Sample records for principle quantum description

  1. The quantum universe

    NASA Astrophysics Data System (ADS)

    Hey, Anthony J. G.; Walters, Patrick

    This book provides a descriptive, popular account of quantum physics. The basic topics addressed include: waves and particles, the Heisenberg uncertainty principle, the Schroedinger equation and matter waves, atoms and nuclei, quantum tunneling, the Pauli exclusion principle and the elements, quantum cooperation and superfluids, Feynman rules, weak photons, quarks, and gluons. The applications of quantum physics to astrophyics, nuclear technology, and modern electronics are addressed.

  2. Quantum correlations are tightly bound by the exclusivity principle.

    PubMed

    Yan, Bin

    2013-06-28

    It is a fundamental problem in physics of what principle limits the correlations as predicted by our current description of nature, based on quantum mechanics. One possible explanation is the "global exclusivity" principle recently discussed in Phys. Rev. Lett. 110, 060402 (2013). In this work we show that this principle actually has a much stronger restriction on the probability distribution. We provide a tight constraint inequality imposed by this principle and prove that this principle singles out quantum correlations in scenarios represented by any graph. Our result implies that the exclusivity principle might be one of the fundamental principles of nature.

  3. Quantum Mechanics predicts evolutionary biology.

    PubMed

    Torday, J S

    2018-07-01

    Nowhere are the shortcomings of conventional descriptive biology more evident than in the literature on Quantum Biology. In the on-going effort to apply Quantum Mechanics to evolutionary biology, merging Quantum Mechanics with the fundamentals of evolution as the First Principles of Physiology-namely negentropy, chemiosmosis and homeostasis-offers an authentic opportunity to understand how and why physics constitutes the basic principles of biology. Negentropy and chemiosmosis confer determinism on the unicell, whereas homeostasis constitutes Free Will because it offers a probabilistic range of physiologic set points. Similarly, on this basis several principles of Quantum Mechanics also apply directly to biology. The Pauli Exclusion Principle is both deterministic and probabilistic, whereas non-localization and the Heisenberg Uncertainty Principle are both probabilistic, providing the long-sought after ontologic and causal continuum from physics to biology and evolution as the holistic integration recognized as consciousness for the first time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Quantum information aspects of noncommutative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bertolami, Orfeu; Bernardini, Alex E.; Leal, Pedro

    2018-01-01

    Some fundamental aspects related with the construction of Robertson-Schrödinger-like uncertainty-principle inequalities are reported in order to provide an overall description of quantumness, separability and nonlocality of quantum systems in the noncommutative phase-space. Some consequences of the deformed noncommutative algebra are also considered in physical systems of interest.

  5. Wave-Particle Duality and Uncertainty Principle: Phenomenographic Categories of Description of Tertiary Physics Students' Depictions

    ERIC Educational Resources Information Center

    Ayene, Mengesha; Kriek, Jeanne; Damtie, Baylie

    2011-01-01

    Quantum mechanics is often thought to be a difficult subject to understand, not only in the complexity of its mathematics but also in its conceptual foundation. In this paper we emphasize students' depictions of the uncertainty principle and wave-particle duality of quantum events, phenomena that could serve as a foundation in building an…

  6. About Essence of the Wave Function on Atomic Level and in Superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikulov, A. V.

    The wave function was proposed for description of quantum phenomena on the atomic level. But now it is well known that quantum phenomena are observed not only on atomic level and the wave function is used for description of macroscopic quantum phenomena, such as superconductivity. The essence of the wave function on level elementary particles was and is the subject of heated argument among founders of quantum mechanics and other physicists. This essence seems more clear in superconductor. But impossibility of probabilistic interpretation of wave function in this case results to obvious contradiction of quantum principles with some fundamental principlesmore » of physics.« less

  7. Quantum Monte Carlo Methods for First Principles Simulation of Liquid Water

    ERIC Educational Resources Information Center

    Gergely, John Robert

    2009-01-01

    Obtaining an accurate microscopic description of water structure and dynamics is of great interest to molecular biology researchers and in the physics and quantum chemistry simulation communities. This dissertation describes efforts to apply quantum Monte Carlo methods to this problem with the goal of making progress toward a fully "ab initio"…

  8. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  9. Corrigendum: First principles calculation of field emission from nanostructures using time-dependent density functional theory: A simplified approach

    NASA Astrophysics Data System (ADS)

    Tawfik, Sherif A.; El-Sheikh, S. M.; Salem, N. M.

    2016-09-01

    Recently we have become aware that the description of the quantum wave functions in Sec. 2.1 is incorrect. In the published version of the paper, we have stated that the states are expanded in terms of plane waves. However, the correct description of the quantum states in the context of the real space implementation (using the Octopus code) is that states are represented by discrete points in a real space grid.

  10. The ambiguity of simplicity in quantum and classical simulation

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, Cina; Mahoney, John R.; Crutchfield, James P.

    2017-04-01

    A system's perceived simplicity depends on whether it is represented classically or quantally. This is not so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign when moving between classical and quantum descriptions. Here, we associate simplicity with small model-memory. We see that the notions of absolute physical simplicity at best form a partial, not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham's Razor or to the ;elegance; of competing theories, may be fundamentally subjective. Recent rapid progress in quantum computation and quantum simulation suggest that the ambiguity of simplicity will strongly impact statistical inference and, in particular, model selection.

  11. Local U(2,2) symmetry in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    1998-12-01

    Local gauge freedom in relativistic quantum mechanics is derived from a measurement principle for space and time. For the Dirac equation, one obtains local U(2,2) gauge transformations acting on the spinor index of the wave functions. This local U(2,2) symmetry allows a unified description of electrodynamics and general relativity as a classical gauge theory.

  12. Quantum Impurity Models as Reference Systems for Strongly Correlated Materials: The Road from the Kondo Impurity Model to First Principles Electronic Structure Calculations with Dynamical Mean-Field Theory

    NASA Astrophysics Data System (ADS)

    Kotliar, Gabriel

    2005-01-01

    Dynamical mean field theory (DMFT) relates extended systems (bulk solids, surfaces and interfaces) to quantum impurity models (QIM) satisfying a self-consistency condition. This mapping provides an economic description of correlated electron materials. It is currently used in practical computations of physical properties of real materials. It has also great conceptual value, providing a simple picture of correlated electron phenomena on the lattice, using concepts derived from quantum impurity models such as the Kondo effect. DMFT can also be formulated as a first principles electronic structure method and is applicable to correlated materials.

  13. Dynamical quantum phase transitions: a review

    NASA Astrophysics Data System (ADS)

    Heyl, Markus

    2018-05-01

    Quantum theory provides an extensive framework for the description of the equilibrium properties of quantum matter. Yet experiments in quantum simulators have now opened up a route towards the generation of quantum states beyond this equilibrium paradigm. While these states promise to show properties not constrained by equilibrium principles, such as the equal a priori probability of the microcanonical ensemble, identifying the general properties of nonequilibrium quantum dynamics remains a major challenge, especially in view of the lack of conventional concepts such as free energies. The theory of dynamical quantum phase transitions attempts to identify such general principles by lifting the concept of phase transitions to coherent quantum real-time evolution. This review provides a pedagogical introduction to this field. Starting from the general setting of nonequilibrium dynamics in closed quantum many-body systems, we give the definition of dynamical quantum phase transitions as phase transitions in time with physical quantities becoming nonanalytic at critical times. We summarize the achieved theoretical advances as well as the first experimental observations, and furthermore provide an outlook to major open questions as well as future directions of research.

  14. Dynamical quantum phase transitions: a review.

    PubMed

    Heyl, Markus

    2018-05-01

    Quantum theory provides an extensive framework for the description of the equilibrium properties of quantum matter. Yet experiments in quantum simulators have now opened up a route towards the generation of quantum states beyond this equilibrium paradigm. While these states promise to show properties not constrained by equilibrium principles, such as the equal a priori probability of the microcanonical ensemble, identifying the general properties of nonequilibrium quantum dynamics remains a major challenge, especially in view of the lack of conventional concepts such as free energies. The theory of dynamical quantum phase transitions attempts to identify such general principles by lifting the concept of phase transitions to coherent quantum real-time evolution. This review provides a pedagogical introduction to this field. Starting from the general setting of nonequilibrium dynamics in closed quantum many-body systems, we give the definition of dynamical quantum phase transitions as phase transitions in time with physical quantities becoming nonanalytic at critical times. We summarize the achieved theoretical advances as well as the first experimental observations, and furthermore provide an outlook to major open questions as well as future directions of research.

  15. Phase space deformations in phantom cosmology

    NASA Astrophysics Data System (ADS)

    López, J. L.; Sabido, M.; Yee-Romero, C.

    2018-03-01

    We discuss the physical consequences of general phase space deformations on the minisuperspace of phantom cosmology. Based on the principle of physically equivalent descriptions in the deformed theory, we investigate for what values of the deformation parameters the arising descriptions are physically equivalent. We also construct and solve the quantum model and derive the semiclassical dynamics.

  16. Generalized uncertainty principle and quantum gravity phenomenology

    NASA Astrophysics Data System (ADS)

    Bosso, Pasquale

    The fundamental physical description of Nature is based on two mutually incompatible theories: Quantum Mechanics and General Relativity. Their unification in a theory of Quantum Gravity (QG) remains one of the main challenges of theoretical physics. Quantum Gravity Phenomenology (QGP) studies QG effects in low-energy systems. The basis of one such phenomenological model is the Generalized Uncertainty Principle (GUP), which is a modified Heisenberg uncertainty relation and predicts a deformed canonical commutator. In this thesis, we compute Planck-scale corrections to angular momentum eigenvalues, the hydrogen atom spectrum, the Stern-Gerlach experiment, and the Clebsch-Gordan coefficients. We then rigorously analyze the GUP-perturbed harmonic oscillator and study new coherent and squeezed states. Furthermore, we introduce a scheme for increasing the sensitivity of optomechanical experiments for testing QG effects. Finally, we suggest future projects that may potentially test QG effects in the laboratory.

  17. Quantum formalism for classical statistics

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-06-01

    In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.

  18. The New Quantum Logic

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2014-06-01

    It is shown how all the major conceptual difficulties of standard (textbook) quantum mechanics, including the two measurement problems and the (supposed) nonlocality that conflicts with special relativity, are resolved in the consistent or decoherent histories interpretation of quantum mechanics by using a modified form of quantum logic to discuss quantum properties (subspaces of the quantum Hilbert space), and treating quantum time development as a stochastic process. The histories approach in turn gives rise to some conceptual difficulties, in particular the correct choice of a framework (probabilistic sample space) or family of histories, and these are discussed. The central issue is that the principle of unicity, the idea that there is a unique single true description of the world, is incompatible with our current understanding of quantum mechanics.

  19. Aspects of Geodesical Motion with Fisher-Rao Metric: Classical and Quantum

    NASA Astrophysics Data System (ADS)

    Ciaglia, Florio M.; Cosmo, Fabio Di; Felice, Domenico; Mancini, Stefano; Marmo, Giuseppe; Pérez-Pardo, Juan M.

    The purpose of this paper is to exploit the geometric structure of quantum mechanics and of statistical manifolds to study the qualitative effect that the quantum properties have in the statistical description of a system. We show that the end points of geodesics in the classical setting coincide with the probability distributions that minimise Shannon’s entropy, i.e. with distributions of zero dispersion. In the quantum setting this happens only for particular initial conditions, which in turn correspond to classical submanifolds. This result can be interpreted as a geometric manifestation of the uncertainty principle.

  20. Double quantum dot memristor

    NASA Astrophysics Data System (ADS)

    Li, Ying; Holloway, Gregory W.; Benjamin, Simon C.; Briggs, G. Andrew D.; Baugh, Jonathan; Mol, Jan A.

    2017-08-01

    Memristive systems are generalizations of memristors, which are resistors with memory. In this paper, we present a quantum description of quantum dot memristive systems. Using this model we propose and experimentally demonstrate a simple and practical scheme for realizing memristive systems with quantum dots. The approach harnesses a phenomenon that is commonly seen as a bane of nanoelectronics, i.e., switching of a trapped charge in the vicinity of the device. We show that quantum dot memristive systems have hysteresis current-voltage characteristics and quantum jump-induced stochastic behavior. While our experiment requires low temperatures, the same setup could, in principle, be realized with a suitable single-molecule transistor and operated at or near room temperature.

  1. In search of multipath interference using large molecules

    PubMed Central

    Cotter, Joseph P.; Brand, Christian; Knobloch, Christian; Lilach, Yigal; Cheshnovsky, Ori; Arndt, Markus

    2017-01-01

    The superposition principle is fundamental to the quantum description of both light and matter. Recently, a number of experiments have sought to directly test this principle using coherent light, single photons, and nuclear spin states. We extend these experiments to massive particles for the first time. We compare the interference patterns arising from a beam of large dye molecules diffracting at single, double, and triple slit material masks to place limits on any high-order, or multipath, contributions. We observe an upper bound of less than one particle in a hundred deviating from the expectations of quantum mechanics over a broad range of transverse momenta and de Broglie wavelength. PMID:28819641

  2. Can Quantum-Mechanical Description of Physical Reality Be Considered Correct?

    NASA Astrophysics Data System (ADS)

    Brassard, Gilles; Méthot, André Allan

    2010-04-01

    In an earlier paper written in loving memory of Asher Peres, we gave a critical analysis of the celebrated 1935 paper in which Einstein, Podolsky and Rosen (EPR) challenged the completeness of quantum mechanics. There, we had pointed out logical shortcomings in the EPR paper. Now, we raise additional questions concerning their suggested program to find a theory that would “provide a complete description of the physical reality”. In particular, we investigate the extent to which the EPR argumentation could have lead to the more dramatic conclusion that quantum mechanics is in fact incorrect. With this in mind, we propose a speculation, made necessary by a logical shortcoming in the EPR paper caused by the lack of a necessary condition for “elements of reality”, and surmise that an eventually complete theory would either be inconsistent with quantum mechanics, or would at least violate Heisenberg’s Uncertainty Principle.

  3. MOND as a regime of quantum gravity

    NASA Astrophysics Data System (ADS)

    Smolin, Lee

    2017-10-01

    We propose that there is a regime of quantum gravity phenomena, for the case that the cosmological constant is small and positive, which concerns physics at temperatures below the de Sitter temperature, or length scales larger than the horizon. We observe that the standard form of the equivalence principle does not apply in this regime; we consider instead that a weakened form of the equivalence principle might hold in which the ratio of gravitational to inertial mass is a function of environmental parameters. We consider possible principles to determine that function. These lead to behavior that, in the limit of ℏ→0 and c →∞ , reproduces the modifications of Newtonian dynamics first proposed by Milgrom. Thus modified newtonian dynamics is elucidated as coding the physics of a novel regime of quantum gravity phenomena. We propose also an effective description of this regime in terms of a bimetric theory, valid in the approximation where the metric is static. This predicts a new effect, which modifies gravity for radial motions.

  4. Jahn-Teller effect in molecular electronics: quantum cellular automata

    NASA Astrophysics Data System (ADS)

    Tsukerblat, B.; Palii, A.; Clemente-Juan, J. M.; Coronado, E.

    2017-05-01

    The article summarizes the main results of application of the theory of the Jahn-Teller (JT) and pseudo JT effects to the description of molecular quantum dot cellular automata (QCA), a new paradigm of quantum computing. The following issues are discussed: 1) QCA as a new paradigm of quantum computing, principles and advantages; 2) molecular implementation of QCA; 3) role of the JT effect in charge trapping, encoding of binary information in the quantum cell and non-linear cell-cell response; 4) spin-switching in molecular QCA based on mixed-valence cell; 5) intervalence optical absorption in tetrameric molecular mixed-valence cell through the symmetry assisted approach to the multimode/multilevel JT and pseudo JT problems.

  5. Photosynthetic Energy Transfer at the Quantum/Classical Border.

    PubMed

    Keren, Nir; Paltiel, Yossi

    2018-06-01

    Quantum mechanics diverges from the classical description of our world when very small scales or very fast processes are involved. Unlike classical mechanics, quantum effects cannot be easily related to our everyday experience and are often counterintuitive to us. Nevertheless, the dimensions and time scales of the photosynthetic energy transfer processes puts them close to the quantum/classical border, bringing them into the range of measurable quantum effects. Here we review recent advances in the field and suggest that photosynthetic processes can take advantage of the sensitivity of quantum effects to the environmental 'noise' as means of tuning exciton energy transfer efficiency. If true, this design principle could be a base for 'nontrivial' coherent wave property nano-devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. A Formulation of Quantum Field Theory Realizing a Sea of Interacting Dirac Particles

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2011-08-01

    In this survey article, we explain a few ideas behind the fermionic projector approach and summarize recent results which clarify the connection to quantum field theory. The fermionic projector is introduced, which describes the physical system by a collection of Dirac states, including the states of the Dirac sea. Formulating the interaction by an action principle for the fermionic projector, we obtain a consistent description of interacting quantum fields which reproduces the results of perturbative quantum field theory. We find a new mechanism for the generation of boson masses and obtain small corrections to the field equations which violate causality.

  7. Procedural Quantum Programming

    NASA Astrophysics Data System (ADS)

    Ömer, Bernhard

    2002-09-01

    While classical computing science has developed a variety of methods and programming languages around the concept of the universal computer, the typical description of quantum algorithms still uses a purely mathematical, non-constructive formalism which makes no difference between a hydrogen atom and a quantum computer. This paper investigates, how the concept of procedural programming languages, the most widely used classical formalism for describing and implementing algorithms, can be adopted to the field of quantum computing, and how non-classical features like the reversibility of unitary transformations, the non-observability of quantum states or the lack of copy and erase operations can be reflected semantically. It introduces the key concepts of procedural quantum programming (hybrid target architecture, operator hierarchy, quantum data types, memory management, etc.) and presents the experimental language QCL, which implements these principles.

  8. Applications of the principle of maximum entropy: from physics to ecology.

    PubMed

    Banavar, Jayanth R; Maritan, Amos; Volkov, Igor

    2010-02-17

    There are numerous situations in physics and other disciplines which can be described at different levels of detail in terms of probability distributions. Such descriptions arise either intrinsically as in quantum mechanics, or because of the vast amount of details necessary for a complete description as, for example, in Brownian motion and in many-body systems. We show that an application of the principle of maximum entropy for estimating the underlying probability distribution can depend on the variables used for describing the system. The choice of characterization of the system carries with it implicit assumptions about fundamental attributes such as whether the system is classical or quantum mechanical or equivalently whether the individuals are distinguishable or indistinguishable. We show that the correct procedure entails the maximization of the relative entropy subject to known constraints and, additionally, requires knowledge of the behavior of the system in the absence of these constraints. We present an application of the principle of maximum entropy to understanding species diversity in ecology and introduce a new statistical ensemble corresponding to the distribution of a variable population of individuals into a set of species not defined a priori.

  9. Diamond Quantum Nanoemitters: Cross Discipline Research on Hyperbolic Optical Systems for Control of Quantum Nanoemitters

    DTIC Science & Technology

    2017-05-05

    results of this project there are: (1) the investigation of the effect of phonons on the optical properties of solid state emitters. A microscopic ...In  what  follows  we  list  the  main  results  and  undergoing  research.   2. Results 2.1   Microscopic  modeling...fluorescent  markers   for   biological   measurements.   Here,   we   present   a   first-­‐principles   microscopic   description

  10. Gauge/Gravity Duality

    ScienceCinema

    Polchinski, Joseph

    2017-12-22

    Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.

  11. Unifying decoherence and the Heisenberg Principle

    NASA Astrophysics Data System (ADS)

    Janssens, Bas

    2017-08-01

    We exhibit three inequalities involving quantum measurement, all of which are sharp and state independent. The first inequality bounds the performance of joint measurement. The second quantifies the trade-off between the measurement quality and the disturbance caused on the measured system. Finally, the third inequality provides a sharp lower bound on the amount of decoherence in terms of the measurement quality. This gives a unified description of both the Heisenberg uncertainty principle and the collapse of the wave function.

  12. Nonlocality versus complementarity: a conservative approach to the information problem

    NASA Astrophysics Data System (ADS)

    Giddings, Steven B.

    2011-01-01

    A proposal for resolution of the information paradox is that 'nice slice' states, which have been viewed as providing a sharp argument for information loss, do not in fact do so as they do not give a fully accurate description of the quantum state of a black hole. This however leaves an information problem, which is to provide a consistent description of how information escapes when a black hole evaporates. While a rather extreme form of nonlocality has been advocated in the form of complementarity, this paper argues that is not necessary, and more modest nonlocality could solve the information problem. One possible distinguishing characteristic of scenarios is the information retention time. The question of whether such nonlocality implies acausality, and particularly inconsistency, is briefly addressed. The need for such nonlocality, and its apparent tension with our empirical observations of local quantum field theory, may be a critical missing piece in understanding the principles of quantum gravity.

  13. Free Quantum Field Theory from Quantum Cellular Automata

    NASA Astrophysics Data System (ADS)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro

    2015-10-01

    After leading to a new axiomatic derivation of quantum theory (see D'Ariano et al. in Found Phys, 2015), the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs. The phenomenology arising from the automata theory in the ultra-relativistic domain and the analysis of corresponding distorted Lorentz covariance is reviewed in Bisio et al. (Found Phys 2015, in this same issue).

  14. Steepest entropy ascent model for far-nonequilibrium thermodynamics: Unified implementation of the maximum entropy production principle

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo

    2014-10-01

    By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. Actually, the present formulation constitutes a generalization also for the quantum thermodynamics framework. The analysis emphasizes that in the SEA modeling principle a key role is played by the geometrical metric with respect to which to measure the length of a trajectory in state space. In the near-thermodynamic-equilibrium limit, the metric tensor is directly related to the Onsager's generalized resistivity tensor. Therefore, through the identification of a suitable metric field which generalizes the Onsager generalized resistance to the arbitrarily far-nonequilibrium domain, most of the existing theories of nonequilibrium thermodynamics can be cast in such a way that the state exhibits the spontaneous tendency to evolve in state space along the path of SEA compatible with the conservation constraints and the boundary conditions. The resulting unified family of SEA dynamical models is intrinsically and strongly consistent with the second law of thermodynamics. The non-negativity of the entropy production is a general and readily proved feature of SEA dynamics. In several of the different approaches to nonequilibrium description we consider here, the SEA concept has not been investigated before. We believe it defines the precise meaning and the domain of general validity of the so-called maximum entropy production principle. Therefore, it is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermodynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium from far nonequilibrium states. The mathematical frameworks we consider are the following: (A) statistical or information-theoretic models of relaxation; (B) small-scale and rarefied gas dynamics (i.e., kinetic models for the Boltzmann equation); (C) rational extended thermodynamics, macroscopic nonequilibrium thermodynamics, and chemical kinetics; (D) mesoscopic nonequilibrium thermodynamics, continuum mechanics with fluctuations; and (E) quantum statistical mechanics, quantum thermodynamics, mesoscopic nonequilibrium quantum thermodynamics, and intrinsic quantum thermodynamics.

  15. Quantum epistemology from subquantum ontology: Quantum mechanics from theory of classical random fields

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2017-02-01

    The scientific methodology based on two descriptive levels, ontic (reality as it is) and epistemic (observational), is briefly presented. Following Schrödinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be unaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity-the quantum state ("wave function"). The correspondence PCSFT ↦ QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and the superposition principle-by using the formalism of classical field correlations. In classical mechanics the phase space description can be considered as the ontic description, here states are given by points λ =(x , p) of phase space. The dynamics of the ontic state is given by the system of Hamiltonian equations.We can also consider probability distributions on the phase space (or equivalently random variables valued in it). We call them probabilistic ontic states. Dynamics of probabilistic ontic states is given by the Liouville equation.In classical physics we can (at least in principle) measure both the coordinate and momentum and hence ontic states can be treated as epistemic states as well (or it is better to say that here epistemic states can be treated as ontic states). Probabilistic ontic states represent probabilities for outcomes of joint measurement of position and momentum.However, this was a very special, although very important, example of description of physical phenomena. In general there are no reasons to expect that properties of ontic states are approachable through our measurements. There is a gap between ontic and epistemic descriptions, cf. also with 't Hooft [49,50] and G G. Groessing et al. [51]. In general the presence of such a gap also implies unapproachability of the probabilistic ontic states, i.e., probability distributions on the space of ontic states. De Broglie [28] called such probability distributions hidden probabilities and distinguished them sharply from probability distributions of measurements outcomes, see also Lochak [29]. (The latter distributions are described by the quantum formalism.)This ontic-epistemic approach based on the combination of two descriptive levels for natural phenomena is closely related to the old Bild conception which was originated in the works of Hertz. Later it was heavily explored by Schrödinger in the quantum domain, see, e.g., [8,11] for detailed analysis. According to Hertz one cannot expect to construct a complete theoretical model based explicitly on observable quantities. The complete theoretical model can contain quantities which are unapproachable for external measurement inspection. For example, Hertz by trying to create a mechanical model for Maxwell's electromagnetism invented hidden masses. The main distinguishing property of a theoretical model (in contrast to an observational model) is the continuity of description, i.e., the absence of gaps in description. From this viewpoint, the quantum mechanical description is not continuous: there is a gap between premeasurement dynamics and the measurement outcome. QM cannot say anything what happens in the process of measurement, this is the well known measurement problem of QM [32], cf. [52,53]. Continuity of description is closely related to causality. However, here we cannot go in more detail, see [8,11].The important question is about interrelation between two levels of description, ontic-epistemic (or theoretical-observational). In the introduction we have already cited Schrödinger who emphasized the possible complexity of this interrelation. In particular, in general there is no reason to expect a straightforward coupling of the form, cf. [9,10]:

  16. Grand Canonical adaptive resolution simulation for molecules with electrons: A theoretical framework based on physical consistency

    NASA Astrophysics Data System (ADS)

    Delle Site, Luigi

    2018-01-01

    A theoretical scheme for the treatment of an open molecular system with electrons and nuclei is proposed. The idea is based on the Grand Canonical description of a quantum region embedded in a classical reservoir of molecules. Electronic properties of the quantum region are calculated at constant electronic chemical potential equal to that of the corresponding (large) bulk system treated at full quantum level. Instead, the exchange of molecules between the quantum region and the classical environment occurs at the chemical potential of the macroscopic thermodynamic conditions. The Grand Canonical Adaptive Resolution Scheme is proposed for the treatment of the classical environment; such an approach can treat the exchange of molecules according to first principles of statistical mechanics and thermodynamic. The overall scheme is build on the basis of physical consistency, with the corresponding definition of numerical criteria of control of the approximations implied by the coupling. Given the wide range of expertise required, this work has the intention of providing guiding principles for the construction of a well founded computational protocol for actual multiscale simulations from the electronic to the mesoscopic scale.

  17. Anticipatory dynamics of biological systems: from molecular quantum states to evolution

    NASA Astrophysics Data System (ADS)

    Igamberdiev, Abir U.

    2015-08-01

    Living systems possess anticipatory behaviour that is based on the flexibility of internal models generated by the system's embedded description. The idea was suggested by Aristotle and is explicitly introduced to theoretical biology by Rosen. The possibility of holding the embedded internal model is grounded in the principle of stable non-equilibrium (Bauer). From the quantum mechanical view, this principle aims to minimize energy dissipation in expense of long relaxation times. The ideas of stable non-equilibrium were developed by Liberman who viewed living systems as subdivided into the quantum regulator and the molecular computer supporting coherence of the regulator's internal quantum state. The computational power of the cell molecular computer is based on the possibility of molecular rearrangements according to molecular addresses. In evolution, the anticipatory strategies are realized both as a precession of phylogenesis by ontogenesis (Berg) and as the anticipatory search of genetic fixation of adaptive changes that incorporates them into the internal model of genetic system. We discuss how the fundamental ideas of anticipation can be introduced into the basic foundations of theoretical biology.

  18. Time-dependent variational principle in matrix-product state manifolds: Pitfalls and potential

    NASA Astrophysics Data System (ADS)

    Kloss, Benedikt; Lev, Yevgeny Bar; Reichman, David

    2018-01-01

    We study the applicability of the time-dependent variational principle in matrix-product state manifolds for the long time description of quantum interacting systems. By studying integrable and nonintegrable systems for which the long time dynamics are known we demonstrate that convergence of long time observables is subtle and needs to be examined carefully. Remarkably, for the disordered nonintegrable system we consider the long time dynamics are in good agreement with the rigorously obtained short time behavior and with previous obtained numerically exact results, suggesting that at least in this case, the apparent convergence of this approach is reliable. Our study indicates that, while great care must be exercised in establishing the convergence of the method, it may still be asymptotically accurate for a class of disordered nonintegrable quantum systems.

  19. Quantum limits to gravity estimation with optomechanics

    NASA Astrophysics Data System (ADS)

    Armata, F.; Latmiral, L.; Plato, A. D. K.; Kim, M. S.

    2017-10-01

    We present a table-top quantum estimation protocol to measure the gravitational acceleration g by using an optomechanical cavity. In particular, we exploit the nonlinear quantum light-matter interaction between an optical field and a massive mirror acting as mechanical oscillator. The gravitational field influences the system dynamics affecting the phase of the cavity field during the interaction. Reading out such a phase carried by the radiation leaking from the cavity, we provide an estimate of the gravitational acceleration through interference measurements. Contrary to previous studies, having adopted a fully quantum description, we are able to propose a quantum analysis proving the ultimate bound to the estimability of the gravitational acceleration and verifying optimality of homodyne detection. Noticeably, thanks to the light-matter decoupling at the measurement time, no initial cooling of the mechanical oscillator is demanded in principle.

  20. Going through a quantum phase

    NASA Technical Reports Server (NTRS)

    Shapiro, Jeffrey H.

    1992-01-01

    Phase measurements on a single-mode radiation field are examined from a system-theoretic viewpoint. Quantum estimation theory is used to establish the primacy of the Susskind-Glogower (SG) phase operator; its phase eigenkets generate the probability operator measure (POM) for maximum likelihood phase estimation. A commuting observables description for the SG-POM on a signal x apparatus state space is derived. It is analogous to the signal-band x image-band formulation for optical heterodyne detection. Because heterodyning realizes the annihilation operator POM, this analogy may help realize the SG-POM. The wave function representation associated with the SG POM is then used to prove the duality between the phase measurement and the number operator measurement, from which a number-phase uncertainty principle is obtained, via Fourier theory, without recourse to linearization. Fourier theory is also employed to establish the principle of number-ket causality, leading to a Paley-Wiener condition that must be satisfied by the phase-measurement probability density function (PDF) for a single-mode field in an arbitrary quantum state. Finally, a two-mode phase measurement is shown to afford phase-conjugate quantum communication at zero error probability with finite average photon number. Application of this construct to interferometric precision measurements is briefly discussed.

  1. Interpretations

    NASA Astrophysics Data System (ADS)

    Bellac, Michel Le

    2014-11-01

    Although nobody can question the practical efficiency of quantum mechanics, there remains the serious question of its interpretation. As Valerio Scarani puts it, "We do not feel at ease with the indistinguishability principle (that is, the superposition principle) and some of its consequences." Indeed, this principle which pervades the quantum world is in stark contradiction with our everyday experience. From the very beginning of quantum mechanics, a number of physicists--but not the majority of them!--have asked the question of its "interpretation". One may simply deny that there is a problem: according to proponents of the minimalist interpretation, quantum mechanics is self-sufficient and needs no interpretation. The point of view held by a majority of physicists, that of the Copenhagen interpretation, will be examined in Section 10.1. The crux of the problem lies in the status of the state vector introduced in the preceding chapter to describe a quantum system, which is no more than a symbolic representation for the Copenhagen school of thought. Conversely, one may try to attribute some "external reality" to this state vector, that is, a correspondence between the mathematical description and the physical reality. In this latter case, it is the measurement problem which is brought to the fore. In 1932, von Neumann was first to propose a global approach, in an attempt to build a purely quantum theory of measurement examined in Section 10.2. This theory still underlies modern approaches, among them those grounded on decoherence theory, or on the macroscopic character of the measuring apparatus: see Section 10.3. Finally, there are non-standard interpretations such as Everett's many worlds theory or the hidden variables theory of de Broglie and Bohm (Section 10.4). Note, however, that this variety of interpretations has no bearing whatsoever on the practical use of quantum mechanics. There is no controversy on the way we should use quantum mechanics!

