specificity of about 89% and 100%, respectively, for atherosclerotic plaque and 100% and 98% for calcified plaque.

  6. A robust construction algorithm of the centerline skeleton for complex aortic vascular structure using computational fluid dynamics.

    PubMed

    Touati, Julien; Bologna, Marco; Schwein, Adeline; Migliavacca, Francesco; Garbey, Marc

    2017-07-01

    Centerlines of blood vessels are useful tools to make important anatomical measurements (length, diameter, area), which cannot be accurately obtained using 2D images. In this paper a brand new method for centerline extraction of vascular trees is presented. By using computational fluid dynamics (CFD) we are able to obtain a robust and purely functional centerline allowing us to support better measurements than classic purely geometrical-based centerlines. We show that the CFD-based centerline is within a few pixels from the geometrical centerline where the latter is defined (far away from inlet/outlets and from the branches). We show that the centerline computed with our method is not affected by traditional errors of other classical volume-based algorithms such as topological thinning, and could be a potential alternative to be considered for future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. X-ray - skeleton

    MedlinePlus

    ... medlineplus.gov/ency/article/003381.htm X-ray - skeleton To use the sharing features on this page, ... ray views may be uncomfortable. If the whole skeleton is being imaged, the test usually takes 1 ...

  8. Coral Skeletons Defend against Ultraviolet Radiation

    PubMed Central

    Reef, Ruth; Kaniewska, Paulina; Hoegh-Guldberg, Ove

    2009-01-01

    Background Many coral reef organisms are photosynthetic or have evolved in tight symbiosis with photosynthetic symbionts. As such, the tissues of reef organisms are often exposed to intense solar radiation in clear tropical waters and have adapted to trap and harness photosynthetically active radiation (PAR). High levels of ultraviolet radiation (UVR) associated with sunlight, however, represent a potential problem in terms of tissue damage. Methodology/Principal Findings By measuring UVR and PAR reflectance from intact and ground bare coral skeletons we show that the property of calcium carbonate skeletons to absorb downwelling UVR to a significant extent, while reflecting PAR back to the overlying tissue, has biological advantages. We placed cnidarians on top of bare skeletons and a UVR reflective substrate and showed that under ambient UVR levels, UVR transmitted through the tissues of cnidarians placed on top of bare skeletons were four times lower compared to their counterparts placed on a UVR reflective white substrate. In accordance with the lower levels of UVR measured in cnidarians on top of coral skeletons, a similar drop in UVR damage to their DNA was detected. The skeletons emitted absorbed UVR as yellow fluorescence, which allows for safe dissipation of the otherwise harmful radiation. Conclusions/Significance Our study presents a novel defensive role for coral skeletons and reveals that the strong UVR absorbance by the skeleton can contribute to the ability of corals, and potentially other calcifiers, to thrive under UVR levels that are detrimental to most marine life. PMID:19946361

  9. Weighted straight skeletons in the plane.

    PubMed

    Biedl, Therese; Held, Martin; Huber, Stefan; Kaaser, Dominik; Palfrader, Peter

    2015-02-01

    We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights.

  10. Weighted straight skeletons in the plane☆

    PubMed Central

    Biedl, Therese; Held, Martin; Huber, Stefan; Kaaser, Dominik; Palfrader, Peter

    2015-01-01

    We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights. PMID:25648398

  11. Analysis of the principal component algorithm in phase-shifting interferometry.

    PubMed

    Vargas, J; Quiroga, J Antonio; Belenguer, T

    2011-06-15

    We recently presented a new asynchronous demodulation method for phase-sampling interferometry. The method is based in the principal component analysis (PCA) technique. In the former work, the PCA method was derived heuristically. In this work, we present an in-depth analysis of the PCA demodulation method.

  12. Histology of the heterostracan dermal skeleton: Insight into the origin of the vertebrate mineralised skeleton.

    PubMed

    Keating, Joseph N; Marquart, Chloe L; Donoghue, Philip C J

    2015-06-01

    Living vertebrates are divided into those that possess a fully formed and fully mineralised skeleton (gnathostomes) versus those that possess only unmineralised cartilaginous rudiments (cyclostomes). As such, extinct phylogenetic intermediates of these living lineages afford unique insights into the evolutionary assembly of the vertebrate mineralised skeleton and its canonical tissue types. Extinct jawless and jawed fishes assigned to the gnathostome stem evidence the piecemeal assembly of skeletal systems, revealing that the dermal skeleton is the earliest manifestation of a homologous mineralised skeleton. Yet the nature of the primitive dermal skeleton, itself, is poorly understood. This is principally because previous histological studies of early vertebrates lacked a phylogenetic framework required to derive evolutionary hypotheses. Nowhere is this more apparent than within Heterostraci, a diverse clade of primitive jawless vertebrates. To this end, we surveyed the dermal skeletal histology of heterostracans, inferred the plesiomorphic heterostracan skeleton and, through histological comparison to other skeletonising vertebrate clades, deduced the ancestral nature of the vertebrate dermal skeleton. Heterostracans primitively possess a four-layered skeleton, comprising a superficial layer of odontodes composed of dentine and enameloid; a compact layer of acellular parallel-fibred bone containing a network of vascular canals that supply the pulp canals (L1); a trabecular layer consisting of intersecting radial walls composed of acellular parallel-fibred bone, showing osteon-like development (L2); and a basal layer of isopedin (L3). A three layered skeleton, equivalent to the superficial layer L2 and L3 and composed of enameloid, dentine and acellular bone, is possessed by the ancestor of heterostracans + jawed vertebrates. We conclude that an osteogenic component is plesiomorphic with respect to the vertebrate dermal skeleton. Consequently, we interpret the

  13. Histology of the heterostracan dermal skeleton: Insight into the origin of the vertebrate mineralised skeleton

    PubMed Central

    Marquart, Chloe L.

    2015-01-01

    ABSTRACT Living vertebrates are divided into those that possess a fully formed and fully mineralised skeleton (gnathostomes) versus those that possess only unmineralised cartilaginous rudiments (cyclostomes). As such, extinct phylogenetic intermediates of these living lineages afford unique insights into the evolutionary assembly of the vertebrate mineralised skeleton and its canonical tissue types. Extinct jawless and jawed fishes assigned to the gnathostome stem evidence the piecemeal assembly of skeletal systems, revealing that the dermal skeleton is the earliest manifestation of a homologous mineralised skeleton. Yet the nature of the primitive dermal skeleton, itself, is poorly understood. This is principally because previous histological studies of early vertebrates lacked a phylogenetic framework required to derive evolutionary hypotheses. Nowhere is this more apparent than within Heterostraci, a diverse clade of primitive jawless vertebrates. To this end, we surveyed the dermal skeletal histology of heterostracans, inferred the plesiomorphic heterostracan skeleton and, through histological comparison to other skeletonising vertebrate clades, deduced the ancestral nature of the vertebrate dermal skeleton. Heterostracans primitively possess a four‐layered skeleton, comprising a superficial layer of odontodes composed of dentine and enameloid; a compact layer of acellular parallel‐fibred bone containing a network of vascular canals that supply the pulp canals (L1); a trabecular layer consisting of intersecting radial walls composed of acellular parallel‐fibred bone, showing osteon‐like development (L2); and a basal layer of isopedin (L3). A three layered skeleton, equivalent to the superficial layer L2 and L3 and composed of enameloid, dentine and acellular bone, is possessed by the ancestor of heterostracans + jawed vertebrates. We conclude that an osteogenic component is plesiomorphic with respect to the vertebrate dermal skeleton. Consequently, we

  14. The Skeletons' Halloween

    ERIC Educational Resources Information Center

    Bourque, Simone

    2010-01-01

    Mexican printer Jose Guadalupe Posada's (1851-1913) numerous prints of "calaveras" gave vast popularity to skeleton figures through his satirical and politically critical renditions of skeletons engaged in daily activities. They are oftentimes represented in festive and playful posturing. Calaveras have now become the most original trait…

  15. The Skeletons' Halloween

    ERIC Educational Resources Information Center

    Bourque, Simone

    2010-01-01

    Mexican printer Jose Guadalupe Posada's (1851-1913) numerous prints of "calaveras" gave vast popularity to skeleton figures through his satirical and politically critical renditions of skeletons engaged in daily activities. They are oftentimes represented in festive and playful posturing. Calaveras have now become the most original trait…

  16. Experimental assessment of an automatic breast density classification algorithm based on principal component analysis applied to histogram data

    NASA Astrophysics Data System (ADS)

    Angulo, Antonio; Ferrer, Jose; Pinto, Joseph; Lavarello, Roberto; Guerrero, Jorge; Castaneda, Benjamín.

    2015-01-01

    Breast parenchymal density is considered a strong indicator of cancer risk. However, measures of breast density are often qualitative and require the subjective judgment of radiologists. This work proposes a supervised algorithm to automatically assign a BI-RADS breast density score to a digital mammogram. The algorithm applies principal component analysis to the histograms of a training dataset of digital mammograms to create four different spaces, one for each BI-RADS category. Scoring is achieved by projecting the histogram of the image to be classified onto the four spaces and assigning it to the closest class. In order to validate the algorithm, a training set of 86 images and a separate testing database of 964 images were built. All mammograms were acquired in the craniocaudal view from female patients without any visible pathology. Eight experienced radiologists categorized the mammograms according to a BIRADS score and the mode of their evaluations was considered as ground truth. Results show better agreement between the algorithm and ground truth for the training set (kappa=0.74) than for the test set (kappa=0.44) which suggests the method may be used for BI-RADS classification but a better training is required.

  17. Algorithm for classifying arrhythmia using Extreme Learning Machine and principal component analysis.

    PubMed

    Kim, Jinkwon; Shin, Hangsik; Lee, Yonwook; Lee, Myoungho

    2007-01-01

    In this paper, we developed the novel algorithm for cardiac arrhythmia classification. Until now, back propagation neural network (BPNN) was frequently used for these tasks. However, general gradient based learning method is far slower than what is required for their application. The proposed algorithm adapts Extreme Learning Machine(ELM) that has the advantage of very fast learning speed and high accuracy. In this paper, we classify beats into normal beat, left bundle branch block beat, right bundle branch block beat, premature ventricular contraction, atrial premature beat, paced beat, and ventricular escape beat. Experimental results show that we can obtain 97.45% in average accuracy, 97.44% in average sensitivity, 98.46% in average specificity, and 2.423 seconds in learning time.

  18. A hybrid color space for skin detection using genetic algorithm heuristic search and principal component analysis technique.

    PubMed

    Maktabdar Oghaz, Mahdi; Maarof, Mohd Aizaini; Zainal, Anazida; Rohani, Mohd Foad; Yaghoubyan, S Hadi

    2015-01-01

    Color is one of the most prominent features of an image and used in many skin and face detection applications. Color space transformation is widely used by researchers to improve face and skin detection performance. Despite the substantial research efforts in this area, choosing a proper color space in terms of skin and face classification performance which can address issues like illumination variations, various camera characteristics and diversity in skin color tones has remained an open issue. This research proposes a new three-dimensional hybrid color space termed SKN by employing the Genetic Algorithm heuristic and Principal Component Analysis to find the optimal representation of human skin color in over seventeen existing color spaces. Genetic Algorithm heuristic is used to find the optimal color component combination setup in terms of skin detection accuracy while the Principal Component Analysis projects the optimal Genetic Algorithm solution to a less complex dimension. Pixel wise skin detection was used to evaluate the performance of the proposed color space. We have employed four classifiers including Random Forest, Naïve Bayes, Support Vector Machine and Multilayer Perceptron in order to generate the human skin color predictive model. The proposed color space was compared to some existing color spaces and shows superior results in terms of pixel-wise skin detection accuracy. Experimental results show that by using Random Forest classifier, the proposed SKN color space obtained an average F-score and True Positive Rate of 0.953 and False Positive Rate of 0.0482 which outperformed the existing color spaces in terms of pixel wise skin detection accuracy. The results also indicate that among the classifiers used in this study, Random Forest is the most suitable classifier for pixel wise skin detection applications.

  19. A Hybrid Color Space for Skin Detection Using Genetic Algorithm Heuristic Search and Principal Component Analysis Technique

    PubMed Central

    2015-01-01

    Color is one of the most prominent features of an image and used in many skin and face detection applications. Color space transformation is widely used by researchers to improve face and skin detection performance. Despite the substantial research efforts in this area, choosing a proper color space in terms of skin and face classification performance which can address issues like illumination variations, various camera characteristics and diversity in skin color tones has remained an open issue. This research proposes a new three-dimensional hybrid color space termed SKN by employing the Genetic Algorithm heuristic and Principal Component Analysis to find the optimal representation of human skin color in over seventeen existing color spaces. Genetic Algorithm heuristic is used to find the optimal color component combination setup in terms of skin detection accuracy while the Principal Component Analysis projects the optimal Genetic Algorithm solution to a less complex dimension. Pixel wise skin detection was used to evaluate the performance of the proposed color space. We have employed four classifiers including Random Forest, Naïve Bayes, Support Vector Machine and Multilayer Perceptron in order to generate the human skin color predictive model. The proposed color space was compared to some existing color spaces and shows superior results in terms of pixel-wise skin detection accuracy. Experimental results show that by using Random Forest classifier, the proposed SKN color space obtained an average F-score and True Positive Rate of 0.953 and False Positive Rate of 0.0482 which outperformed the existing color spaces in terms of pixel wise skin detection accuracy. The results also indicate that among the classifiers used in this study, Random Forest is the most suitable classifier for pixel wise skin detection applications. PMID:26267377

  20. Extraction and applications of skeletons in finite element mesh generation.

    SciTech Connect

    Quadros, William Roshan

    2010-05-01

    This paper focuses on the extraction of skeletons of CAD models and its applications in finite element (FE) mesh generation. The term 'skeleton of a CAD model' can be visualized as analogous to the 'skeleton of a human body'. The skeletal representations covered in this paper include medial axis transform (MAT), Voronoi diagram (VD), chordal axis transform (CAT), mid surface, digital skeletons, and disconnected skeletons. In the literature, the properties of a skeleton have been utilized in developing various algorithms for extracting skeletons. Three main approaches include: (1) the bisection method where the skeleton exists at equidistant from at least two points on boundary, (2) the grassfire propagation method in which the skeleton exists where the opposing fronts meet, and (3) the duality method where the skeleton is a dual of the object. In the last decade, the author has applied different skeletal representations in all-quad meshing, hex meshing, mid-surface meshing, mesh size function generation, defeaturing, and decomposition. A brief discussion on the related work from other researchers in the area of tri meshing, tet meshing, and anisotropic meshing is also included. This paper concludes by summarizing the strengths and weaknesses of the skeleton-based approaches in solving various geometry-centered problems in FE mesh generation. The skeletons have proved to be a great shape abstraction tool in analyzing the geometric complexity of CAD models as they are symmetric, simpler (reduced dimension), and provide local thickness information. However, skeletons generally require some cleanup, and stability and sensitivity of the skeletons should be controlled during extraction. Also, selecting a suitable application-specific skeleton and a computationally efficient method of extraction is critical.

  1. Diagnosing basal cell carcinoma in vivo by near-infrared Raman spectroscopy: a Principal Components Analysis discrimination algorithm

    NASA Astrophysics Data System (ADS)

    Silveira, Landulfo, Jr.; Silveira, Fabrício L.; Bodanese, Benito; Pacheco, Marcos Tadeu T.; Zângaro, Renato A.

    2012-02-01

    This work demonstrated the discrimination among basal cell carcinoma (BCC) and normal human skin in vivo using near-infrared Raman spectroscopy. Spectra were obtained in the suspected lesion prior resectional surgery. After tissue withdrawn, biopsy fragments were submitted to histopathology. Spectra were also obtained in the adjacent, clinically normal skin. Raman spectra were measured using a Raman spectrometer (830 nm) with a fiber Raman probe. By comparing the mean spectra of BCC with the normal skin, it has been found important differences in the 800-1000 cm-1 and 1250-1350 cm-1 (vibrations of C-C and amide III, respectively, from lipids and proteins). A discrimination algorithm based on Principal Components Analysis and Mahalanobis distance (PCA/MD) could discriminate the spectra of both tissues with high sensitivity and specificity.

  2. Investigating the Human Skeleton.

    ERIC Educational Resources Information Center

    Slesnick, Irwin L.

    1982-01-01

    Instructions are provided for assembly of a pull-out, two-sided picture puzzle of the skeleton of a seven-year-old girl. Suggestions for activities using the assembled puzzle and comments on bones and bone morphology are also provided. (Author/JN)

  3. Investigating the Human Skeleton.

    ERIC Educational Resources Information Center

    Slesnick, Irwin L.

    1982-01-01

    Instructions are provided for assembly of a pull-out, two-sided picture puzzle of the skeleton of a seven-year-old girl. Suggestions for activities using the assembled puzzle and comments on bones and bone morphology are also provided. (Author/JN)

  4. ISTP CDF Skeleton Editor

    NASA Technical Reports Server (NTRS)

    Chimiak, Reine; Harris, Bernard; Williams, Phillip

    2013-01-01

    Basic Common Data Format (CDF) tools (e.g., cdfedit) provide no specific support for creating International Solar-Terrestrial Physics/Space Physics Data Facility (ISTP/SPDF) standard files. While it is possible for someone who is familiar with the ISTP/SPDF metadata guidelines to create compliant files using just the basic tools, the process is error-prone and unreasonable for someone without ISTP/SPDF expertise. The key problem is the lack of a tool with specific support for creating files that comply with the ISTP/SPDF guidelines. There are basic CDF tools such as cdfedit and skeletoncdf for creating CDF files, but these have no specific support for creating ISTP/ SPDF compliant files. The SPDF ISTP CDF skeleton editor is a cross-platform, Java-based GUI editor program that allows someone with only a basic understanding of the ISTP/SPDF guidelines to easily create compliant files. The editor is a simple graphical user interface (GUI) application for creating and editing ISTP/SPDF guideline-compliant skeleton CDF files. The SPDF ISTP CDF skeleton editor consists of the following components: A swing-based Java GUI program, JavaHelp-based manual/ tutorial, Image/Icon files, and HTML Web page for distribution. The editor is available as a traditional Java desktop application as well as a Java Network Launching Protocol (JNLP) application. Once started, it functions like a typical Java GUI file editor application for creating/editing application-unique files.

  5. Interpolation of 3-D binary images based on morphological skeletonization.

    PubMed

    Chatzis, V; Pitas, I

    2000-07-01

    In this paper, the morphological skeleton interpolation (MSI) algorithm is presented. It is an efficient, shape-based interpolation method used for interpolating slices in a three-dimensional (3-D) binary object. It is based on morphological skeletonization, which is used for two-dimensional (2-D) slice representation. The proposed morphological skeleton matching process provides translation, rotation, and scaling information at the same time. The interpolated slices preserve the shape of the original object slices, when the slices have similar shapes. It can also modify the shape of an object when the successive slices do not have similar shapes. Applications on artificial and real data are also presented.

  6. Skeleton-based shape analysis of protein models.

    PubMed

    Li, Zhong; Qin, Shengwei; Yu, Zeyun; Jin, Yao

    2014-09-01

    In order to compare the similarity between two protein models, a shape analysis algorithm based on skeleton extraction is presented in this paper. It firstly extracts the skeleton of a given protein surface by an improved Multi-resolution Reeb Graph (MRG) method. A number of points on the model surface are then collected to compute the local diameter (LD) according to the skeleton. Finally the LD frequency is calculated to build up the line chart, which is employed to analyze the shape similarity between protein models. Experimental results show that the similarity comparison using the proposed shape descriptor is more accurate especially for protein models with large deformations.

  7. [WHAT SKELETONS TELL US].

    PubMed

    Catalano, Paola

    2015-01-01

    The recent excavations carried out by the Superintendence for the Colosseum, the Roman National Museum and the Archaeological Area of Rome allowed to uncover a large number of burial grounds of Imperial Age. In this work we present the data for 11 cemeteries scattered throughout the Suburbiumn, dating between 1st and 3rd centuries AD. A whole sample of 6061 tombs has been investigated and 5280 skeletons were anthropologically analyzed. All the field data have been scored in appropriate standardized charts in order to make easy their storage and processing in a dedicated database.

  8. The skeleton in space

    NASA Technical Reports Server (NTRS)

    Goode, A. W.; Rambaut, P. C.

    1985-01-01

    Calcium loss experience by astronauts under weightless conditions is discussed. I-125 photon absorption measurements on astronauts on the Apollo 14, 15, and 16 flights showed bone density decreases of 6.6 percent in one astronaut and 7.3 percent in another. The estimated total body calcium loss on Apollo 17 was 0.2 percent. The test results indicate that calcium losses occur mainly from the weight-bearing parts of the skeleton. Measures to counteract the losses include 'penguin' suits, maintenance of nutrient intakes at high levels, and extensive exercise on ergometer and treadmill.

  9. Path similarity skeleton graph matching.

    PubMed

    Bai, Xiang; Latecki, Longin Jan

    2008-07-01

    This paper presents a novel framework to for shape recognition based on object silhouettes. The main idea is to match skeleton graphs by comparing the shortest paths between skeleton endpoints. In contrast to typical tree or graph matching methods, we completely ignore the topological graph structure. Our approach is motivated by the fact that visually similar skeleton graphs may have completely different topological structures. The proposed comparison of shortest paths between endpoints of skeleton graphs yields correct matching results in such cases. The skeletons are pruned by contour partitioning with Discrete Curve Evolution, which implies that the endpoints of skeleton branches correspond to visual parts of the objects. The experimental results demonstrate that our method is able to produce correct results in the presence of articulations, stretching, and occlusion.

  10. Connexins in The Skeleton

    PubMed Central

    Stains, Joseph P.; Civitelli, Roberto

    2016-01-01

    Shaping of the skeleton (modeling) and its maintenance throughout life (remodeling) require coordinated activity among bone forming (osteoblasts) and resorbing cells (osteoclasts) and osteocytes (bone embedded cells). The gap junction protein connexin43 (Cx43) has emerged as a key modulator of skeletal growth and homeostasis. The skeletal developmental abnormalities present in oculodentodigital and craniometaphyseal dysplasias, both linked to Cx43 gene (GJA1) mutations, demonstrate that the skeleton is a major site of Cx43 action. Via direct action on osteolineage cells, including altering production of pro-osteoclastogenic factors, Cx43 contributes to peak bone mass acquisition, cortical modeling of long bones, and maintenance of bone quality. Cx43 also contributes in diverse ways to bone responsiveness to hormonal and mechanical signals. Skeletal biology research has revealed the complexity of Cx43 function; in addition to forming gap junctions and “hemichannels”, Cx43 provides a scaffold for signaling molecules. Hence, Cx43 actively participates in generation and modulation of cellular signals driving skeletal development and homeostasis. Pharmacological interference with Cx43 may in the future help remedy deterioration of bone quality occurring with aging, disuse and hormonal imbalances. PMID:26740471

  11. [Soft tissues, hormones and the skeleton].

    PubMed

    Zofková, I

    2012-02-01

    Mechanical load activates bone modeling and increases bone strength. Thus physical activity is extremely important for overall bone health. Muscle volume and muscle contraction are closely related to bone mineral density in men and women, although these relationships are more significat in men. The muscle-bone unit has been defined as a functional system, in which both components are under control of the somatotropin-IGF-I system, androgens and D hormone. These endocrine systems play, via the muscle-bone unit, an important role in development of the skeleton and its stability in adulthood. That is why deficiency of any of these hormonal systems, or reduced physical activity (mainly in childhood) could seriously affect bone density and quality. Bone is also under control of adipose tissue, which modulates its metabolism via mechanical load and more importantly via adipocytokines (leptin, adiponectin and rezistin). Leptin increases bone formation by activation of osteoblasts. This direct effect of leptin is amplified by stimulation of the β-1 adrenergic system, which inhibits the negative osteotropic effects of neuropeptide Y. On the other hand, leptin also activates β-2 adrenergic receptors, which increase bone resorption. In humans, the overall osteo-anabolic effect of leptin tends to be dominant. Furthermore, leptin has a principal role in the start of puberty in girls and maturation, remodeling and development of the female skeleton. Adiponectin (and probably rezistin) has an unambiguous deteriorating effect on the skeleton. Further studies are needed to confirm the clinical importance of soft tissues relative to the integrity of the skeleton.

  12. Computing Principal Eigenvectors of Large Web Graphs: Algorithms and Accelerations Related to PageRank and HITS

    ERIC Educational Resources Information Center

    Nagasinghe, Iranga

    2010-01-01

    This thesis investigates and develops a few acceleration techniques for the search engine algorithms used in PageRank and HITS computations. PageRank and HITS methods are two highly successful applications of modern Linear Algebra in computer science and engineering. They constitute the essential technologies accounted for the immense growth and…

  13. Computing Principal Eigenvectors of Large Web Graphs: Algorithms and Accelerations Related to PageRank and HITS

    ERIC Educational Resources Information Center

    Nagasinghe, Iranga

    2010-01-01

    This thesis investigates and develops a few acceleration techniques for the search engine algorithms used in PageRank and HITS computations. PageRank and HITS methods are two highly successful applications of modern Linear Algebra in computer science and engineering. They constitute the essential technologies accounted for the immense growth and…

  14. A Fast and Sensitive New Satellite SO2 Retrieval Algorithm based on Principal Component Analysis: Application to the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Li, Can; Joiner, Joanna; Krotkov, A.; Bhartia, Pawan K.

    2013-01-01

    We describe a new algorithm to retrieve SO2 from satellite-measured hyperspectral radiances. We employ the principal component analysis technique in regions with no significant SO2 to capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering and ozone absorption) and measurement artifacts. We use the resulting principal components and SO2 Jacobians calculated with a radiative transfer model to directly estimate SO2 vertical column density in one step. Application to the Ozone Monitoring Instrument (OMI) radiance spectra in 310.5-340 nm demonstrates that this approach can greatly reduce biases in the operational OMI product and decrease the noise by a factor of 2, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing longterm, consistent SO2 records for air quality and climate research.

  15. The Milky Way Skeleton

    NASA Astrophysics Data System (ADS)

    Zucker, Catherine; Battersby, Cara; Goodman, Alyssa A.

    2015-01-01

    Recently, Goodman et al. (2014) argued that a very long, very thin infrared dark cloud 'Nessie' lies directly in the Galactic mid-plane and runs along the Scutum-Centaurus arm in position-position-velocity space as traced by low density CO and high density NH3 gas. Nessie was presented as the first 'bone' of the Milky Way, an extraordinarily long, thin, high contrast filament that can be used to map our galaxy's 'skeleton.' We present the first evidence of additional 'bones' in the Milky Way Galaxy, arguing that Nessie is not a curiosity but one of many filaments that could potentially trace galactic structure. Our ten bone candidates are all long, filamentary, mid-infrared extinction features which lie parallel to, and no more than twenty parsecs from, the physical Galactic mid-plane. We use CO, N2H+, and NH3 radial velocity data to establish the location of the candidates in position-velocity space. Of the ten filaments, three candidates have a projected aspect ratio of >50:1 and run along, or extremely close to, the Scutum-Centaurus arm in position-velocity space. Evidence suggests that these three candidates are Nessie-like features which mark the location of the spiral arms in both physical space and position-velocity space. Other candidates could be spurs, feathers, or interarm clouds associated with the Milky Way's galactic structure. As molecular spectral-line and extinction maps cover more of the sky at increasing resolution and sensitivity, we hope to find more bones in future studies, to ultimately create a global-fit to the Galaxy's spiral arms by piecing together individual skeletal features. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  16. Daily PM2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm.

    PubMed

    Sun, Wei; Sun, Jingyi

    2017-03-01

    Increased attention has been paid to PM2.5 pollution in China. Due to its detrimental effects on environment and health, it is important to establish a PM2.5 concentration forecasting model with high precision for its monitoring and controlling. This paper presents a novel hybrid model based on principal component analysis (PCA) and least squares support vector machine (LSSVM) optimized by cuckoo search (CS). First PCA is adopted to extract original features and reduce dimension for input selection. Then LSSVM is applied to predict the daily PM2.5 concentration. The parameters in LSSVM are fine-tuned by CS to improve its generalization. An experiment study reveals that the proposed approach outperforms a single LSSVM model with default parameters and a general regression neural network (GRNN) model in PM2.5 concentration prediction. Therefore the established model presents the potential to be applied to air quality forecasting systems.

  17. Precambrian Skeletonized Microbial Eukaryotes

    NASA Astrophysics Data System (ADS)

    Lipps, Jere H.

    2017-04-01

    Skeletal heterotrophic eukaryotes are mostly absent from the Precambrian, although algal eukaryotes appear about 2.2 billion years ago. Tintinnids, radiolaria and foraminifera have molecular origins well back into the Precambrian yet no representatives of these groups are known with certainty in that time. These data infer times of the last common ancestors, not the appearance of true representatives of these groups which may well have diversified or not been preserved since those splits. Previous reports of these groups in the Precambrian are misinterpretations of other objects in the fossil record. Reported tintinnids at 1600 mya from China are metamorphic shards or mineral artifacts, the many specimens from 635-715 mya in Mongolia may be eukaryotes but they are not tintinnids, and the putative tintinnids at 580 mya in the Doushantou formation of China are diagenetic alterations of well-known acritarchs. The oldest supposed foraminiferan is Titanotheca from 550 to 565 mya rocks in South America and Africa is based on the occurrence of rutile in the tests and in a few modern agglutinated foraminifera, as well as the agglutinated tests. Neither of these nor the morphology are characteristic of foraminifera; hence these fossils remain as indeterminate microfossils. Platysolenites, an agglutinated tube identical to the modern foraminiferan Bathysiphon, occurs in the latest Neoproterozoic in Russia, Canada, and the USA (California). Some of the larger fossils occurring in typical Ediacaran (late Neoproterozoic) assemblages may be xenophyophorids (very large foraminifera), but the comparison is disputed and flawed. Radiolaria, on occasion, have been reported in the Precambrian, but the earliest known clearly identifiable ones are in the Cambrian. The only certain Precambrian heterotrophic skeletal eukaryotes (thecamoebians) occur in fresh-water rocks at about 750 mya. Skeletonized radiolaria and foraminifera appear sparsely in the Cambrian and radiate in the Ordovician

  18. A Skeleton-Based 3D Shape Reconstruction of Free-Form Objects with Stereo Vision

    NASA Astrophysics Data System (ADS)

    Saini, Deepika; Kumar, Sanjeev

    2015-12-01

    In this paper, an efficient approach is proposed for recovering the 3D shape of a free-form object from its arbitrary pair of stereo images. In particular, the reconstruction problem is treated as the reconstruction of the skeleton and the external boundary of the object. The reconstructed skeleton is termed as the line-like representation or curve-skeleton of the 3D object. The proposed solution for object reconstruction is based on this evolved curve-skeleton. It is used as a seed for recovering shape of the 3D object, and the extracted boundary is used for terminating the growing process of the object. NURBS-skeleton is used to extract the skeleton of both views. Affine invariant property of the convex hulls is used to establish the correspondence between the skeletons and boundaries in the stereo images. In the growing process, a distance field is defined for each skeleton point as the smallest distance from that point to the boundary of the object. A sphere centered at a skeleton point of radius equal to the minimum distance to the boundary is tangential to the boundary. Filling in the spheres centered at each skeleton point reconstructs the object. Several results are presented in order to check the applicability and validity of the proposed algorithm.

  19. Delaunay algorithm and principal component analysis for 3D visualization of mitochondrial DNA nucleoids by Biplane FPALM/dSTORM.

    PubMed

    Alán, Lukáš; Špaček, Tomáš; Ježek, Petr

    2016-07-01

    Data segmentation and object rendering is required for localization super-resolution microscopy, fluorescent photoactivation localization microscopy (FPALM), and direct stochastic optical reconstruction microscopy (dSTORM). We developed and validated methods for segmenting objects based on Delaunay triangulation in 3D space, followed by facet culling. We applied them to visualize mitochondrial nucleoids, which confine DNA in complexes with mitochondrial (mt) transcription factor A (TFAM) and gene expression machinery proteins, such as mt single-stranded-DNA-binding protein (mtSSB). Eos2-conjugated TFAM visualized nucleoids in HepG2 cells, which was compared with dSTORM 3D-immunocytochemistry of TFAM, mtSSB, or DNA. The localized fluorophores of FPALM/dSTORM data were segmented using Delaunay triangulation into polyhedron models and by principal component analysis (PCA) into general PCA ellipsoids. The PCA ellipsoids were normalized to the smoothed volume of polyhedrons or by the net unsmoothed Delaunay volume and remodeled into rotational ellipsoids to obtain models, termed DVRE. The most frequent size of ellipsoid nucleoid model imaged via TFAM was 35 × 45 × 95 nm; or 35 × 45 × 75 nm for mtDNA cores; and 25 × 45 × 100 nm for nucleoids imaged via mtSSB. Nucleoids encompassed different point density and wide size ranges, speculatively due to different activity stemming from different TFAM/mtDNA stoichiometry/density. Considering twofold lower axial vs. lateral resolution, only bulky DVRE models with an aspect ratio >3 and tilted toward the xy-plane were considered as two proximal nucleoids, suspicious occurring after division following mtDNA replication. The existence of proximal nucleoids in mtDNA-dSTORM 3D images of mtDNA "doubling"-supported possible direct observations of mt nucleoid division after mtDNA replication.

  20. From principal curves to granular principal curves.

    PubMed

    Zhang, Hongyun; Pedrycz, Witold; Miao, Duoqian; Wei, Zhihua

    2014-06-01

    Principal curves arising as an essential construct in dimensionality reduction and data analysis have recently attracted much attention from theoretical as well as practical perspective. In many real-world situations, however, the efficiency of existing principal curves algorithms is often arguable, in particular when dealing with massive data owing to the associated high computational complexity. A certain drawback of these constructs stems from the fact that in several applications principal curves cannot fully capture some essential problem-oriented facets of the data dealing with width, aspect ratio, width change, etc. Information granulation is a powerful tool supporting processing and interpreting massive data. In this paper, invoking the underlying ideas of information granulation, we propose a granular principal curves approach, regarded as an extension of principal curves algorithms, to improve efficiency and achieve a sound accuracy-efficiency tradeoff. First, large amounts of numerical data are granulated into C intervals-information granules developed with the use of fuzzy C-means clustering and the two criteria of information granulation, which significantly reduce the amount of data to be processed at the later phase of the overall design. Granular principal curves are then constructed by determining the upper and the lower bounds of the interval data. Finally, we develop an objective function using the criteria of information confidence and specificity to evaluate the granular output formed by the principal curves. We also optimize the granular principal curves by adjusting the level of information granularity (the number of clusters), which is realized with the aid of the particle swarm optimization. A number of numeric studies completed for synthetic and real-world datasets provide a useful quantifiable insight into the effectiveness of the proposed algorithm.

  1. SAR image segmentation using skeleton-based fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Cao, Yun Yi; Chen, Yan Qiu

    2003-06-01

    SAR image segmentation can be converted to a clustering problem in which pixels or small patches are grouped together based on local feature information. In this paper, we present a novel framework for segmentation. The segmentation goal is achieved by unsupervised clustering upon characteristic descriptors extracted from local patches. The mixture model of characteristic descriptor, which combines intensity and texture feature, is investigated. The unsupervised algorithm is derived from the recently proposed Skeleton-Based Data Labeling method. Skeletons are constructed as prototypes of clusters to represent arbitrary latent structures in image data. Segmentation using Skeleton-Based Fuzzy Clustering is able to detect the types of surfaces appeared in SAR images automatically without any user input.

  2. Skeleton deformation of red blood cells during tank treading motions

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Peng, Zhangli

    2012-11-01

    By coupling a fluid-structure interaction algorithm with a three-level multiscale structural model, we simulate the tank treading responses of erythrocytes (red blood cells, or RBC) in shear flows. The fluid motion is depicted within the Stokes-flow framework, and is mathematically formulated with the boundary integral equations. The structural model takes into account the flexible connectivity between the lipid bilayer and the protein skeleton as well as the viscoelastic responses. The concentration of this study is on the transient process involving the development of the local area deformation of the protein skeleton. Under the assumption that the protein skeleton is stress-free in the natural biconcave configuration, our simulations indicate the following properties: (1) During tank treading motions it takes long time for significant area deformations to establish. For cells with diminished connectivity between the lipid bilayer and the protein skeleton (e.g. cells with mutations or defects), the relaxation time will be greatly reduced; (2) Deformations of the skeleton depend on the initial orientation of the cell with respect to the incoming flow; (3) The maximum area expansion occurs around the regions corresponding to the dimples in the original biconcave state; (4) Oscillations in cell geometry (breathing) and orientation (e.g. swinging) are observed. This work was supported by the National Heart, Lung, and Blood Institute under award number R01HL092793.

  3. Real-time skeleton tracking for embedded systems

    NASA Astrophysics Data System (ADS)

    Coleca, Foti; Klement, Sascha; Martinetz, Thomas; Barth, Erhardt

    2013-03-01

    Touch-free gesture technology is beginning to become more popular with consumers and may have a significant future impact on interfaces for digital photography. However, almost every commercial software framework for gesture and pose detection is aimed at either desktop PCs or high-powered GPUs, making mobile implementations for gesture recognition an attractive area for research and development. In this paper we present an algorithm for hand skeleton tracking and gesture recognition that runs on an ARM-based platform (Pandaboard ES, OMAP 4460 architecture). The algorithm uses self-organizing maps to fit a given topology (skeleton) into a 3D point cloud. This is a novel way of approaching the problem of pose recognition as it does not employ complex optimization techniques or data-based learning. After an initial background segmentation step, the algorithm is ran in parallel with heuristics, which detect and correct artifacts arising from insufficient or erroneous input data. We then optimize the algorithm for the ARM platform using fixed-point computation and the NEON SIMD architecture the OMAP4460 provides. We tested the algorithm with two different depth-sensing devices (Microsoft Kinect, PMD Camboard). For both input devices we were able to accurately track the skeleton at the native framerate of the cameras.

  4. The skeleton in the closet.

    PubMed

    Kaplan, Frederick S

    2013-10-01

    The origins of fibrodysplasia ossificans progressiva (FOP) in human history are unknown but the condition has been well described since Freke's account in 1740. Important contributions by physicians and scientists in the past two and a half centuries have converged on the remarkable skeleton of Harry Eastlack at The Mutter Museum of The College of Physicians in Philadelphia.

  5. THE SKELETON IN THE CLOSET

    PubMed Central

    Kaplan, Frederick S.

    2015-01-01

    The origins of fibrodysplasia ossificans progressiva (FOP) in human history are unknown but the condition has been well described since Freke’s account in 1740. Important contributions by physicians and scientists in the past two and a half centuries have converged on the remarkable skeleton of Harry Eastlack at The Mutter Museum of The College of Physicians in Philadelphia. PMID:23810943

  6. Making an Inexpensive Skeleton for the Classroom.

    ERIC Educational Resources Information Center

    Shaw, Edward L., Jr.; Pruitt, Nancy E.

    1990-01-01

    Presented is an activity in which a skeleton is built using papier mache' and various household items. The materials; procedures for building each part of the skeleton; and directions for painting, assembling, and varnishing are included. (KR)

  7. Making an Inexpensive Skeleton for the Classroom.

    ERIC Educational Resources Information Center

    Shaw, Edward L., Jr.; Pruitt, Nancy E.

    1990-01-01

    Presented is an activity in which a skeleton is built using papier mache' and various household items. The materials; procedures for building each part of the skeleton; and directions for painting, assembling, and varnishing are included. (KR)

  8. Interim Principals.

    ERIC Educational Resources Information Center

    Beem, Kate

    2003-01-01

    An interim principal can buy a school district time to land a permanent successor. Also lists where to find an interim principal; the interim's steadying influence; Bob Wallace's wild ride as an interim principal in post-retirement; and Roger Prosise's rationale for turning to an interim appointment. (MLF)

  9. An algorithm for hyperspectral remote sensing of aerosols: 2. Information content analysis for aerosol parameters and principal components of surface spectra

    NASA Astrophysics Data System (ADS)

    Hou, Weizhen; Wang, Jun; Xu, Xiaoguang; Reid, Jeffrey S.

    2017-05-01

    This paper describes the second part of a series of investigation to develop algorithms for simultaneous retrieval of aerosol parameters and surface reflectance from the future hyperspectral and geostationary satellite sensors such as Tropospheric Emissions: Monitoring of POllution (TEMPO). The information content in these hyperspectral measurements is analyzed for 6 principal components (PCs) of surface spectra and a total of 14 aerosol parameters that describe the columnar aerosol volume Vtotal, fine-mode aerosol volume fraction, and the size distribution and wavelength-dependent index of refraction in both coarse and fine mode aerosols. Forward simulations of atmospheric radiative transfer are conducted for 5 surface types (green vegetation, bare soil, rangeland, concrete and mixed surface case) and a wide range of aerosol mixtures. It is shown that the PCs of surface spectra in the atmospheric window channel could be derived from the top-of-the-atmosphere reflectance in the conditions of low aerosol optical depth (AOD ≤ 0.2 at 550 nm), with a relative error of 1%. With degree freedom for signal analysis and the sequential forward selection method, the common bands for different aerosol mixture types and surface types can be selected for aerosol retrieval. The first 20% of our selected bands accounts for more than 90% of information content for aerosols, and only 4 PCs are needed to reconstruct surface reflectance. However, the information content in these common bands from each TEMPO individual observation is insufficient for the simultaneous retrieval of surface's PC weight coefficients and multiple aerosol parameters (other than Vtotal). In contrast, with multiple observations for the same location from TEMPO in multiple consecutive days, 1-3 additional aerosol parameters could be retrieved. Consequently, a self-adjustable aerosol retrieval algorithm to account for surface types, AOD conditions, and multiple-consecutive observations is recommended to derive

  10. Rock fracture skeleton tracing by image processing and quantitative analysis by geometry features

    NASA Astrophysics Data System (ADS)

    Liang, Yanjie

    2016-06-01

    In rock engineering, fracture measurement is important for many applications. This paper proposes a novel method for rock fracture skeleton tracing and analyzing. As for skeleton localizing, the curvilinear fractures are multiscale enhanced based on a Hessian matrix, after image binarization, and clutters are post-processed by image analysis; subsequently, the fracture skeleton is extracted via ridge detection combined with a distance transform and thinning algorithm, after which gap sewing and burrs removal repair the skeleton. In regard to skeleton analyzing, the roughness and distribution of a fracture network are respectively described by the fractal dimensions D s and D b; the intersection and fragmentation of a fracture network are respectively characterized by the average number of ends and junctions per fracture N average and the average length per fracture L average. Three rock fracture surfaces are analyzed for experiments and the results verify that both the fracture tracing accuracy and the analysis feasibility are satisfactory using the new method.

  11. Melorheostosis involving the craniofacial skeleton.

    PubMed

    Ethunandan, Madanagopalan; Khosla, Nalin; Tilley, Elizabeth; Webb, Andrew

    2004-11-01

    Melorheostosis is a rare bone disorder, usually affecting the long bones and adjacent soft tissue. It was originally described by Leri and Joanny in 1922, after its classic x-ray features of flowing hyperostosis resembling dripping candle wax. There have been fewer than 10 reported cases of craniofacial involvement, and in most instances these have also involved the appendicular skeleton. The authors report a case of melorheostosis with isolated craniofacial involvement, describe the clinical course and radiologic and histologic features, and review the pertinent literature.

  12. Efficient curve-skeleton computation for the analysis of biomedical 3d images - biomed 2010.

    PubMed

    Brun, Francesco; Dreossi, Diego

    2010-01-01

    Advances in three dimensional (3D) biomedical imaging techniques, such as magnetic resonance (MR) and computed tomography (CT), make it easy to reconstruct high quality 3D models of portions of human body and other biological specimens. A major challenge lies in the quantitative analysis of the resulting models thus allowing a more comprehensive characterization of the object under investigation. An interesting approach is based on curve-skeleton (or medial axis) extraction, which gives basic information concerning the topology and the geometry. Curve-skeletons have been applied in the analysis of vascular networks and the diagnosis of tracheal stenoses as well as a 3D flight path in virtual endoscopy. However curve-skeleton computation is a crucial task. An effective skeletonization algorithm was introduced by N. Cornea in [1] but it lacks in computational performances. Thanks to the advances in imaging techniques the resolution of 3D images is increasing more and more, therefore there is the need for efficient algorithms in order to analyze significant Volumes of Interest (VOIs). In the present paper an improved skeletonization algorithm based on the idea proposed in [1] is presented. A computational comparison between the original and the proposed method is also reported. The obtained results show that the proposed method allows a significant computational improvement making more appealing the adoption of the skeleton representation in biomedical image analysis applications.

  13. Hamilton-Jacobi skeleton on cortical surfaces.

    PubMed

    Shi, Y; Thompson, P M; Dinov, I; Toga, A W

    2008-05-01

    In this paper, we propose a new method to construct graphical representations of cortical folding patterns by computing skeletons on triangulated cortical surfaces. In our approach, a cortical surface is first partitioned into sulcal and gyral regions via the solution of a variational problem using graph cuts, which can guarantee global optimality. After that, we extend the method of Hamilton-Jacobi skeleton [1] to subsets of triangulated surfaces, together with a geometrically intuitive pruning process that can trade off between skeleton complexity and the completeness of representing folding patterns. Compared with previous work that uses skeletons of 3-D volumes to represent sulcal patterns, the skeletons on cortical surfaces can be easily decomposed into branches and provide a simpler way to construct graphical representations of cortical morphometry. In our experiments, we demonstrate our method on two different cortical surface models, its ability of capturing major sulcal patterns and its application to compute skeletons of gyral regions.

  14. Navigable points estimation for mobile robots using binary image skeletonization

    NASA Astrophysics Data System (ADS)

    Martinez S., Fernando; Jacinto G., Edwar; Montiel A., Holman

    2017-02-01

    This paper describes the use of image skeletonization for the estimation of all the navigable points, inside a scene of mobile robots navigation. Those points are used for computing a valid navigation path, using standard methods. The main idea is to find the middle and the extreme points of the obstacles in the scene, taking into account the robot size, and create a map of navigable points, in order to reduce the amount of information for the planning algorithm. Those points are located by means of the skeletonization of a binary image of the obstacles and the scene background, along with some other digital image processing algorithms. The proposed algorithm automatically gives a variable number of navigable points per obstacle, depending on the complexity of its shape. As well as, the way how the algorithm can change some of their parameters in order to change the final number of the resultant key points is shown. The results shown here were obtained applying different kinds of digital image processing algorithms on static scenes.

  15. Erythrocyte membrane skeleton inhibits nanoparticle endocytosis

    NASA Astrophysics Data System (ADS)

    Gao, Xinli; Yue, Tongtao; Tian, Falin; Liu, Zhiping; Zhang, Xianren

    2017-06-01

    Red blood cells (RBCs), also called erythrocytes, have been experimentally proposed in recent decades as the biological drug delivery systems through entrapping certain drugs by endocytosis. However, the internalization pathway of endocytosis seems to conflict with the robust mechanical properties of RBCs that is induced by the spectrin-actin network of erythrocyte membrane skeleton. In this work, we employed a minimum realistic model and the dissipative particle dynamics method to investigate the influence of the spectrin-actin membrane skeleton on the internalization of nanoparticles (NPs). Our simulations show that the existence of skeleton meshwork indeed induces an inhibiting effect that effectively prevents NPs from internalization. The inhibiting effect is found to depend on the membrane-NP attraction, skeleton tension and relative size of the NP to the membrane skeleton mesh. However, our simulations also demonstrate that there are two possibilities for successful internalization of NPs in the presence of the membrane skeleton. The first case is for NPs that has a much smaller size than the dimension of skeleton meshes, and the other is that the skeleton tension is rather weak so that the formed vesicle can still move inward for NP internalization.

  16. Bayesian estimation of the shape skeleton.

    PubMed

    Feldman, Jacob; Singh, Manish

    2006-11-21

    Skeletal representations of shape have attracted enormous interest ever since their introduction by Blum [Blum H (1973) J Theor Biol 38:205-287], because of their potential to provide a compact, but meaningful, shape representation, suitable for both neural modeling and computational applications. But effective computation of the shape skeleton remains a notorious unsolved problem; existing approaches are extremely sensitive to noise and give counterintuitive results with simple shapes. In conventional approaches, the skeleton is defined by a geometric construction and computed by a deterministic procedure. We introduce a Bayesian probabilistic approach, in which a shape is assumed to have "grown" from a skeleton by a stochastic generative process. Bayesian estimation is used to identify the skeleton most likely to have produced the shape, i.e., that best "explains" it, called the maximum a posteriori skeleton. Even with natural shapes with substantial contour noise, this approach provides a robust skeletal representation whose branches correspond to the natural parts of the shape.

  17. Principal Mentoring.

    ERIC Educational Resources Information Center

    Malone, Robert

    2001-01-01

    Increasing evidence shows that school leaders, throughout all stages of their careers, can benefit from a mentoring system in which a seasoned leader helps the protege combine theory and practice with experience. This research roundup reviews works that provide support for principal mentoring and share strategies for establishing mentoring…

  18. Turnaround Principals

    ERIC Educational Resources Information Center

    McLester, Susan

    2011-01-01

    The Obama administration has grand hopes for turning around the nation's lowest-performing schools, in part by allocating $3.5 billion for School Improvement Grants. Unfortunately, there simply aren't enough qualified principals to replace those mandated to be fired under two of the four school improvement models that the federal government says…

  19. Turnaround Principals

    ERIC Educational Resources Information Center

    McLester, Susan

    2011-01-01

    The Obama administration has grand hopes for turning around the nation's lowest-performing schools, in part by allocating $3.5 billion for School Improvement Grants. Unfortunately, there simply aren't enough qualified principals to replace those mandated to be fired under two of the four school improvement models that the federal government says…

  20. The Skeleton in the Closet: Harvesting a Skeletonized IMA.

    PubMed

    Tribble, Curtis G

    2017-08-28

    There is a considerable amount of data that using more than one arterial graft provides a survival advantage for patients undergoing coronary bypass operations. The Society of Thoracic Surgeons has a set of official guidelines for the use of arterial grafts which include the following recommendations:Internal mammary arteries (IMA's) should be used to bypass the left anterior descending (LAD) artery when bypass of the LAD is indicated.As an adjunct to left internal mammary artery (LIMA), a second arterial graft (right IMA or radial artery [RA]) should be considered in appropriate patients.Use of bilateral IMA's (BIMA's) should be considered in patients who do not have an excessive risk of sternal complications.To reduce the risk of sternal infection with bilateral IMA's, skeletonized grafts should be considered, smoking cessation is recommended, glycemic control should be considered, and enhanced sternal stabilization may be considered.Use of arterial grafts should be a part of the discussion of the heart team in determining the optimal approach for each patient.         [Ann Thorac Surg 2016; 101: 801-9].

  1. Building Up the Milky Way's Skeleton

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    A team of scientistshas now uncovered half of theentire skeleton of the Milky Way, using an automated method to identify large filaments of gas and dust hiding between stars in the galactic plane.Galactic distribution of 54 newly discovered filaments, plotted along with colored lines indicating six relevant spiral arms in our galaxy. The upper two plots show the consistency of the filaments motion with the spiral arms, while the lower shows their location within the galactic plane. [Wang et al. 2016]The Search for Nessie and FriendsThe Milky Ways interstellar medium is structured hierarchically into filaments. These structures are difficult to observe since they largely lie in the galactic plane, but if we can discover the distribution and properties of these filaments, we can better understand how our galaxy formed, and how the filaments affect star formation in our galaxy today.Some of the largest of the Milky Ways filaments are hundreds of light-years long like the infrared dark cloud nicknamed Nessie, declared in 2013 to be one of the bones of the Milky Way because of its position along the center of the Scutum-Centaurus spiral arm.Follow-up studies since the discovery of Nessie (like this one, or this) have found a number of additional large-scale filaments, but these studies all use different search methods and selection criteria, and the searches all start with visual inspection by humans to identify candidates.What if we could instead automate the detection process and build a homogeneous sample of the large filaments making up the skeleton of the Milky Way?Automated DetectionThis is exactly what a team of astronomers led by Ke Wang (European Southern Observatory) has done. The group used a customization of an algorithm called a minimum spanning tree the technique used to optimize the cost of internet networks, road networks, and electrical grids in our communities to perform an automated search of data from the Bolocam Galactic Plane Survey. The search was

  2. Fractality in complex networks: critical and supercritical skeletons.

    PubMed

    Kim, J S; Goh, K-I; Salvi, G; Oh, E; Kahng, B; Kim, D

    2007-01-01

    Fractal scaling--a power-law behavior of the number of boxes needed to tile a given network with respect to the lateral size of the box--is studied. We introduce a box-covering algorithm that is a modified version of the original algorithm introduced by Song [Nature (London) 433, 392 (2005)]; this algorithm enables easy implementation. Fractal networks are viewed as comprising a skeleton and shortcuts. The skeleton, embedded underneath the original network, is a special type of spanning tree based on the edge betweenness centrality; it provides a scaffold for the fractality of the network. When the skeleton is regarded as a branching tree, it exhibits a plateau in the mean branching number as a function of the distance from a root. For nonfractal networks, on the other hand, the mean branching number decays to zero without forming a plateau. Based on these observations, we construct a fractal network model by combining a random branching tree and local shortcuts. The scaffold branching tree can be either critical or supercritical, depending on the small worldness of a given network. For the network constructed from the critical (supercritical) branching tree, the average number of vertices within a given box grows with the lateral size of the box according to a power-law (an exponential) form in the cluster-growing method. The critical and supercritical skeletons are observed in protein interaction networks and the World Wide Web, respectively. The distribution of box masses, i.e., the number of vertices within each box, follows a power law Pm(M) approximately M(-eta). The exponent eta depends on the box lateral size l(B). For small values of l(B), eta is equal to the degree exponent gamma of a given scale-free network, whereas eta approaches the exponent tau=gamma/(gamma-1) as l(B) increases, which is the exponent of the cluster-size distribution of the random branching tree. Finally, we study the perimeter H(alpha) of a given box alpha, i.e., the number of edges

  3. Distraction Osteogenesis of the Craniofacial Skeleton.

    PubMed

    Yu, Jack C.; Fearon, Jeffrey; Havlik, Robert J.; Buchman, Steve R.; Polley, John W.

    2004-07-01

    LEARNING OBJECTIVES:: After studying this article, the participant should be able to: 1. Review the biomechanical principles and pertinent cellular and molecular biology of distraction osteogenesis of the craniofacial skeleton. 2. Describe the clinical indications and applications of distraction osteogenesis of the craniofacial skeleton. 3. Describe maxillary, mandibular, midface, and calvarial procedures in distraction osteogenesis. 4. Discuss the clinical outcomes and complications of distraction osteogenesis of the craniofacial skeleton.The year 2002 marked the end of the first decade in clinical distraction osteogenesis of the craniofacial skeleton. In this short period, its application has increased exponentially. More than 3000 cases have been performed according to a recent survey, and more than 700 articles have been written on this subject in the MEDLINE database since 1996. It is a powerful surgical tool and enables surgeons to achieve results not previously attainable. Despite all this, distraction osteogenesis is practiced by only a small number of plastic surgeons. This article reviews the biomechanical principles; the pertinent cellular and molecular biology; and the clinical indications, applications, controversies, and complications of distraction osteogenesis of the craniofacial skeleton.

  4. Update on approaches to the craniomaxillofacial skeleton.

    PubMed

    Villwock, Jennifer A; Suryadevara, Amar C

    2014-08-01

    A myriad of surgical approaches to the craniomaxillofacial skeleton exist. Depending on the purpose of the procedure and the anatomic area to be addressed, classically used approaches include coronal approach, midfacial degloving, eyelid incisions, and other cutaneous incisions. Over the last decade, endoscopic approaches have become more popular. Whether external, transoral, or endoscopic, a detailed knowledge of the indications, anatomy, limitations, and potential complications is critical to the successful employment of these approaches. This article reviews the recent literature on classic as well as novel advancements to the craniofacial skeleton. Multiple studies in the last 5 years have investigated the approaches to the craniofacial skeleton. Most of these focus on trauma. Recent advances have concentrated on external versus endoscopic approaches to the mandibular condyle, an endoscopic approach to the midface and orbit, three-dimensional imaging of the facial skeleton, and improving upon the existing classic approaches and techniques. Approaches to the craniomaxillofacial skeleton continue to evolve with the refinement of classic approaches and advent of new technologies and approaches. This study reviews the recent literature and provides a comprehensive review of options for craniofacial exposure and the most up-to-date surgical options.

  5. Bayesian estimation of the shape skeleton

    PubMed Central

    Feldman, Jacob; Singh, Manish

    2006-01-01

    Skeletal representations of shape have attracted enormous interest ever since their introduction by Blum [Blum H (1973) J Theor Biol 38:205–287], because of their potential to provide a compact, but meaningful, shape representation, suitable for both neural modeling and computational applications. But effective computation of the shape skeleton remains a notorious unsolved problem; existing approaches are extremely sensitive to noise and give counterintuitive results with simple shapes. In conventional approaches, the skeleton is defined by a geometric construction and computed by a deterministic procedure. We introduce a Bayesian probabilistic approach, in which a shape is assumed to have “grown” from a skeleton by a stochastic generative process. Bayesian estimation is used to identify the skeleton most likely to have produced the shape, i.e., that best “explains” it, called the maximum a posteriori skeleton. Even with natural shapes with substantial contour noise, this approach provides a robust skeletal representation whose branches correspond to the natural parts of the shape. PMID:17101989

  6. Fast Steerable Principal Component Analysis.

    PubMed

    Zhao, Zhizhen; Shkolnisky, Yoel; Singer, Amit

    2016-03-01

    Cryo-electron microscopy nowadays often requires the analysis of hundreds of thousands of 2-D images as large as a few hundred pixels in each direction. Here, we introduce an algorithm that efficiently and accurately performs principal component analysis (PCA) for a large set of 2-D images, and, for each image, the set of its uniform rotations in the plane and their reflections. For a dataset consisting of n images of size L × L pixels, the computational complexity of our algorithm is O(nL(3) + L(4)), while existing algorithms take O(nL(4)). The new algorithm computes the expansion coefficients of the images in a Fourier-Bessel basis efficiently using the nonuniform fast Fourier transform. We compare the accuracy and efficiency of the new algorithm with traditional PCA and existing algorithms for steerable PCA.

  7. Fast Steerable Principal Component Analysis

    PubMed Central

    Zhao, Zhizhen; Shkolnisky, Yoel; Singer, Amit

    2016-01-01

    Cryo-electron microscopy nowadays often requires the analysis of hundreds of thousands of 2-D images as large as a few hundred pixels in each direction. Here, we introduce an algorithm that efficiently and accurately performs principal component analysis (PCA) for a large set of 2-D images, and, for each image, the set of its uniform rotations in the plane and their reflections. For a dataset consisting of n images of size L × L pixels, the computational complexity of our algorithm is O(nL3 + L4), while existing algorithms take O(nL4). The new algorithm computes the expansion coefficients of the images in a Fourier–Bessel basis efficiently using the nonuniform fast Fourier transform. We compare the accuracy and efficiency of the new algorithm with traditional PCA and existing algorithms for steerable PCA. PMID:27570801

  8. A Stochastic Skeleton Model for the MJO

    NASA Astrophysics Data System (ADS)

    thual, S.; Majda, A.; Stechmann, S.

    2013-12-01

    The Madden-Julian oscillation (MJO) is the dominant mode of variability in the tropical atmosphere on intraseasonal timescales and planetary spatial scales. In recent work by two of the authors, a minimal dynamical model has been proposed that recovers robustly the most fundamental MJO features of (I) a slow eastward speed of roughly 5 ms-1, (II) a peculiar dispersion relation with dω/dk≈ 0, and (III) a horizontal quadrupole vortex structure. This model, the skeleton model, depicts the MJO as a neutrally-stable atmospheric wave that involves a simple multiscale interaction between planetary dry dynamics, planetary lower-tropospheric moisture, and the planetary envelope of synoptic-scale activity. Here, we show that the skeleton model can further account for (IV) the intermittent generation of MJO events and (V) the organization of MJO events into wave trains with growth and demise, as seen in nature. We achieve this goal by developing a simple stochastic parametrization for the unresolved details of synoptic-scale activity, that is coupled to otherwise deterministic processes in the skeleton model. In particular, the intermittent initiation, propagation and shut down of MJO wave trains in the skeleton model occur through these stochastic effects. This includes examples with a background warm-pool where some initial MJO-like disturbances propagate through the western region but stall at the peak of background convection/heating corresponding to the maritime continent in nature.

  9. Amorphous calcium carbonate particles form coral skeletons.

    PubMed

    Mass, Tali; Giuffre, Anthony J; Sun, Chang-Yu; Stifler, Cayla A; Frazier, Matthew J; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V; Marcus, Matthew A; Gilbert, Pupa U P A

    2017-08-28

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed "vital effects," that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.

  10. Advances in evaluating the fetal skeleton

    PubMed Central

    Noel, Ann-Edwidge; Brown, Richard N

    2014-01-01

    In this review, we discuss aspects of the prenatal diagnosis of fetal skeletal malformations, concentrating on the advantages offered by different imaging techniques and the approaches that are of value in evaluating a suspected skeletal dysplasia. We also briefly address the findings in some of the commoner malformations of the fetal skeleton that may be encountered. PMID:24868173

  11. 3-D vascular skeleton extraction and decomposition.

    PubMed

    Chowriappa, Ashirwad; Seo, Yong; Salunke, Sarthak; Mokin, Maxim; Kan, Peter; Scott, Peter

    2014-01-01

    We introduce a novel vascular skeleton extraction and decomposition technique for computer-assisted diagnosis and analysis. We start by addressing the problem of vascular decomposition as a cluster optimization problem and present a methodology for weighted convex approximations. Decomposed vessel structures are then grouped using the vessel skeleton, extracted using a Laplace-based operator. The method is validated using presegmented sections of vasculature archived for 98 aneurysms in 112 patients. We test first for vascular decomposition and next for vessel skeleton extraction. The proposed method produced promising results with an estimated 80.5% of the vessel sections correctly decomposed and 92.9% of the vessel sections having the correct number of skeletal branches, identified by a clinical radiological expert. Next, the method was validated on longitudinal study data from n = 4 subjects, where vascular skeleton extraction and decomposition was performed. Volumetric and surface area comparisons were made between expert segmented sections and the proposed approach on sections containing aneurysms. Results suggest that the method is able to detect changes in aneurysm volumes and surface areas close to that segmented by an expert.

  12. Amorphous calcium carbonate particles form coral skeletons

    PubMed Central

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.

    2017-01-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene–Eocene Thermal Maximum that occurred 56 Mya. PMID:28847944

  13. Isotropic microscale mechanical properties of coral skeletons

    PubMed Central

    Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe

    2015-01-01

    Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections. PMID:25977958

  14. Novel skeleton sesquiterpenoids isolated from guava leaves.

    PubMed

    Ouyang, Wen; Zhu, Xiao-ai; Wang, Wei; Chen, Xue-Xiang; Chen, Yun-Jiao; Cao, Yong

    2016-01-01

    A chemical investigation of the plant Psidium guajava L., collected in Guangdong province, afforded two novel skeleton sesquiterpenoids 1 and 2. Compound 2 also known as isocaryolan-9-one was a new natural product. The structure of the novel compound 1 was determined as guavacid A by various spectroscopic methods. A possible biosynthetic pathway for 1 and 2 was proposed.

  15. Amorphous calcium carbonate particles form coral skeletons

    NASA Astrophysics Data System (ADS)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.; Gilbert, Pupa U. P. A.

    2017-09-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene–Eocene Thermal Maximum that occurred 56 Mya.

  16. Analysis of principal nested spheres.

    PubMed

    Jung, Sungkyu; Dryden, Ian L; Marron, J S

    2012-09-01

    A general framework for a novel non-geodesic decomposition of high-dimensional spheres or high-dimensional shape spaces for planar landmarks is discussed. The decomposition, principal nested spheres, leads to a sequence of submanifolds with decreasing intrinsic dimensions, which can be interpreted as an analogue of principal component analysis. In a number of real datasets, an apparent one-dimensional mode of variation curving through more than one geodesic component is captured in the one-dimensional component of principal nested spheres. While analysis of principal nested spheres provides an intuitive and flexible decomposition of the high-dimensional sphere, an interesting special case of the analysis results in finding principal geodesics, similar to those from previous approaches to manifold principal component analysis. An adaptation of our method to Kendall's shape space is discussed, and a computational algorithm for fitting principal nested spheres is proposed. The result provides a coordinate system to visualize the data structure and an intuitive summary of principal modes of variation, as exemplified by several datasets.

  17. Analysis of principal nested spheres

    PubMed Central

    Jung, Sungkyu; Dryden, Ian L.; Marron, J. S.

    2012-01-01

    Summary A general framework for a novel non-geodesic decomposition of high-dimensional spheres or high-dimensional shape spaces for planar landmarks is discussed. The decomposition, principal nested spheres, leads to a sequence of submanifolds with decreasing intrinsic dimensions, which can be interpreted as an analogue of principal component analysis. In a number of real datasets, an apparent one-dimensional mode of variation curving through more than one geodesic component is captured in the one-dimensional component of principal nested spheres. While analysis of principal nested spheres provides an intuitive and flexible decomposition of the high-dimensional sphere, an interesting special case of the analysis results in finding principal geodesics, similar to those from previous approaches to manifold principal component analysis. An adaptation of our method to Kendall’s shape space is discussed, and a computational algorithm for fitting principal nested spheres is proposed. The result provides a coordinate system to visualize the data structure and an intuitive summary of principal modes of variation, as exemplified by several datasets. PMID:23843669

  18. Principal component analysis- adaptive neuro-fuzzy inference system modeling and genetic algorithm optimization of adsorption of methylene blue by activated carbon derived from Pistacia khinjuk.

    PubMed

    Ghaedi, M; Ghaedi, A M; Abdi, F; Roosta, M; Vafaei, A; Asghari, A

    2013-10-01

    In the present study, activated carbon (AC) simply derived from Pistacia khinjuk and characterized using different techniques such as SEM and BET analysis. This new adsorbent was used for methylene blue (MB) adsorption. Fitting the experimental equilibrium data to various isotherm models shows the suitability and applicability of the Langmuir model. The adsorption mechanism and rate of processes was investigated by analyzing time dependency data to conventional kinetic models and it was found that adsorption follow the pseudo-second-order kinetic model. Principle component analysis (PCA) has been used for preprocessing of input data and genetic algorithm optimization have been used for prediction of adsorption of methylene blue using activated carbon derived from P. khinjuk. In our laboratory various activated carbon as sole adsorbent or loaded with various nanoparticles was used for removal of many pollutants (Ghaedi et al., 2012). These results indicate that the small amount of proposed adsorbent (1.0g) is applicable for successful removal of MB (RE>98%) in short time (45min) with high adsorption capacity (48-185mgg(-1)).

  19. Complete Primate Skeleton from the Middle Eocene of Messel in Germany: Morphology and Paleobiology

    PubMed Central

    Franzen, Jens L.; Gingerich, Philip D.; Habersetzer, Jörg; Hurum, Jørn H.; von Koenigswald, Wighart; Smith, B. Holly

    2009-01-01

    Background The best European locality for complete Eocene mammal skeletons is Grube Messel, near Darmstadt, Germany. Although the site was surrounded by a para-tropical rain forest in the Eocene, primates are remarkably rare there, and only eight fragmentary specimens were known until now. Messel has now yielded a full primate skeleton. The specimen has an unusual history: it was privately collected and sold in two parts, with only the lesser part previously known. The second part, which has just come to light, shows the skeleton to be the most complete primate known in the fossil record. Methodology/Principal Findings We describe the morphology and investigate the paleobiology of the skeleton. The specimen is described as Darwinius masillae n.gen. n.sp. belonging to the Cercamoniinae. Because the skeleton is lightly crushed and bones cannot be handled individually, imaging studies are of particular importance. Skull radiography shows a host of teeth developing within the juvenile face. Investigation of growth and proportion suggest that the individual was a weaned and independent-feeding female that died in her first year of life, and might have attained a body weight of 650–900 g had she lived to adulthood. She was an agile, nail-bearing, generalized arboreal quadruped living above the floor of the Messel rain forest. Conclusions/Significance Darwinius masillae represents the most complete fossil primate ever found, including both skeleton, soft body outline and contents of the digestive tract. Study of all these features allows a fairly complete reconstruction of life history, locomotion, and diet. Any future study of Eocene-Oligocene primates should benefit from information preserved in the Darwinius holotype. Of particular importance to phylogenetic studies, the absence of a toilet claw and a toothcomb demonstrates that Darwinius masillae is not simply a fossil lemur, but part of a larger group of primates, Adapoidea, representative of the early haplorhine

  20. Teens Who Are Lazy Bones Have Weaker Skeletons

    MedlinePlus

    ... html Teens Who Are Lazy Bones Have Weaker Skeletons: Study During crucial bone-building years of youth, ... those years, up to 36 percent of the skeleton is formed, and bone is particularly responsive to ...

  1. Skeleton pruning by contour partitioning with discrete curve evolution.

    PubMed

    Bai, Xiang; Latecki, Longin Jan; Liu, Wen-Yu

    2007-03-01

    In this paper, we introduce a new skeleton pruning method based on contour partitioning. Any contour partition can be used, but the partitions obtained by Discrete Curve Evolution (DCE) yield excellent results. The theoretical properties and the experiments presented demonstrate that obtained skeletons are in accord with human visual perception and stable, even in the presence of significant noise and shape variations, and have the same topology as the original skeletons. In particular, we have proven that the proposed approach never produces spurious branches, which are common when using the known skeleton pruning methods. Moreover, the proposed pruning method does not displace the skeleton points. Consequently, all skeleton points are centers of maximal disks. Again, many existing methods displace skeleton points in order to produces pruned skeletons.

  2. Segmentation of Skeleton and Organs in Whole-Body CT Images via Iterative Trilateration.

    PubMed

    Bieth, Marie; Peter, Loic; Nekolla, Stephan G; Eiber, Matthias; Langs, Georg; Schwaiger, Markus; Menze, Bjoern

    2017-06-27

    Whole body oncological screening using CT images requires a good anatomical localisation of organs and of the skeleton. While a number of algorithms for multi-organ localisation have been presented, developing algorithms for a dense anatomical annotation of the whole skeleton, however, has not been addressed until now. Only methods for specialised applications, e.g., in spine imaging, have been previously described. In this work, we propose an approach for localising and annotating different parts of the human skeleton in CT images. We introduce novel anatomical trilateration features and employ them within iterative scale-adaptive random forests in a hierarchical fashion to annotate the whole skeleton. The anatomical trilateration features provide high-level long-range context information that complements the classical local contextbased features used in most image segmentation approaches. They rely on anatomical landmarks derived from the previous element of the cascade to express positions relative to reference points. Following a hierarchical approach, large anatomical structures are segmented first, before identifying substructures. We develop this method for bone annotation but also illustrate its performance, although not specifically optimised for it, for multi-organ annotation. Our method achieves average Dice Scores of 77.4 to 85.6 for bone annotation on three different datasets. It can also segment different organs with sufficient performance for oncological applications, e.g. for PET/CT analysis, and its computation time allows for its use in clinical practice.

  3. Miocene Coral Skeleton Rare Earth Element Patterns Reflect River Discharge

    NASA Astrophysics Data System (ADS)

    Mertz-Kraus, R.; Brachert, T. C.; Jochum, K. P.

    2010-12-01

    reconstructions suggest the reef to have grown close to a river mouth. The calculated mixing ratio corresponds to a SSS of the ambient water >34 ‰ compatible with environmental conditions favorable for coral growth. As possible sources of the REE transported by river water, weathering products of Cretan hinterland rocks must be considered. During the Miocene, drained hinterland was formed by a diversity of magmatic, metamorphic and sedimentary lithologies, essentially represented by granitoids, ophiolitic rocks, siliciclastic sediments and carbonates. A detailed identification of sources as well as quantification of corresponding fractions of REE contributing to the bulk river water component is principally possible in cases where the drained system shows a more limited variation in rock lithologies, however, is difficult to apply to the complex Cretan situation. This study demonstrates that the REE patterns of coral skeletons can be suitable to reconstruct the bulk REE composition of the drainage system in the reef’s hinterland. Also, we suggest to use REE/Ca and Ba/Ca ratios likewise in order to identify fluctuations in river discharge to marine environments.

  4. Calcaneal spurs among San and Khoi skeletons.

    PubMed

    Caroline, Cermak; Kirchengast, Sylvia

    2015-01-01

    Only few studies considered the prevalence of calcaneal enthesophytes commonly called heel spurs among historic skeleton samples. In the present study the frequency of plantar calcaneal spurs among 54 19(th) century Khoisan skeletons was analyzed. Five individuals (9.6 %) had a plantar calcaneal spur at the right side or left side. Calcaneal spurs were more likely to occur in older individuals. More than 20 % of the individuals aged between 40 and 60 years (mature) showed plantar spurs, while 6.2 % of the individuals aged between 20 and 40 years had plantar spurs; however this difference was not significant. No sex differences were present in the prevalence of calcaneal spurs. Male and female individuals did not differ in the metric dimensions of the calcanceal spurs significantly.

  5. Performance Measurements for the Microsoft Kinect Skeleton

    DTIC Science & Technology

    2012-03-01

    Information Inter- faces and Presentation]: User Interfaces—Input devices and strate- gies; 1 INTRODUCTION The Microsoft Kinect for Xbox 360 (“Kinect...MAR 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Performance Measurements for the Microsoft Kinect...8-98) Prescribed by ANSI Std Z39-18 Performance Measurements for the Microsoft Kinect Skeleton Mark A. Livingston∗ Jay Sebastian† Zhuming Ai

  6. The facial skeleton: Armor to the brain?

    PubMed

    Patil, Satishkumar G; Patil, Bindu S; Joshi, Udupikrishna; Allurkar, Soumya; Japatti, Sharanabasappa; Munnangi, Ashwini

    2016-09-01

    With the development of urban setting worldwide, the major issue of concern is the increase in the mortality rate in the population due to road traffic accidents. The face, being the most exposed region is susceptible to injuries and maybe associated with injuries to the adjacent neuro-cranium. The literature has conflicting views on the relationship between facial fractures and head injuries with some authors opining that the facial skeleton cushions the brain while some other authors claim that the facial fractures act as indicators for head injuries. To analyze the correlation between the facial fractures and head injuries and to assess if the facial skeleton acts to protect the brain from injury. A prospective study that included patients who reported to the emergency department of Basaveswar Teaching and General Hospital, Gulbarga, during 2 years, between August 2013 and July 2015 was conducted. A total of 100 patients with facial fractures were enrolled in the study. Head injuries were sustained by 51 patients in the study. Maximum number of patients was in the age group of 20-29 with a male to female ratio of 10.1:1. The mandible was the most frequently fractured bone in the facial skeleton followed by the zygomatico-maxillary complex. A majority (96%) of patients with head injuries had fractures of either the upper third or the middle third of the face. Contusions and pneumocephalus were the most common head injury encountered. The Glasgow Coma Scale score was significantly lower in patients with associated head injuries as compared to those patients with facial trauma alone. The mortality rate in the study was 2% with both the victims having sustained middle third and upper third fractures respectively with associated head injuries. The facial skeleton does not act to cushion the brain from injury but, in fact, the facial trauma victims should be considered potential head injury patients.

  7. The facial skeleton: Armor to the brain?

    PubMed Central

    Patil, Satishkumar G.; Patil, Bindu S.; Joshi, Udupikrishna; Allurkar, Soumya; Japatti, Sharanabasappa; Munnangi, Ashwini

    2016-01-01

    Background: With the development of urban setting worldwide, the major issue of concern is the increase in the mortality rate in the population due to road traffic accidents. The face, being the most exposed region is susceptible to injuries and maybe associated with injuries to the adjacent neuro-cranium. The literature has conflicting views on the relationship between facial fractures and head injuries with some authors opining that the facial skeleton cushions the brain while some other authors claim that the facial fractures act as indicators for head injuries. Objectives: To analyze the correlation between the facial fractures and head injuries and to assess if the facial skeleton acts to protect the brain from injury. Patients and Methods: A prospective study that included patients who reported to the emergency department of Basaveswar Teaching and General Hospital, Gulbarga, during 2 years, between August 2013 and July 2015 was conducted. A total of 100 patients with facial fractures were enrolled in the study. Results: Head injuries were sustained by 51 patients in the study. Maximum number of patients was in the age group of 20–29 with a male to female ratio of 10.1:1. The mandible was the most frequently fractured bone in the facial skeleton followed by the zygomatico-maxillary complex. A majority (96%) of patients with head injuries had fractures of either the upper third or the middle third of the face. Contusions and pneumocephalus were the most common head injury encountered. The Glasgow Coma Scale score was significantly lower in patients with associated head injuries as compared to those patients with facial trauma alone. The mortality rate in the study was 2% with both the victims having sustained middle third and upper third fractures respectively with associated head injuries. Conclusion: The facial skeleton does not act to cushion the brain from injury but, in fact, the facial trauma victims should be considered potential head injury patients

  8. Naked Stony Corals: Skeleton Loss in Scleractinia

    SciTech Connect

    Medina, Monica; Collins, Allen G.; Takaoka, Tori L.; Kuehl,Jennifer; Boore, Jeffrey L.

    2005-12-01

    Hexacorallia includes the Scleractinia, or stony corals, characterized by having an external calcareous skeleton made of aragonite, and the Corallimorpharia, or mushroom corals, that lack such a skeleton. Although each group has traditionally been considered monophyletic, some molecular phylogenetic analyses have challenged this, suggesting that skeletal features are evolutionarily plastic, and reviving notions that the scleractinian skeleton may be ephemeral and that the group itself may be polyphyletic. Nevertheless, the most comprehensive phylogenetic study of Hexacorallia supported scleractinian monophyly (REF), and so this remains controversial. In order to resolve this contentious issue, we sequenced the complete mitochondrial genome sequences of nine scleractinians and four corallimorpharians and performed phylogenetic analysis that also included three outgroups (an octocoral and two sea anemones). Our data provide the first strong evidence that Scleractinia is paraphyletic and that the Corallimorpharia is derived from within the group, from which we conclude that skeletal loss has occurred in the latter group secondarily. It is possible that a driving force in such skeletal loss could be the high levels of CO{sub 2} in the ocean during the mid-Cretaceous, which would have impacted aragonite solubility. We estimate from molecular divergence measures that the Corallimorpharia arose in the mid-Cretaceous, approximately 87 million years ago (Ma), supporting this view. These data also permit us to date the origin of Scleractinia to 265 Ma, narrowing the gap between the group's phylogenetic origin and its earliest fossil record.

  9. Skeleton-based active catheter navigation.

    PubMed

    Fu, Yili; Liu, Hao; Wang, Shuguo; Deng, Wei; Li, Xianling; Liang, Zhaoguang

    2009-06-01

    The emergence of the active catheter has prompted the development of catheterization in minimally invasive surgery. However, it is still operated using only the physician's vision; information supplied by the guiding image and tracking sensors has not been fully utilized. In order to supply the active catheter with more useful information for automatic navigation, we extract the skeleton of blood vessels by means of an improved distance transform method, and then present the crucial geometric information determining navigation. With the help of tracking sensors' position and pose information, two operations, advancement in the proximal end and direction selection in the distal end, are alternately implemented to insert the active catheter into a target blood vessel. The skeleton of the aortic arch reconstructed from slice images is extracted fast and automatically. A navigation path is generated on the skeleton by manually selecting the start and target points, and smoothed with the cubic cardinal spline curve. Crucial geometric information determining navigation is presented, as well as requirements for the catheter entering the target blood vessel. Using a shape memory alloy active catheter integrated with magnetic sensors, an experiment is carried out in a vascular model, in which the catheter is successfully inserted from the ascending aorta, via the aortic arch, into the brachiocephalic trunk. The navigation strategy proposed in this paper is feasible and has the advantage of increasing the automation of catheterization, enhancing the manoeuvrability of the active catheter and providing the guiding image with desirable interactivity.

  10. Solving the Principal Shortage.

    ERIC Educational Resources Information Center

    Potter, Les

    2001-01-01

    Districts can quickly relieve the principal shortage by hiring recently retired principals and aspiring assistant principals, keeping good principals on the job, reconsidering early retirement options, providing monetary incentives, and recruiting candidates from local universities and outside education. Nurturing assistant principals is the best…

  11. A skeleton family generator via physics-based deformable models.

    PubMed

    Krinidis, Stelios; Chatzis, Vassilios

    2009-01-01

    This paper presents a novel approach for object skeleton family extraction. The introduced technique utilizes a 2-D physics-based deformable model that parameterizes the objects shape. Deformation equations are solved exploiting modal analysis, and proportional to model physical characteristics, a different skeleton is produced every time, generating, in this way, a family of skeletons. The theoretical properties and the experiments presented demonstrate that obtained skeletons match to hand-labeled skeletons provided by human subjects, even in the presence of significant noise and shape variations, cuts and tears, and have the same topology as the original skeletons. In particular, the proposed approach produces no spurious branches without the need of any known skeleton pruning method.

  12. Moderating registration misalignment in voxelwise comparisons of DTI data: a performance evaluation of skeleton projection.

    PubMed

    Zalesky, Andrew

    2011-01-01

    An evaluative methodology and five accompanying performance measures were developed to quantitatively assess the performance of the skeleton projection algorithm constituting the heart of tract-based spatial statistics (TBSS). The performance measures were designed to quantify the accuracy of skeleton projection in its indented task of alleviating any residual misalignment that may remain after image registration. A ground truth fractional anisotropy (FA) image was slightly warped using a realistic warp field that served to model post-registration residual misalignment of varying magnitudes. Skeleton projection was then used to register the warped FA image to the ground truth. Performing skeleton projection was found to yield up to 50% better correspondence between the values of FA compared to smoothing, despite the fact that less than 10% of post-registration misalignment was corrected. The align-max-with-max strategy underlying TBSS was posited as a potential explanation for this high correspondence in the values of FA, at the expense of lesser alignment between anatomically concordant voxels.

  13. Development and evaluation of a semi-automatic technique for determining the bilateral symmetry plane of the facial skeleton.

    PubMed

    Willing, Ryan T; Roumeliotis, Grayson; Jenkyn, Thomas R; Yazdani, Arjang

    2013-12-01

    During reconstructive surgery of the face, one side may be used as a template for the other, exploiting assumed bilateral facial symmetry. The best method to calculate this plane, however, is debated. A new semi-automatic technique for calculating the symmetry plane of the facial skeleton is presented here that uses surface models reconstructed from computed tomography image data in conjunction with principal component analysis and an iterative closest point alignment method. This new technique was found to provide more accurate symmetry planes than traditional methods when applied to a set of 7 human craniofacial skeleton specimens, and showed little vulnerability to missing model data, usually deviating less than 1.5° and 2 mm from the intact model symmetry plane when 30 mm radius voids were present. This new technique will be used for subsequent studies measuring symmetry of the facial skeleton for different patient populations.

  14. Naked corals: Skeleton loss in Scleractinia

    PubMed Central

    Medina, Mónica; Collins, Allen G.; Takaoka, Tori L.; Kuehl, Jennifer V.; Boore, Jeffrey L.

    2006-01-01

    Stony corals, which form the framework for modern reefs, are classified as Scleractinia (Cnidaria, Anthozoa, and Hexacorallia) in reference to their external aragonitic skeletons. However, persistent notions, collectively known as the “naked coral” hypothesis, hold that the scleractinian skeleton does not define a natural group. Three main lines of evidence have suggested that some stony corals are more closely related to one or more of the soft-bodied hexacorallian groups than they are to other scleractinians: (i) morphological similarities; (ii) lack of phylogenetic resolution in molecular analyses of scleractinians; and (iii) discrepancy between the commencement of a diverse scleractinian fossil record at 240 million years ago (Ma) and a molecule-based origination of at least 300 Ma. No molecular evidence has been able to clearly reveal relationships at the base of a well supported clade composed of scleractinian lineages and the nonskeletonized Corallimorpharia. We present complete mitochondrial genome data that provide strong evidence that one clade of scleractinians is more closely related to Corallimorpharia than it is to a another clade of scleractinians. Thus, the scleractinian skeleton, which we estimate to have originated between 240 and 288 Ma, was likely lost in the ancestry of Corallimorpharia. We estimate that Corallimorpharia originated between 110 and 132 Ma during the late- to mid-Cretaceous, coinciding with high levels of oceanic CO2, which would have impacted aragonite solubility. Corallimorpharians escaped extinction from aragonite skeletal dissolution, but some modern stony corals may not have such fortunate fates under the pressure of increased anthropogenic CO2 in the ocean. PMID:16754865

  15. Identification of a membrane skeleton in platelets

    PubMed Central

    1988-01-01

    Platelets have previously been shown to contain actin filaments that are linked, through actin-binding protein, to the glycoprotein (GP) Ib- IX complex, GP Ia, GP IIa, and an unidentified GP of Mr 250,000 on the plasma membrane. The objective of the present study was to use a morphological approach to examine the distribution of these membrane- bound filaments within platelets. Preliminary experiments showed that the Triton X-100 lysis buffers used previously to solubilize platelets completely disrupt the three-dimensional organization of the cytoskeletons. Conditions were established that minimized these postlysis changes. The cytoskeletons remained as platelet-shaped structures. These structures consisted of a network of long actin filaments and a more amorphous layer that outlined the periphery. When Ca2+ was present, the long actin filaments were lost but the amorphous layer at the periphery remained; conditions were established in which this amorphous layer retained the outline of the platelet from which it originated. Immunocytochemical experiments showed that the GP Ib-IX complex and actin-binding protein were associated with the amorphous layer. Analysis of the amorphous material on SDS-polyacrylamide gels showed that it contained actin, actin-binding protein, and all actin- bound GP Ib-IX. Although actin filaments could not be visualized in thin section, the actin presumably was in a filamentous form because it was solubilized by DNase I and bound phalloidin. These studies show that platelets contain a membrane skeleton and suggest that it is distinct from the network of cytoplasmic actin filaments. This membrane skeleton exists as a submembranous lining that, by analogy to the erythrocyte membrane skeleton, may stabilize the plasma membrane and contribute to determining its shape. PMID:3372587

  16. Switching skeletons: hydrostatic support in molting crabs

    NASA Technical Reports Server (NTRS)

    Taylor, Jennifer R A.; Kier, William M.; Walker, I. D. (Principal Investigator)

    2003-01-01

    Skeletal support systems are essential for support, movement, muscular antagonism, and locomotion. Crustaceans shed their rigid exoskeleton at each molt yet are still capable of forceful movement. We hypothesize that the soft water-inflated body of newly molted crabs may rely on a hydrostatic skeleton, similar to that of worms and polyps. We measured internal hydrostatic pressure and the force exerted during claw adduction and observed a strong correlation between force and hydrostatic pressure, consistent with hydrostatic skeletal support. This alternation between the two basic skeletal types may be widespread among arthropods.

  17. Switching skeletons: hydrostatic support in molting crabs

    NASA Technical Reports Server (NTRS)

    Taylor, Jennifer R A.; Kier, William M.; Walker, I. D. (Principal Investigator)

    2003-01-01

    Skeletal support systems are essential for support, movement, muscular antagonism, and locomotion. Crustaceans shed their rigid exoskeleton at each molt yet are still capable of forceful movement. We hypothesize that the soft water-inflated body of newly molted crabs may rely on a hydrostatic skeleton, similar to that of worms and polyps. We measured internal hydrostatic pressure and the force exerted during claw adduction and observed a strong correlation between force and hydrostatic pressure, consistent with hydrostatic skeletal support. This alternation between the two basic skeletal types may be widespread among arthropods.

  18. Principal Experiences of Succession

    ERIC Educational Resources Information Center

    Steele, Farla Gay

    2015-01-01

    This multiple case study explored the experiences of school principals and the usefulness of Peters' (2011) succession planning model. Ten purposefully selected principals from varying grade levels were interviewed; none reported a formal succession plan, and all had been assistant principals. The study concluded the assistant principal position…

  19. Principal Mentoring: An Update.

    ERIC Educational Resources Information Center

    Malone, Robert J.

    2002-01-01

    Never before has the need for effective mentoring programs for principals been more urgent. Record student enrollment, an anticipated retirement of about 40 percent of principals, and a shrinking pool of those who aspire to be principals have brought about a shortage of principals and an alarming lack of qualified applicants. This research roundup…

  20. Principal Experiences of Succession

    ERIC Educational Resources Information Center

    Steele, Farla Gay

    2015-01-01

    This multiple case study explored the experiences of school principals and the usefulness of Peters' (2011) succession planning model. Ten purposefully selected principals from varying grade levels were interviewed; none reported a formal succession plan, and all had been assistant principals. The study concluded the assistant principal position…

  1. [Wooden models of human skeleton made in Edo era, Japan, with special reference to Hoshino wooden skeleton].

    PubMed

    Kataoka, Katsuko; Suzaki, Etsuko; Ajima, Noriaki

    2006-03-01

    The wooden model of the human skeleton, called wooden skeleton, is a distinguished original craft object in Edo era (1600-1867), Japan, when medical doctors were unable to keep the human skeleton for their study and teaching purpose. There are three kinds of wooden skeletons, i. e. Hoshino, Kagami and Okuda wooden skeletons made in 1792, 1810 and 1820, respectively. The former two are of adult male and the latter of female. They were made in surprising accuracy as compared with figures appeared in medical books available in Japan at that time, which suggests scientific readiness of the doctors and skills of the craftsmen. A complete set of the skeleton, except for the hyoid bone, has been preserved for Hoshino and Okuda wooden skeletons, while several bones have been missing in Kagami wooden skeleton. Each bone of Hoshino and Kagami wooden skeletons was made separately and connected by a tenon and a corresponding mortise at the articular surface. So it is hardly considered that all wooden bones were assembled into the whole body skeleton on use. Okuda wooden skeleton, on the other hand, was made for being shown in sitting position. The skull of Hoshino wooden skeleton is of special interest: the skull cap is not open, yet the internal structures of the skull, such as the sella turcica, foramina for nerves and vessels, and sulci for venous sinuses were made in considerable accuracy. Moreover, the proper connection of most foramina was proved between the inside and outside of the skull. The skull caps of Kagami and Okuda wooden skeletons are open as those used in the modern medical education.

  2. Principal Preparedness: Superintendent Perceptions of New Principals

    ERIC Educational Resources Information Center

    Cray, Martha; Weiler, Spencer C.

    2011-01-01

    National advocacy groups have undertaken significant efforts to define the performance capacities needed by principals to lead schools in this era of continuous improvement and accountability. There has been little articulation between the core skills essential to new principals and the leadership capacities of experienced peers. This study…

  3. Principal Preparedness: Superintendent Perceptions of New Principals

    ERIC Educational Resources Information Center

    Cray, Martha; Weiler, Spencer C.

    2011-01-01

    National advocacy groups have undertaken significant efforts to define the performance capacities needed by principals to lead schools in this era of continuous improvement and accountability. There has been little articulation between the core skills essential to new principals and the leadership capacities of experienced peers. This study…

  4. Skeleton-Based Abnormal Gait Detection.

    PubMed

    Nguyen, Trong-Nguyen; Huynh, Huu-Hung; Meunier, Jean

    2016-10-26

    Human gait analysis plays an important role in musculoskeletal disorder diagnosis. Detecting anomalies in human walking, such as shuffling gait, stiff leg or unsteady gait, can be difficult if the prior knowledge of such a gait pattern is not available. We propose an approach for detecting abnormal human gait based on a normal gait model. Instead of employing the color image, silhouette, or spatio-temporal volume, our model is created based on human joint positions (skeleton) in time series. We decompose each sequence of normal gait images into gait cycles. Each human instant posture is represented by a feature vector which describes relationships between pairs of bone joints located in the lower body. Such vectors are then converted into codewords using a clustering technique. The normal human gait model is created based on multiple sequences of codewords corresponding to different gait cycles. In the detection stage, a gait cycle with normality likelihood below a threshold, which is determined automatically in the training step, is assumed as an anomaly. The experimental results on both marker-based mocap data and Kinect skeleton show that our method is very promising in distinguishing normal and abnormal gaits with an overall accuracy of 90.12%.

  5. Skeleton-Based Abnormal Gait Detection

    PubMed Central

    Nguyen, Trong-Nguyen; Huynh, Huu-Hung; Meunier, Jean

    2016-01-01

    Human gait analysis plays an important role in musculoskeletal disorder diagnosis. Detecting anomalies in human walking, such as shuffling gait, stiff leg or unsteady gait, can be difficult if the prior knowledge of such a gait pattern is not available. We propose an approach for detecting abnormal human gait based on a normal gait model. Instead of employing the color image, silhouette, or spatio-temporal volume, our model is created based on human joint positions (skeleton) in time series. We decompose each sequence of normal gait images into gait cycles. Each human instant posture is represented by a feature vector which describes relationships between pairs of bone joints located in the lower body. Such vectors are then converted into codewords using a clustering technique. The normal human gait model is created based on multiple sequences of codewords corresponding to different gait cycles. In the detection stage, a gait cycle with normality likelihood below a threshold, which is determined automatically in the training step, is assumed as an anomaly. The experimental results on both marker-based mocap data and Kinect skeleton show that our method is very promising in distinguishing normal and abnormal gaits with an overall accuracy of 90.12%. PMID:27792181

  6. [Okuda wooden human skeleton made in Edo era, Japan].

    PubMed

    Baba, Hisao

    2006-03-01

    Probably in 1820 (late Edo era), a human skeleton for medical education was carved from cypress wood, based on a criminal's skeleton under the supervision of a medical doctor, Banri Okuda in Osaka City. The skeleton is called "Okuda wooden skeleton" and is now housed in the National Science Museum, Tokyo. The bones can be assembled into a skeleton by metal pivots or bamboo sticks. The thorax and pelvis were made of several pieces of wood and combined together, respectively. By and large, the wooden skeleton shows morphological characteristics usually seen in early middle-aged females of the Edo era. But the claviculae, distal ends of the femora, and the patellae are exceptionally larger than those of a female, implying that these bones of the original skeleton had already been lost or were deformed before the wooden skeleton was made. Actually the wooden skeleton might not have been used for medical education but rather for the promotion of European medicine, which was gradually developing in the Edo era.

  7. DeepSkeleton: Learning Multi-Task Scale-Associated Deep Side Outputs for Object Skeleton Extraction in Natural Images.

    PubMed

    Shen, Wei; Zhao, Kai; Jiang, Yuan; Wang, Yan; Bai, Xiang; Yuille, Alan

    2017-11-01

    Object skeletons are useful for object representation and object detection. They are complementary to the object contour, and provide extra information, such as how object scale (thickness) varies among object parts. But object skeleton extraction from natural images is very challenging, because it requires the extractor to be able to capture both local and non-local image context in order to determine the scale of each skeleton pixel. In this paper, we present a novel fully convolutional network with multiple scale-associated side outputs to address this problem. By observing the relationship between the receptive field sizes of the different layers in the network and the skeleton scales they can capture, we introduce two scale-associated side outputs to each stage of the network. The network is trained by multi-task learning, where one task is skeleton localization to classify whether a pixel is a skeleton pixel or not, and the other is skeleton scale prediction to regress the scale of each skeleton pixel. Supervision is imposed at different stages by guiding the scale-associated side outputs toward the ground-truth skeletons at the appropriate scales. The responses of the multiple scale-associated side outputs are then fused in a scale-specific way to detect skeleton pixels using multiple scales effectively. Our method achieves promising results on two skeleton extraction datasets, and significantly outperforms other competitors. In addition, the usefulness of the obtained skeletons and scales (thickness) are verified on two object detection applications: foreground object segmentation and object proposal detection.

  8. [Capabilities of a Multivox hardware-software system in the radiodiagnosis of facial skeleton injury].

    PubMed

    Kuznetsov, A A; Klimova, N V

    2013-01-01

    The authors evaluated the efficiency of a Multivox RIS hardware-software system in optimizing the radiodiagnosis of facial skeleton injury. An attempt was undertaken to systematize an approach to the comprehensive radiographic examination of patients with craniofacial polytrauma. It is shown that an image can be postprocessed using the Multivox RIS hardware-software system, which contributes to the comprehensive analysis of obtained images, by applying different radiographic studies; moreover, digital X-ray study has the most diagnostic value and rationality for isolated maxillofacial trauma and multislice spiral computed tomography has them for mixed, concurrent, and multiple injuries. The developed algorithm for examining the patients with facial skeleton trauma unifies and optimizes the diagnosis of craniofascial injuries at different sites.

  9. The Hoshino wooden skeleton, the first wooden model of a human skeleton, made during the Edo era in Japan.

    PubMed

    Kataoka, Katsuko; Suzaki, Etsuko; Ajima, Noriaki

    2007-03-01

    The wooden model of the human skeleton, called the wooden skeleton, is a distinguished original craft object from the Edo era, in Japan, when medical doctors were unable to keep a human skeleton for study and teaching purposes. There are three types of wooden skeletons: (i) Hoshino made in 1792; (ii) Kagami made by 1810; and (iii) Okuda made around 1820. The former two are of adult males and the latter is of a female. The wooden skeletons were made with surprising accuracy compared with figures that appeared in the medical books available in Japan at that time, which suggests a scientific readiness of the doctors and the skill of the craftsmen. In the cases of the Hoshino and Kagami wooden skeletons, it is hard to consider that all wooden bones were assembled to show the entire body. Conversely, the Okuda wooden skeletons were made for showing in the sitting position. The skull of the Hoshino wooden skeleton is of special interest: the skull cap was not cut, yet the internal structures of the skull, such as the sella turcica, foramina for nerves and vessels, and the sulci for venous sinuses, were made with considerable accuracy. The skull caps of the Kagami and Okuda wooden skeletons were cut, as those used in modern medical education.

  10. Skeleton-based cerebrovascular quantitative analysis.

    PubMed

    Wang, Xingce; Liu, Enhui; Wu, Zhongke; Zhai, Feifei; Zhu, Yi-Cheng; Shui, Wuyang; Zhou, Mingquan

    2016-12-20

    Cerebrovascular disease is the most common cause of death worldwide, with millions of deaths annually. Interest is increasing toward understanding the geometric factors that influence cerebrovascular diseases, such as stroke. Cerebrovascular shape analyses are essential for the diagnosis and pathological identification of these conditions. The current study aimed to provide a stable and consistent methodology for quantitative Circle of Willis (CoW) analysis and to identify geometric changes in this structure. An entire pipeline was designed with emphasis on automating each step. The stochastic segmentation was improved and volumetric data were obtained. The L1 medial axis method was applied to vessel volumetric data, which yielded a discrete skeleton dataset. A B-spline curve was used to fit the skeleton, and geometric values were proposed for a one-dimensional skeleton and radius. The calculations used to derive these values were illustrated in detail. In one example(No. 47 in the open dataset) all values for different branches of CoW were calculated. The anterior communicating artery(ACo) was the shortest vessel, with a length of 2.6mm. The range of the curvature of all vessels was (0.3, 0.9) ± (0.1, 1.4). The range of the torsion was (-12.4,0.8) ± (0, 48.7). The mean radius value range was (3.1, 1.5) ± (0.1, 0.7) mm, and the mean angle value range was (2.2, 2.9) ± (0, 0.2) mm. In addition to the torsion variance values in a few vessels, the variance values of all vessel characteristics remained near 1. The distribution of the radii of symmetrical posterior cerebral artery(PCA) and angle values of the symmetrical posterior communicating arteries(PCo) demonstrated a certain correlation between the corresponding values of symmetrical vessels on the CoW. The data verified the stability of our methodology. Our method was appropriate for the analysis of large medical image datasets derived from the automated pipeline for populations. This method was applicable to

  11. A Faster, Unbiased Path Opening by Upper Skeletonization and Weighted Adjacency Graphs.

    PubMed

    Asplund, Teo; Luengo Hendriks, Cris L

    2016-12-01

    The path opening is a filter that preserves bright regions in the image in which a path of a certain length L fits. A path is a (not necessarily straight) line defined by a specific adjacency relation. The most efficient implementation known scales as O(min(L, d, Q) N) with the length of the path, L , the maximum possible path length, d , the number of graylevels, Q , and the image size, N . An approximation exists (parsimonious path opening) that has an execution time independent of path length. This is achieved by preselecting paths, and applying 1D openings along these paths. However, the preselected paths can miss important structures, as described by its authors. Here, we propose a different approximation, in which we preselect paths using a grayvalue skeleton. The skeleton follows all ridges in the image, meaning that no important line structures will be missed. An H-minima transform simplifies the image to reduce the number of branches in the skeleton. A graph-based version of the traditional path opening operates only on the pixels in the skeleton, yielding speedups up to one order of magnitude, depending on image size and filter parameters. The edges of the graph are weighted in order to minimize bias. Experiments show that the proposed algorithm scales linearly with image size, and that it is often slightly faster for longer paths than for shorter paths. The algorithm also yields the most accurate results-as compared with a number of path opening variants-when measuring length distributions.

  12. The origin of the vertebrate skeleton

    NASA Astrophysics Data System (ADS)

    Pivar, Stuart

    2011-01-01

    The anatomy of the human and other vertebrates has been well described since the days of Leonardo da Vinci and Vesalius. The causative origin of the configuration of the bones and of their shapes and forms has been addressed over the ensuing centuries by such outstanding investigators as Goethe, Von Baer, Gegenbauer, Wilhelm His and D'Arcy Thompson, who sought to apply mechanical principles to morphogenesis. However, no coherent causative model of morphogenesis has ever been presented. This paper presents a causative model for the origin of the vertebrate skeleton, based on the premise that the body is a mosaic enlargement of self-organized patterns engrained in the membrane of the egg cell. Drawings illustrate the proposed hypothetical origin of membrane patterning and the changes in the hydrostatic equilibrium of the cytoplasm that cause topographical deformations resulting in the vertebrate body form.

  13. The skeleton as an endocrine organ.

    PubMed

    DiGirolamo, Douglas J; Clemens, Thomas L; Kousteni, Stavroula

    2012-11-01

    Surprising new discoveries in the field of skeletal biology show that bone cells produce endocrine hormones that regulate phosphate and glucose homeostasis. In this Review, we examine the features of these new endocrine pathways and discuss their physiological importance in the context of our current understanding of energy metabolism and mineral homeostasis. Consideration of evolutionary and comparative biology provides clues that a key driving force for the emergence of these hormonal pathways was the development of a large, energy-expensive musculoskeletal system. Specialized bone cells also evolved and produced endocrine hormones to integrate the skeleton in global mineral and nutrient homeostasis. The recognition of bone as a true endocrine organ represents a fertile area for further research and should improve the diagnosis and treatment of metabolic diseases such as osteoporosis and diabetes mellitus.

  14. Anterior Cruciate Ligament Injuries in Growing Skeleton

    PubMed Central

    AlHarby, Saleh W.