  2. Ab initio joint density-functional theory of solvated electrodes, with model and explicit solvation

    NASA Astrophysics Data System (ADS)

    Arias, Tomas

    2015-03-01

    First-principles guided design of improved electrochemical systems has the potential for great societal impact by making non-fossil-fuel systems economically viable. Potential applications include improvements in fuel-cells, solar-fuel systems (``artificial photosynthesis''), supercapacitors and batteries. Economical fuel-cell systems would enable zero-carbon footprint transportation, solar-fuel systems would directly convert sunlight and water into hydrogen fuel for such fuel-cell vehicles, supercapacitors would enable nearly full recovery of energy lost during vehicle braking thus extending electric vehicle range and acceptance, and economical high-capacity batteries would be central to mitigating the indeterminacy of renewable resources such as wind and solar. Central to the operation of all of the above electrochemical systems is the electrode-electrolyte interface, whose underlying physics is quite rich, yet remains remarkably poorly understood. The essential underlying technical challenge to the first principles studies which could explore this physics is the need to properly represent simultaneously both the interaction between electron-transfer events at the electrode, which demand a quantum mechanical description, and multiscale phenomena in the liquid environment such as the electrochemical double layer (ECDL) and its associated shielding, which demand a statistical description. A direct ab initio approach to this challenge would, in principle, require statistical sampling and thousands of repetitions of already computationally demanding quantum mechanical calculations. This talk will begin with a brief review of a recent advance, joint density-functional theory (JDFT), which allows for a fully rigorous and, in principle, exact representation of the thermodynamic equilibrium between a system described at the quantum-mechanical level and a liquid environment, but without the need for costly sampling. We then shall demonstrate how this approach applies in the electrochemical context and how it is needed for realistic description of solvated electrode systems [], and how simple ``implicit'' polarized continuum methods fail radically in this context. Finally, we shall present a series of results relevant to battery, supercapacitor, and solar-fuel systems, one of which has led to a recent invention disclosure for improving battery cycle lifetimes. Supported as a part of the Energy Materials Center at Cornell, an Energy Frontier Research Center funded by DOE/BES (award de-sc0001086) and by the New York State Division of Science, Technology and Innovation (NYSTAR, award 60923).

  3. Universe or Multiverse?

    NASA Astrophysics Data System (ADS)

    Carr, Bernard

    2009-08-01

    Part I. Overviews: 1. Introduction and overview Bernard Carr; 2. Living in the multiverse Steven Weinberg; 3. Enlightenment, knowledge, ignorance, temptation Frank Wilczek; Part II. Cosmology and Astrophysics: 4. Cosmology and the multiverse Martin J. Rees; 5. The anthropic principle revisited Bernard Carr; 6. Cosmology from the top down Stephen Hawking; 7. The multiverse hierarchy Max Tegmark; 8. The inflationary universe Andrei Linde; 9. A model of anthropic reasoning: the dark to ordinary matter ratio Frank Wilczek; 10. Anthropic predictions: the case of the cosmological constant Alexander Vilenkin; 11. The definition and classification of universes James D. Bjorken; 12. M/string theory and anthropic reasoning Renata Kallosh; 13. The anthropic principle, dark energy and the LHC Savas Dimopoulos and Scott Thomas; Part III. Particle Physics and Quantum Theory: 14. Quarks, electrons and atoms in closely related universes Craig J. Hogan; 15. The fine-tuning problems of particle physics and anthropic mechanisms John F. Donoghue; 16. The anthropic landscape of string theory Leonard Susskind; 17. Cosmology and the many worlds interpretation of quantum mechanics Viatcheslav Mukhanov; 18. Anthropic reasoning and quantum cosmology James B. Hartle; 19. Micro-anthropic principle for quantum theory Brandon Carter; Part IV. More General Philosophical Issues: 20. Scientific alternatives to the anthropic principle Lee Smolin; 21. Making predictions in a multiverse: conundrums, dangers, coincidences Anthony Aguirre; 22. Multiverses: description, uniqueness and testing George Ellis; 23. Predictions and tests of multiverse theories Don N. Page; 24. Observation selection theory and cosmological fine-tuning Nick Bostrom; 25. Are anthropic arguments, involving multiverses and beyond, legitimate? William R. Stoeger; 26. The multiverse hypothesis: a theistic perspective Robin Collins; 27. Living in a simulated universe John D. Barrow; 28. Universes galore: where will it all end? Paul Davies; Index.

  4. Static Wormholes in Vacuum and Gravity in Diverse Dimensions

    NASA Astrophysics Data System (ADS)

    Susskind, Leonard

    If the observable universe really is a hologram, then of what sort? Is it rich enough to keep track of an eternally inflating multiverse? What physical and mathematical principles underlie it? Is the hologram a lower dimensional quantum field theory, and if so, how many dimensions are explicit, and how many "emerge?" Does the Holographic description provide clues for defining a probability measure on the Landscape?

  5. Nontrivial Quantum Effects in Biology: A Skeptical Physicists' View

    NASA Astrophysics Data System (ADS)

    Wiseman, Howard; Eisert, Jens

    The following sections are included: * Introduction * A Quantum Life Principle * A quantum chemistry principle? * The anthropic principle * Quantum Computing in the Brain * Nature did everything first? * Decoherence as the make or break issue * Quantum error correction * Uselessness of quantum algorithms for organisms * Quantum Computing in Genetics * Quantum search * Teleological aspects and the fast-track to life * Quantum Consciousness * Computability and free will * Time scales * Quantum Free Will * Predictability and free will * Determinism and free will * Acknowledgements * References

  6. Atom transistor from the point of view of nonequilibrium dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Dunjko, V.; Olshanii, M.

    2015-12-01

    We analyze the atom field-effect transistor scheme (Stickney et al 2007 Phys. Rev. A 75 013608) using the standard tools of quantum and classical nonequlilibrium dynamics. We first study the correspondence between the quantum and the mean-field descriptions of this system by computing, both ab initio and by using their mean-field analogs, the deviations from the Eigenstate Thermalization Hypothesis, quantum fluctuations, and the density of states. We find that, as far as the quantities that interest us, the mean-field model can serve as a semi-classical emulator of the quantum system. Then, using the mean-field model, we interpret the point of maximal output signal in our transistor as the onset of ergodicity—the point where the system becomes, in principle, able to attain the thermal values of the former integrals of motion, albeit not being fully thermalized yet.

  7. Implementation and characterization of active feed-forward for deterministic linear optics quantum computing

    NASA Astrophysics Data System (ADS)

    Böhi, P.; Prevedel, R.; Jennewein, T.; Stefanov, A.; Tiefenbacher, F.; Zeilinger, A.

    2007-12-01

    In general, quantum computer architectures which are based on the dynamical evolution of quantum states, also require the processing of classical information, obtained by measurements of the actual qubits that make up the computer. This classical processing involves fast, active adaptation of subsequent measurements and real-time error correction (feed-forward), so that quantum gates and algorithms can be executed in a deterministic and hence error-free fashion. This is also true in the linear optical regime, where the quantum information is stored in the polarization state of photons. The adaptation of the photon’s polarization can be achieved in a very fast manner by employing electro-optical modulators, which change the polarization of a trespassing photon upon appliance of a high voltage. In this paper we discuss techniques for implementing fast, active feed-forward at the single photon level and we present their application in the context of photonic quantum computing. This includes the working principles and the characterization of the EOMs as well as a description of the switching logics, both of which allow quantum computation at an unprecedented speed.

  8. Quantum Hamilton equations of motion for bound states of one-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Köppe, J.; Patzold, M.; Grecksch, W.; Paul, W.

    2018-06-01

    On the basis of Nelson's stochastic mechanics derivation of the Schrödinger equation, a formal mathematical structure of non-relativistic quantum mechanics equivalent to the one in classical analytical mechanics has been established in the literature. We recently were able to augment this structure by deriving quantum Hamilton equations of motion by finding the Nash equilibrium of a stochastic optimal control problem, which is the generalization of Hamilton's principle of classical mechanics to quantum systems. We showed that these equations allow a description and numerical determination of the ground state of quantum problems without using the Schrödinger equation. We extend this approach here to deliver the complete discrete energy spectrum and related eigenfunctions for bound states of one-dimensional stationary quantum systems. We exemplify this analytically for the one-dimensional harmonic oscillator and numerically by analyzing a quartic double-well potential, a model of broad importance in many areas of physics. We furthermore point out a relation between the tunnel splitting of such models and mean first passage time concepts applied to Nelson's diffusion paths in the ground state.

  9. SU-E-T-191: First Principle Calculation of Quantum Yield in Photodynamic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abolfath, R; Guo, F; Chen, Z

    Purpose: We present a first-principle method to calculate the spin transfer efficiency in oxygen induced by any photon fields especially in MeV energy range. The optical pumping is mediated through photosensitizers, e.g., porphyrin and/or ensemble of quantum dots. Methods: Under normal conditions, oxygen molecules are in the relatively non-reactive triplet state. In the presence of certain photosensitizer compounds such as porphyrins, electromagnetic radiation of specific wavelengths can excite oxygen to highly reactive singlet state. With selective uptake of photosensitizers by certain malignant cells, photon irradiation of phosensitized tumors can lead to selective killing of cancer cells. This is the basismore » of photodynamic therapy (PDT). Despite several attempts, PDT has not been clinically successful except in limited superficial cancers. Many parameters such as photon energy, conjugation with quantum dots etc. can be potentially combined with PDT in order to extend the role of PDT in cancer management. The key quantity for this optimization is the spin transfer efficiency in oxygen by any photon field. The first principle calculation model presented here, is an attempt to fill this need. We employ stochastic density matrix description of the quantum jumps and the rate equation methods in quantum optics based on Markov/Poisson processes and calculate time evolution of the population of the optically pumped singlet oxygen. Results: The results demonstrate the feasibility of our model in showing the dependence of the optical yield in generating spin-singlet oxygen on the experimental conditions. The adjustable variables can be tuned to maximize the population of the singlet oxygen hence the efficacy of the photodynamic therapy. Conclusion: The present model can be employed to fit and analyze the experimental data and possibly to assist researchers in optimizing the experimental conditions in photodynamic therapy.« less

  10. Quantum heat engines and refrigerators: continuous devices.

    PubMed

    Kosloff, Ronnie; Levy, Amikam

    2014-01-01

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.

  11. The role of probabilities in physics.

    PubMed

    Le Bellac, Michel

    2012-09-01

    Although modern physics was born in the XVIIth century as a fully deterministic theory in the form of Newtonian mechanics, the use of probabilistic arguments turned out later on to be unavoidable. Three main situations can be distinguished. (1) When the number of degrees of freedom is very large, on the order of Avogadro's number, a detailed dynamical description is not possible, and in fact not useful: we do not care about the velocity of a particular molecule in a gas, all we need is the probability distribution of the velocities. This statistical description introduced by Maxwell and Boltzmann allows us to recover equilibrium thermodynamics, gives a microscopic interpretation of entropy and underlies our understanding of irreversibility. (2) Even when the number of degrees of freedom is small (but larger than three) sensitivity to initial conditions of chaotic dynamics makes determinism irrelevant in practice, because we cannot control the initial conditions with infinite accuracy. Although die tossing is in principle predictable, the approach to chaotic dynamics in some limit implies that our ignorance of initial conditions is translated into a probabilistic description: each face comes up with probability 1/6. (3) As is well-known, quantum mechanics is incompatible with determinism. However, quantum probabilities differ in an essential way from the probabilities introduced previously: it has been shown from the work of John Bell that quantum probabilities are intrinsic and cannot be given an ignorance interpretation based on a hypothetical deeper level of description. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Le Chatelier Principle for Out-of-Equilibrium and Boundary-Driven Systems: Application to Dynamical Phase Transitions.

    PubMed

    Shpielberg, O; Akkermans, E

    2016-06-17

    A stability analysis is presented for boundary-driven and out-of-equilibrium systems in the framework of the hydrodynamic macroscopic fluctuation theory. A Hamiltonian description is proposed which allows us to thermodynamically interpret the additivity principle. A necessary and sufficient condition for the validity of the additivity principle is obtained as an extension of the Le Chatelier principle. These stability conditions result from a diagonal quadratic form obtained using the cumulant generating function. This approach allows us to provide a proof for the stability of the weakly asymmetric exclusion process and to reduce the search for stability to the solution of two coupled linear ordinary differential equations instead of nonlinear partial differential equations. Additional potential applications of these results are discussed in the realm of classical and quantum systems.

  13. Le Chatelier Principle for Out-of-Equilibrium and Boundary-Driven Systems: Application to Dynamical Phase Transitions

    NASA Astrophysics Data System (ADS)

    Shpielberg, O.; Akkermans, E.

    2016-06-01

    A stability analysis is presented for boundary-driven and out-of-equilibrium systems in the framework of the hydrodynamic macroscopic fluctuation theory. A Hamiltonian description is proposed which allows us to thermodynamically interpret the additivity principle. A necessary and sufficient condition for the validity of the additivity principle is obtained as an extension of the Le Chatelier principle. These stability conditions result from a diagonal quadratic form obtained using the cumulant generating function. This approach allows us to provide a proof for the stability of the weakly asymmetric exclusion process and to reduce the search for stability to the solution of two coupled linear ordinary differential equations instead of nonlinear partial differential equations. Additional potential applications of these results are discussed in the realm of classical and quantum systems.

  14. The Kantian element in the Copenhagen interpretation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Cale, David Lee

    In Quantum Physics and the Philosophical Tradition, Aage Petersen makes the troubling claim that the entirety of the tradition of Western philosophy is "deconstructed" by quantum mechanics. This viewpoint applies, especially, to the relationship between Kantian philosophy and quantum theory. It is generally accepted that quantum mechanics, in its Copenhagen interpretation, has destroyed all validity for the classical belief in a deterministic underlying reality, a belief sustained throughout the nineteenth century through a philosophical ground in Kant's critical philosophy. This dissertation takes on the daunting task of determining what, if any, relationship can be had between contemporary physics and Kantian philosophy. It begins with a historical review of the challenges posed for Kant's arguments and proposed solutions, especially those offered by Cassirer. It then turns to the task of providing the Western philosophical tradition with an interpretation apart from Petersen's, which sees it as concerned only with the problem of being. The offered solution is the suggestion that Western philosophy be understood as a struggle, between epistemological and ontological perspectives, to provide a context for the various descriptions of nature provided by human scientific progress. Kant's philosophy is then interpreted as an effort to provide Newtonian physics with a valid context in the face of Hume's skepticism. The finding is that Kant was the first to suggest that an object does not acquire the spatio-temporal properties used in its physical description until introduced to an observer. The dissertation concludes that the authors of the Copenhagen interpretation were essentially engaged in Kant's enterprise through their attempt to provide an observer based context for the spatio-temporal descriptive principles used in the physics of their time.

  15. Technology study of quantum remote sensing imaging

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang

    2016-02-01

    According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.

  16. Composition in the Quantum World

    NASA Astrophysics Data System (ADS)

    Hall, Edward Jonathan

    This thesis presents a problem for the foundations of quantum mechanics. It arises from the way that theory describes the composition of larger systems in terms of smaller ones, and renders untenable a wide range of interpretations of quantum mechanics. That quantum mechanics is difficult to interpret is old news, given the well-known Measurement Problem. But the problem I raise is quite different, and in important respects more fundamental. In brief: The physical world exhibits mereological structure: physical objects have parts, which in turn have parts, and so on. A natural way to try to represent this structure is by means of a particle theory, according to which the physical world consists entirely enduring physical objects which themselves have no proper parts, but aggregates of which are, or compose, all physical objects. Elementary, non-relativistic quantum mechanics can be cast in this mold--at least, according to the usual expositions of that theory. But herein lies the problem: the standard attempt to give a systematic particle interpretation to elementary quantum mechanics results in nonsense, thanks to the well-established principle of Permutation Invariance, which constrains the quantum -mechanical description of systems containing identical particles. Specifically, it follows from the most minimal principles of a particle interpretation (much weaker than those needed to generate the Measurement Problem), together with Permutation Invariance, that systems identical in composition must have the same physical state. In other words, systems which merely have the same numbers of the same types of particles are therefore, at all times, perfect physical duplicates. This conclusion is absurd: e.g., it is quite plausible that some of those particles which compose my body make up a system identical in composition to some pepperoni pizza. Yet no part of me is a qualitative physical duplicate of any pepperoni pizza. Perhaps "you are what you eat" --but not in this sense! In what follows I develop the principles needed to explore this problem, contrast it with the Measurement Problem, and consider, finally, how it should influence our judgments of the relative merits of the many extant interpretations of quantum mechanics.

  17. Complexity Reduction in Large Quantum Systems: Fragment Identification and Population Analysis via a Local Optimized Minimal Basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohr, Stephan; Masella, Michel; Ratcliff, Laura E.

    We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same timemore » a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.« less

  18. Complexity Reduction in Large Quantum Systems: Fragment Identification and Population Analysis via a Local Optimized Minimal Basis

    DOE PAGES

    Mohr, Stephan; Masella, Michel; Ratcliff, Laura E.; ...

    2017-07-21

    We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same timemore » a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.« less

  19. Feynman’s clock, a new variational principle, and parallel-in-time quantum dynamics

    PubMed Central

    McClean, Jarrod R.; Parkhill, John A.; Aspuru-Guzik, Alán

    2013-01-01

    We introduce a discrete-time variational principle inspired by the quantum clock originally proposed by Feynman and use it to write down quantum evolution as a ground-state eigenvalue problem. The construction allows one to apply ground-state quantum many-body theory to quantum dynamics, extending the reach of many highly developed tools from this fertile research area. Moreover, this formalism naturally leads to an algorithm to parallelize quantum simulation over time. We draw an explicit connection between previously known time-dependent variational principles and the time-embedded variational principle presented. Sample calculations are presented, applying the idea to a hydrogen molecule and the spin degrees of freedom of a model inorganic compound, demonstrating the parallel speedup of our method as well as its flexibility in applying ground-state methodologies. Finally, we take advantage of the unique perspective of this variational principle to examine the error of basis approximations in quantum dynamics. PMID:24062428

  20. Exact microstate counting for dyonic black holes in AdS4

    NASA Astrophysics Data System (ADS)

    Benini, Francesco; Hristov, Kiril; Zaffaroni, Alberto

    2017-08-01

    We present a counting of microstates of a class of dyonic BPS black holes in AdS4 which precisely reproduces their Bekenstein-Hawking entropy. The counting is performed in the dual boundary description, that provides a non-perturbative definition of quantum gravity, in terms of a twisted and mass-deformed ABJM theory. We evaluate its twisted index and propose an extremization principle to extract the entropy, which reproduces the attractor mechanism in gauged supergravity.

  1. Dislocation-driven growth of two-dimensional lateral quantum-well superlattices

    PubMed Central

    Chen, Jianyi; Li, Dongdong

    2018-01-01

    The advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Density functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width. PMID:29740600

  2. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  3. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE PAGES

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  4. Quantum Common Causes and Quantum Causal Models

    NASA Astrophysics Data System (ADS)

    Allen, John-Mark A.; Barrett, Jonathan; Horsman, Dominic C.; Lee, Ciarán M.; Spekkens, Robert W.

    2017-07-01

    Reichenbach's principle asserts that if two observed variables are found to be correlated, then there should be a causal explanation of these correlations. Furthermore, if the explanation is in terms of a common cause, then the conditional probability distribution over the variables given the complete common cause should factorize. The principle is generalized by the formalism of causal models, in which the causal relationships among variables constrain the form of their joint probability distribution. In the quantum case, however, the observed correlations in Bell experiments cannot be explained in the manner Reichenbach's principle would seem to demand. Motivated by this, we introduce a quantum counterpart to the principle. We demonstrate that under the assumption that quantum dynamics is fundamentally unitary, if a quantum channel with input A and outputs B and C is compatible with A being a complete common cause of B and C , then it must factorize in a particular way. Finally, we show how to generalize our quantum version of Reichenbach's principle to a formalism for quantum causal models and provide examples of how the formalism works.

  5. Fundamental Principles of Coherent-Feedback Quantum Control

    DTIC Science & Technology

    2014-12-08

    in metrology (acceleration sensing, vibrometry, gravity wave detection) and in quantum information processing (continuous-variables quantum ...AFRL-OSR-VA-TR-2015-0009 FUNDAMENTAL PRINCIPLES OF COHERENT-FEEDBACK QUANTUM CONTROL Hideo Mabuchi LELAND STANFORD JUNIOR UNIV CA Final Report 12/08...foundations and potential applications of coherent-feedback quantum control. We have focused on potential applications in quantum -enhanced metrology and

  6. On the correspondence between quantum and classical variational principles

    DOE PAGES

    Ruiz, D. E.; Dodin, I. Y.

    2015-06-10

    Here, classical variational principles can be deduced from quantum variational principles via formal reparameterization of the latter. It is shown that such reparameterization is possible without invoking any assumptions other than classicality and without appealing to dynamical equations. As examples, first principle variational formulations of classical point-particle and cold-fluid motion are derived from their quantum counterparts for Schrodinger, Pauli, and Klein-Gordon particles.

  7. What is the uncertainty principle of non-relativistic quantum mechanics?

    NASA Astrophysics Data System (ADS)

    Riggs, Peter J.

    2018-05-01

    After more than ninety years of discussions over the uncertainty principle, there is still no universal agreement on what the principle states. The Robertson uncertainty relation (incorporating standard deviations) is given as the mathematical expression of the principle in most quantum mechanics textbooks. However, the uncertainty principle is not merely a statement of what any of the several uncertainty relations affirm. It is suggested that a better approach would be to present the uncertainty principle as a statement about the probability distributions of incompatible variables and the resulting restrictions on quantum states.

  8. Open source Matrix Product States: Opening ways to simulate entangled many-body quantum systems in one dimension

    NASA Astrophysics Data System (ADS)

    Jaschke, Daniel; Wall, Michael L.; Carr, Lincoln D.

    2018-04-01

    Numerical simulations are a powerful tool to study quantum systems beyond exactly solvable systems lacking an analytic expression. For one-dimensional entangled quantum systems, tensor network methods, amongst them Matrix Product States (MPSs), have attracted interest from different fields of quantum physics ranging from solid state systems to quantum simulators and quantum computing. Our open source MPS code provides the community with a toolset to analyze the statics and dynamics of one-dimensional quantum systems. Here, we present our open source library, Open Source Matrix Product States (OSMPS), of MPS methods implemented in Python and Fortran2003. The library includes tools for ground state calculation and excited states via the variational ansatz. We also support ground states for infinite systems with translational invariance. Dynamics are simulated with different algorithms, including three algorithms with support for long-range interactions. Convenient features include built-in support for fermionic systems and number conservation with rotational U(1) and discrete Z2 symmetries for finite systems, as well as data parallelism with MPI. We explain the principles and techniques used in this library along with examples of how to efficiently use the general interfaces to analyze the Ising and Bose-Hubbard models. This description includes the preparation of simulations as well as dispatching and post-processing of them.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Raedt, Hans; Katsnelson, Mikhail I.; Donker, Hylke C.

    It is shown that the Pauli equation and the concept of spin naturally emerge from logical inference applied to experiments on a charged particle under the conditions that (i) space is homogeneous (ii) the observed events are logically independent, and (iii) the observed frequency distributions are robust with respect to small changes in the conditions under which the experiment is carried out. The derivation does not take recourse to concepts of quantum theory and is based on the same principles which have already been shown to lead to e.g. the Schrödinger equation and the probability distributions of pairs of particles inmore » the singlet or triplet state. Application to Stern–Gerlach experiments with chargeless, magnetic particles, provides additional support for the thesis that quantum theory follows from logical inference applied to a well-defined class of experiments. - Highlights: • The Pauli equation is obtained through logical inference applied to robust experiments on a charged particle. • The concept of spin appears as an inference resulting from the treatment of two-valued data. • The same reasoning yields the quantum theoretical description of neutral magnetic particles. • Logical inference provides a framework to establish a bridge between objective knowledge gathered through experiments and their description in terms of concepts.« less

  10. Can quantum probes satisfy the weak equivalence principle?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seveso, Luigi, E-mail: luigi.seveso@unimi.it; Paris, Matteo G.A.; INFN, Sezione di Milano, I-20133 Milano

    We address the question whether quantum probes in a gravitational field can be considered as test particles obeying the weak equivalence principle (WEP). A formulation of the WEP is proposed which applies also in the quantum regime, while maintaining the physical content of its classical counterpart. Such formulation requires the introduction of a gravitational field not to modify the Fisher information about the mass of a freely-falling probe, extractable through measurements of its position. We discover that, while in a uniform field quantum probes satisfy our formulation of the WEP exactly, gravity gradients can encode nontrivial information about the particle’smore » mass in its wavefunction, leading to violations of the WEP. - Highlights: • Can quantum probes under gravity be approximated as test-bodies? • A formulation of the weak equivalence principle for quantum probes is proposed. • Quantum probes are found to violate it as a matter of principle.« less

  11. Theory of diatomic molecules in an external electromagnetic field from first quantum mechanical principles.

    PubMed

    Sindelka, Milan; Moiseyev, Nimrod

    2006-04-27

    We study a general problem of the translational/rotational/vibrational/electronic dynamics of a diatomic molecule exposed to an interaction with an arbitrary external electromagnetic field. The theory developed in this paper is relevant to a variety of specific applications, such as alignment or orientation of molecules by lasers, trapping of ultracold molecules in optical traps, molecular optics and interferometry, rovibrational spectroscopy of molecules in the presence of intense laser light, or generation of high order harmonics from molecules. Starting from the first quantum mechanical principles, we derive an appropriate molecular Hamiltonian suitable for description of the center of mass, rotational, vibrational, and electronic molecular motions driven by the field within the electric dipole approximation. Consequently, the concept of the Born-Oppenheimer separation between the electronic and the nuclear degrees of freedom in the presence of an electromagnetic field is introduced. Special cases of the dc/ac-field limits are then discussed separately. Finally, we consider a perturbative regime of a weak dc/ac field, and obtain simple analytic formulas for the associated Born-Oppenheimer translational/rotational/vibrational molecular Hamiltonian.

  12. The equivalence principle in a quantum world

    NASA Astrophysics Data System (ADS)

    Bjerrum-Bohr, N. E. J.; Donoghue, John F.; El-Menoufi, Basem Kamal; Holstein, Barry R.; Planté, Ludovic; Vanhove, Pierre

    2015-09-01

    We show how modern methods can be applied to quantum gravity at low energy. We test how quantum corrections challenge the classical framework behind the equivalence principle (EP), for instance through introduction of nonlocality from quantum physics, embodied in the uncertainty principle. When the energy is small, we now have the tools to address this conflict explicitly. Despite the violation of some classical concepts, the EP continues to provide the core of the quantum gravity framework through the symmetry — general coordinate invariance — that is used to organize the effective field theory (EFT).

  13. Aspects of holography

    NASA Astrophysics Data System (ADS)

    Kaplan, Jared Daniel

    The principle of holography---that theories of gravity should be described in terms of their boundaries---has been the driving force behind many great strides in quantum gravity, gauge theory, and even in phenomenology. The most concrete example of holographic duality is the AdS/CFT correspondence, which relates quantum gravity in Anti-deSitter space to a Conformal Field Theory in Minkowski space. In this thesis we begin with a chapter on black holes in the AdS/CFT duality, and then move on to the main line of development, where we describe the exciting first steps towards the discovery of a holographic duality for quantum gravity in flat spacetime. A holographic description of flat spacetime would be a theory of the Scattering Matrix, which contains the quantum mechanical amplitudes that determine how incoming states from past infinity scatter into outgoing states at future infinity. We suspect that a holographic duality between a local spacetime description of quantum gravity and a non-local boundary description of the S-Matrix would be a weak coupling-weak coupling duality. We work towards this concrete goal from the bottom up by studying new methods for computing scattering amplitudes. We begin by studying the BCFW Recursion Relations, which are an explicitly non-local, boundary oriented method for computing tree-level scattering amplitudes. We give an elementary derivation of these relations for general theories in any number of dimensions, showing that their existence is a deep feature of field theory. Next we argue that, counter to naive expectations, N = 8 Supergravity may be the simplest quantum field theory. We demonstrate this by explicitly solving its one-loop S-Matrix with techniques that rely on our understanding of tree amplitudes to vastly simplify calculations. Finally, we show that the BCFW recursion relations find their natural home in Twistor Space, where it is possible to formulate classical scattering theory in a beautiful and manifestly holographic way. This investigation takes us beyond the BCFW relations; it suggests that scattering amplitudes can be calculated in terms of holographic "words" whose "grammar" has yet to be uncovered.

  14. Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture

    NASA Astrophysics Data System (ADS)

    Killoran, N.; Huelga, S. F.; Plenio, M. B.

    2015-10-01

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system's power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle's relevance in parameter regimes connected to natural light-harvesting structures.

  15. Approach for describing spatial dynamics of quantum light-matter interaction in dispersive dissipative media

    NASA Astrophysics Data System (ADS)

    Zyablovsky, A. A.; Andrianov, E. S.; Nechepurenko, I. A.; Dorofeenko, A. V.; Pukhov, A. A.; Vinogradov, A. P.

    2017-05-01

    Solving the challenging problem of the amplification and generation of an electromagnetic field in nanostructures enables us to implement many properties of the electromagnetic field at the nanoscale in practical applications. A first-principles quantum-mechanical consideration of such a problem is sufficiently restricted by the exponentially large number of degrees of freedom and does not allow the electromagnetic-field dynamics to be described if it involves a high number of interacting atoms and modes of the electromagnetic field. Conversely, the classical description of electromagnetic fields is incorrect at the nanoscale due to the high level of quantum fluctuations connected to high dissipation and noise levels. In this paper, we develop a framework with a significantly reduced number of degrees of freedom, which describes the quantum spatial dynamics of electromagnetic fields interacting with atoms. As an example, we consider the interaction between atoms placed in a metallic subwavelength groove and demonstrate that a spontaneously excited electromagnetic pulse propagates with the group velocity. The developed approach may be exploited to describe nonuniform amplification and propagation of electromagnetic fields in arbitrary dispersive dissipative systems.

  16. Microwave amplification with nanomechanical resonators.

    PubMed

    Massel, F; Heikkilä, T T; Pirkkalainen, J-M; Cho, S U; Saloniemi, H; Hakonen, P J; Sillanpää, M A

    2011-12-14

    The sensitive measurement of electrical signals is at the heart of modern technology. According to the principles of quantum mechanics, any detector or amplifier necessarily adds a certain amount of noise to the signal, equal to at least the noise added by quantum fluctuations. This quantum limit of added noise has nearly been reached in superconducting devices that take advantage of nonlinearities in Josephson junctions. Here we introduce the concept of the amplification of microwave signals using mechanical oscillation, which seems likely to enable quantum-limited operation. We drive a nanomechanical resonator with a radiation pressure force, and provide an experimental demonstration and an analytical description of how a signal input to a microwave cavity induces coherent stimulated emission and, consequently, signal amplification. This generic scheme, which is based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices. In our device, we achieve signal amplification of 25 decibels with the addition of 20 quanta of noise, which is consistent with the expected amount of added noise. The generality of the model allows for realization in other physical systems as well, and we anticipate that near-quantum-limited mechanical microwave amplification will soon be feasible in various applications involving integrated electrical circuits.

  17. Single-Atom Demonstration of the Quantum Landauer Principle

    NASA Astrophysics Data System (ADS)

    Yan, L. L.; Xiong, T. P.; Rehan, K.; Zhou, F.; Liang, D. F.; Chen, L.; Zhang, J. Q.; Yang, W. L.; Ma, Z. H.; Feng, M.

    2018-05-01

    One of the outstanding challenges to information processing is the eloquent suppression of energy consumption in the execution of logic operations. The Landauer principle sets an energy constraint in deletion of a classical bit of information. Although some attempts have been made to experimentally approach the fundamental limit restricted by this principle, exploring the Landauer principle in a purely quantum mechanical fashion is still an open question. Employing a trapped ultracold ion, we experimentally demonstrate a quantum version of the Landauer principle, i.e., an equality associated with the energy cost of information erasure in conjunction with the entropy change of the associated quantized environment. Our experimental investigation substantiates an intimate link between information thermodynamics and quantum candidate systems for information processing.

  18. Einstein's equivalence principle in quantum mechanics revisited

    NASA Astrophysics Data System (ADS)

    Nauenberg, Michael

    2016-11-01

    The gravitational equivalence principle in quantum mechanics is of considerable importance, but it is generally not included in physics textbooks. In this note, we present a precise quantum formulation of this principle and comment on its verification in a neutron diffraction experiment. The solution of the time dependent Schrödinger equation for this problem also gives the wave function for the motion of a charged particle in a homogeneous electric field, which is also usually ignored in textbooks on quantum mechanics.

  19. Disturbance, the uncertainty principle and quantum optics

    NASA Technical Reports Server (NTRS)

    Martens, Hans; Demuynck, Willem M.

    1993-01-01

    It is shown how a disturbance-type uncertainty principle can be derived from an uncertainty principle for joint measurements. To achieve this, we first clarify the meaning of 'inaccuracy' and 'disturbance' in quantum mechanical measurements. The case of photon number and phase is treated as an example, and it is applied to a quantum non-demolition measurement using the optical Kerr effect.

  20. Dislocation-driven growth of two-dimensional lateral quantum-well superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wu; Zhang, Yu -Yang; Chen, Jianyi

    Here, the advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Densitymore » functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width.« less

  1. Dislocation-driven growth of two-dimensional lateral quantum-well superlattices

    DOE PAGES

    Zhou, Wu; Zhang, Yu -Yang; Chen, Jianyi; ...

    2018-03-23

    Here, the advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Densitymore » functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width.« less

  2. Discrete quantum spectrum of black holes

    NASA Astrophysics Data System (ADS)

    Lochan, Kinjalk; Chakraborty, Sumanta

    2016-04-01

    The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging from GR, Lanczos-Lovelock to f(R) gravity. We show that the smallest frequency of emission from black hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only with the temperature being much larger than 1/M.

  3. Scheme for Quantum Computing Immune to Decoherence

    NASA Technical Reports Server (NTRS)

    Williams, Colin; Vatan, Farrokh

    2008-01-01

    A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report that the derivation provides explicit constructions for finding the exchange couplings in the physical basis needed to implement any arbitrary 1-qubit gate. These constructions lead to spintronic encodings of quantum logic that are more efficient than those of a previously published scheme that utilizes a universal but fixed set of gates.

  4. The Deleuzian Concept of Structure and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Christiaens, Wim A.

    2014-03-01

    Gilles Deleuze wanted a philosophy of nature in a pre-kantian almost archaic sense. A central concept in his philosophy is `multiplicity'. Although the concept is philosophical through and through, it has roots in the mathematical notion of manifold, specifically the state spaces for dynamical systems exhibiting non-linear behaviour. Deleuze was attracted to such mathematical structures because he believed they indicated a break with the dogmatic image of thought (the kind of thought that constrains itself into producing representations of reality conceived as particular things with strict borders, behaving and interacting according to invariant covering laws within space). However, even though it is true that a phase space representation of a physical entity is not a typical materialist picture of reality, it derives from a normal Euclidean representation, and can in principle be reduced to it. We want to argue that the real break happens with the quantum state space, and that Deleuze's typical description of a multiplicity fits even better with the quantum state space.

  5. Multiscale Modeling of Plasmon-Enhanced Power Conversion Efficiency in Nanostructured Solar Cells.

    PubMed

    Meng, Lingyi; Yam, ChiYung; Zhang, Yu; Wang, Rulin; Chen, GuanHua

    2015-11-05

    The unique optical properties of nanometallic structures can be exploited to confine light at subwavelength scales. This excellent light trapping is critical to improve light absorption efficiency in nanoscale photovoltaic devices. Here, we apply a multiscale quantum mechanics/electromagnetics (QM/EM) method to model the current-voltage characteristics and optical properties of plasmonic nanowire-based solar cells. The QM/EM method features a combination of first-principles quantum mechanical treatment of the photoactive component and classical description of electromagnetic environment. The coupled optical-electrical QM/EM simulations demonstrate a dramatic enhancement for power conversion efficiency of nanowire solar cells due to the surface plasmon effect of nanometallic structures. The improvement is attributed to the enhanced scattering of light into the photoactive layer. We further investigate the optimal configuration of the nanostructured solar cell. Our QM/EM simulation result demonstrates that a further increase of internal quantum efficiency can be achieved by scattering light into the n-doped region of the device.

  6. Dynamic electron-ion collisions and nuclear quantum effects in quantum simulation of warm dense matter.

    PubMed

    Kang, Dongdong; Dai, Jiayu

    2018-02-21

    The structural, thermodynamic and transport properties of warm dense matter (WDM) are crucial to the fields of astrophysics and planet science, as well as inertial confinement fusion. WDM refers to the states of matter in a regime of temperature and density between cold condensed matter and hot ideal plasmas, where the density is from near-solid up to ten times solid density, and the temperature between 0.1 and 100 eV. In the WDM regime, matter exhibits moderately or strongly coupled, partially degenerate properties. Therefore, the methods used to deal with condensed matter and isolated atoms need to be properly validated for WDM. It is therefore a big challenge to understand WDM within a unified theoretical description with reliable accuracy. Here, we review the progress in the theoretical study of WDM with state-of-the-art simulations, i.e. quantum Langevin molecular dynamics and first principles path integral molecular dynamics. The related applications for WDM are also included.

  7. Dynamic electron-ion collisions and nuclear quantum effects in quantum simulation of warm dense matter

    NASA Astrophysics Data System (ADS)

    Kang, Dongdong; Dai, Jiayu

    2018-02-01

    The structural, thermodynamic and transport properties of warm dense matter (WDM) are crucial to the fields of astrophysics and planet science, as well as inertial confinement fusion. WDM refers to the states of matter in a regime of temperature and density between cold condensed matter and hot ideal plasmas, where the density is from near-solid up to ten times solid density, and the temperature between 0.1 and 100 eV. In the WDM regime, matter exhibits moderately or strongly coupled, partially degenerate properties. Therefore, the methods used to deal with condensed matter and isolated atoms need to be properly validated for WDM. It is therefore a big challenge to understand WDM within a unified theoretical description with reliable accuracy. Here, we review the progress in the theoretical study of WDM with state-of-the-art simulations, i.e. quantum Langevin molecular dynamics and first principles path integral molecular dynamics. The related applications for WDM are also included.

  8. Energetics and solvation structure of a dihalogen dopant (I2) in (4)He clusters.

    PubMed

    Pérez de Tudela, Ricardo; Barragán, Patricia; Valdés, Álvaro; Prosmiti, Rita

    2014-08-21

    The energetics and structure of small HeNI2 clusters are analyzed as the size of the system changes, with N up to 38. The full interaction between the I2 molecule and the He atoms is based on analytical ab initio He-I2 potentials plus the He-He interaction, obtained from first-principle calculations. The most stable structures, as a function of the number of solvent He atoms, are obtained by employing an evolutionary algorithm and compared with CCSD(T) and MP2 ab initio computations. Further, the classical description is completed by explicitly including thermal corrections and quantum features, such as zero-point-energy values and spatial delocalization. From quantum PIMC calculations, the binding energies and radial/angular probability density distributions of the thermal equilibrium state for selected-size clusters are computed at a low temperature. The sequential formation of regular shell structures is analyzed and discussed for both classical and quantum treatments.

  9. 'Unconventional' experiments in biology and medicine with optimized design based on quantum-like correlations.

    PubMed

    Beauvais, Francis

    2017-02-01

    In previous articles, a description of 'unconventional' experiments (e.g. in vitro or clinical studies based on high dilutions, 'memory of water' or homeopathy) using quantum-like probability was proposed. Because the mathematical formulations of quantum logic are frequently an obstacle for physicians and biologists, a modified modeling that rests on classical probability is described in the present article. This modeling is inspired from a relational interpretation of quantum physics that applies not only to microscopic objects, but also to macroscopic structures, including experimental devices and observers. In this framework, any outcome of an experiment is not an absolute property of the observed system as usually considered but is expressed relatively to an observer. A team of interacting observers is thus described from an external view point based on two principles: the outcomes of experiments are expressed relatively to each observer and the observers agree on outcomes when they interact with each other. If probability fluctuations are also taken into account, correlations between 'expected' and observed outcomes emerge. Moreover, quantum-like correlations are predicted in experiments with local blind design but not with centralized blind design. No assumption on 'memory' or other physical modification of water is necessary in the present description although such hypotheses cannot be formally discarded. In conclusion, a simple modeling of 'unconventional' experiments based on classical probability is now available and its predictions can be tested. The underlying concepts are sufficiently intuitive to be spread into the homeopathy community and beyond. It is hoped that this modeling will encourage new studies with optimized designs for in vitro experiments and clinical trials. Copyright © 2017 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  10. Implications of Einstein-Weyl Causality on Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bendaniel, David

    A fundamental physical principle that has consequences for the topology of space-time is the principle of Einstein-Weyl causality. This also has quantum mechanical manifestations. Borchers and Sen have rigorously investigated the mathematical implications of Einstein-Weyl causality and shown the denumerable space-time Q2 would be implied. They were left with important philosophical paradoxes regarding the nature of the physical real line E, e.g., whether E = R, the real line of mathematics. In order to remove these paradoxes an investigation into a constructible foundation is suggested. We have pursued such a program and find it indeed provides a dense, denumerable space-time and, moreover, an interesting connection with quantum mechanics. We first show that this constructible theory contains polynomial functions which are locally homeomorphic with a dense, denumerable metric space R* and are inherently quantized. Eigenfunctions governing fields can then be effectively obtained by computational iteration. Postulating a Lagrangian for fields in a compactified space-time, we get a general description of which the Schrodinger equation is a special case. From these results we can then also show that this denumerable space-time is relational (in the sense that space is not infinitesimally small if and only if it contains a quantized field) and, since Q2 is imbedded in R*2, it directly fulfills the strict topological requirements for Einstein-Weyl causality. Therefore, the theory predicts that E = R*.

  11. Beyond the standard Higgs after the 125 GeV Higgs discovery.

    PubMed

    Grojean, C

    2015-01-13

    An elementary weakly coupled and solitary Higgs boson allows one to extend the validity of the Standard Model up to very high energy, maybe as high as the Planck scale. Nonetheless, this scenario fails to fill the universe with dark matter and does not explain the matter-antimatter asymmetry. However, amending the Standard Model tends to destabilize the weak scale by large quantum corrections to the Higgs potential. New degrees of freedom, new forces, new organizing principles are required to provide a consistent and natural description of physics beyond the standard Higgs.

  12. Beyond the standard Higgs after the 125 GeV Higgs discovery

    PubMed Central

    Grojean, C.

    2015-01-01

    An elementary, weakly coupled and solitary Higgs boson allows one to extend the validity of the Standard Model up to very high energy, maybe as high as the Planck scale. Nonetheless, this scenario fails to fill the universe with dark matter and does not explain the matter–antimatter asymmetry. However, amending the Standard Model tends to destabilize the weak scale by large quantum corrections to the Higgs potential. New degrees of freedom, new forces, new organizing principles are required to provide a consistent and natural description of physics beyond the standard Higgs.

  13. Progress towards an effective model for FeSe from high-accuracy first-principles quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Busemeyer, Brian; Wagner, Lucas K.

    While the origin of superconductivity in the iron-based materials is still controversial, the proximity of the superconductivity to magnetic order is suggestive that magnetism may be important. Our previous work has suggested that first-principles Diffusion Monte Carlo (FN-DMC) can capture magnetic properties of iron-based superconductors that density functional theory (DFT) misses, but which are consistent with experiment. We report on the progress of efforts to find simple effective models consistent with the FN-DMC description of the low-lying Hilbert space of the iron-based superconductor, FeSe. We utilize a procedure outlined by Changlani et al.[1], which both produces parameter values and indications of whether the model is a good description of the first-principles Hamiltonian. Using this procedure, we evaluate several models of the magnetic part of the Hilbert space found in the literature, as well as the Hubbard model, and a spin-fermion model. We discuss which interaction parameters are important for this material, and how the material-specific properties give rise to these interactions. U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program under Award No. FG02-12ER46875, as well as the NSF Graduate Research Fellowship Program.

  14. Gamma-Ray Telescope and Uncertainty Principle

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  15. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Bong

    1993-09-01

    Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaoticmore » nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J.; Monserrat, Bartomeu

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range frommore » −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.« less

  17. Are quantum-mechanical-like models possible, or necessary, outside quantum physics?

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2014-12-01

    This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well.

  18. Systematic and Automated Development of Quantum Mechanically Derived Force Fields: The Challenging Case of Halogenated Hydrocarbons.

    PubMed

    Prampolini, Giacomo; Campetella, Marco; De Mitri, Nicola; Livotto, Paolo Roberto; Cacelli, Ivo

    2016-11-08

    A robust and automated protocol for the derivation of sound force field parameters, suitable for condensed-phase classical simulations, is here tested and validated on several halogenated hydrocarbons, a class of compounds for which standard force fields have often been reported to deliver rather inaccurate performances. The major strength of the proposed protocol is that all of the parameters are derived only from first principles because all of the information required is retrieved from quantum mechanical data, purposely computed for the investigated molecule. This a priori parametrization is carried out separately for the intra- and intermolecular contributions to the force fields, respectively exploiting the Joyce and Picky programs, previously developed in our group. To avoid high computational costs, all quantum mechanical calculations were performed exploiting the density functional theory. Because the choice of the functional is known to be crucial for the description of the intermolecular interactions, a specific procedure is proposed, which allows for a reliable benchmark of different functionals against higher-level data. The intramolecular and intermolecular contribution are eventually joined together, and the resulting quantum mechanically derived force field is thereafter employed in lengthy molecular dynamics simulations to compute several thermodynamic properties that characterize the resulting bulk phase. The accuracy of the proposed parametrization protocol is finally validated by comparing the computed macroscopic observables with the available experimental counterparts. It is found that, on average, the proposed approach is capable of yielding a consistent description of the investigated set, often outperforming the literature standard force fields, or at least delivering results of similar accuracy.

  19. Introduction: Principles of quantum gravity

    NASA Astrophysics Data System (ADS)

    Crowther, Karen; Rickles, Dean

    2014-05-01

    In this introduction, we describe the rationale behind this special issue on Principles of Quantum Gravity. We explain what we mean by 'principles' and relate this to the various contributions. Finally, we draw out some general themes that can be found running throughout these contributions.

  20. Classical investigation of long-range coherence in biological systems

    NASA Astrophysics Data System (ADS)

    Preto, Jordane

    2016-12-01

    Almost five decades ago, H. Fröhlich [H. Fröhlich, "Long-range coherence and energy storage in biological systems," Int. J. Quantum Chem. 2(5), 641-649 (1968)] reported, on a theoretical basis, that the excitation of quantum modes of vibration in contact with a thermal reservoir may lead to steady states, where under high enough rate of energy supply, only specific low-frequency modes of vibration are strongly excited. This nonlinear phenomenon was predicted to occur in biomolecular systems, which are known to exhibit complex vibrational spectral properties, especially in the terahertz frequency domain. However, since the effects of terahertz or lower-frequency modes are mainly classical at physiological temperatures, there are serious doubts that Fröhlich's quantum description can be applied to predict such a coherent behavior in a biological environment, as suggested by the author. In addition, a quantum formalism makes the phenomenon hard to investigate using realistic molecular dynamics simulations (MD) as they are usually based on the classical principles. In the current paper, we provide a general classical Hamiltonian description of a nonlinear open system composed of many degrees of freedom (biomolecular structure) excited by an external energy source. It is shown that a coherent behaviour similar to Fröhlich's effect is to be expected in the classical case for a given range of parameter values. Thus, the supplied energy is not completely thermalized but stored in a highly ordered fashion. The connection between our Hamiltonian description, carried out in the space of normal modes, and a more standard treatment in the physical space is emphasized in order to facilitate the prediction of the effect from MD simulations. It is shown how such a coherent phenomenon may induce long-range resonance effects that could be of critical importance at the biomolecular level. The present work is motivated by recent experimental evidences of long-lived excited low-frequency modes in protein structures, which were reported as a consequence of the Fröhlich's effect.

  1. Nonviolent unitarization: basic postulates to soft quantum structure of black holes

    NASA Astrophysics Data System (ADS)

    Giddings, Steven B.

    2017-12-01

    A first-principles approach to the unitarity problem for black holes is systematically explored, based on the postulates of 1) quantum mechanics 2) the ability to approximately locally divide quantum gravitational systems into subsystems 3) correspondence with quantum field theory predictions for appropriate observers and (optionally) 4) universality of new gravitational effects. Unitarity requires interactions between the internal state of a black hole and its surroundings that have not been identified in the field theory description; correspondence with field theory indicates that these are soft. A conjectured information-theoretic result for information transfer between subsystems, partly motivated by a perturbative argument, then constrains the minimum coupling size of these interactions of the quantum atmosphere of a black hole. While large couplings are potentially astronomically observable, given this conjecture one finds that the new couplings can be exponentially small in the black hole entropy, yet achieve the information transfer rate needed for unitarization, due to the large number of black hole internal states. This provides a new possible alternative to arguments for large effects near the horizon. If universality is assumed, these couplings can be described as small, soft, state-dependent fluctuations of the metric near the black hole. Open questions include that of the more fundamental basis for such an effective picture.

  2. Testing the quantum superposition principle: matter waves and beyond

    NASA Astrophysics Data System (ADS)

    Ulbricht, Hendrik

    2015-05-01

    New technological developments allow to explore the quantum properties of very complex systems, bringing the question of whether also macroscopic systems share such features, within experimental reach. The interest in this question is increased by the fact that, on the theory side, many suggest that the quantum superposition principle is not exact, departures from it being the larger, the more macroscopic the system. Testing the superposition principle intrinsically also means to test suggested extensions of quantum theory, so-called collapse models. We will report on three new proposals to experimentally test the superposition principle with nanoparticle interferometry, optomechanical devices and by spectroscopic experiments in the frequency domain. We will also report on the status of optical levitation and cooling experiments with nanoparticles in our labs, towards an Earth bound matter-wave interferometer to test the superposition principle for a particle mass of one million amu (atomic mass unit).

  3. Quantum modeling of ultrafast photoinduced charge separation

    NASA Astrophysics Data System (ADS)

    Rozzi, Carlo Andrea; Troiani, Filippo; Tavernelli, Ivano

    2018-01-01

    Phenomena involving electron transfer are ubiquitous in nature, photosynthesis and enzymes or protein activity being prominent examples. Their deep understanding thus represents a mandatory scientific goal. Moreover, controlling the separation of photogenerated charges is a crucial prerequisite in many applicative contexts, including quantum electronics, photo-electrochemical water splitting, photocatalytic dye degradation, and energy conversion. In particular, photoinduced charge separation is the pivotal step driving the storage of sun light into electrical or chemical energy. If properly mastered, these processes may also allow us to achieve a better command of information storage at the nanoscale, as required for the development of molecular electronics, optical switching, or quantum technologies, amongst others. In this Topical Review we survey recent progress in the understanding of ultrafast charge separation from photoexcited states. We report the state-of-the-art of the observation and theoretical description of charge separation phenomena in the ultrafast regime mainly focusing on molecular- and nano-sized solar energy conversion systems. In particular, we examine different proposed mechanisms driving ultrafast charge dynamics, with particular regard to the role of quantum coherence and electron-nuclear coupling, and link experimental observations to theoretical approaches based either on model Hamiltonians or on first principles simulations.

  4. Quantum theory of multiscale coarse-graining.

    PubMed

    Han, Yining; Jin, Jaehyeok; Wagner, Jacob W; Voth, Gregory A

    2018-03-14

    Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.

  5. The Uncertainty Principle in the Presence of Quantum Memory

    NASA Astrophysics Data System (ADS)

    Renes, Joseph M.; Berta, Mario; Christandl, Matthias; Colbeck, Roger; Renner, Renato

    2010-03-01

    One consequence of Heisenberg's uncertainty principle is that no observer can predict the outcomes of two incompatible measurements performed on a system to arbitrary precision. However, this implication is invalid if the the observer possesses a quantum memory, a distinct possibility in light of recent technological advances. Entanglement between the system and the memory is responsible for the breakdown of the uncertainty principle, as illustrated by the EPR paradox. In this work we present an improved uncertainty principle which takes this entanglement into account. By quantifying uncertainty using entropy, we show that the sum of the entropies associated with incompatible measurements must exceed a quantity which depends on the degree of incompatibility and the amount of entanglement between system and memory. Apart from its foundational significance, the uncertainty principle motivated the first proposals for quantum cryptography, though the possibility of an eavesdropper having a quantum memory rules out using the original version to argue that these proposals are secure. The uncertainty relation introduced here alleviates this problem and paves the way for its widespread use in quantum cryptography.

  6. Quantum Gauss-Jordan Elimination and Simulation of Accounting Principles on Quantum Computers

    NASA Astrophysics Data System (ADS)

    Diep, Do Ngoc; Giang, Do Hoang; Van Minh, Nguyen

    2017-06-01

    The paper is devoted to a version of Quantum Gauss-Jordan Elimination and its applications. In the first part, we construct the Quantum Gauss-Jordan Elimination (QGJE) Algorithm and estimate the complexity of computation of Reduced Row Echelon Form (RREF) of N × N matrices. The main result asserts that QGJE has computation time is of order 2 N/2. The second part is devoted to a new idea of simulation of accounting by quantum computing. We first expose the actual accounting principles in a pure mathematics language. Then, we simulate the accounting principles on quantum computers. We show that, all accounting actions are exhousted by the described basic actions. The main problems of accounting are reduced to some system of linear equations in the economic model of Leontief. In this simulation, we use our constructed Quantum Gauss-Jordan Elimination to solve the problems and the complexity of quantum computing is a square root order faster than the complexity in classical computing.

  7. Consistent Quantum Theory

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2001-11-01

    Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics

  8. An uncertainty principle for unimodular quantum groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crann, Jason; Université Lille 1 - Sciences et Technologies, UFR de Mathématiques, Laboratoire de Mathématiques Paul Painlevé - UMR CNRS 8524, 59655 Villeneuve d'Ascq Cédex; Kalantar, Mehrdad, E-mail: jason-crann@carleton.ca, E-mail: mkalanta@math.carleton.ca

    2014-08-15

    We present a generalization of Hirschman's entropic uncertainty principle for locally compact Abelian groups to unimodular locally compact quantum groups. As a corollary, we strengthen a well-known uncertainty principle for compact groups, and generalize the relation to compact quantum groups of Kac type. We also establish the complementarity of finite-dimensional quantum group algebras. In the non-unimodular setting, we obtain an uncertainty relation for arbitrary locally compact groups using the relative entropy with respect to the Haar weight as the measure of uncertainty. We also show that when restricted to q-traces of discrete quantum groups, the relative entropy with respect tomore » the Haar weight reduces to the canonical entropy of the random walk generated by the state.« less

  9. Quantum Theory of Jaynes' Principle, Bayes' Theorem, and Information

    NASA Astrophysics Data System (ADS)

    Haken, Hermann

    2014-12-01

    After a reminder of Jaynes' maximum entropy principle and of my quantum theoretical extension, I consider two coupled quantum systems A,B and formulate a quantum version of Bayes' theorem. The application of Feynman's disentangling theorem allows me to calculate the conditional density matrix ρ (A|B) , if system A is an oscillator (or a set of them), linearly coupled to an arbitrary quantum system B. Expectation values can simply be calculated by means of the normalization factor of ρ (A|B) that is derived.

  10. Quantum theory and Aquinas's doctrine on matter

    NASA Astrophysics Data System (ADS)

    Grove, Stanley F.

    The Aristotelian conception of the material principle, deepened by Aquinas, is today widely misunderstood and largely alien to modern mathematical physics, despite the latter's preoccupation with matter and the spatiotemporal. The present dissertation seeks to develop a coherent understanding of matter in the Aristotelian-Thomistic sense, and to apply it to some key interpretive issues in quantum physics. I begin with a brief historical analysis of the Aristotelian, Newtonian ("classical"), and modern (quantum) approaches to physics, in order to highlight their commonality as well as their differences. Next, matter---especially prime matter---is investigated, in an Aristotelian-Thomistic perspective, under several rationes: as principle of individuation, as principle of extension or spatiality, as principle of corruptibility, as related to essence and existence, and as ground of intelligibility. An attempt is made to order these different rationes according to primordiality. A number of topics concerning the formal structure of hylomorphic being are then addressed: elementarity, virtual presence, the "dispositions of matter," entia vialia, natural minima, atomism, the nature of local motion, the plenum and instantaneous action at a distance---all with a view to their incorporation in a unified account of formed matter at or near the elementary level. Finally I take up several interpretive problems in quantum physics which were introduced early in the dissertation, and show how the material and formal principles expounded in the central chapters can render these problems intelligible. Thus I propose that wave and particle aspects in the quantum realm are related substantially rather than accidentally, and that characteristics of substantial (prime) matter and substantial form are therefore being evidenced directly at this level---in the reversibility of the wave-particle transition, in the spatial and temporal instantaneity of quantum events, and in the probabilism encountered in such phenomena. I offer related hypotheses for Heisenberg uncertainty and for quantum nonlocality. In closing, I address some strengths and weaknesses in others' work on quantum interpretation in the light of Aristotelian principles. Three Appendices explore further aspects of matter as a cosmic principle.

  11. The Principle of the Fermionic Projector: An Approach for Quantum Gravity?

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    In this short article we introduce the mathematical framework of the principle of the fermionic projector and set up a variational principle in discrete space-time. The underlying physical principles are discussed. We outline the connection to the continuum theory and state recent results. In the last two sections, we speculate on how it might be possible to describe quantum gravity within this framework.

  12. Local quantum measurement and no-signaling imply quantum correlations.

    PubMed

    Barnum, H; Beigi, S; Boixo, S; Elliott, M B; Wehner, S

    2010-04-09

    We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.

  13. Quantum mechanics in noninertial reference frames: Violations of the nonrelativistic equivalence principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klink, W.H.; Wickramasekara, S., E-mail: wickrama@grinnell.edu; Department of Physics, Grinnell College, Grinnell, IA 50112

    2014-01-15

    In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group that includes transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as is the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. A special feature of these previously constructed representations is that they all respect the non-relativistic equivalence principle, wherein the fictitious forces associated with linear acceleration canmore » equivalently be described by gravitational forces. In this paper we exhibit a large class of cocycle representations of the Galilean line group that violate the equivalence principle. Nevertheless the classical mechanics analogue of these cocycle representations all respect the equivalence principle. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is given. •The key concept is the Galilean line group, an infinite dimensional group. •A large class of general cocycle representations of the Galilean line group is constructed. •These representations show violations of the equivalence principle at the quantum level. •At the classical limit, no violations of the equivalence principle are detected.« less

  14. Superconformal Algebraic Approach to Hadron Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Teramond, Guy F.; Brodsky, Stanley J.; Deur, Alexandre

    2017-03-01

    Fundamental aspects of nonperturbative QCD dynamics which are not obvious from its classical Lagrangian, such as the emergence of a mass scale and confinement, the existence of a zero mass bound state, the appearance of universal Regge trajectories and the breaking of chiral symmetry are incorporated from the onset in an effective theory based on superconformal quantum mechanics and its embedding in a higher dimensional gravitational theory. In addition, superconformal quantum mechanics gives remarkable connections between the light meson and nucleon spectra. This new approach to hadron physics is also suitable to describe nonperturbative QCD observables based on structure functions,more » such as GPDs, which are not amenable to a first-principle computation. The formalism is also successful in the description of form factors, the nonperturbative behavior of the strong coupling and diffractive processes. We also discuss in this article how the framework can be extended rather successfully to the heavy-light hadron sector.« less

  15. Quantization of parameters and the string landscape problem

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Vargas Moniz, Paulo

    2007-05-01

    We broaden the domain of application of Brustein and de Alwis's recent paper, where they introduce a (dynamical) selection principle on the landscape of string solutions using FRW quantum cosmology. More precisely, we (i) explain how their analysis is based in choosing a restrictive range of parameters, thereby affecting the validity of the predictions extracted and (ii) subsequently provide a wider and cohesive description, regarding the probability distribution induced by quantum cosmological transition amplitudes. In addition, employing DeWitt's argument for an initial condition on the wavefunction of the Universe, we found that the string and gravitational parameters become related through interesting expressions involving an integer n, suggesting a quantization relation for some of the involved parameters. This research work was supported by the grants POCI/FP/63916/2005, FEDER-POCI/P/FIS/57547/2004 and Acções Integradas (CRUP-CSIC) Luso-Espanholas E-138/04.

  16. Fermi Blobs and the Symplectic Camel: A Geometric Picture of Quantum States

    NASA Astrophysics Data System (ADS)

    Gossona, Maurice A. De

    We have explained in previous work the correspondence between the standard squeezed coherent states of quantum mechanics, and quantum blobs, which are the smallest phase space units compatible with the uncertainty principle of quantum mechanics and having the symplectic group as a group of symmetries. In this work, we discuss the relation between quantum blobs and a certain level set (which we call "Fermi blob") introduced by Enrico Fermi in 1930. Fermi blobs allows us to extend our previous results not only to the excited states of the generalized harmonic oscillator in n dimensions, but also to arbitrary quadratic Hamiltonians. As is the case for quantum blobs, we can evaluate Fermi blobs using a topological notion, related to the uncertainty principle, the symplectic capacity of a phase space set. The definition of this notion is made possible by Gromov's symplectic non-squeezing theorem, nicknamed the "principle of the symplectic camel".

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yu, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au; Miao, Zibo, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au; Amini, Hadis, E-mail: nhamini@stanford.edu

    Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, whichmore » extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.« less

  18. Operator Approach to the Master Equation for the One-Step Process

    NASA Astrophysics Data System (ADS)

    Hnatič, M.; Eferina, E. G.; Korolkova, A. V.; Kulyabov, D. S.; Sevastyanov, L. A.

    2016-02-01

    Background. Presentation of the probability as an intrinsic property of the nature leads researchers to switch from deterministic to stochastic description of the phenomena. The kinetics of the interaction has recently attracted attention because it often occurs in the physical, chemical, technical, biological, environmental, economic, and sociological systems. However, there are no general methods for the direct study of this equation. The expansion of the equation in a formal Taylor series (the so called Kramers-Moyal's expansion) is used in the procedure of stochastization of one-step processes. Purpose. However, this does not eliminate the need for the study of the master equation. Method. It is proposed to use quantum field perturbation theory for the statistical systems (the so-called Doi method). Results: This work is a methodological material that describes the principles of master equation solution based on quantum field perturbation theory methods. The characteristic property of the work is that it is intelligible for non-specialists in quantum field theory. Conclusions: We show the full equivalence of the operator and combinatorial methods of obtaining and study of the one-step process master equation.