    2010-01-01

    Anterior cruciate ligament (ACL) injuries in the adult patients are thoroughly studied and published in orthopedic literature. Until recently, little was known about similar injuries in skeletally growing patients. The more frequent involvement of this age group in various athletic activities and the improved diagnostic modalities have increased the awareness and interest of ACL injuries in skeletally immature patients. ACL reconstruction in growing skeleton is controversial and carries some risks to the tibial and femoral growth plate. A guarded approach to ACL reconstruction is recommended in skeletally immature patients. Modification of activity of ACL injured young patient, proper rehabilitation and prudent planning of adolescent age ACL reconstruction carries the least risks of growth plate violation. PMID:21475528

  15. Biology of bone and how it orchestrates the form and function of the skeleton

    NASA Technical Reports Server (NTRS)

    Sommerfeldt, D. W.; Rubin, C. T.

    2001-01-01

    The principal role of the skeleton is to provide structural support for the body. While the skeleton also serves as the body's mineral reservoir, the mineralized structure is the very basis of posture, opposes muscular contraction resulting in motion, withstands functional load bearing, and protects internal organs. Although the mass and morphology of the skeleton is defined, to some extent, by genetic determinants, it is the tissue's ability to remodel--the local resorption and formation of bone--which is responsible for achieving this intricate balance between competing responsibilities. The aim of this review is to address bone's form-function relationship, beginning with extensive research in the musculoskeletal disciplines, and focusing on several recent cellular and molecular discoveries which help understand the complex interdependence of bone cells, growth factors, physical stimuli, metabolic demands, and structural responsibilities. With a clinical and spine-oriented audience in mind, the principles of bone cell and molecular biology and physiology are presented, and an attempt has been made to incorporate epidemiologic data and therapeutic implications. Bone research remains interdisciplinary by nature, and a deeper understanding of bone biology will ultimately lead to advances in the treatment of diseases and injuries to bone itself.

  16. Biology of bone and how it orchestrates the form and function of the skeleton

    NASA Technical Reports Server (NTRS)

    Sommerfeldt, D. W.; Rubin, C. T.

    2001-01-01

    The principal role of the skeleton is to provide structural support for the body. While the skeleton also serves as the body's mineral reservoir, the mineralized structure is the very basis of posture, opposes muscular contraction resulting in motion, withstands functional load bearing, and protects internal organs. Although the mass and morphology of the skeleton is defined, to some extent, by genetic determinants, it is the tissue's ability to remodel--the local resorption and formation of bone--which is responsible for achieving this intricate balance between competing responsibilities. The aim of this review is to address bone's form-function relationship, beginning with extensive research in the musculoskeletal disciplines, and focusing on several recent cellular and molecular discoveries which help understand the complex interdependence of bone cells, growth factors, physical stimuli, metabolic demands, and structural responsibilities. With a clinical and spine-oriented audience in mind, the principles of bone cell and molecular biology and physiology are presented, and an attempt has been made to incorporate epidemiologic data and therapeutic implications. Bone research remains interdisciplinary by nature, and a deeper understanding of bone biology will ultimately lead to advances in the treatment of diseases and injuries to bone itself.

  17. DEVELOPMENTAL PALEOBIOLOGY OF THE VERTEBRATE SKELETON

    PubMed Central

    RÜCKLIN, MARTIN; DONOGHUE, PHILIP C. J.; CUNNINGHAM, JOHN A.; MARONE, FEDERICA; STAMPANONI, MARCO

    2015-01-01

    Studies of the development of organisms can reveal crucial information on homology of structures. Developmental data are not peculiar to living organisms, and they are routinely preserved in the mineralized tissues that comprise the vertebrate skeleton, allowing us to obtain direct insight into the developmental evolution of this most formative of vertebrate innovations. The pattern of developmental processes is recorded in fossils as successive stages inferred from the gross morphology of multiple specimens and, more reliably and routinely, through the ontogenetic stages of development seen in the skeletal histology of individuals. Traditional techniques are destructive and restricted to a 2-D plane with the third dimension inferred. Effective non-invasive methods of visualizing paleohistology to reconstruct developmental stages of the skeleton are necessary. In a brief survey of paleohistological techniques we discuss the pros and cons of these methods. The use of tomographic methods to reconstruct development of organs is exemplified by the study of the placoderm dentition. Testing evidence for the presence of teeth in placoderms, the first jawed vertebrates, we compare the methods that have been used. These include inferring the development from morphology, and using serial sectioning, microCT or synchrotron X-ray tomographic microscopy (SRXTM) to reconstruct growth stages and directions of growth. The ensuing developmental interpretations are biased by the methods and degree of inference. The most direct and reliable method is using SRXTM data to trace sclerochronology. The resulting developmental data can be used to resolve homology and test hypotheses on the origin of evolutionary novelties. PMID:26306050

  18. Anatomy of the red cell membrane skeleton: unanswered questions.

    PubMed

    Lux, Samuel E

    2016-01-14

    The red cell membrane skeleton is a pseudohexagonal meshwork of spectrin, actin, protein 4.1R, ankyrin, and actin-associated proteins that laminates the inner membrane surface and attaches to the overlying lipid bilayer via band 3-containing multiprotein complexes at the ankyrin- and actin-binding ends of spectrin. The membrane skeleton strengthens the lipid bilayer and endows the membrane with the durability and flexibility to survive in the circulation. In the 36 years since the first primitive model of the red cell skeleton was proposed, many additional proteins have been discovered, and their structures and interactions have been defined. However, almost nothing is known of the skeleton's physiology, and myriad questions about its structure remain, including questions concerning the structure of spectrin in situ, the way spectrin and other proteins bind to actin, how the membrane is assembled, the dynamics of the skeleton when the membrane is deformed or perturbed by parasites, the role lipids play, and variations in membrane structure in unique regions like lipid rafts. This knowledge is important because the red cell membrane skeleton is the model for spectrin-based membrane skeletons in all cells, and because defects in the red cell membrane skeleton underlie multiple hemolytic anemias.

  19. Principal Selection Guide.

    ERIC Educational Resources Information Center

    Office of Educational Research and Improvement (ED), Washington, DC.

    The choice of principals is too important to be left to chance. Dynamic, committed leaders not only help determine the quality of teachers that are recruited, but provide the key to effective schools where the battle for excellence will be won or lost. Section 1, "The Effective Principal," outlines the tasks that an effective principal performs.…

  20. Elementary School Principal Effectiveness.

    ERIC Educational Resources Information Center

    Cross, Ray

    A review of research linking elementary principal "antecedents" (defined as traits), behaviors, school conditions, and student outcomes furnishes few supportable generalizations. The studies relating principal antecedents with behavior and principal antecedents with organizational variables reveals that the trait theory of leadership has…

  1. Principal Preparation Program Toolkit

    ERIC Educational Resources Information Center

    Center for the Study of Education Policy, 2016

    2016-01-01

    The Center for the Study of Education Policy utilized several grants to develop principal preparation program tools to assist programs in the implementation of the new standards and requirements for the licensure of school principals and assistant principals. Also, with the help of another grant in partnership with several PK-12 school districts,…

  2. Effective Principal, Effective School.

    ERIC Educational Resources Information Center

    Lipham, James M.

    In summarizing findings on the principal's role in the school, this monograph assumes that the principal is a pivotal figure in the school and is the one who most affects the quality of teacher performance and student achievement. The author concludes that the studies reviewed demonstrate that the principal is a key factor in the success of the…

  3. Skeleton Graph Matching vs. Maximum Weight Cliques aorta registration techniques.

    PubMed

    Czajkowska, Joanna; Feinen, C; Grzegorzek, M; Raspe, M; Wickenhöfer, R

    2015-12-01

    Vascular diseases are one of the most challenging health problems in developed countries. Past as well as ongoing research activities often focus on efficient, robust and fast aorta segmentation, and registration techniques. According to this needs our study targets an abdominal aorta registration method. The investigated algorithms make it possible to efficiently segment and register abdominal aorta in pre- and post-operative Computed Tomography (CT) data. In more detail, a registration technique using the Path Similarity Skeleton Graph Matching (PSSGM), as well as Maximum Weight Cliques (MWCs) are employed to realise the matching based on Computed Tomography data. The presented approaches make it possible to match characteristic voxels belonging to the aorta from different Computed Tomography (CT) series. It is particularly useful in the assessment of the abdominal aortic aneurysm treatment by visualising the correspondence between the pre- and post-operative CT data. The registration results have been tested on the database of 18 contrast-enhanced CT series, where the cross-registration analysis has been performed producing 153 matching examples. All the registration results achieved with our system have been verified by an expert. The carried out analysis has highlighted the advantage of the MWCs technique over the PSSGM method. The verification phase proves the efficiency of the MWCs approach and encourages to further develop this methods.

  4. Performance of skeleton-reinforced biomembranes in locomotion

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Shoele, Kourosh

    2008-11-01

    Skeleton-reinforced biomembranes are ubiquitous in nature and play critical roles in many biological functions. Representative examples include insect wings, cell membranes, and mollusk nacres. In this study we focus on the ray fins of fish and investigate the effects of anisotropic flexibility on their performance. Employing a fluid-structure interaction algorithm by coupling a boundary-element model with a nonlinear structural model, we examined the dynamics of a membrane that is geometrically and structurally similar to a caudal fin. Several locomotion modes that closely resemble caudal fin kinematics reported in the literature are applied. Our results show that the flexibility of the fin significantly increases its capacity of thrust generation, manifested as increased efficiency, reduced transverse force, and reduced sensitivity to kinematic parameters. This design also makes the fin more controllable and deployable. Despite simplifications made in this model in terms of fin geometry, internal structure, and kinematics, detailed features of the simulated flow field are consistent with observations and speculations based upon Particle Image Velocimetry (PIV) measurements of flow around live fish.

  5. Variability in magnesium content in Arctic echinoderm skeletons.

    PubMed

    Iglikowska, A; Najorka, J; Voronkov, A; Chełchowski, M; Kukliński, P

    2017-08-01

    In this study, 235 measurements of magnesium concentration in echinoderm's skeletons were compiled, including 30 species and 216 specimens collected from northern and western Barents Sea. We aimed to reveal the scale of Mg variation in the skeletons of Arctic echinoderms. Furthermore, we attempted to examine whether the Mg concentration in echinoderm skeletons is determined primarily by biological factors or is a passive result of environmental influences. We found that the Mg concentration in echinoderm skeletons was characteristic for particular echinoderm classes or was even species-specific. The highest Mg contents were observed in asteroids, followed by ophiuroids, crinoids, and holothuroids, with the lowest values in echinoids. These results strongly imply that biological factors play an important role in controlling the incorporation of Mg into the skeletons of the studied individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Harried Principals Aren't Helpful Principals

    ERIC Educational Resources Information Center

    Connolly, Mike

    2007-01-01

    A harried leader is not a helpful leader. Schools need calm, well-balanced, helpful leaders as much as they need visionary ones. In fact, in this era of frenetic change in schools, principals should devote at least as much time to helping teachers be more focused and less frantic as they do to formulating new visions for the school or embarking on…

  7. Principal Performance Areas and Principal Evaluation.

    ERIC Educational Resources Information Center

    Fletcher, Thomas E.; McInerney, William D.

    1995-01-01

    Summarizes a study that surveyed Indiana superintendents and examined their principal-evaluation instruments. Superintendents were asked which of 21 performance domains were most important and whether these were currently being assessed. Respondents generally agreed that all 21 performance domains identified by the National Policy Board for…

  8. Harried Principals Aren't Helpful Principals

    ERIC Educational Resources Information Center

    Connolly, Mike

    2007-01-01

    A harried leader is not a helpful leader. Schools need calm, well-balanced, helpful leaders as much as they need visionary ones. In fact, in this era of frenetic change in schools, principals should devote at least as much time to helping teachers be more focused and less frantic as they do to formulating new visions for the school or embarking on…

  9. Principal Connection/How Principals Spark Engagement

    ERIC Educational Resources Information Center

    Hoerr, Thomas R.

    2016-01-01

    Principals can easily observe when a class is engaged in learning. Engaged students are learning because the content or activity feels "relevant" and "interesting," and they're achieving "success" in whatever they're doing. These three factors of engagement don't happen by chance. It happens when talented teachers…

  10. Proteome analysis of the triton-insoluble erythrocyte membrane skeleton.

    PubMed

    Basu, Avik; Harper, Sandra; Pesciotta, Esther N; Speicher, Kaye D; Chakrabarti, Abhijit; Speicher, David W

    2015-10-14

    Erythrocyte shape and membrane integrity is imparted by the membrane skeleton, which can be isolated as a Triton X-100 insoluble structure that retains the biconcave shape of intact erythrocytes, indicating isolation of essentially intact membrane skeletons. These erythrocyte "Triton Skeletons" have been studied morphologically and biochemically, but unbiased proteome analysis of this substructure of the membrane has not been reported. In this study, different extraction buffers and in-depth proteome analyses were used to more fully define the protein composition of this functionally critical macromolecular complex. As expected, the major, well-characterized membrane skeleton proteins and their associated membrane anchors were recovered in good yield. But surprisingly, a substantial number of additional proteins that are not considered in erythrocyte membrane skeleton models were recovered in high yields, including myosin-9, lipid raft proteins (stomatin, flotillin1 and 2), multiple chaperone proteins (HSPs, protein disulfide isomerase and calnexin), and several other proteins. These results show that the membrane skeleton is substantially more complex than previous biochemical studies indicated, and it apparently has localized regions with unique protein compositions and functions. This comprehensive catalog of the membrane skeleton should lead to new insights into erythrocyte membrane biology and pathogenic mutations that perturb membrane stability. Biological significance Current models of erythrocyte membranes describe fairly simple homogenous structures that are incomplete. Proteome analysis of the erythrocyte membrane skeleton shows that it is quite complex and includes a substantial number of proteins whose roles and locations in the membrane are not well defined. Further elucidation of interactions involving these proteins and definition of microdomains in the membrane that contain these proteins should yield novel insights into how the membrane skeleton

  11. Acid-Base and the Skeleton

    NASA Astrophysics Data System (ADS)

    Bushinsky, David A.

    2008-09-01

    Chronic metabolic acidosis increases urine calcium (Ca) excretion in the absence of a concomitant increase in intestinal Ca absorption resulting in a net loss of total body. The source of this additional urine Ca is almost certainly the skeleton, the primary reservoir of body Ca. In vitro metabolic acidosis, modeled as a primary reduction in medium bicarbonate concentration, acutely (<24 h) stimulates Ca efflux primarily through physicochemical mineral dissolution while at later time periods (>24 h) cell-mediated mechanisms predominate. In cultured neonatal mouse calvariae, acidosis-induced, cell-mediated Ca efflux is mediated by effects on both osteoblasts and osteoclasts. Metabolic acidosis inhibits extracellular matrix production by osteoblasts, as determined by measurement of collagen levels and levels for the non-collagenous matrix proteins osteopontin and matrix gla protein. Metabolic acidosis upregulates osteoblastic expression of RANKL (Receptor Activator of NFκB Ligand), an important osteoclastogenic and osteoclast-activating factor. Acidosis also increases osteoclastic activity as measured by release of β-glucuronidase, an enzyme whose secretion correlates with osteoclast-mediated bone resorption.

  12. Giant cell tumors of the axial skeleton.

    PubMed

    Balke, Maurice; Henrichs, Marcel P; Gosheger, Georg; Ahrens, Helmut; Streitbuerger, Arne; Koehler, Michael; Bullmann, Viola; Hardes, Jendrik

    2012-01-01

    Background. We report on 19 cases of giant cell tumor of bone (GCT) affecting the spine or sacrum and evaluate the outcome of different treatment modalities. Methods. Nineteen patients with GCT of the spine (n = 6) or sacrum (n = 13) have been included in this study. The mean followup was 51.6 months. Ten sacral GCT were treated by intralesional procedures of which 4 also received embolization, and 3 with irradiation only. All spinal GCT were surgically treated. Results. Two (15.4%) patients with sacral and 4 (66.7%) with spinal tumors had a local recurrence, two of the letter developed pulmonary metastases. One local recurrence of the spine was successfully treated by serial arterial embolization, a procedure previously described only for sacral tumors. At last followup, 9 patients had no evidence of disease, 8 had stable disease, 1 had progressive disease, 1 died due to disease. Six patients had neurological deficits. Conclusions. GCT of the axial skeleton have a high local recurrence rate. Neurological deficits are common. En-bloc spondylectomy combined with embolization is the treatment of choice. In case of inoperability, serial arterial embolization seems to be an alternative not only for sacral but also for spinal tumors.

  13. Giant Cell Tumors of the Axial Skeleton

    PubMed Central

    Balke, Maurice; Henrichs, Marcel P.; Gosheger, Georg; Ahrens, Helmut; Streitbuerger, Arne; Koehler, Michael; Bullmann, Viola; Hardes, Jendrik

    2012-01-01

    Background. We report on 19 cases of giant cell tumor of bone (GCT) affecting the spine or sacrum and evaluate the outcome of different treatment modalities. Methods. Nineteen patients with GCT of the spine (n = 6) or sacrum (n = 13) have been included in this study. The mean followup was 51.6 months. Ten sacral GCT were treated by intralesional procedures of which 4 also received embolization, and 3 with irradiation only. All spinal GCT were surgically treated. Results. Two (15.4%) patients with sacral and 4 (66.7%) with spinal tumors had a local recurrence, two of the letter developed pulmonary metastases. One local recurrence of the spine was successfully treated by serial arterial embolization, a procedure previously described only for sacral tumors. At last followup, 9 patients had no evidence of disease, 8 had stable disease, 1 had progressive disease, 1 died due to disease. Six patients had neurological deficits. Conclusions. GCT of the axial skeleton have a high local recurrence rate. Neurological deficits are common. En-bloc spondylectomy combined with embolization is the treatment of choice. In case of inoperability, serial arterial embolization seems to be an alternative not only for sacral but also for spinal tumors. PMID:22448122

  14. Discovery of a Cretaceous Scleractinian Coral with a Calcitic Skeleton

    NASA Astrophysics Data System (ADS)

    Stolarski, J.; Meibom, A.; Przenioslo, R.; Mazur, M.

    2007-12-01

    It has been generally thought that scleractinian corals form purely aragonitic skeletons. We show that a well- preserved fossil coral, Coelosmilia sp. from the Upper Cretaceous (ca. 70 Ma), has preserved skeletal structural features identical to those observed in present day scleractinians. However, the skeleton of Coelosmilia sp. is entirely calcitic. Its fine-scale structure and chemistry indicate that the calcite is primary and did not from via diagenetic alteration of aragonite. This result implies that corals, like other groups of marine, calcium carbonate- producing organisms, can form skeletons of different carbonate polymorphs. Implications for coral biomineralization and evolution will be discussed.

  15. Harmonic skeleton guided evaluation of stenoses in human coronary arteries.

    PubMed

    Yang, Yan; Zhu, Lei; Haker, Steven; Tannenbaum, Allen R; Giddens, Don P

    2005-01-01

    This paper presents a novel approach that three-dimensionally visualizes and evaluates stenoses in human coronary arteries by using harmonic skeletons. A harmonic skeleton is the center line of a multi-branched tubular surface extracted based on a harmonic function, which is the solution of the Laplace equation. This skeletonization method guarantees smoothness and connectivity and provides a fast and straightforward way to calculate local cross-sectional areas of the arteries, and thus provides the possibility to localize and evaluate coronary artery stenosis, which is a commonly seen pathology in coronary artery disease.

  16. Harmonic Skeleton Guided Evaluation of Stenoses in Human Coronary Arteries

    PubMed Central

    Yang, Yan; Zhu, Lei; Haker, Steven; Tannenbaum, Allen R.; Giddens, Don P.

    2013-01-01

    This paper presents a novel approach that three-dimensionally visualizes and evaluates stenoses in human coronary arteries by using harmonic skeletons. A harmonic skeleton is the center line of a multi-branched tubular surface extracted based on a harmonic function, which is the solution of the Laplace equation. This skeletonization method guarantees smoothness and connectivity and provides a fast and straightforward way to calculate local cross-sectional areas of the arteries, and thus provides the possibility to localize and evaluate coronary artery stenosis, which is a commonly seen pathology in coronary artery disease. PMID:16685882

  17. Creating Strong Principals

    ERIC Educational Resources Information Center

    Mendels, Pamela; Mitgang, Lee D.

    2013-01-01

    Principals have a substantial effect on the quality of learning in their schools. Likewise, districts have a substantial effect on the quality of their leaders. A growing number of large school districts are focusing on two objectives to strengthen school leadership: (1) building a pipeline of new principals who are ready to tackle the most…

  18. Qualities of Effective Principals

    ERIC Educational Resources Information Center

    Stronge, James H.; Richard, Holly B.; Catano, Nancy

    2008-01-01

    You know how important principals are in advancing student achievement and school success, but it's not been exactly clear which components of the principal's job are the highest priority... until now. Following on the results-based approach from the ASCD best-seller "Qualities of Effective Teachers", James Stronge and his coauthors…

  19. Principles for Principals.

    ERIC Educational Resources Information Center

    Luce, Wilbur M.

    1994-01-01

    A former central office curriculum supervisor drafted to manage an elementary school enumerates some principles for other principals: put kids first; seek advice from veteran principals; practice lead management; delegate responsibility and authority; support the superintendent and school board; eschew perfect control over situations; try not to…

  20. Renewing the Principal Pipeline

    ERIC Educational Resources Information Center

    Turnbull, Brenda J.

    2015-01-01

    The work principals do has always mattered, but as the demands of the job increase, it matters even more. Perhaps once they could maintain safety and order and call it a day, but no longer. Successful principals today must also lead instruction and nurture a productive learning community for students, teachers, and staff. They set the tone for the…

  1. Qualities of Effective Principals

    ERIC Educational Resources Information Center

    Stronge, James H.; Richard, Holly B.; Catano, Nancy

    2008-01-01

    You know how important principals are in advancing student achievement and school success, but it's not been exactly clear which components of the principal's job are the highest priority... until now. Following on the results-based approach from the ASCD best-seller "Qualities of Effective Teachers", James Stronge and his coauthors…

  2. Priming Principal Pipelines

    ERIC Educational Resources Information Center

    Schachter, Ron

    2013-01-01

    Most principals today are hard pressed to find time for the multitasking they are expected to do, from overseeing the daily operation of their schools and interacting with parents to evaluating teachers and providing them with professional development to do their jobs at a high level. What these principals have frequently been lacking, say experts…

  3. Nurture Budding Principals.

    ERIC Educational Resources Information Center

    Pellicer, Leonard O.; Buford, Connie

    1982-01-01

    The Richland School District in Columbia (South Carolina), along with the University of South Carolina, established a program of full-time internships to develop potential new principals. The program includes on-the-job training with practicing principals, university courses, seminars, special retreats, individual improvement plans, and…

  4. Essential Skills for Principals.

    ERIC Educational Resources Information Center

    Terry, Paul M.

    1999-01-01

    No matter what standards they follow, principals must be skilled team builders, instructional leaders, and visionary risk-takers. There are five emerging roles: historian, cheerleader, lightning rod, landscaper (environmental scanner), and anthropologist. To succeed, principals must be empowered by districts, become authentic leaders, and make…

  5. The Principal Factor

    ERIC Educational Resources Information Center

    Westerberg, Tim

    2016-01-01

    If classrooms teachers play the lead role in establishing relationships that help students do their personal best, principals are leaders in creating good school environments for adults. Westerberg, former principal of award-winning Littleton High School in Colorado, shares six principles that help create positive schoolwide relationships. Drawing…

  6. Assisting the Assistant Principal

    ERIC Educational Resources Information Center

    Davis, James

    2008-01-01

    Retaining quality staff members is a hot topic in the public school arena. Although teachers are often the focus of concern, hiring and retaining quality assistant principals must be addressed as well. Interviewing and hiring the right assistant principal--and then ensuring that he or she remains on in a campus for several years--can do a great…

  7. The Principal Factor

    ERIC Educational Resources Information Center

    Westerberg, Tim

    2016-01-01

    If classrooms teachers play the lead role in establishing relationships that help students do their personal best, principals are leaders in creating good school environments for adults. Westerberg, former principal of award-winning Littleton High School in Colorado, shares six principles that help create positive schoolwide relationships. Drawing…

  8. Essential Skills for Principals.

    ERIC Educational Resources Information Center

    Terry, Paul M.

    1999-01-01

    No matter what standards they follow, principals must be skilled team builders, instructional leaders, and visionary risk-takers. There are five emerging roles: historian, cheerleader, lightning rod, landscaper (environmental scanner), and anthropologist. To succeed, principals must be empowered by districts, become authentic leaders, and make…

  9. Evaluating Principals. Research Roundup.

    ERIC Educational Resources Information Center

    Andrews, Carl

    1990-01-01

    Five recent studies included in this annotated bibliography highlight the diverse facets of an effective principal evaluation system. A technical report by Jerry W. Valentine and Michael L. Bowman includes a clinical instrument for assessing teachers' perception of principals' effectiveness. In a second report, Daniel L. Duke and Richard J.…

  10. A Principal's Journey

    ERIC Educational Resources Information Center

    Yergalonis, Edward

    2005-01-01

    In the interview process, every aspiring principal naively speaks of assuming the role of instructional leader. The candidate has read the right books, taken the right courses, and attended every possible workshop to prepare for the day when he or she would become captain of his or her own ship. However, it does not take long for principals to…

  11. Renewing the Principal Pipeline

    ERIC Educational Resources Information Center

    Turnbull, Brenda J.

    2015-01-01

    The work principals do has always mattered, but as the demands of the job increase, it matters even more. Perhaps once they could maintain safety and order and call it a day, but no longer. Successful principals today must also lead instruction and nurture a productive learning community for students, teachers, and staff. They set the tone for the…

  12. Principals as Instructional Leaders

    ERIC Educational Resources Information Center

    Finkel, Ed

    2012-01-01

    At some level, principals always have been instructional leaders--but never before has their role been more prominent. First, the accountability movement--No Child Left Behind (NCLB) in particular--thrust principals into the spotlight on academic achievement. Then budget cuts peeled away capacity at both the district and school levels, thinning…

  13. Principals as Instructional Leaders

    ERIC Educational Resources Information Center

    Finkel, Ed

    2012-01-01

    At some level, principals always have been instructional leaders--but never before has their role been more prominent. First, the accountability movement--No Child Left Behind (NCLB) in particular--thrust principals into the spotlight on academic achievement. Then budget cuts peeled away capacity at both the district and school levels, thinning…

  14. Principals from Hell

    ERIC Educational Resources Information Center

    Murphy, Lee Ann

    2006-01-01

    Some principals have personalities that can drive teachers around the bend and back again. Sure, most are wonderful bosses who support teachers in any way, but woe betide teachers if they are unlucky enough to run across one of the six dreaded "problem principals" identified in this article. Teachers do not have to be held hostage by difficult…

  15. Penetrating trauma to the facial skeleton by pickaxe - case report.

    PubMed

    Neskoromna-Jędrzejczak, Aneta; Bogusiak, Katarzyna; Przygoński, Aleksander; Timler, Dariusz

    2016-01-01

    Number of deaths related with injuries suffered as a result of experienced traumas is increasing. Penetrating traumas of the facial skeleton occur relatively rarely and much more often concern rather children than adults. Epidemiology relating this kind of trauma differs depending on the region of the world. In Poland, gunshot injuries as well as traumas caused by explosions of firecrackers or fireworks amount only to a slight percentage among all facial skeleton traumas, and the most common reason for penetrating traumas lies in accidents or assault with the use of sharp, narrow and long objects that easily enter bones of the facial skeleton. The present study reported the case of 50-year-old man who suffered from trauma of the facial skeleton, which resulted from foreign body (pickaxe) penetration into the subtemporal area, zygomatic arch and the right orbital cavity. The surgical treatment method and final outcome was presented and discussed.

  16. A method for finding three-dimensional magnetic skeletons

    SciTech Connect

    Haynes, A. L.; Parnell, C. E.

    2010-09-15

    Magnetic fields are an essential component of a plasma. In many astrophysical, solar, magnetospheric, and laboratory situations the magnetic field in the plasma can be very dynamic and form highly complex structures. One approach to unraveling these structures is to determine the magnetic skeleton of the field, a set of topological features that divide the magnetic field into topologically distinct domains. In general, the features of the magnetic skeleton are difficult to locate, in particular those given by numerical experiments. In this paper, we propose a new set of tools to find the skeleton of general magnetic fields including null points, spines, separatrix surfaces, and separators. This set of tools is found to be considerably better at finding the skeleton than the currently favored methods used in magnetohydrodynamics.

  17. 41. Ground level photograph of two floors of skeleton complete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Ground level photograph of two floors of skeleton complete with 3rd and 4th floors being started,upper floors of county bldg visible - Chicago City Hall, 121 North LaSalle Street, Chicago, Cook County, IL

  18. Soluble organic matrices of aragonitic skeletons of Merulinidae (Cnidaria, Anthozoa).

    PubMed

    Dauphin, Yannicke; Cuif, Jean-Pierre; Williams, C Terry

    2008-05-01

    Our interpretation of the overall taxonomy and evolution of the Scleractinia, the most important reef builders in tropical areas, has long depended exclusively on morphology of the calcareous skeletons. The reported series of physical and biochemical characterizations of skeletons and the mineralizing matrices extracted from the skeletons allow, for the first time, the level of biochemical diversity among corallites of the same family to be estimated. Similarities and differences observed in the micro- and nanostructures of the skeletons reflect those of the soluble organic matrices. Sulphur is mainly associated with sulphated acidic sugars. The role of sulphated sugars on the biomineralization processes is still underestimated. The resulting data suggest that environmental conditions may act on the mineralization process through the detailed compositions of the mineralizing matrices.

  19. Skeleton extraction based on the topology and Snakes model

    NASA Astrophysics Data System (ADS)

    Cai, Yuanxue; Ming, Chengguo; Qin, Yueting

    A new skeleton line extraction method based on topology and flux is proposed by analyzing the distribution characteristics of the gradient vector field in the Snakes model. The distribution characteristics of the skeleton line are accurately obtained by calculating the eigenvalues of the critical points and the flux of the gradient vector field. Then the skeleton lines can be effectively extracted. The results also show that there is no need for the pretreatment or binarization of the target image. The skeleton lines of complex gray images such as optical interference patterns can be effectively extracted by using this method. Compared to traditional methods, this method has many advantages, such as high extraction accuracy and fast processing speed.

  20. Regulation of glucose metabolism and the skeleton.

    PubMed

    Ng, Kong Wah

    2011-08-01

    Complex interactions occur among adipose tissue, the central nervous system, bone and pancreas to integrate bone remodelling, glucose, lipid and energy metabolism. Data obtained largely from the judicious use of gain-of-function and loss-of-function genetic mouse models show that leptin, an adipocyte-secreted product, indirectly inhibits bone accrual through a central pathway comprising the hypothalamus and central nervous system. Increased sympathetic output acting via β2-adrenergic receptors present in osteoblasts decreases bone formation and causes increased bone resorption. Insulin is a key molecular link between bone remodelling and energy metabolism. Insulin signalling in the osteoblasts increases bone formation and resorption as well as the release of undercarboxylated osteocalcin. An increase in the release of bone-derived undercarboxylated osteocalcin into the systemic circulation enables it to act as a circulating hormone to stimulate insulin production and secretion by pancreatic β-cells and adiponectin by adipocytes. Insulin sensitivity increases, lipolysis and fat accumulation decreases while energy expenditure increases. Whether this model of integrative physiology involving the skeleton, pancreas and adipose tissue, so elegantly demonstrated in rodents, is applicable to humans is controversial. The mouse Esp gene, encoding an intracellular tyrosine phosphatase that negatively regulates insulin signalling in osteoblasts, is a pseudogene in humans, and a homolog for the Esp gene has so far not been identified in humans. A close homologue of Esp, PTP1B, is expressed in human osteoblasts and could take the role of Esp in humans. Data available from the limited number of clinical studies do not provide a sufficient body of evidence to determine whether osteocalcin or undercarboxylated osteocalcin affects glucose metabolism in humans. © 2011 Blackwell Publishing Ltd.

  1. The Skeleton of the Milky Way

    NASA Astrophysics Data System (ADS)

    Zucker, Catherine; Battersby, Cara; Goodman, Alyssa

    2015-12-01

    Recently, Goodman et al. argued that the very long, very thin infrared dark cloud “Nessie” lies directly in the Galactic midplane and runs along the Scutum-Centaurus Arm in position-position-velocity (p-p-v) space as traced by lower-density {{CO}} and higher-density {{NH}}3 gas. Nessie was presented as the first “bone” of the Milky Way, an extraordinarily long, thin, high-contrast filament that can be used to map our Galaxy’s “skeleton.” Here we present evidence for additional bones in the Milky Way, arguing that Nessie is not a curiosity but one of several filaments that could potentially trace Galactic structure. Our 10 bone candidates are all long, filamentary, mid-infrared extinction features that lie parallel to, and no more than 20 pc from, the physical Galactic mid-plane. We use {{CO}}, {{{N}}}2{{{H}}}+, {{{HCO}}}+, and {{NH}}3 radial velocity data to establish the three-dimensional location of the candidates in p-p-v space. Of the 10 candidates, 6 also have a projected aspect ratio of ≥50:1 run along, or extremely close to, the Scutum-Centaurus Arm in p-p-v space; and exhibit no abrupt shifts in velocity. The evidence presented here suggests that these candidates mark the locations of significant spiral features, with the bone called filament 5 (“BC_18.88-0.09”) being a close analog to Nessie in the northern sky. As molecular spectral-line and extinction maps cover more of the sky at increasing resolution and sensitivity, it should be possible to find more bones in future studies.

  2. Fracture occurrence from radionuclides in the skeleton

    SciTech Connect

    Lloyd, R.D.; Taylor, G.N.; Miller, S.C.

    2000-06-01

    Because skeletal fractures were an important finding among persons contaminated with {sup 226}Ra, experience with fractures among dogs in the colony was summarized to determine the projected significance for persons contaminated with bone-seeking radionuclides. Comparison by Fisher's Exact Test of lifetime fracture occurrence in the skeletons of beagles injected as young adults suggested that for animals given {sup 226}Ra, {sup 228}Ra, {sup 228}Th, or {sup 239}Pu citrate, there was probably an excess over controls in fractures of the ribs, leg bones, spinous processes, and pelvis (os coxae) plus the mandible for dogs given {sup 226}Ra and the scapulae for dogs given {sup 228}Ra or 228 Th. Regression analysis indicated that significantly elevated fracture occurrence was especially notable at the higher radiation doses, at about 50 Gy average skeletal dose for {sup 239}Pu, 140 Gy for {sup 226}Ra, about 40 Gy for {sup 228}Ra, and more than 15 Gy for {sup 228}Th. The average number of fractures per dog was significantly elevated over that noted in controls for the highest radiation doses of {sup 239}Pu and {sup 226}Ra and for the higher doses of {sup 228}Ra and {sup 228}Th. For those dogs given {sup 90}Sr citrate, there was virtually no important difference from control beagles not given radionuclides, even at group mean cumulative skeletal radiation doses up to 101 Gy. Because of a large proportion of dogs with fractures that died with bone malignancy (even at dosage levels lower than those exhibiting an excess average number of fractures per dog), they conclude that fracture would not be an important endpoint at lower levels of plutonium contamination in humans such as would be expected to occur from occupational or environmental exposure.

  3. A Geometric Investigation of the Skeleton of CSG Objects

    DTIC Science & Technology

    1990-02-14

    picture the four conical surface extensions have been clipped almost entiicly. 14 4 Voronoi Surfaces between Surface Pairs We now consider the geometry of...analysis of Voronoi surfaces from which the skeleton is composed. ( 1 Introduction A common design paradigm in mechanical engineering is to create complex...objects as a first step in mesh generation [10]. The balance of this section defines the skeleton and its constituent elements, Voronoi surfaces and

  4. Ultrastructure of the intact skeleton of the human erythrocyte membrane.

    PubMed

    Shen, B W; Josephs, R; Steck, T L

    1986-03-01

    Filamentous skeletons were liberated from isolated human erythrocyte membranes in Triton X-100, spread on fenestrated carbon films, negatively stained, and viewed intact and unfixed in the transmission electron microscope. Two forms of the skeleton were examined: (a) basic skeletons, stripped of accessory proteins with 1.5 M NaCl so that they contain predominantly polypeptide bands 1, 2, 4.1, and 5; and (b) unstripped skeletons, which also bore accessory proteins such as ankyrin and band 3 and small plaques of residual lipid. Freshly prepared skeletons were highly condensed. Incubation at low ionic strength and in the presence of dithiothreitol for an hour or more caused an expansion of the skeletons, which greatly increased the visibility of their elements. The expansion may reflect the opening of spectrin from a compact to an elongated disposition. Expanded skeletons appeared to be organized as networks of short actin filaments joined by multiple (5-8) spectrin tetramers. In unstripped preparations, globular masses were observed near the centers of the spectrin filaments, probably corresponding to complexes of ankyrin with band 3 oligomers. Some of these globules linked pairs of spectrin filaments. Skeletons prepared with a minimum of perturbation had thickened actin protofilaments, presumably reflecting the presence of accessory proteins. The length of these actin filaments was highly uniform, averaging 33 +/- 5 nm. This is the length of nonmuscle tropomyosin. Since there is almost enough tropomyosin present to saturate the F-actin, our data support the hypothesis that tropomyosin may determine the length of actin protofilaments in the red cell membrane.

  5. Principal component analysis implementation in Java

    NASA Astrophysics Data System (ADS)

    Wójtowicz, Sebastian; Belka, Radosław; Sławiński, Tomasz; Parian, Mahnaz

    2015-09-01

    In this paper we show how PCA (Principal Component Analysis) method can be implemented using Java programming language. We consider using PCA algorithm especially in analysed data obtained from Raman spectroscopy measurements, but other applications of developed software should also be possible. Our goal is to create a general purpose PCA application, ready to run on every platform which is supported by Java.

  6. PenPC: A Two-step Approach to Estimate the Skeletons of High Dimensional Directed Acyclic Graphs

    PubMed Central

    Ha, Min Jin; Sun, Wei; Xie, Jichun

    2015-01-01

    Summary Estimation of the skeleton of a directed acyclic graph (DAG) is of great importance for understanding the underlying DAG and causal e ects can be assessed from the skeleton when the DAG is not identifiable. We propose a novel method named PenPC to estimate the skeleton of a high-dimensional DAG by a two-step approach. We first estimate the non-zero entries of a concentration matrix using penalized regression, and then fix the difference between the concentration matrix and the skeleton by evaluating a set of conditional independence hypotheses. For high dimensional problems where the number of vertices p is in polynomial or exponential scale of sample size n, we study the asymptotic property of PenPC on two types of graphs: traditional random graphs where all the vertices have the same expected number of neighbors, and scale-free graphs where a few vertices may have a large number of neighbors. As illustrated by extensive simulations and applications on gene expression data of cancer patients, PenPC has higher sensitivity and specificity than the state-of-the-art method, the PC-stable algorithm. PMID:26406114

  7. Three-dimensional segmentation and skeletonization to build an airway tree data structure for small animals.

    PubMed

    Chaturvedi, Ashutosh; Lee, Zhenghong

    2005-04-07

    Quantitative analysis of intrathoracic airway tree geometry is important for objective evaluation of bronchial tree structure and function. Currently, there is more human data than small animal data on airway morphometry. In this study, we implemented a semi-automatic approach to quantitatively describe airway tree geometry by using high-resolution computed tomography (CT) images to build a tree data structure for small animals such as rats and mice. Silicon lung casts of the excised lungs from a canine and a mouse were used for micro-CT imaging of the airway trees. The programming language IDL was used to implement a 3D region-growing threshold algorithm for segmenting out the airway lung volume from the CT data. Subsequently, a fully-parallel 3D thinning algorithm was implemented in order to complete the skeletonization of the segmented airways. A tree data structure was then created and saved by parsing through the skeletonized volume using the Python programming language. Pertinent information such as the length of all airway segments was stored in the data structure. This approach was shown to be accurate and efficient for up to six generations for the canine lung cast and ten generations for the mouse lung cast.

  8. Three-dimensional segmentation and skeletonization to build an airway tree data structure for small animals

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Ashutosh; Lee, Zhenghong

    2005-04-01

    Quantitative analysis of intrathoracic airway tree geometry is important for objective evaluation of bronchial tree structure and function. Currently, there is more human data than small animal data on airway morphometry. In this study, we implemented a semi-automatic approach to quantitatively describe airway tree geometry by using high-resolution computed tomography (CT) images to build a tree data structure for small animals such as rats and mice. Silicon lung casts of the excised lungs from a canine and a mouse were used for micro-CT imaging of the airway trees. The programming language IDL was used to implement a 3D region-growing threshold algorithm for segmenting out the airway lung volume from the CT data. Subsequently, a fully-parallel 3D thinning algorithm was implemented in order to complete the skeletonization of the segmented airways. A tree data structure was then created and saved by parsing through the skeletonized volume using the Python programming language. Pertinent information such as the length of all airway segments was stored in the data structure. This approach was shown to be accurate and efficient for up to six generations for the canine lung cast and ten generations for the mouse lung cast.

  9. Computational tool for phase-shift calculation in an interference pattern by fringe displacements based on a skeletonized image

    NASA Astrophysics Data System (ADS)

    Rivera-Ortega, Uriel; Pico-Gonzalez, Beatriz

    2016-01-01

    In this manuscript an algorithm based on a graphic user interface (GUI) designed in MATLAB for an automatic phase-shifting estimation between two digitalized interferograms is presented. The proposed algorithm finds the midpoint locus of the dark and bright interference fringes in two skeletonized fringe patterns and relates their displacements with the corresponding phase-shift. In order to demonstrate the usefulness of the proposed GUI, its application to simulated and experimental interference patterns will be shown. The viability of this GUI makes it a helpful and easy-to-use computational tool for educational or research purposes in optical phenomena for undergraduate or graduate studies in the field of physics.

  10. Revisiting scoliosis in the KNM-WT 15000 Homo erectus skeleton.

    PubMed

    Schiess, Regula; Boeni, Thomas; Rühli, Frank; Haeusler, Martin

    2014-02-01

    Owing to its completeness, the 1.5 million year old Nariokotome boy skeleton KNM-WT 15000 is central for understanding the skeletal biology of Homo erectus. Nevertheless, since the reported asymmetries and distortions of Nariokotome boy's axial skeleton suggest adolescent idiopathic scoliosis, possibly associated with congenital skeletal dysplasia, it is questionable whether it still can be used as a reference for H. erectus. Recently, however, the presence of skeletal dysplasia has been refuted. Here, we present a morphological and morphometric reanalysis of the assertion of idiopathic scoliosis. We demonstrate that unarticulated vertebral columns of non-scoliotic and scoliotic individuals can be distinguished based on the lateral deviation of the spinous process, lateral and sagittal wedging, vertebral body torsion, pedicle thickness asymmetry, and asymmetry of superior and inferior articular facet areas. A principal component analysis of the overall asymmetry of all seven vertebral shape variables groups KNM-WT 15000 within non-scoliotic modern humans. There is, however, an anomaly of vertebrae T1-T2 that is compatible with a short left convex curve at the uppermost thoracic region, possibly due to injury or local growth dysbalance. Asymmetries of the facet joints L3-L5 suggest a local right convex curve in the lower lumbar region that probably resulted from juvenile traumatic disc herniation. This pattern is incompatible with adolescent idiopathic scoliosis or other types of scoliosis, including congenital, neuromuscular or syndromic scoliosis. It is, however, consistent with a recent reanalysis of the rib cage that did not reveal any asymmetry. Except for these possibly trauma-related anomalies, the Nariokotome boy fossil therefore seems to belong to a normal H. erectus youth without evidence for adolescent idiopathic scoliosis or other severe pathologies of the axial skeleton.

  11. Segmentation and Visual Analysis of Whole-Body Mouse Skeleton microSPECT

    PubMed Central

    Khmelinskii, Artem; Groen, Harald C.; Baiker, Martin; de Jong, Marion; Lelieveldt, Boudewijn P. F.

    2012-01-01

    Whole-body SPECT small animal imaging is used to study cancer, and plays an important role in the development of new drugs. Comparing and exploring whole-body datasets can be a difficult and time-consuming task due to the inherent heterogeneity of the data (high volume/throughput, multi-modality, postural and positioning variability). The goal of this study was to provide a method to align and compare side-by-side multiple whole-body skeleton SPECT datasets in a common reference, thus eliminating acquisition variability that exists between the subjects in cross-sectional and multi-modal studies. Six whole-body SPECT/CT datasets of BALB/c mice injected with bone targeting tracers 99mTc-methylene diphosphonate (99mTc-MDP) and 99mTc-hydroxymethane diphosphonate (99mTc-HDP) were used to evaluate the proposed method. An articulated version of the MOBY whole-body mouse atlas was used as a common reference. Its individual bones were registered one-by-one to the skeleton extracted from the acquired SPECT data following an anatomical hierarchical tree. Sequential registration was used while constraining the local degrees of freedom (DoFs) of each bone in accordance to the type of joint and its range of motion. The Articulated Planar Reformation (APR) algorithm was applied to the segmented data for side-by-side change visualization and comparison of data. To quantitatively evaluate the proposed algorithm, bone segmentations of extracted skeletons from the correspondent CT datasets were used. Euclidean point to surface distances between each dataset and the MOBY atlas were calculated. The obtained results indicate that after registration, the mean Euclidean distance decreased from 11.5±12.1 to 2.6±2.1 voxels. The proposed approach yielded satisfactory segmentation results with minimal user intervention. It proved to be robust for “incomplete” data (large chunks of skeleton missing) and for an intuitive exploration and comparison of multi-modal SPECT/CT cross

  12. Segmentation and visual analysis of whole-body mouse skeleton microSPECT.

    PubMed

    Khmelinskii, Artem; Groen, Harald C; Baiker, Martin; de Jong, Marion; Lelieveldt, Boudewijn P F

    2012-01-01

    Whole-body SPECT small animal imaging is used to study cancer, and plays an important role in the development of new drugs. Comparing and exploring whole-body datasets can be a difficult and time-consuming task due to the inherent heterogeneity of the data (high volume/throughput, multi-modality, postural and positioning variability). The goal of this study was to provide a method to align and compare side-by-side multiple whole-body skeleton SPECT datasets in a common reference, thus eliminating acquisition variability that exists between the subjects in cross-sectional and multi-modal studies. Six whole-body SPECT/CT datasets of BALB/c mice injected with bone targeting tracers (99m)Tc-methylene diphosphonate ((99m)Tc-MDP) and (99m)Tc-hydroxymethane diphosphonate ((99m)Tc-HDP) were used to evaluate the proposed method. An articulated version of the MOBY whole-body mouse atlas was used as a common reference. Its individual bones were registered one-by-one to the skeleton extracted from the acquired SPECT data following an anatomical hierarchical tree. Sequential registration was used while constraining the local degrees of freedom (DoFs) of each bone in accordance to the type of joint and its range of motion. The Articulated Planar Reformation (APR) algorithm was applied to the segmented data for side-by-side change visualization and comparison of data. To quantitatively evaluate the proposed algorithm, bone segmentations of extracted skeletons from the correspondent CT datasets were used. Euclidean point to surface distances between each dataset and the MOBY atlas were calculated. The obtained results indicate that after registration, the mean Euclidean distance decreased from 11.5±12.1 to 2.6±2.1 voxels. The proposed approach yielded satisfactory segmentation results with minimal user intervention. It proved to be robust for "incomplete" data (large chunks of skeleton missing) and for an intuitive exploration and comparison of multi-modal SPECT/CT cross

  13. Bones in the heart skeleton of the otter (Lutra lutra)

    PubMed Central

    EGERBACHER, MONIKA; WEBER, HEIKE; HAUER, SILKE

    2000-01-01

    In most mammalian species the cardiac skeleton is composed of coarse collagen fibres, fibrocartilage, and pieces of hyaline cartilage. Bone, the os cordis, is a regular constituent of the ruminant heart. The cardiac skeleton of the otter (Lutra lutra) has not previously been described. The skeleton in 30 otter hearts was studied by x-ray analysis and light microscopy. Serial sections were cut parallel to the atrioventricular plane and histochemical staining methods were performed to identify connective tissue fibres, glycosaminoglycans, mineral deposits, and bone. Age and sex of the animals under investigation were considered. The otter heart skeleton was composed of coarse collagen fibres with intercalated pieces of fibrous and/or hyaline cartilage, calcified cartilage, and lamellar bone with red or white marrow. Pieces of hyaline cartilage were not clearly defined: a perichondrial layer was missing and coarse connective tissue continuously transformed into fibrous and hyaline cartilage. In both sexes the amount of cartilage and bone were found to increase with age. Our results establish the presence of bony material in the heart skeleton of the otter, a small mammalian species. This finding indicates that differentiation of bone is not exclusively related to the size of the organ. Increasing amounts of calcified cartilage and bone correlated with increasing age. PMID:10853970

  14. Anatomical changes in the East Asian midface skeleton with aging.

    PubMed

    Jeon, Anna; Sung, Ki Hyuk; Kim, Sang Duck; Lee, U-Young; Lee, Je-Hun; Han, Seung-Ho; Sui, Hong-Jin

    2017-03-29

    Understanding the aging process of the midface skeleton is considered crucial for correct facial rejuvenation. However, the canine fossa, an important morphological feature of the midface skeleton, has not yet been observed in connection with aging, despite the fact that it is the most main part of the maxillary bone. Here, the authors focus on the depression of the canine fossa to evaluate the Asian midface skeleton. Computed tomography (CT) scans of the facial skeleton of 114 Koreans (59 males and 55 females) were reconstructed to three-dimensional (3-D) images using a 3-D analysis software program. The study subjects included 27 young males, 32 old males, 28 young females and 27 old females. The angular measurements of 3 bony regions were measured for each 3-D model: the canine fossa angle (assessing depth of the canine fossa), the maxillary angle (assessing orientation of the lateral maxilla) and the piriform angle (assessing orientation of the medial maxilla). The canine fossa angle showed a statistically significant decrease with aging in both sexes, indicating the canine fossa actually becomes more concave with age. In contrast, the maxillary and piriform angle showed statistically insignificant changes with aging in female subjects. These results suggest that the canine fossa may be one of the effective markers to evaluate the anatomical changes to the facial skeleton with midface aging.

  15. Taphonomy of the Tianyuandong human skeleton and faunal remains.

    PubMed

    Fernández-Jalvo, Yolanda; Andrews, Peter; Tong, HaoWen

    2015-06-01

    Tianyuan Cave is an Upper Palaeolithic site, 6 km from the core area of the Zhoukoudian Site Complex. Tianyuandong (or Tianyuan Cave) yielded one ancient (though not the earliest) fossil skeleton of Homo sapiens in China (42-39 ka cal BP). Together with the human skeleton, abundant animal remains were found, but no stone tools were recovered. The animal fossil remains are extremely fragmentary, in contrast to human skeletal elements that are, for the most part, complete. We undertook a taphonomic study to investigate the circumstances of preservation of the human skeleton in Tianyuan Cave, and in course of this we considered four hypotheses: funerary ritual, cannibalism, carnivore activity or natural death. Taphonomic results characterize the role of human action in the site and how these agents acted in the past. Because of disturbance of the human skeleton during its initial excavation, it is not known if it was in a grave cut or if there was any funerary ritual. No evidence was found for cannibalism or carnivore activity in relation to the human skeleton, suggesting natural death as the most reasonable possibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Micro- to nanostructure and geochemistry of extant crinoidal echinoderm skeletons.