  19. Rate-loss analysis of an efficient quantum repeater architecture

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Krovi, Hari; Fuchs, Christopher A.; Dutton, Zachary; Slater, Joshua A.; Simon, Christoph; Tittel, Wolfgang

    2015-08-01

    We analyze an entanglement-based quantum key distribution (QKD) architecture that uses a linear chain of quantum repeaters employing photon-pair sources, spectral-multiplexing, linear-optic Bell-state measurements, multimode quantum memories, and classical-only error correction. Assuming perfect sources, we find an exact expression for the secret-key rate, and an analytical description of how errors propagate through the repeater chain, as a function of various loss-and-noise parameters of the devices. We show via an explicit analytical calculation, which separately addresses the effects of the principle nonidealities, that this scheme achieves a secret-key rate that surpasses the Takeoka-Guha-Wilde bound—a recently found fundamental limit to the rate-vs-loss scaling achievable by any QKD protocol over a direct optical link—thereby providing one of the first rigorous proofs of the efficacy of a repeater protocol. We explicitly calculate the end-to-end shared noisy quantum state generated by the repeater chain, which could be useful for analyzing the performance of other non-QKD quantum protocols that require establishing long-distance entanglement. We evaluate that shared state's fidelity and the achievable entanglement-distillation rate, as a function of the number of repeater nodes, total range, and various loss-and-noise parameters of the system. We extend our theoretical analysis to encompass sources with nonzero two-pair-emission probability, using an efficient exact numerical evaluation of the quantum state propagation and measurements. We expect our results to spur formal rate-loss analysis of other repeater protocols and also to provide useful abstractions to seed analyses of quantum networks of complex topologies.

  20. Measures of Quantum Synchronization in Continuous Variable Systems

    NASA Astrophysics Data System (ADS)

    Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R.

    2013-09-01

    We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.

  1. Measures of quantum synchronization in continuous variable systems.

    PubMed

    Mari, A; Farace, A; Didier, N; Giovannetti, V; Fazio, R

    2013-09-06

    We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.

  2. The Real and the Mathematical in Quantum Modeling: From Principles to Models and from Models to Principles

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2017-06-01

    The history of mathematical modeling outside physics has been dominated by the use of classical mathematical models, C-models, primarily those of a probabilistic or statistical nature. More recently, however, quantum mathematical models, Q-models, based in the mathematical formalism of quantum theory have become more prominent in psychology, economics, and decision science. The use of Q-models in these fields remains controversial, in part because it is not entirely clear whether Q-models are necessary for dealing with the phenomena in question or whether C-models would still suffice. My aim, however, is not to assess the necessity of Q-models in these fields, but instead to reflect on what the possible applicability of Q-models may tell us about the corresponding phenomena there, vis-à-vis quantum phenomena in physics. In order to do so, I shall first discuss the key reasons for the use of Q-models in physics. In particular, I shall examine the fundamental principles that led to the development of quantum mechanics. Then I shall consider a possible role of similar principles in using Q-models outside physics. Psychology, economics, and decision science borrow already available Q-models from quantum theory, rather than derive them from their own internal principles, while quantum mechanics was derived from such principles, because there was no readily available mathematical model to handle quantum phenomena, although the mathematics ultimately used in quantum did in fact exist then. I shall argue, however, that the principle perspective on mathematical modeling outside physics might help us to understand better the role of Q-models in these fields and possibly to envision new models, conceptually analogous to but mathematically different from those of quantum theory, helpful or even necessary there or in physics itself. I shall suggest one possible type of such models, singularized probabilistic, SP, models, some of which are time-dependent, TDSP-models. The necessity of using such models may change the nature of mathematical modeling in science and, thus, the nature of science, as it happened in the case of Q-models, which not only led to a revolutionary transformation of physics but also opened new possibilities for scientific thinking and mathematical modeling beyond physics.

  3. Quantum optics. Gravity meets quantum physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Bernhard W.

    2015-02-27

    Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.

  4. Optimal quantum cloning based on the maximin principle by using a priori information

    NASA Astrophysics Data System (ADS)

    Kang, Peng; Dai, Hong-Yi; Wei, Jia-Hua; Zhang, Ming

    2016-10-01

    We propose an optimal 1 →2 quantum cloning method based on the maximin principle by making full use of a priori information of amplitude and phase about the general cloned qubit input set, which is a simply connected region enclosed by a "longitude-latitude grid" on the Bloch sphere. Theoretically, the fidelity of the optimal quantum cloning machine derived from this method is the largest in terms of the maximin principle compared with that of any other machine. The problem solving is an optimization process that involves six unknown complex variables, six vectors in an uncertain-dimensional complex vector space, and four equality constraints. Moreover, by restricting the structure of the quantum cloning machine, the optimization problem is simplified as a three-real-parameter suboptimization problem with only one equality constraint. We obtain the explicit formula for a suboptimal quantum cloning machine. Additionally, the fidelity of our suboptimal quantum cloning machine is higher than or at least equal to that of universal quantum cloning machines and phase-covariant quantum cloning machines. It is also underlined that the suboptimal cloning machine outperforms the "belt quantum cloning machine" for some cases.

  5. Quantum probability ranking principle for ligand-based virtual screening.

    PubMed

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  6. Quantum probability ranking principle for ligand-based virtual screening

    NASA Astrophysics Data System (ADS)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  7. Quantum Physics Principles and Communication in the Acute Healthcare Setting: A Pilot Study.

    PubMed

    Helgeson, Heidi L; Peyerl, Colleen Kraft; Solheim-Witt, Marit

    This pilot study explores whether clinician awareness of quantum physics principles could facilitate open communication between patients and providers. In the spirit of action research, this study was conceptualized with a holistic view of human health, using a mixed method design of grounded theory as an emergent method. Instrumentation includes surveys and a focus group discussion with twelve registered nurses working in an acute care hospital setting. Findings document that the preliminary core phenomenon, energy as information, influences communication in the healthcare environment. Key emergent themes include awareness, language, validation, open communication, strategies, coherence, incoherence and power. Research participants indicate that quantum physics principles provide a language and conceptual framework for improving their awareness of communication and interactions in the healthcare environment. Implications of this pilot study support the feasibility of future research and education on awareness of quantum physics principles in other clinical settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. High-Performance First-Principles Molecular Dynamics for Predictive Theory and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gygi, Francois; Galli, Giulia; Schwegler, Eric

    This project focused on developing high-performance software tools for First-Principles Molecular Dynamics (FPMD) simulations, and applying them in investigations of materials relevant to energy conversion processes. FPMD is an atomistic simulation method that combines a quantum-mechanical description of electronic structure with the statistical description provided by molecular dynamics (MD) simulations. This reliance on fundamental principles allows FPMD simulations to provide a consistent description of structural, dynamical and electronic properties of a material. This is particularly useful in systems for which reliable empirical models are lacking. FPMD simulations are increasingly used as a predictive tool for applications such as batteries, solarmore » energy conversion, light-emitting devices, electro-chemical energy conversion devices and other materials. During the course of the project, several new features were developed and added to the open-source Qbox FPMD code. The code was further optimized for scalable operation of large-scale, Leadership-Class DOE computers. When combined with Many-Body Perturbation Theory (MBPT) calculations, this infrastructure was used to investigate structural and electronic properties of liquid water, ice, aqueous solutions, nanoparticles and solid-liquid interfaces. Computing both ionic trajectories and electronic structure in a consistent manner enabled the simulation of several spectroscopic properties, such as Raman spectra, infrared spectra, and sum-frequency generation spectra. The accuracy of the approximations used allowed for direct comparisons of results with experimental data such as optical spectra, X-ray and neutron diffraction spectra. The software infrastructure developed in this project, as applied to various investigations of solids, liquids and interfaces, demonstrates that FPMD simulations can provide a detailed, atomic-scale picture of structural, vibrational and electronic properties of complex systems relevant to energy conversion devices.« less

  9. From correspondence to complementarity: The emergence of Bohr's Copenhagen interpretation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Tanona, Scott Daniel

    I develop a new analysis of Niels Bohr's Copenhagen interpretation of quantum mechanics by examining the development of his views from his earlier use of the correspondence principle in the so-called 'old quantum theory' to his articulation of the idea of complementarity in the context of the novel mathematical formalism of quantum mechanics. I argue that Bohr was motivated not by controversial and perhaps dispensable epistemological ideas---positivism or neo-Kantianism, for example---but by his own unique perspective on the difficulties of creating a new working physics of the internal structure of the atom. Bohr's use of the correspondence principle in the old quantum theory was associated with an empirical methodology that used this principle as an epistemological bridge to connect empirical phenomena with quantum models. The application of the correspondence principle required that one determine the validity of the idealizations and approximations necessary for the judicious use of classical physics within quantum theory. Bohr's interpretation of the new quantum mechanics then focused on the largely unexamined ways in which the developing abstract mathematical formalism is given empirical content by precisely this process of approximation. Significant consistency between his later interpretive framework and his forms of argument with the correspondence principle indicate that complementarity is best understood as a relationship among the various approximations and idealizations that must be made when one connects otherwise meaningless quantum mechanical symbols to empirical situations or 'experimental arrangements' described using concepts from classical physics. We discover that this relationship is unavoidable not through any sort of a priori analysis of the priority of classical concepts, but because quantum mechanics incorporates the correspondence approach in the way in which it represents quantum properties with matrices of transition probabilities, the empirical meaning of which depend on the situation but in general are tied to the correspondence connection to the spectra. For Bohr, it is then the commutation relations, which arise from the formalism, which inform us of the complementary nature of this approximate representation of quantum properties via the classical equations through which we connect them to experiments.

  10. The uncertainty principle and quantum chaos

    NASA Technical Reports Server (NTRS)

    Chirikov, Boris V.

    1993-01-01

    The conception of quantum chaos is described in some detail. The most striking feature of this novel phenomenon is that all the properties of classical dynamical chaos persist here but, typically, on the finite and different time scales only. The ultimate origin of such a universal quantum stability is in the fundamental uncertainty principle which makes discrete the phase space and, hence, the spectrum of bounded quantum motion. Reformulation of the ergodic theory, as a part of the general theory of dynamical systems, is briefly discussed.

  11. First principles studies of electron tunneling in proteins

    PubMed Central

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.

    2014-01-01

    A first principles study of electronic tunneling along the chain of seven Fe/S clusters in respiratory complex I, a key enzyme in the respiratory electron transport chain, is described. The broken-symmetry states of the Fe/S metal clusters calculated at both DFT and semi-empirical ZINDO levels were utilized to examine both the extremely weak electronic couplings between Fe/S clusters and the tunneling pathways, which provide a detailed atomistic-level description of the charge transfer process in the protein. One-electron tunneling approximation was found to hold within a reasonable accuracy, with only a moderate induced polarization of the core electrons. The method is demonstrated to be able to calculate accurately the coupling matrix elements as small as 10−4 cm−1. A distinct signature of the wave properties of electrons is observed as quantum interferences of multiple tunneling pathways. PMID:25383312

  12. Book Review:

    NASA Astrophysics Data System (ADS)

    Israel, W.

    2006-07-01

    The evaporation of a black hole formed by the collapse of matter is a nonunitary process involving loss of information. At least, this is how it appears in Hawking's semiclassical description, in which gravity is not quantized and the emergent radiation appears thermal. Since unitarity is one of the pillars of quantum mechanics there has been an understandable reluctance to accept this as an ironclad conclusion. Conformal field theories in flat space are manifestly unitary, and the AdS/CFT correspondence therefore suggests that the information trapped in the depths of the hole must find some way to escape—a conclusion almost universally accepted today, at least among particle theorists. Just how it could escape remains a mystery, however, since nothing can escape without violating causality until the black hole has shrunk too far to hold much information. Gerard 't Hooft and the senior author of this book, Leonard Susskind, have been vocal advocates of the view that the information paradox poses a real crisis for physics requiring significant paradigm shifts. They suggest that locality must be given up as an objective property of physical phenomena (even on large scales) and replaced by a new principle of 'black hole complementarity'. Specifically, there are two very different ways to view the process of collapse and evaporation. To a free-falling observer, nothing unusual happens at the horizon and matter and information fall deep into the hole. To a stationary observer hovering just outside the hole it appears instead that the matter and information are deposited on the horizon (which he experiences as very hot because of his large acceleration), to be eventually re-emitted from there as Hawking radiation. According to 't Hooft and Susskind, these must be viewed as equally valid, 'complementary' descriptions of the same process. Black hole complementarity is essentially the statement (supported by operational arguments) that their simultaneous validity cannot lead to inconsistencies. Students and non-specialists will welcome this book, which provides an entry into this fascinating realm at a level that can be enjoyed by an enterprising undergraduate. The first chapter introduces the Schwarzschild black hole and the various coordinate systems used for its description. In four brief chapters (29 pages) the authors then manage a clear presentation of the thermal properties of quantum fields in Rindler and Schwarzschild space that skirts the operator formalism of QFT. Two further chapters treat charged black holes and the stretched-horizon description of black hole electrodynamics. Chapter 8, 'The Laws of Nature', explains how information is quantified, the quantum xerox principle and the entanglement entropy of black holes, with a detailed account of how this evolves as the hole evaporates. This sets the stage for a discussion of the black hole information puzzle and the complementarity principle in chapter 9. The pace heats up in the second part of the book, which in 48 pages sketches a variety of topics: Bousso's entropy bound and holography, the AdS/CFT correspondence, a 13 page introduction to string theory and the ideas underlying the string-based derivations of the entropy area relation for higher-dimensional black holes. This well-planned, stimulating and sometimes provocative book can be enthusiastically recommended.

  13. Foundations of quantum gravity: The role of principles grounded in empirical reality

    NASA Astrophysics Data System (ADS)

    Holman, Marc

    2014-05-01

    When attempting to assess the strengths and weaknesses of various principles in their potential role of guiding the formulation of a theory of quantum gravity, it is crucial to distinguish between principles which are strongly supported by empirical data - either directly or indirectly - and principles which instead (merely) rely heavily on theoretical arguments for their justification. Principles in the latter category are not necessarily invalid, but their a priori foundational significance should be regarded with due caution. These remarks are illustrated in terms of the current standard models of cosmology and particle physics, as well as their respective underlying theories, i.e., essentially general relativity and quantum (field) theory. For instance, it is clear that both standard models are severely constrained by symmetry principles: an effective homogeneity and isotropy of the known universe on the largest scales in the case of cosmology and an underlying exact gauge symmetry of nuclear and electromagnetic interactions in the case of particle physics. However, in sharp contrast to the cosmological situation, where the relevant symmetry structure is more or less established directly on observational grounds, all known, nontrivial arguments for the "gauge principle" are purely theoretical (and far less conclusive than usually advocated). Similar remarks apply to the larger theoretical structures represented by general relativity and quantum (field) theory, where - actual or potential - empirical principles, such as the (Einstein) equivalence principle or EPR-type nonlocality, should be clearly differentiated from theoretical ones, such as general covariance or renormalizability. It is argued that if history is to be of any guidance, the best chance to obtain the key structural features of a putative quantum gravity theory is by deducing them, in some form, from the appropriate empirical principles (analogous to the manner in which, say, the idea that gravitation is a curved spacetime phenomenon is arguably implied by the equivalence principle). Theoretical principles may still be useful however in formulating a concrete theory (analogous to the manner in which, say, a suitable form of general covariance can still act as a sieve for separating theories of gravity from one another). It is subsequently argued that the appropriate empirical principles for deducing the key structural features of quantum gravity should at least include (i) quantum nonlocality, (ii) irreducible indeterminacy (or, essentially equivalently, given (i), relativistic causality), (iii) the thermodynamic arrow of time, (iv) homogeneity and isotropy of the observable universe on the largest scales. In each case, it is explained - when appropriate - how the principle in question could be implemented mathematically in a theory of quantum gravity, why it is considered to be of fundamental significance and also why contemporary accounts of it are insufficient. For instance, the high degree of uniformity observed in the Cosmic Microwave Background is usually regarded as theoretically problematic because of the existence of particle horizons, whereas the currently popular attempts to resolve this situation in terms of inflationary models are, for a number of reasons, less than satisfactory. However, rather than trying to account for the required empirical features dynamically, an arguably much more fruitful approach consists in attempting to account for these features directly, in the form of a lawlike initial condition within a theory of quantum gravity.

  14. Capacitive charge storage at an electrified interface investigated via direct first-principles simulations

    NASA Astrophysics Data System (ADS)

    Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; Otani, Minoru; Wood, Brandon C.

    2015-03-01

    Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic "quantum capacitance" of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulating charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.

  15. Generalized uncertainty principle: implications for black hole complementarity

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Ong, Yen Chin; Yeom, Dong-han

    2014-12-01

    At the heart of the black hole information loss paradox and the firewall controversy lies the conflict between quantum mechanics and general relativity. Much has been said about quantum corrections to general relativity, but much less in the opposite direction. It is therefore crucial to examine possible corrections to quantum mechanics due to gravity. Indeed, the Heisenberg Uncertainty Principle is one profound feature of quantum mechanics, which nevertheless may receive correction when gravitational effects become important. Such generalized uncertainty principle [GUP] has been motivated from not only quite general considerations of quantum mechanics and gravity, but also string theoretic arguments. We examine the role of GUP in the context of black hole complementarity. We find that while complementarity can be violated by large N rescaling if one assumes only the Heisenberg's Uncertainty Principle, the application of GUP may save complementarity, but only if certain N -dependence is also assumed. This raises two important questions beyond the scope of this work, i.e., whether GUP really has the proposed form of N -dependence, and whether black hole complementarity is indeed correct.

  16. An Improved Filtering Method for Quantum Color Image in Frequency Domain

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Xiao, Hong

    2018-01-01

    In this paper we investigate the use of quantum Fourier transform (QFT) in the field of image processing. We consider QFT-based color image filtering operations and their applications in image smoothing, sharpening, and selective filtering using quantum frequency domain filters. The underlying principle used for constructing the proposed quantum filters is to use the principle of the quantum Oracle to implement the filter function. Compared with the existing methods, our method is not only suitable for color images, but also can flexibly design the notch filters. We provide the quantum circuit that implements the filtering task and present the results of several simulation experiments on color images. The major advantages of the quantum frequency filtering lies in the exploitation of the efficient implementation of the quantum Fourier transform.

  17. Transfer of Learning in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2005-09-01

    We investigate the difficulties that undergraduate students in quantum mechanics courses have in transferring learning from previous courses or within the same course from one context to another by administering written tests and conducting individual interviews. Quantum mechanics is abstract and its paradigm is very different from the classical one. A good grasp of the principles of quantum mechanics requires creating and organizing a knowledge structure consistent with the quantum postulates. Previously learned concepts such as the principle of superposition and probability can be useful in quantum mechanics if students are given opportunity to build associations between new and prior knowledge. We also discuss the need for better alignment between quantum mechanics and modern physics courses taken previously because semi-classical models can impede internalization of the quantum paradigm in more advanced courses.

  18. Quantum cosmology of a conformal multiverse

    NASA Astrophysics Data System (ADS)

    Robles-Pérez, Salvador J.

    2017-09-01

    This paper studies the cosmology of a homogeneous and isotropic spacetime endorsed with a conformally coupled massless scalar field. We find six different solutions of the Friedmann equation that represent six different types of universes, and all of them are periodically distributed along the complex time axis. From a classical point of view, they are then isolated, separated by Euclidean regions that represent quantum mechanical barriers. Quantum mechanically, however, there is a nonzero probability for the state of the universes to tunnel out through a Euclidean instanton and suffer a sudden transition to another state of the spacetime. We compute the probability of transition for this and other nonlocal processes like the creation of universes in entangled pairs and, generally speaking, in multipartite entangled states. We obtain the quantum state of a single universe within the formalism of the Wheeler-DeWitt equation and give the semiclassical state of the universes that describes the quantum mechanics of a scalar field propagating in a de Sitter background spacetime. We show that the superposition principle of the quantum mechanics of matter fields alone is an emergent feature of the semiclassical description of the universe that is not valid, for instance, in the spacetime foam. We use the third quantization formalism to describe the creation of an entangled pair of universes with opposite signs of the momentum conjugated to the scale factor. Each universe of the entangled pair represents an expanding spacetime in terms of the Wentzel-Kramers-Brillouin (WKB) time experienced by internal observers in their particle physics experiments. We compute the effective value of the Friedmann equation of the background spacetime of the two entangled universes, and thus, the effect that the entanglement would have in their expansion rates. We analyze as well the effects of the interuniversal entanglement in the properties of the scalar fields that propagate in each spacetime of the entangled pair. We find that the largest modes of the scalar field are unaware of the entanglement between the universes, but the effects can be significant for the lowest modes, allowing us to compute, in principle, detailed observational imprints of the multiverse in the properties of a single universe like ours.

  19. Locality and nonlocality of classical restrictions of quantum spin systems with applications to quantum large deviations and entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Roeck, W., E-mail: wojciech.deroeck@fys.kuleuven.be, E-mail: christian.maes@fys.kuleuven.be, E-mail: netocny@fzu.cz, E-mail: marius.schutz@fys.kuleuven.be; Maes, C., E-mail: wojciech.deroeck@fys.kuleuven.be, E-mail: christian.maes@fys.kuleuven.be, E-mail: netocny@fzu.cz, E-mail: marius.schutz@fys.kuleuven.be; Schütz, M., E-mail: wojciech.deroeck@fys.kuleuven.be, E-mail: christian.maes@fys.kuleuven.be, E-mail: netocny@fzu.cz, E-mail: marius.schutz@fys.kuleuven.be

    2015-02-15

    We study the projection on classical spins starting from quantum equilibria. We show Gibbsianness or quasi-locality of the resulting classical spin system for a class of gapped quantum systems at low temperatures including quantum ground states. A consequence of Gibbsianness is the validity of a large deviation principle in the quantum system which is known and here recovered in regimes of high temperature or for thermal states in one dimension. On the other hand, we give an example of a quantum ground state with strong nonlocality in the classical restriction, giving rise to what we call measurement induced entanglement andmore » still satisfying a large deviation principle.« less

  20. Pauli Exclusion Principle

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A principle of quantum theory, devised in 1925 by Wolfgang Pauli (1900-58), which states that no two fermions may exist in the same quantum state. The quantum state of a particle is defined by a set of numbers that describe quantities such as energy, angular momentum and spin. Fermions are particles such as quarks, protons, neutrons and electrons, that have spin = ½ (in units of h/2π, where h is ...

  1. Radiation from quantum weakly dynamical horizons in loop quantum gravity.

    PubMed

    Pranzetti, Daniele

    2012-07-06

    We provide a statistical mechanical analysis of quantum horizons near equilibrium in the grand canonical ensemble. By matching the description of the nonequilibrium phase in terms of weakly dynamical horizons with a local statistical framework, we implement loop quantum gravity dynamics near the boundary. The resulting radiation process provides a quantum gravity description of the horizon evaporation. For large black holes, the spectrum we derive presents a discrete structure which could be potentially observable.

  2. Understanding quantum work in a quantum many-body system.

    PubMed

    Wang, Qian; Quan, H T

    2017-03-01

    Based on previous studies in a single-particle system in both the integrable [Jarzynski, Quan, and Rahav, Phys. Rev. X 5, 031038 (2015)2160-330810.1103/PhysRevX.5.031038] and the chaotic systems [Zhu, Gong, Wu, and Quan, Phys. Rev. E 93, 062108 (2016)1539-375510.1103/PhysRevE.93.062108], we study the the correspondence principle between quantum and classical work distributions in a quantum many-body system. Even though the interaction and the indistinguishability of identical particles increase the complexity of the system, we find that for a quantum many-body system the quantum work distribution still converges to its classical counterpart in the semiclassical limit. Our results imply that there exists a correspondence principle between quantum and classical work distributions in an interacting quantum many-body system, especially in the large particle number limit, and further justify the definition of quantum work via two-point energy measurements in quantum many-body systems.

  3. Bit-Serial Adder Based on Quantum Dots

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Mathew

    2003-01-01

    A proposed integrated circuit based on quantum-dot cellular automata (QCA) would function as a bit-serial adder. This circuit would serve as a prototype building block for demonstrating the feasibility of quantum-dots computing and for the further development of increasingly complex and increasingly capable quantum-dots computing circuits. QCA-based bit-serial adders would be especially useful in that they would enable the development of highly parallel and systolic processors for implementing fast Fourier, cosine, Hartley, and wavelet transforms. The proposed circuit would complement the QCA-based circuits described in "Implementing Permutation Matrices by Use of Quantum Dots" (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42 and "Compact Interconnection Networks Based on Quantum Dots" (NPO-20855), which appears elsewhere in this issue. Those articles described the limitations of very-large-scale-integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCA-based signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. To enable a meaningful description of the proposed bit-serial adder, it is necessary to further recapitulate the description of a quantum-dot cellular automation from the first-mentioned prior article: A quantum-dot cellular automaton contains four quantum dots positioned at the corners of a square cell. The cell contains two extra mobile electrons that can tunnel (in the quantum-mechanical sense) between neighboring dots within the cell. The Coulomb repulsion between the two electrons tends to make them occupy antipodal dots in the cell. For an isolated cell, there are two energetically equivalent arrangements (denoted polarization states) of the extra electrons. The cell polarization is used to encode binary information. Because the polarization of a nonisolated cell depends on Coulomb-repulsion interactions with neighboring cells, universal logic gates and binary wires could be constructed, in principle, by arraying QCA of suitable design in suitable patterns. Again, for reasons too complex to describe here, in order to ensure accuracy and timeliness of the output of a QCA array, it is necessary to resort to an adiabatic switching scheme in which the QCA array is divided into subarrays, each controlled by a different phase of a multiphase clock signal. In this scheme, each subarray is given time to perform its computation, then its state is frozen by raising its inter-dot potential barriers and its output is fed as the input to the successor subarray. The successor subarray is kept in an unpolarized state so it does not influence the calculation of preceding subarray. Such a clocking scheme is consistent with pipeline computation in the sense that each different subarray can perform a different part of an overall computation. In other words, QCA arrays are inherently suitable for pipeline and, moreover, systolic computations. This sequential or pipeline aspect of QCA would be utilized in the proposed bit-serial adders.

  4. The action uncertainty principle and quantum gravity

    NASA Astrophysics Data System (ADS)

    Mensky, Michael B.

    1992-02-01

    Results of the path-integral approach to the quantum theory of continuous measurements have been formulated in a preceding paper in the form of an inequality of the type of the uncertainty principle. The new inequality was called the action uncertainty principle, AUP. It was shown that the AUP allows one to find in a simple what outputs of the continuous measurements will occur with high probability. Here a more simple form of the AUP will be formulated, δ S≳ħ. When applied to quantum gravity, it leads in a very simple way to the Rosenfeld inequality for measurability of the average curvature.

  5. Quantum superposition at the half-metre scale.

    PubMed

    Kovachy, T; Asenbaum, P; Overstreet, C; Donnelly, C A; Dickerson, S M; Sugarbaker, A; Hogan, J M; Kasevich, M A

    2015-12-24

    The quantum superposition principle allows massive particles to be delocalized over distant positions. Though quantum mechanics has proved adept at describing the microscopic world, quantum superposition runs counter to intuitive conceptions of reality and locality when extended to the macroscopic scale, as exemplified by the thought experiment of Schrödinger's cat. Matter-wave interferometers, which split and recombine wave packets in order to observe interference, provide a way to probe the superposition principle on macroscopic scales and explore the transition to classical physics. In such experiments, large wave-packet separation is impeded by the need for long interaction times and large momentum beam splitters, which cause susceptibility to dephasing and decoherence. Here we use light-pulse atom interferometry to realize quantum interference with wave packets separated by up to 54 centimetres on a timescale of 1 second. These results push quantum superposition into a new macroscopic regime, demonstrating that quantum superposition remains possible at the distances and timescales of everyday life. The sub-nanokelvin temperatures of the atoms and a compensation of transverse optical forces enable a large separation while maintaining an interference contrast of 28 per cent. In addition to testing the superposition principle in a new regime, large quantum superposition states are vital to exploring gravity with atom interferometers in greater detail. We anticipate that these states could be used to increase sensitivity in tests of the equivalence principle, measure the gravitational Aharonov-Bohm effect, and eventually detect gravitational waves and phase shifts associated with general relativity.

  6. Uncertainty principle in loop quantum cosmology by Moyal formalism

    NASA Astrophysics Data System (ADS)

    Perlov, Leonid

    2018-03-01

    In this paper, we derive the uncertainty principle for the loop quantum cosmology homogeneous and isotropic Friedmann-Lemaiter-Robertson-Walker model with the holonomy-flux algebra. The uncertainty principle is between the variables c, with the meaning of connection and μ having the meaning of the physical cell volume to the power 2/3, i.e., v2 /3 or a plaquette area. Since both μ and c are not operators, but rather the random variables, the Robertson uncertainty principle derivation that works for hermitian operators cannot be used. Instead we use the Wigner-Moyal-Groenewold phase space formalism. The Wigner-Moyal-Groenewold formalism was originally applied to the Heisenberg algebra of the quantum mechanics. One can derive it from both the canonical and path integral quantum mechanics as well as the uncertainty principle. In this paper, we apply it to the holonomy-flux algebra in the case of the homogeneous and isotropic space. Another result is the expression for the Wigner function on the space of the cylindrical wave functions defined on Rb in c variables rather than in dual space μ variables.

  7. Teaching the EPR Paradox at High School?

    ERIC Educational Resources Information Center

    Pospiech, Gesche

    1999-01-01

    Argues the importance of students at university and in the final years of high school gaining an appreciation of the principles of quantum mechanics. Presents the EPR gedanken experiment (thought experiment) as a method of teaching the principles of quantum mechanics. (Author/CCM)

  8. Predicting the electronic properties of aqueous solutions from first-principles

    NASA Astrophysics Data System (ADS)

    Schwegler, Eric; Pham, Tuan Anh; Govoni, Marco; Seidel, Robert; Bradforth, Stephen; Galli, Giulia

    Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum-mechanical methods. Yet it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. Here we propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, based on the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results for the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecular dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of their electronic properties, including excitation energies, of the solvent and solutes. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies. Part of this work was performed under the auspices of the U.S. Department of Energy at LLNL under Contract DE-AC52-07A27344.

  9. Comparison of Classical and Quantum Mechanical Uncertainties.

    ERIC Educational Resources Information Center

    Peslak, John, Jr.

    1979-01-01

    Comparisons are made for the particle-in-a-box, the harmonic oscillator, and the one-electron atom. A classical uncertainty principle is derived and compared with its quantum-mechanical counterpart. The results are discussed in terms of the statistical interpretation of the uncertainty principle. (Author/BB)

  10. Entropy bound of local quantum field theory with generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Wan; Lee, Hyung Won; Myung, Yun Soo

    2009-03-01

    We study the entropy bound for local quantum field theory (LQFT) with generalized uncertainty principle. The generalized uncertainty principle provides naturally a UV cutoff to the LQFT as gravity effects. Imposing the non-gravitational collapse condition as the UV-IR relation, we find that the maximal entropy of a bosonic field is limited by the entropy bound A 3 / 4 rather than A with A the boundary area.

  11. Individuation in Quantum Mechanics and Space-Time

    NASA Astrophysics Data System (ADS)

    Jaeger, Gregg

    2010-10-01

    Two physical approaches—as distinct, under the classification of Mittelstaedt, from formal approaches—to the problem of individuation of quantum objects are considered, one formulated in spatiotemporal terms and one in quantum mechanical terms. The spatiotemporal approach itself has two forms: one attributed to Einstein and based on the ontology of space-time points, and the other proposed by Howard and based on intersections of world lines. The quantum mechanical approach is also provided here in two forms, one based on interference and another based on a new Quantum Principle of Individuation (QPI). It is argued that the space-time approach to individuation fails and that the quantum approach offers several advantages over it, including consistency with Leibniz’s Principle of Identity of Indiscernibles.