    PubMed

    Gorzelak, P; Stolarski, J; Mazur, M; Meibom, A

    2013-01-01

    This paper reports the results of micro- to nanostructural and geochemical analyses of calcitic skeletons from extant deep-sea stalked crinoids. Fine-scale (SEM, FESEM, AFM) observations show that the crinoid skeleton is composed of carbonate nanograins, about 20-100 nm in diameter, which are partly separated by what appears to be a few nm thick organic layers. Sub-micrometre-scale geochemical mapping of crinoid ossicles using a NanoSIMS ion microprobe, combined with synchrotron high-spatial-resolution X-ray micro-fluorescence (μ-XRF) maps and X-ray absorption near-edge structure spectroscopy (XANES) show that high Mg concentration in the central region of the stereom bars correlates with the distribution of S-sulphate, which is often associated with sulphated polysaccharides in biocarbonates. These data are consistent with biomineralization models suggesting a close association between organic components (including sulphated polysaccharides) and Mg ions. Additionally, geochemical analyses (NanoSIMS, energy dispersive spectroscopy) reveal that significant variations in Mg occur at many levels: within a single stereom trabecula, within a single ossicle and within a skeleton of a single animal. Together, these data suggest that physiological factors play an important role in controlling Mg content in crinoid skeletons and that great care should be taken when using their skeletons to reconstruct, for example, palaeotemperatures and Mg/Ca palaeo-variations of the ocean. © 2012 Blackwell Publishing Ltd.

  17. Structural Perturbations to Population Skeletons: Transient Dynamics, Coexistence of Attractors and the Rarity of Chaos

    PubMed Central

    Singh, Brajendra K.; Parham, Paul E.; Hu, Chin-Kun

    2011-01-01

    Background Simple models of insect populations with non-overlapping generations have been instrumental in understanding the mechanisms behind population cycles, including wild (chaotic) fluctuations. The presence of deterministic chaos in natural populations, however, has never been unequivocally accepted. Recently, it has been proposed that the application of chaos control theory can be useful in unravelling the complexity observed in real population data. This approach is based on structural perturbations to simple population models (population skeletons). The mechanism behind such perturbations to control chaotic dynamics thus far is model dependent and constant (in size and direction) through time. In addition, the outcome of such structurally perturbed models is [almost] always equilibrium type, which fails to commensurate with the patterns observed in population data. Methodology/Principal Findings We present a proportional feedback mechanism that is independent of model formulation and capable of perturbing population skeletons in an evolutionary way, as opposed to requiring constant feedbacks. We observe the same repertoire of patterns, from equilibrium states to non-chaotic aperiodic oscillations to chaotic behaviour, across different population models, in agreement with observations in real population data. Model outputs also indicate the existence of multiple attractors in some parameter regimes and this coexistence is found to depend on initial population densities or the duration of transient dynamics. Our results suggest that such a feedback mechanism may enable a better understanding of the regulatory processes in natural populations. PMID:21980342

  18. A vanished history of skeletonization in Cambrian comb jellies

    PubMed Central

    Ou, Qiang; Xiao, Shuhai; Han, Jian; Sun, Ge; Zhang, Fang; Zhang, Zhifei; Shu, Degan

    2015-01-01

    Ctenophores are traditionally regarded as “lower” metazoans, sharing with cnidarians a diploblastic grade of organization. Unlike cnidarians, where skeletonization (biomineralization and sclerotization) evolved repeatedly among ecologically important taxa (for example, scleractinians and octocorals), living ctenophores are characteristically soft-bodied animals. We report six sclerotized and armored ctenophores from the early Cambrian period. They have diagnostic ctenophore features (for example, an octamerous symmetry, oral-aboral axis, aboral sense organ, and octaradially arranged ctene rows). Unlike most modern counterparts, however, they lack tentacles, have a sclerotized framework, and have eight pairs of ctene rows. They are resolved as a monophyletic group (Scleroctenophora new class) within the ctenophores. This clade reveals a cryptic history and sheds new light on the early evolution of this basal animal phylum. Skeletonization also occurs in some other Cambrian animal groups whose extant members are exclusively soft-bodied, suggesting the ecological importance of skeletonization in the Cambrian explosion. PMID:26601209

  19. A vanished history of skeletonization in Cambrian comb jellies.

    PubMed

    Ou, Qiang; Xiao, Shuhai; Han, Jian; Sun, Ge; Zhang, Fang; Zhang, Zhifei; Shu, Degan

    2015-07-01

    Ctenophores are traditionally regarded as "lower" metazoans, sharing with cnidarians a diploblastic grade of organization. Unlike cnidarians, where skeletonization (biomineralization and sclerotization) evolved repeatedly among ecologically important taxa (for example, scleractinians and octocorals), living ctenophores are characteristically soft-bodied animals. We report six sclerotized and armored ctenophores from the early Cambrian period. They have diagnostic ctenophore features (for example, an octamerous symmetry, oral-aboral axis, aboral sense organ, and octaradially arranged ctene rows). Unlike most modern counterparts, however, they lack tentacles, have a sclerotized framework, and have eight pairs of ctene rows. They are resolved as a monophyletic group (Scleroctenophora new class) within the ctenophores. This clade reveals a cryptic history and sheds new light on the early evolution of this basal animal phylum. Skeletonization also occurs in some other Cambrian animal groups whose extant members are exclusively soft-bodied, suggesting the ecological importance of skeletonization in the Cambrian explosion.

  20. Open glenohumeral dislocation: skeletonization of the proximal humerus without associated fracture.

    PubMed

    Maroney, Samuel S; Devinney, D Scott

    2011-11-09

    Shoulder dislocations are common injuries. In the realm of high-energy trauma, enough force can be dissipated to violate the entire soft tissue envelope surrounding the shoulder girdle, generating an open injury. This article presents a case of a young man involved in a motorcycle accident in which he sustained an open glenohumeral dislocation with complete skeletonization of the proximal humerus. There were no associated fractures with his injury. Our patient underwent staged irrigation and debridement of his shoulder with delayed tendoligamentous reconstruction of the skeletonized proximal humerus. After reconstruction, he was immobilized for 3 weeks and then began a progressive shoulder rehabilitation protocol. He healed with no evidence of infection, residual instability, or avascular necrosis at his 4-month follow-up examination. At that point, he had regained functional use of his shoulder for activities of daily living and had no pain. His range of active motion was limited to 90° of flexion and abduction, 0° of external rotation, and internal rotation to the L4. He had complete resolution of a sensory and motor axillary neuropraxia that resulted from his initial injury. It was felt that the patient had potential for continued gains in range of motion and strength.Our patient is only the second description of an open glenohumeral dislocation with no associated fractures of the proximal humerus. This skeletonization of the proximal humerus represents a complex soft tissue injury that severely compromises the functional capacity of the shoulder. Understanding the nature of the injury and the involved structures and maintaining a sound treatment algorithm allow orthopedic surgeons to maximize the patient's functional outcome.

  1. Mathematical algorithm for the automatic recognition of intestinal parasites.

    PubMed

    Alva, Alicia; Cangalaya, Carla; Quiliano, Miguel; Krebs, Casey; Gilman, Robert H; Sheen, Patricia; Zimic, Mirko

    2017-01-01

    Parasitic infections are generally diagnosed by professionals trained to recognize the morphological characteristics of the eggs in microscopic images of fecal smears. However, this laboratory diagnosis requires medical specialists which are lacking in many of the areas where these infections are most prevalent. In response to this public health issue, we developed a software based on pattern recognition analysis from microscopi digital images of fecal smears, capable of automatically recognizing and diagnosing common human intestinal parasites. To this end, we selected 229, 124, 217, and 229 objects from microscopic images of fecal smears positive for Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica, respectively. Representative photographs were selected by a parasitologist. We then implemented our algorithm in the open source program SCILAB. The algorithm processes the image by first converting to gray-scale, then applies a fourteen step filtering process, and produces a skeletonized and tri-colored image. The features extracted fall into two general categories: geometric characteristics and brightness descriptions. Individual characteristics were quantified and evaluated with a logistic regression to model their ability to correctly identify each parasite separately. Subsequently, all algorithms were evaluated for false positive cross reactivity with the other parasites studied, excepting Taenia sp. which shares very few morphological characteristics with the others. The principal result showed that our algorithm reached sensitivities between 99.10%-100% and specificities between 98.13%- 98.38% to detect each parasite separately. We did not find any cross-positivity in the algorithms for the three parasites evaluated. In conclusion, the results demonstrated the capacity of our computer algorithm to automatically recognize and diagnose Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica with a high

  2. Medical History: Arthritis in Saxon and mediaeval skeletons

    PubMed Central

    Rogers, Juliet; Watt, Iain; Dieppe, Paul

    1981-01-01

    Examination of 400 Saxon, Romano-British, and mediaeval skeletons from seven archaeological excavations in the west of England showed an unexpectedly high incidence of osteoarthritis and osteophytosis. Three skeletons had evidence of an erosive peripheral arthritis—one with probable gout, one probable psoriatic arthropathy, and one with possible rheumatoid arthritis. The pattern and types of rheumatic disease, and the resultant disability, were apparently different. An exuberant form of large joint osteoarthritis was common and rheumatoid arthritis and similar diseases rare. ImagesFIGS 1-2FIGS 3-4FIGS 5-6 PMID:6797606

  3. Chemical transformations on botryane skeleton. Effect on the cytotoxic activity.

    PubMed

    Reino, José L; Durán-Patrón, Rosa; Segura, Inmaculada; Hernández-Galán, Rosario; Riese, Hans H; Collado, Isidro G

    2003-03-01

    Eighteen compounds with a botryane skeleton have been obtained through chemical transformations of various toxins from the fungus Botrytis cinerea. During the course of these transformations, the C-10 carbon of the botryane skeleton was found to exhibit an interesting high regioselectivity to oxidizing and reducing agents. In addition, the cytotoxicity of 27 botryane derivatives was determined in vitro against Hs578T, MDA-MB-231, HT-1080, U87-MG, IMR-90, and HUVEC cell lines. The results of this study confirm that the cytotoxicity of botrydial (1) and its derivatives is related to the presence of a 1,5-dialdehyde functionality.

  4. Anatomy-based 3D skeleton extraction from femur model.

    PubMed

    Gharenazifam, Mina; Arbabi, Ehsan

    2014-11-01

    Using 3D models of bones can highly improve accuracy and reliability of orthopaedic evaluation. However, it may impose excessive computational load. This article proposes a fully automatic method for extracting a compact model of the femur from its 3D model. The proposed method works by extracting a 3D skeleton based on the clinical parameters of the femur. Therefore, in addition to summarizing a 3D model of the bone, the extracted skeleton would preserve important clinical and anatomical information. The proposed method has been applied on 3D models of 10 femurs and the results have been evaluated for different resolutions of data.

  5. Synthesis of Novel Basic Skeletons Derived from Naltrexone

    NASA Astrophysics Data System (ADS)

    Nagase, Hiroshi; Fujii, Hideaki

    We will describe eight interesting reactions using naltrexone derivatives. Almost all these reactions are characteristic of naltrexone derivatives, and can lead to the synthesis of many novel skeletons that provide new interesting pharmacological data. Some of the new reactions that were found with naltrexone derivatives were expanded into general reactions. For example, the reaction of 6α-hydroxyaldehyde derived from naltrexone led to the oxazoline dimer and the 1,3,5-trioxazatriquinane skeleton (triplet drug); this reaction was applied to general ketones which were converted to α-hydroxyaldehydes, followed by conversion to dimers and trimers, as described in Sect. 7.

  6. Caterpillars use the substrate as their external skeleton

    PubMed Central

    Trimmer, Barry

    2010-01-01

    Animals that lack rigid structures often employ pressurization to maintain body form and posture. Structural stability is then provided by incompressible fluids or tissues and the inflated morphology is called a hydrostatic skeleton. However, new ground reaction force data from the caterpillar, Manduca sexta suggest an alternate strategy for large soft animals moving in complex three dimensional structures. When crawling, Manduca can keep its body primarily in tension and transmit compressive deformation using the substrate. This effectively allows the caterpillar to minimize reliance on a hydrostatic skeleton and helps it conform to the environment. We call this alternative strategy an “environmental skeleton”. PMID:21057644

  7. Shedding Light on the Cosmic Skeleton

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Astronomers have tracked down a gigantic, previously unknown assembly of galaxies located almost seven billion light-years away from us. The discovery, made possible by combining two of the most powerful ground-based telescopes in the world, is the first observation of such a prominent galaxy structure in the distant Universe, providing further insight into the cosmic web and how it formed. "Matter is not distributed uniformly in the Universe," says Masayuki Tanaka from ESO, who led the new study. "In our cosmic vicinity, stars form in galaxies and galaxies usually form groups and clusters of galaxies. The most widely accepted cosmological theories predict that matter also clumps on a larger scale in the so-called 'cosmic web', in which galaxies, embedded in filaments stretching between voids, create a gigantic wispy structure." These filaments are millions of light years long and constitute the skeleton of the Universe: galaxies gather around them, and immense galaxy clusters form at their intersections, lurking like giant spiders waiting for more matter to digest. Scientists are struggling to determine how they swirl into existence. Although massive filamentary structures have been often observed at relatively small distances from us, solid proof of their existence in the more distant Universe has been lacking until now. The team led by Tanaka discovered a large structure around a distant cluster of galaxies in images they obtained earlier. They have now used two major ground-based telescopes to study this structure in greater detail, measuring the distances from Earth of over 150 galaxies, and, hence, obtaining a three-dimensional view of the structure. The spectroscopic observations were performed using the VIMOS instrument on ESO's Very Large Telescope and FOCAS on the Subaru Telescope, operated by the National Astronomical Observatory of Japan. Thanks to these and other observations, the astronomers were able to make a real demographic study of this structure

  8. Strategic Principal Communication

    ERIC Educational Resources Information Center

    Henry, Jake; Woody, Aaron

    2013-01-01

    As communities become increasingly diverse and criticism of traditional public schools intensifies, some states, such as North Carolina, have enacted legislation that encourages alternative forms of schooling. This condition has resulted in new challenges for principals to communicate broadly and often with stakeholders in an effort to build…

  9. Strategic Principal Communication

    ERIC Educational Resources Information Center

    Henry, Jake; Woody, Aaron

    2013-01-01

    As communities become increasingly diverse and criticism of traditional public schools intensifies, some states, such as North Carolina, have enacted legislation that encourages alternative forms of schooling. This condition has resulted in new challenges for principals to communicate broadly and often with stakeholders in an effort to build…

  10. Turnaround Principal Competencies

    ERIC Educational Resources Information Center

    Steiner, Lucy; Barrett, Sharon Kebschull

    2012-01-01

    When the Minneapolis Public Schools first set out to hire turnaround school principals, administrators followed their usual process--which focused largely on reputation and anecdotal support and considered mainly internal candidates. Yet success at the complicated task of turning around the fortunes of a failing school depends on exceptionally…

  11. Let Teachers Pick Principals.

    ERIC Educational Resources Information Center

    Raisch, C. Daniel

    1993-01-01

    If a school and community are qualified enough to hire teachers, counselors, and secretaries through school-based-management processes, they are equally qualified to hire the school principal. This article describes a site-based team-selection process designed to identify optimal administrator characteristics, advertise the job opening, handle…

  12. The Principal as CEO

    ERIC Educational Resources Information Center

    Hollar, Charlie

    2004-01-01

    They may never grace the pages of The Wall Street Journal or Fortune magazine, but they might possibly be the most important CEOs in our country. They are elementary school principals. Each of them typically serves the learning needs of 350-400 clients (students) while overseeing a multimillion-dollar facility staffed by 20-25 teachers and 10-15…

  13. The Principal's Legal Handbook.

    ERIC Educational Resources Information Center

    Camp, William E., Ed.; And Others

    The principal is faced with myriad legal issues on a daily basis, making it imperative that he or she keep abreast with developing legal issues. The first of four sections, "Students and the Law," surveys federal statutes and landmark Supreme Court decisions pertaining to the rights of students. It addresses legal issues regarding search and…

  14. Principals Make Assignments Matter

    ERIC Educational Resources Information Center

    Dougherty, Eleanor

    2013-01-01

    The inner-city high school in Washington, DC, that Guillaume Gendre joined as an assistant principal had a modest reputation for achievement but was nevertheless challenged to raise expectations for student work. In other schools, Gendre had used assignments--a specific kind of instructional task in which students are charged to think about an…

  15. Support Principals, Transform Schools

    ERIC Educational Resources Information Center

    Aguilar, Elena; Goldwasser, Davina; Tank-Crestetto, Kristina

    2011-01-01

    The Transformational Coaching Team in Oakland Unified School District provides differentiated, sustained, job-embedded support to the district's school leaders. In this article, members of the team describe how they work with principals to transform the culture of schools. Student achievement data show above-average improvement in schools in which…

  16. The Principal as CEO

    ERIC Educational Resources Information Center

    Hollar, Charlie

    2004-01-01

    They may never grace the pages of The Wall Street Journal or Fortune magazine, but they might possibly be the most important CEOs in our country. They are elementary school principals. Each of them typically serves the learning needs of 350-400 clients (students) while overseeing a multimillion-dollar facility staffed by 20-25 teachers and 10-15…

  17. When Principals Gather.

    ERIC Educational Resources Information Center

    Trotter, Andrew

    1992-01-01

    Summarizes main discussion topics at the recent annual meeting of the National Association of Elementary School Principals held in New Orleans. Participants discussed school readiness, parenthood education, minority achievement, whole-language instruction, and multiculturalism. The Association for Supervision and Curriculum Development's New…

  18. Principals as Cultural Leaders

    ERIC Educational Resources Information Center

    Louis, Karen Seashore; Wahlstrom, Kyla

    2011-01-01

    Principals have a strong role to play in forming school cultures that encourage change. Changing a school's culture requires shared or distributed leadership and instructional leadership. A multiyear study found that three elements are necessary for a school culture that stimulates teachers to improve their instruction: 1) Teachers and…

  19. Effective Principals in Action

    ERIC Educational Resources Information Center

    Spiro, Jody D.

    2013-01-01

    The idea that principals should focus more closely on teaching and learning did not emerge prominently until the mid-1990s. Then educators and policy makers began to realize that school leadership matters to student achievement. In a dozen years of working with states, districts, researchers and others, the Wallace Foundation has pinpointed five…

  20. Support Principals, Transform Schools

    ERIC Educational Resources Information Center

    Aguilar, Elena; Goldwasser, Davina; Tank-Crestetto, Kristina

    2011-01-01

    The Transformational Coaching Team in Oakland Unified School District provides differentiated, sustained, job-embedded support to the district's school leaders. In this article, members of the team describe how they work with principals to transform the culture of schools. Student achievement data show above-average improvement in schools in which…

  1. A Human Activity Recognition System Using Skeleton Data from RGBD Sensors

    PubMed Central

    Gasparrini, Samuele

    2016-01-01

    The aim of Active and Assisted Living is to develop tools to promote the ageing in place of elderly people, and human activity recognition algorithms can help to monitor aged people in home environments. Different types of sensors can be used to address this task and the RGBD sensors, especially the ones used for gaming, are cost-effective and provide much information about the environment. This work aims to propose an activity recognition algorithm exploiting skeleton data extracted by RGBD sensors. The system is based on the extraction of key poses to compose a feature vector, and a multiclass Support Vector Machine to perform classification. Computation and association of key poses are carried out using a clustering algorithm, without the need of a learning algorithm. The proposed approach is evaluated on five publicly available datasets for activity recognition, showing promising results especially when applied for the recognition of AAL related actions. Finally, the current applicability of this solution in AAL scenarios and the future improvements needed are discussed. PMID:27069469

  2. A Human Activity Recognition System Using Skeleton Data from RGBD Sensors.

    PubMed

    Cippitelli, Enea; Gasparrini, Samuele; Gambi, Ennio; Spinsante, Susanna

    2016-01-01

    The aim of Active and Assisted Living is to develop tools to promote the ageing in place of elderly people, and human activity recognition algorithms can help to monitor aged people in home environments. Different types of sensors can be used to address this task and the RGBD sensors, especially the ones used for gaming, are cost-effective and provide much information about the environment. This work aims to propose an activity recognition algorithm exploiting skeleton data extracted by RGBD sensors. The system is based on the extraction of key poses to compose a feature vector, and a multiclass Support Vector Machine to perform classification. Computation and association of key poses are carried out using a clustering algorithm, without the need of a learning algorithm. The proposed approach is evaluated on five publicly available datasets for activity recognition, showing promising results especially when applied for the recognition of AAL related actions. Finally, the current applicability of this solution in AAL scenarios and the future improvements needed are discussed.

  3. Principal curvature for infrared small target detection

    NASA Astrophysics Data System (ADS)

    Zhao, Yao; Pan, Haibin; Du, Changping; Zheng, Yao

    2015-03-01

    Small target detection in infrared image with complex background and low signal-noise ratio is an important and difficult task in the infrared target tracking system. In this paper, a principal curvature-based method is proposed. The principal curvatures of target pixels are negative and their absolute values are larger than that of background pixels and noise pixels in a Gaussian-blurred infrared image. The proposed filter takes a composite function of the curvatures for detection. An approximate model is also built for optimizing the parameters. Experimental results show that the proposed algorithm is effective and adaptable for infrared small target detection in complex background. Compared with several popular methods, the proposed algorithm demonstrates significant improvement on detection performance in terms of the parameters of signal clutter ratio gain, background suppression factor and ROC.

  4. A synthesis of the carbon skeleton of maoecrystal V.

    PubMed

    Krawczuk, Paul J; Schöne, Niklas; Baran, Phil S

    2009-11-05

    An enantioselective synthesis of the maoecrystal V (1) carbon skeleton is described. The key transformations include arylation of a 1,3-dicarbonyl compound with a triarylbismuth(V) dichloride species, oxidative dearomatization of a phenol, and a subsequent intramolecular Diels-Alder reaction.

  5. A Synthesis of the Carbon Skeleton of Maoecrystal V

    PubMed Central

    Krawczuk, Paul J.; Schöne, Niklas; Baran, Phil S.

    2009-01-01

    An enantioselective synthesis of the maoecrystal V (1) carbon skeleton is described. The key transformations include arylation of a 1,3-dicarbonyl compound with a triarylbismuth(V)dichloride species, oxidative dearomatization of a phenol, and a subsequent intramolecular Diels-Alder reaction. PMID:19795876

  6. A practical introduction to skeletons for the plant sciences1

    PubMed Central

    Bucksch, Alexander

    2014-01-01

    Before the availability of digital photography resulting from the invention of charged couple devices in 1969, the measurement of plant architecture was a manual process either on the plant itself or on traditional photographs. The introduction of cheap digital imaging devices for the consumer market enabled the wide use of digital images to capture the shape of plant networks such as roots, tree crowns, or leaf venation. Plant networks contain geometric traits that can establish links to genetic or physiological characteristics, support plant breeding efforts, drive evolutionary studies, or serve as input to plant growth simulations. Typically, traits are encoded in shape descriptors that are computed from imaging data. Skeletons are one class of shape descriptors that are used to describe the hierarchies and extent of branching and looping plant networks. While the mathematical understanding of skeletons is well developed, their application within the plant sciences remains challenging because the quality of the measurement depends partly on the interpretation of the skeleton. This article is meant to bridge the skeletonization literature in the plant sciences and related technical fields by discussing best practices for deriving diameters and approximating branching hierarchies in a plant network. PMID:25202645

  7. Organic membranous skeleton of the Precambrian metazoans from Namibia

    NASA Astrophysics Data System (ADS)

    Dzik, Jerzy

    1999-06-01

    Unlike the celebrated Ediacara fossils, those from the roughly coeval localities of the Kuibis Quarzite of Namibia are preserved not as imprints on the sandstone bedding plane, but three-dimensionally, within the rock matrix. The pattern of deformation and the presence of sand in lower parts of the bodies of Ernietta, the most common and typical of those organisms, indicate that their three-dimensional preservation is a result of a density-controlled sinking of sand-filled organic skeletons within hydrated mud layers. Specimens of Ernietta have preserved various stages of migration across the mud beds. Their wall material, as documented by the mode of deformation, was not only flexible, but also elastic, which makes it unlike chitin. The walls thus seem to be proteinaceous, built probably of a collagenous fabric. The Ernietta skeleton was built of series of parallel chambers, which excludes the possibility that these were external body covers. The chambers apparently represent walls of hydraulic skeleton units, resembling the basement membrane of chaetognaths or the notochord sheath of primitive chordates. Such chambers are widespread among the earliest fossil animals represented by fossils preserved in sandstone. The rise and fall of the Ediacaran faunas thus seem to be partially preservational artifacts. The range of its occurrence is a result of two successive evolutionary events: the origin of an internal hydraulic skeleton enclosed by a strong basement membrane, and the appearance of decomposers with abilities to disintegrate such collagenous sheaths.

  8. The ocular skeleton through the eye of evo-devo.

    PubMed

    Franz-Odendaal, Tamara Anne

    2011-09-15

    An evolutionary developmental (evo-devo) approach to understanding the evolution, homology, and development of structures has proved important for unraveling complex integrated skeletal systems through the use of modules, or modularity. An ocular skeleton, which consists of cartilage and sometimes bone, is present in many vertebrates; however, the origin of these two components remains elusive. Using both paleontological and developmental data, I propose that the vertebrate ocular skeleton is neural crest derived and that a single cranial neural crest module divided early in vertebrate evolution, possibly during the Ordovician, to give rise to an endoskeletal component and an exoskeletal component within the eye. These two components subsequently became uncoupled with respect to timing, placement within the sclera and inductive epithelia, enabling them to evolve independently and to diversify. In some extant groups, these two modules have become reassociated with one another. Furthermore, the data suggest that the endoskeletal component of the ocular skeleton was likely established and therefore evolved before the exoskeletal component. This study provides important insights into the evolution of the ocular skeleton, a region with a long evolutionary history among vertebrates.

  9. Learning about Skeletons and Other Organ Systems of Vertebrate Animals.

    ERIC Educational Resources Information Center

    Tunnicliffe, Sue Dale; Reiss, Michael

    1999-01-01

    Describes students' (n=175) understandings of the structure of animal (including human) skeletons and the internal organs found in them. Finds that older students have a better knowledge of animals' internal anatomies, although knowledge of human internal structure is significantly better than knowledge of rat, bird, and fish internal structure.…

  10. The origin of a new fin skeleton through tinkering.

    PubMed

    Stewart, Thomas A

    2015-07-01

    Adipose fins are positioned between the dorsal and caudal fins of many teleost fishes and primitively lack skeleton. In at least four lineages, adipose fins have evolved lepidotrichia (bony fin rays), co-opting the developmental programme for the dermal skeleton of other fins into this new territory. Here I provide, to my knowledge, the first description of lepidotrichia development in an adipose fin, characterizing the ontogeny of the redtail catfish, Phractocephalus hemioliopterus. Development of these fin rays differs from canonical lepidotrich development in the following four ways: skeleton begins developing in adults, not in larvae; rays begin developing at the fin's distal tip, not proximally; the order in which rays ossify is variable, not fixed; and lepidotrichia appear to grow both proximally and distally, not exclusively proximodistally. Lepidotrichia are often wavy, of irregular thickness and exhibit no regular pattern of segmentation or branching. This skeleton is among the most variable observed in a vertebrate appendage, offering a unique opportunity to explore the basis of hypervariation, which is generally assumed to reflect an absence of function. I argue that this variation reflects a lack of canalization as compared with other, more ancient lepidotrichs and suggest developmental context can affect the morphology of serial homologues.

  11. Bone density and the lightweight skeletons of birds.

    PubMed

    Dumont, Elizabeth R

    2010-07-22

    The skeletons of birds are universally described as lightweight as a result of selection for minimizing the energy required for flight. From a functional perspective, the weight (mass) of an animal relative to its lift-generating surfaces is a key determinant of the metabolic cost of flight. The evolution of birds has been characterized by many weight-saving adaptations that are reflected in bone shape, many of which strengthen and stiffen the skeleton. Although largely unstudied in birds, the material properties of bone tissue can also contribute to bone strength and stiffness. In this study, I calculated the density of the cranium, humerus and femur in passerine birds, rodents and bats by measuring bone mass and volume using helium displacement. I found that, on average, these bones are densest in birds, followed closely by bats. As bone density increases, so do bone stiffness and strength. Both of these optimization criteria are used in the design of strong and stiff, but lightweight, manmade airframes. By analogy, increased bone density in birds and bats may reflect adaptations for maximizing bone strength and stiffness while minimizing bone mass and volume. These data suggest that both bone shape and the material properties of bone tissue have played important roles in the evolution of flight. They also reconcile the conundrum of how bird skeletons can appear to be thin and delicate, yet contribute just as much to total body mass as do the skeletons of terrestrial mammals.

  12. Learning about Skeletons and Other Organ Systems of Vertebrate Animals.

    ERIC Educational Resources Information Center

    Tunnicliffe, Sue Dale; Reiss, Michael

    1999-01-01

    Describes students' (n=175) understandings of the structure of animal (including human) skeletons and the internal organs found in them. Finds that older students have a better knowledge of animals' internal anatomies, although knowledge of human internal structure is significantly better than knowledge of rat, bird, and fish internal structure.…

  13. A practical introduction to skeletons for the plant sciences.

    PubMed

    Bucksch, Alexander

    2014-08-01

    Before the availability of digital photography resulting from the invention of charged couple devices in 1969, the measurement of plant architecture was a manual process either on the plant itself or on traditional photographs. The introduction of cheap digital imaging devices for the consumer market enabled the wide use of digital images to capture the shape of plant networks such as roots, tree crowns, or leaf venation. Plant networks contain geometric traits that can establish links to genetic or physiological characteristics, support plant breeding efforts, drive evolutionary studies, or serve as input to plant growth simulations. Typically, traits are encoded in shape descriptors that are computed from imaging data. Skeletons are one class of shape descriptors that are used to describe the hierarchies and extent of branching and looping plant networks. While the mathematical understanding of skeletons is well developed, their application within the plant sciences remains challenging because the quality of the measurement depends partly on the interpretation of the skeleton. This article is meant to bridge the skeletonization literature in the plant sciences and related technical fields by discussing best practices for deriving diameters and approximating branching hierarchies in a plant network.

  14. Principal components analysis.

    PubMed

    Groth, Detlef; Hartmann, Stefanie; Klie, Sebastian; Selbig, Joachim

    2013-01-01

    Principal components analysis (PCA) is a standard tool in multivariate data analysis to reduce the number of dimensions, while retaining as much as possible of the data's variation. Instead of investigating thousands of original variables, the first few components containing the majority of the data's variation are explored. The visualization and statistical analysis of these new variables, the principal components, can help to find similarities and differences between samples. Important original variables that are the major contributors to the first few components can be discovered as well.This chapter seeks to deliver a conceptual understanding of PCA as well as a mathematical description. We describe how PCA can be used to analyze different datasets, and we include practical code examples. Possible shortcomings of the methodology and ways to overcome these problems are also discussed.

  15. The skeleton of postmetamorphic echinoderms in a changing world.

    PubMed

    Dubois, Philippe

    2014-06-01

    Available evidence on the impact of acidification and its interaction with warming on the skeleton of postmetamorphic (juvenile and adult) echinoderms is reviewed. Data are available on sea urchins, starfish, and brittle stars in 33 studies. Skeleton growth of juveniles of all sea urchin species studied so far is affected from pH 7.8 to 7.6 in seawater, values that are expected to be reached during the 21st century. Growth in adult sea urchins (six species studied) is apparently only marginally affected at seawater pH relevant to this century. The interacting effect of temperature differed according to studies. Juvenile starfish as well as adults seem to be either not impacted or even boosted by acidification. Brittle stars show moderate effects at pH below or equal to 7.4. Dissolution of the body wall skeleton is unlikely to be a major threat to sea urchins. Spines, however, due to their exposed position, are more prone to this threat, but their regeneration abilities can probably ensure their maintenance, although this could have an energetic cost and induce changes in resource allocation. No information is available on skeleton dissolution in starfish, and the situation in brittle stars needs further assessment. Very preliminary evidence indicates that mechanical properties in sea urchins could be affected. So, although the impact of ocean acidification on the skeleton of echinoderms has been considered as a major threat from the first studies, we need a better understanding of the induced changes, in particular the functional consequences of growth modifications and dissolution related to mechanical properties. It is suggested to focus studies on these aspects.

  16. Ocean acidification and warming scenarios increase microbioerosion of coral skeletons.

    PubMed

    Reyes-Nivia, Catalina; Diaz-Pulido, Guillermo; Kline, David; Guldberg, Ove-Hoegh; Dove, Sophie

    2013-06-01

    Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef-building corals, Porites cylindrica and Isopora cuneata, to present-day (Control: 400 μatm - 24 °C) and future pCO2 -temperature scenarios projected for the end of the century (Medium: +230 μatm - +2 °C; High: +610 μatm - +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite <1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2 -temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2 -temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2 -temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans. © 2013

  17. Visualization of the hexagonal lattice in the erythrocyte membrane skeleton.

    PubMed

    Liu, S C; Derick, L H; Palek, J

    1987-03-01

    The isolated membrane skeleton of human erythrocytes was studied by high resolution negative staining electron microscopy. When the skeletal meshwork is spread onto a thin carbon film, clear images of a primarily hexagonal lattice of junctional F-actin complexes crosslinked by spectrin filaments are obtained. The regularly ordered network extends over the entire membrane skeleton. Some of the junctional complexes are arranged in the form of pentagons and septagons, approximately 3 and 8%, respectively. At least five forms of spectrin crosslinks are detected in the spread skeleton including a single spectrin tetramer linking two junctional complexes, three-armed Y-shaped spectrin molecules linking three junctional complexes, three-armed spectrin molecules connecting two junctional complexes with two arms bound to one complex and the third arm bound to the adjacent complex, double spectrin filaments linking two junctional complexes, and four-armed spectrin molecules linking two junctional complexes. Of these, the crosslinks of single spectrin tetramers and three-armed molecules are the most abundant and represent 84 and 11% of the total crosslinks, respectively. These observations are compatible with the presence of spectrin tetramers and oligomers in the erythrocyte membrane skeleton. Globular structures (9-12 nm in diameter) are attached to the majority of the spectrin tetramers or higher order oligomer-like molecules, approximately 80 nm from the distal ends of the spectrin tetramers. These globular structures are ankyrinor ankyrin/band 3-containing complexes, since they are absent when ankyrin and residual band 3 are extracted from the skeleton under hypertonic conditions.

  18. Transforming Principal Preparation. ERIC Digest.

    ERIC Educational Resources Information Center

    Lashway, Larry

    In the current climate of accountability, the responsibilities of principals have increased. The new role of principals requires new forms of training, and standards-based reform is generating major changes in principal-preparation programs. This digest examines some of those changes. First, it looks at the effectiveness of principal-preparation…

  19. An Interactive Exhibition about Animal Skeletons: Did the Visitors Learn Any Zoology?

    ERIC Educational Resources Information Center

    Tunnicliffe, Sue Dale; Laterveer-de Beer, Manon

    2002-01-01

    Explores museum visitors' understanding of skeleton exhibits and whether such exhibits increase their understanding of the zoology displayed. The exhibition under study focused on the diversity of vertebrae skeletons which were arranged according to the mode of locomotion. (DDR)

  20. An Interactive Exhibition about Animal Skeletons: Did the Visitors Learn Any Zoology?

    ERIC Educational Resources Information Center

    Tunnicliffe, Sue Dale; Laterveer-de Beer, Manon

    2002-01-01

    Explores museum visitors' understanding of skeleton exhibits and whether such exhibits increase their understanding of the zoology displayed. The exhibition under study focused on the diversity of vertebrae skeletons which were arranged according to the mode of locomotion. (DDR)

  1. Using skeleton-based tracking to increase the reliability of optical motion capture.

    PubMed

    Herda, L; Fua, P; Plänkers, R; Boulic, R; Thalmann, D

    2001-06-01

    Optical motion capture provides an impressive ability to replicate gestures. However, even with a highly professional system there are many instances where crucial markers are occluded or when the algorithm confuses the trajectory of one marker with that of another. This requires much editing work on the user's part before the complete animation is ready for use. In this paper, we present an approach to increasing the robustness of a motion capture system by using an anatomical human model. It includes a reasonably precise description of the skeleton's mobility and an approximated envelope. It allows us to accurately predict the 3-D location and visibility of markers, thus significantly increasing the robustness of the marker tracking and assignment, and drastically reducing--or even eliminating--the need for human intervention during the 3-D reconstruction process.

  2. In vitro quantification of strain patterns in the craniofacial skeleton due to masseter and temporalis activities.

    PubMed

    Maloul, Asmaa; Regev, Eran; Whyne, Cari M; Beek, Marteen; Fialkov, Jeffrey A

    2012-09-01

    Many complications in craniofacial surgery can be attributed to a lack of characterization of facial skeletal strain patterns. This study aimed to delineate human midfacial strain patterns under uniform muscle loading. The left sides of 5 fresh-frozen human cadaveric heads were dissected of all soft tissues except the temporalis and masseter muscles. Tensile forces were applied to the free mandibular ends of the muscles. Maxillary alveolar arches were used to restrain the skulls. Eight strain gauges were bonded to the surface of the midface to measure the strain under single muscle loading conditions (100 N). Maxillary strain gauges revealed a biaxial load state for both muscles. Thin antral bone experienced high maximum principal tensile strains (maximum of 685.5 με) and high minimum principal compressive strains (maximum of -722.44 με). Similar biaxial patterns of lower magnitude were measured on the zygoma (maximum of 208.59 με for maximum principal strains and -78.11 με for minimum principal strains). Results, consistent for all specimens and counter to previously accepted concepts of biomechanical behavior of the midface under masticatory muscle loading, included high strain in the thin maxillary antral wall, rotational bending through the maxilla and zygoma, and a previously underestimated contribution of the temporalis muscle. This experimental model produced repeatable strain patterns quantifying the mechanics of the facial skeleton. These new counterintuitive findings underscore the need for accurate characterization of craniofacial strain patterns to address problems in the current treatment methods and develop robust design criteria.

  3. Interactions between Plasmodium falciparum skeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells.

    PubMed

    Kats, Lev M; Proellocks, Nicholas I; Buckingham, Donna W; Blanc, Lionel; Hale, John; Guo, Xinhua; Pei, Xinhong; Herrmann, Susann; Hanssen, Eric G; Coppel, Ross L; Mohandas, Narla; An, Xiuli; Cooke, Brian M

    2015-07-01

    During development inside red blood cells (RBCs), Plasmodium falciparum malaria parasites export proteins that associate with the RBC membrane skeleton. These interactions cause profound changes to the biophysical properties of RBCs that underpin the often severe and fatal clinical manifestations of falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is one such exported parasite protein that plays a major role in malaria pathogenesis since its exposure on the parasitised RBC surface mediates their adhesion to vascular endothelium and placental syncytioblasts. En route to the RBC membrane skeleton, PfEMP1 transiently associates with Maurer's clefts (MCs), parasite-derived membranous structures in the RBC cytoplasm. We have previously shown that a resident MC protein, skeleton-binding protein 1 (SBP1), is essential for the placement of PfEMP1 onto the RBC surface and hypothesised that the function of SBP1 may be to target MCs to the RBC membrane. Since this would require additional protein interactions, we set out to identify binding partners for SBP1. Using a combination of approaches, we have defined the region of SBP1 that binds specifically to defined sub-domains of two major components of the RBC membrane skeleton, protein 4.1R and spectrin. We show that these interactions serve as one mechanism to anchor MCs to the RBC membrane skeleton, however, while they appear to be necessary, they are not sufficient for the translocation of PfEMP1 onto the RBC surface. The N-terminal domain of SBP1 that resides within the lumen of MCs clearly plays an essential, but presently unknown role in this process.

  4. Interactions between Plasmodium falciparum skeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells

    PubMed Central

    Buckingham, Donna W.; Blanc, Lionel; Hale, John; Guo, Xinhua; Pei, Xinhong; Herrmann, Susann; Hanssen, Eric G.; Coppel, Ross L.; Mohandas, Narla; An, Xiuli; Cooke, Brian M.

    2015-01-01

    During development inside red blood cells (RBCs), Plasmodium falciparum malaria parasites export proteins that associate with the RBC membrane skeleton. These interactions cause profound changes to the biophysical properties of RBCs that underpin the often severe and fatal clinical manifestations of falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is one such exported parasite protein that plays a major role in malaria pathogenesis since its exposure on the parasitised RBC surface mediates their adhesion to vascular endothelium and placental syncytioblasts. En route to the RBC membrane skeleton, PfEMP1 transiently associates with Maurer's clefts (MCs), parasite-derived membranous structures in the RBC cytoplasm. We have previously shown that a resident MC protein, skeleton-binding protein 1 (SBP1), is essential for the placement of PfEMP1 onto the RBC surface and hypothesised that the function of SBP1 may be to target MCs to the RBC membrane. Since this would require additional protein interactions, we set out to identify binding partners for SBP1. Using a combination of approaches, we have defined the region of SBP1 that binds specifically to defined subdomains of two major components of the RBC membrane skeleton, protein 4.1R and spectrin. We show that these interactions serve as one mechanism to anchor MCs to the RBC membrane skeleton, however, while they appear to be necessary, they are not sufficient for the translocation of PfEMP1 onto the RBC surface. The N-terminal domain of SBP1 that resides within the lumen of MCs clearly plays an essential, but presently unknown role in this process. PMID:25883090

  5. Recursive principal components analysis.

    PubMed

    Voegtlin, Thomas

    2005-10-01

    A recurrent linear network can be trained with Oja's constrained Hebbian learning rule. As a result, the network learns to represent the temporal context associated to its input sequence. The operation performed by the network is a generalization of Principal Components Analysis (PCA) to time-series, called Recursive PCA. The representations learned by the network are adapted to the temporal statistics of the input. Moreover, sequences stored in the network may be retrieved explicitly, in the reverse order of presentation, thus providing a straight-forward neural implementation of a logical stack.

  6. Apatite mineralization in elasmobranch skeletons via a polyphosphate intermediate

    NASA Astrophysics Data System (ADS)

    Omelon, Sidney; Lacroix, Nicolas; Lildhar, Levannia; Variola, Fabio; Dean, Mason

    2014-05-01

    All vertebrate skeletons are stiffened with apatite, a calcium phosphate mineral. Control of apatite mineralization is essential to the growth and repair of the biology of these skeletons, ensuring that apatite is deposited in the correct tissue location at the desired time. The mechanism of this biochemical control remains debated, but must involve increasing the localized apatite saturation state. It was theorized in 1923 that alkaline phosphatase (ALP) activity provides this control mechanism by increasing the inorganic phosphate (Pi) concentration via dephosphorylation of phosphorylated molecules. The ALP substrate for biological apatite is not known. We propose that polyphosphates (polyPs) produced by mitochondria may be the substrate for biological apatite formation by ALP activity. PolyPs (PO3-)n, also known as condensed phosphates, represent a concentrated, bioavailable Pi-storage strategy. Mitochondria import Pi and synthesize phosphate polymers through an unknown biochemical mechanism. When chelated with calcium and/or other cations, the effective P-concentration of these neutrally charged, amorphous, polyP species can be very high (~ 0.5 M), without inducing phosphate mineral crystallization. This P-concentration in the low Pi-concentration biological environment offers a method of concentrating P well above an apatite supersaturation required for nucleation. Bone is the most studied mineralized skeletal tissue. However, locating and analyzing active mineralizing areas is challenging. We studied calcified cartilage skeletons of elasmobranch fishes (sharks, stingrays and relatives) to analyse the phosphate chemistry in this continually mineralizing skeleton. Although the majority of the elasmobranch skeleton is unmineralized cartilage, it is wrapped in an outer layer of mineralized tissue comprised of small tiles called tesserae. These calcified tesserae continually grow through the formation of new mineral on their borders. Co-localization of ALP and

  7. Brief communication: "Zuzu" strikes again--morphological affinities of the early holocene human skeleton from Toca dos Coqueiros, Piaui, Brazil.

    PubMed

    Hubbe, Mark; Neves, Walter A; do Amaral, Heleno Licurgo; Guidon, Niéde

    2007-10-01

    The Serra da Capivara National Park in northeastern Brazil is one of the richest archaeological regions in South America. Nonetheless, so far only two paleoindian skeletons have been exhumed from the local rockshelters. The oldest one (9870 +/- 50 BP; CAL 11060 +/- 50), uncovered in Toca dos Coqueiros and known as "Zuzu," represents a rare opportunity to explore the biological relationships of paleoindian groups living in northeastern Brazil. As previously demonstrated, South and Central America Paleoindians present skull morphology distinct from the one found nowadays in Amerindians and similar to Australo-Melanesians. Here we test the hypothesis that Zuzu shows higher morphological affinity with Paleoindians. However, Zuzu is a controversial skeleton since previous osteological assessments have disagreed on several aspects, especially regarding its sex. Thus, we compared Zuzu to males and females independently. Morphological affinities were assessed through clustering of principal components considering 18 worldwide populations and through principal components analysis of the individual dispersion of five key regions for America's settlement. The results obtained do not allow us to refute the hypothesis, expanding the known geographical dispersion of the Paleoindian morphology into northeast Brazil. To contribute to the discussion regarding Zuzu's sex, a new estimation is presented based on visual inspection of cranial and post-cranial markers, complemented by a discriminant analysis of its morphology in relation to the paleoindian sample. The results favor a male classification and are consistent with the mortuary offerings found in the burial, yet do not agree with a molecular determination.

  8. Assessment of the value of microgravity to estimate the principal directions of the anisotropic transmissivity of aquifers from pumping tests: A study using a Hough transform based automatic algorithm

    NASA Astrophysics Data System (ADS)

    Fernández-Álvarez, José-Paulino; González-Quirós, Andrés; Rubio-Melendi, David

    2016-11-01

    Estimation of the hydraulic parameters of an aquifer is usually performed via interpretation of pumping tests. This invasive method requires drilling both pumping and observation wells. As the process is expensive, only a single pumping well and one or two observation wells or piezometers are generally drilled, at most. The interpretation is done assuming aquifer isotropy and homogeneity. However, in many aquifers, horizontal anisotropy in hydraulic conductivity greatly affects the flow regime. Its disregard may lead to important misinterpretations, especially for environmental impact assessments. This paper studies the capabilities of gravity for the identification and determination of the principal directions of anisotropy. This has been automatized using a methodology based on the Hough Transform. The results show how a microgravity survey could be an adequate and relatively cheap monitoring tool for the identification of anisotropy. This is valuable information that can be used in the decision making process for performing or discarding additional studies. Even more, the presented methodology can be extended to other studies in which contour maps are used to identify directionality in any process or property.

  9. Skeletonized versus pedicled internal thoracic artery and risk of sternal wound infection after coronary bypass surgery: meta-analysis and meta-regression of 4817 patients

    PubMed Central

    Sá, Michel Pompeu Barros de Oliveira; Ferraz, Paulo Ernando; Escobar, Rodrigo Renda; Vasconcelos, Frederico Pires; Ferraz, Álvaro Antonio Bandeira; Braile, Domingo Marcolino; Lima, Ricardo Carvalho

    2013-01-01

    It is suggested that the internal thoracic artery (ITA) harvesting technique influences the incidence of sternal wound infection (SWI) after coronary artery bypass graft (CABG). To determine if there is any real difference between skeletonized vs pedicled ITA, we performed a meta-analysis to determine if there is any real difference between these two established techniques in terms of SWI. We performed a systematic review using MEDLINE, EMBASE, CENTRAL/CCTR, SciELO, LILACS, Google Scholar and reference lists of relevant articles to search for studies that compared the incidence of SWI after CABG between skeletonized vs pedicled ITA until June 2012. The principal summary measures were odds ratio (OR) with 95% confidence interval (CI) and P values (statistically significant when <0.05). The ORs were combined across studies using the weighted DerSimonian–Laird random effects model and weighted Mantel–Haenszel fixed effects. Meta-analysis, sensitivity analysis and meta-regression were completed using the software Comprehensive Meta-Analysis version 2 (Biostat, Inc., Englewood, NJ, USA). Twenty-two studies involving 4817 patients (2424 skeletonized; 2393 pedicled) met the eligibility criteria. There was no evidence for important heterogeneity of effects among the studies. The overall OR (95% CI) of SWI showed a statistically significant difference in favour of skeletonized ITA (fixed effect model: OR 0.443, 95% CI 0.323–0.608, P < 0.001; random effect model: OR 0.443, 95% CI 0.323–0.608, P < 0.001). In the sensitivity analysis, the difference in favour of skeletonized ITA was also observed in subgroups such as diabetic, bilateral ITA and diabetic with bilateral ITA; we also observed that there was a difference in the type of study, since non-randomized studies together demonstrated the benefit of skeletonized ITA in comparison with pedicled ITA, but the randomized studies together did not show this difference (although close to statistical significance and with

  10. Computerized tomography and skeletal density of coral skeletons

    NASA Astrophysics Data System (ADS)

    Bosscher, Hemmo

    1993-07-01

    In this paper I describe and discuss the use of medical X-ray computerized tomography (CT) in the study of coral skeletons. CT generates X-ray images along freely chosen sections through the skeleton and offers, as well, the possibility of density measurements based on X-ray attenuation. This method has been applied to measure the skeletal density of the Caribbean reef-building coral Montastrea annularis, from Curaçao, Netherlands Antilles. The observed, non-linear increase of skeletal density with depth can be attributed to decreasing photo-synthetic rates with increasing water depth. A comparison with extension rate measurements shows the inverse relationship between extension rate and skeletal density. CT proves to be aquick and non-destructive method to reveal growth structures (density banding) since it measures skeletal density.

  11. Aneurysm identification by analysis of the blood-vessel skeleton.

    PubMed

    Kohout, Josef; Chiarini, Alessandro; Clapworthy, Gordon J; Klajnšek, Gregor

    2013-01-01

    At least 1% of the general population have an aneurysm (or possibly more) in their cerebral blood vessels. If an aneurysm ruptures, it kills the patient in up to 60% of cases. In order to choose the optimal treatment, clinicians have to monitor the development of the aneurysm in time. Nowadays, aneurysms are typically identified manually, which means that the monitoring is often imprecise since the identification is observer dependent. As a result, the number of misdiagnosed cases may be large. This paper proposes a fast semi-automatic method for the identification of aneurysms which is based on the analysis of the skeleton of blood vessels. Provided that the skeleton is accurate, the results achieved by our method have been deemed acceptable by expert clinicians.

  12. Dynamic Hand Gesture Recognition Using the Skeleton of the Hand

    NASA Astrophysics Data System (ADS)

    Ionescu, Bogdan; Coquin, Didier; Lambert, Patrick; Buzuloiu, Vasile

    2005-12-01

    This paper discusses the use of the computer vision in the interpretation of human gestures. Hand gestures would be an intuitive and ideal way of exchanging information with other people in a virtual space, guiding some robots to perform certain tasks in a hostile environment, or interacting with computers. Hand gestures can be divided into two main categories: static gestures and dynamic gestures. In this paper, a novel dynamic hand gesture recognition technique is proposed. It is based on the 2D skeleton representation of the hand. For each gesture, the hand skeletons of each posture are superposed providing a single image which is the dynamic signature of the gesture. The recognition is performed by comparing this signature with the ones from a gesture alphabet, using Baddeley's distance as a measure of dissimilarities between model parameters.