  12. The evolution of consciousness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, H.P.

    1996-08-16

    It is argued that the principles of classical physics are inimical to the development of an adequate science of consciousness. The problem is that insofar as the classical principles are valid consciousness can have no effect on the behavior, and hence on the survival prospects, of the organisms in which it inheres. Thus within the classical framework it is not possible to explain in natural terms the development of consciousness to the high-level form found in human beings. In quantum theory, on the other hand, consciousness can be dynamically efficacious: quantum theory does allow consciousness to influence behavior, and thencemore » to evolve in accordance with the principles of natural selection. However, this evolutionary requirement places important constraints upon the details of the formulation of the quantum dynamical principles.« less

  13. Renormalization of myoglobin–ligand binding energetics by quantum many-body effects

    PubMed Central

    Weber, Cédric; Cole, Daniel J.; O’Regan, David D.; Payne, Mike C.

    2014-01-01

    We carry out a first-principles atomistic study of the electronic mechanisms of ligand binding and discrimination in the myoglobin protein. Electronic correlation effects are taken into account using one of the most advanced methods currently available, namely a linear-scaling density functional theory (DFT) approach wherein the treatment of localized iron 3d electrons is further refined using dynamical mean-field theory. This combination of methods explicitly accounts for dynamical and multireference quantum physics, such as valence and spin fluctuations, of the 3d electrons, while treating a significant proportion of the protein (more than 1,000 atoms) with DFT. The computed electronic structure of the myoglobin complexes and the nature of the Fe–O2 bonding are validated against experimental spectroscopic observables. We elucidate and solve a long-standing problem related to the quantum-mechanical description of the respiration process, namely that DFT calculations predict a strong imbalance between O2 and CO binding, favoring the latter to an unphysically large extent. We show that the explicit inclusion of the many-body effects induced by the Hund’s coupling mechanism results in the correct prediction of similar binding energies for oxy- and carbonmonoxymyoglobin. PMID:24717844

  14. Nuclear Quantum Effects on Aqueous Electron Attachment and Redox Properties.

    PubMed

    Rybkin, Vladimir V; VandeVondele, Joost

    2017-04-06

    Nuclear quantum effects (NQEs) on the reduction and oxidation properties of small aqueous species (CO 2 , HO 2 , and O 2 ) are quantified and rationalized by first-principles molecular dynamics and thermodynamic integration. Vertical electron attachment, or electron affinity, and detachment energies (VEA and VDE) are strongly affected by NQEs, decreasing in absolute value by 0.3 eV going from a classical to a quantum description of the nuclei. The effect is attributed to NQEs that lessen the solvent response upon oxidation/reduction. The reduction of solvent reorganization energy is expected to be general for small solutes in water. In the thermodynamic integral that yields the free energy of oxidation/reduction, these large changes enter with opposite sign, and only a small net effect (0.1 eV) remains. This is not obvious for CO 2 , where the integrand is strongly influenced by NQEs due to the onset of interaction of the reduced orbital with the conduction band of the liquid during thermodynamic integration. We conclude that NQEs might not have to be included in the computation of redox potentials, unless high accuracy is needed, but are important for VEA and VDE calculations.

  15. Tightening the entropic uncertainty bound in the presence of quantum memory

    NASA Astrophysics Data System (ADS)

    Adabi, F.; Salimi, S.; Haseli, S.

    2016-06-01

    The uncertainty principle is a fundamental principle in quantum physics. It implies that the measurement outcomes of two incompatible observables cannot be predicted simultaneously. In quantum information theory, this principle can be expressed in terms of entropic measures. M. Berta et al. [Nat. Phys. 6, 659 (2010), 10.1038/nphys1734] have indicated that uncertainty bound can be altered by considering a particle as a quantum memory correlating with the primary particle. In this article, we obtain a lower bound for entropic uncertainty in the presence of a quantum memory by adding an additional term depending on the Holevo quantity and mutual information. We conclude that our lower bound will be tightened with respect to that of Berta et al. when the accessible information about measurements outcomes is less than the mutual information about the joint state. Some examples have been investigated for which our lower bound is tighter than Berta et al.'s lower bound. Using our lower bound, a lower bound for the entanglement of formation of bipartite quantum states has been obtained, as well as an upper bound for the regularized distillable common randomness.

  16. The (in)adequacy of applicative use of quantum cryptography in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Turkanović, Muhamed; Hölbl, Marko

    2014-10-01

    Recently quantum computation and cryptography principles are exploited in the design of security systems for wireless sensor networks (WSNs), which are consequently named as quantum WSN. Quantum cryptography is presumably secure against any eavesdropper and thus labeled as providing unconditional security. This paper tries to analyze the aspect of the applicative use of quantum principles in WSN. The outcome of the analysis elaborates a summary about the inadequacy of applicative use of quantum cryptography in WSN and presents an overview of all possible applicative challenges and problems while designing quantum-based security systems for WSN. Since WSNs are highly complex frameworks, with many restrictions and constraints, every security system has to be fully compatible and worthwhile. The aim of the paper was to contribute a verdict about this topic, backed up by equitable facts.

  17. Grover Search and the No-Signaling Principle

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Bouland, Adam; Jordan, Stephen P.

    2016-09-01

    Two of the key properties of quantum physics are the no-signaling principle and the Grover search lower bound. That is, despite admitting stronger-than-classical correlations, quantum mechanics does not imply superluminal signaling, and despite a form of exponential parallelism, quantum mechanics does not imply polynomial-time brute force solution of NP-complete problems. Here, we investigate the degree to which these two properties are connected. We examine four classes of deviations from quantum mechanics, for which we draw inspiration from the literature on the black hole information paradox. We show that in these models, the physical resources required to send a superluminal signal scale polynomially with the resources needed to speed up Grover's algorithm. Hence the no-signaling principle is equivalent to the inability to solve NP-hard problems efficiently by brute force within the classes of theories analyzed.

  18. Holography as a principle in quantum gravity?-Some historical and systematic observations

    NASA Astrophysics Data System (ADS)

    Sieroka, Norman; Mielke, Eckehard W.

    2014-05-01

    Holography is a fruitful concept in modern physics. However, there is no generally accepted definition of the term, and its significance, especially as a guiding principle in quantum gravity, is rather uncertain. The present paper critically evaluates variants of the holographic principle from two perspectives: (i) their relevance in contemporary approaches to quantum gravity and in closely related areas; (ii) their historical forerunners in the early twentieth century and the role played by past and present concepts of holography in attempts to unify physics. By combining these two perspectives a certain depth of focus is gained which allows us to draw some tentative conclusions about what might be reasonable aspirations and prospects for holography in quantum gravity. By the same token, we will have a brief and critical look at wider philosophical interpretations of the term.

  19. Introduction

    NASA Astrophysics Data System (ADS)

    Bub, Jeffrey; Fuchs, Christopher A.

    The great debate between Einstein and Bohr on the interpretation of quantum mechanics culminated with the Einstein-Podolsky-Rosen (EPR) paper in 1935, "Can quantum-mechanical description of physical reality be considered complete?" (Einstein, Podolsky, & Rosen, 1935, and Bohr's reply, 1935). EPR showed that composite quantum systems, consisting of widely separated subsystems, could exist in certain quantum states that they thought spelled trouble for the Copenhagen interpretation. Specifically, they argued that for such states, the correlations between the outcomes of measurements on the subsystems were incompatible with the assumption that the quantum state was a complete description of the system. They concluded that quantum mechanics was an incomplete theory-that the quantum state could not be the whole story about a system.

  20. Equivalence principle and quantum mechanics: quantum simulation with entangled photons.

    PubMed

    Longhi, S

    2018-01-15

    Einstein's equivalence principle (EP) states the complete physical equivalence of a gravitational field and corresponding inertial field in an accelerated reference frame. However, to what extent the EP remains valid in non-relativistic quantum mechanics is a controversial issue. To avoid violation of the EP, Bargmann's superselection rule forbids a coherent superposition of states with different masses. Here we suggest a quantum simulation of non-relativistic Schrödinger particle dynamics in non-inertial reference frames, which is based on the propagation of polarization-entangled photon pairs in curved and birefringent optical waveguides and Hong-Ou-Mandel quantum interference measurement. The photonic simulator can emulate superposition of mass states, which would lead to violation of the EP.

  1. Computing the Entropy of Kerr-Newman Black Hole Without Brick Walls Method

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Chun; Wu, Yue-Qin; Li, Huai-Fan; Ren, Zhao

    By using the entanglement entropy method, the statistical entropy of the Bose and Fermi fields in a thin film is calculated and the Bekenstein-Hawking entropy of Kerr-Newman black hole is obtained. Here, the Bose and Fermi fields are entangled with the quantum states in Kerr-Newman black hole and are outside of the horizon. The divergence of brick-wall model is avoided without any cutoff by the new equation of state density obtained with the generalized uncertainty principle. The calculation implies that the high density quantum states near the event horizon are strongly correlated with the quantum states in black hole. The black hole entropy is a quantum effect. It is an intrinsic characteristic of space-time. The ultraviolet cutoff in the brick-wall model is unreasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. From the calculation, the constant λ introduced in the generalized uncertainty principle is related to polar angle θ in an axisymmetric space-time.

  2. Implications of quantum metabolism and natural selection for the origin of cancer cells and tumor progression

    NASA Astrophysics Data System (ADS)

    Davies, Paul; Demetrius, Lloyd A.; Tuszynski, Jack A.

    2012-03-01

    Empirical studies give increased support for the hypothesis that the sporadic form of cancer is an age-related metabolic disease characterized by: (a) metabolic dysregulation with random abnormalities in mitochondrial DNA, and (b) metabolic alteration - the compensatory upregulation of glycolysis to offset mitochondrial impairments. This paper appeals to the theory of Quantum Metabolism and the principles of natural selection to formulate a conceptual framework for a quantitative analysis of the origin and proliferation of the disease. Quantum Metabolism, an analytical theory of energy transduction in cells inspired by the methodology of the quantum theory of solids, elucidates the molecular basis for differences in metabolic rate between normal cells, utilizing predominantly oxidative phosphorylation, and cancer cells utilizing predominantly glycolysis. The principles of natural selection account for the outcome of competition between the two classes of cells. Quantum Metabolism and the principles of natural selection give an ontogenic and evolutionary rationale for cancer proliferation and furnish a framework for effective therapeutic strategies to impede the spread of the disease.

  3. Localization in quantum field theory

    NASA Astrophysics Data System (ADS)

    Balachandran, A. P.

    In non-relativistic quantum mechanics, Born’s principle of localization is as follows: For a single particle, if a wave function ψK vanishes outside a spatial region K, it is said to be localized in K. In particular, if a spatial region K‧ is disjoint from K, a wave function ψK‧ localized in K‧ is orthogonal to ψK. Such a principle of localization does not exist compatibly with relativity and causality in quantum field theory (QFT) (Newton and Wigner) or interacting point particles (Currie, Jordan and Sudarshan). It is replaced by symplectic localization of observables as shown by Brunetti, Guido and Longo, Schroer and others. This localization gives a simple derivation of the spin-statistics theorem and the Unruh effect, and shows how to construct quantum fields for anyons and for massless particles with “continuous” spin. This review outlines the basic principles underlying symplectic localization and shows or mentions its deep implications. In particular, it has the potential to affect relativistic quantum information theory and black hole physics.

  4. Quantum Mechanical Earth: Where Orbitals Become Orbits

    ERIC Educational Resources Information Center

    Keeports, David

    2012-01-01

    Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…

  5. Retrocausal Effects As A Consequence of Orthodox Quantum Mechanics Refined To Accommodate The Principle Of Sufficient Reason

    NASA Astrophysics Data System (ADS)

    Stapp, Henry P.

    2011-11-01

    The principle of sufficient reason asserts that anything that happens does so for a reason: no definite state of affairs can come into being unless there is a sufficient reason why that particular thing should happen. This principle is usually attributed to Leibniz, although the first recorded Western philosopher to use it was Anaximander of Miletus. The demand that nature be rational, in the sense that it be compatible with the principle of sufficient reason, conflicts with a basic feature of contemporary orthodox physical theory, namely the notion that nature's response to the probing action of an observer is determined by pure chance, and hence on the basis of absolutely no reason at all. This appeal to pure chance can be deemed to have no rational fundamental place in reason-based Western science. It is argued here, on the basis of the other basic principles of quantum physics, that in a world that conforms to the principle of sufficient reason, the usual quantum statistical rules will naturally emerge at the pragmatic level, in cases where the reason behind nature's choice of response is unknown, but that the usual statistics can become biased in an empirically manifest way when the reason for the choice is empirically identifiable. It is shown here that if the statistical laws of quantum mechanics were to be biased in this way then the basically forward-in-time unfolding of empirical reality described by orthodox quantum mechanics would generate the appearances of backward-time-effects of the kind that have been reported in the scientific literature.

  6. Are Quantum Models for Order Effects Quantum?

    NASA Astrophysics Data System (ADS)

    Moreira, Catarina; Wichert, Andreas

    2017-12-01

    The application of principles of Quantum Mechanics in areas outside of physics has been getting increasing attention in the scientific community in an emergent disciplined called Quantum Cognition. These principles have been applied to explain paradoxical situations that cannot be easily explained through classical theory. In quantum probability, events are characterised by a superposition state, which is represented by a state vector in a N-dimensional vector space. The probability of an event is given by the squared magnitude of the projection of this superposition state into the desired subspace. This geometric approach is very useful to explain paradoxical findings that involve order effects, but do we really need quantum principles for models that only involve projections? This work has two main goals. First, it is still not clear in the literature if a quantum projection model has any advantage towards a classical projection. We compared both models and concluded that the Quantum Projection model achieves the same results as its classical counterpart, because the quantum interference effects play no role in the computation of the probabilities. Second, it intends to propose an alternative relativistic interpretation for rotation parameters that are involved in both classical and quantum models. In the end, instead of interpreting these parameters as a similarity measure between questions, we propose that they emerge due to the lack of knowledge concerned with a personal basis state and also due to uncertainties towards the state of world and towards the context of the questions.

  7. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2015-10-01

    We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.

  8. State transfer in highly connected networks and a quantum Babinet principle

    NASA Astrophysics Data System (ADS)

    Tsomokos, D. I.; Plenio, M. B.; de Vega, I.; Huelga, S. F.

    2008-12-01

    The transfer of a quantum state between distant nodes in two-dimensional networks is considered. The fidelity of state transfer is calculated as a function of the number of interactions in networks that are described by regular graphs. It is shown that perfect state transfer is achieved in a network of size N , whose structure is that of an (N/2) -cross polytope graph, if N is a multiple of 4 . The result is reminiscent of the Babinet principle of classical optics. A quantum Babinet principle is derived, which allows for the identification of complementary graphs leading to the same fidelity of state transfer, in analogy with complementary screens providing identical diffraction patterns.

  9. Capacitive charge storage at an electrified interface investigated via direct first-principles simulations [Direct Simulation of Capacitive Charging of Graphene and Implications for Supercapacitor Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen

    Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic “quantum capacitance” of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulatingmore » charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Lastly, our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.« less

  10. Capacitive charge storage at an electrified interface investigated via direct first-principles simulations [Direct Simulation of Capacitive Charging of Graphene and Implications for Supercapacitor Design

    DOE PAGES

    Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; ...

    2015-03-11

    Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic “quantum capacitance” of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulatingmore » charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Lastly, our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.« less

  11. Revealing the Mystery of the Galilean Principle of Relativity. Part I: Basic Assertions

    NASA Astrophysics Data System (ADS)

    Yarman, Tolga

    2009-08-01

    As Galileo has formulated, one cannot detect, once embarked in a uniform translational motion, and not receiving any information from the outside, how fast he is moving. Why? No one that we recall of, has worked out the answer of this question, although the Galilean Principle of Relativity ( GPR), constituted a major ingredient of the Special Theory of Relativity (STR). Thus, consider a quantum mechanical object of “ clock mass” M 0 ( which is just a mass), doing a “ clock motion”, such as rotation, vibration, etc., with a total energy E 0, in a space of size ℛ0. Previously we have established that, if the mass M 0 is multiplied by an arbitrary number γ, then through the relativistic or non-relativistic quantum mechanical description of the object ( which ever is appropriate to describe the case in hand), the size ℛ0 of it, shrinks as much, and the total energy E 0, concomitantly, increases as much. This quantum mechanical occurrence yields, at once, the invariance of the quantity E 0 M 0ℛ{0/2} with regards to the mass change in question, the object being overall at rest; this latter quantity is, on the other hand, as induced by the quantum mechanical framework, necessarily strapped to h 2, the square of the Planck Constant. But this constant is already, dimension wise, Lorentz invariant. Thus, any quantity bearing the dimension of h 2, is Lorentz invariant, too. So is then, the quantity E 0 M 0ℛ{0/2} ( no matter how the size of concern lies with respect to the direction of uniform translational motion) that would come into play. Thence, the quantum mechanical invariance of the quantity E 0 M 0ℛ{0/2} with regards to an arbitrary mass change, comes to be identical to the Lorentz invariance of this quantity, were the object brought to a uniform translational motion. It is this prevalence, which displays, amazingly, the underlying mechanism, securing the end results of the STR, and this via quantum mechanics. The Lorentz invariant quantum mechanical architecture, E 0 M 0ℛ{0/2}˜ h 2, more fundamentally, constitutes the answer of the mystery drawn by the GPR. In this article, we frame the basic assertions, which will be used in a subsequent article, to display the quantum mechanical machinery making the GPR, and to draw the bridge between the GPR and the architecture, we disclose.

  12. On the 'principle of the quantumness', the quantumness of Relativity, and the computational grand-unification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Ariano, Giacomo Mauro

    2010-05-04

    I will argue that the proposal of establishing operational foundations of Quantum Theory should have top-priority, and that the Lucien Hardy's program on Quantum Gravity should be paralleled by an analogous program on Quantum Field Theory (QFT), which needs to be reformulated, notwithstanding its experimental success. In this paper, after reviewing recently suggested operational 'principles of the quantumness', I address the problem on whether Quantum Theory and Special Relativity are unrelated theories, or instead, if the one implies the other. I show how Special Relativity can be indeed derived from causality of Quantum Theory, within the computational paradigm 'the universemore » is a huge quantum computer', reformulating QFT as a Quantum-Computational Field Theory (QCFT). In QCFT Special Relativity emerges from the fabric of the computational network, which also naturally embeds gauge invariance. In this scheme even the quantization rule and the Planck constant can in principle be derived as emergent from the underlying causal tapestry of space-time. In this way Quantum Theory remains the only theory operating the huge computer of the universe.Is the computational paradigm only a speculative tautology (theory as simulation of reality), or does it have a scientific value? The answer will come from Occam's razor, depending on the mathematical simplicity of QCFT. Here I will just start scratching the surface of QCFT, analyzing simple field theories, including Dirac's. The number of problems and unmotivated recipes that plague QFT strongly motivates us to undertake the QCFT project, since QCFT makes all such problems manifest, and forces a re-foundation of QFT.« less

  13. Quantum corrections to newtonian potential and generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Scardigli, Fabio; Lambiase, Gaetano; Vagenas, Elias

    2017-08-01

    We use the leading quantum corrections to the newtonian potential to compute the deformation parameter of the generalized uncertainty principle. By assuming just only General Relativity as theory of Gravitation, and the thermal nature of the GUP corrections to the Hawking spectrum, our calculation gives, to first order, a specific numerical result. We briefly discuss the physical meaning of this value, and compare it with the previously obtained bounds on the generalized uncertainty principle deformation parameter.

  14. Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Alexander J.; Center for Nonlinear Studies; Gorshkov, Vyacheslav N.

    2014-11-14

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantummore » mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donangelo, R.J.

    An integral representation for the classical limit of the quantum mechanical S-matrix is developed and applied to heavy-ion Coulomb excitation and Coulomb-nuclear interference. The method combines the quantum principle of superposition with exact classical dynamics to describe the projectile-target system. A detailed consideration of the classical trajectories and of the dimensionless parameters that characterize the system is carried out. The results are compared, where possible, to exact quantum mechanical calculations and to conventional semiclassical calculations. It is found that in the case of backscattering the classical limit S-matrix method is able to almost exactly reproduce the quantum-mechanical S-matrix elements, andmore » therefore the transition probabilities, even for projectiles as light as protons. The results also suggest that this approach should be a better approximation for heavy-ion multiple Coulomb excitation than earlier semiclassical methods, due to a more accurate description of the classical orbits in the electromagnetic field of the target nucleus. Calculations using this method indicate that the rotational excitation probabilities in the Coulomb-nuclear interference region should be very sensitive to the details of the potential at the surface of the nucleus, suggesting that heavy-ion rotational excitation could constitute a sensitive probe of the nuclear potential in this region. The application to other problems as well as the present limits of applicability of the formalism are also discussed.« less

  16. Generalized uncertainty principles and quantum field theory

    NASA Astrophysics Data System (ADS)

    Husain, Viqar; Kothawala, Dawood; Seahra, Sanjeev S.

    2013-01-01

    Quantum mechanics with a generalized uncertainty principle arises through a representation of the commutator [x^,p^]=if(p^). We apply this deformed quantization to free scalar field theory for f±=1±βp2. The resulting quantum field theories have a rich fine scale structure. For small wavelength modes, the Green’s function for f+ exhibits a remarkable transition from Lorentz to Galilean invariance, whereas for f- such modes effectively do not propagate. For both cases Lorentz invariance is recovered at long wavelengths.

  17. Density functional theory for field emission from carbon nano-structures.

    PubMed

    Li, Zhibing

    2015-12-01

    Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.

  18. The Experimental Demonstration of High Efficiency Interaction-free Measurement for Quantum Counterfactual-like Communication.

    PubMed

    Liu, Chao; Liu, Jinhong; Zhang, Junxiang; Zhu, Shiyao

    2017-09-07

    We present an interaction-free measurement with quantum Zeno effect and a high efficiency η = 74.6% ± 0.15%. As a proof-of-principle demonstration, this measurement can be used to implement a quantum counterfactual-like communication protocol. Instead of a single photon state, we use a coherent light as the input source and show that the output agrees with the proposed quantum counterfactual communication protocol according to Salih et al. Although the counterfactuality is not achieved due to the presence of a few photons in the public channel, we show that the signal light is nearly absent in the public channel, which exhibits a proof-of-principle quantum counterfactual-like property of communication.

  19. Geometry of discrete quantum computing

    NASA Astrophysics Data System (ADS)

    Hanson, Andrew J.; Ortiz, Gerardo; Sabry, Amr; Tai, Yu-Tsung

    2013-05-01

    Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2n infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields \\mathbf {F}_{p^2} (based on primes p congruent to 3 (mod4)) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space \\mathbf {CP}^{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p + 1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to \\mathbf {DCP}^{2^{n}-1}, the discrete analogue of the complex projective space, which has p^{2^{n}-1} (p-1)\\,\\prod _{k=1}^{n-1} ( p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field \\mathbf {F}_{p^2} have pn(p - 1)n unentangled states (the product of the tally for a single qubit) with purity 1, and they have pn + 1(p - 1)(p + 1)n - 1 maximally entangled states with purity zero.

  20. OpenFlow arbitrated programmable network channels for managing quantum metadata

    DOE PAGES

    Dasari, Venkat R.; Humble, Travis S.

    2016-10-10

    Quantum networks must classically exchange complex metadata between devices in order to carry out information for protocols such as teleportation, super-dense coding, and quantum key distribution. Demonstrating the integration of these new communication methods with existing network protocols, channels, and data forwarding mechanisms remains an open challenge. Software-defined networking (SDN) offers robust and flexible strategies for managing diverse network devices and uses. We adapt the principles of SDN to the deployment of quantum networks, which are composed from unique devices that operate according to the laws of quantum mechanics. We show how quantum metadata can be managed within a software-definedmore » network using the OpenFlow protocol, and we describe how OpenFlow management of classical optical channels is compatible with emerging quantum communication protocols. We next give an example specification of the metadata needed to manage and control quantum physical layer (QPHY) behavior and we extend the OpenFlow interface to accommodate this quantum metadata. Here, we conclude by discussing near-term experimental efforts that can realize SDN’s principles for quantum communication.« less

  1. OpenFlow arbitrated programmable network channels for managing quantum metadata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasari, Venkat R.; Humble, Travis S.

    Quantum networks must classically exchange complex metadata between devices in order to carry out information for protocols such as teleportation, super-dense coding, and quantum key distribution. Demonstrating the integration of these new communication methods with existing network protocols, channels, and data forwarding mechanisms remains an open challenge. Software-defined networking (SDN) offers robust and flexible strategies for managing diverse network devices and uses. We adapt the principles of SDN to the deployment of quantum networks, which are composed from unique devices that operate according to the laws of quantum mechanics. We show how quantum metadata can be managed within a software-definedmore » network using the OpenFlow protocol, and we describe how OpenFlow management of classical optical channels is compatible with emerging quantum communication protocols. We next give an example specification of the metadata needed to manage and control quantum physical layer (QPHY) behavior and we extend the OpenFlow interface to accommodate this quantum metadata. Here, we conclude by discussing near-term experimental efforts that can realize SDN’s principles for quantum communication.« less

  2. The principle of finiteness - a guideline for physical laws

    NASA Astrophysics Data System (ADS)

    Sternlieb, Abraham

    2013-04-01

    I propose a new principle in physics-the principle of finiteness (FP). It stems from the definition of physics as a science that deals with measurable dimensional physical quantities. Since measurement results including their errors, are always finite, FP postulates that the mathematical formulation of legitimate laws in physics should prevent exactly zero or infinite solutions. I propose finiteness as a postulate, as opposed to a statement whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories or principles. Some consequences of FP are discussed, first in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The corrected Lorentz transformations include an additional translation term depending on the minimum length epsilon. The relativistic gamma is replaced by a corrected gamma, that is finite for v=c. To comply with FP, physical laws should include the relevant extremum finite values in their mathematical formulation. An important prediction of FP is that there is a maximum attainable relativistic mass/energy which is the same for all subatomic particles, meaning that there is a maximum theoretical value for cosmic rays energy. The Generalized Uncertainty Principle required by Quantum Gravity is actually a necessary consequence of FP at Planck's scale. Therefore, FP may possibly contribute to the axiomatic foundation of Quantum Gravity.

  3. Retrocausal Effects as a Consequence of Quantum Mechanics Refined to Accommodate the Principle of Sufficient Reason

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, Henry P.

    2011-05-10

    The principle of sufficient reason asserts that anything that happens does so for a reason: no definite state of affairs can come into being unless there is a sufficient reason why that particular thing should happen. This principle is usually attributed to Leibniz, although the first recorded Western philosopher to use it was Anaximander of Miletus. The demand that nature be rational, in the sense that it be compatible with the principle of sufficient reason, conflicts with a basic feature of contemporary orthodox physical theory, namely the notion that nature's response to the probing action of an observer is determinedmore » by pure chance, and hence on the basis of absolutely no reason at all. This appeal to pure chance can be deemed to have no rational fundamental place in reason-based Western science. It is argued here, on the basis of the other basic principles of quantum physics, that in a world that conforms to the principle of sufficient reason, the usual quantum statistical rules will naturally emerge at the pragmatic level, in cases where the reason behind nature's choice of response is unknown, but that the usual statistics can become biased in an empirically manifest way when the reason for the choice is empirically identifiable. It is shown here that if the statistical laws of quantum mechanics were to be biased in this way then the basically forward-in-time unfolding of empirical reality described by orthodox quantum mechanics would generate the appearances of backward-time-effects of the kind that have been reported in the scientific literature.« less

  4. Electronic structure of aqueous solutions: Bridging the gap between theory and experiments.

    PubMed

    Pham, Tuan Anh; Govoni, Marco; Seidel, Robert; Bradforth, Stephen E; Schwegler, Eric; Galli, Giulia

    2017-06-01

    Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum mechanical methods. However, it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. We propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, on the basis of the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results of the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecular dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of the electronic properties of the solvent and solutes, including excitation energies. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies.

  5. Electronic structure of aqueous solutions: Bridging the gap between theory and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Tuan Anh; Govoni, Marco; Seidel, Robert

    Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum mechanical methods. However, it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. We propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, on the basis of the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results of the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecularmore » dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of the electronic properties of the solvent and solutes, including excitation energies. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies.« less

  6. The spatial behavior of nonclassical light

    NASA Astrophysics Data System (ADS)

    Kolobov, Mikhail I.

    1999-10-01

    Nonclassical effects such as squeezing, antibunching, and sub-Poissonian statistics of photons have been attracting attention in quantum optics over the last decade. Up to now most theoretical and experimental investigations have been carried out exclusively in the time domain while neglecting the spatial aspects by considering only one spatial mode of the electromagnetic field. In many situations such an approximation is well justified. There are, however, problems that do not allow in principle a single-mode consideration. This is the case when one wants to investigate the quantum fluctuations of light at different spatial points in the plane perpendicular to the direction of propagation of the light beam. Such an investigation requires a complete description of quantum fluctuations of light in both time and space and cannot be done within a single-mode theory. This space-time description brings about a natural generalization into the spatial domain of such notions as the standard quantum limit, squeezing, antibunching, etc. It predicts, for example, the possibility of generating a light beam with sub-Poissonian statistics of photons not only in time but also in the beam's transverse plane. Of particular relevance to the applications is a situation in which the cross section of the light beam contains several nonoverlapping areas with sub-Poissonian statistics of photons in each. Photodetection of such a beam produces several sub-shot-noise photocurrents depending on the number of independent areas with sub-Poissonian statistics. This is in marked contrast to the case of a single-mode sub-Poissonian light beam in which any attempt to collect light from only a part of the beam deteriorates the degree of shot-noise reduction. This property of multimode squeezed light opens a range of interesting new applications in optical imaging, optical parallel processing of information, parallel computing, and many other areas in which it is desirable to have a light beam with regular photon statistics across its transverse area. The aim of this review is to describe the recent development in this branch of quantum optics.

  7. A New Principle in Physiscs: the Principle "Finiteness", and Some Consequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham Sternlieb

    2010-06-25

    In this paper I propose a new principle in physics: the principle of "finiteness". It stems from the definition of physics as a science that deals (among other things) with measurable dimensional physical quantities. Since measurement results, including their errors, are always finite, the principle of finiteness postulates that the mathematical formulation of "legitimate" laws of physics should prevent exactly zero or infinite solutions. Some consequences of the principle of finiteness are discussed, in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The consequences are derived independently of any other theory ormore » principle in physics. I propose "finiteness" as a postulate (like the constancy of the speed of light in vacuum, "c"), as opposed to a notion whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories, or principles.« less

  8. Violation of Bell’s inequality: Must the Einstein locality really be abandoned?

    NASA Astrophysics Data System (ADS)

    Jung, Kurt

    2017-08-01

    Since John Bell has established his famous inequality and several independent experiments have confirmed the distinct polarization correlation of entangled photons predicted by quantum mechanics it is evident that quantum mechanics cannot be explained by local realistic theories. Actually, the observed polarization correlation can be deduced from wave optical considerations. The correlation has its origin in the phase coupling of the two circularly polarized wave packets leaving the photon source simultaneously. The experimental results violate Bell’s inequality although no non-local interactions have to be assumed. In consequence the principle of locality remains valid in the scope of quantum mechanics. However, the principle of realism has to be replaced by the less stringent principle of contextuality.

  9. Gravitational self-interactions of a degenerate quantum scalar field

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Sankha S.; Enomoto, Seishi; Han, Yaqi; Sikivie, Pierre; Todarello, Elisa M.