  13. Teacher and Principal Beliefs about Principal Leadership Behavior

    ERIC Educational Resources Information Center

    Morris, Mary Beth

    2011-01-01

    The purpose of this study was to examine whether or not there is a difference between teacher and principal beliefs about principal leadership behavior using a 360-degree evaluation tool. The study also examined whether the difference between teacher and principal beliefs was related to the status of a school relative to the state growth target…

  14. Visible Leading: Principal Academy Connects and Empowers Principals

    ERIC Educational Resources Information Center

    Hindman, Jennifer; Rozzelle, Jan; Ball, Rachel; Fahey, John

    2015-01-01

    The School-University Research Network (SURN) Principal Academy at the College of William & Mary in Williamsburg, Virginia, has a mission to build a leadership development program that increases principals' instructional knowledge and develops mentor principals to sustain the program. The academy is designed to connect and empower principals…

  15. Principal Preferences and the Uneven Distribution of Principals across Schools

    ERIC Educational Resources Information Center

    Loeb, Susanna; Kalogrides, Demetra; Horng, Eileen Lai

    2010-01-01

    The authors use longitudinal data from one large school district to investigate the distribution of principals across schools. They find that schools serving many low-income, non-White, and low-achieving students have principals who have less experience and less education and who attended less selective colleges. This distribution of principals is…

  16. Principals' Supervision and Evaluation Cycles: Perspectives from Principals

    ERIC Educational Resources Information Center

    Hvidston, David J.; McKim, Courtney Ann; Mette, Ian M.

    2016-01-01

    The goals for this quantitative study were to examine principals' perceptions regarding supervision and evaluation within their own evaluations. Three research questions guided the inquiry: (1) What are the perceptions of principals' regarding their own supervision?; (2) What are the perceptions of principals' regarding their own evaluation?; and…

  17. Teacher and Principal Beliefs about Principal Leadership Behavior

    ERIC Educational Resources Information Center

    Morris, Mary Beth

    2011-01-01

    The purpose of this study was to examine whether or not there is a difference between teacher and principal beliefs about principal leadership behavior using a 360-degree evaluation tool. The study also examined whether the difference between teacher and principal beliefs was related to the status of a school relative to the state growth target…

  18. Principals' Supervision and Evaluation Cycles: Perspectives from Principals

    ERIC Educational Resources Information Center

    Hvidston, David J.; McKim, Courtney Ann; Mette, Ian M.

    2016-01-01

    The goals for this quantitative study were to examine principals' perceptions regarding supervision and evaluation within their own evaluations. Three research questions guided the inquiry: (1) What are the perceptions of principals' regarding their own supervision?; (2) What are the perceptions of principals' regarding their own evaluation?; and…

  19. Visible Leading: Principal Academy Connects and Empowers Principals

    ERIC Educational Resources Information Center

    Hindman, Jennifer; Rozzelle, Jan; Ball, Rachel; Fahey, John

    2015-01-01

    The School-University Research Network (SURN) Principal Academy at the College of William & Mary in Williamsburg, Virginia, has a mission to build a leadership development program that increases principals' instructional knowledge and develops mentor principals to sustain the program. The academy is designed to connect and empower principals…

  20. A metrical study of the laryngeal skeleton in adult Nigerians.

    PubMed

    Ajmani, M L

    1990-08-01

    Laryngeal cartilages were studied in 40 dissection room specimens of adult age groups ranging from 17 to 50 years in both the sexes. Various dimensions of the laryngeal skeleton were measured and statistical analysis of the data for male and female were evaluated separately. Conspicuous and highly significant differences of the dimensions between male and female laryngeal cartilages were observed. The incidence of the cuneiform cartilage and cartilago triticea was greater in the female than in the male.

  1. A metrical study of the laryngeal skeleton in adult Nigerians.

    PubMed Central

    Ajmani, M L

    1990-01-01

    Laryngeal cartilages were studied in 40 dissection room specimens of adult age groups ranging from 17 to 50 years in both the sexes. Various dimensions of the laryngeal skeleton were measured and statistical analysis of the data for male and female were evaluated separately. Conspicuous and highly significant differences of the dimensions between male and female laryngeal cartilages were observed. The incidence of the cuneiform cartilage and cartilago triticea was greater in the female than in the male. PMID:2081705

  2. A short synthetic route towards merosesquiterpenes with a benzoxanthene skeleton.

    PubMed

    Fernández, Antonio; Alvarez, Esteban; Alvarez-Manzaneda, Ramón; Chahboun, Rachid; Alvarez-Manzaneda, Enrique

    2014-11-07

    A short synthetic sequence for the preparation of merosesquiterpenes with a benzoxanthene skeleton starting from commercial (-)-sclareol is reported. The D ring of the target compound is obtained through a Diels-Alder cycloaddition, involving a dienoldiether derived from a tricyclic α,β-enone synthesized in two steps from the starting diterpene. Utilizing this procedure, the preparation of (+)-hongoquercin A and the first synthesis of (+)-cyclospongiaquinone-1 were achieved.

  3. The Minotaur syndrome: plastic surgery of the facial skeleton.

    PubMed

    Morselli, P G

    1993-01-01

    This article remarks on the possibility of recontouring the face by working on the facial skeleton with the sole purpose of softening the facial appearance. The author describes a one-step surgical procedure performed on a 38-year-old man who had serious social problems because of his aggressive and threatening facial appearance that contrasted with his gentle personality. The author coins the term Minotaur Syndrome to describe the discrepancy between the patient's true personality versus his negative facial appearance.

  4. Skeleton Reassignment of Type C Polycyclic Polyprenylated Acylphloroglucinols.

    PubMed

    Yang, Xing-Wei; Yang, Jing; Xu, Gang

    2017-01-27

    The previous assignment of the type C skeleton of polycyclic polyprenylated acylphloroglucinols (PPAPs) was controversial and proved to be incorrect in this study. The structures of the type C PPAPs (3-6) were revised to corresponding type A structures (3a-6a) via (13)C NMR spectroscopic analysis and a quantum computational chemistry method. Therefore, only types A and B PPAPs are likely present in plants of the family Clusiaceae.

  5. A new conceptual model of the formation of coral skeleton

    NASA Astrophysics Data System (ADS)

    Juillet-Leclerc, A.

    2006-12-01

    Scleractinian corals constitute one of the major groups of calcifying animals. During a long time their skeleton has been considered as purely mineral and all the features not consistent with this concept were called " vital effects ". However, biology plays a key role in the skeleton genesis. Recent technological advances provided enough evidences to propose a new conceptual model of coral skeleton growth. Ion microprobe carried out both trace element and isotope analyses, which stressed the high variability of these geochemical tracers. It indicates that all measurements obtained at millimeter-length scale, especially data used for paleoclimatic purpose, are bulk data. The analyses performed on individual microstructures previously identified by SEMS observation revealed that the two different microstructures highlighted in coral skeleton present a specific geochemical signature. We have thus to explain how two specific microstructures could derive from a unique calcifying fluid. On the other hand, several methods converged to show that a thin organic matrix surrounds growth units at micro/nanometer size scale. The presence of organic compounds could alter the equilibrium thermodynamics of the mineral growth surface by modifying energy landscape. Knowing that chemical environment of each microstructure could be different according the nature of the growth units we assume that it induces different mechanism of deposition. By combining results from different approaches we deduce that kinetics is not restricted to isotopic fractionation. We conclude that coral aragonite deposit is dominated by a kinetic chemical disequilibrium and governed by supersaturation law. We demonstrate that this conceptual model is consistent with the observations and measurements earlier performed and coral remains the most relevant archive of the tropical ocean than ever.

  6. Melorheostosis of the axial skeleton with associated fibrolipomatous lesions

    SciTech Connect

    Garver, P.; Resnick, D.; Haghighi, P.; Guerra, J.

    1982-11-01

    Two patients with melorheostotic-like lesions of the axial skeleton are described. In each case adjacent soft tissue masses containing both fatty and fibrous tissues were evident. The presence of such soft tissue tumors as well as other soft tissue abnormalities in melorheostosis emphasizes that the diesease should not be regarded as one confined to bone. The precise pathogenesis of the osseous and soft tissue abnormalities in melorheostosis remains obscure.

  7. How NASA KSC Controls Interfaces with the use of Motion Skeletons and Product Structure

    NASA Technical Reports Server (NTRS)

    Jones, Corey

    2013-01-01

    This presentation will show how NASA KSC controls interfaces for Modular Product Architecture (MPA) using Locator Skeletons, Interface Skeletons, and Product Structure, to be combined together within a Motion Skeleton. The user will learn how to utilize skeleton models to communicate interface data, as successfully done at NASA KSC in their use of Motion Skeletons to control interfaces for multi-launch systems. There will be discussion of the methodology used to control design requirements through WTParts, and how to utilize product structure for non-CAD documents.

  8. Efficient synthesis of a multi-substituted diphenylmethane skeleton as a steroid mimetic.

    PubMed

    Misawa, Takashi; Tanaka, Katsuya; Demizu, Yosuke; Kurihara, Masaaki

    2017-03-24

    Steroids are important components of cell membranes and are involved in several physiological functions. A diphenylmethane (DPM) skeleton has recently been suggested to act as a mimetic of the steroid skeleton. However, difficulties are associated with efficiently introducing different substituents between two phenyl rings of the DPM skeleton, and, thus, further structural development based on the DPM skeleton has been limited. We herein developed an efficient synthetic method for introducing different substituents into two phenyl rings of the DPM skeleton. We also synthesized DPM-based estrogen receptor (ER) modulators using our synthetic method and evaluated their ER transcriptional activities.

  9. Morphological integration versus ecological plasticity in the avian pelvic limb skeleton.

    PubMed

    Stoessel, Alexander; Kilbourne, Brandon M; Fischer, Martin S

    2013-05-01

    Understanding patterns and distributions of morphological traits is essential for discerning underpinning processes of morphological variation. We report on the variation in the avian pelvic limb skeleton. Length and width variables were measured in the skeletons of 236 avian species in order to examine the importance of body mass, ecological factors, phylogeny and integration in the formation of specific hindlimb morphology. Scaling relationships with body mass were analyzed across Aves and in individual avian subclades. Principal component analysis and multiple regressions were performed to examine the relationship between morphology, ecology, and phylogeny. Finally, the occurrence of within-limb morphological integration was tested by partial correlation analysis of the residuals from element lengths vs. body mass and correlation analysis of avian hindlimb proportions. Body mass is the greatest contributor to variation, and it strongly influences variation in avian skeletal lengths. Lengthening of the leg typically comes from disproportionate increases in tibiotarsal and tarsometatarsal length. Partial correlation analysis showed that only these two elements are distinctly integrated consistently across all bird taxa, whereas relation of femur and third toe to other limb elements displays no clear pattern. Hence, morphological integration of all elements is not a prerequisite for limb design, and variation between taxa is mainly to be found in femoral and digital length. Furthermore, variation in tibiotarsal relative length is much lower than in other elements likely due to geometric constrains. Clear ecological adaptations are obscured by multifunctionality of the avian hindlimb, and phylogeny significantly constrains the morphology. Finally, when looking at relative lengths segmented limbs meet the requirements of many-to-one-mapping of phenotype to functional property, in line with a common concept of evolvability of function and morphology.

  10. Limited Trabecular Bone Density Heterogeneity in the Human Skeleton.

    PubMed

    Chirchir, Habiba

    2016-01-01

    There is evidence for variation in trabecular bone density and volume within an individual skeleton, albeit in a few anatomical sites, which is partly dependent on mechanical loading. However, little is known regarding the basic variation in trabecular bone density throughout the skeleton in healthy human adults. This is because research on bone density has been confined to a few skeletal elements, which can be readily measured using available imaging technology particularly in clinical settings. This study comprehensively investigates the distribution of trabecular bone density within the human skeleton in nine skeletal sites (femur, proximal and distal tibia, third metatarsal, humerus, ulna, radius, third metacarpal, and axis) in a sample of N = 20 individuals (11 males and 9 females). pQCT results showed that the proximal ulna (mean = 231.3 mg/cm(3)) and axis vertebra (mean = 234.3 mg/cm(3)) displayed significantly greater (p < 0.01) trabecular bone density than other elements, whereas there was no significant variation among the rest of the elements (p > 0.01). The homogeneity of the majority of elements suggests that these sites are potentially responsive to site-specific genetic factors. Secondly, the lack of correlation between elements (p > 0.05) suggests that density measurements of one anatomical region are not necessarily accurate measures of other anatomical regions.

  11. Data for the Reference Man: skeleton content of chemical elements.

    PubMed

    Zaichick, Vladimir

    2013-03-01

    This study was undertaken to provide reference values of chemical element mass fractions in intact bone of Reference (European Caucasian) Man/Woman. The rib bone samples investigated were obtained from autopsies of 84 apparently healthy 15-58-year-old citizens (38 females and 46 males) of a non-industrial region in the Central European part of Russia who had suffered sudden death. The mass fractions (mg/kg given on a wet mass basis) of 69 elements in these bone samples were measured by using neutron activation analysis with high-resolution spectrometry of short-lived and long-lived radionuclides, particle-induced gamma-ray emission, inductively coupled plasma atomic emission spectrometry, and inductively coupled plasma mass spectrometry including necessary quality control measures. Using published and measured data, mass fraction values of the 79 elements for the rib bone have been derived. Based on accepted rib to skeleton mass fractions and reference values of skeleton mass for Reference Man, the elemental burdens in the skeleton were estimated. These results may provide a representative bases for establishing related reference values for the Russian Reference Man/Woman and for revising and adding current reference values for the International Commission on Radiological Protection. The data presented will also be very valuable for many other applications in radiation protection, radiotherapy radiation dosimetry, and other scientific fields.

  12. Limited Trabecular Bone Density Heterogeneity in the Human Skeleton

    PubMed Central

    Chirchir, Habiba

    2016-01-01

    There is evidence for variation in trabecular bone density and volume within an individual skeleton, albeit in a few anatomical sites, which is partly dependent on mechanical loading. However, little is known regarding the basic variation in trabecular bone density throughout the skeleton in healthy human adults. This is because research on bone density has been confined to a few skeletal elements, which can be readily measured using available imaging technology particularly in clinical settings. This study comprehensively investigates the distribution of trabecular bone density within the human skeleton in nine skeletal sites (femur, proximal and distal tibia, third metatarsal, humerus, ulna, radius, third metacarpal, and axis) in a sample of N = 20 individuals (11 males and 9 females). pQCT results showed that the proximal ulna (mean = 231.3 mg/cm3) and axis vertebra (mean = 234.3 mg/cm3) displayed significantly greater (p < 0.01) trabecular bone density than other elements, whereas there was no significant variation among the rest of the elements (p > 0.01). The homogeneity of the majority of elements suggests that these sites are potentially responsive to site-specific genetic factors. Secondly, the lack of correlation between elements (p > 0.05) suggests that density measurements of one anatomical region are not necessarily accurate measures of other anatomical regions. PMID:27148458

  13. The Skills of Exemplary Principals.

    ERIC Educational Resources Information Center

    Walker, John E.

    1990-01-01

    NASSP's Assessment Center Project has identified 12 key skills for successful principals: problem analysis, judgment, organizational ability, decisiveness, leadership, sensitivity, stress tolerance, oral communication, written communication, wide-ranging interests, personal motivation, and educational values. Effective principals succeed by…

  14. Burnout among Iranian school principals.

    PubMed

    Rashidzadeh, Mohammad Ali

    2002-02-01

    This study investigated burnout among Iranian school principals. Also, the relationships of sex, years of administration, age, and marital status were considered. The sample were 200 principals (100 men, 100 women) who completed the Friedman School Principal Burnout Scale. Analysis showed principals who completed the scale felt exhausted, aloof, and deprecated. The women scored lower. There were significant correlationships between marital status and years of administration with the scores on burnout.

  15. School Principal: Managing in Public

    ERIC Educational Resources Information Center

    Lortie, Dan C.

    2009-01-01

    When we think about school principals, most of us imagine a figure of vague, yet intimidating authority--for an elementary school student, being sent to the principal's office is roughly on par with a trip to Orwell's Room 101. But with "School Principal", Dan C. Lortie aims to change that. Much as he did for teachers with his groundbreaking book…

  16. Emerging Challenges Facing School Principals

    ERIC Educational Resources Information Center

    Wise, Donald

    2015-01-01

    This article provides insights into the challenges facing US public school principals. A survey was sent to a random sample of over 10,000 principals throughout the US. Written responses from a representative sample were analyzed for content and themes. Results indicate that principals are facing emerging challenges never before seen in education,…

  17. Some Things Assistant Principals Do.

    ERIC Educational Resources Information Center

    Kealey, Robert J., Comp.

    The assistant principal of a Catholic elementary school carries out some of the duties (with the needed authority) of the school principal. How tasks and authority are delegated vary and depend upon the personality of each individual school. Fifteen assistant principals wrote essays relating one of their chief responsibilities to show a wide…

  18. School Principal: Managing in Public

    ERIC Educational Resources Information Center

    Lortie, Dan C.

    2009-01-01

    When we think about school principals, most of us imagine a figure of vague, yet intimidating authority--for an elementary school student, being sent to the principal's office is roughly on par with a trip to Orwell's Room 101. But with "School Principal", Dan C. Lortie aims to change that. Much as he did for teachers with his groundbreaking book…

  19. School Principals' Emotional Coping Process

    ERIC Educational Resources Information Center

    Poirel, Emmanuel; Yvon, Frédéric

    2014-01-01

    The present study examines the emotional coping of school principals in Quebec. Emotional coping was measured by stimulated recall; six principals were filmed during a working day and presented a week later with their video showing stressful encounters. The results show that school principals experience anger because of reproaches from staff…

  20. Principals' Relationship with Computer Technology

    ERIC Educational Resources Information Center

    Brockmeier, Lantry L.; Sermon, Janet M.; Hope, Warren C.

    2005-01-01

    This investigation sought information about principals and their relationship with computer technology. Several questions were fundamental to the inquiry. Are principals prepared to facilitate the attainment of technology's promise through the integration of computer technology into the teaching and learning process? Are principals prepared to use…

  1. Principals' Salaries, 2006-2007

    ERIC Educational Resources Information Center

    Cooke, Willa D.; Licciardi, Chris

    2007-01-01

    How do salaries of elementary and middle school principals compare with those of other administrators and classroom teachers? Are increases in salaries of principals keeping pace with increases in salaries of classroom teachers? And how have principals' salaries fared over the years when the cost of living is taken into account? This article…

  2. The Principal as White Knight.

    ERIC Educational Resources Information Center

    Stanfield, Pamela C.; Walter, James E.

    This 20-month study describes an elementary school principal, John Meyer, and examines his leadership behaviors. From an effective schools perspective, the principal is seen as the white knight who "saves" the children by providing an effective school. John Meyer is known as a "turnaround" principal who came to Garvin School (located in a Missouri…

  3. The Future of Principal Evaluation

    ERIC Educational Resources Information Center

    Clifford, Matthew; Ross, Steven

    2012-01-01

    The need to improve the quality of principal evaluation systems is long overdue. Although states and districts generally require principal evaluations, research and experience tell that many state and district evaluations do not reflect current standards and practices for principals, and that evaluation is not systematically administered. When…

  4. Principal Succession: A Case Study.

    ERIC Educational Resources Information Center

    Jones, Jeffery C.; Webber, Charles F.

    Principal succession is misunderstood and underutilized as a means of affecting dynamic renewal in school communities. Previously, the replacement of a principal was examined solely through the experiences of principals and teachers. This paper reports on a case study that added the previously neglected perspectives of students, support staff, and…

  5. Emerging Challenges Facing School Principals

    ERIC Educational Resources Information Center

    Wise, Donald

    2015-01-01

    This article provides insights into the challenges facing US public school principals. A survey was sent to a random sample of over 10,000 principals throughout the US. Written responses from a representative sample were analyzed for content and themes. Results indicate that principals are facing emerging challenges never before seen in education,…

  6. Principals' Salaries, 1999-2000.

    ERIC Educational Resources Information Center

    Williams, Alicia R.

    2000-01-01

    The average of annual salaries paid elementary school principals in 1999-2000 ($69,407) is 64.4 percent above that of classroom teachers. Principals' annual salaries have kept pace with those of classroom teachers, central-office administrators, and public school employees generally. Principals average 226 days on duty. (MLH)

  7. Principals' Salaries, 2008-2009

    ERIC Educational Resources Information Center

    Cooke, Willa D.; Licciardi, Chris

    2009-01-01

    How do salaries of elementary and middle school principals compare with those of other administrators and classroom teachers? Are increases in salaries of principals keeping pace with increases in salaries of classroom teachers? How have principals' salaries fared over the years when the cost of living is taken into account? There are reliable…

  8. Principals' Salaries, 2007-2008

    ERIC Educational Resources Information Center

    Cooke, Willa D.; Licciardi, Chris

    2008-01-01

    How do salaries of elementary and middle school principals compare with those of other administrators and classroom teachers? Are increases in salaries of principals keeping pace with increases in salaries of classroom teachers? And how have principals' salaries fared over the years when the cost of living is taken into account? There are reliable…

  9. Principals' Salaries, 2008-2009

    ERIC Educational Resources Information Center

    Cooke, Willa D.; Licciardi, Chris

    2009-01-01

    How do salaries of elementary and middle school principals compare with those of other administrators and classroom teachers? Are increases in salaries of principals keeping pace with increases in salaries of classroom teachers? How have principals' salaries fared over the years when the cost of living is taken into account? There are reliable…

  10. Quantifying the osteocyte network in the human skeleton.

    PubMed

    Buenzli, Pascal R; Sims, Natalie A

    2015-06-01

    Osteocytes form an extensive cellular network throughout the hard tissue matrix of the skeleton, which is known to regulate skeletal structure. However due to limitations in imaging techniques, the magnitude and complexity of this network remain undefined. We have used data from recent papers obtained by new imaging techniques, in order to estimate absolute and relative quantities of the human osteocyte network and form a more complete understanding of the extent and nature of this network. We estimate that the total number of osteocytes within the average adult human skeleton is ~42 billion and that the total number of osteocyte dendritic projections from these cells is ~3.7 trillion. Based on prior measurements of canalicular density and a mathematical model of osteocyte dendritic process branching, we calculate that these cells form a total of 23 trillion connections with each other and with bone surface cells. We estimate the total length of all osteocytic processes connected end-to-end to be 175,000 km. Furthermore, we calculate that the total surface area of the lacuno-canalicular system is 215 m(2). However, the residing osteocytes leave only enough space for 24 mL of extracellular fluid. Calculations based on measurements in lactation-induced murine osteocytic osteolysis indicate a potential total loss of ~16,000 mm(3) (16 mL) of bone by this process in the human skeleton. Finally, based on the average speed of remodelling in the adult, we calculate that 9.1 million osteocytes are replenished throughout the skeleton on a daily basis, indicating the dynamic nature of the osteocyte network. We conclude that the osteocyte network is a highly complex communication network, and is much more vast than commonly appreciated. It is at the same order of magnitude as current estimates of the size of the neural network in the brain, even though the formation of the branched network differs between neurons and osteocytes. Furthermore, continual replenishment of large

  11. Linear measurements of the neurocranium are better indicators of population differences than those of the facial skeleton: comparative study of 1,961 skulls.

    PubMed

    Holló, Gábor; Szathmáry, László; Marcsik, Antónia; Barta, Zoltán

    2010-02-01

    The aim of this study is to individualize potential differences between two cranial regions used to differentiate human populations. We compared the neurocranium and the facial skeleton using skulls from the Great Hungarian Plain. The skulls date to the 1st-11th centuries, a long space of time that encompasses seven archaeological periods. We analyzed six neurocranial and seven facial measurements. The reduction of the number of variables was carried out using principal components analysis. Linear mixed-effects models were fitted to the principal components of each archaeological period, and then the models were compared using multiple pairwise tests. The neurocranium showed significant differences in seven cases between nonsubsequent periods and in one case, between two subsequent populations. For the facial skeleton, no significant results were found. Our results, which are also compared to previous craniofacial heritability estimates, suggest that the neurocranium is a more conservative region and that population differences can be pointed out better in the neurocranium than in the facial skeleton.

  12. Real-Time Principal-Component Analysis

    NASA Technical Reports Server (NTRS)

    Duong, Vu; Duong, Tuan

    2005-01-01

    A recently written computer program implements dominant-element-based gradient descent and dynamic initial learning rate (DOGEDYN), which was described in Method of Real-Time Principal-Component Analysis (NPO-40034) NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 59. To recapitulate: DOGEDYN is a method of sequential principal-component analysis (PCA) suitable for such applications as data compression and extraction of features from sets of data. In DOGEDYN, input data are represented as a sequence of vectors acquired at sampling times. The learning algorithm in DOGEDYN involves sequential extraction of principal vectors by means of a gradient descent in which only the dominant element is used at each iteration. Each iteration includes updating of elements of a weight matrix by amounts proportional to a dynamic initial learning rate chosen to increase the rate of convergence by compensating for the energy lost through the previous extraction of principal components. In comparison with a prior method of gradient-descent-based sequential PCA, DOGEDYN involves less computation and offers a greater rate of learning convergence. The sequential DOGEDYN computations require less memory than would parallel computations for the same purpose. The DOGEDYN software can be executed on a personal computer.

  13. Principal stratification in causal inference.

    PubMed

    Frangakis, Constantine E; Rubin, Donald B

    2002-03-01

    Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential values of that posttreatment variable tinder each of the treatments being compared. Principal effects are causal effects within a principal stratum. The key property of principal strata is that they are not affected by treatment assignment and therefore can be used just as any pretreatment covariate. such as age category. As a result, the central property of our principal effects is that they are always causal effects and do not suffer from the complications of standard posttreatment-adjusted estimands. We discuss briefly that such principal causal effects are the link between three recent applications with adjustment for posttreatment variables: (i) treatment noncompliance, (ii) missing outcomes (dropout) following treatment noncompliance. and (iii) censoring by death. We then attack the problem of surrogate or biomarker endpoints, where we show, using principal causal effects, that all current definitions of surrogacy, even when perfectly true, do not generally have the desired interpretation as causal effects of treatment on outcome. We go on to forrmulate estimands based on principal stratification and principal causal effects and show their superiority.

  14. Principals' Perceptions Regarding Their Supervision and Evaluation

    ERIC Educational Resources Information Center

    Hvidston, David J.; Range, Bret G.; McKim, Courtney Ann

    2015-01-01

    This study examined the perceptions of principals concerning principal evaluation and supervisory feedback. Principals were asked two open-ended questions. Respondents included 82 principals in the Rocky Mountain region. The emerging themes were "Superintendent Performance," "Principal Evaluation Components," "Specific…

  15. Principals' Perceptions Regarding Their Supervision and Evaluation

    ERIC Educational Resources Information Center

    Hvidston, David J.; Range, Bret G.; McKim, Courtney Ann

    2015-01-01

    This study examined the perceptions of principals concerning principal evaluation and supervisory feedback. Principals were asked two open-ended questions. Respondents included 82 principals in the Rocky Mountain region. The emerging themes were "Superintendent Performance," "Principal Evaluation Components," "Specific…

  16. How Effective Is the Principal? Discrepancy between New Zealand Teachers' and Principals' Perceptions of Principal Effectiveness

    ERIC Educational Resources Information Center

    Sinnema, Claire E. L.; Robinson, Viviane M. J.; Ludlow, Larry; Pope, Denyse

    2015-01-01

    Multi-source evaluation of school principals is likely to become increasingly common in education contexts as the evidence accumulates about the relationship between principal effectiveness and student achievement. The purpose of this study was to examine (1) the magnitude and direction of discrepancy between how principals and their teachers…

  17. Responsibilities of Today's Principal: Implications for Principal Preparation Programs and Principal Certification Policies

    ERIC Educational Resources Information Center

    Lynch, Jeremy M.

    2012-01-01

    Historically, principals served as disciplinarians and the teachers' boss. Under current federal legislation, principals now must accept the responsibility to manage personnel, funds, and strategic planning. Today's principals also must accept responsibilities associated with being their schools' instructional leaders. As instructional leaders,…

  18. Multilabel classification with principal label space transformation.

    PubMed

    Tai, Farbound; Lin, Hsuan-Tien

    2012-09-01

    We consider a hypercube view to perceive the label space of multilabel classification problems geometrically. The view allows us not only to unify many existing multilabel classification approaches but also design a novel algorithm, principal label space transformation (PLST), that captures key correlations between labels before learning. The simple and efficient PLST relies on only singular value decomposition as the key step. We derive the theoretical guarantee of PLST and evaluate its empirical performance using real-world data sets. Experimental results demonstrate that PLST is faster than the traditional binary relevance approach and is superior to the modern compressive sensing approach in terms of both accuracy and efficiency.

  19. Shedding light into the function of the earliest vertebrate skeleton

    NASA Astrophysics Data System (ADS)

    Martinez-Perez, Carlos; Purnell, Mark; Rayfield, Emily; Donoghue, Philip

    2016-04-01

    Conodonts are an extinct group of jawless vertebrates, the first in our evolutionary lineage to develop a biomineralized skeleton. As such, the conodont skeleton is of great significance because of the insights it provides concerning the biology and function of the primitive vertebrate skeleton. Conodont function has been debated for a century and a half on the basis of its paleocological importance in the Palaezoic ecosystems. However, due to the lack of extanct close representatives and the small size of the conodont element (under a milimiter in length) strongly limited their functional analysis, traditional restricted to analogy. More recently, qualitative approaches have been developed, facilitating tests of element function based on occlusal performance and analysis of microwear and microstructure. In this work we extend these approaches using novel quantitative experimental methods including Synchrotron Radiation X-ray Tomographic Microscopy or Finite Element Analysis to test hypotheses of conodont function. The development of high resolution virtual models of conodont elements, together with biomechanical approaches using Finite Element analysis, informed by occlusal and microwear analyses, provided conclusive support to test hypothesis of structural adaptation within the crown tissue microstructure, showing a close topological co-variation patterns of compressive and tensile stress distribution with different crystallite orientation. In addition, our computational analyses strongly support a tooth-like function for many conodont species. Above all, our study establishes a framework (experimental approach) in which the functional ecology of conodonts can be read from their rich taxonomy and phylogeny, representing an important attempt to understand the role of this abundant and diverse clade in the Phanerozoic marine ecosystems.

  20. Weightlessness and the human skeleton: A new perspective

    NASA Technical Reports Server (NTRS)

    Holick, Michael F.

    1994-01-01

    It is now clear after more than two decades of space exploration that one of the major short- and long-term effects of microgravity on the human body is the loss of bone. The purpose of this presentation will be to review the data regarding the impact of microgravity and bed rest on calcium and bone metabolism. The author takes the position in this Socratic debate that the effect of microgravity on bone metabolism can be either reversed or mitigated. As we begins to contemplate long-duration space flight and habitation of Space Station Freedom and the moon, one of the issues that needs to be addressed is whether humans need to maintain a skeleton that has been adapted for the one-g force on earth. Clearly, in the foreseeable future, a healthy and structurally sound skeleton will be required for astronauts to shuttle back and forth from earth to the moon, space station, and Mars. Based on most available data from bed-rest studies and the short- and long-duration microgravity experiences by astronauts and cosmonauts, bone loss is a fact of life in this environment. With the rapid advances in understanding of bone physiology it is now possible to contemplate measures that can prevent or mitigate microgravity-induced bone loss. Will the new therapeutic approaches for enhancing bone mineralization be useful for preventing significant bone loss during long-term space flight? Are there other approaches such as exercise and electrical stimulation that can be used to mitigate the impact of microgravity on the skeleton? A recent study that evaluated the effect of microgravity on bone modeling in developing chick embryos may perhaps provide a new perspective about the impact of microgravity on bone metabolism.

  1. The integumentary skeleton of tetrapods: origin, evolution, and development

    PubMed Central

    Vickaryous, Matthew K; Sire, Jean-Yves

    2009-01-01

    Although often overlooked, the integument of many tetrapods is reinforced by a morphologically and structurally diverse assemblage of skeletal elements. These elements are widely understood to be derivatives of the once all-encompassing dermal skeleton of stem-gnathostomes but most details of their evolution and development remain confused and uncertain. Herein we re-evaluate the tetrapod integumentary skeleton by integrating comparative developmental and tissue structure data. Three types of tetrapod integumentary elements are recognized: (1) osteoderms, common to representatives of most major taxonomic lineages; (2) dermal scales, unique to gymnophionans; and (3) the lamina calcarea, an enigmatic tissue found only in some anurans. As presently understood, all are derivatives of the ancestral cosmoid scale and all originate from scleroblastic neural crest cells. Osteoderms are plesiomorphic for tetrapods but demonstrate considerable lineage-specific variability in size, shape, and tissue structure and composition. While metaplastic ossification often plays a role in osteoderm development, it is not the exclusive mode of skeletogenesis. All osteoderms share a common origin within the dermis (at or adjacent to the stratum superficiale) and are composed primarily (but not exclusively) of osseous tissue. These data support the notion that all osteoderms are derivatives of a neural crest-derived osteogenic cell population (with possible matrix contributions from the overlying epidermis) and share a deep homology associated with the skeletogenic competence of the dermis. Gymnophionan dermal scales are structurally similar to the elasmoid scales of most teleosts and are not comparable with osteoderms. Whereas details of development are lacking, it is hypothesized that dermal scales are derivatives of an odontogenic neural crest cell population and that skeletogenesis is comparable with the formation of elasmoid scales. Little is known about the lamina calcarea. It is

  2. Coevolution of caudal skeleton and tail feathers in birds.

    PubMed

    Felice, Ryan N

    2014-12-01

    Birds are capable of a wide range of aerial locomotor behaviors in part because of the derived structure and function of the avian tail. The tail apparatus consists of a several mobile (free) caudal vertebrae, a terminal skeletal element (the pygostyle), and an articulated fan of tail feathers that may be spread or folded, as well as muscular and fibroadipose structures that facilitate tail movements. Morphological variation in both the tail fan and the caudal skeleton that supports it are well documented. The structure of the tail feathers and the pygostyle each evolve in response to functional demands of differing locomotor behaviors. Here, I test whether the integument and skeleton coevolve in this important locomotor module. I quantified feather and skeletal morphology in a diverse sample of waterbirds and shorebirds using a combination of linear and geometric morphometrics. Covariation between tail fan shape and skeletal morphology was then tested using phylogenetic comparative methods. Pygostyle shape is found to be a good predictor of tail fan shape (e.g., forked, graduated), supporting the hypothesis that the tail fan and the tail skeleton have coevolved. This statistical relationship is used to reconstruct feather morphology in an exemplar fossil waterbird, Limnofregata azygosternon. Based on pygostyle morphology, this taxon is likely to have exhibited a forked tail fan similar to that of its extant sister clade Fregata, despite differing in inferred ecology and other aspects of skeletal anatomy. These methods may be useful in reconstructing rectricial morphology in other extinct birds and thus assist in characterizing the evolution of flight control surfaces in birds.

  3. The integumentary skeleton of tetrapods: origin, evolution, and development.

    PubMed

    Vickaryous, Matthew K; Sire, Jean-Yves

    2009-04-01

    Although often overlooked, the integument of many tetrapods is reinforced by a morphologically and structurally diverse assemblage of skeletal elements. These elements are widely understood to be derivatives of the once all-encompassing dermal skeleton of stem-gnathostomes but most details of their evolution and development remain confused and uncertain. Herein we re-evaluate the tetrapod integumentary skeleton by integrating comparative developmental and tissue structure data. Three types of tetrapod integumentary elements are recognized: (1) osteoderms, common to representatives of most major taxonomic lineages; (2) dermal scales, unique to gymnophionans; and (3) the lamina calcarea, an enigmatic tissue found only in some anurans. As presently understood, all are derivatives of the ancestral cosmoid scale and all originate from scleroblastic neural crest cells. Osteoderms are plesiomorphic for tetrapods but demonstrate considerable lineage-specific variability in size, shape, and tissue structure and composition. While metaplastic ossification often plays a role in osteoderm development, it is not the exclusive mode of skeletogenesis. All osteoderms share a common origin within the dermis (at or adjacent to the stratum superficiale) and are composed primarily (but not exclusively) of osseous tissue. These data support the notion that all osteoderms are derivatives of a neural crest-derived osteogenic cell population (with possible matrix contributions from the overlying epidermis) and share a deep homology associated with the skeletogenic competence of the dermis. Gymnophionan dermal scales are structurally similar to the elasmoid scales of most teleosts and are not comparable with osteoderms. Whereas details of development are lacking, it is hypothesized that dermal scales are derivatives of an odontogenic neural crest cell population and that skeletogenesis is comparable with the formation of elasmoid scales. Little is known about the lamina calcarea. It is

  4. A skeleton model for the MJO with refined vertical structure

    NASA Astrophysics Data System (ADS)

    Thual, Sulian; Majda, Andrew J.

    2016-05-01

    The Madden-Julian oscillation (MJO) is the dominant mode of variability in the tropical atmosphere on intraseasonal timescales and planetary spatial scales. The skeleton model is a minimal dynamical model that recovers robustly the most fundamental MJO features of (I) a slow eastward speed of roughly 5 {ms}^{-1}, (II) a peculiar dispersion relation with dω /dk ≈ 0, and (III) a horizontal quadrupole vortex structure. This model depicts the MJO as a neutrally-stable atmospheric wave that involves a simple multiscale interaction between planetary dry dynamics, planetary lower-tropospheric moisture and the planetary envelope of synoptic-scale activity. Here we propose and analyse an extended version of the skeleton model with additional variables accounting for the refined vertical structure of the MJO in nature. The present model reproduces qualitatively the front-to-rear vertical structure of the MJO found in nature, with MJO events marked by a planetary envelope of convective activity transitioning from the congestus to the deep to the stratiform type, in addition to a front-to-rear structure of moisture, winds and temperature. Despite its increased complexity the present model retains several interesting features of the original skeleton model such as a conserved energy and similar linear solutions. We further analyze a model version with a simple stochastic parametrization for the unresolved details of synoptic-scale activity. The stochastic model solutions show intermittent initiation, propagation and shut down of MJO wave trains, as in previous studies, in addition to MJO events with a front-to-rear vertical structure of varying intensity and characteristics from one event to another.

  5. Anabolic effects of IGF-1 signaling on the skeleton

    PubMed Central

    Tahimic, Candice G. T.; Wang, Yongmei; Bikle, Daniel D.

    2013-01-01

    This review focuses on the anabolic effects of IGF-1 signaling on the skeleton, emphasizing the requirement for IGF-1 signaling in normal bone formation and remodeling. We first discuss the genomic context, splicing variants, and species conservation of the IGF-1 locus. The modulation of IGF-1 action by growth hormone (GH) is then reviewed while also discussing the current model which takes into account the GH-independent actions of IGF-1. Next, the skeletal phenotypes of IGF-1-deficient animals are described in both embryonic and postnatal stages of development, which include severe dwarfism and an undermineralized skeleton. We then highlight two mechanisms by which IGF-1 exerts its anabolic action on the skeleton. Firstly, the role of IGF-1 signaling in the modulation of anabolic effects of parathyroid hormone (PTH) on bone will be discussed, presenting in vitro and in vivo studies that establish this concept and the proposed underlying molecular mechanisms involving Indian hedgehog (Ihh) and the ephrins. Secondly, the crosstalk of IGF-1 signaling with mechanosensing pathways will be discussed, beginning with the observation that animals subjected to skeletal unloading by hindlimb elevation are unable to mitigate cessation of bone growth despite infusion with IGF-1 and the failure of IGF-1 to activate its receptor in bone marrow stromal cell cultures from unloaded bone. Disrupted crosstalk between IGF-1 signaling and the integrin mechanotransduction pathways is discussed as one of the potential mechanisms for this IGF-1 resistance. Next, emerging paradigms on bone-muscle crosstalk are examined, focusing on the potential role of IGF-1 signaling in modulating such interactions. Finally, we present a future outlook on IGF research. PMID:23382729

  6. Improvements for Image Compression Using Adaptive Principal Component Extraction (APEX)

    NASA Technical Reports Server (NTRS)

    Ziyad, Nigel A.; Gilmore, Erwin T.; Chouikha, Mohamed F.

    1997-01-01

    The issues of image compression and pattern classification have been a primary focus of researchers among a variety of fields including signal and image processing, pattern recognition, data classification, etc. These issues depend on finding an efficient representation of the source data. In this paper we collate our earlier results where we introduced the application of the. Hilbe.rt scan to a principal component algorithm (PCA) with Adaptive Principal Component Extraction (APEX) neural network model. We apply these technique to medical imaging, particularly image representation and compression. We apply the Hilbert scan to the APEX algorithm to improve results

  7. Nonlinear traveling wave solution for the MJO skeleton model

    NASA Astrophysics Data System (ADS)

    Chen, S.; Stechmann, S. N.

    2014-12-01

    Recently, a minimal dynamical model is presented for capturing MJO's fundamental features. The model is a nonlinear oscillator model for the MJO skeleton and it involves interactions between convection, moisture and circulation. I will present the exact nonlinear traveling wave solutions for the model based on its energy conservation. The exact nonlinear solution provides for an explicit comparison of features between linear and nonlinear waves such as dispersion relations and traveling wave speeds. Moreover, the nonlinear solutions, compared with the linear ones, produce a narrow region of active convection and a wider region of suppressed convection. These predictions offer nonlinear MJO features that could potentially be targets of observational investigations.

  8. The complete skull and skeleton of an early dinosaur.

    PubMed

    Sereno, P C; Novas, F E

    1992-11-13

    The unearthing of a complete skull and skeleton of the early dinosaur Herrerasaurus ischigualastensis sheds light on the early evolution of dinosaurs. Discovered in the Upper Triassic Ischigualasto Formation of Argentina, the fossils show that Herrerasaurus, a primitive theropod, was an agile, bipedal predator with a short forelimb specialized for grasping and raking. The fossils clarify anatomical features of the common ancestor of all dinosaurs. Herrerasaurus and younger dinosaurs from Upper Triassic beds in Argentina suggest that the dinosaurian radiation was well under way before dinosaurs dominated terrestrial vertebrate communities in taxonomic diversity and abundance.

  9. Bioactive acylphloroglucinols with adamantyl skeleton from Hypericum sampsonii.

    PubMed

    Zhu, Hucheng; Chen, Chunmei; Yang, Jing; Li, Xiao-Nian; Liu, Junjun; Sun, Bin; Huang, Sheng-Xiong; Li, Dongyan; Yao, Guangmin; Luo, Zengwei; Li, Yan; Zhang, Jinwen; Xue, Yongbo; Zhang, Yonghui

    2014-12-19

    Hyperisampsins A-D (1-4), with tetracyclo[6.3.1.1(3,10).0(3,7)]tridecane skeletons and seven biogenetically related congeners (5-11), were isolated from Hypericum sampsonii. Their structures were elucidated by comprehensive spectroscopic techniques. The absolute configuration of 1 was established by ECD calculations, and those of 5 and 9 were confirmed by single X-ray crystallographic analyses. Hyperisampsins A and D showed potent anti-HIV activities with EC50 of 2.97 and 0.97 μM and selectivity index of 4.80 and 7.70, respectively.

  10. [Princess Anna Vasa--her fascinating life story and skeleton].

    PubMed

    During, Ebba

    2005-01-01

    The Princess Anna Vasa was born in Sweden in 1568 and spent her first 19 years there. She was the daughter of the Swedish king Johan III and his wife, the Polish Royal Princess Katarina Jagellonica. She was brought up as a Catholic but converted to be a Protestant already in 1583 and remained a fervent Protestant to the end of her life. She was an exceptionally intelligent and extensively educated woman. When her brother became king, Sigismund III of Poland, she accompanied him there. She exerted great influence on Sigismund who was brought up to be a Catholic. She was persistent in her religion, yet working for religious liberty. "The Swedish Princess" was also named "the Queen of Polish Botany". She was never married and she died 57 years old in 1625. For religious reasons her body had to wait 11 years for a funeral of royal standing. The funeral took place in 1636 in St Mary's Church in Torun, Poland. During restoration work at the church in April 1994, Anna Vasa's skeleton was removed from the tomb, and an antropological investigation in order to establish her identity was carried by Dr Andrzej Florkowski at the Dept of Anthrop, Nicholas Copernicus University of Torun. I was invited to Torun to examine her remains in May 1995. The skeleton was in a rather good state of preservation. However, her grave had been plundered at least twice. Her skeleton lacked the right forearm and hand, probably as the result of the pillage of her rings and bracelets. Some other bones and teeth were also missing. At our ocular examination the skeleton revealed a number of anatomical deformations and pathological changes. A conventional radiography and CT of Anna Vasa's skeletal remains was later carried out in 1995 by M. Grzegorzewski, Z. Boron and W. Lasek at the Dept of Radiology, Med. Acad. of Bydgoszcz, Polen. A DNA-analysis was carried out by Dr Anders Götherström at the Archaeol. Res. Lab., Stockholm Univ. An odontological and radiological study was performed by Dr Sigrid I

  11. Synthesis of the Acyclic Carbon Skeleton of Filipin III.

    PubMed

    Brun, Elodie; Bellosta, Véronique; Cossy, Janine

    2016-09-16

    The synthesis of the carbon skeleton of filipin III, a polyenic macrolactone possessing 11 stereogenic centers, was achieved using a convergent strategy with the longest linear sequence of 19 steps starting from hexanal. Construction of the polyene was realized using two successive Heck couplings as the key steps. Control of the stereogenic centers of the polyol fragment was performed by utilizing an Evans aldolization, a 1,3-syn aldolization, enantio- and diastereoselective allylations, a hemiacetalization/oxa-Michael sequence, and a 1,3-syn reduction. The polyol and polyenic fragments were coupled using a 1,5-anti diastereoselective aldolization followed by a 1,3-anti reduction.

  12. p-Coumaric acid - a monomer in the sporopollenin skeleton.

    PubMed

    Wehling, K; Niester, C; Boon, J J; Willemse, M T; Wiermann, R

    1989-10-01

    Sporopollenin obtained from wings of Pinus mugo (Turra) pollen was analysed by pyrolysis mass spectrometry. In the spectrum, mass peaks which are characteristic for p-coumaric acid were dominant. p-Coumaric acid was the main degradation compound when the wing material was treated by a gentle method using AII3, and also when the remaining residue of the treated sporopollenin material was saponified. It is therefore assumed that p-coumaric acid is a genuine structural unit in the sporopollenin skeleton. In addition, the effects of AII3 treatment indicate that the p-coumaric acid might be bound by ether linkages.

  13. Effect of photosynthetic light dosage on carbon isotope composition in the coral skeleton: Long-term culture of Porites spp.

    NASA Astrophysics Data System (ADS)

    Omata, Tamano; Suzuki, Atsushi; Sato, Takanori; Minoshima, Kayo; Nomaru, Eriko; Murakami, Akio; Murayama, Shohei; Kawahata, Hodaka; Maruyama, Tadashi

    2008-06-01

    Whereas the oxygen isotope ratio of the coral skeleton is used for reconstruction of past information on seawater, the carbon isotope ratio is considered a proxy for physiological processes, principally photosynthesis and respiration. However, the fractionation of carbon isotopes in biogenic carbonate such as coral skeleton is still unclear. We conducted a long-term culture experiment of Porites spp. corals at different light dosages (light intensity, 100, 300, or 500 μmol m-2 s-1; daily light period, 10 or 12 h) at 25 ± 0.6°C to examine the contribution of photosynthetic activity to skeletal carbon isotope composition. Corals were grown in sand-filtered seawater and not fed; thus, they subsisted from photosynthesis of symbiotic algae. As the daily dose of photosynthetically active radiation increased, the rate of annual extension also increased. Mean isotope compositions shifted; the carbon isotope compositions (δ13C) became heavier and the oxygen isotope compositions (δ18O) became lighter at higher radiation dose. Skeletal δ18O decrease coincided with increasing skeletal growth rate, indicating the influence of so-called kinetic isotope effects. The observed δ13C increase should be subject to both kinetic and metabolic isotope effects, with the latter reflecting skeletal δ13C enrichment due to photosynthesis by symbiotic algae. Using a vector approach in the δ13C-δ18O plane, we discriminated between kinetic and metabolic isotope effects on δ13C. The calculated δ13C changes from metabolic isotope effects were light dose dependent. The δ13C fractionation curve related to metabolic isotope effects is very similar to the photosynthesis-irradiance curve, indicating the direct contribution of photosynthetic activity to metabolic isotope effects. In contrast, δ13C fractionation related to kinetic isotope effects gradually increased as the growth rate increased. Our experiment demonstrated that the kinetic and metabolic isotope effects in coral skeleton

  14. The potential origins and palaeoenvironmental implications of high temporal resolution δ 18O heterogeneity in coral skeletons

    NASA Astrophysics Data System (ADS)

    Allison, Nicola; Finch, Adrian A.; EIMF

    2010-10-01

    δ 18O was determined at high spatial resolution (beam diameter ˜30 μm) by secondary ion mass spectrometry (SIMS) across 1-2 year sections of 2 modern Porites lobata coral skeletons from Hawaii. We observe large (>2‰) cyclical δ 18O variations that typically cover skeletal distances equivalent to periods of ˜20-30 days. These variations do not reflect seawater temperature or composition and we conclude that skeletal δ 18O is principally controlled by other processes. Calcification site pH in one coral record was estimated from previous SIMS measurements of skeletal δ 11B. We model predicted skeletal δ 18O as a function of calcification site pH, DIC residence time at the site and DIC source (reflecting the inputs of seawater and molecular CO 2 to the site). We assume that oxygen isotopic equilibration proceeds at the rates observed in seawater and that only the aqueous carbonate ion is incorporated into the precipitating aragonite. We reproduce successfully the observed skeletal δ 18O range by assuming that DIC is rapidly utilised at the calcification site (within 1 h) and that ˜80% of the skeletal carbonate is derived from seawater. If carbonic anhydrase catalyses the reversible hydration of CO 2 at the calcification site, then oxygen isotopic equilibration times may be substantially reduced and a larger proportion of the skeletal carbonate could be derived from molecular CO 2. Seasonal skeletal δ 18O variations are most pronounced in the skeleton deposited from late autumn to winter (and coincide with the high density skeletal bands) and are dampened in skeleton deposited from spring to summer. We observed no annual pattern in sea surface temperature or photosynthetically active radiation variability which could potentially correlate with the coral δ 18O. At present we are unable to resolve an environmental cue to drive seasonal patterns of short term skeletal δ 18O heterogeneity.

  15. On principal admissible representations and conformal field theory

    NASA Astrophysics Data System (ADS)

    Mathieu, P.; Walton, M. A.

    1999-08-01

    The principal admissible representations of affine Kac-Moody algebras are studied, with a view to their use in conformal field theory. We discuss the generation of the set of principal admissible highest weights, concentrating mainly on Ar(1) at rational level k. A related algorithm is described that produces the Malikov-Feigen-Fuchs null vectors of these representations. With the principal admissible description of the highest weights, we are able to prove that field identifications (including maverick ones) lead to the canonical description of the primary fields of the nonunitary diagonal coset theories.

  16. Surface and curve skeletonization of large 3D models on the GPU.

    PubMed

    Jalba, Andrei C; Kustra, Jacek; Telea, Alexandru C

    2013-06-01

    We present a GPU-based framework for extracting surface and curve skeletons of 3D shapes represented as large polygonal meshes. We use an efficient parallel search strategy to compute point-cloud skeletons and their distance and feature transforms (FTs) with user-defined precision. We regularize skeletons by a new GPU-based geodesic tracing technique which is orders of magnitude faster and more accurate than comparable techniques. We reconstruct the input surface from skeleton clouds using a fast and accurate image-based method. We also show how to reconstruct the skeletal manifold structure as a polygon mesh and the curve skeleton as a polyline. Compared to recent skeletonization methods, our approach offers two orders of magnitude speed-up, high-precision, and low-memory footprints. We demonstrate our framework on several complex 3D models.