    2018-02-01

    We develop a formalism to help calculate in quantum field theory the departures from the description of a system by classical field equations. We apply the formalism to a homogeneous condensate with attractive contact interactions and to a homogeneous self-gravitating condensate in critical expansion. In their classical descriptions, such condensates persist forever. We show that in their quantum description, parametric resonance causes quanta to jump in pairs out of the condensate into all modes with wave vector less than some critical value. We calculate, in each case, the time scale over which the homogeneous condensate is depleted and after which a classical description is invalid. We argue that the duration of classicality of inhomogeneous condensates is shorter than that of homogeneous condensates.

  10. Quantum random number generator based on quantum nature of vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Ivanova, A. E.; Chivilikhin, S. A.; Gleim, A. V.

    2017-11-01

    Quantum random number generator (QRNG) allows obtaining true random bit sequences. In QRNG based on quantum nature of vacuum, optical beam splitter with two inputs and two outputs is normally used. We compare mathematical descriptions of spatial beam splitter and fiber Y-splitter in the quantum model for QRNG, based on homodyne detection. These descriptions were identical, that allows to use fiber Y-splitters in practical QRNG schemes, simplifying the setup. Also we receive relations between the input radiation and the resulting differential current in homodyne detector. We experimentally demonstrate possibility of true random bits generation by using QRNG based on homodyne detection with Y-splitter.

  11. Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices

    NASA Astrophysics Data System (ADS)

    Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan

    2014-10-01

    In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].

  12. Fundamental Quantum 1/F Noise in Ultrasmall Semi Conductor Devices and Their Optimal Design Principles.

    DTIC Science & Technology

    1986-05-01

    1 . quantum 1 / f noise t - 12 . In that case the Hooge parameter0(H may be written H...Eqs. (4.2)-(4.5). The Hooge formula 2 0 is thus derived from first =.% principles as a quantum 1 / f result withOH given by Eq. (4.12). All i/ f noise ...between coherent state I/ f noise and the Umklapp I/ f noise . 1 / f noise in n+-p Hgl-xCdxTe occurs in many forms and each form should be tested. If a Hooge

  13. Optical quantum memory based on electromagnetically induced transparency

    PubMed Central

    Ma, Lijun; Slattery, Oliver

    2017-01-01

    Electromagnetically induced transparency (EIT) is a promising approach to implement quantum memory in quantum communication and quantum computing applications. In this paper, following a brief overview of the main approaches to quantum memory, we provide details of the physical principle and theory of quantum memory based specifically on EIT. We discuss the key technologies for implementing quantum memory based on EIT and review important milestones, from the first experimental demonstration to current applications in quantum information systems. PMID:28828172

  14. Optical quantum memory based on electromagnetically induced transparency.

    PubMed

    Ma, Lijun; Slattery, Oliver; Tang, Xiao

    2017-04-01

    Electromagnetically induced transparency (EIT) is a promising approach to implement quantum memory in quantum communication and quantum computing applications. In this paper, following a brief overview of the main approaches to quantum memory, we provide details of the physical principle and theory of quantum memory based specifically on EIT. We discuss the key technologies for implementing quantum memory based on EIT and review important milestones, from the first experimental demonstration to current applications in quantum information systems.

  15. A quantum probability explanation for violations of ‘rational’ decision theory

    PubMed Central

    Pothos, Emmanuel M.; Busemeyer, Jerome R.

    2009-01-01

    Two experimental tasks in psychology, the two-stage gambling game and the Prisoner's Dilemma game, show that people violate the sure thing principle of decision theory. These paradoxical findings have resisted explanation by classical decision theory for over a decade. A quantum probability model, based on a Hilbert space representation and Schrödinger's equation, provides a simple and elegant explanation for this behaviour. The quantum model is compared with an equivalent Markov model and it is shown that the latter is unable to account for violations of the sure thing principle. Accordingly, it is argued that quantum probability provides a better framework for modelling human decision-making. PMID:19324743

  16. Entanglement, space-time and the Mayer-Vietoris theorem

    NASA Astrophysics Data System (ADS)

    Patrascu, Andrei T.

    2017-06-01

    Entanglement appears to be a fundamental building block of quantum gravity leading to new principles underlying the nature of quantum space-time. One such principle is the ER-EPR duality. While supported by our present intuition, a proof is far from obvious. In this article I present a first step towards such a proof, originating in what is known to algebraic topologists as the Mayer-Vietoris theorem. The main result of this work is the re-interpretation of the various morphisms arising when the Mayer-Vietoris theorem is used to assemble a torus-like topology from more basic subspaces on the torus in terms of quantum information theory resulting in a quantum entangler gate (Hadamard and c-NOT).

  17. From First Principles: The Application of Quantum Mechanics to Complex Molecules and Solvated Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitag, Mark A.

    2001-12-31

    The major title of this dissertation, 'From first principles,' is a phase often heard in the study of thermodynamics and quantum mechanics. These words embody a powerful idea in the physical sciences; namely, that it is possible to distill the complexities of nature into a set of simple, well defined mathematical laws from which specific relations can then be derived . In thermodynamics, these fundamental laws are immediately familiar to the physical scientist by their numerical order: the First, Second and Third Laws. However, the subject of the present volume is quantum mechanics-specifically, non-relativistic quantum mechanics, which is appropriate formore » most systems of chemical interest.« less

  18. Many-Worlds Interpretation of Quantum Theory and Mesoscopic Anthropic Principle

    NASA Astrophysics Data System (ADS)

    Kamenshchik, A. Yu.; Teryaev, O. V.

    2008-10-01

    We suggest to combine the Anthropic Principle with Many-Worlds Interpretation of Quantum Theory. Realizing the multiplicity of worlds it provides an opportunity of explanation of some important events which are assumed to be extremely improbable. The Mesoscopic Anthropic Principle suggested here is aimed to explain appearance of such events which are necessary for emergence of Life and Mind. It is complementary to Cosmological Anthropic Principle explaining the fine tuning of fundamental constants. We briefly discuss various possible applications of Mesoscopic Anthropic Principle including the Solar Eclipses and assembling of complex molecules. Besides, we address the problem of Time's Arrow in the framework of Many-World Interpretation. We suggest the recipe for disentangling of quantities defined by fundamental physical laws and by an anthropic selection.

  19. Conservative Diffusions: a Constructive Approach to Nelson's Stochastic Mechanics.

    NASA Astrophysics Data System (ADS)

    Carlen, Eric Anders

    In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions; this thesis is a study of that description. We emphasize that we are concerned here with the possibility of describing, as opposed to explaining, quantum phenomena in terms of diffusions. In this direction, the following questions arise: "Do the diffusions of stochastic mechanics--which are formally given by stochastic differential equations with extremely singular coefficients--really exist?" Given that they exist, one can ask, "Do these diffusions have physically reasonable sample path behavior, and can we use information about sample paths to study the behavior of physical systems?" These are the questions we treat in this thesis. In Chapter I we review stochastic mechanics and diffusion theory, using the Guerra-Morato variational principle to establish the connection with the Schroedinger equation. This chapter is largely expository; however, there are some novel features and proofs. In Chapter II we settle the first of the questions raised above. Using PDE methods, we construct the diffusions of stochastic mechanics. Our result is sufficiently general to be of independent mathematical interest. In Chapter III we treat potential scattering in stochastic mechanics and discuss direct probabilistic methods of studying quantum scattering problems. Our results provide a solid "Yes" in answer to the second question raised above.

  20. Dirac δ -function potential in quasiposition representation of a minimal-length scenario

    NASA Astrophysics Data System (ADS)

    Gusson, M. F.; Gonçalves, A. Oakes O.; Francisco, R. O.; Furtado, R. G.; Fabris, J. C.; Nogueira, J. A.

    2018-03-01

    A minimal-length scenario can be considered as an effective description of quantum gravity effects. In quantum mechanics the introduction of a minimal length can be accomplished through a generalization of Heisenberg's uncertainty principle. In this scenario, state eigenvectors of the position operator are no longer physical states and the representation in momentum space or a representation in a quasiposition space must be used. In this work, we solve the Schroedinger equation with a Dirac δ -function potential in quasiposition space. We calculate the bound state energy and the coefficients of reflection and transmission for the scattering states. We show that leading corrections are of order of the minimal length ({ O}(√{β })) and the coefficients of reflection and transmission are no longer the same for the Dirac delta well and barrier as in ordinary quantum mechanics. Furthermore, assuming that the equivalence of the 1s state energy of the hydrogen atom and the bound state energy of the Dirac {{δ }}-function potential in the one-dimensional case is kept in a minimal-length scenario, we also find that the leading correction term for the ground state energy of the hydrogen atom is of the order of the minimal length and Δx_{\\min } ≤ 10^{-25} m.

  1. Anharmonic and Quantum Fluctuations in Molecular Crystals: A First-Principles Study of the Stability of Paracetamol

    NASA Astrophysics Data System (ADS)

    Rossi, Mariana; Gasparotto, Piero; Ceriotti, Michele

    2016-09-01

    Molecular crystals often exist in multiple competing polymorphs, showing significantly different physicochemical properties. Computational crystal structure prediction is key to interpret and guide the search for the most stable or useful form, a real challenge due to the combinatorial search space, and the complex interplay of subtle effects that work together to determine the relative stability of different structures. Here we take a comprehensive approach based on different flavors of thermodynamic integration in order to estimate all contributions to the free energies of these systems with density-functional theory, including the oft-neglected anharmonic contributions and nuclear quantum effects. We take the two main stable forms of paracetamol as a paradigmatic example. We find that anharmonic contributions, different descriptions of van der Waals interactions, and nuclear quantum effects all matter to quantitatively determine the stability of different phases. Our analysis highlights the many challenges inherent in the development of a quantitative and predictive framework to model molecular crystals. However, it also indicates which of the components of the free energy can benefit from a cancellation of errors that can redeem the predictive power of approximate models, and suggests simple steps that could be taken to improve the reliability of ab initio crystal structure prediction.

  2. No Quantum Realization of Extremal No-Signaling Boxes

    NASA Astrophysics Data System (ADS)

    Ramanathan, Ravishankar; Tuziemski, Jan; Horodecki, Michał; Horodecki, Paweł

    2016-07-01

    The study of quantum correlations is important for fundamental reasons as well as for quantum communication and information processing tasks. On the one hand, it is of tremendous interest to derive the correlations produced by measurements on separated composite quantum systems from within the set of all correlations obeying the no-signaling principle of relativity, by means of information-theoretic principles. On the other hand, an important ongoing research program concerns the formulation of device-independent cryptographic protocols based on quantum nonlocal correlations for the generation of secure keys, and the amplification and expansion of random bits against general no-signaling adversaries. In both these research programs, a fundamental question arises: Can any measurements on quantum states realize the correlations present in pure extremal no-signaling boxes? Here, we answer this question in full generality showing that no nontrivial (not local realistic) extremal boxes of general no-signaling theories can be realized in quantum theory. We then explore some important consequences of this fact.

  3. Aligning the Quantum Perspective of Learning to Instructional Design: Exploring the Seven Definitive Questions

    ERIC Educational Resources Information Center

    Janzen, Katherine J.; Perry, Beth; Edwards, Margaret

    2011-01-01

    This paper builds upon a foundational paper (under review) which explores the rudiments of the quantum perspective of learning. The quantum perspective of learning uses the principles of exchange theory or borrowed theory from the field of quantum holism pioneered by quantum physicist David Bohm (1971, 1973) to understand learning in a new way.…

  4. Noncommutative Common Cause Principles in algebraic quantum field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofer-Szabo, Gabor; Vecsernyes, Peter

    2013-04-15

    States in algebraic quantum field theory 'typically' establish correlation between spacelike separated events. Reichenbach's Common Cause Principle, generalized to the quantum field theoretical setting, offers an apt tool to causally account for these superluminal correlations. In the paper we motivate first why commutativity between the common cause and the correlating events should be abandoned in the definition of the common cause. Then we show that the Noncommutative Weak Common Cause Principle holds in algebraic quantum field theory with locally finite degrees of freedom. Namely, for any pair of projections A, B supported in spacelike separated regions V{sub A} and V{submore » B}, respectively, there is a local projection C not necessarily commuting with A and B such that C is supported within the union of the backward light cones of V{sub A} and V{sub B} and the set {l_brace}C, C{sup Up-Tack }{r_brace} screens off the correlation between A and B.« less

  5. The Arnol'd cat: Failure of the correspondence principle

    NASA Astrophysics Data System (ADS)

    Ford, Joseph; Mantica, Giorgio; Ristow, Gerald H.

    1991-07-01

    The classical Hamiltonian H = p2/2 m + ɛ( q2/2) Σδ[ s-( t/ T)] has an integrable mapping of the plane, [ qn+1 , pn+1 ]= [ qn+1 + pn, qn+2 pn], as its equations of motion. But then by introducing periodic boundary conditions via (mod 1) applied to both q and p variables, the equations of motion become the Arnol'd cat map, [ qn+1 , pn+1 ] = [ qn + pn, qn + 2 pn], (mod 1), revealing it to be one of the simplest fully chaotic systems which can be derived from a Hamiltonian and analyzed. Consequently, we here quantize the Arnol'd cat and examine its quantum motion for signs of chaos using algorithmic complexity as the litmus. Our analysis reveals that the quantum cat is not chaotic in the deep quantum domain nor does it become chaotic in the classical limit as required by the correspondence principle. We therefore conclude that the correspondence principle, as defined herein, fails for the quantum Arnol'd cat.

  6. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  7. Real quantum cybernetics

    NASA Astrophysics Data System (ADS)

    Grössing, Gerhard

    1987-05-01

    It is shown on the basis of quantum cybernetics that one can obtain the usual predictions of quantum theory without ever referring to complex numbered “quantum mechanical amplitudes”. Instead, a very simple formula for transition and certain conditional probabilities is developed that involves real numbers only, thus relating intuitively understandable and in principle directly observable physical quantities.

  8. Measurements in Quantum Mechanics and von NEUMANN's Model

    NASA Astrophysics Data System (ADS)

    Mello, Pier A.; Johansen, Lars M.

    2010-12-01

    Many textbooks on Quantum Mechanics are not very precise as to the meaning of making a measurement: as a consequence, they frequently make assertions which are not based on a dynamical description of the measurement process. A model proposed by von Neumann allows a dynamical description of measurement in Quantum Mechanics, including the measuring instrument in the formalism. In this article we apply von Neumann's model to illustrate the measurement of an observable by means of a measuring instrument and show how various results, which are sometimens postulated without a dynamical basis, actually emerge. We also investigate the more complex, intriguing and fundamental problem of two successive measurements in Quantum Mechanics, extending von Neumann's model to two measuring instruments. We present a description which allows obtaining, in a unified way, various results that have been given in the literature.

  9. Quantum theory as plausible reasoning applied to data obtained by robust experiments.

    PubMed

    De Raedt, H; Katsnelson, M I; Michielsen, K

    2016-05-28

    We review recent work that employs the framework of logical inference to establish a bridge between data gathered through experiments and their objective description in terms of human-made concepts. It is shown that logical inference applied to experiments for which the observed events are independent and for which the frequency distribution of these events is robust with respect to small changes of the conditions under which the experiments are carried out yields, without introducing any concept of quantum theory, the quantum theoretical description in terms of the Schrödinger or the Pauli equation, the Stern-Gerlach or Einstein-Podolsky-Rosen-Bohm experiments. The extraordinary descriptive power of quantum theory then follows from the fact that it is plausible reasoning, that is common sense, applied to reproducible and robust experimental data. © 2016 The Author(s).

  10. Classical electromagnetic radiation of the Dirac electron

    NASA Technical Reports Server (NTRS)

    Lanyi, G.

    1973-01-01

    A wave-function-dependent four-vector potential is added to the Dirac equation in order to achieve conservation of energy and momentum for a Dirac electron and its emitted electromagnetic field. The resultant equation contains solutions which describe transitions between different energy states of the electron. As a consequence it is possible to follow the space-time evolution of such a process. This evolution is shown in the case of the spontaneous emission of an electromagnetic field by an electron bound in a hydrogen-like atom. The intensity of the radiation and the spectral distribution are calculated for transitions between two eigenstates. The theory gives a self-consistent deterministic description of some simple radiation processes without using quantum electrodynamics or the correspondence principle.

  11. A New Type of Atom Interferometry for Testing Fundamental Physics

    NASA Astrophysics Data System (ADS)

    Lorek, Dennis; Lämmerzahl, Claus; Wicht, Andreas

    We present a new type of atom interferometer (AI) that provides a tool for ultra-high precision tests of fundamental physics. As an example we present how an AI based on highly charged hydrogen-like atoms is affected by gravitational waves (GW). A qualitative description of the quantum interferometric measurement principle is given, the modifications in the atomic Hamiltonian caused by the GW are presented, and the size of the resulting frequency shifts in hydrogen-like atoms is estimated. For a GW amplitude of h = 10-23 the frequency shift is of the order of 110μHz for an AI based on a 91-fold charged uranium ion. A frequency difference of this size can be resolved by current AIs in 1s.

  12. Non-Markovian quantum processes: Complete framework and efficient characterization

    NASA Astrophysics Data System (ADS)

    Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan

    2018-01-01

    Currently, there is no systematic way to describe a quantum process with memory solely in terms of experimentally accessible quantities. However, recent technological advances mean we have control over systems at scales where memory effects are non-negligible. The lack of such an operational description has hindered advances in understanding physical, chemical, and biological processes, where often unjustified theoretical assumptions are made to render a dynamical description tractable. This has led to theories plagued with unphysical results and no consensus on what a quantum Markov (memoryless) process is. Here, we develop a universal framework to characterize arbitrary non-Markovian quantum processes. We show how a multitime non-Markovian process can be reconstructed experimentally, and that it has a natural representation as a many-body quantum state, where temporal correlations are mapped to spatial ones. Moreover, this state is expected to have an efficient matrix-product-operator form in many cases. Our framework constitutes a systematic tool for the effective description of memory-bearing open-system evolutions.

  13. The dynamics of stock exchange based on the formalism of weak continuous quantum measurement

    NASA Astrophysics Data System (ADS)

    Melnyk, S.; Tuluzov, I.

    2010-07-01

    The problem of measurement in economic models and the possibility of their quantum-mechanical description are considered. It is revealed that the apparent paradox of such a description is associated with a priori requirement of conformity of the model to all the alternatives of free choice of the observer. The measurement of the state of a trader on a stock exchange is formally defined as his responses to the proposals of sale at a fixed price. It is shown that an analogue of Bell's inequalities for this measurement model is violated at the most general assumptions related to the strategy of the trader and requires a quantum-mechanical description of the dynamics of his condition. In the framework of the theory of weak continuous quantum measurements, the equation of stock price dynamics and the quantum-mechanical generalization of the F. Black and M. Scholes model for pricing options are obtained. The fundamental distinctions between the obtained model and the classical one are discussed.

  14. FAST TRACK COMMUNICATION Local randomness in Hardy's correlations: implications from the information causality principle

    NASA Astrophysics Data System (ADS)

    Rajjak Gazi, MD.; Rai, Ashutosh; Kunkri, Samir; Rahaman, Ramij

    2010-11-01

    Study of non-local correlations in terms of Hardy's argument has been quite popular in quantum mechanics. Hardy's non-locality argument depends on some kind of asymmetry, but a two-qubit maximally entangled state, being symmetric, does not exhibit this kind of non-locality. Here we ask the following question: can this feature be explained by some principle outside quantum mechanics? The no-signaling condition does not provide a solution. But, interestingly, the information causality principle (Pawlowski et al 2009 Nature 461 1101) offers an explanation. It shows that any generalized probability theory which gives completely random results for local dichotomic observable, cannot provide Hardy's non-local correlation if it is restricted by a necessary condition for respecting the information causality principle. In fact, the applied necessary condition imposes even more restrictions on the local randomness of measured observable. Still, there are some restrictions imposed by quantum mechanics that are not reproduced from the considered information causality condition.

  15. Heisenberg's observability principle

    NASA Astrophysics Data System (ADS)

    Wolff, Johanna

    2014-02-01

    Werner Heisenberg's 1925 paper 'Quantum-theoretical re-interpretation of kinematic and mechanical relations' marks the beginning of quantum mechanics. Heisenberg famously claims that the paper is based on the idea that the new quantum mechanics should be 'founded exclusively upon relationships between quantities which in principle are observable'. My paper is an attempt to understand this observability principle, and to see whether its employment is philosophically defensible. Against interpretations of 'observability' along empiricist or positivist lines I argue that such readings are philosophically unsatisfying. Moreover, a careful comparison of Heisenberg's reinterpretation of classical kinematics with Einstein's argument against absolute simultaneity reveals that the positivist reading does not fit with Heisenberg's strategy in the paper. Instead the appeal to observability should be understood as a specific criticism of the causal inefficacy of orbital electron motion in Bohr's atomic model. I conclude that the tacit philosophical principle behind Heisenberg's argument is not a positivistic connection between observability and meaning, but the idea that a theory should not contain causally idle wheels.

  16. Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states

    PubMed Central

    Rosi, G.; D'Amico, G.; Cacciapuoti, L.; Sorrentino, F.; Prevedelli, M.; Zych, M.; Brukner, Č.; Tino, G. M.

    2017-01-01

    The Einstein equivalence principle (EEP) has a central role in the understanding of gravity and space–time. In its weak form, or weak equivalence principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properties of the test body must be described by quantum theory has profound implications. Here we report on a novel WEP test for atoms: a Bragg atom interferometer in a gravity gradiometer configuration compares the free fall of rubidium atoms prepared in two hyperfine states and in their coherent superposition. The use of the superposition state allows testing genuine quantum aspects of EEP with no classical analogue, which have remained completely unexplored so far. In addition, we measure the Eötvös ratio of atoms in two hyperfine levels with relative uncertainty in the low 10−9, improving previous results by almost two orders of magnitude. PMID:28569742

  17. Experimental demonstration of information to energy conversion in a quantum system at the Landauer limit.

    PubMed

    Peterson, J P S; Sarthour, R S; Souza, A M; Oliveira, I S; Goold, J; Modi, K; Soares-Pinto, D O; Céleri, L C

    2016-04-01

    Landauer's principle sets fundamental thermodynamical constraints for classical and quantum information processing, thus affecting not only various branches of physics, but also of computer science and engineering. Despite its importance, this principle was only recently experimentally considered for classical systems. Here we employ a nuclear magnetic resonance set-up to experimentally address the information to energy conversion in a quantum system. Specifically, we consider a three nuclear spins [Formula: see text] (qubits) molecule-the system, the reservoir and the ancilla-to measure the heat dissipated during the implementation of a global system-reservoir unitary interaction that changes the information content of the system. By employing an interferometric technique, we were able to reconstruct the heat distribution associated with the unitary interaction. Then, through quantum state tomography, we measured the relative change in the entropy of the system. In this way, we were able to verify that an operation that changes the information content of the system must necessarily generate heat in the reservoir, exactly as predicted by Landauer's principle. The scheme presented here allows for the detailed study of irreversible entropy production in quantum information processors.

  18. Quantum chemical approaches in structure-based virtual screening and lead optimization

    NASA Astrophysics Data System (ADS)

    Cavasotto, Claudio N.; Adler, Natalia S.; Aucar, Maria G.

    2018-05-01

    Today computational chemistry is a consolidated tool in drug lead discovery endeavors. Due to methodological developments and to the enormous advance in computer hardware, methods based on quantum mechanics (QM) have gained great attention in the last 10 years, and calculations on biomacromolecules are becoming increasingly explored, aiming to provide better accuracy in the description of protein-ligand interactions and the prediction of binding affinities. In principle, the QM formulation includes all contributions to the energy, accounting for terms usually missing in molecular mechanics force-fields, such as electronic polarization effects, metal coordination, and covalent binding; moreover, QM methods are systematically improvable, and provide a greater degree of transferability. In this mini-review we present recent applications of explicit QM-based methods in small-molecule docking and scoring, and in the calculation of binding free-energy in protein-ligand systems. Although the routine use of QM-based approaches in an industrial drug lead discovery setting remains a formidable challenging task, it is likely they will increasingly become active players within the drug discovery pipeline.

  19. Minimizing irreversible losses in quantum systems by local counterdiabatic driving

    PubMed Central

    Sels, Dries; Polkovnikov, Anatoli

    2017-01-01

    Counterdiabatic driving protocols have been proposed [Demirplak M, Rice SA (2003) J Chem Phys A 107:9937–9945; Berry M (2009) J Phys A Math Theor 42:365303] as a means to make fast changes in the Hamiltonian without exciting transitions. Such driving in principle allows one to realize arbitrarily fast annealing protocols or implement fast dissipationless driving, circumventing standard adiabatic limitations requiring infinitesimally slow rates. These ideas were tested and used both experimentally and theoretically in small systems, but in larger chaotic systems, it is known that exact counterdiabatic protocols do not exist. In this work, we develop a simple variational approach allowing one to find the best possible counterdiabatic protocols given physical constraints, like locality. These protocols are easy to derive and implement both experimentally and numerically. We show that, using these approximate protocols, one can drastically suppress heating and increase fidelity of quantum annealing protocols in complex many-particle systems. In the fast limit, these protocols provide an effective dual description of adiabatic dynamics, where the coupling constant plays the role of time and the counterdiabatic term plays the role of the Hamiltonian. PMID:28461472

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filinov, A.V.; Golubnychiy, V.O.; Bonitz, M.

    Extending our previous work [A.V. Filinov et al., J. Phys. A 36, 5957 (2003)], we present a detailed discussion of accuracy and practical applications of finite-temperature pseudopotentials for two-component Coulomb systems. Different pseudopotentials are discussed: (i) the diagonal Kelbg potential, (ii) the off-diagonal Kelbg potential, (iii) the improved diagonal Kelbg potential, (iv) an effective potential obtained with the Feynman-Kleinert variational principle, and (v) the 'exact' quantum pair potential derived from the two-particle density matrix. For the improved diagonal Kelbg potential, a simple temperature-dependent fit is derived which accurately reproduces the 'exact' pair potential in the whole temperature range. The derivedmore » pseudopotentials are then used in path integral Monte Carlo and molecular-dynamics (MD) simulations to obtain thermodynamical properties of strongly coupled hydrogen. It is demonstrated that classical MD simulations with spin-dependent interaction potentials for the electrons allow for an accurate description of the internal energy of hydrogen in the difficult regime of partial ionization down to the temperatures of about 60 000 K. Finally, we point out an interesting relationship between the quantum potentials and the effective potentials used in density-functional theory.« less

  1. The quantum limit for gravitational-wave detectors and methods of circumventing it

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Caves, C. M.; Sandberg, V. D.; Zimmermann, M.; Drever, R. W. P.

    1979-01-01

    The Heisenberg uncertainty principle prevents the monitoring of the complex amplitude of a mechanical oscillator more accurately than a certain limit value. This 'quantum limit' is a serious obstacle to the achievement of a 10 to the -21st gravitational-wave detection sensitivity. This paper examines the principles of the back-action evasion technique and finds that this technique may be able to overcome the problem of the quantum limit. Back-action evasion does not solve, however, other problems of detection, such as weak coupling, large amplifier noise, and large Nyquist noise.

  2. Physics Without Physics. The Power of Information-theoretical Principles

    NASA Astrophysics Data System (ADS)

    D'Ariano, Giacomo Mauro

    2017-01-01

    David Finkelstein was very fond of the new information-theoretic paradigm of physics advocated by John Archibald Wheeler and Richard Feynman. Only recently, however, the paradigm has concretely shown its full power, with the derivation of quantum theory (Chiribella et al., Phys. Rev. A 84:012311, 2011; D'Ariano et al., 2017) and of free quantum field theory (D'Ariano and Perinotti, Phys. Rev. A 90:062106, 2014; Bisio et al., Phys. Rev. A 88:032301, 2013; Bisio et al., Ann. Phys. 354:244, 2015; Bisio et al., Ann. Phys. 368:177, 2016) from informational principles. The paradigm has opened for the first time the possibility of avoiding physical primitives in the axioms of the physical theory, allowing a re-foundation of the whole physics over logically solid grounds. In addition to such methodological value, the new information-theoretic derivation of quantum field theory is particularly interesting for establishing a theoretical framework for quantum gravity, with the idea of obtaining gravity itself as emergent from the quantum information processing, as also suggested by the role played by information in the holographic principle (Susskind, J. Math. Phys. 36:6377, 1995; Bousso, Rev. Mod. Phys. 74:825, 2002). In this paper I review how free quantum field theory is derived without using mechanical primitives, including space-time, special relativity, Hamiltonians, and quantization rules. The theory is simply provided by the simplest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the three following simple principles: homogeneity, locality, and isotropy. The inherent discrete nature of the informational derivation leads to an extension of quantum field theory in terms of a quantum cellular automata and quantum walks. A simple heuristic argument sets the scale to the Planck one, and the currently observed regime where discreteness is not visible is the so-called "relativistic regime" of small wavevectors, which holds for all energies ever tested (and even much larger), where the usual free quantum field theory is perfectly recovered. In the present quantum discrete theory Einstein relativity principle can be restated without using space-time in terms of invariance of the eigenvalue equation of the automaton/walk under change of representations. Distortions of the Poincaré group emerge at the Planck scale, whereas special relativity is perfectly recovered in the relativistic regime. Discreteness, on the other hand, has some plus compared to the continuum theory: 1) it contains it as a special regime; 2) it leads to some additional features with GR flavor: the existence of an upper bound for the particle mass (with physical interpretation as the Planck mass), and a global De Sitter invariance; 3) it provides its own physical standards for space, time, and mass within a purely mathematical adimensional context. The paper ends with the future perspectives of this project, and with an Appendix containing biographic notes about my friendship with David Finkelstein, to whom this paper is dedicated.

  3. No-Hypersignaling Principle

    NASA Astrophysics Data System (ADS)

    Dall'Arno, Michele; Brandsen, Sarah; Tosini, Alessandro; Buscemi, Francesco; Vedral, Vlatko

    2017-07-01

    A paramount topic in quantum foundations, rooted in the study of the Einstein-Podolsky-Rosen (EPR) paradox and Bell inequalities, is that of characterizing quantum theory in terms of the spacelike correlations it allows. Here, we show that to focus only on spacelike correlations is not enough: we explicitly construct a toy model theory that, while not contradicting classical and quantum theories at the level of spacelike correlations, still displays an anomalous behavior in its timelike correlations. We call this anomaly, quantified in terms of a specific communication game, the "hypersignaling" phenomena. We hence conclude that the "principle of quantumness," if it exists, cannot be found in spacelike correlations alone: nontrivial constraints need to be imposed also on timelike correlations, in order to exclude hypersignaling theories.

  4. No-Hypersignaling Principle.

    PubMed

    Dall'Arno, Michele; Brandsen, Sarah; Tosini, Alessandro; Buscemi, Francesco; Vedral, Vlatko

    2017-07-14

    A paramount topic in quantum foundations, rooted in the study of the Einstein-Podolsky-Rosen (EPR) paradox and Bell inequalities, is that of characterizing quantum theory in terms of the spacelike correlations it allows. Here, we show that to focus only on spacelike correlations is not enough: we explicitly construct a toy model theory that, while not contradicting classical and quantum theories at the level of spacelike correlations, still displays an anomalous behavior in its timelike correlations. We call this anomaly, quantified in terms of a specific communication game, the "hypersignaling" phenomena. We hence conclude that the "principle of quantumness," if it exists, cannot be found in spacelike correlations alone: nontrivial constraints need to be imposed also on timelike correlations, in order to exclude hypersignaling theories.

  5. Partial Measurements and the Realization of Quantum-Mechanical Counterfactuals

    NASA Astrophysics Data System (ADS)

    Paraoanu, G. S.