  17. Status of Programs for Principals

    ERIC Educational Resources Information Center

    Nickerson, Neal C.

    1972-01-01

    Claiming that there's an aura of dissatisfaction with the present pre- and inservice programs for principals, the writer reports his findings about existing programs and suggested improvements. (Editor)

  18. Status of Programs for Principals

    ERIC Educational Resources Information Center

    Nickerson, Neal C.

    1972-01-01

    Claiming that there's an aura of dissatisfaction with the present pre- and inservice programs for principals, the writer reports his findings about existing programs and suggested improvements. (Editor)

  19. Elementary Principals' and Teachers' Perceptions of Their Principals' Supervisory Behaviors.

    ERIC Educational Resources Information Center

    Vickers, Bettye Hamill; Sistrunk, Walter E.

    To influence teaching in a way that enhances and improves student learning is the school principal's responsibility. Because perceptions are more important than actual behavior, it is essential for principals to know if their perception of their supervisory actions is in agreement with the way their teachers perceive the same supervisory…

  20. Principals' Leadership Network. Focusing on the Image of the Principal

    ERIC Educational Resources Information Center

    Newby, Cheryl Riggins; Hayden, Hal

    2004-01-01

    A recent study by The National Association of Elementary School Principals (NAESP), Principals in the Public: Engaging Community Support (2000) found that communication, marketing, public affairs and public relations and engagement activities are now given more time and importance than ever before. According to the study, public support builds…

  1. Principal Preparation Programs: Perceptions of High School Principals

    ERIC Educational Resources Information Center

    Styron, Ronald A., Jr.; LeMire, Steven D.

    2009-01-01

    There has been an abundance of research documenting perceived deficiencies in traditional principal preparation programs, but little field data have been collected. As such, the authors of this study sought to assess the satisfaction of practitioners, high school principals, with their preparation programs. Questionnaires were received from 374…

  2. Mentor Principals' Perceptions about a Mentoring Program for Aspiring Principals

    ERIC Educational Resources Information Center

    Barnett, Steven Nicholas

    2013-01-01

    The purpose of this study was to assess the perceptions of principals who serve as mentors for an internship program for aspiring principals at East Tennessee State University. Each mentor was interviewed to gather information about the internship program, the benefits of mentoring in the program, and what the mentors may have learned about their…

  3. From Training Great Principals to Preparing Principals for Practice

    ERIC Educational Resources Information Center

    Militello, Matthew; Rallis, Sharon

    2009-01-01

    We offer the collaborative inquiry-action cycle as a framework for principals' practice and principal preparation. The cycle is a pragmatic tool that does not prescribe behaviors or contexts. Moreover, the cycle does not represent another programmatic solution or model for leadership. Rather the power of the cycle is that it drives collaboration,…

  4. The Principal and Fiscal Management. Elementary Principal Series No. 6.

    ERIC Educational Resources Information Center

    Walters, James K.; Marconnit, George D.

    The sixth of six volumes in the "Elementary Principal Series," this booklet is designed to help principals develop sound fiscal management strategies at the building level. The first section reviews Indiana statutory provisions for handling extracurricular and booster group funds. The second section presents guidelines for managing…

  5. A study on the discrimination of human skeletons using X-ray fluorescence and chemometric tools in chemical anthropology.

    PubMed

    Gonzalez-Rodriguez, J; Fowler, G

    2013-09-10

    Forensic anthropological investigations are often restricted in their outcomes by the resources allocated to them, especially in terms of positively identifying the victims exhumed from commingled mass graves. Commingled mass graves can be defined as those graves that contain a number of disarticulated human remains from different individuals that have been mixed by either natural processes or human interventions. The research developed aimed to apply the technique of non-destructive XRF analysis to test whether there is substantial differentiation within the trace elemental composition and their ratios of individuals to separate them using chemometric analysis. The results of the different atomic spectroscopic analyses combined with the use of multivariate analysis on a set of 5 skeletons produced a series of plots using Principal Component Analysis that helped to separate them with a high percentage of accuracy when two, three or four skeletons needed to be separated. Also, two new elemental ratios, Zn/Fe related to metabolic activities and K/Fe related to blood flow into the bone, have been defined for their use in forensic anthropology for the first time to aid in the separation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. The origin of conodonts and of vertebrate mineralized skeletons.

    PubMed

    Murdock, Duncan J E; Dong, Xi-Ping; Repetski, John E; Marone, Federica; Stampanoni, Marco; Donoghue, Philip C J

    2013-10-24

    Conodonts are an extinct group of jawless vertebrates whose tooth-like elements are the earliest instance of a mineralized skeleton in the vertebrate lineage, inspiring the 'inside-out' hypothesis that teeth evolved independently of the vertebrate dermal skeleton and before the origin of jaws. However, these propositions have been based on evidence from derived euconodonts. Here we test hypotheses of a paraconodont ancestry of euconodonts using synchrotron radiation X-ray tomographic microscopy to characterize and compare the microstructure of morphologically similar euconodont and paraconodont elements. Paraconodonts exhibit a range of grades of structural differentiation, including tissues and a pattern of growth common to euconodont basal bodies. The different grades of structural differentiation exhibited by paraconodonts demonstrate the stepwise acquisition of euconodont characters, resolving debate over the relationship between these two groups. By implication, the putative homology of euconodont crown tissue and vertebrate enamel must be rejected as these tissues have evolved independently and convergently. Thus, the precise ontogenetic, structural and topological similarities between conodont elements and vertebrate odontodes appear to be a remarkable instance of convergence. The last common ancestor of conodonts and jawed vertebrates probably lacked mineralized skeletal tissues. The hypothesis that teeth evolved before jaws and the inside-out hypothesis of dental evolution must be rejected; teeth seem to have evolved through the extension of odontogenic competence from the external dermis to internal epithelium soon after the origin of jaws.

  7. DNA and bone structure preservation in medieval human skeletons.

    PubMed

    Coulson-Thomas, Yvette M; Norton, Andrew L; Coulson-Thomas, Vivien J; Florencio-Silva, Rinaldo; Ali, Nadir; Elmrghni, Samir; Gil, Cristiane D; Sasso, Gisela R S; Dixon, Ronald A; Nader, Helena B

    2015-06-01

    Morphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem. We adapted and optimised a method that is frequently used for isolating DNA from modern samples, Chelex(®) 100 (Bio-Rad) extraction, for isolating DNA from archaeological human bones and teeth. The isolated DNA was analysed by real-time PCR using primers targeting the sex determining region on the Y chromosome (SRY) and STR typing using the AmpFlSTR(®) Identifiler PCR Amplification kit. Our results clearly show the preservation of bone matrix in medieval bones and the presence of intact osteocytes with well preserved encapsulated nuclei. In addition, we show how effective Chelex(®) 100 is for isolating ancient DNA from archaeological bones and teeth. This optimised method is suitable for STR typing using kits aimed specifically at degraded and difficult DNA templates since amplicons of up to 250bp were successfully amplified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Genetic analysis of 7 medieval skeletons from the Aragonese Pyrenees.

    PubMed

    Núnéz, Carolina; Sosa, Cecilia; Baeta, Miriam; Geppert, Maria; Turnbough, Meredith; Phillips, Nicole; Casalod, Yolanda; Bolea, Miguel; Roby, Rhonda; Budowle, Bruce; Martínez-Jarreta, Begona

    2011-06-01

    To perform a genetic characterization of 7 skeletons from medieval age found in a burial site in the Aragonese Pyrenees. Allele frequencies of autosomal short tandem repeats (STR) loci were determined by 3 different STR systems. Mitochondrial DNA (mtDNA) and Y-chromosome haplogroups were determined by sequencing of the hypervariable segment 1 of mtDNA and typing of phylogenetic Y chromosome single nucleotide polymorphisms (Y-SNP) markers, respectively. Possible familial relationships were also investigated. Complete or partial STR profiles were obtained in 3 of the 7 samples. Mitochondrial DNA haplogroup was determined in 6 samples, with 5 of them corresponding to the haplogroup H and 1 to the haplogroup U5a. Y-chromosome haplogroup was determined in 2 samples, corresponding to the haplogroup R. In one of them, the sub-branch R1b1b2 was determined. mtDNA sequences indicated that some of the individuals could be maternally related, while STR profiles indicated no direct family relationships. Despite the antiquity of the samples and great difficulty that genetic analyses entail, the combined use of autosomal STR markers, Y-chromosome informative SNPs, and mtDNA sequences allowed us to genotype a group of skeletons from the medieval age.

  9. The origin of conodonts and of vertebrate mineralized skeletons

    USGS Publications Warehouse

    Murdock, Duncan J.E.; Dong, Xi-Ping; Repetski, John E.; Marone, Federica; Stampanoni, Marco; Donoghue, Philip C.J.

    2013-01-01

    Conodonts are an extinct group of jawless vertebrates whose tooth-like elements are the earliest instance of a mineralized skeleton in the vertebrate lineage, inspiring the ‘inside-out’ hypothesis that teeth evolved independently of the vertebrate dermal skeleton and before the origin of jaws. However, these propositions have been based on evidence from derived euconodonts. Here we test hypotheses of a paraconodont ancestry of euconodonts using synchrotron radiation X-ray tomographic microscopy to characterize and compare the microstructure of morphologically similar euconodont and paraconodont elements. Paraconodonts exhibit a range of grades of structural differentiation, including tissues and a pattern of growth common to euconodont basal bodies. The different grades of structural differentiation exhibited by paraconodonts demonstrate the stepwise acquisition of euconodont characters, resolving debate over the relationship between these two groups. By implication, the putative homology of euconodont crown tissue and vertebrate enamel must be rejected as these tissues have evolved independently and convergently. Thus, the precise ontogenetic, structural and topological similarities between conodont elements and vertebrate odontodes appear to be a remarkable instance of convergence. The last common ancestor of conodonts and jawed vertebrates probably lacked mineralized skeletal tissues. The hypothesis that teeth evolved before jaws and the inside-out hypothesis of dental evolution must be rejected; teeth seem to have evolved through the extension of odontogenic competence from the external dermis to internal epithelium soon after the origin of jaws.

  10. XANES mapping of organic sulfate in three scleractinian coral skeletons

    NASA Astrophysics Data System (ADS)

    Cuif, Jean-Pierre; Dauphin, Yannicke; Doucet, Jean; Salome, Murielle; Susini, Jean

    2003-01-01

    The presence and localization of organic sulfate within coral skeletons are studied by using X-ray absorption near edge structure spectroscopy (XANES) fluorescence. XANES spectra are recorded from four reference sulfur-bearing organic molecules: three amino acids (H-S-C bonds in cysteine; C-S-C bonds in methionine; one disulfide bond C-S-S-C bonds in cystine) and a sulfated sugar (C-SO 4 bonds in chondroitin sulfate). Spectral responses of three coral skeletons show that the sulfated form is extremely dominant in coral aragonite, and practically exclusive within both centres of calcification and the surrounding fibrous tissues of coral septa. Mapping of S-sulfate concentrations in centres and fibres gives us direct evidence of high concentration of organic sulfate in centres of calcification. Additionally, a banding pattern of S-sulfate is visible in fibrous part of the coral septa, evidencing a biochemical zonation that corresponds to the step-by-step growth of fibres.

  11. The skeleton as an intracrine organ for vitamin D metabolism.

    PubMed

    Anderson, Paul H; Atkins, Gerald J

    2008-12-01

    The endocrine hormone, 1alpha,25-dihydroxyvitamin D(3) (1,25D) is an important regulator of calcium and phosphorus homeostasis. In this context, 1,25D is generally recognized as necessary for the maintenance of a healthy skeleton through its actions on the small intestine. In this review, we highlight the direct effects of 1,25D on the constituent cells of the bone, actions that are independent of effects on the intestine and kidney. We also consider the evidence that 25D levels, not 1,25D levels, correlate best with parameters of bone health, and that the bone itself is a site of metabolic conversion of 25D into 1,25D, by virtue of its expression of the 25-hydroxyvitamin D 1alpha-hydroxylase, CYP27B1. We review the evidence that at least osteoblasts and chondrocytes, and possibly also bone resorbing osteoclasts, are capable of such metabolic conversion, and therefore that these cells likely participate in autocrine and paracrine loops of vitamin D metabolism. We conclude that the skeleton is an intracrine organ for vitamin D metabolism, challenging the long-held notion that 1,25D is solely an endocrine hormone.

  12. Genetic analysis of 7 medieval skeletons from Aragonese Pyrenees

    PubMed Central

    Núńez, Carolina; Sosa, Cecilia; Baeta, Miriam; Geppert, Maria; Turnbough, Meredith; Phillips, Nicole; Casalod, Yolanda; Bolea, Miguel; Roby, Rhonda; Budowle, Bruce; Martínez-Jarreta, Begońa

    2011-01-01

    Aim To perform a genetic characterization of 7 skeletons from medieval age found in a burial site in the Aragonese Pyrenees. Methods Allele frequencies of autosomal short tandem repeats (STR) loci were determined by 3 different STR systems. Mitochondrial DNA (mtDNA) and Y-chromosome haplogroups were determined by sequencing of the hypervariable segment 1 of mtDNA and typing of phylogenetic Y chromosome single nucleotide polymorphisms (Y-SNP) markers, respectively. Possible familial relationships were also investigated. Results Complete or partial STR profiles were obtained in 3 of the 7 samples. Mitochondrial DNA haplogroup was determined in 6 samples, with 5 of them corresponding to the haplogroup H and 1 to the haplogroup U5a. Y-chromosome haplogroup was determined in 2 samples, corresponding to the haplogroup R. In one of them, the sub-branch R1b1b2 was determined. mtDNA sequences indicated that some of the individuals could be maternally related, while STR profiles indicated no direct family relationships. Conclusions Despite the antiquity of the samples and great difficulty that genetic analyses entail, the combined use of autosomal STR markers, Y-chromosome informative SNPs, and mtDNA sequences allowed us to genotype a group of skeletons from the medieval age. PMID:21674829

  13. Minimum convex hull mass estimations of complete mounted skeletons.

    PubMed

    Sellers, W I; Hepworth-Bell, J; Falkingham, P L; Bates, K T; Brassey, C A; Egerton, V M; Manning, P L

    2012-10-23

    Body mass is a critical parameter used to constrain biomechanical and physiological traits of organisms. Volumetric methods are becoming more common as techniques for estimating the body masses of fossil vertebrates. However, they are often accused of excessive subjective input when estimating the thickness of missing soft tissue. Here, we demonstrate an alternative approach where a minimum convex hull is derived mathematically from the point cloud generated by laser-scanning mounted skeletons. This has the advantage of requiring minimal user intervention and is thus more objective and far quicker. We test this method on 14 relatively large-bodied mammalian skeletons and demonstrate that it consistently underestimates body mass by 21 per cent with minimal scatter around the regression line. We therefore suggest that it is a robust method of estimating body mass where a mounted skeletal reconstruction is available and demonstrate its usage to predict the body mass of one of the largest, relatively complete sauropod dinosaurs: Giraffatitan brancai (previously Brachiosaurus) as 23200 kg.

  14. [Study of skeleton gravitation physiology and problem of osteoporosis].

    PubMed

    Oganov, V S

    2003-03-01

    Main osteoporosis definitions and some results of bone tissue research in Russian astronauts, patients, and healthy subjects, using modern osteodensitometry, are presented. Bone mineral density (BMD) was regularly decreased at lower segments of skeleton. In the skull bone and some other sites of upper part of skeleton, a tendency was revealed for an increase of the bone mineral content (BMC). The mean value of bone loss was within the normal range and not correlated with duration of space flight; it revealed a high individual variability and in some cases was clinically qualified as local osteopenia. On the ground of analysis of own results and animal and bone cultural experiments data in microgravity conditions, the described changes seem to be reflecting a deceleration of bone formation as an adaptive response of bone tissue to the mechanical unloading. The response is realized mainly on the tissue level. It does not exclude bone resorption activity as a result of changes in hierarchy of water and electrolytes metabolism as reflected by body fluid redistribution in cranial direction. The results obtained broaden our notions on pathogenesis of some types of osteoporosis in clinic.

  15. Methods for tracking athletes' competitive performance in skeleton.

    PubMed

    Bullock, Nicola; Hopkins, Will G

    2009-07-01

    In many sports, changes in performance time between races arising from differences in venues and weather far exceed changes in an athlete's true ability. Here we compare three methods to track performance of individual athletes in one such sport, skeleton. We developed the methods with official times of 33 male and 34 female athletes competing in three or more of 26 World Cup races over 4 years leading up to, but not including, the 2006 Winter Olympics. For two methods accessible to coaches, we fitted simple quadratic trajectories to each athlete's race placing and to percent behind the winning time. For a more sensitive method, we fitted similar quadratic trajectories to race time using a mixed model to adjust for mean race times. Correlations between predicted and observed performance in the races used to develop the methods were all similar ( approximately 0.7). Correlations between predicted and observed performance in the Olympics clearly favoured race placing (0.78) over race time (0.65) and percent behind the winner (0.63) for women, whereas race placing was clearly inferior (0.14) to percent behind the winner (0.30) and race time (0.46) for men. All three methods are potentially useful and need further investigation in skeleton and other sports.

  16. Reduction of absorbed doses in radiography of the facial skeleton

    SciTech Connect

    Julin, P.; Kraepelien, T.

    1984-11-01

    Radiation absorbed doses from radiography of the paranasal sinuses and the facial skeleton were measured with thermoluminescent dosimeters (TLD) on a phantom head using high-sensitivity screens in an Orbix stand. The entrance doses to the skin of the head ranged from 0.31 to 2.9 mGy per exposure. The absorbed dose from a full series of sinus exposures averaged 0.33 mGy for the oral mucous membrane, 0.33 mGy for the maxillary sinus mucous membrane, 0.11 mGy for the parotid gland, 0.15 mGy for the submandibular gland, 0.61 mGy for the eye lens, and 0.75 mGy for the thyroid gland region. A leaded soft collar adapted to the thyroid region reduced the thyroid doses by more than one order of magnitude, but also reduced the image field. The mean energy imparted from a full series of paranasal sinus projections was 4.8 mJ and from a total series of the facial skeleton, 7.9 mJ.

  17. Minimum convex hull mass estimations of complete mounted skeletons

    PubMed Central

    Sellers, W. I.; Hepworth-Bell, J.; Falkingham, P. L.; Bates, K. T.; Brassey, C. A.; Egerton, V. M.; Manning, P. L.

    2012-01-01

    Body mass is a critical parameter used to constrain biomechanical and physiological traits of organisms. Volumetric methods are becoming more common as techniques for estimating the body masses of fossil vertebrates. However, they are often accused of excessive subjective input when estimating the thickness of missing soft tissue. Here, we demonstrate an alternative approach where a minimum convex hull is derived mathematically from the point cloud generated by laser-scanning mounted skeletons. This has the advantage of requiring minimal user intervention and is thus more objective and far quicker. We test this method on 14 relatively large-bodied mammalian skeletons and demonstrate that it consistently underestimates body mass by 21 per cent with minimal scatter around the regression line. We therefore suggest that it is a robust method of estimating body mass where a mounted skeletal reconstruction is available and demonstrate its usage to predict the body mass of one of the largest, relatively complete sauropod dinosaurs: Giraffatitan brancai (previously Brachiosaurus) as 23200 kg. PMID:22675141

  18. Morphological variation in the appendicular skeleton of Atlantic Forest sigmodontine rodents.

    PubMed

    Coutinho, Ludmilla Carvalho; de Oliveira, João Alves; Pessôa, Leila Maria

    2013-07-01

    Rodents of the subfamily Sigmodontinae comprise a highly diversified group in the Atlantic Forest, with semifossorial, terrestrial, semiaquatic, scansorial, and arboreal forms. In this study, we analyzed morphometric variation in humerus, scapula, ulna, radius, femur, tibia, and pelvis to investigate its possible relationship with the different types of locomotion recorded in the literature. Skeletal characters were measured in 321 specimens belonging to 29 species and 19 genera either restricted to or recorded in this ecoregion. Multivariate morphometric analyses (principal component and canonical variate analyses) arranged individuals of different genera in groups congruent with the different types of locomotion. This arrangement was more clearly defined when analyses included only forelimb measurements, indicating that most of the variation in appendicular traits associated with the different locomotor modes occurs in the forelimb skeleton. Semifossorial forms exhibited the most distinct appendicular morphology, as well as the greatest frequency of endemism among analyzed species. These results suggest that this mode of locomotion led to greater differentiation in semifossorial Atlantic forest sigmodontines than in terrestrial and arboreal forms, which were found to have more subtle differentiation and fewer endemics. Scansorial species could not be set apart from terrestrial ones in terms of appendicular morphology, suggesting that these two modes of locomotion are the most similar and generalized for the group, as they occur in most lineages in the subfamily. The results of this study corroborate previous observations on the relevance of appendicular characters in the differentiation of species and genera in the subfamily Sigmodontinae. Copyright © 2013 Wiley Periodicals, Inc.

  19. Evolutionary exploitation of design options by the first animals with hard skeletons.

    PubMed

    Thomas, R D; Shearman, R M; Stewart, G W

    2000-05-19

    The set of viable design elements available for animals to use in building skeletons has been fully exploited. Analysis of animal skeletons in relation to the multivariate, theoretical "Skeleton Space" has shown that a large proportion of these options are used in each phylum. Here, we show that structural elements deployed in the skeletons of Burgess Shale animals (Middle Cambrian) incorporate 146 of 182 character pairs defined in this morphospace. Within 15 million years of the appearance of crown groups of phyla with substantial hard parts, at least 80 percent of skeletal design elements recognized among living and extinct marine metazoans were exploited.

  20. School Principals as Effective Leaders.

    ERIC Educational Resources Information Center

    Rutherford, William L.

    1985-01-01

    A study of elementary and secondary principals revealed that effective principals all demonstrated five essential qualities of leadership--they had clear visions of desirable futures for their schools, translated those visions into specific goals, established supportive environments for improvement, monitored progress, and intervened effectively…

  1. The Principal and the Community.

    ERIC Educational Resources Information Center

    Schumack, Kenneth A.

    The evolution of a run-down inner city elementary school into a flourishing community school is documented by its principal. By going out into the community and visiting in parents' homes, this principal built a base of support for innovations, such as individualized instruction and tutoring, as well as a lunch and breakfast program. Student…

  2. The Principal as Formative Coach

    ERIC Educational Resources Information Center

    Nidus, Gabrielle; Sadder, Maya

    2011-01-01

    Formative coaching, an approach that uses student work as the foundation for mentoring and professional development, can help principals become more effective instructional leaders. In formative coaching, teaches and coaches analyze student work to determine next steps for instruction. This article shows how a principal can use the steps of the…

  3. The Principal and Human Relations.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Human Relations.

    This booklet offers general guidelines and recommendations on how to develop and exercise the interpersonal skills required of a successful school principal. Attention is devoted to the basic principles of effective communication and personal interaction, with emphasis on the principal's relations with students, teachers, and members of the…

  4. The Principal in Metropolitan Schools.

    ERIC Educational Resources Information Center

    Erickson, Donald A., Ed.; Reller, Theodore L., Ed.

    This collection of articles is designed to help metropolitan school principals meet the challenges of their positions. It is especially concerned with how principals can contribute to effective education for students of markedly heterogenous backgrounds. The authors deal with such issues as the principalship and metropolitan administration, the…

  5. Innovation Management Perceptions of Principals

    ERIC Educational Resources Information Center

    Bakir, Asli Agiroglu

    2016-01-01

    This study is aimed to determine the perceptions of principals about innovation management and to investigate whether there is a significant difference in this perception according to various parameters. In the study, descriptive research model is used and universe is consisted from principals who participated in "Acquiring Formation Course…

  6. Principal Appraisals Get a Remake

    ERIC Educational Resources Information Center

    Zubrzycki, Jaclyn

    2013-01-01

    A growing number of school districts--including large ones like those in Chicago, Dallas, Los Angeles, and Hawaii--have become recent converts to new principal-evaluation systems that tie school leaders' appraisals to student test scores. As of this school year, student achievement accounts for 40 percent to 50 percent of principals' evaluations…

  7. Principals and SRO's: Defining Roles.

    ERIC Educational Resources Information Center

    Bond, Bill

    2001-01-01

    Many principals have recently acquired school resource officers, police officers who are stationed in schools and report to local sheriffs or police chiefs. Working effectively with a resource officer requires that principals and officers understand each other's role and express partnership details in a memorandum of understanding. (MLH)

  8. The Principal as Curriculum Leader

    ERIC Educational Resources Information Center

    Jenkins, Judy; Pfeifer, R. Scott

    2012-01-01

    Today's reform landscape transcends instructional leadership and data-based decision-making skills. This is not to say that those behaviors are not essential to a principal's success, but they no longer suffice. Principals do not need to be curriculum experts, but they do need to lead their schools with full knowledge of the Common Core State…

  9. Principals' Perceptions of Successful Leadership

    ERIC Educational Resources Information Center

    Childers, Gary L.

    2013-01-01

    The purposes of this qualitative multiple case study were to determine the catalysts and pathways that caused principals to move from managers to effective leaders. Data were collected through a series of interviews with 4 principals who were selected through a purposeful sampling procedure. The interviews were audio recorded, transcribed, and…

  10. What Do Effective Principals Do?

    ERIC Educational Resources Information Center

    Protheroe, Nancy

    2011-01-01

    Much has been written during the past decade about the changing role of the principal and the shift in emphasis from manager to instructional leader. Anyone in education, and especially principals themselves, could develop a mental list of responsibilities that fit within each of these realms. But research makes it clear that both those aspects of…

  11. Burnout among Elementary School Principals

    ERIC Educational Resources Information Center

    Combs, Julie; Edmonson, Stacey L.; Jackson, Sherion H.

    2009-01-01

    As the understanding of burnout continues to be refined, studies that examine school principals and burnout will be helpful to those who provide support to school leaders and are concerned about principal attrition and pending shortages. The purpose of this study was to examine the relationship between burnout and gender, age, and years experience…

  12. Preparing for Your Principal Interview

    ERIC Educational Resources Information Center

    Spanneut, Gene

    2007-01-01

    Being invited to the initial round of interviews for a principal opening is an opportunity; preparing for it is an investment. A successful interview requires that you create a detailed plan and take specific steps. This article provides tips on how to prepare yourself for a principal interview. Before you focus on what to do during your…

  13. Preparing Principals for Leadership Success.

    ERIC Educational Resources Information Center

    Lindauer, Patricia; Petrie, Garth; Leonard, John; Gooden, John; Bennett, Brenda

    2003-01-01

    Reports findings of two studies--one in Georgia, the other in Kentucky--of principal group-processing skills and training. Finds, for example, that group-processing skills are critical to principals' job success, especially in schools with site-based management, but that the quality and amount of such training in university preparation programs…

  14. The Principal: Gatekeeper of Change.

    ERIC Educational Resources Information Center

    Richardson, Sandra C.

    The role of the principal as the key decision-maker, problem-solver, and agent of change at the school site is discussed in this paper. A review of the recent literature indicates the major ways in which this role may be enhanced to bring about school effectiveness. The first section discusses the skills necessary to be a principal in today's…

  15. A Principal's Reflections on Twinning.

    ERIC Educational Resources Information Center

    Kelliher, Shirley; Rees, Ruth

    1997-01-01

    A principal of three Ontario "twinned" schools (sharing principal and services) discusses the arrangement's advantages: greater sharing of both human and technical resources and increased opportunities for broader budget negotiations between schools. The disadvantages of twinning relate to the additional stress placed on the principal…

  16. Time Management for New Principals

    ERIC Educational Resources Information Center

    Ruder, Robert

    2008-01-01

    Becoming a principal is a milestone in an educator's professional life. The principalship is an opportunity to provide leadership that will afford students opportunities to thrive in a nurturing and supportive environment. Despite the continuously expanding demands of being a new principal, effective time management will enable an individual to be…

  17. Great Principals at Scale: Toolkit

    ERIC Educational Resources Information Center

    Ikemoto, Gina; Taliaferro, Lori; Fenton, Benjamin; Davis, Jacquelyn

    2014-01-01

    School leaders are critical in the lives of students and to the development of their teachers. Unfortunately, in too many instances, principals are effective in spite of--rather than because of--district conditions. To truly improve student achievement for all students across the country, well-prepared principals need the tools, support, and…

  18. Managers Help Principals Balance Time

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2008-01-01

    Most principals probably hope that at least half their working day is spent in meaningful interactions with teachers and students. But that's not likely. Investigators who shadowed principals for a week showed that a crush of managerial duties allowed them to spend only a third of their day--or less--on tasks that involved interaction with…

  19. Teacher and Principal Assessment Literacy

    ERIC Educational Resources Information Center

    Perry, Michael Lee

    2013-01-01

    The implementation of the No Child Left Behind (NCLB) Act in 2002 has increased the emphasis on standardized achievement tests. Principals are asked to lead instruction and improve student achievement through assessment. NCLB has sanctions that could include replacing a school principal. The purpose of this study was to look at the level of…

  20. Time Management for New Principals

    ERIC Educational Resources Information Center

    Ruder, Robert

    2008-01-01

    Becoming a principal is a milestone in an educator's professional life. The principalship is an opportunity to provide leadership that will afford students opportunities to thrive in a nurturing and supportive environment. Despite the continuously expanding demands of being a new principal, effective time management will enable an individual to be…

  1. Preparing for Your Principal Interview

    ERIC Educational Resources Information Center

    Spanneut, Gene

    2007-01-01

    Being invited to the initial round of interviews for a principal opening is an opportunity; preparing for it is an investment. A successful interview requires that you create a detailed plan and take specific steps. This article provides tips on how to prepare yourself for a principal interview. Before you focus on what to do during your…

  2. Getting Intentional about Principal Evaluations

    ERIC Educational Resources Information Center

    Mendels, Pamela

    2017-01-01

    As part of "The Wallace Foundation's Principal Pipeline" initiative, six districts have been working to reshape their school leadership evaluation systems to provide better and more consistent feedback to principals--and ultimately to help them grow in their jobs. In this article, Pamela Mendels, a senior editor at Wallace, describes the…

  3. Fear in the Principal's Office

    ERIC Educational Resources Information Center

    Romaneck, Greg M.

    2006-01-01

    Fear and anxiety are emotions that principals must learn to overcome if they are to be effective leaders. This article provides some observations and suggestions that can help principals understand and cope with fear on the job. (Contains 3 online resources.)

  4. The Principal in Metropolitan Schools.

    ERIC Educational Resources Information Center

    Erickson, Donald A., Ed.; Reller, Theodore L., Ed.

    This collection of articles is designed to help metropolitan school principals meet the challenges of their positions. It is especially concerned with how principals can contribute to effective education for students of markedly heterogenous backgrounds. The authors deal with such issues as the principalship and metropolitan administration, the…

  5. Principal Components and Scale Dependence.

    ERIC Educational Resources Information Center

    Blankmeyer, Eric

    A limitation of the principal components method is its scale dependence. This note shows that the method is scale invariant if the normalization is modified in an obvious way. Then the effect of a change in units is as transparent as in linear regression, and principal components can be used without apology. Most researchers who use multivariate…

  6. School Principals' Sources of Knowledge

    ERIC Educational Resources Information Center

    Perkins, Arland Early

    2014-01-01

    The purpose of this study was to determine what sources of professional knowledge are available to principals in 1 rural East Tennessee school district. Qualitative research methods were applied to gain an understanding of what sources of knowledge are used by school principals in 1 rural East Tennessee school district and the barriers they face…

  7. Great New Resources for Principals

    ERIC Educational Resources Information Center

    Williamson, Ron

    2010-01-01

    The end of the school year is a hectic time for high school principals. Summer often provides a brief opportunity to "kick-back" and take time to rest, relax and spend some time thinking about the coming school year. As the school year ends the author would like to introduce several new or updated resources that every high school principal will…

  8. Sparse Exponential Family Principal Component Analysis.

    PubMed

    Lu, Meng; Huang, Jianhua Z; Qian, Xiaoning

    2016-12-01

    We propose a Sparse exponential family Principal Component Analysis (SePCA) method suitable for any type of data following exponential family distributions, to achieve simultaneous dimension reduction and variable selection for better interpretation of the results. Because of the generality of exponential family distributions, the method can be applied to a wide range of applications, in particular when analyzing high dimensional next-generation sequencing data and genetic mutation data in genomics. The use of sparsity-inducing penalty helps produce sparse principal component loading vectors such that the principal components can focus on informative variables. By using an equivalent dual form of the formulated optimization problem for SePCA, we derive optimal solutions with efficient iterative closed-form updating rules. The results from both simulation experiments and real-world applications have demonstrated the superiority of our SePCA in reconstruction accuracy and computational efficiency over traditional exponential family PCA (ePCA), the existing Sparse PCA (SPCA) and Sparse Logistic PCA (SLPCA) algorithms.

  9. Complex principal components for robust motion estimation.

    PubMed

    Mauldin, F William; Viola, Francesco; Walker, William F

    2010-11-01

    Bias and variance errors in motion estimation result from electronic noise, decorrelation, aliasing, and inherent algorithm limitations. Unlike most error sources, decorrelation is coherent over time and has the same power spectrum as the signal. Thus, reducing decorrelation is impossible through frequency domain filtering or simple averaging and must be achieved through other methods. In this paper, we present a novel motion estimator, termed the principal component displacement estimator (PCDE), which takes advantage of the signal separation capabilities of principal component analysis (PCA) to reject decorrelation and noise. Furthermore, PCDE only requires the computation of a single principal component, enabling computational speed that is on the same order of magnitude or faster than the commonly used Loupas algorithm. Unlike prior PCA strategies, PCDE uses complex data to generate motion estimates using only a single principal component. The use of complex echo data is critical because it allows for separation of signal components based on motion, which is revealed through phase changes of the complex principal components. PCDE operates on the assumption that the signal component of interest is also the most energetic component in an ensemble of echo data. This assumption holds in most clinical ultrasound environments. However, in environments where electronic noise SNR is less than 0 dB or in blood flow data for which the wall signal dominates the signal from blood flow, the calculation of more than one PC is required to obtain the signal of interest. We simulated synthetic ultrasound data to assess the performance of PCDE over a wide range of imaging conditions and in the presence of decorrelation and additive noise. Under typical ultrasonic elasticity imaging conditions (0.98 signal correlation, 25 dB SNR, 1 sample shift), PCDE decreased estimation bias by more than 10% and standard deviation by more than 30% compared with the Loupas method and normalized

  10. Spine and axial skeleton injuries in the National Football League.

    PubMed

    Mall, Nathan A; Buchowski, Jacob; Zebala, Lukas; Brophy, Robert H; Wright, Rick W; Matava, Matthew J

    2012-08-01

    The majority of previous literature focusing on spinal injuries in American football players is centered around catastrophic injuries; however, this may underestimate the true number of these injuries in this athletic cohort. The goals of this study were to (1) report the incidence of spinal and axial skeleton injuries, both minor and severe, in the National Football League (NFL) over an 11-year period; (2) determine the incidence of spinal injury by injury type, anatomic location, player position, mechanism of injury, and type of exposure (practice vs game); and (3) determine the average number of practices and days missed because of injury for each injury type. Descriptive epidemiological study. All documented injuries to the cervical, thoracic, and lumbar spine; pelvis; ribs; and spinal cord were retrospectively analyzed using the NFL's injury surveillance database over a period of 11 seasons from 2000 through 2010. The data were analyzed by the number of injuries per athlete-exposure, the anatomic location and type of injury, player position, mechanism of injury, and number of days missed per injury. A total of 2208 injuries occurred to the spine or axial skeleton over an 11-season interval in the NFL, with a mean loss of 25.7 days per injury. This represented 7% of the total injuries during this time period. Of these 2208 injuries, 987 (44.7%) occurred in the cervical spine. Time missed from play was greatest for thoracic disc herniations (189 days/injury). Other injuries that had a mean time missed greater than 30 days included (in descending order) cervical fracture (120 days/injury), cervical disc degeneration/herniation (85 days/injury), spinal cord injury (77 days/injury), lumbar disc degeneration/herniation (52 days/injury), thoracic fracture (34 days/injury), and thoracic nerve injury (30 days/injury). Offensive linemen were the most likely to suffer a spinal injury, followed by defensive backs, defensive linemen, and linebackers. Blocking and tackling

  11. Incremental principal component pursuit for video background modeling

    DOEpatents

    Rodriquez-Valderrama, Paul A.; Wohlberg, Brendt

    2017-03-14

    An incremental Principal Component Pursuit (PCP) algorithm for video background modeling that is able to process one frame at a time while adapting to changes in background, with a computational complexity that allows for real-time processing, having a low memory footprint and is robust to translational and rotational jitter.

  12. Principal Component Clustering Approach to Teaching Quality Discriminant Analysis

    ERIC Educational Resources Information Center

    Xian, Sidong; Xia, Haibo; Yin, Yubo; Zhai, Zhansheng; Shang, Yan

    2016-01-01

    Teaching quality is the lifeline of the higher education. Many universities have made some effective achievement about evaluating the teaching quality. In this paper, we establish the Students' evaluation of teaching (SET) discriminant analysis model and algorithm based on principal component clustering analysis. Additionally, we classify the SET…

  13. PRINCIPAL COMPONENTS FOR NON-LOCAL MEANS IMAGE DENOISING.

    PubMed

    Tasdizen, Tolga

    2008-01-01

    This paper presents an image denoising algorithm that uses principal component analysis (PCA) in conjunction with the non-local means image denoising. Image neighborhood vectors used in the non-local means algorithm are first projected onto a lower-dimensional subspace using PCA. Consequently, neighborhood similarity weights for denoising are computed using distances in this subspace rather than the full space. This modification to the non-local means algorithm results in improved accuracy and computational performance. We present an analysis of the proposed method's accuracy as a function of the dimensionality of the projection subspace and demonstrate that denoising accuracy peaks at a relatively low number of dimensions.

  14. Endocrine regulation of male fertility by the skeleton

    PubMed Central

    Oury, Franck; Sumara, Grzegorz; Sumara, Olga; Ferron, Mathieu; Chang, Haixin; Smith, Charles E.; Hermo, Louis; Suarez, Susan; Roth, Bryan L.; Ducy, Patricia; Karsenty, Gerard

    2011-01-01

    Although the endocrine capacity of bone is widely recognized, interactions between bone and the reproductive system have until now focused on the gonads as a regulator of bone remodeling. We now show that in males, bone acts as a regulator of fertility. Using co-culture assays, we demonstrate that osteoblasts are able to induce testosterone production by the testes, while they fail to influence estrogen production by the ovaries. Analyses of cell-specific loss- and gain-of-function models reveal that the osteoblast-derived hormone osteocalcin performs this endocrine function. By binding to a G-protein coupled receptor expressed in the Leydig cells of the testes, osteocalcin regulates in a CREB-dependent manner the expression of enzymes required for testosterone synthesis, promoting germ cell survival. This study expands the physiological repertoire of osteocalcin, and provides the first evidence that the skeleton is an endocrine regulator of reproduction. PMID:21333348

  15. Companions for ``Nessie'' in the Milky Way's Skeleton

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    The recent discovery of a purported bone of the Milky Way, a dark cloud nicknamed Nessie, has provided us with new clues for mapping out the spiral structure of our galaxy. It turns out that Nessie may not be alone: a follow-up study has identified more bones, potentially making up a skeleton of the Milky Way that traces out the densest parts of its spiral arms.Inconvenient Vantage PointHow many spiral arms does the Milky Way have? Where are they located? What does the structure look like between the arms? It may seem surprising that these fundamental questions dont yet have clear answers. But because were stuck in the galaxys disk, were forced to piece together our understanding of the Milky Ways structure based primarily on measurements of position and radial velocity of structures within the galactic plane.The discovery of Nessie presents an intriguing new tool to identify the layout of the galaxy. Nessie is a very long, thin, infrared-dark filament that runs along the modeled position of the Scutum-Centaurus arm and is believed therefore to trace the structure of the arm. In a new study led by Catherine Zucker (University of Virginia, Harvard-Smithsonian Center for Astrophysics), the authors have searched for additional bones like Nessie, hoping to use them to map out the skeleton of the Milky Way.New Bones DiscoveredIn this map of radial velocity vs. galactic longitude, the bone candidates are indicated by the numbered points. The colored lines indicate the positions of two of the galactic spiral arms, according to various models. Click for a closer look! [Zucker et al. 2015]Zucker and collaborators began by using World Wide Telescope, a tool that facilitates visualization of multiple layers of data at a variety of scales, to search through Spitzer infrared data for additional structures like Nessie. Searching specifically along the predicted positions of galactic arms, they found 15 initial bone candidates.Next, the team obtained radial-velocity data for the

  16. Mineralized cartilage in the skeleton of chondrichthyan fishes.

    PubMed

    Dean, Mason N; Summers, Adam P

    2006-01-01

    The cartilaginous endoskeleton of chondrichthyan fishes (sharks, rays, and chimaeras) exhibits complex arrangements and morphologies of calcified tissues that vary with age, species, feeding behavior, and location in the body. Understanding of the development, evolutionary history and function of these tissue types has been hampered by the lack of a unifying terminology. In order to facilitate reciprocal illumination between disparate fields with convergent interests, we present levels of organization in which crystal orientation/size delimits three calcification types (areolar, globular, and prismatic) that interact in two distinct skeletal types, vertebral and tessellated cartilage. The tessellated skeleton is composed of small blocks (tesserae) of calcified cartilage (both prismatic and globular) overlying a core of unmineralized cartilage, while vertebral cartilage usually contains all three types of calcification.

  17. The oldest known primate skeleton and early haplorhine evolution.

    PubMed

    Ni, Xijun; Gebo, Daniel L; Dagosto, Marian; Meng, Jin; Tafforeau, Paul; Flynn, John J; Beard, K Christopher

    2013-06-06

    Reconstructing the earliest phases of primate evolution has been impeded by gaps in the fossil record, so that disagreements persist regarding the palaeobiology and phylogenetic relationships of the earliest primates. Here we report the discovery of a nearly complete and partly articulated skeleton of a primitive haplorhine primate from the early Eocene of China, about 55 million years ago, the oldest fossil primate of this quality ever recovered. Coupled with detailed morphological examination using propagation phase contrast X-ray synchrotron microtomography, our phylogenetic analysis based on total available evidence indicates that this fossil is the most basal known member of the tarsiiform clade. In addition to providing further support for an early dichotomy between the strepsirrhine and haplorhine clades, this new primate further constrains the age of divergence between tarsiiforms and anthropoids. It also strengthens the hypothesis that the earliest primates were probably diurnal, arboreal and primarily insectivorous mammals the size of modern pygmy mouse lemurs.

  18. Regulation of energy metabolism by the skeleton: osteocalcin and beyond.

    PubMed

    Ferron, Mathieu; Lacombe, Julie

    2014-11-01

    The skeleton has recently emerged as an endocrine organ implicated in the regulation of glucose and energy metabolism. This function of bone is mediated, at least in part, by osteocalcin, an osteoblast-derived protein acting as a hormone stimulating insulin sensitivity, insulin secretion and energy expenditure. Osteocalcin secretion and bioactivity is in turn regulated by several hormonal cues including insulin, leptin, the sympathetic nervous system and glucocorticoids. Recent findings support the notion that osteocalcin functions and regulations are conserved between mice and humans. Moreover, studies in mice suggest that osteocalcin could represent a viable therapeutic approach for the treatment of obesity and insulin resistance. In this review, we summarize the current knowledge on osteocalcin functions, its various modes of action and the mechanisms implicated in the control of this hormone.

  19. Visualization of the Protein Associations in the Erythrocyte Membrane Skeleton

    NASA Astrophysics Data System (ADS)

    Byers, Timothy J.; Branton, Daniel

    1985-09-01

    We have obtained clear images of the erythrocyte membrane skeleton from negatively stained preparations that originate directly from the intact cell but in which the spectrin meshwork is artificially spread to allow close inspection. Our procedure requires less than 2 min at 5 degrees C in phosphate buffers. We find 200-nm-long spectrin tetramers crosslinked by junctional complexes. Each junction contains a regular 37-nm rod, probably an actin oligomer of approximately 13 monomers. Densities appear at variable places in the meshwork but distinct globules occur with great frequency 78 nm from the spectrin tetramer's junctional insertion end, very close to the known binding site for ankyrin. Most frequently, five or six spectrin tetramers insert into each junction, producing a meshwork that displays remarkably regular long range order.

  20. Classification of pelvic ring fractures in skeletonized human remains.

    PubMed

    Báez-Molgado, Socorro; Bartelink, Eric J; Jellema, Lyman M; Spurlock, Linda; Sholts, Sabrina B

    2015-01-01

    Pelvic ring fractures are associated with high rates of mortality and thus can provide key information about circumstances surrounding death. These injuries can be particularly informative in skeletonized remains, yet difficult to diagnose and interpret. This study adapted a clinical system of classifying pelvic ring fractures according to their resultant degree of pelvic stability for application to gross human skeletal remains. The modified Tile criteria were applied to the skeletal remains of 22 individuals from the Cleveland Museum of Natural History and Universidad Nacional Autónoma de México that displayed evidence of pelvic injury. Because these categories are tied directly to clinical assessments concerning the severity and treatment of injuries, this approach can aid in the identification of manner and cause of death, as well as interpretations of possible mechanisms of injury, such as those typical in car-to-pedestrian and motor vehicle accidents. © 2014 American Academy of Forensic Sciences.

  1. Non-metric variation of the infracranial skeleton.

    PubMed Central

    Finnegan, M

    1978-01-01

    196 skeletons of known age, sex and rac from the Terry Collection were studied in order to document 30 non-metric infracranial traits. Each trait had the ability to be expressed bilaterally, although significant side dimorphism was not observed. Sex differences were statistically significant for some of the traits within a racial group, but these differences were not as pronounced as the differences generated by non-metric cranial traits in the same populations, and were not effective in all racial groups. In general, these infracranial traits show some age dependency when correlation statistics are used, but this dependency is lost when the more robust chi 2 statistic is used. These data suggest that infracranial non-metric traits may be superior to cranial non-metric traits for population comparisons. Infracranial traits may be more durable than cranial traits having regard to the nature of most archaeological material. PMID:632214

  2. Genetic Disorders of the Skeleton: A Developmental Approach

    PubMed Central

    Kornak, Uwe; Mundlos, Stefan

    2003-01-01

    Although disorders of the skeleton are individually rare, they are of clinical relevance because of their overall frequency. Many attempts have been made in the past to identify disease groups in order to facilitate diagnosis and to draw conclusions about possible underlying pathomechanisms. Traditionally, skeletal disorders have been subdivided into dysostoses, defined as malformations of individual bones or groups of bones, and osteochondrodysplasias, defined as developmental disorders of chondro-osseous tissue. In light of the recent advances in molecular genetics, however, many phenotypically similar skeletal diseases comprising the classical categories turned out not to be based on defects in common genes or physiological pathways. In this article, we present a classification based on a combination of molecular pathology and embryology, taking into account the importance of development for the understanding of bone diseases. PMID:12900795

  3. Simultaneous drag and flow measurements of Olympic skeleton athletes

    NASA Astrophysics Data System (ADS)

    Moon, Yae Eun; Digiulio, David; Peters, Steve; Wei, Timothy

    2009-11-01

    The Olympic sport of skeleton involves an athlete riding a small sled face first down a bobsled track at speeds up to 130 km/hr. In these races, the difference between gold and missing the medal stand altogether can be hundredths of a second per run. As such, reducing aerodynamic drag through proper body positioning is of first order importance. To better study the flow behavior and to improve the performance of the athletes, we constructed a static force balance system on a mock section of a bobsled track. Athlete and the sled are placed on the force balance system which is positioned at the exit of an open loop wind tunnel. Simultaneous drag force and DPIV velocity field measurements were made along with video recordings of body position to aid the athletes in determining their optimal aerodynamic body position.

  4. Reduction of absorbed doses in radiography of the facial skeleton

    SciTech Connect

    Julin, P.; Kraepelien, T.

    1984-11-01

    Radiation absorbed doses from radiography of the paranasal sinuses and the facial skeleton were measured with thermoluminescent dosimeters (TLD) on a phantom head using high-sensitivity screens in an Orbix stand. The entrance doses to the skin of the head ranged from 0.31 to 2.9 mGy per exposure. The absorbed dose from a full series of sinus exposures averaged 0.33 mGy for the oral mucous membrane, 0.33 mGy for the maxillary sinus mucous membrane, 0.11 MgY for the parotid gland, 0.15 MgY for the submandibular gland, 0.61 mGy for the eye lens, and 0.75 mGy for the thyroid gland region. A leaded soft collar adapted to the thyroid region reduced the thyroid doses by more than one order of magnitude, but also reduced the image field.

  5. The carbon-skeleton rearrangement in tropane alkaloid biosynthesis.

    PubMed

    Sandala, Gregory M; Smith, David M; Radom, Leo

    2008-08-13

    High-level quantum chemistry calculations have been performed to examine the carbon-skeleton rearrangement of the tropane alkaloid littorine to hyoscyamine. Two pathways involving radical and carbocation intermediates have been investigated in this regard, namely, stepwise (or fragmentation-recombination) and concerted. The fragmentation products are calculated to be of high energy for both the radical- and carbocation-based mechanisms (136.3 and 170.9 kJ mol(-1), respectively). Similarly, the rearrangement barrier for the radical-based concerted pathway is calculated to be quite high (135.6 kJ mol(-1)). In contrast, the carbocation-based concerted pathway is found to be associated with a relatively low barrier (47.4 kJ mol(-1)). The ionization energy of the substrate-derived radical 3a is calculated to be 7.01 eV, suggesting that its oxidation to generate the substrate-derived carbocation 3b ought to be facile. In an attempt to investigate how an enzyme might modulate the rearrangement barriers, the separate and combined influences of partially protonating the migrating group and partially deprotonating the spectator OH group of the substrate were investigated. Such interactions can lead to significant reductions in the rearrangement barrier for both the radical- and carbocation-based concerted pathways, although the carbocation pathway continues to have significantly lower energy requirements. Also, the relatively high (gas-phase) acidity of the OH group of the product-related carbocation 4b indicates that the direct formation of hyoscyamine aldehyde (6) is a highly exothermic process. Although we would not wish to rule out alternative possibilities, our calculations suggest that a concerted rearrangement mechanism involving carbocations constitutes a viable low-energy pathway for the carbon-skeleton rearrangement in tropane alkaloid biosynthesis.

  6. Technical aspects of double-skeletonized internal mammary artery grafting.

    PubMed

    Gurevitch, J; Kramer, A; Locker, C; Shapira, I; Paz, Y; Matsa, M; Mohr, R

    2000-03-01

    Bilateral internal mammary artery (IMA) grafting is performed to provide complete arterial myocardial revascularization with the intention of decreasing postoperative return of angina and the need for reoperation. We present here technical views of double-skeletonized IMA grafting, and evaluate its clinical outcome. Skeletonized IMA is harvested gently with scissors and silver clips, without use of cauterization, and embedded in a small syringe filled with papaverine. Three strategies for arterial revascularization were employed in 762 consecutive patients: (1) the cross arrangement (242 patients, 32%), where the in situ right internal mammary artery (RIMA) is used for the left anterior descending artery (LAD), in situ left internal mammary artery (LIMA) to circumflex marginal branches and the gastroepiploic artery for the right coronary artery (RCA); (2) the composite arrangement (476 patients, 62%), where free IMA is attached end-to-side to the other in situ IMA; and (3) the natural arrangement (44 patients, 6%), where the in situ RIMA is connected to the RCA and in situ LIMA to LAD. Mean age was 66 years (range 30 to 92). Two hundred ninety-two patients (38%) were older than 70, and 229 (30%) were diabetic. Operative mortality was 2.5% (n = 19). The mortality of urgent and elective cases was 1.2% (8 of 663), and that of emergency operation was 11% (11 of 99). There were 9 (1.2%) perioperative myocardial infarctions, and 10 patients (1.3%) sustained strokes. Sternal wound infection occurred in 14 (1.8%). The three strategies described here provide the surgeon with the versatility required for arterial revascularization with bilateral IMAs in most patients referred for coronary artery bypass grafting.