    2011-07-01

    We propose partial measurements as a conceptual tool to understand how to operate with counterfactual claims in quantum physics. Indeed, unlike standard von Neumann measurements, partial measurements can be reversed probabilistically. We first analyze the consequences of this rather unusual feature for the principle of superposition, for the complementarity principle, and for the issue of hidden variables. Then we move on to exploring non-local contexts, by reformulating the EPR paradox, the quantum teleportation experiment, and the entanglement-swapping protocol for the situation in which one uses partial measurements followed by their stochastic reversal. This leads to a number of counter-intuitive results, which are shown to be resolved if we give up the idea of attributing reality to the wavefunction of a single quantum system.

  6. Quantum microbiology.

    PubMed

    Trevors, J T; Masson, L

    2011-01-01

    During his famous 1943 lecture series at Trinity College Dublin, the reknown physicist Erwin Schrodinger discussed the failure and challenges of interpreting life by classical physics alone and that a new approach, rooted in Quantum principles, must be involved. Quantum events are simply a level of organization below the molecular level. This includes the atomic and subatomic makeup of matter in microbial metabolism and structures, as well as the organic, genetic information code of DNA and RNA. Quantum events at this time do not elucidate, for example, how specific genetic instructions were first encoded in an organic genetic code in microbial cells capable of growth and division, and its subsequent evolution over 3.6 to 4 billion years. However, due to recent technological advances, biologists and physicists are starting to demonstrate linkages between various quantum principles like quantum tunneling, entanglement and coherence in biological processes illustrating that nature has exerted some level quantum control to optimize various processes in living organisms. In this article we explore the role of quantum events in microbial processes and endeavor to show that after nearly 67 years, Schrödinger was prophetic and visionary in his view of quantum theory and its connection with some of the fundamental mechanisms of life.

  7. "Electronium": A Quantum Atomic Teaching Model.

    ERIC Educational Resources Information Center

    Budde, Marion; Niedderer, Hans; Scott, Philip; Leach, John

    2002-01-01

    Outlines an alternative atomic model to the probability model, the descriptive quantum atomic model Electronium. Discusses the way in which it is intended to support students in learning quantum-mechanical concepts. (Author/MM)

  8. Equivalence principle for quantum systems: dephasing and phase shift of free-falling particles

    NASA Astrophysics Data System (ADS)

    Anastopoulos, C.; Hu, B. L.

    2018-02-01

    We ask the question of how the (weak) equivalence principle established in classical gravitational physics should be reformulated and interpreted for massive quantum objects that may also have internal degrees of freedom (dof). This inquiry is necessary because even elementary concepts like a classical trajectory are not well defined in quantum physics—trajectories originating from quantum histories become viable entities only under stringent decoherence conditions. From this investigation we posit two logically and operationally distinct statements of the equivalence principle for quantum systems. Version A: the probability distribution of position for a free-falling particle is the same as the probability distribution of a free particle, modulo a mass-independent shift of its mean. Version B: any two particles with the same velocity wave-function behave identically in free fall, irrespective of their masses. Both statements apply to all quantum states, including those without a classical correspondence, and also for composite particles with quantum internal dof. We also investigate the consequences of the interaction between internal and external dof induced by free fall. For a class of initial states, we find dephasing occurs for the translational dof, namely, the suppression of the off-diagonal terms of the density matrix, in the position basis. We also find a gravitational phase shift in the reduced density matrix of the internal dof that does not depend on the particle’s mass. For classical states, the phase shift has a natural classical interpretation in terms of gravitational red-shift and special relativistic time-dilation.

  9. The physics of quantum materials

    NASA Astrophysics Data System (ADS)

    Keimer, B.; Moore, J. E.

    2017-11-01

    The physical description of all materials is rooted in quantum mechanics, which describes how atoms bond and electrons interact at a fundamental level. Although these quantum effects can in many cases be approximated by a classical description at the macroscopic level, in recent years there has been growing interest in material systems where quantum effects remain manifest over a wider range of energy and length scales. Such quantum materials include superconductors, graphene, topological insulators, Weyl semimetals, quantum spin liquids, and spin ices. Many of them derive their properties from reduced dimensionality, in particular from confinement of electrons to two-dimensional sheets. Moreover, they tend to be materials in which electrons cannot be considered as independent particles but interact strongly and give rise to collective excitations known as quasiparticles. In all cases, however, quantum-mechanical effects fundamentally alter properties of the material. This Review surveys the electronic properties of quantum materials through the prism of the electron wavefunction, and examines how its entanglement and topology give rise to a rich variety of quantum states and phases; these are less classically describable than conventional ordered states also driven by quantum mechanics, such as ferromagnetism.

  10. Nonlinear quantum Langevin equations for bosonic modes in solid-state systems

    NASA Astrophysics Data System (ADS)

    Manninen, Juuso; Agasti, Souvik; Massel, Francesco

    2017-12-01

    Based on the experimental evidence that impurities contribute to the dissipation properties of solid-state open quantum systems, we provide here a description in terms of nonlinear quantum Langevin equations of the role played by two-level systems in the dynamics of a bosonic degree of freedom. Our starting point is represented by the description of the system-environment coupling in terms of coupling to two separate reservoirs, modeling the interaction with external bosonic modes and two-level systems, respectively. Furthermore, we show how this model represents a specific example of a class of open quantum systems that can be described by nonlinear quantum Langevin equations. Our analysis offers a potential explanation of the parametric effects recently observed in circuit-QED cavity optomechanics experiments.

  11. Effective equations for the quantum pendulum from momentous quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Hector H.; Chacon-Acosta, Guillermo; Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120

    In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

  12. Description of quantum states using in free space optic communication

    NASA Astrophysics Data System (ADS)

    Kučera, Petr

    2017-11-01

    In the article we concentrate our attention on the quantum description of states which are prepared by light sources. The main goal of the article is the determination of density matrix of background radiation source. It is shown that these matrix elements satisfy Geometric distribution in the number state representation.

  13. Physics in one dimension: theoretical concepts for quantum many-body systems.

    PubMed

    Schönhammer, K

    2013-01-09

    Various sophisticated approximation methods exist for the description of quantum many-body systems. It was realized early on that the theoretical description can simplify considerably in one-dimensional systems and various exact solutions exist. The focus in this introductory paper is on fermionic systems and the emergence of the Luttinger liquid concept.

  14. Applicability of DFT model in reactive distillation

    NASA Astrophysics Data System (ADS)

    Staszak, Maciej

    2017-11-01

    The density functional theory (DFT) applicability to reactive distillation is discussed. Brief modeling techniques description of distillation and rectification with chemical reaction is provided as a background for quantum method usage description. The equilibrium and nonequilibrium distillation models are described for that purpose. The DFT quantum theory is concisely described. The usage of DFT in the modeling of reactive distillation is described in two parts. One of the fundamental and very important component of distillation modeling is vapor-liquid equilibrium description for which the DFT quantum approach can be used. The representative DFT models, namely COSMO-RS (Conductor like Screening Model for Real Solvents), COSMOSPACE (COSMO Surface Pair Activity Coefficient) and COSMO-SAC (SAC - segment activity coefficient) approaches are described. The second part treats the way in which the chemical reaction is described by means of quantum DFT method. The intrinsic reaction coordinate (IRC) method is described which is used to find minimum energy path of substrates to products transition. The DFT is one of the methods which can be used for that purpose. The literature data examples are provided which proves that IRC method is applicable for chemical reaction kinetics description.

  15. Quantum clocks and the foundations of relativity

    NASA Astrophysics Data System (ADS)

    Davies, Paul C. W.

    2004-05-01

    The conceptual foundations of the special and general theories of relativity differ greatly from those of quantum mechanics. Yet in all cases investigated so far, quantum mechanics seems to be consistent with the principles of relativity theory, when interpreted carefully. In this paper I report on a new investigation of this consistency using a model of a quantum clock to measure time intervals; a topic central to all metric theories of gravitation, and to cosmology. Results are presented for two important scenarios related to the foundations of relativity theory: the speed of light as a limiting velocity and the weak equivalence principle (WEP). These topics are investigated in the light of claims of superluminal propagation in quantum tunnelling and possible violations of WEP. Special attention is given to the role of highly non-classical states. I find that by using a definition of time intervals based on a precise model of a quantum clock, ambiguities are avoided and, at least in the scenarios investigated, there is consistency with the theory of relativity, albeit with some subtleties.

  16. Investigating and improving student understanding of quantum mechanics in the context of single photon interference

    NASA Astrophysics Data System (ADS)

    Marshman, Emily; Singh, Chandralekha

    2017-06-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the abstract quantum theory and concrete laboratory settings and have the potential to help students develop a solid grasp of the foundational issues in quantum mechanics. Here we describe students' conceptual difficulties with these topics in the context of Mach-Zehnder interferometer experiments with single photons and how the difficulties found in written surveys and individual interviews were used as a guide in the development of a Quantum Interactive Learning Tutorial (QuILT). The QuILT uses an inquiry-based approach to learning and takes into account the conceptual difficulties found via research to help upper-level undergraduate and graduate students learn about foundational quantum mechanics concepts using the concrete quantum optics context. It strives to help students learn the basics of quantum mechanics in the context of single photon experiment, develop the ability to apply fundamental quantum principles to experimental situations in quantum optics, and explore the differences between classical and quantum ideas in a concrete context. We discuss the findings from in-class evaluations suggesting that the QuILT was effective in helping students learn these abstract concepts.

  17. Tampering detection system using quantum-mechanical systems

    DOEpatents

    Humble, Travis S [Knoxville, TN; Bennink, Ryan S [Knoxville, TN; Grice, Warren P [Oak Ridge, TN

    2011-12-13

    The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

  18. Fault-tolerant, high-level quantum circuits: form, compilation and description

    NASA Astrophysics Data System (ADS)

    Paler, Alexandru; Polian, Ilia; Nemoto, Kae; Devitt, Simon J.

    2017-06-01

    Fault-tolerant quantum error correction is a necessity for any quantum architecture destined to tackle interesting, large-scale problems. Its theoretical formalism has been well founded for nearly two decades. However, we still do not have an appropriate compiler to produce a fault-tolerant, error-corrected description from a higher-level quantum circuit for state-of the-art hardware models. There are many technical hurdles, including dynamic circuit constructions that occur when constructing fault-tolerant circuits with commonly used error correcting codes. We introduce a package that converts high-level quantum circuits consisting of commonly used gates into a form employing all decompositions and ancillary protocols needed for fault-tolerant error correction. We call this form the (I)initialisation, (C)NOT, (M)measurement form (ICM) and consists of an initialisation layer of qubits into one of four distinct states, a massive, deterministic array of CNOT operations and a series of time-ordered X- or Z-basis measurements. The form allows a more flexible approach towards circuit optimisation. At the same time, the package outputs a standard circuit or a canonical geometric description which is a necessity for operating current state-of-the-art hardware architectures using topological quantum codes.

  19. Interactive simulations for quantum key distribution

    NASA Astrophysics Data System (ADS)

    Kohnle, Antje; Rizzoli, Aluna

    2017-05-01

    Secure communication protocols are becoming increasingly important, e.g. for internet-based communication. Quantum key distribution (QKD) allows two parties, commonly called Alice and Bob, to generate a secret sequence of 0s and 1s called a key that is only known to themselves. Classically, Alice and Bob could never be certain that their communication was not compromised by a malicious eavesdropper. Quantum mechanics however makes secure communication possible. The fundamental principle of quantum mechanics that taking a measurement perturbs the system (unless the measurement is compatible with the quantum state) also applies to an eavesdropper. Using appropriate protocols to create the key, Alice and Bob can detect the presence of an eavesdropper by errors in their measurements. As part of the QuVis Quantum Mechanics Visualisation Project, we have developed a suite of four interactive simulations that demonstrate the basic principles of three different QKD protocols. The simulations use either polarised photons or spin 1/2 particles as physical realisations. The simulations and accompanying activities are freely available for use online or download, and run on a wide range of devices including tablets and PCs. Evaluation with students over three years was used to refine the simulations and activities. Preliminary studies show that the refined simulations and activities help students learn the basic principles of QKD at both the introductory and advanced undergraduate levels.

  20. Photoelectron Imaging as a Quantum Chemistry Visualization Tool

    ERIC Educational Resources Information Center

    Grumbling, Emily R.; Pichugin, Kostyantyn; Mabbs, Richard; Sanov, Andrei

    2011-01-01

    An overview and simple example of photoelectron imaging is presented, highlighting its efficacy as a pedagogical tool for visualizing quantum phenomena. Specifically, photoelectron imaging of H[superscript -] (the simplest negative ion) is used to demonstrate several quantum mechanical principles. This example could be incorporated into an…

  1. Small Molecules-Big Data.

    PubMed

    Császár, Attila G; Furtenbacher, Tibor; Árendás, Péter

    2016-11-17

    Quantum mechanics builds large-scale graphs (networks): the vertices are the discrete energy levels the quantum system possesses, and the edges are the (quantum-mechanically allowed) transitions. Parts of the complete quantum mechanical networks can be probed experimentally via high-resolution, energy-resolved spectroscopic techniques. The complete rovibronic line list information for a given molecule can only be obtained through sophisticated quantum-chemical computations. Experiments as well as computations yield what we call spectroscopic networks (SN). First-principles SNs of even small, three to five atomic molecules can be huge, qualifying for the big data description. Besides helping to interpret high-resolution spectra, the network-theoretical view offers several ideas for improving the accuracy and robustness of the increasingly important information systems containing line-by-line spectroscopic data. For example, the smallest number of measurements necessary to perform to obtain the complete list of energy levels is given by the minimum-weight spanning tree of the SN and network clustering studies may call attention to "weakest links" of a spectroscopic database. A present-day application of spectroscopic networks is within the MARVEL (Measured Active Rotational-Vibrational Energy Levels) approach, whereby the transitions information on a measured SN is turned into experimental energy levels via a weighted linear least-squares refinement. MARVEL has been used successfully for 15 molecules and allowed to validate most of the transitions measured and come up with energy levels with well-defined and realistic uncertainties. Accurate knowledge of the energy levels with computed transition intensities allows the realistic prediction of spectra under many different circumstances, e.g., for widely different temperatures. Detailed knowledge of the energy level structure of a molecule coming from a MARVEL analysis is important for a considerable number of modeling efforts in chemistry, physics, and engineering.

  2. The 4th Thermodynamic Principle?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montero Garcia, Jose de la Luz; Novoa Blanco, Jesus Francisco

    2007-04-28

    It should be emphasized that the 4th Principle above formulated is a thermodynamic principle and, at the same time, is mechanical-quantum and relativist, as it should inevitably be and its absence has been one of main the theoretical limitations of the physical theory until today.We show that the theoretical discovery of Dimensional Primitive Octet of Matter, the 4th Thermodynamic Principle, the Quantum Hexet of Matter, the Global Hexagonal Subsystem of Fundamental Constants of Energy and the Measurement or Connected Global Scale or Universal Existential Interval of the Matter is that it is possible to be arrived at a global formulationmore » of the four 'forces' or fundamental interactions of nature. The Einstein's golden dream is possible.« less

  3. Principles of Empiricism and the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Jaroszkiewicz, George

    The interpretation of quantum mechanics (QM) is discussed in terms of the principles and logic of empiricism. First, we list a set of issues that should be settled before any consistent interpretation is attempted. This includes questions such as whether we can use an exophysical perspective or an endophysical perspective, and whether a completely reductionist approach makes sense or are we forced to incorporate emergent laws of physics. We then list the scientific pr nciples that should be strictly adhered to in any debate on QM. We follow this with a list of cautions and warnings about misleading concepts that should be avoided, such as ignoring contextuality and the meaning of scientific truth values. These principles and warning are then used to decide on the issues we first identified, giving us a basis for an interpretation of QM from the perspective of observers and quantum signal states of apparatus, rather than in terms of qu ntum states of systems under observation. Finally, we review a proposed mathematical formalism that encodes this interpretation in terms of quantum registers.

  4. Particles, Waves, and the Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Christoudouleas, N. D.

    1975-01-01

    Presents an explanation, without mathematical equations, of the basic principles of quantum mechanics. Includes wave-particle duality, the probability character of the wavefunction, and the uncertainty relations. (MLH)

  5. Gaussian-based techniques for quantum propagation from the time-dependent variational principle: Formulation in terms of trajectories of coupled classical and quantum variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalashilin, Dmitrii V.; Burghardt, Irene

    2008-08-28

    In this article, two coherent-state based methods of quantum propagation, namely, coupled coherent states (CCS) and Gaussian-based multiconfiguration time-dependent Hartree (G-MCTDH), are put on the same formal footing, using a derivation from a variational principle in Lagrangian form. By this approach, oscillations of the classical-like Gaussian parameters and oscillations of the quantum amplitudes are formally treated in an identical fashion. We also suggest a new approach denoted here as coupled coherent states trajectories (CCST), which completes the family of Gaussian-based methods. Using the same formalism for all related techniques allows their systematization and a straightforward comparison of their mathematical structuremore » and cost.« less

  6. Beyond the Quantum

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theo M.; Mehmani, Bahar; Špička, Václav; Aghdami, Maryam J.; Khrennikov, Andrei Yu

    2007-09-01

    pt. A. Introductions. The mathematical basis for deterministic quantum mechanics / G.'t Hooft. What did we learn from quantum gravity? / A. Ashtekar. Bose-Einstein condensates and EPR quantum non-locality / F. Laloe. The quantum measurement process: lessons from an exactly solvable model / A.E. Allahverdyan, R. Balian and Th. M. Nieuwenhuizen -- pt. B. Quantum mechanics and quantum information. POVMs: a small but important step beyond standard quantum mechanics / W. M. de Muynck. State reduction by measurements with a null result / G. Nienhuis. Solving open questions in the Bose-Einstein condensation of an ideal gas via a hybrid mixture of laser and statistical physics / M. Kim, A. Svidzinsky and M.O. Scully. Twin-Photon light scattering and causality / G. Puentes, A. Aiello and J. P. Woerdman. Simultaneous measurement of non-commuting observables / G. Aquino and B. Mehmani. Quantum decoherence and gravitational waves / M.T. Jaekel ... [et al.]. Role of various entropies in the black hole information loss problem / Th. M. Nieuwenhuizen and I.V. Volovich. Quantum and super-quantum correlations / G.S. Jaeger -- pt. C. Long distance correlations and bell inequalities. Understanding long-distance quantum correlations / L. Marchildon. Connection of probability models to EPR experiments: probability spaces and Bell's theorem / K. Hess and W. Philipp. Fair sampling vs no-signalling principle in EPR experiments / G. Adenier and A. Yu. Khrennikov -- pt. D. Mathematical foundations. Where the mathematical structure of quantum mechanics comes from / G.M. D'Ariano. Phase space description of quantum mechanics and non-commutative geometry: Wigner-Moyal and Bohm in a wider context / B.J. Hiley. Quantum mechanics as simple algorithm for approximation of classical integrals / A. Yu. Khrennikov. Noncommutative quantum mechanics viewed from Feynman Formalism / J. Lages ... [et al.]. Beyond the quantum in Snyder space / J.F.S. van Huele and M. K. Transtrum -- pt. E. Stochastic electrodynamics. Some quantum experiments from the point of view of Stochastic electrodynamics / V. Spicka ... [et al.]. On the ergodic behaviour of atomic systems under the action of the zero-point radiation field / L. De La Peña and A. M. Cetto. Inertia and the vacuum-view on the emergence of the inertia reaction force / A. Rueda and H. Sunahata -- pt. F. Models for the electron. Rotating Hopf-Kinks: oscillators in the sense of de Broglie / U. Enz. Kerr-Newman particles: symmetries and other properties / H.I. Arcos and J.G. Pereira. Kerr geometry beyond the quantum theory / Th. M. Nieuwenhuizen -- pt. G. Philosophical considerations. Probability in non-collapse interpretations of a quantum mechanics / D. Dieks. The Schrödinger-Park paradox about the concept of "State" in quantum statistical mechanics and quantum information theory is still open: one more reason to go beyond? / G.P. Beretta. The conjecture that local realism is possible / E. Santos -- pt. H. The round table. Round table discussion / A.M. Cetto ... [et al.].

  7. Quantum memories and Landauer's principle

    NASA Astrophysics Data System (ADS)

    Alicki, Robert

    2011-10-01

    Two types of arguments concerning (im)possibility of constructing a scalable, exponentially stable quantum memory equipped with Hamiltonian controls are discussed. The first type concerns ergodic properties of open Kitaev models which are considered as promising candidates for such memories. It is shown that, although the 4D Kitaev model provides stable qubit observables, the Hamiltonian control is not possible. The thermodynamical approach leads to the new proposal of the revised version of Landauer's principle and suggests that the existence of quantum memory implies the existence of the perpetuum mobile of the second kind. Finally, a discussion of the stability property of information and its implications is presented.

  8. Experiences from Participants in Large-Scale Group Practice of the Maharishi Transcendental Meditation and TM-Sidhi Programs and Parallel Principles of Quantum Theory, Astrophysics, Quantum Cosmology, and String Theory: Interdisciplinary Qualitative Correspondences

    NASA Astrophysics Data System (ADS)

    Svenson, Eric Johan

    Participants on the Invincible America Assembly in Fairfield, Iowa, and neighboring Maharishi Vedic City, Iowa, practicing Maharishi Transcendental Meditation(TM) (TM) and the TM-Sidhi(TM) programs in large groups, submitted written experiences that they had had during, and in some cases shortly after, their daily practice of the TM and TM-Sidhi programs. Participants were instructed to include in their written experiences only what they observed and to leave out interpretation and analysis. These experiences were then read by the author and compared with principles and phenomena of modern physics, particularly with quantum theory, astrophysics, quantum cosmology, and string theory as well as defining characteristics of higher states of consciousness as described by Maharishi Vedic Science. In all cases, particular principles or phenomena of physics and qualities of higher states of consciousness appeared qualitatively quite similar to the content of the given experience. These experiences are presented in an Appendix, in which the corresponding principles and phenomena of physics are also presented. These physics "commentaries" on the experiences were written largely in layman's terms, without equations, and, in nearly every case, with clear reference to the corresponding sections of the experiences to which a given principle appears to relate. An abundance of similarities were apparent between the subjective experiences during meditation and principles of modern physics. A theoretic framework for understanding these rich similarities may begin with Maharishi's theory of higher states of consciousness provided herein. We conclude that the consistency and richness of detail found in these abundant similarities warrants the further pursuit and development of such a framework.

  9. Correlation complementarity yields bell monogamy relations.

    PubMed

    Kurzyński, P; Paterek, T; Ramanathan, R; Laskowski, W; Kaszlikowski, D

    2011-05-06

    We present a method to derive Bell monogamy relations by connecting the complementarity principle with quantum nonlocality. The resulting monogamy relations are stronger than those obtained from the no-signaling principle alone. In many cases, they yield tight quantum bounds on the amount of violation of single and multiple qubit correlation Bell inequalities. In contrast with the two-qubit case, a rich structure of possible violation patterns is shown to exist in the multipartite scenario.

  10. The quantum universe: philosophical foundations and oriental medicine.

    PubMed

    Kafatos, Menas C; Yang, Keun-Hang

    2016-12-01

    The existence of universal principles in both science and medicine implies that one can explore their common applicability. Here we explore what we have learned from quantum mechanics, phenomena such as entanglement and nonlocality, the role of participation of the observer, and how these may apply to oriental medicine. The universal principles of integrated polarity, recursion, and creative interactivity apply to all levels of existence and all human activities, including healing and medicine. This review examines the possibility that what we have learned from quantum mechanics may provide clues to better understand the operational principles of oriental medicine in an integrated way. Common to both is the assertion that Consciousness is at the foundation of the universe and the inner core of all human beings. This view goes beyond both science and medicine and has strong philosophical foundations in Western philosophy as well as monistic systems of the East.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bialas, A.; Czyz, W.; Zalewski, K.

    The relation between Renyi entropies and moments of the Wigner function, representing the quantum mechanical description of the M-particle semi-inclusive distribution at freeze-out, is investigated. It is shown that in the limit of infinite volume of the system, the classical and quantum descriptions are equivalent. Finite volume corrections are derived and shown to be small for systems encountered in relativistic heavy ion collisions.

  12. QUANTUM COMPUTING: Quantum Entangled Bits Step Closer to IT.

    PubMed

    Zeilinger, A

    2000-07-21

    In contrast to today's computers, quantum computers and information technologies may in future be able to store and transmit information not only in the state "0" or "1," but also in superpositions of the two; information will then be stored and transmitted in entangled quantum states. Zeilinger discusses recent advances toward using this principle for quantum cryptography and highlights studies into the entanglement (or controlled superposition) of several photons, atoms, or ions.

  13. Quantum theory as the most robust description of reproducible experiments

    NASA Astrophysics Data System (ADS)

    De Raedt, Hans; Katsnelson, Mikhail I.; Michielsen, Kristel

    2014-08-01

    It is shown that the basic equations of quantum theory can be obtained from a straightforward application of logical inference to experiments for which there is uncertainty about individual events and for which the frequencies of the observed events are robust with respect to small changes in the conditions under which the experiments are carried out. There is no quantum world. There is only an abstract physical description. It is wrong to think that the task of physics is to find out how nature is. Physics concerns what we can say about nature [45]. Physics is to be regarded not so much as the study of something a priori given, but rather as the development of methods of ordering and surveying human experience. In this respect our task must be to account for such experience in a manner independent of individual subjective judgment and therefore objective in the sense that it can be unambiguously communicated in ordinary human language [46]. The physical content of quantum mechanics is exhausted by its power to formulate statistical laws governing observations under conditions specified in plain language [46]. The first two sentences of the first quote may be read as a suggestion to dispose of, in Mermin's words [47], the "bad habit" to take mathematical abstractions as the reality of the events (in the everyday sense of the word) that we experience through our senses. Although widely circulated, these sentences are reported by Petersen [45] and there is doubt that Bohr actually used this wording [48]. The last two sentences of the first quote and the second quote suggest that we should try to describe human experiences (confined to the realm of scientific inquiry) in a manner and language which is unambiguous and independent of the individual subjective judgment. Of course, the latter should not be construed to imply that the observed phenomena are independent of the choices made by the individual(s) in performing the scientific experiment [49].The third quote suggests that quantum theory is a powerful language to describe a certain class of statistical experiments but remains vague about the properties of the class. Similar views were expressed by other fathers of quantum mechanics, e.g., Max Born and Wolfgang Pauli [50]. They can be summarized as "Quantum theory describes our knowledge of the atomic phenomena rather than the atomic phenomena themselves". Our aim is, in a sense, to replace the philosophical components of these statements by well-defined mathematical concepts and to carefully study their relevance for physical phenomena. Specifically, by applying the general formalism of logical inference to a well-defined class of statistical experiments, the present paper shows that quantum theory is indeed the kind of language envisaged by Bohr.Theories such as Newtonian mechanics, Maxwell's electrodynamics, and Einstein's (general) relativity are deductive in character. Starting from a few axioms, abstracted from experimental observations and additional assumptions about the irrelevance of a large number of factors for the description of the phenomena of interest, deductive reasoning is used to prove or disprove unambiguous statements, propositions, about the mathematical objects which appear in the theory.The method of deductive reasoning conforms to the Boolean algebra of propositions. The deductive, reductionist methodology has the appealing feature that one can be sure that the propositions are either right or wrong, and disregarding the possibility that some of the premises on which the deduction is built may not apply, there is no doubt that the conclusions are correct. Clearly, these theories successfully describe a wide range of physical phenomena in a manner and language which is unambiguous and independent of the individual.At the same time, the construction of a physical theory, and a scientific theory in general, from "first principles" is, for sure, not something self-evident, and not even safe. Our basic knowledge always starts from the middle, that is, from the world of macroscopic objects. According to Bohr, the quantum theoretical description crucially depends on the existence of macroscopic objects which can be used as measuring devices. For an extensive analysis of the quantum measurement process from a dynamical point of view see Ref. [51]. Most importantly, the description of the macroscopic level is robust, that is, essentially independent of the underlying "more fundamental" picture [2]. As will be seen later, formalizing the notion of "robustness" is key to derive the basic equations of quantum theory from the general framework of logical inference.Key assumptions of the deductive approach are that the mathematical description is a complete description of the experiment under consideration and that there is no uncertainty about the conditions under which the experiment is carried out. If the theory does not fully account for all the relevant aspects of the phenomenon that we wish to describe, the general rules by which we deduce whether a proposition is true or false can no longer be used. However, in these circumstances, we can still resort to logical inference [37-41] to find useful answers to unambiguous questions. Of course, in general it will no longer be possible to say whether a proposition is true or false, hence there will always remain a residue of doubt. However, as will be shown, the description obtained through logical inference may also be unambiguous and independent of the individual.In the present paper, we demonstrate that the basic equations of quantum theory directly follow from logical inference applied to experiments in which there is uncertainty about individual events, the stringent condition that certain properties of the collection of events are reproducible, meaning that they are robust with respect to small changes in the conditions under which the experiments are carried out.

  14. Experimental investigation of the no-signalling principle in parity-time symmetric theory using an open quantum system

    NASA Astrophysics Data System (ADS)

    Tang, Jian-Shun; Wang, Yi-Tao; Yu, Shang; He, De-Yong; Xu, Jin-Shi; Liu, Bi-Heng; Chen, Geng; Sun, Yong-Nan; Sun, Kai; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-10-01

    The experimental progress achieved in parity-time () symmetry in classical optics is the most important accomplishment in the past decade and stimulates many new applications, such as unidirectional light transport and single-mode lasers. However, in the quantum regime, some controversial effects are proposed for -symmetric theory, for example, the potential violation of the no-signalling principle. It is therefore important to understand whether -symmetric theory is consistent with well-established principles. Here, we experimentally study this no-signalling problem related to the -symmetric theory using two space-like separated entangled photons, with one of them passing through a post-selected quantum gate, which effectively simulates a -symmetric evolution. Our results suggest that the superluminal information transmission can be simulated when the successfully -symmetrically evolved subspace is solely considered. However, considering this subspace is only a part of the full Hermitian system, additional information regarding whether the -symmetric evolution is successful is necessary, which transmits to the receiver at maximally light speed, maintaining the no-signalling principle.

  15. Experimental investigation of the no-signalling principle in parity-time symmetric theory using an open quantum system

    NASA Astrophysics Data System (ADS)

    Tang, Jian-Shun; Wang, Yi-Tao; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    The experimental progress achieved in parity-time (PT) symmetry in classical optics is the most important accomplishment in the past decade and stimulates many new applications, such as unidirectional light transport and single-mode lasers. However, in the quantum regime, some controversial effects are proposed for PT-symmetric theory, for example, the potential violation of the no-signalling principle. It is therefore important to understand whether PT-symmetric theory is consistent with well-established principles. Here, we experimentally study this no-signalling problem related to the PT-symmetric theory using two space-like separated entangled photons, with one of them passing through a post-selected quantum gate, which effectively simulates a PT-symmetric evolution. Our results suggest that the superluminal information transmission can be simulated when the successfully PT-symmetrically evolved subspace is solely considered. However, considering this subspace is only a part of the full Hermitian system, additional information regarding whether the PT-symmetric evolution is successful is necessary, which transmits to the receiver at maximally light speed, maintaining the no-signalling principle.