  7. Biogenesis of erythrocyte membrane skeleton in health and disease.

    PubMed

    Hanspal, M; Prchal, J T; Palek, J

    1993-05-01

    To study the biogenesis of red cell membrane skeleton at various stages of erythroid differentiation, we have chosen the following model systems: a) Rauscher erythroleukemia cell line representing the early stages of differentiation, b) Friend erythroleukemia cells, and c) in vitro cultured human erythroblasts. The latter two systems represent terminally differentiated erythroblasts. Using these model systems, we have shown asynchronous synthesis of membrane proteins during erythroid differentiation. At the early stages of erythroid development, the synthesis of spectrin, ankyrin and band 4.1 proteins is initiated before that of the band 3 protein. Following erythroid induction with erythropoietin and dimethylsulfoxide (DMSO), there is a dramatic increase in the synthesis of the band 3 protein without noticeable changes in the synthesis of other membrane proteins. This increase in band 3 synthesis is accompanied by increased stability and recruitment of the skeletal proteins into the membrane skeleton, leading to increased steady state levels. The progressive increase in band 3 synthesis continues during terminal maturation of erythroblasts. This is accompanied by increased stability and assembly of spectrin and ankyrin on the membrane, despite their reduced synthesis. These results point to a key role for the band 3 protein in anchoring and stabilizing these proteins into the permanent skeletal network. Finally, to detect defects of skeletal biosynthesis, we have extended these studies to a patient with severe hereditary spherocytosis characterized by a combined deficiency of spectrin and ankyrin. We have shown that this combined deficiency is a consequence of reduced ankyrin synthesis and mRNA content representing a thalassemia-like membrane protein mutation.

  8. Effects of heat and freeze on isolated erythrocyte submembrane skeletons.

    PubMed

    Ivanov, Ivan T; Paarvanova, Boyana K; Ivanov, Veselin; Smuda, Kathrin; Bäumler, Hans; Georgieva, Radostina

    2017-04-01

    In this study we heated insoluble residues, obtained after Triton-X-100 (0.1 v/v%) extraction of erythrocyte ghost membranes (EGMs). Specific heat capacity, electric capacitance and resistance, and optical transmittance (280 nm) sustained sharp changes at 49°C (TA) and 66°C (TC), the known denaturation temperatures of spectrin and band 3, respectively. The change at TA was selectively inhibited by diamide (1 mM) and taurine mustard (1 mM) while its inducing temperature was selectively decreased by formamide in full concert with the assumed involvement of spectrin denaturation. In the residues of EGMs, pretreated with 4,4'-diiso-thiocyanato stilbene-2,2'-disulfonic acid (DIDS), the change at TC was shifted from 66 to 78°C which indicated the involvement of band 3 denaturation. The freeze and rapid thaw of EGM residues resulted in a strong reduction of cooperativity of band 3 denaturation while the slow thaw completely eliminated the peak of this denaturation. These effects of freeze-thaw were prevented in residues obtained from DIDS-treated EGMs. The freeze-thaw of residues slightly affected spectrin denaturation at 49°C although an additional denaturation appeared at 55°C. The results indicate preserved molecular structure and dynamics of the membrane skeleton in Triton-X-100 extracts of EGMs. The freeze-thaw inflicted strong damage on band 3 and spectrin-actin skeleton of EGM extracts which is relevant to cryobiology, cryosurgery and cryopreservation of cells.

  9. The proteome of the insoluble Schistosoma mansoni eggshell skeleton.

    PubMed

    Dewalick, Saskia; Bexkens, Michiel L; van Balkom, Bas W M; Wu, Ya-Ping; Smit, Cornelis H; Hokke, Cornelis H; de Groot, Philip G; Heck, Albert J R; Tielens, Aloysius G M; van Hellemond, Jaap J

    2011-04-01

    In schistosomiasis, the majority of symptoms of the disease is caused by the eggs that are trapped in the liver. These eggs elicit an immune reaction that leads to the formation of granulomas. The eggshell, which is a rigid insoluble structure built from cross-linked proteins, is the site of direct interaction between the egg and the immune system. However, the exact protein composition of the insoluble eggshell was previously unknown. To identify the proteins of the eggshell of Schistosoma mansoni we performed LC-MS/MS analysis, immunostaining and amino acid analysis on eggshell fragments. For this, eggshell protein skeleton was prepared by thoroughly cleaning eggshells in a four-step stripping procedure of increasing strength including urea and SDS to remove all material that is not covalently linked to the eggshell itself, but is part of the inside of the egg, such as Reynold's layer, von Lichtenberg's envelope and the miracidium. We identified 45 proteins of which the majority are non-structural proteins and non-specific for eggs, but are house-keeping proteins that are present in large quantities in worms and miracidia. Some of these proteins are known to be immunogenic, such as HSP70, GST and enolase. In addition, a number of schistosome-specific proteins with unknown function and no homology to any known annotated protein were found to be incorporated in the eggshell. Schistosome-specific glycoconjugates were also shown to be present on the eggshell protein skeleton. This study also confirmed that the putative eggshell protein p14 contributes largely to the eggshell. Together, these results give new insights into eggshell composition as well as eggshell formation. Those proteins that are present at the site and time of eggshell formation are incorporated in the cross-linked eggshell and this cross-linking does no longer occur when the miracidium starts secreting proteins. Copyright © 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd

  10. Historic timber skeleton structures and the local seismic culture

    NASA Astrophysics Data System (ADS)

    Bostenaru, M.

    2009-04-01

    This presentation deals with the employment of timber skeleton structure and the local seismic culture. After the 1755 earthquake in the reconstruction of Lisbon a type of building with timber skeleton and masonry infill called "gaiola pombalina" was promoted, since this was designed to better resists earthquakes. "Gaiola" means cage, and it was also named after the Marques de Pombal who introduced it in the reconstruction following the earthquake. The „gaiola pombalina" presents a timber skeleton with Saint Andrew crosses in the interior walls with masonry infill and thick masonry load bearing walls loosing in thickness to the upper floors in the exterior walls. The masonry can fall out during earthquakes but the building remains staying given the interior timber skeleton. The type of buildings with timber structure and (masonry) infill behaved well in earthquakes in various parts of the earth, like Nepal (the dhaji dewary type), Pakistan, Turkey (the himiş type after the 1999 earthquake) [both latter types were researched by Langenbach, www.conservationtech.com and www.traditional-is-modern.net] and also in Germany after the 1356 earthquake (the Southern German subtype of Fachwerk). Also in Italy a subtype called "casa baraccata" was promoted in a construction code to a similar time (following the 1783 earthquake in Southern Italy, see Tobriner 1983) as that of the "gaiola pombalina", the time of the Baroque, when town planning acquired another status. Unlike at the "gaiola pombalina" the "casa baraccata" the timber skeleton is at the exterior walls. For this reason this type of buildings is considered to be an expression of the local seismic culture. However, this type of buildings is common also for areas where seismic risk is not an issue, like half-timbered in England and the northern subtype of Fachwerk in Northern Germany, and in some high seismic risk regions with mountains and timber resources like Romania is not spread. Given these premises the author

  11. The technical aspect of the gastroepiploic artery graft skeletonization with the harmonic scalpel: the samurai technique.

    PubMed

    Kamiya, Hiroyuki; Watanabe, Go; Tomita, Shigeyuki; Takemura, Hirofumi; Nagamine, Hiroshi; Nishida, Satoru

    2005-01-01

    A novel skeletonization technique using the scissors-type harmonic scalpel (Ethicon Endo-Surgery, Cincinnati, OH, USA) is presented. This "samurai technique," which uses the harmonic scalpel by frequently turning over the scissors, facilitates the handling of the gastroepiploic artery, enlarges the caliber size, and allows easy skeletonization without any vessel injury.

  12. Technetium-99m-methylene diphosphonate uptake in the fetal skeleton at 30 weeks gestation

    SciTech Connect

    McKenzie, A.F.; Budd, R.S.; Yang, C.

    1994-08-01

    Retention of {sup 99m}Tc-MDP in the fetal skeleton and placenta at 30 and 32 wk gestation was observed during bone scan examination of the maternal skeleton for staging of malignant tumors. The implications and significance of these observations are discussed. 8 refs., 2 figs., 1 tab.

  13. Biology Notes: How the Skeleton Functions in the Movement of Animals

    ERIC Educational Resources Information Center

    Worsley, C. J.

    1972-01-01

    Argues that the term skeleton is not a word denoting a structure but a word denoting a function--that of allowing animals the freedom of self-motivated purposive local motion. Indeed a skeleton is a necessary prerequisite for there to be locomotion at all.'' (Author/AL)

  14. Application of Skeleton Method in Interconnection of Cae Programs Used in Vehicle Design

    NASA Astrophysics Data System (ADS)

    Bucha, Jozef; Gavačová, Jana; Milesich, Tomáš

    2014-12-01

    This paper deals with the application of the skeleton method as the main element of interconnection of CAE programs involved in the process of vehicle design. This article focuses on the utilization of the skeleton method for mutual connection of CATIA V5 and ADAMS/CAR. Both programs can be used simultaneously during various stages of vehicle design.

  15. Biology Notes: How the Skeleton Functions in the Movement of Animals

    ERIC Educational Resources Information Center

    Worsley, C. J.

    1972-01-01

    Argues that the term skeleton is not a word denoting a structure but a word denoting a function--that of allowing animals the freedom of self-motivated purposive local motion. Indeed a skeleton is a necessary prerequisite for there to be locomotion at all.'' (Author/AL)

  16. Profile of a Successful Principal.

    ERIC Educational Resources Information Center

    Johnson, Thais

    1985-01-01

    Dick Curland, principal of Valley View Elementary School in Portland, Connecticut, enhances his effectiveness by maintaining high visibility, communicating clearly and frequently with others, supporting his staff, and developing positive personal contact with individual students. (PGD)

  17. A Salary Formula for Principals

    ERIC Educational Resources Information Center

    Gilbert, Michael B.

    1975-01-01

    When each administrative salary contract is negotiated individually, inequities creep in, many administrators feel. This article suggests a formula for determining principals' salaries based on education and experience, days of work, and responsibilities. (Editor)

  18. Aquarius Principal Investigator with Observatory

    NASA Image and Video Library

    2011-04-19

    NASA Aquarius Principal Investigator Gary Lagerloef photographed in front of the Aquarius/SAC-D satellite observatory as it is being readied for transportation from Brazil to Vandenberg Air Force Base in California for a June 2011 launch.

  19. Ossification heterochrony in the therian postcranial skeleton and the marsupial-placental dichotomy.

    PubMed

    Weisbecker, Vera; Goswami, Anjali; Wroe, Stephen; Sánchez-Villagra, Marcelo R

    2008-08-01

    Postcranial ossification sequences in 24 therian mammals and three outgroup taxa were obtained using clear staining and computed tomography to test the hypothesis that the marsupial forelimb is developmentally accelerated, and to assess patterns of therian postcranial ossification. Sequence rank variation of individual bones, phylogenetic analysis, and algorithm-based heterochrony optimization using event pairs were employed. Phylogenetic analysis only recovers Marsupialia, Australidelphia, and Eulipotyphla. Little heterochrony is found within marsupials and placentals. However, heterochrony was observed between marsupials and placentals, relating to late ossification in hind limb long bones and early ossification of the anterior axial skeleton. Also, ossification rank position of marsupial forelimb and shoulder girdle elements is more conservative than that of placentals; in placentals the hind limb area is more conservative. The differing ossification patterns in marsupials can be explained with a combination of muscular strain and energy allocation constraints, both resulting from the requirement of active movement of the altricial marsupial neonates toward the teat. Peramelemorphs, which are comparatively passive at birth and include species with relatively derived forelimbs, differ little from other marsupials in ossification sequence. This suggests that ossification heterochrony in marsupials is not directly related to diversity constraints on the marsupial forelimb and shoulder girdle.

  20. A Human Activity Recognition System Based on Dynamic Clustering of Skeleton Data

    PubMed Central

    Manzi, Alessandro; Dario, Paolo; Cavallo, Filippo

    2017-01-01

    Human activity recognition is an important area in computer vision, with its wide range of applications including ambient assisted living. In this paper, an activity recognition system based on skeleton data extracted from a depth camera is presented. The system makes use of machine learning techniques to classify the actions that are described with a set of a few basic postures. The training phase creates several models related to the number of clustered postures by means of a multiclass Support Vector Machine (SVM), trained with Sequential Minimal Optimization (SMO). The classification phase adopts the X-means algorithm to find the optimal number of clusters dynamically. The contribution of the paper is twofold. The first aim is to perform activity recognition employing features based on a small number of informative postures, extracted independently from each activity instance; secondly, it aims to assess the minimum number of frames needed for an adequate classification. The system is evaluated on two publicly available datasets, the Cornell Activity Dataset (CAD-60) and the Telecommunication Systems Team (TST) Fall detection dataset. The number of clusters needed to model each instance ranges from two to four elements. The proposed approach reaches excellent performances using only about 4 s of input data (~100 frames) and outperforms the state of the art when it uses approximately 500 frames on the CAD-60 dataset. The results are promising for the test in real context. PMID:28492486

  1. Principal Fibrations from Noncommutative Spheres

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Suijlekom, Walter Van

    2005-11-01

    We construct noncommutative principal fibrations Sθ7→Sθ4 which are deformations of the classical SU(2) Hopf fibration over the four sphere. We realize the noncommutative vector bundles associated to the irreducible representations of SU(2) as modules of coequivariant maps and construct corresponding projections. The index of Dirac operators with coefficients in the associated bundles is computed with the Connes-Moscovici local index formula. "The algebra inclusion is an example of a not-trivial quantum principal bundle."

  2. Histology of “placoderm” dermal skeletons: Implications for the nature of the ancestral gnathostome

    PubMed Central

    Giles, Sam; Rücklin, Martin

    2013-01-01

    Abstract The vertebrate dermal skeleton has long been interpreted to have evolved from a primitive condition exemplified by chondrichthyans. However, chondrichthyans and osteichthyans evolved from an ancestral gnathostome stem‐lineage in which the dermal skeleton was more extensively developed. To elucidate the histology and skeletal structure of the gnathostome crown‐ancestor we conducted a histological survey of the diversity of the dermal skeleton among the placoderms, a diverse clade or grade of early jawed vertebrates. The dermal skeleton of all placoderms is composed largely of a cancellar architecture of cellular dermal bone, surmounted by dermal tubercles in the most ancestral clades, including antiarchs. Acanthothoracids retain an ancestral condition for the dermal skeleton, and we record its secondary reduction in antiarchs. We also find that mechanisms for remodeling bone and facilitating different growth rates between adjoining plates are widespread throughout the placoderms. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc. PMID:23378262

  3. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification.

    PubMed

    Tambutté, E; Venn, A A; Holcomb, M; Segonds, N; Techer, N; Zoccola, D; Allemand, D; Tambutté, S

    2015-06-12

    Ocean acidification causes corals to calcify at reduced rates, but current understanding of the underlying processes is limited. Here, we conduct a mechanistic study into how seawater acidification alters skeletal growth of the coral Stylophora pistillata. Reductions in colony calcification rates are manifested as increases in skeletal porosity at lower pH, while linear extension of skeletons remains unchanged. Inspection of the microstructure of skeletons and measurements of pH at the site of calcification indicate that dissolution is not responsible for changes in skeletal porosity. Instead, changes occur by enlargement of corallite-calyxes and thinning of associated skeletal elements, constituting a modification in skeleton architecture. We also detect increases in the organic matrix protein content of skeletons formed under lower pH. Overall, our study reveals that seawater acidification not only causes decreases in calcification, but can also cause morphological change of the coral skeleton to a more porous and potentially fragile phenotype.

  4. Shape similarity comparison of protein CPK models based on improved L₁-medial skeleton.

    PubMed

    Qin, S W; Li, Z; Jin, Y; Zhang, S P

    2014-01-01

    We propose a new method to analyse the similarity of protein CPK models. In the proposed method we first construct the skeleton of protein models by an improved L1-medial skeleton extraction. The skeleton information is then used to form a local radius descriptor. Finally, the shape similarity of protein models is compared by using the local radius descriptor based on the absolute degree of grey incidence. Experimental results show that the improved L1-medial skeleton of protein models can describe the shapes of the protein models well. The local descriptor based on the skeleton combined with the absolute degree of grey incidence shows satisfactory performance for comparing the shape similarity of protein CPK models.

  5. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification

    PubMed Central

    Tambutté, E.; Venn, A. A.; Holcomb, M.; Segonds, N.; Techer, N.; Zoccola, D.; Allemand, D.; Tambutté, S.

    2015-01-01

    Ocean acidification causes corals to calcify at reduced rates, but current understanding of the underlying processes is limited. Here, we conduct a mechanistic study into how seawater acidification alters skeletal growth of the coral Stylophora pistillata. Reductions in colony calcification rates are manifested as increases in skeletal porosity at lower pH, while linear extension of skeletons remains unchanged. Inspection of the microstructure of skeletons and measurements of pH at the site of calcification indicate that dissolution is not responsible for changes in skeletal porosity. Instead, changes occur by enlargement of corallite-calyxes and thinning of associated skeletal elements, constituting a modification in skeleton architecture. We also detect increases in the organic matrix protein content of skeletons formed under lower pH. Overall, our study reveals that seawater acidification not only causes decreases in calcification, but can also cause morphological change of the coral skeleton to a more porous and potentially fragile phenotype. PMID:26067341

  6. A Parametric k-Means Algorithm

    PubMed Central

    Tarpey, Thaddeus

    2007-01-01

    Summary The k points that optimally represent a distribution (usually in terms of a squared error loss) are called the k principal points. This paper presents a computationally intensive method that automatically determines the principal points of a parametric distribution. Cluster means from the k-means algorithm are nonparametric estimators of principal points. A parametric k-means approach is introduced for estimating principal points by running the k-means algorithm on a very large simulated data set from a distribution whose parameters are estimated using maximum likelihood. Theoretical and simulation results are presented comparing the parametric k-means algorithm to the usual k-means algorithm and an example on determining sizes of gas masks is used to illustrate the parametric k-means algorithm. PMID:17917692

  7. A Parametric k-Means Algorithm.

    PubMed

    Tarpey, Thaddeus

    2007-04-01

    The k points that optimally represent a distribution (usually in terms of a squared error loss) are called the k principal points. This paper presents a computationally intensive method that automatically determines the principal points of a parametric distribution. Cluster means from the k-means algorithm are nonparametric estimators of principal points. A parametric k-means approach is introduced for estimating principal points by running the k-means algorithm on a very large simulated data set from a distribution whose parameters are estimated using maximum likelihood. Theoretical and simulation results are presented comparing the parametric k-means algorithm to the usual k-means algorithm and an example on determining sizes of gas masks is used to illustrate the parametric k-means algorithm.

  8. Regional principal color based saliency detection.

    PubMed

    Lou, Jing; Ren, Mingwu; Wang, Huan

    2014-01-01

    Saliency detection is widely used in many visual applications like image segmentation, object recognition and classification. In this paper, we will introduce a new method to detect salient objects in natural images. The approach is based on a regional principal color contrast modal, which incorporates low-level and medium-level visual cues. The method allows a simple computation of color features and two categories of spatial relationships to a saliency map, achieving higher F-measure rates. At the same time, we present an interpolation approach to evaluate resulting curves, and analyze parameters selection. Our method enables the effective computation of arbitrary resolution images. Experimental results on a saliency database show that our approach produces high quality saliency maps and performs favorably against ten saliency detection algorithms.

  9. Regional Principal Color Based Saliency Detection

    PubMed Central

    Lou, Jing; Ren, Mingwu; Wang, Huan

    2014-01-01

    Saliency detection is widely used in many visual applications like image segmentation, object recognition and classification. In this paper, we will introduce a new method to detect salient objects in natural images. The approach is based on a regional principal color contrast modal, which incorporates low-level and medium-level visual cues. The method allows a simple computation of color features and two categories of spatial relationships to a saliency map, achieving higher F-measure rates. At the same time, we present an interpolation approach to evaluate resulting curves, and analyze parameters selection. Our method enables the effective computation of arbitrary resolution images. Experimental results on a saliency database show that our approach produces high quality saliency maps and performs favorably against ten saliency detection algorithms. PMID:25379960

  10. Principal Curves on Riemannian Manifolds.

    PubMed

    Hauberg, Soren

    2016-09-01

    Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimizes a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend to imply that the methods only work well when the manifold is mostly flat within the support of the generating distribution. We argue that instead of generalizing linear Euclidean models, it is more fruitful to generalize non-linear Euclidean models. Specifically, we extend the classic Principal Curves from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed model is simple to compute and avoids many of the pitfalls of traditional geodesic approaches. We empirically demonstrate the effectiveness of the Riemannian principal curves on several manifolds and datasets.

  11. Reflections on My First Year as Principal.

    ERIC Educational Resources Information Center

    Kealey, Robert J., Comp.

    This book grew out of the first principals' academy for beginning principals, hosted by the National Catholic Educational Association. Almost 60 principals, all in their first or second year as principals of Catholic elementary/middle schools, from all over the U.S. attended the program. At the conclusion of the academy, the principals wrote brief…

  12. Perceived Induction Needs for Beginning Principals

    ERIC Educational Resources Information Center

    Wright, Jason; Siegrist, Gerald; Pate, James; Monetti, David; Raiford, Simmie

    2009-01-01

    This study attempted to determine the perceptions of beginning principals regarding their need for induction experiences and the relationship of principal responsibilities to those perceived induction needs. Beginning principals were denied as principals in their first through third years as a principal in a school. The study further examined…

  13. Dual embryonic origin and patterning of the pharyngeal skeleton in the axolotl (Ambystoma mexicanum).

    PubMed

    Sefton, Elizabeth M; Piekarski, Nadine; Hanken, James

    2015-01-01

    The impressive morphological diversification of vertebrates was achieved in part by innovation and modification of the pharyngeal skeleton. Extensive fate mapping in amniote models has revealed a primarily cranial neural crest derivation of the pharyngeal skeleton. Although comparable fate maps of amphibians produced over several decades have failed to document a neural crest derivation of ventromedial elements in these vertebrates, a recent report provides evidence of a mesodermal origin of one of these elements, basibranchial 2, in the axolotl. We used a transgenic labeling protocol and grafts of labeled cells between GFP+ and white embryos to derive a fate map that describes contributions of both cranial neural crest and mesoderm to the axolotl pharyngeal skeleton, and we conducted additional experiments that probe the mechanisms that underlie mesodermal patterning. Our fate map confirms a dual embryonic origin of the pharyngeal skeleton in urodeles, including derivation of basibranchial 2 from mesoderm closely associated with the second heart field. Additionally, heterotopic transplantation experiments reveal lineage restriction of mesodermal cells that contribute to pharyngeal cartilage. The mesoderm-derived component of the pharyngeal skeleton appears to be particularly sensitive to retinoic acid (RA): administration of exogenous RA leads to loss of the second basibranchial, but not the first. Neural crest was undoubtedly critical in the evolution of the vertebrate pharyngeal skeleton, but mesoderm may have played a central role in forming ventromedial elements, in particular. When and how many times during vertebrate phylogeny a mesodermal contribution to the pharyngeal skeleton evolved remain to be resolved. © 2015 Wiley Periodicals, Inc.

  14. Quantifying the deformation of the red blood cell skeleton in shear flow

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Zhu, Qiang

    2012-02-01

    To quantitatively predict the response of red blood cell (RBC) membrane in shear flow, we carried out multiphysics simulations by coupling a three-level multiscale approach of RBC membranes with a Boundary Element Method (BEM) for surrounding flows. Our multiscale approach includes a model of spectrins with the domain unfolding feature, a molecular-based model of the junctional complex with detailed protein connectivity and a whole cell Finite Element Method (FEM) model with the bilayer-skeleton friction derived from measured transmembrane protein diffusivity based on the Einstein-Stokes relation. Applying this approach, we investigated the bilayer-skeleton slip and skeleton deformation of healthy RBCs and RBCs with hereditary spherocytosis anemia during tank-treading motion. Compared with healthy cells, cells with hereditary spherocytosis anemia sustain much larger skeleton-bilayer slip and area deformation of the skeleton due to deficiency of transmembrane proteins. This leads to extremely low skeleton density and large bilayer-skeleton interaction force, both of which may cause bilayer loss. This finding suggests a possible mechanism of the development of hereditary spherocytosis anemia.

  15. The Principal and the Law. Elementary Principal Series No. 7.

    ERIC Educational Resources Information Center

    Doverspike, David E.; Cone, W. Henry

    Developments over the past 25 years in school-related legal issues in elementary schools have significantly changed the principal's role. In 1975, a decision of the U.S. Supreme Court established three due-process guidelines for short-term suspension. The decision requires student notification of charges, explanation of evidence, and an informal…

  16. Principal Leadership and Organizational Commitment: The Principal Must Deliver.

    ERIC Educational Resources Information Center

    Tarter, C. John; And Others

    1989-01-01

    Theoretically, schools led by principals providing structure, resources, consideration, useful influence, and professional support in an even-handed, noncontrolling manner should be work places that elicit teacher commitment. This hypothesis was tested using a sample of 72 New Jersey secondary schools. Close control blunts teacher commitment.…

  17. "Successful" Principals: A Contested Notion for Superintendents and Principals

    ERIC Educational Resources Information Center

    Scribner, Samantha M. Paredes; Crow, Gary M.; Lopez, Gerardo R.; Murtadha, Khaula

    2011-01-01

    The notion of "success" is narrowly defined and appropriated within an educational context. Typically limited to objective measures of organizational productivity, effectiveness, and efficiency, "successful" principal practices, we argue, engender action and attention to a broader array of issues and interrelationships. In this study, we conducted…

  18. Principal Concerns: Addressing Statewide Principal Pipelines with Data and Strategy

    ERIC Educational Resources Information Center

    Campbell, Christine; Gross, Bethany

    2012-01-01

    Discussions about human capital and school improvement typically center on teachers, not administrators, and that's a mistake. Principals, who are responsible for selecting and developing the teachers they know are so important, are a critical driver of school success. So it is imperative that states do everything they can to find, deploy, and…

  19. "Successful" Principals: A Contested Notion for Superintendents and Principals

    ERIC Educational Resources Information Center

    Scribner, Samantha M. Paredes; Crow, Gary M.; Lopez, Gerardo R.; Murtadha, Khaula

    2011-01-01

    The notion of "success" is narrowly defined and appropriated within an educational context. Typically limited to objective measures of organizational productivity, effectiveness, and efficiency, "successful" principal practices, we argue, engender action and attention to a broader array of issues and interrelationships. In this study, we conducted…

  20. Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton.

    PubMed

    Koga, Hiroyuki; Fujitani, Haruka; Morino, Yoshiaki; Miyamoto, Norio; Tsuchimoto, Jun; Shibata, Tomoko F; Nozawa, Masafumi; Shigenobu, Shuji; Ogura, Atsushi; Tachibana, Kazunori; Kiyomoto, Masato; Amemiya, Shonan; Wada, Hiroshi

    2016-01-01

    Over the course of evolution, the acquisition of novel structures has ultimately led to wide variation in morphology among extant multicellular organisms. Thus, the origins of genetic systems for new morphological structures are a subject of great interest in evolutionary biology. The larval skeleton is a novel structure acquired in some echinoderm lineages via the activation of the adult skeletogenic machinery. Previously, VEGF signaling was suggested to have played an important role in the acquisition of the larval skeleton. In the present study, we compared expression patterns of Alx genes among echinoderm classes to further explore the factors involved in the acquisition of a larval skeleton. We found that the alx1 gene, originally described as crucial for sea urchin skeletogenesis, may have also played an essential role in the evolution of the larval skeleton. Unlike those echinoderms that have a larval skeleton, we found that alx1 of starfish was barely expressed in early larvae that have no skeleton. When alx1 overexpression was induced via injection of alx1 mRNA into starfish eggs, the expression patterns of certain genes, including those possibly involved in skeletogenesis, were altered. This suggested that a portion of the skeletogenic program was induced solely by alx1. However, we observed no obvious external phenotype or skeleton. We concluded that alx1 was necessary but not sufficient for the acquisition of the larval skeleton, which, in fact, requires several genetic events. Based on these results, we discuss how the larval expression of alx1 contributed to the acquisition of the larval skeleton in the putative ancestral lineage of echinoderms.

  1. Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton

    PubMed Central

    Koga, Hiroyuki; Fujitani, Haruka; Morino, Yoshiaki; Miyamoto, Norio; Tsuchimoto, Jun; Shibata, Tomoko F.; Nozawa, Masafumi; Shigenobu, Shuji; Ogura, Atsushi; Tachibana, Kazunori; Kiyomoto, Masato; Amemiya, Shonan; Wada, Hiroshi

    2016-01-01

    Over the course of evolution, the acquisition of novel structures has ultimately led to wide variation in morphology among extant multicellular organisms. Thus, the origins of genetic systems for new morphological structures are a subject of great interest in evolutionary biology. The larval skeleton is a novel structure acquired in some echinoderm lineages via the activation of the adult skeletogenic machinery. Previously, VEGF signaling was suggested to have played an important role in the acquisition of the larval skeleton. In the present study, we compared expression patterns of Alx genes among echinoderm classes to further explore the factors involved in the acquisition of a larval skeleton. We found that the alx1 gene, originally described as crucial for sea urchin skeletogenesis, may have also played an essential role in the evolution of the larval skeleton. Unlike those echinoderms that have a larval skeleton, we found that alx1 of starfish was barely expressed in early larvae that have no skeleton. When alx1 overexpression was induced via injection of alx1 mRNA into starfish eggs, the expression patterns of certain genes, including those possibly involved in skeletogenesis, were altered. This suggested that a portion of the skeletogenic program was induced solely by alx1. However, we observed no obvious external phenotype or skeleton. We concluded that alx1 was necessary but not sufficient for the acquisition of the larval skeleton, which, in fact, requires several genetic events. Based on these results, we discuss how the larval expression of alx1 contributed to the acquisition of the larval skeleton in the putative ancestral lineage of echinoderms. PMID:26866800

  2. MRI of enthesitis of the appendicular skeleton in spondyloarthritis

    PubMed Central

    Eshed, Iris; Bollow, Matthias; McGonagle, Dennis G; Tan, Ai Lyn; Althoff, Christian E; Asbach, Patrick; Hermann, Kay‐Geert A

    2007-01-01

    Entheses are sites where tendons, ligaments, joint capsules or fascia attach to bone. Inflammation of the entheses (enthesitis) is a well‐known hallmark of spondyloarthritis (SpA). As entheses are associated with adjacent, functionally related structures, the concepts of an enthesis organ and functional entheses have been proposed. This is important in interpreting imaging findings in entheseal‐related diseases. Conventional radiographs and CT are able to depict the chronic changes associated with enthesitis but are of very limited use in early disease. In contrast, MRI is sensitive for detecting early signs of enthesitis and can evaluate both soft‐tissue changes and intraosseous abnormalities of active enthesitis. It is therefore useful for the early diagnosis of enthesitis‐related arthropathies and monitoring therapy. Current knowledge and typical MRI features of the most commonly involved entheses of the appendicular skeleton in patients with SpA are reviewed. The MRI appearances of inflammatory and degenerative enthesopathy are described. New options for imaging enthesitis, including whole‐body MRI and high‐resolution microscopy MRI, are briefly discussed. PMID:17526551

  3. Novel nonsecosteroidal VDR agonists with phenyl-pyrrolyl pentane skeleton.

    PubMed

    Shen, Wei; Xue, Jingwei; Zhao, Zekai; Zhang, Can

    2013-11-01

    In order to find the vitamin D receptor (VDR) ligand whose VDR agonistic activity is separated from the calcemic activity sufficiently, novel nonsecosteroidal analogs with phenyl-pyrrolyl pentane skeleton were synthesized and evaluated for the VDR binding affinity, antiproliferative activity in vitro and serum calcium raising ability in vivo (tacalcitol used as control). Among them, several compounds showed varying degrees of VDR agonistic and growth inhibition activities of the tested cell lines. The most effective compound 2g (EC₅₀: 1.06 nM) exhibited stronger VDR agonistic activity than tacalcitol (EC₅₀: 7.05 nM), inhibited the proliferations of HaCaT and MCF-7 cells with IC₅₀ of 2.06 μM and 0.307 μM (tacalcitol: 2.07 μM and 0.057 μM) and showed no significant effect on serum calcium. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Ocean acidification causes structural deformities in juvenile coral skeletons.

    PubMed

    Foster, Taryn; Falter, James L; McCulloch, Malcolm T; Clode, Peta L

    2016-02-01

    Rising atmospheric CO2 is causing the oceans to both warm and acidify, which could reduce the calcification rates of corals globally. Successful coral recruitment and high rates of juvenile calcification are critical to the replenishment and ultimate viability of coral reef ecosystems. Although elevated Pco2 (partial pressure of CO2) has been shown to reduce the skeletal weight of coral recruits, the structural changes caused by acidification during initial skeletal deposition are unknown. We show, using high-resolution three-dimensional x-ray microscopy, that ocean acidification (Pco2 ~900 μatm, pH ~7.7) not only causes reduced overall mineral deposition but also a deformed and porous skeletal structure in newly settled coral recruits. In contrast, elevated temperature (+3°C) had little effect on skeletal formation except to partially mitigate the effects of elevated Pco2. The striking structural deformities we observed show that new recruits are at significant risk, being unable to effectively build their skeletons in the Pco2 conditions predicted to occur for open ocean surface waters under a "business-as-usual" emissions scenario [RCP (representative concentration pathway) 8.5] by the year 2100.

  5. Hyperostosis frontalis interna: criteria for sexing and aging a skeleton.

    PubMed

    May, Hila; Peled, Nathan; Dar, Gali; Cohen, Haim; Abbas, Janan; Medlej, Bahaa; Hershkovitz, Israel

    2011-09-01

    Estimation of sex and age in skeletons is essential in anthropological and forensic medicine investigations. The aim of the current study was to examine the potential of hyperostosis frontalis interna (HFI) as a criterion for determining sex and age in forensic cases. Macroscopic examination of the inner aspect of the frontal bone of 768 skulls (326 males and 442 females) aged 1 to 103, which had undergone a head computerized tomography scan, was carried out using the volume rendering technique. HFI was divided into two categories: minor and major. HFI is a sex- and age-dependent phenomena, with females manifesting significantly higher prevalence than males (p<0.01). In both females and males, prevalence of HFI increases as age increases (p<0.01). We present herein the probabilities of designating an unknown skull to a specific sex and age cohort according to the presence of HFI (standardized to age distribution in an Israeli population). Moreover, we present the probability of an individual belonging to a specific sex or age cohort according to age or sex (respectively) and severity of HFI. We suggest a valid, reliable, and easy method for sex and age identification of unknown skulls.

  6. Ocean acidification causes structural deformities in juvenile coral skeletons

    PubMed Central

    Foster, Taryn; Falter, James L.; McCulloch, Malcolm T.; Clode, Peta L.

    2016-01-01

    Rising atmospheric CO2 is causing the oceans to both warm and acidify, which could reduce the calcification rates of corals globally. Successful coral recruitment and high rates of juvenile calcification are critical to the replenishment and ultimate viability of coral reef ecosystems. Although elevated Pco2 (partial pressure of CO2) has been shown to reduce the skeletal weight of coral recruits, the structural changes caused by acidification during initial skeletal deposition are unknown. We show, using high-resolution three-dimensional x-ray microscopy, that ocean acidification (Pco2 ~900 μatm, pH ~7.7) not only causes reduced overall mineral deposition but also a deformed and porous skeletal structure in newly settled coral recruits. In contrast, elevated temperature (+3°C) had little effect on skeletal formation except to partially mitigate the effects of elevated Pco2. The striking structural deformities we observed show that new recruits are at significant risk, being unable to effectively build their skeletons in the Pco2 conditions predicted to occur for open ocean surface waters under a “business-as-usual” emissions scenario [RCP (representative concentration pathway) 8.5] by the year 2100. PMID:26989776

  7. Origin and genetic evolution of the vertebrate skeleton.

    PubMed

    Wada, Hiroshi

    2010-02-01

    The current understanding of the origin and evolution of the genetic cassette for the vertebrate skeletal system is reviewed. Molecular phylogenetic analyses of fibrillar collagen genes, which encode the main component of both cartilage and mineralized bone, suggest that genome duplications in vertebrate ancestors were essential for producing distinct collagen fibers for cartilage and mineralized bone. Several data Indicate co-expression of the ancestral copy of fibrillar collagen with the SoxE and Runx transcription factors. Therefore, the genetic cassette may have already existed in protochordate ancestors, and may operate in the development of the pharyngeal gill skeleton. Accompanied by genome duplications in vertebrate ancestors, this genetic cassette may have also been duplicated and co-opted for cartilage and bone. Subsequently, the genetic cassette for cartilage recruited novel genetic material via domain shuffling. Aggrecan, acquired by means of domain shuffling, performs an essential role in cartilage as a shock absorber. In contrast, the cassette for bone recruited new genetic material produced by tandem duplication of the SPARC/osteonectin genes. Some of the duplicated copies of SPARC/osteonectin became secretory Cabinding phosphoproteins (SCPPs) performing a central role in mineralization by regulating the calcium phosphate concentration. Comparative genome analysis revealed similar molecular evolutionary histories for the genetic cassettes for cartilage and bone, namely duplication of the ancestral genetic cassette and recruitment of novel genetic material.

  8. The effect of chemotherapy on the growing skeleton.

    PubMed

    van Leeuwen, B L; Kamps, W A; Jansen, H W; Hoekstra, H J

    2000-10-01

    With the increasing use of high dose (poly)chemotherapy schedules in the treatment of childhood cancer it is particularly important to know the adverse effects of these treatments. Growth is a complex mechanism affected not only by chemotherapy but also by the malignancy itself as well as nutritional status, the use of corticosteroids and (cranial) radiation. In vitro and animal studies are often the most useful in determining the effect of a single chemotherapeutic agent on the growing skeleton. In vitro studies have shown doxorubicin, actinomycin D and cisplatin to have a direct effect on growth plate chondrocytes that in animals results in decreased growth and final height. Clinical studies with multiagent chemotherapy have demonstrated that antimetabolites decrease bone growth and final height. Childhood cancer survivors are at risk of a reduced bone mineral density, mainly due to methotrexate, ifosfamide and corticosteroids. This reduced bone mineral density persists into adult life and may increase bone fracture risk at an older age. Copyright 2000 Harcourt Publishers Ltd.

  9. Effects of alkyl substitutions of xanthine skeleton on bronchodilation.

    PubMed

    Sakai, R; Konno, K; Yamamoto, Y; Sanae, F; Takagi, K; Hasegawa, T; Iwasaki, N; Kakiuchi, M; Kato, H; Miyamoto, K

    1992-10-30

    Structure-activity relationships in a series of 1,3,7-trialkyl-xanthine were studied with guinea pigs. Relaxant actions in the tracheal muscle were increased with alkyl chain length at the 1- and 3-positions of the xanthine skeleton, but decreased by alkylation at the 7-position. Positive chronotropic actions in the right atrium were potentiated with 3-alkyl chain length but tended to decrease with 1-alkylation and diminish by 7-substitution. Consequently, while the 1- and 3-substitutions were equally important for the tracheal smooth muscle relaxation, the substitution at the 1-position was more important than the 3-substitution for bronchoselectivity. The 7-alkylation may be significant to cancel heart stimulation. There were good correlations between the smooth muscle relaxant action and the cyclic AMP-PDE inhibitory activity in 3-substituents and the affinity for adenosine (A1) receptors in 1-, 3-, and 7-substituents. This suggests that not only the cyclic AMP-PDE inhibitory activity but also the adenosine antagonistic activity is important in the bronchodilatory effects of alkylxanthines. Among these xanthine derivatives, 1-butyl-3-propylxanthine and its 7-methylated derivative showed high bronchoselectivity in the in vitro and in vivo experiments compared to theophylline and enprofylline and may be new candidates for bronchodilator.

  10. Developmental mechanism of the periodic membrane skeleton in axons

    PubMed Central

    Zhong, Guisheng; He, Jiang; Zhou, Ruobo; Lorenzo, Damaris; Babcock, Hazen P; Bennett, Vann; Zhuang, Xiaowei

    2014-01-01

    Actin, spectrin, and associated molecules form a periodic sub-membrane lattice structure in axons. How this membrane skeleton is developed and why it preferentially forms in axons are unknown. Here, we studied the developmental mechanism of this lattice structure. We found that this structure emerged early during axon development and propagated from proximal regions to distal ends of axons. Components of the axon initial segment were recruited to the lattice late during development. Formation of the lattice was regulated by the local concentration of βII spectrin, which is higher in axons than in dendrites. Increasing the dendritic concentration of βII spectrin by overexpression or by knocking out ankyrin B induced the formation of the periodic structure in dendrites, demonstrating that the spectrin concentration is a key determinant in the preferential development of this structure in axons and that ankyrin B is critical for the polarized distribution of βII spectrin in neurites. DOI: http://dx.doi.org/10.7554/eLife.04581.001 PMID:25535840

  11. The many facets of PPARγ: novel insights for the skeleton

    PubMed Central

    Kawai, Masanobu; Sousa, Kyle M.; MacDougald, Ormond A.

    2010-01-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) is a nuclear receptor that functions as a master transcriptional regulator of adipocyte conversion. During PPARγ transactivation, multiple signaling pathways interact with one another, leading to the differentiation of both white and brown adipose tissue. Ligand activation of the PPARγ-RXR heterodimer complex also enhances insulin sensitivity, and this property has been heavily exploited to develop effective pharmacotherapies for the treatment of type 2 diabetes mellitus. PPARγ is also expressed in stem cells and plays a critical role in mesenchymal stromal cell differentiation and lineage determination events. The many facets of PPARγ activity within the bone marrow niche where adipocytes, osteoblasts, and hematopoietic cells reside make this molecule an attractive target for pharmacological investigation. Additional findings that osteoblasts can alter energy metabolism by influencing adiposity and insulin sensitivity, and observations of decreased bone turnover in diabetic subjects, underscore the contribution of the skeleton to systemic energy requirements. Studies into the role of PPARγ in skeletal acquisition and maintenance may lead to a better understanding of the molecular mechanisms governing stromal cell differentiation in the mesenchyme compartment and whether PPARγ activity can be manipulated to benefit skeletal remodeling events and energy metabolism. PMID:20407009

  12. The life cycle of chondrocytes in the developing skeleton.

    PubMed

    Shum, Lillian; Nuckolls, Glen

    2002-01-01

    Cartilage serves multiple functions in the developing embryo and in postnatal life. Genetic mutations affecting cartilage development are relatively common and lead to skeletal malformations, dysfunction or increased susceptibility to disease or injury. Characterization of these mutations and investigation of the molecular pathways in which these genes function have contributed to an understanding of the mechanisms regulating skeletal patterning, chondrogenesis, endochondral ossification and joint formation. Extracellular growth and differentiation factors including bone morphogenetic proteins, fibroblast growth factors, parathyroid hormone-related peptide, extracellular matrix components, and members of the hedgehog and Wnt families provide important signals for the regulation of cell proliferation, differentiation and apoptosis. Transduction of these signals within the developing mesenchymal cells and chondrocytes results in changes in gene expression mediated by transcription factors including Smads, Msx2, Sox9, signal transducer and activator of transcription (STAT), and core-binding factor alpha 1. Further investigation of the interactions of these signaling pathways will contribute to an understanding of cartilage growth and development, and will allow for the development of strategies for the early detection, prevention and treatment of diseases and disorders affecting the skeleton.

  13. Dipole relaxation in erythrocyte membrane: involvement of spectrin skeleton.

    PubMed

    Ivanov, I T; Paarvanova, B; Slavov, T

    2012-12-01

    Polarization of spectrin-actin undermembrane skeleton of red blood cell (RBC) plasma membranes was studied by impedance spectroscopy. Relatedly, dielectric spectra of suspensions that contained RBCs of humans, mammals (bovine, horse, dog, cat) and birds (turkey, pigeon, duck), and human RBC ghost membranes were continuously obtained during heating from 20 to 70°C. Data for the complex admittance and capacitance were used to derive the suspension resistance, R, and capacitance, C, as well as the energy loss as a function of temperature. As in previous studies, two irreversible temperature-induced transitions in the human RBC plasma membrane were detected at 49.5°C and at 60.7°C (at low heating rate). The transition at 49.5°C was evident from the abrupt changes in R, and C and the fall in the energy loss, due to dipole relaxation. For the erythrocytes of indicated species the changes in R and C displayed remarkable and similar frequency profiles within the 0.05-13MHz domain. These changes were subdued after cross-linking of membranes by diamide (0.3-1.3mM) and glutaraldehyde (0.1-0.4%) and at the presence of glycerol (10%). Based on the above results and previous reports, the dielectric changes at 49.5°C were related to dipole relaxation and segmental mobility of spectrin cytoskeleton. The results open the possibility for selective dielectric thermolysis of cell cytoskeleton.

  14. Canaliculi in the tessellated skeleton of cartilaginous fishes

    SciTech Connect

    Dean, M.N.; Socha, J.J.; Hall, B.K.; Summers, A.P.

    2010-08-04

    The endoskeletal elements of sharks and rays are comprised of an uncalcified, hyaline cartilage-like core overlain by a thin fibro-ceramic layer of mineralized hexagonal tiles (tesserae) adjoined by intertesseral fibers. The basic spatial relationships of the constituent tissues (unmineralized cartilage, mineralized cartilage, fibrous tissue) are well-known - endoskeletal tessellation is a long-recognized synapomorphy of elasmobranch fishes - but a high-resolution and three-dimensional (3D) understanding of their interactions has been hampered by difficulties in sample preparation and lack of technologies adequate for visualizing microstructure and microassociations. We used cryo-electron microscopy and synchrotron radiation tomography to investigate tessellated skeleton ultrastructure but without damage to the delicate relationships between constituent tissues or to the tesserae themselves. The combination of these techniques allowed visualization of never before appreciated internal structures, namely passages connecting the lacunar spaces within tesserae. These intratesseral 'canaliculi' link consecutive lacunar spaces into long lacunar strings, radiating outward from the center of tesserae. The continuity of extracellular matrix throughout the canalicular network may explain how chondrocytes in tesserae remain vital despite encasement in mineral. Extracellular fluid exchange may also permit transmission of nutrients, and mechanical and mineralization signals among chondrocytes, in a manner similar to the canalicular network in bone. These co-adapted mechanisms for the facilitated exchange of extracellular material suggest a level of parallelism in early chondrocyte and osteocyte evolution.

  15. The dynamics of secretion during sea urchin embryonic skeleton formation

    SciTech Connect

    Wilt, Fred H.

    2008-05-01

    Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes.

  16. [Anatomical names of foramina and canales in skeleton].

    PubMed

    Shikano, S; Yamashita, Y

    1998-03-01

    Latin anatomical names of Foramina and Canales in skeleton were analyzed and compared with Japanese anatomical names for better understanding of the structures of the human body and for possible revision in the future. The conclusions were as follows: 1. In general, short tunnels were called Foramina (singular: Foramen), and long tunnels Canales (singular: Canalis). 2. One end of Canalis was sometimes called Foramen. In this case, Canalis and Foramen were usually modified by the same words. 3. Each name of Foramina contained the word which means form, state, absolute size, region of existence, one of the contents or function of Foramina. 4. Each name of Canales contained the word which means region of existence, one of the contents or function of Canales. 5. Some names of Foramina and Canales that were supposed to mean the region of existence meant one of the contents of the structures. 6. As for Latin anatomical names, the relation between words were relatively clear by the proper use of noun, adjective, nominative, and genitive. 7. Since different Chinese characters were sometimes pronounced similarly in Japanese anatomical names, different structures might be confused. 8. It seemed that some Japanese anatomical names needed partial correction.

  17. Piecewise recognition of bone skeleton profiles via an iterative Hough transform approach without re-voting

    NASA Astrophysics Data System (ADS)

    Ricca, Giorgio; Beltrametti, Mauro C.; Massone, Anna Maria

    2015-03-01

    Many bone shapes in the human skeleton are characterized by profiles that can be associated to equations of algebraic curves. Fixing the parameters in the curve equation, by means of a classical pattern recognition procedure like the Hough transform technique, it is then possible to associate an equation to a specific bone profile. However, most skeleton districts are more accurately described by piecewise defined curves. This paper utilizes an iterative approach of the Hough transform without re-voting, to provide an efficient procedure for describing the profile of a bone in the human skeleton as a collection of different but continuously attached curves.

  18. Late Pleistocene human skeleton and mtDNA link Paleoamericans and modern Native Americans.

    PubMed

    Chatters, James C; Kennett, Douglas J; Asmerom, Yemane; Kemp, Brian M; Polyak, Victor; Blank, Alberto Nava; Beddows, Patricia A; Reinhardt, Eduard; Arroyo-Cabrales, Joaquin; Bolnick, Deborah A; Malhi, Ripan S; Culleton, Brendan J; Erreguerena, Pilar Luna; Rissolo, Dominique; Morell-Hart, Shanti; Stafford, Thomas W

    2014-05-16

    Because of differences in craniofacial morphology and dentition between the earliest American skeletons and modern Native Americans, separate origins have been postulated for them, despite genetic evidence to the contrary. We describe a near-complete human skeleton with an intact cranium and preserved DNA found with extinct fauna in a submerged cave on Mexico's Yucatan Peninsula. This skeleton dates to between 13,000 and 12,000 calendar years ago and has Paleoamerican craniofacial characteristics and a Beringian-derived mitochondrial DNA (mtDNA) haplogroup (D1). Thus, the differences between Paleoamericans and Native Americans probably resulted from in situ evolution rather than separate ancestry.

  19. Tailoring of fuzzy nanostructures on porous tungsten skeleton by helium plasma irradiation

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Tanaka, Hirohiko; Ohno, Noriyasu

    2017-03-01

    Porous tungsten skeleton, which was fabricated by sintering of tungsten powder, was exposed to helium plasmas, and the fuzzy nanostructures were tailored on the surface. The hemispherical optical reflectance of the samples was measured at the wavelength of 633 nm. It was shown that the optical reflectance of the porous tungsten skeleton was lower than that of flat tungsten samples. The minimum reflectance was ∼0.4%, suggesting that the darkest metallic material was fabricated. The advantage of the porous tungsten skeleton with nanostructures for optical application is discussed.

  20. [The effect of weightlessness on amphibians. The skeleton and mineral metabolism].

    PubMed

    Besova, N V; Savel'ev, S V; Chernikov, V P

    1993-07-01

    The visceral and somatic skeleton of Pleurodeles waltilii was investigated after a series of two-week space flights on the biosatellites. It was shown that under conditions of weightlessness osteoporosis of the skeleton and its demineralisation were stimulated. In weightlessness, calcium, phosphorus and sulfur were lost and potassium accumulated. Trabeculae of endochondral part of the extremity bones were destroyed by osteoclasts. Proliferation of osteoclasts was disrupted, appositional growth stopped, and the cartilage of hyoid system was resorbed. Skeleton readaptation during two months did not result in the complete regeneration of morphological structure of the bones.

  1. Selective principal component regression analysis of fluorescence hyperspectral image to assess aflatoxin contamination in corn

    USDA-ARS?s Scientific Manuscript database

    Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...

  2. Clustering method for estimating principal diffusion directions

    PubMed Central

    Nazem-Zadeh, Mohammad-Reza; Jafari-Khouzani, Kourosh; Davoodi-Bojd, Esmaeil; Jiang, Quan; Soltanian-Zadeh, Hamid

    2012-01-01

    Diffusion tensor magnetic resonance imaging (DTMRI) is a non-invasive tool for the investigation of white matter structure within the brain. However, the traditional tensor model is unable to characterize anisotropies of orders higher than two in heterogeneous areas containing more than one fiber population. To resolve this issue, high angular resolution diffusion imaging (HARDI) with a large number of diffusion encoding gradients is used along with reconstruction methods such as Q-ball. Using HARDI data, the fiber orientation distribution function (ODF) on the unit sphere is calculated and used to extract the principal diffusion directions (PDDs). Fast and accurate estimation of PDDs is a prerequisite for tracking algorithms that deal with fiber crossings. In this paper, the PDDs are defined as the directions around which the ODF data is concentrated. Estimates of the PDDs based on this definition are less sensitive to noise in comparison with the previous approaches. A clustering approach to estimate the PDDs is proposed which is an extension of fuzzy c-means clustering developed for orientation of points on a sphere. MDL (Minimum description length) principle is proposed to estimate the number of PDDs. Using both simulated and real diffusion data, the proposed method has been evaluated and compared with some previous protocols. Experimental results show that the proposed clustering algorithm is more accurate, more resistant to noise, and faster than some of techniques currently being utilized. PMID:21642005

  3. Principal Component Based Diffeomorphic Surface Mapping

    PubMed Central

    Younes, Laurent; Miller, Michael I.

    2013-01-01

    We present a new diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM approaches, this new algorithm reduces the complexity of the estimation of diffeomorphic transformations by incorporating a shape prior in which a nonlinear diffeomorphic shape space is represented by a linear space of initial momenta of diffeomorphic geodesic flows from a fixed template. In addition, for the first time, the diffeomorphic mapping is formulated within a decision-theoretic scheme based on Bayesian modeling in which an empirical shape prior is characterized by a low dimensional Gaussian distribution on initial momentum. This is achieved using principal component analysis (PCA) to construct the eigenspace of the initial momentum. A likelihood function is formulated as the conditional probability of observing surfaces given any particular value of the initial momentum, which is modeled as a random field of vector-valued measures characterizing the geometry of surfaces. We define the diffeomorphic mapping as a problem that maximizes a posterior distribution of the initial momentum given observable surfaces over the eigenspace of the initial momentum. We demonstrate the stability of the initial momentum eigenspace when altering training samples using a bootstrapping method. We then validate the mapping accuracy and show robustness to outliers whose shape variation is not incorporated into the shape prior. PMID:21937344

  4. Principal component based diffeomorphic surface mapping.

    PubMed

    Qiu, Anqi; Younes, Laurent; Miller, Michael I

    2012-02-01

    We present a new diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM approaches, this new algorithm reduces the complexity of the estimation of diffeomorphic transformations by incorporating a shape prior in which a nonlinear diffeomorphic shape space is represented by a linear space of initial momenta of diffeomorphic geodesic flows from a fixed template. In addition, for the first time, the diffeomorphic mapping is formulated within a decision-theoretic scheme based on Bayesian modeling in which an empirical shape prior is characterized by a low dimensional Gaussian distribution on initial momentum. This is achieved using principal component analysis (PCA) to construct the eigenspace of the initial momentum. A likelihood function is formulated as the conditional probability of observing surfaces given any particular value of the initial momentum, which is modeled as a random field of vector-valued measures characterizing the geometry of surfaces. We define the diffeomorphic mapping as a problem that maximizes a posterior distribution of the initial momentum given observable surfaces over the eigenspace of the initial momentum. We demonstrate the stability of the initial momentum eigenspace when altering training samples using a bootstrapping method. We then validate the mapping accuracy and show robustness to outliers whose shape variation is not incorporated into the shape prior.

  5. Toward Understanding Principals' Hiring Practices

    ERIC Educational Resources Information Center

    Engel, Mimi; Curran, F. Chris

    2016-01-01

    Purpose: The purpose of this paper is to explore variation across principals in terms of the number and types of strategies they engage in to find teachers to fill the vacancies in their schools. The practices that the authors consider to be strategic are aligned with the district's goals and objectives for teacher recruitment.…

  6. Teachers' Perspectives on Principal Mistreatment

    ERIC Educational Resources Information Center

    Blase, Joseph; Blase, Jo

    2006-01-01

    Although there is some important scholarly work on the problem of workplace mistreatment/abuse, theoretical or empirical work on abusive school principals is nonexistent. Symbolic interactionism was the theoretical structure for the present study. This perspective on social research is founded on three primary assumptions: (1) individuals act…

  7. The Principal as Instructional Leader.

    ERIC Educational Resources Information Center

    Ellis, Thomas I.

    1986-01-01

    Effective schools research has verified that schools are rarely effective unless the principal is a proficient instructional leader. This article summarizes five recent studies examining the practices and qualities comprising good instructional leadership. A Seattle study by Richard L. Andrews disclosed a statistical correlation between student…

  8. Preparing Elementary Principals for Preschool

    ERIC Educational Resources Information Center

    Bish, Marion; Shore, Rebecca; Shue, Pamela

    2011-01-01

    "Surprise! Here come the preschoolers." Thousands of elementary principals are receiving a similar message from their supervisors as the concept of universal preschool is propelled to the forefront of the national education agenda. School districts across the country are being infused with wide varieties of federal- and state-funded…

  9. The Principal and Tort Liability.

    ERIC Educational Resources Information Center

    Stern, Ralph D.

    The emphasis of this chapter is on the tort liability of principals, especially their commission of unintentional torts or torts resulting from negligent conduct. A tort is defined as a wrongful act, not including a breach of contract or trust, which results in injury to another's person, property, or reputation and for which the injured party is…

  10. ROLE CONFLICTS OF SCHOOL PRINCIPALS.

    ERIC Educational Resources Information Center

    GROSS, NEAL; AND OTHERS

    THE PURPOSE OF THIS STUDY WAS TO ISOLATE THE ROLE CONFLICTS TO WHICH SCHOOL PRINCIPALS ARE EXPOSED, THE METHODS USED TO RESOLVE THEM, AND THE FREQUENCY WITH WHICH THEY OCCUR. THE SOCIAL MATRIX OF ROLE CONFLICT IS BASED ON DIFFERING EXPECTATIONS OF COGNITIVE BEHAVIOR INTERPRETATIONS. THUS, WHEN PARENTS, STUDENTS, TEACHERS, OTHER ADMINISTRATORS, AND…

  11. Principal Leadership in Taiwan Schools

    ERIC Educational Resources Information Center

    Shouse, Roger C.; Lin, Kuan-Pei

    2010-01-01

    During the past two decades, Taiwan's Ministry of Education has responded to globalization by restructuring school curricular, instructional, and decision making practices along western lines in an attempt to attain legitimacy on the world stage. As a result, Taiwanese principals, once kings within their schools, now must share power with other…

  12. Solving the Assistant Principal's Puzzle

    ERIC Educational Resources Information Center

    Hartley, Douglas

    2009-01-01

    How does an assistant principal complete the large number of managerial duties and, at the same time, serve as a credible instructional leader? This book provides practical recommendations for successfully filling the dual role as manager and instructional leader, building effective relationships, using power appropriately, and productively…

  13. Evaluating School Principals. Tips & Tools

    ERIC Educational Resources Information Center

    Brown-Sims, Melissa

    2010-01-01

    With the need to meet a set of higher accountability standards such as Interstate School Leaders Licensure Consortium (ISLLC) Standards and the AYP benchmarks of the NCLB Act, for example, school principals are faced with the knowledge that they play a vital role in school effectiveness as well as teacher retention, parent participation, and…

  14. School Uniforms: Guidelines for Principals.

    ERIC Educational Resources Information Center

    Essex, Nathan L.

    2001-01-01

    Principals desiring to develop a school-uniform policy should involve parents, teachers, community leaders, and student representatives; beware restrictions on religious and political expression; provide flexibility and assistance for low-income families; implement a pilot program; align the policy with school-safety issues; and consider legal…

  15. The Need for Principal Renewal: The Promise of Sustaining Principals through Principal-to-Principal Reflective Practice

    ERIC Educational Resources Information Center

    Drago-Severson, Eleanor

    2012-01-01

    Background/Context: Given the challenging complexity of the modern principalship--including high-stakes testing, standards-based reform, increased accountability, and severe budget cuts--practitioners and scholars emphasize the urgency of supporting principals' stress-relief and renewal. Purpose/Objective/Research Question/Focus of Study: This…

  16. The Principal as Tech Leader

    ERIC Educational Resources Information Center

    Demski, Jennifer

    2012-01-01

    The conventional wisdom in education is that any school reform--be it curriculum, instruction, assessment, or teacher professionalism--is most likely to take hold in schools that have strong leadership. The same holds true for technology. The most successful implementation of technology programs takes place in schools where the principal sees him…

  17. Veteran Advice for New Principals

    ERIC Educational Resources Information Center

    Krajewski, Bob; Conner, Nancy; Murray, Vincent; Williams, Claudia

    2004-01-01

    A recent survey found that 67% of principals believe that school of education leadership programs are out of touch with what it takes to run a school district. Only 4% praise their graduate studies, and a majority say that mentoring and guidance from people they work with has the greatest benefit for them. In this article, the author asked three…

  18. Preparing Principals for Today's Demands

    ERIC Educational Resources Information Center

    Brown, Pamela F.

    2006-01-01

    As a principal, Ms. Brown has firsthand knowledge of the pressures educational leaders face in the NCLB era. If administrators are going to perform effectively in today's school environment, she argues, the programs that prepare them will have to undergo significant reform. She urges university leadership programs to adopt four changes that will…

  19. Effective Schools Require Effective Principals

    ERIC Educational Resources Information Center

    LaPointe, Michelle; Davis, Stephen H.

    2006-01-01

    At long last, scholars and policy makers have come to realize what most school administrators have known for years--that effective schools require both outstanding teachers and strong leaders. Although there is considerable research about the characteristics of effective school leaders and the strategies principals can use to help manage…

  20. Toward Understanding Principals' Hiring Practices

    ERIC Educational Resources Information Center

    Engel, Mimi; Curran, F. Chris

    2016-01-01

    Purpose: The purpose of this paper is to explore variation across principals in terms of the number and types of strategies they engage in to find teachers to fill the vacancies in their schools. The practices that the authors consider to be strategic are aligned with the district's goals and objectives for teacher recruitment.…

  1. Principals and Teachers, Leading Together.

    ERIC Educational Resources Information Center

    Blegen, Mary Beth; Kennedy, Carole

    2000-01-01

    Today's students need countless opportunities to turn information into knowledge that helps them understand themselves, others, and the world. Emergent teacher leadership will help students practice democracy. Principals must partner with teachers to create time for staff to converse, learn together, and convert schools to learning centers. (MLH)

  2. How Principals Support Teacher Effectiveness

    ERIC Educational Resources Information Center

    Gallagher, Michael

    2012-01-01

    The current standards and accountability regime describes effective teaching as the ability to increase student achievement on standardized tests. This narrow definition of effectiveness can lead principals to create school cultures myopically focused on student achievement data. A "laser-like focus on academic achievement," if employed…

  3. Sparse principal component analysis by choice of norm.

    PubMed

    Qi, Xin; Luo, Ruiyan; Zhao, Hongyu

    2013-02-01

    Recent years have seen the developments of several methods for sparse principal component analysis due to its importance in the analysis of high dimensional data. Despite the demonstration of their usefulness in practical applications, they are limited in terms of lack of orthogonality in the loadings (coefficients) of different principal components, the existence of correlation in the principal components, the expensive computation needed, and the lack of theoretical results such as consistency in high-dimensional situations. In this paper, we propose a new sparse principal component analysis method by introducing a new norm to replace the usual norm in traditional eigenvalue problems, and propose an efficient iterative algorithm to solve the optimization problems. With this method, we can efficiently obtain uncorrelated principal components or orthogonal loadings, and achieve the goal of explaining a high percentage of variations with sparse linear combinations. Due to the strict convexity of the new norm, we can prove the convergence of the iterative method and provide the detailed characterization of the limits. We also prove that the obtained principal component is consistent for a single component model in high dimensional situations. As illustration, we apply this method to real gene expression data with competitive results.

  4. Skeletons Out of the Closet: The Case of the Missing 162%.

    ERIC Educational Resources Information Center

    Pressnall, Bob

    1995-01-01

    Describes one teacher's difficulty in getting his eighth-grade students to revise their writing. Discusses his successful use of writing "skeletons" to help define what revision is and to teach a structure for one type of revision. (SR)

  5. Development of the viscerocranial skeleton during embryogenesis of the sea lamprey, Petromyzon Marinus.

    PubMed

    Martin, Wendy M; Bumm, Lloyd A; McCauley, David W

    2009-12-01

    Evolution of the skeleton was a key transition in early vertebrates. Lampreys lack a mineralized skeleton but possess cartilaginous neurocranial and viscerocranial elements. In lampreys, the visceral skeleton develops as a fused branchial basket supporting the pharynx. Here, we have adapted Alcian blue staining of lamprey cartilage and show this method results in cartilage fluorescence that we used to describe development of the branchial skeleton in Petromyzon marinus between 17 and 63 days of development. We show that skeletal rods develop from condensations of flattened discoidal chondrocytes and may involve cellular intercalation. Lamprey trabecular, parachordal, and subchordal cartilages consist of aggregations of polygonal chondrocytes positioned on the ventral and lateral surfaces of the notochord. We speculate that morphological differences relate to functional differences in the cartilage. We show that differentiated skeletal rods are derived from neural crest. Finally, we show how branchial muscles intercalate with skeletal rods of the branchial basket. (c) 2009 Wiley-Liss, Inc.

  6. Skeletons Out of the Closet: The Case of the Missing 162%.

    ERIC Educational Resources Information Center

    Pressnall, Bob

    1995-01-01

    Describes one teacher's difficulty in getting his eighth-grade students to revise their writing. Discusses his successful use of writing "skeletons" to help define what revision is and to teach a structure for one type of revision. (SR)

  7. Skeleton extraction and phase interpolation for single ESPI fringe pattern based on the partial differential equations.

    PubMed

    Zhang, Fang; Wang, Danyu; Xiao, Zhitao; Geng, Lei; Wu, Jun; Xu, Zhenbei; Sun, Jiao; Wang, Jinjiang; Xi, Jiangtao

    2015-11-16

    A novel phase extraction method for single electronic speckle pattern interferometry (ESPI) fringes is proposed. The partial differential equations (PDEs) are used to extract the skeletons of the gray-scale fringe and to interpolate the whole-field phase values based on skeleton map. Firstly, the gradient vector field (GVF) of the initial fringe is adjusted by an anisotropic PDE. Secondly, the skeletons of the fringe are extracted combining the divergence property of the adjusted GVF. After assigning skeleton orders, the whole-field phase information is interpolated by the heat conduction equation. The validity of the proposed method is verified by computer-simulated and experimentally obtained poor-quality ESPI fringe patterns.

  8. Descriptions of the lower limb skeleton of Homo floresiensis.

    PubMed

    Jungers, W L; Larson, S G; Harcourt-Smith, W; Morwood, M J; Sutikna, T; Due Awe, Rokhus; Djubiantono, T

    2009-11-01

    Bones of the lower extremity have been recovered for up to nine different individuals of Homo floresiensis - LB1, LB4, LB6, LB8, LB9, LB10, LB11, LB13, and LB14. LB1 is represented by a bony pelvis (damaged but now repaired), femora, tibiae, fibulae, patellae, and numerous foot bones. LB4/2 is an immature right tibia lacking epiphyses. LB6 includes a fragmentary metatarsal and two pedal phalanges. LB8 is a nearly complete right tibia (shorter than that of LB1). LB9 is a fragment of a hominin femoral diaphysis. LB10 is a proximal hallucal phalanx. LB11 includes pelvic fragments and a fragmentary metatarsal. LB13 is a patellar fragment, and LB14 is a fragment of an acetabulum. All skeletal remains recovered from Liang Bua were extremely fragile, and some were badly damaged when they were removed temporarily from Jakarta. At present, virtually all fossil materials have been returned, stabilized, and hardened. These skeletal remains are described and illustrated photographically. The lower limb skeleton exhibits a uniquely mosaic pattern, with many primitive-like morphologies; we have been unable to find this combination of ancient and derived (more human-like) features in either healthy or pathological modern humans, regardless of body size. Bilateral asymmetries are slight in the postcranium, and muscle markings are clearly delineated on all bones. The long bones are robust, and the thickness of their cortices is well within the ranges seen in healthy modern humans. LB1 is most probably a female based on the shape of her greater sciatic notch, and the marked degree of lateral iliac flaring recalls that seen in australopithecines such as "Lucy" (AL 288-1). The metatarsus has a human-like robusticity formula, but the proximal pedal phalanges are relatively long and robust (and slightly curved). The hallux is fully adducted, but we suspect that a medial longitudinal arch was absent.

  9. Spaceflight and the skeleton: lessons for the earthbound

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Halloran, B. P.; Morey-Holton, E.

    1997-01-01

    Loss of bone during extended space flight has long been a concern that could limit the ability of humans to explore the universe. Surprisingly the available data do not support the concept that weightlessness leads inexorably to a depleted skeleton unable to withstand the stress of a return to a 1g environment. Nevertheless, some bone loss does occur especially in those bones most stressed by gravity prior to flight, providing confirmation of the proposal formulated over a century ago by Julius Wolff that mechanical stress determines the form and function of bone. Although the phenomenon of bone loss with skeletal unloading, whether by space flight or immobilization or just taking a load off your feet (literally) is well established, the mechanisms by which bone senses load and adjusts to it are not so clear. What actually is the stimulus and what are the sensors? What are the target cells? How do the sensors communicate the message into the cells, and by what pathways do the cells respond? What is the role of endocrine factors versus paracrine or autocrine factors in mediating or modulating the response? None of these questions has been answered with certainty, but as will become apparent in this review, we have some clues directing us to the answers. Although the focus of this review concerns space flight, it seems highly likely that the mechanisms mediating the transmission of mechanical load to changes in bone formation and resorption apply equally well to all forms of disuse osteoporosis, and are likely to be the same mechanisms affected by other etiologies of osteoporosis.

  10. Beta-catenin--a supporting role in the skeleton.

    PubMed

    Case, Natasha; Rubin, Janet

    2010-06-01

    In the last 5 years a role for beta-catenin in the skeleton has been cemented. Beginning with mutations in the Lrp5 receptor that control beta-catenin canonical downstream signals, and progressing to transgenic models with bone-specific alteration of beta-catenin, research has shown that beta-catenin is required for normal bone development. A cell critical to bone in which beta-catenin activity determines function is the marrow-derived mesenchymal stem cell (MSC), where sustained beta-catenin prevents its distribution into adipogenic lineage. beta-Catenin actions are less well understood in mature osteoblasts: while beta-catenin contributes to control of osteoclastic bone resorption via alteration of the osteoprotegerin/RANKL ratio, a specific regulatory role during osteoblast bone synthesis has not yet been determined. The proven ability of mechanical factors to prevent beta-catenin degradation and induce nuclear translocation through Lrp-independent mechanisms suggests processes by which exercise might modulate bone mass via control of lineage allocation, in particular, by preventing precursor distribution into the adipocyte pool. Effects resulting from mechanical activation of beta-catenin in mature osteoblasts and osteocytes likely modulate bone resorption, but whether beta-catenin is involved in osteoblast synthetic function remains to be proven for both mechanical and soluble mediators. As beta-catenin appears to support the downstream effects of multiple osteogenic factors, studies clarifying when and where beta-catenin effects occur will be relevant for translational approaches aimed at preventing bone loss and terminal adipogenic conversion.

  11. Space flight and the skeleton: lessons for the earthbound

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Halloran, B. P.; Morey-Holton, E.

    1997-01-01

    Loss of bone during extended space flight has long been a concern that could limit the ability of humans to explore the universe. Surprisingly, the available data do not support the concept that weightlessness leads inexorably to a depleted skeleton unable to withstand the stress of a return to a 1-g environment. Nevertheless, some bone loss does occur, especially in those bones most stressed by gravity prior to flight, which provides confirmation of the proposal formulated over a century ago by Julius Wolff that mechanical stress determines the form and function of bone. Although the phenomenon of bone loss with skeletal unloading, whether by space flight or immobilization or just taking a load off your feet (literally) is well established, the mechanisms by which bone senses load and adjusts to it are not so clear. What actually is the stimulus, and what are the sensors? What are the target cells? How do the sensors communicate the message into the cells, and by what pathways do the cells respond? What is the role of endocrine, factors vs. paracrine or autocrine factors in mediating or modulating the response? None of these questions has been answered with certainty, but, as will become apparent in this review, we have some clues directing us to the answers. Although the focus of this review concerns space flight, it seems highly likely that the mechanisms mediating the transmission of mechanical load to changes in bone formation and resorption apply equally well to all forms of disuse osteoporosis and are likely to be the same mechanisms affected by other etiologies of osteoporosis.

  12. Scaling of the appendicular skeleton of the giraffe (Giraffa camelopardalis).

    PubMed

    van Sittert, Sybrand; Skinner, John; Mitchell, Graham

    2015-05-01

    Giraffes have remarkably long and slender limb bones, but it is unknown how they grow with regard to body mass, sex, and neck length. In this study, we measured the length, mediolateral (ML) diameter, craniocaudal (CC) diameter and circumference of the humerus, radius, metacarpus, femur, tibia, and metatarsus in 10 fetuses, 21 females, and 23 males of known body masses. Allometric exponents were determined and compared. We found the average bone length increased from 340 ± 50 mm at birth to 700 ± 120 mm at maturity, while average diameters increased from 30 ± 3 to 70 ± 11 mm. Fetal bones increased with positive allometry in length (relative to body mass) and in diameter (relative to body mass and length). In postnatal giraffes bone lengths and diameters increased iso- or negatively allometric relative to increases in body mass, except for the humerus CC diameter which increased with positive allometry. Humerus circumference also increased with positive allometry, that of the radius and tibia isometrically and the femur and metapodials with negative allometry. Relative to increases in bone length, both the humerus and femur widened with positive allometry. In the distal limb bones, ML diameters increased isometrically (radius, metacarpus) or positively allometric (tibia, metatarsus) while the corresponding CC widths increased with negative allometry and isometrically, respectively. Except for the humerus and femur, exponents were not significantly different between corresponding front and hind limb segments. We concluded that the patterns of bone growth in males and females are identical. In fetuses, the growth of the appendicular skeleton is faster than it is after birth which is a pattern opposite to that reported for the neck. Allometric exponents seemed unremarkable compared to the few species described previously, and pointed to the importance of neck elongation rather than leg elongation during evolution. Nevertheless, the front limb bones

  13. Aging of the facial skeleton: aesthetic implications and rejuvenation strategies.

    PubMed

    Shaw, Robert B; Katzel, Evan B; Koltz, Peter F; Yaremchuk, Michael J; Girotto, John A; Kahn, David M; Langstein, Howard N

    2011-01-01

    Facial aging is a dynamic process involving the aging of soft-tissue and bony structures. In this study, the authors demonstrate how the facial skeleton changes with age in both male and female subjects and what impact these structural changes may have on overall facial aesthetics. Facial bone computed tomographic scans were obtained from 60 female and 60 male Caucasian subjects. Twenty male and 20 female subjects were placed in three age categories (20 to 40 years, 41 to 64 years, and 65 years and older). Each computed tomographic scan underwent three-dimensional reconstruction with volume rendering. Edentulous patients were excluded. The following measurements were obtained: upper face (orbital aperture area, orbital aperture width, and curvilinear analysis of the superior and inferior orbital rims), midface (glabellar angle, pyriform angle, maxillary angle, and pyriform aperture area), and lower face (bigonial width, ramus breadth, ramus height, mandibular body height, mandibular body length, and mandibular angle). The orbital aperture width and orbital aperture area increased significantly with age for both sexes. There was a significant increase in orbital aperture size (increase in height of the superomedial and inferolateral orbital rim) in both sexes. The glabellar and maxillary angles decreased significantly with age for both sexes, whereas the pyriform aperture area significantly increased for both sexes with age. Mandibular length and height both decreased significantly for each sex. The mandibular angle significantly increased with age for both sexes. These results suggest that the skeletal morphology of the face changes with age. This change in skeletal morphology may contribute to the appearance of the aging face.

  14. Dressed skeleton expansion and the coupling scale ambiguity problem

    SciTech Connect

    Lu, Hung Jung

    1992-09-01

    Perturbative expansions in quantum field theories are usually expressed in powers of a coupling constant. In principle, the infinite sum of the expansion series is independent of the renormalization scale of the coupling constant. In practice, there is a remnant dependence of the truncated series on the renormalization scale. This scale ambiguity can severely restrict the predictive power of theoretical calculations. The dressed skeleton expansion is developed as a calculational method which avoids the coupling scale ambiguity problem. In this method, physical quantities are expressed as functional expansions in terms of a coupling vertex function. The arguments of the vertex function are given by the physical momenta of each process. These physical momenta effectively replace the unspecified renormalization scale and eliminate the ambiguity problem. This method is applied to various field theoretical models and its main features and limitations are explored. For quantum chromodynamics, an expression for the running coupling constant of the three-gluon vertex is obtained. The effective coupling scale of this vertex is shown to be essentially given by {mu}{sup 2} {approximately} Q{sub min}{sup 2}Q{sub med}{sup 2}/Q{sub max}{sup 2} where Q{sub min}{sup 2}Q{sub med}{sup 2}/Q{sub max}{sup 2} are respectively the smallest, the next-to-smallest and the largest scale among the three gluon virtualities. This functional form suggests that the three-gluon vertex becomes non-perturbative at asymmetric momentum configurations. Implications for four-jet physics is discussed.

  15. Sexual dimorphism in the postcranial skeleton of New World primates.

    PubMed

    Leutenegger, W; Larson, S

    1985-01-01

    This study examines sexual dimorphism in 24 dimensions of the postcranial skeleton of four platyrrhine species: Callithrix jacchus, Saguinus nigricollis, Saimiri sciureus, and Cebus albifrons. The two callitrichid species show a relatively small amount of variation in the degree of sexual dimorphism among the different dimensions. Variation is considerably higher in the two cebid species as reflected by a mosaic pattern of sexual dimorphisms with males being significantly larger than females in some dimensions, and females significantly larger than males in others. In dimensions of the pectoral girdle and limb bones, males and females in each of the two cebid species are essentially scaled versions of each other, with males being peramorphic compared to females. This pattern is primarily the result of time hypermorphosis, i.e. an extension of the growth period in time in males. Rate hypermorphosis, i.e. an increase in the rate of growth in time in males, appears to play an additional role, however, in S. sciureus. By contrast, in dimensions of the true pelvis, sex differences in shape are dissociated from those in size. They are interpreted as the result of acceleration, i.e. increase in rate of shape change in females, as an adaptation to obstetrical functions. Interspecific analyses indicate positive allometry of mean degree of postcranial dimorphism with respect to body size. This coincides with previous findings by Leutenegger and Cheverud [1982, 1985] on the scaling of sexual dimorphism in body weight and canine size, and thus supports their model which posits selection on body size as the prime mover for the evolution of sexual dimorphism.

  16. Space flight and the skeleton: lessons for the earthbound

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Halloran, B. P.; Morey-Holton, E.

    1997-01-01

    Loss of bone during extended space flight has long been a concern that could limit the ability of humans to explore the universe. Surprisingly, the available data do not support the concept that weightlessness leads inexorably to a depleted skeleton unable to withstand the stress of a return to a 1-g environment. Nevertheless, some bone loss does occur, especially in those bones most stressed by gravity prior to flight, which provides confirmation of the proposal formulated over a century ago by Julius Wolff that mechanical stress determines the form and function of bone. Although the phenomenon of bone loss with skeletal unloading, whether by space flight or immobilization or just taking a load off your feet (literally) is well established, the mechanisms by which bone senses load and adjusts to it are not so clear. What actually is the stimulus, and what are the sensors? What are the target cells? How do the sensors communicate the message into the cells, and by what pathways do the cells respond? What is the role of endocrine, factors vs. paracrine or autocrine factors in mediating or modulating the response? None of these questions has been answered with certainty, but, as will become apparent in this review, we have some clues directing us to the answers. Although the focus of this review concerns space flight, it seems highly likely that the mechanisms mediating the transmission of mechanical load to changes in bone formation and resorption apply equally well to all forms of disuse osteoporosis and are likely to be the same mechanisms affected by other etiologies of osteoporosis.

  17. Enzalutamide Reduces the Bone Mass in the Axial But Not the Appendicular Skeleton in Male Mice.

    PubMed

    Wu, Jianyao; Movérare-Skrtic, Sofia; Börjesson, Anna E; Lagerquist, Marie K; Sjögren, Klara; Windahl, Sara H; Koskela, Antti; Grahnemo, Louise; Islander, Ulrika; Wilhelmson, Anna S; Tivesten, Åsa; Tuukkanen, Juha; Ohlsson, Claes

    2016-02-01

    Testosterone is a crucial regulator of the skeleton, but the role of the androgen receptor (AR) for the maintenance of the adult male skeleton is unclear. In the present study, the role of the AR for bone metabolism and skeletal growth after sexual maturation was evaluated by means of the drug enzalutamide, which is a new AR antagonist used in the treatment of prostate cancer patients. Nine-week-old male mice were treated with 10, 30, or 100 mg/kg·d of enzalutamide for 21 days or were surgically castrated and were compared with vehicle-treated gonadal intact mice. Although orchidectomy reduced the cortical bone thickness and trabecular bone volume fraction in the appendicular skeleton, these parameters were unaffected by enzalutamide. In contrast, both enzalutamide and orchidectomy reduced the bone mass in the axial skeleton as demonstrated by a reduced lumbar spine areal bone mineral density (P < .001) and trabecular bone volume fraction in L5 vertebrae (P < .001) compared with vehicle-treated gonadal intact mice. A compression test of the L5 vertebrae revealed that the mechanical strength in the axial skeleton was significantly reduced by enzalutamide (maximal load at failure -15.3% ± 3.5%; P < .01). The effects of enzalutamide in the axial skeleton were associated with a high bone turnover. In conclusion, enzalutamide reduces the bone mass in the axial but not the appendicular skeleton in male mice after sexual maturation. We propose that the effect of testosterone on the axial skeleton in male mice is mainly mediated via the AR.

  18. TRIzol and Alu qPCR-based quantification of metastatic seeding within the skeleton.

    PubMed

    Preston Campbell, J; Mulcrone, P; Masood, S K; Karolak, M; Merkel, A; Hebron, K; Zijlstra, A; Sterling, J; Elefteriou, F

    2015-08-14

    Current methods for detecting disseminated tumor cells in the skeleton are limited by expense and technical complexity. We describe a simple and inexpensive method to quantify, with single cell sensitivity, human metastatic cancer in the mouse skeleton, concurrently with host gene expression, using TRIzol-based DNA/RNA extraction and Alu sequence qPCR amplification. This approach enables precise quantification of tumor cells and corresponding host gene expression during metastatic colonization in xenograft models.

  19. Dissection and flat-mounting of the threespine stickleback branchial skeleton

    PubMed Central

    Ellis, Nicholas A.

    2017-01-01

    SHORT ABSTRACT The branchial skeleton, including gill rakers, pharyngeal teeth, and branchial bones, serves as the primary site of food processing in most fish. Here we describe a protocol to dissect and flat-mount this internal skeleton in threespine sticklebacks. This method is also applicable to a variety of other fish species. LONG ABSTRACT The posterior pharyngeal segments of the vertebrate head give rise to the branchial skeleton, the primary site of food processing in fish. The morphology of the fish branchial skeleton is matched to a species’ diet. Threespine stickleback fish (Gasterosteus aculeatus) have emerged as a model system to study the genetic and developmental basis of evolved differences in a variety of traits. Marine populations of sticklebacks have repeatedly colonized countless new freshwater lakes and creeks. Adaptation to the new diet in these freshwater environments likely underlies a series of craniofacial changes that have evolved repeatedly in independently derived freshwater populations. These include three major patterning changes to the branchial skeleton: reductions in the number and length of gill raker bones, increases in pharyngeal tooth number, and increased branchial bone lengths. Here we describe a detailed protocol to dissect and flat-mount the internal branchial skeleton in threespine stickleback fish. Dissection of the entire three-dimensional branchial skeleton and mounting it flat into a largely two-dimensional prep allows for the easy visualization and quantification of branchial skeleton morphology. This dissection method is inexpensive, fast, relatively easy, and applicable to a wide variety of fish species. In sticklebacks, this efficient method allows the quantification of skeletal morphology in genetic crosses to map genomic regions controlling craniofacial patterning. PMID:27213248

  20. Strategy for Sensitive and Specific Detection of Yersinia pestis in Skeletons of the Black Death Pandemic

    PubMed Central

    Seifert, Lisa; Harbeck, Michaela; Thomas, Astrid; Hoke, Nadja; Zöller, Lothar; Wiechmann, Ingrid; Grupe, Gisela; Scholz, Holger C.; Riehm, Julia M.

    2013-01-01

    Yersinia pestis has been identified as the causative agent of the Black Death pandemic in the 14th century. However, retrospective diagnostics in human skeletons after more than 600 years are critical. We describe a strategy following a modern diagnostic algorithm and working under strict ancient DNA regime for the identification of medieval human plague victims. An initial screening and DNA quantification assay detected the Y. pestis specific pla gene of the high copy number plasmid pPCP1. Results were confirmed by conventional PCR and sequence analysis targeting both Y. pestis specific virulence plasmids pPCP1 and pMT1. All assays were meticulously validated according to human clinical diagnostics requirements (ISO 15189) regarding efficiency, sensitivity, specificity, and limit of detection (LOD). Assay specificity was 100% tested on 41 clinically relevant bacteria and 29 Y. pseudotuberculosis strains as well as for DNA of 22 Y. pestis strains and 30 previously confirmed clinical human plague samples. The optimized LOD was down to 4 gene copies. 29 individuals from three different multiple inhumations were initially assessed as possible victims of the Black Death pandemic. 7 samples (24%) were positive in the pPCP1 specific screening assay. Confirmation through second target pMT1 specific PCR was successful for 4 of the positive individuals (14%). A maximum of 700 and 560 copies per µl aDNA were quantified in two of the samples. Those were positive in all assays including all repetitions, and are candidates for future continuative investigations such as whole genome sequencing. We discuss that all precautions taken here for the work with aDNA are sufficient to prevent external sample contamination and fulfill the criteria of authenticity. With regard to retrospective diagnostics of a human pathogen and the uniqueness of ancient material we strongly recommend using a careful strategy and validated assays as presented in our study. PMID:24069445

  1. Strategy for sensitive and specific detection of Yersinia pestis in skeletons of the black death pandemic.

    PubMed

    Seifert, Lisa; Harbeck, Michaela; Thomas, Astrid; Hoke, Nadja; Zöller, Lothar; Wiechmann, Ingrid; Grupe, Gisela; Scholz, Holger C; Riehm, Julia M

    2013-01-01

    Yersinia pestis has been identified as the causative agent of the Black Death pandemic in the 14(th) century. However, retrospective diagnostics in human skeletons after more than 600 years are critical. We describe a strategy following a modern diagnostic algorithm and working under strict ancient DNA regime for the identification of medieval human plague victims. An initial screening and DNA quantification assay detected the Y. pestis specific pla gene of the high copy number plasmid pPCP1. Results were confirmed by conventional PCR and sequence analysis targeting both Y. pestis specific virulence plasmids pPCP1 and pMT1. All assays were meticulously validated according to human clinical diagnostics requirements (ISO 15189) regarding efficiency, sensitivity, specificity, and limit of detection (LOD). Assay specificity was 100% tested on 41 clinically relevant bacteria and 29 Y. pseudotuberculosis strains as well as for DNA of 22 Y. pestis strains and 30 previously confirmed clinical human plague samples. The optimized LOD was down to 4 gene copies. 29 individuals from three different multiple inhumations were initially assessed as possible victims of the Black Death pandemic. 7 samples (24%) were positive in the pPCP1 specific screening assay. Confirmation through second target pMT1 specific PCR was successful for 4 of the positive individuals (14%). A maximum of 700 and 560 copies per µl aDNA were quantified in two of the samples. Those were positive in all assays including all repetitions, and are candidates for future continuative investigations such as whole genome sequencing. We discuss that all precautions taken here for the work with aDNA are sufficient to prevent external sample contamination and fulfill the criteria of authenticity. With regard to retrospective diagnostics of a human pathogen and the uniqueness of ancient material we strongly recommend using a careful strategy and validated assays as presented in our study.

  2. The Virtual Skeleton Database: An Open Access Repository for Biomedical Research and Collaboration

    PubMed Central

    Bonaretti, Serena; Pfahrer, Marcel; Niklaus, Roman; Büchler, Philippe

    2013-01-01

    Background Statistical shape models are widely used in biomedical research. They are routinely implemented for automatic image segmentation or object identification in medical images. In these fields, however, the acquisition of the large training datasets, required to develop these models, is usually a time-consuming process. Even after this effort, the collections of datasets are often lost or mishandled resulting in replication of work. Objective To solve these problems, the Virtual Skeleton Database (VSD) is proposed as a centralized storage system where the data necessary to build statistical shape models can be stored and shared. Methods The VSD provides an online repository system tailored to the needs of the medical research community. The processing of the most common image file types, a statistical shape model framework, and an ontology-based search provide the generic tools to store, exchange, and retrieve digital medical datasets. The hosted data are accessible to the community, and collaborative research catalyzes their productivity. Results To illustrate the need for an online repository for medical research, three exemplary projects of the VSD are presented: (1) an international collaboration to achieve improvement in cochlear surgery and implant optimization, (2) a population-based analysis of femoral fracture risk between genders, and (3) an online application developed for the evaluation and comparison of the segmentation of brain tumors. Conclusions The VSD is a novel system for scientific collaboration for the medical image community with a data-centric concept and semantically driven search option for anatomical structures. The repository has been proven to be a useful tool for collaborative model building, as a resource for biomechanical population studies, or to enhance segmentation algorithms. PMID:24220210

  3. Histology and affinity of anaspids, and the early evolution of the vertebrate dermal skeleton.

    PubMed

    Keating, Joseph N; Donoghue, Philip C J

    2016-03-16

    The assembly of the gnathostome bodyplan constitutes a formative episode in vertebrate evolutionary history, an interval in which the mineralized skeleton and its canonical suite of cell and tissue types originated. Fossil jawless fishes, assigned to the gnathostome stem-lineage, provide an unparalleled insight into the origin and evolution of the skeleton, hindered only by uncertainty over the phylogenetic position and evolutionary significance of key clades. Chief among these are the jawless anaspids, whose skeletal composition, a rich source of phylogenetic information, is poorly characterized. Here we survey the histology of representatives spanning anaspid diversity and infer their generalized skeletal architecture. The anaspid dermal skeleton is composed of odontodes comprising spheritic dentine and enameloid, overlying a basal layer of acellular parallel fibre bone containing an extensive shallow canal network. A recoded and revised phylogenetic analysis using equal and implied weights parsimony resolves anaspids as monophyletic, nested among stem-gnathostomes. Our results suggest the anaspid dermal skeleton is a degenerate derivative of a histologically more complex ancestral vertebrate skeleton, rather than reflecting primitive simplicity. Hypotheses that anaspids are ancestral skeletonizing lampreys, or a derived lineage of jawless vertebrates with paired fins, are rejected. © 2016 The Authors.

  4. Stress-free state of the red blood cell membrane and the deformation of its skeleton.

    PubMed

    Svelc, Tjaša; Svetina, Saša

    2012-06-01

    The response of a red blood cell (RBC) to deformation depends on its membrane, a composite of a lipid bilayer and a skeleton, which is a closed, two-dimensional network of spectrin tetramers as its bonds. The deformation of the skeleton and its lateral redistribution are studied in terms of the RBC resting state for a fixed geometry of the RBC, partially aspirated into a micropipette. The geometry of the RBC skeleton in its initial state is taken to be either two concentric circles, a references biconcave shape or a sphere. It is assumed that in its initial state the skeleton is distributed laterally in a homogeneous manner with its bonds either unstressed, presenting its stress-free state, or prestressed. The lateral distribution was calculated using a variational calculation. It was assumed that the spectrin tetramer bonds exhibit a linear elasticity. The results showed a significant effect of the initial skeleton geometry on its lateral distribution in the deformed state. The proposed model is used to analyze the measurements of skeleton extension ratios by the method of applying two modes of RBC micropipette aspiration.

  5. Topology adaptive vessel network skeleton extraction with novel medialness measuring function.

    PubMed

    Zhu, Wen-Bo; Li, Bin; Tian, Lian-Fang; Li, Xiang-Xia; Chen, Qing-Lin

    2015-09-01

    Vessel tree skeleton extraction is widely applied in vascular structure segmentation, however, conventional approaches often suffer from the adjacent interferences and poor topological adaptability. To avoid these problems, a robust, topology adaptive tree-like structure skeleton extraction framework is proposed in this paper. Specifically, to avoid the adjacent interferences, a local message passing procedure called Gaussian affinity voting (GAV) is proposed to realize adaptive scale-growing of vessel voxels. Then the medialness measuring function (MMF) based on GAV, namely GAV-MMF, is constructed to extract medialness patterns robustly. In order to improve topological adaptability, a level-set graph embedded with GAV-MMF is employed to build initial curve skeletons without any user interaction. Furthermore, the GAV-MMF is embedded in stretching open active contours (SOAC) to drive the initial curves to the expected location, maintaining smoothness and continuity. In addition, to provide an accurate and smooth final skeleton tree topology, topological checks and skeleton network reconfiguration is proposed. The continuity and scalability of this method is validated experimentally on synthetic and clinical images for multi-scale vessels. Experimental results show that the proposed method achieves acceptable topological adaptability for skeleton extraction of vessel trees.

  6. Dissection and Flat-mounting of the Threespine Stickleback Branchial Skeleton.

    PubMed

    Ellis, Nicholas A; Miller, Craig T

    2016-05-07

    The posterior pharyngeal segments of the vertebrate head give rise to the branchial skeleton, the primary site of food processing in fish. The morphology of the fish branchial skeleton is matched to a species' diet. Threespine stickleback fish (Gasterosteus aculeatus) have emerged as a model system to study the genetic and developmental basis of evolved differences in a variety of traits. Marine populations of sticklebacks have repeatedly colonized countless new freshwater lakes and creeks. Adaptation to the new diet in these freshwater environments likely underlies a series of craniofacial changes that have evolved repeatedly in independently derived freshwater populations. These include three major patterning changes to the branchial skeleton: reductions in the number and length of gill raker bones, increases in pharyngeal tooth number, and increased branchial bone lengths. Here we describe a detailed protocol to dissect and flat-mount the internal branchial skeleton in threespine stickleback fish. Dissection of the entire three-dimensional branchial skeleton and mounting it flat into a largely two-dimensional prep allows for the easy visualization and quantification of branchial skeleton morphology. This dissection method is inexpensive, fast, relatively easy, and applicable to a wide variety of fish species. In sticklebacks, this efficient method allows the quantification of skeletal morphology in genetic crosses to map genomic regions controlling craniofacial patterning.

  7. Histology and affinity of anaspids, and the early evolution of the vertebrate dermal skeleton

    PubMed Central

    Keating, Joseph N.; Donoghue, Philip C. J.

    2016-01-01

    The assembly of the gnathostome bodyplan constitutes a formative episode in vertebrate evolutionary history, an interval in which the mineralized skeleton and its canonical suite of cell and tissue types originated. Fossil jawless fishes, assigned to the gnathostome stem-lineage, provide an unparalleled insight into the origin and evolution of the skeleton, hindered only by uncertainty over the phylogenetic position and evolutionary significance of key clades. Chief among these are the jawless anaspids, whose skeletal composition, a rich source of phylogenetic information, is poorly characterized. Here we survey the histology of representatives spanning anaspid diversity and infer their generalized skeletal architecture. The anaspid dermal skeleton is composed of odontodes comprising spheritic dentine and enameloid, overlying a basal layer of acellular parallel fibre bone containing an extensive shallow canal network. A recoded and revised phylogenetic analysis using equal and implied weights parsimony resolves anaspids as monophyletic, nested among stem-gnathostomes. Our results suggest the anaspid dermal skeleton is a degenerate derivative of a histologically more complex ancestral vertebrate skeleton, rather than reflecting primitive simplicity. Hypotheses that anaspids are ancestral skeletonizing lampreys, or a derived lineage of jawless vertebrates with paired fins, are rejected. PMID:26962140

  8. Evaluation of physiological FDG uptake in the skeleton in adults: is it uniformly distributed?

    PubMed

    Aras, Mustafa; Dede, Fuat; Ones, Tunc; Inanır, Sabahat; Erdıl, Tanju Yusuf; Turoglu, Halil Turgut

    2014-01-01

    The aim of this study was to study whether FDG was uniformly distributed throughout the skeleton and whether age and gender affected this biodistribution. A total of 158 patients were included in this retrospective study. None of the patients had received prior treatment that had affected the bone marrow and patients with bone metastases, trauma, benign and/or malignant hematologic disorders were excluded from the study. The SUVmax from the 24 different locations in the skeleton was obtained and all the values were compared with each other. FDG uptake in the skeleton was not uniform in both sexes. While the highest FDG uptake was seen in the L3 vertebra, the lowest glucose metabolism was observed in the diaphysis of the femur. Concerning the vertebral column, FDG uptakes were also non-uniform and the SUVmax gradually increased from the cervix to the lumbar spine. The mean skeletal SUVmax was decreased in accordance with age in both genders. FDG was not uniformly distributed throughout the skeleton in both sexes. It had a tendency to increase from the appendicular to axial skeleton and from cervical to lumbar spine in the vertebral column that may be related with the normal distribution of the red bone marrow. Additionally, the glycolytic metabolism of the whole skeleton was gradually decreased in accordance with the age in both sexes. Copyright © 2013 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  9. Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata

    NASA Astrophysics Data System (ADS)

    Tambutté, E.; Allemand, D.; Zoccola, D.; Meibom, A.; Lotto, S.; Caminiti, N.; Tambutté, S.

    2007-09-01

    Recent micro-analytical studies of coral skeletons have led to the discovery that the effects of biology on the skeletal chemical and isotopic composition are not uniform over the skeleton. The aim of the present work was to provide histological observations of the coral tissue at the interface with the skeleton, using Stylophora pistillata as a model, and to discuss these observations in the context of skeletal ultra-structural organization and composition. Several important observations are reported: (1) At all scales of observation, there was a precise morphological correspondence between the tissues and the skeleton. The morphological features of the calicoblastic ectoderm correspond exactly to the shape of individual crystal fiber bundles in the underlying skeleton, indicating that the calicoblastic cell layer is in direct physical contact with the skeletal surface. This is consistent with the previously observed chemical and isotopic composition of the ultra-structural components in the skeleton. (2) The distribution and density of desmocyte cells, which anchor the calicoblastic ectoderm to the skeletal surface, vary spatially and temporally during skeletal growth. (3) The tissue above the coenosteal spines lack endoderm and consists only of ectodermal cell-layers separated by mesoglea. These findings have important implications for models of vital effects in coral skeletal chemistry and isotope composition.

  10. Phase-shifting interferometry based on principal component analysis.

    PubMed

    Vargas, J; Quiroga, J Antonio; Belenguer, T

    2011-04-15

    An asynchronous phase-shifting method based on principal component analysis (PCA) is presented. No restrictions about the background, modulation, and phase shifts are necessary. The presented method is very fast and needs very low computational requirements, so it can be used with very large images and/or very large image sets. The method is based on obtaining two quadrature signals by the PCA algorithm. We have applied the proposed method to simulated and experimental interferograms, obtaining satisfactory results.

  11. Genetic algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  12. Principal elementary mode analysis (PEMA).

    PubMed

    Folch-Fortuny, Abel; Marques, Rodolfo; Isidro, Inês A; Oliveira, Rui; Ferrer, Alberto

    2016-03-01

    Principal component analysis (PCA) has been widely applied in fluxomics to compress data into a few latent structures in order to simplify the identification of metabolic patterns. These latent structures lack a direct biological interpretation due to the intrinsic constraints associated with a PCA model. Here we introduce a new method that significantly improves the interpretability of the principal components with a direct link to metabolic pathways. This method, called principal elementary mode analysis (PEMA), establishes a bridge between a PCA-like model, aimed at explaining the maximum variance in flux data, and the set of elementary modes (EMs) of a metabolic network. It provides an easy way to identify metabolic patterns in large fluxomics datasets in terms of the simplest pathways of the organism metabolism. The results using a real metabolic model of Escherichia coli show the ability of PEMA to identify the EMs that generated the different simulated flux distributions. Actual flux data of E. coli and Pichia pastoris cultures confirm the results observed in the simulated study, providing a biologically meaningful model to explain flux data of both organisms in terms of the EM activation. The PEMA toolbox is freely available for non-commercial purposes on http://mseg.webs.upv.es.

  13. How to Spot an Effective Principal.

    ERIC Educational Resources Information Center

    Finn, Chester E, Jr.

    1987-01-01

    Research shows the importance of effective principals in the development of effective schools. Discusses the importance of the principal selection process. The "Principal Selection Guide" was developed by the United States Department of Education to assist those involved in principal selection. (MD)

  14. 34 CFR 85.995 - Principal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Principal. 85.995 Section 85.995 Education Office of the Secretary, Department of Education GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 85.995 Principal. Principal means— (a) An officer, director, owner, partner, principal...

  15. 31 CFR 19.995 - Principal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Principal. 19.995 Section 19.995... SUSPENSION (NONPROCUREMENT) Definitions § 19.995 Principal. Principal means— (a) An officer, director, owner, partner, principal investigator, or other person within a participant with management or supervisory...

  16. 22 CFR 208.995 - Principal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Principal. 208.995 Section 208.995 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 208.995 Principal. Principal means— (a) An officer, director, owner, partner, principal...

  17. 22 CFR 208.995 - Principal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Principal. 208.995 Section 208.995 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 208.995 Principal. Principal means— (a) An officer, director, owner, partner, principal...

  18. 31 CFR 19.995 - Principal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Principal. 19.995 Section 19.995... SUSPENSION (NONPROCUREMENT) Definitions § 19.995 Principal. Principal means— (a) An officer, director, owner, partner, principal investigator, or other person within a participant with management or supervisory...

  19. 7 CFR 3017.995 - Principal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Principal. 3017.995 Section 3017.995 Agriculture... AGRICULTURE GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 3017.995 Principal. Principal means— (a) An officer, director, owner, partner, principal investigator, or other person within a...

  20. 29 CFR 1471.995 - Principal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Principal. 1471.995 Section 1471.995 Labor Regulations... SUSPENSION (NONPROCUREMENT) Definitions § 1471.995 Principal. Principal means— (a) An officer, director, owner, partner, principal investigator, or other person within a participant with management or...