  16. Foundations of Quantum Mechanics: Derivation of a dissipative Schrödinger equation from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonçalves, L.A.; Olavo, L.S.F., E-mail: olavolsf@gmail.com

    Dissipation in Quantum Mechanics took some time to become a robust field of investigation after the birth of the field. The main issue hindering developments in the field is that the Quantization process was always tightly connected to the Hamiltonian formulation of Classical Mechanics. In this paper we present a quantization process that does not depend upon the Hamiltonian formulation of Classical Mechanics (although still departs from Classical Mechanics) and thus overcome the problem of finding, from first principles, a completely general Schrödinger equation encompassing dissipation. This generalized process of quantization is shown to be nothing but an extension ofmore » a more restricted version that is shown to produce the Schrödinger equation for Hamiltonian systems from first principles (even for Hamiltonian velocity dependent potential). - Highlights: • A Quantization process independent of the Hamiltonian formulation of quantum Mechanics is proposed. • This quantization method is applied to dissipative or absorptive systems. • A Dissipative Schrödinger equation is derived from first principles.« less

  17. The Principle of General Tovariance

    NASA Astrophysics Data System (ADS)

    Heunen, C.; Landsman, N. P.; Spitters, B.

    2008-06-01

    We tentatively propose two guiding principles for the construction of theories of physics, which should be satisfied by a possible future theory of quantum gravity. These principles are inspired by those that led Einstein to his theory of general relativity, viz. his principle of general covariance and his equivalence principle, as well as by the two mysterious dogmas of Bohr's interpretation of quantum mechanics, i.e. his doctrine of classical concepts and his principle of complementarity. An appropriate mathematical language for combining these ideas is topos theory, a framework earlier proposed for physics by Isham and collaborators. Our principle of general tovariance states that any mathematical structure appearing in the laws of physics must be definable in an arbitrary topos (with natural numbers object) and must be preserved under so-called geometric morphisms. This principle identifies geometric logic as the mathematical language of physics and restricts the constructions and theorems to those valid in intuitionism: neither Aristotle's principle of the excluded third nor Zermelo's Axiom of Choice may be invoked. Subsequently, our equivalence principle states that any algebra of observables (initially defined in the topos Sets) is empirically equivalent to a commutative one in some other topos.

  18. Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.

    PubMed

    Chen, Duan; Chen, Zhan; Wei, Guo-Wei

    2012-01-01

    Proton transport plays an important role in biological energy transduction and sensory systems. Therefore, it has attracted much attention in biological science and biomedical engineering in the past few decades. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins involving continuum, atomic, and quantum descriptions, assisted with the evolution, formation, and visualization of membrane channel surfaces. We describe proton dynamics quantum mechanically via a new density functional theory based on the Boltzmann statistics, while implicitly model numerous solvent molecules as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in the solvent is assumed to obey the Boltzmann distribution in a dynamic manner. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic scale. A variational solute-solvent interface is designed to separate the explicit molecule and implicit solvent regions. We formulate a total free-energy functional to put proton kinetic and potential energies, the free energy of all other ions, and the polar and nonpolar energies of the whole system on an equal footing. The variational principle is employed to derive coupled governing equations for the proton transport system. Generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation, and generalized Kohn-Sham equation are obtained from the present variational framework. The variational solvent-solute interface is generated and visualized to facilitate the multiscale discrete/continuum/quantum descriptions. Theoretical formulations for the proton density and conductance are constructed based on fundamental laws of physics. A number of mathematical algorithms, including the Dirichlet-to-Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The gramicidin A channel is used to validate the performance of the proposed proton transport model and demonstrate the efficiency of the proposed mathematical algorithms. The proton channel conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and confirms the proposed model. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Unitary cocycle representations of the Galilean line group: Quantum mechanical principle of equivalence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGregor, B.R.; McCoy, A.E.; Wickramasekara, S., E-mail: wickrama@grinnell.edu

    2012-09-15

    We present a formalism of Galilean quantum mechanics in non-inertial reference frames and discuss its implications for the equivalence principle. This extension of quantum mechanics rests on the Galilean line group, the semidirect product of the real line and the group of analytic functions from the real line to the Euclidean group in three dimensions. This group provides transformations between all inertial and non-inertial reference frames and contains the Galilei group as a subgroup. We construct a certain class of unitary representations of the Galilean line group and show that these representations determine the structure of quantum mechanics in non-inertialmore » reference frames. Our representations of the Galilean line group contain the usual unitary projective representations of the Galilei group, but have a more intricate cocycle structure. The transformation formula for the Hamiltonian under the Galilean line group shows that in a non-inertial reference frame it acquires a fictitious potential energy term that is proportional to the inertial mass, suggesting the equivalence of inertial mass and gravitational mass in quantum mechanics. - Highlights: Black-Right-Pointing-Pointer A formulation of Galilean quantum mechanics in non-inertial reference frames is given. Black-Right-Pointing-Pointer The key concept is the Galilean line group, an infinite dimensional group. Black-Right-Pointing-Pointer Unitary, cocycle representations of the Galilean line group are constructed. Black-Right-Pointing-Pointer A non-central extension of the group underlies these representations. Black-Right-Pointing-Pointer Quantum equivalence principle and gravity emerge from these representations.« less

  20. Layered Architectures for Quantum Computers and Quantum Repeaters

    NASA Astrophysics Data System (ADS)

    Jones, Nathan C.

    This chapter examines how to organize quantum computers and repeaters using a systematic framework known as layered architecture, where machine control is organized in layers associated with specialized tasks. The framework is flexible and could be used for analysis and comparison of quantum information systems. To demonstrate the design principles in practice, we develop architectures for quantum computers and quantum repeaters based on optically controlled quantum dots, showing how a myriad of technologies must operate synchronously to achieve fault-tolerance. Optical control makes information processing in this system very fast, scalable to large problem sizes, and extendable to quantum communication.

  1. From quantum to classical modeling of radiation reaction: A focus on stochasticity effects

    NASA Astrophysics Data System (ADS)

    Niel, F.; Riconda, C.; Amiranoff, F.; Duclous, R.; Grech, M.

    2018-04-01

    Radiation reaction in the interaction of ultrarelativistic electrons with a strong external electromagnetic field is investigated using a kinetic approach in the nonlinear moderately quantum regime. Three complementary descriptions are discussed considering arbitrary geometries of interaction: a deterministic one relying on the quantum-corrected radiation reaction force in the Landau and Lifschitz (LL) form, a linear Boltzmann equation for the electron distribution function, and a Fokker-Planck (FP) expansion in the limit where the emitted photon energies are small with respect to that of the emitting electrons. The latter description is equivalent to a stochastic differential equation where the effect of the radiation reaction appears in the form of the deterministic term corresponding to the quantum-corrected LL friction force, and by a diffusion term accounting for the stochastic nature of photon emission. By studying the evolution of the energy moments of the electron distribution function with the three models, we are able to show that all three descriptions provide similar predictions on the temporal evolution of the average energy of an electron population in various physical situations of interest, even for large values of the quantum parameter χ . The FP and full linear Boltzmann descriptions also allow us to correctly describe the evolution of the energy variance (second-order moment) of the distribution function, while higher-order moments are in general correctly captured with the full linear Boltzmann description only. A general criterion for the limit of validity of each description is proposed, as well as a numerical scheme for the inclusion of the FP description in particle-in-cell codes. This work, not limited to the configuration of a monoenergetic electron beam colliding with a laser pulse, allows further insight into the relative importance of various effects of radiation reaction and in particular of the discrete and stochastic nature of high-energy photon emission and its back-reaction in the deformation of the particle distribution function.

  2. Vicinage effect in the energy loss of H2 dimers: Experiment and calculations based on time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Koval, N. E.; Borisov, A. G.; Rosa, L. F. S.; Stori, E. M.; Dias, J. F.; Grande, P. L.; Sánchez-Portal, D.; Muiño, R. Díez

    2017-06-01

    We present a combined theoretical and experimental study of the energy loss of H2+ molecular ions interacting with thin oxide and carbon films. As a result of quantum mechanical interference of the target electrons, the energy loss of a molecular projectile differs from the sum of the energy losses of individual atomic projectiles. This difference is known as the vicinage effect. Calculations based on the time-dependent density functional theory allow the first-principles description of the dynamics of target excitations produced by the correlated motion of the nucleons forming the molecule. We investigate in detail the dependence of the vicinage effect on the speed and charge state of the projectile and find an excellent agreement between calculated and measured data.

  3. Quantum Theory of Rare-Earth Magnets

    NASA Astrophysics Data System (ADS)

    Miyake, Takashi; Akai, Hisazumi

    2018-04-01

    Strong permanent magnets mainly consist of rare earths (R) and transition metals (T). The main phase of the neodymium magnet, which is the strongest magnet, is Nd2Fe14B. Sm2Fe17N3 is another magnet compound having excellent magnetic properties comparable to those of Nd2Fe14B. Their large saturation magnetization, strong magnetocrystalline anisotropy, and high Curie temperature originate from the interaction between the T-3d electrons and R-4f electrons. This article discusses the magnetism of rare-earth magnet compounds. The basic theory and first-principles calculation approaches for quantitative description of the magnetic properties are presented, together with applications to typical compounds such as Nd2Fe14B, Sm2Fe17N3, and the recently synthesized NdFe12N.

  4. Quantum Mechanics and the Principle of Least Radix Economy

    NASA Astrophysics Data System (ADS)

    Garcia-Morales, Vladimir

    2015-03-01

    A new variational method, the principle of least radix economy, is formulated. The mathematical and physical relevance of the radix economy, also called digit capacity, is established, showing how physical laws can be derived from this concept in a unified way. The principle reinterprets and generalizes the principle of least action yielding two classes of physical solutions: least action paths and quantum wavefunctions. A new physical foundation of the Hilbert space of quantum mechanics is then accomplished and it is used to derive the Schrödinger and Dirac equations and the breaking of the commutativity of spacetime geometry. The formulation provides an explanation of how determinism and random statistical behavior coexist in spacetime and a framework is developed that allows dynamical processes to be formulated in terms of chains of digits. These methods lead to a new (pre-geometrical) foundation for Lorentz transformations and special relativity. The Parker-Rhodes combinatorial hierarchy is encompassed within our approach and this leads to an estimate of the interaction strength of the electromagnetic and gravitational forces that agrees with the experimental values to an error of less than one thousandth. Finally, it is shown how the principle of least-radix economy naturally gives rise to Boltzmann's principle of classical statistical thermodynamics. A new expression for a general (path-dependent) nonequilibrium entropy is proposed satisfying the Second Law of Thermodynamics.

  5. Trajectory-based understanding of the quantum-classical transition for barrier scattering

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Chun

    2018-06-01

    The quantum-classical transition of wave packet barrier scattering is investigated using a hydrodynamic description in the framework of a nonlinear Schrödinger equation. The nonlinear equation provides a continuous description for the quantum-classical transition of physical systems by introducing a degree of quantumness. Based on the transition equation, the transition trajectory formalism is developed to establish the connection between classical and quantum trajectories. The quantum-classical transition is then analyzed for the scattering of a Gaussian wave packet from an Eckart barrier and the decay of a metastable state. Computational results for the evolution of the wave packet and the transmission probabilities indicate that classical results are recovered when the degree of quantumness tends to zero. Classical trajectories are in excellent agreement with the transition trajectories in the classical limit, except in some regions where transition trajectories cannot cross because of the single-valuedness of the transition wave function. As the computational results demonstrate, the process that the Planck constant tends to zero is equivalent to the gradual removal of quantum effects originating from the quantum potential. This study provides an insightful trajectory interpretation for the quantum-classical transition of wave packet barrier scattering.

  6. Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation.

    PubMed

    Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Proton transport is one of the most important and interesting phenomena in living cells. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins. We describe proton dynamics quantum mechanically via a density functional approach while implicitly model other solvent ions as a dielectric continuum to reduce the number of degrees of freedom. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic level. We formulate a total free energy functional to put proton kinetic and potential energies as well as electrostatic energy of all ions on an equal footing. The variational principle is employed to derive nonlinear governing equations for the proton transport system. Generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained from the variational framework. Theoretical formulations for the proton density and proton conductance are constructed based on fundamental principles. The molecular surface of the channel protein is utilized to split the discrete protein domain and the continuum solvent domain, and facilitate the multiscale discrete/continuum/quantum descriptions. A number of mathematical algorithms, including the Dirichlet to Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The Gramicidin A (GA) channel is used to demonstrate the performance of the proposed proton transport model and validate the efficiency of proposed mathematical algorithms. The electrostatic characteristics of the GA channel is analyzed with a wide range of model parameters. The proton conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and validates the proposed model.

  7. Quantum Tic-Tac-Toe as Metaphor for Quantum Physics

    NASA Astrophysics Data System (ADS)

    Goff, Allan; Lehmann, Dale; Siegel, Joel

    2004-02-01

    Quantum Tic-Tac-Toe is presented as an abstract quantum system derived from the rules of Classical Tic-Tac-Toe. Abstract quantum systems can be constructed from classical systems by the addition of three types of rules; rules of Superposition, rules of Entanglement, and rules of Collapse. This is formally done for Quantum Tic-Tac-Toe. As a part of this construction it is shown that abstract quantum systems can be viewed as an ensemble of classical systems. That is, the state of a quantum game implies a set of simultaneous classical games. The number and evolution of the ensemble of classical games is driven by the superposition, entanglement, and collapse rules. Various aspects and play situations provide excellent metaphors for standard features of quantum mechanics. Several of the more significant metaphors are discussed, including a measurement mechanism, the correspondence principle, Everett's Many Worlds Hypothesis, an ascertainity principle, and spooky action at a distance. Abstract quantum systems also show the consistency of backwards-in-time causality, and the influence on the present of both pasts and futures that never happened. The strongest logical argument against faster-than-light (FTL) phenomena is that since FTL implies backwards-in-time causality, temporal paradox is an unavoidable consequence of FTL; hence FTL is impossible. Since abstract quantum systems support backwards-in-time causality but avoid temporal paradox through pruning of the classical ensemble, it may be that quantum based FTL schemes are possible allowing backwards-in-time causality, but prohibiting temporal paradox.

  8. Trajectory description of the quantum–classical transition for wave packet interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2016-08-15

    The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow themore » main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.« less

  9. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles

    NASA Astrophysics Data System (ADS)

    San-Miguel, Miguel A.; da Silva, Edison Z.; Zannetti, Sonia M.; Cilense, Mario; Fabbro, Maria T.; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-06-01

    Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However, a description of the atomic and electronic structure of the semiconductor sites irradiated by electrons is still not available. Such a description is of great importance to understand the mechanisms underlying these physical processes and to improve the design of silver nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver nanoparticles to investigate this novel class of phenomena using both transmission electron microscopy and field emission scanning electron microscopy. A theoretical framework based on density functional theory calculations (DFT), together with experimental analysis and measurements, were developed to examine the changes in the local geometrical and electronic structure of the materials. The physical principles for the formation of Ag nanoparticles on α-Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers. Some of them are able to diffuse out of the surface with a very low energy barrier (less than 0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its electrical resistance as observed in the experimental measurements.

  10. Quantum Computing since Democritus

    NASA Astrophysics Data System (ADS)

    Aaronson, Scott

    2013-03-01

    1. Atoms and the void; 2. Sets; 3. Gödel, Turing, and friends; 4. Minds and machines; 5. Paleocomplexity; 6. P, NP, and friends; 7. Randomness; 8. Crypto; 9. Quantum; 10. Quantum computing; 11. Penrose; 12. Decoherence and hidden variables; 13. Proofs; 14. How big are quantum states?; 15. Skepticism of quantum computing; 16. Learning; 17. Interactive proofs and more; 18. Fun with the Anthropic Principle; 19. Free will; 20. Time travel; 21. Cosmology and complexity; 22. Ask me anything.

  11. Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control

    NASA Astrophysics Data System (ADS)

    Deffner, Sebastian; Campbell, Steve

    2017-11-01

    One of the most widely known building blocks of modern physics is Heisenberg’s indeterminacy principle. Among the different statements of this fundamental property of the full quantum mechanical nature of physical reality, the uncertainty relation for energy and time has a special place. Its interpretation and its consequences have inspired continued research efforts for almost a century. In its modern formulation, the uncertainty relation is understood as setting a fundamental bound on how fast any quantum system can evolve. In this topical review we describe important milestones, such as the Mandelstam-Tamm and the Margolus-Levitin bounds on the quantum speed limit, and summarise recent applications in a variety of current research fields—including quantum information theory, quantum computing, and quantum thermodynamics amongst several others. To bring order and to provide an access point into the many different notions and concepts, we have grouped the various approaches into the minimal time approach and the geometric approach, where the former relies on quantum control theory, and the latter arises from measuring the distinguishability of quantum states. Due to the volume of the literature, this topical review can only present a snapshot of the current state-of-the-art and can never be fully comprehensive. Therefore, we highlight but a few works hoping that our selection can serve as a representative starting point for the interested reader.

  12. A Classical Phase Space Framework For the Description of Supercooled Liquids and an Apparent Universal Viscosity Collapse

    NASA Astrophysics Data System (ADS)

    Weingartner, Nicholas; Pueblo, Chris; Nogueira, Flavio; Kelton, Kenneth; Nussinov, Zohar

    A fundamental understanding of the phenomenology of the metastable supercooled liquid state remains elusive. Two of the most pressing questions in this field are how to describe the temperature dependence of the viscosity, and determine whether or not the dynamical behaviors are universal. To address these questions, we have devised a simple first-principles classical phase space description of supercooled liquids that (along with a complementary quantum approach) predicts a unique functional form for the viscosity which relies on only a single parameter. We tested this form for 45 liquids of all types and fragilities, and have demonstrated that it provides a statistically significant fit to all liquids. Additionally, by scaling the viscosity of all studied liquids using the single parameter, we have observed a complete collapse of the data of all 45 liquids to a single scaling curve over 16 decades, suggesting an underlying universality in the dynamics of supercooled liquids. In this talk I will outline the basic approach of our model, as well as demonstrate the quality of the model performance and collapse of the data.

  13. Self-trapping of a light particle in a dense fluid: Application of scaled density-functional theory to the decay of orthopositronium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reese, T.; Miller, B.N.

    1990-11-15

    The localization of a light particle (e.g., electron, positron, or positronium atom) in a fluid is known as self-trapping. In an earlier paper (B. N. Miller and T. L. Reese, Phys. Rev. A 39, 4735 (1989)) we showed that (1) the density-functional theories (DFT's) of self-trapping could be derived from a mesoscopic model that employs a quantum-mechanical description of the light particle and a classical description of the fluid, and (2) the application of scaling to the simplest variant of DFT results in a universal model for all fluids that obey the principle of corresponding states. In this paper wemore » apply the fully scaled theory to the pickoff annihilation of orthopositronium. Predictions of three different versions of the theory are compared with the experimental measurements of McNutt and Sharma on ethane (J. Chem. Phys. 68, 130 (1978)) and Tuomisaari, Rytsola, and Hautojarvi on argon (Phys. Lett. 112A, 279 (1988)). Best agreement is obtained from a model that incorporates transitions between localized and extended states.« less

  14. Regular black holes from semi-classical down to Planckian size

    NASA Astrophysics Data System (ADS)

    Spallucci, Euro; Smailagic, Anais

    In this paper, we review various models of curvature singularity free black holes (BHs). In the first part of the review, we describe semi-classical solutions of the Einstein equations which, however, contains a “quantum” input through the matter source. We start by reviewing the early model by Bardeen where the metric is regularized by-hand through a short-distance cutoff, which is justified in terms of nonlinear electro-dynamical effects. This toy-model is useful to point-out the common features shared by all regular semi-classical black holes. Then, we solve Einstein equations with a Gaussian source encoding the quantum spread of an elementary particle. We identify, the a priori arbitrary, Gaussian width with the Compton wavelength of the quantum particle. This Compton-Gauss model leads to the estimate of a terminal density that a gravitationally collapsed object can achieve. We identify this density to be the Planck density, and reformulate the Gaussian model assuming this as its peak density. All these models, are physically reliable as long as the BH mass is big enough with respect to the Planck mass. In the truly Planckian regime, the semi-classical approximation breaks down. In this case, a fully quantum BH description is needed. In the last part of this paper, we propose a nongeometrical quantum model of Planckian BHs implementing the Holographic Principle and realizing the “classicalization” scenario recently introduced by Dvali and collaborators. The classical relation between the mass and radius of the BH emerges only in the classical limit, far away from the Planck scale.

  15. How far do EPR-Bell experiments constrain physical collapse theories?

    NASA Astrophysics Data System (ADS)

    Leggett, A. J.

    2007-03-01

    A class of theories alternative to standard quantum mechanics, including that of Ghirardi et al ('GRWP'), postulates that when a quantum superposition becomes amplified to the point that the superposed states reach some level of 'macroscopic distinctness', then some non-quantum-mechanical principle comes into play and realizes one or other of the two macroscopic outcomes. Without specializing to any particular theory of this class, I ask how far such 'macrorealistic' theories are generically constrained, if one insists that the physical reduction process should respect Einstein locality, by the results of existing EPR-Bell experiments. I conclude that provided one does not demand that the prescription for reduction respects Lorentz invariance, at least some theories of this type, while in principle inevitably making some predictions that conflict with those of standard quantum mechanics, are not refuted by any existing experiment.

  16. Elementary Aharonov-Bohm system in three space dimensions: Quantum attraction with no classical force

    NASA Astrophysics Data System (ADS)

    Goldhaber, Alfred; Requist, Ryan

    2003-07-01

    As a consequence of the Aharonov-Bohm effect, there is a quantum-induced attraction between a charged particle and a rigid, impenetrable hoop made from an arbitrarily thin tube containing a superconductor quantum of magnetic flux. This is remarkable because in classical physics there is no force between the two objects, and quantum-mechanical effects (associated with uncertainty-principle energy) generally are repulsive rather than attractive. For an incident spinless charged particle in a P wave (in a configuration with total angular momentum zero) we verify a resonance just above threshold using the Kohn variational principle in its S-matrix form. Even if optimistic choices of parameters describing a model system with these properties were feasible, the temperature required to observe the resonance would be far lower than has yet been attained in the laboratory.

  17. Modification of Schrödinger-Newton equation due to braneworld models with minimal length

    NASA Astrophysics Data System (ADS)

    Bhat, Anha; Dey, Sanjib; Faizal, Mir; Hou, Chenguang; Zhao, Qin

    2017-07-01

    We study the correction of the energy spectrum of a gravitational quantum well due to the combined effect of the braneworld model with infinite extra dimensions and generalized uncertainty principle. The correction terms arise from a natural deformation of a semiclassical theory of quantum gravity governed by the Schrödinger-Newton equation based on a minimal length framework. The two fold correction in the energy yields new values of the spectrum, which are closer to the values obtained in the GRANIT experiment. This raises the possibility that the combined theory of the semiclassical quantum gravity and the generalized uncertainty principle may provide an intermediate theory between the semiclassical and the full theory of quantum gravity. We also prepare a schematic experimental set-up which may guide to the understanding of the phenomena in the laboratory.

  18. Making Sense of Bell's Theorem and Quantum Nonlocality

    NASA Astrophysics Data System (ADS)

    Boughn, Stephen

    2017-05-01

    Bell's theorem has fascinated physicists and philosophers since his 1964 paper, which was written in response to the 1935 paper of Einstein, Podolsky, and Rosen. Bell's theorem and its many extensions have led to the claim that quantum mechanics and by inference nature herself are nonlocal in the sense that a measurement on a system by an observer at one location has an immediate effect on a distant entangled system (one with which the original system has previously interacted). Einstein was repulsed by such "spooky action at a distance" and was led to question whether quantum mechanics could provide a complete description of physical reality. In this paper I argue that quantum mechanics does not require spooky action at a distance of any kind and yet it is entirely reasonable to question the assumption that quantum mechanics can provide a complete description of physical reality. The magic of entangled quantum states has little to do with entanglement and everything to do with superposition, a property of all quantum systems and a foundational tenet of quantum mechanics.

  19. Investigating and Improving Student Understanding of Quantum Mechanics in the Context of Single Photon Interference

    ERIC Educational Resources Information Center

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…

  20. Topics in quantum chaos

    NASA Astrophysics Data System (ADS)

    Jordan, Andrew Noble

    2002-09-01

    In this dissertation, we study the quantum mechanics of classically chaotic dynamical systems. We begin by considering the decoherence effects a quantum chaotic system has on a simple quantum few state system. Typical time evolution of a quantum system whose classical limit is chaotic generates structures in phase space whose size is much smaller than Planck's constant. A naive application of Heisenberg's uncertainty principle indicates that these structures are not physically relevant. However, if we take the quantum chaotic system in question to be an environment which interacts with a simple two state quantum system (qubit), we show that these small phase-space structures cause the qubit to generically lose quantum coherence if and only if the environment has many degrees of freedom, such as a dilute gas. This implies that many-body environments may be crucial for the phenomenon of quantum decoherence. Next, we turn to an analysis of statistical properties of time correlation functions and matrix elements of quantum chaotic systems. A semiclassical evaluation of matrix elements of an operator indicates that the dominant contribution will be related to a classical time correlation function over the energy surface. For a highly chaotic class of dynamics, these correlation functions may be decomposed into sums of Ruelle resonances, which control exponential decay to the ergodic distribution. The theory is illustrated both numerically and theoretically on the Baker map. For this system, we are able to isolate individual Ruelle modes. We further consider dynamical systems whose approach to ergodicity is given by a power law rather than an exponential in time. We propose a billiard with diffusive boundary conditions, whose classical solution may be calculated analytically. We go on to compare the exact solution with an approximation scheme, as well calculate asympotic corrections. Quantum spectral statistics are calculated assuming the validity of the Again, Altshuler and Andreev ansatz. We find singular behavior of the two point spectral correlator in the limit of small spacing. Finally, we analyse the effect that slow decay to ergodicity has on the structure of the quantum propagator, as well as wavefunction localization. We introduce a statistical quantum description of systems that are composed of both an orderly region and a random region. By averaging over the random region only, we find that measures of localization in momentum space semiclassically diverge with the dimension of the Hilbert space. We illustrate this numerically with quantum maps and suggest various other systems where this behavior should be important.

  1. Quantum Physics

    NASA Astrophysics Data System (ADS)

    Le Bellac, Michel

    2006-03-01

    Quantum physics allows us to understand the nature of the physical phenomena which govern the behavior of solids, semi-conductors, lasers, atoms, nuclei, subnuclear particles and light. In Quantum Physics, Le Bellac provides a thoroughly modern approach to this fundamental theory. Throughout the book, Le Bellac teaches the fundamentals of quantum physics using an original approach which relies primarily on an algebraic treatment and on the systematic use of symmetry principles. In addition to the standard topics such as one-dimensional potentials, angular momentum and scattering theory, the reader is introduced to more recent developments at an early stage. These include a detailed account of entangled states and their applications, the optical Bloch equations, the theory of laser cooling and of magneto-optical traps, vacuum Rabi oscillations, and an introduction to open quantum systems. This is a textbook for a modern course on quantum physics, written for advanced undergraduate and graduate students. Completely original and contemporary approach, using algebra and symmetry principles Introduces recent developments at an early stage, including many topics that cannot be found in standard textbooks. Contains 130 physically relevant exercises

  2. Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current Challenges

    DOE PAGES

    Ceriotti, Michele; Fang, Wei; Kusalik, Peter G.; ...

    2016-04-06

    Nuclear quantum effects influence the structure and dynamics of hydrogen bonded systems, such as water, which impacts their observed properties with widely varying magnitudes. This review highlights the recent significant developments in the experiment, theory and simulation of nuclear quantum effects in water. Novel experimental techniques, such as deep inelastic neutron scattering, now provide a detailed view of the role of nuclear quantum effects in water’s properties. These have been combined with theoretical developments such as the introduction of the competing quantum effects principle that allows the subtle interplay of water’s quantum effects and their manifestation in experimental observables tomore » be explained. We discuss how this principle has recently been used to explain the apparent dichotomy in water’s isotope effects, which can range from very large to almost nonexistent depending on the property and conditions. We then review the latest major developments in simulation algorithms and theory that have enabled the efficient inclusion of nuclear quantum effects in molecular simulations, permitting their combination with on-the-fly evaluation of the potential energy surface using electronic structure theory. Finally, we identify current challenges and future opportunities in the area.« less

  3. Interpretations of quantum mechanics, joint measurement of incompatible observables, and counterfactual definiteness

    NASA Astrophysics Data System (ADS)

    de Muynck, W. M.; de Baere, W.; Martens, H.

    1994-12-01

    The validity of the conclusion to the nonlocality of quantum mechanics, accepted widely today as the only reasonable solution to the EPR and Bell issues, is questioned and criticized. Arguments are presented which remove the compelling character of this conclusion and make clear that it is not the most obvious solution. Alternative solutions are developed which are free of the contradictions related with the nonlocality conclusion. Firstly, the dependence on the adopted interpretation is shown, with the conclusion that the alleged nonlocality property of the quantum formalism may have been reached on the basis of an interpretation that is unnecessarily restrictive. Secondly, by extending the conventional quantum formalism along the lines of Ludwig and Davies it is shown that the Bell problem may be related to complementarity rather than to nonlocality. Finally, the dependence on counterfactual reasoning is critically examined. It appears that locality on the quantum level may still be retained provided one accepts a newly proposed principle of nonreproducibility at the individual quantum level as an alternative of quantum nonlocality. It is concluded that the locality principle can retain its general validity, in full conformity with all experimental data.

  4. Interpretations of quantum mechanics, joint measurement of incompatible observables, and counterfactual definiteness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muynck, W.M. de; Martens, H.; De Baere, W.

    1994-12-01

    The validity of the conclusion to the nonlocality of quantum mechanics, accepted widely today as the only reasonable solution to the EPR and Bell issues, is questioned and criticized. Arguments are presented which remove the compelling character of this conclusion and make clear that it is not the most obvious solution. Alternative solutions are developed which are free of the contradictions related with the nonlocality conclusion. Firstly, the dependence on the adopted interpretation is shown, with the conclusion that the alleged nonlocality property of the quantum formalism may have been reached on the basis of an interpretation that is unnecessarilymore » restrictive. Secondly, by extending the conventional quantum formalism along the lines of Ludwig and Davies it is shown that the Bell problem may be related to complementarity rather than to nonlocality. Finally, the dependence on counterfactual reasoning is critically examined. It appears that locality on the quantum level may still be retained provided one accepts a newly proposed principle of nonreproducibility at the individual quantum level as an alternative of quantum nonlocality. It is concluded that the locality principle can retain its general validity, in full conformity with all experimental data.« less

  5. Quantum thermodynamics from the nonequilibrium dynamics of open systems: Energy, heat capacity, and the third law.

    PubMed

    Hsiang, J-T; Chou, C H; Subaşı, Y; Hu, B L

    2018-01-01

    In a series of papers, we intend to take the perspective of open quantum systems and examine from their nonequilibrium dynamics the conditions when the physical quantities, their relations, and the laws of thermodynamics become well defined and viable for quantum many-body systems. We first describe how an open-system nonequilibrium dynamics (ONEq) approach is different from the closed combined system +  environment in a global thermal state (CGTs) setup. Only after the open system equilibrates will it be amenable to conventional thermodynamics descriptions, thus quantum thermodynamics (QTD) comes at the end rather than assumed in the beginning. The linkage between the two comes from the reduced density matrix of ONEq in that stage having the same form as that of the system in the CGTs. We see the open-system approach having the advantage of dealing with nonequilibrium processes as many experiments in the near future will call for. Because it spells out the conditions of QTD's existence, it can also aid us in addressing the basic issues in quantum thermodynamics from first principles in a systematic way. We then study one broad class of open quantum systems where the full nonequilibrium dynamics can be solved exactly, that of the quantum Brownian motion of N strongly coupled harmonic oscillators, interacting strongly with a scalar-field environment. In this paper, we focus on the internal energy, heat capacity, and the third law. We show for this class of physical models, amongst other findings, the extensive property of the internal energy, the positivity of the heat capacity, and the validity of the third law from the perspective of the behavior of the heat capacity toward zero temperature. These conclusions obtained from exact solutions and quantitative analysis clearly disprove claims of negative specific heat in such systems and dispel allegations that in such systems the validity of the third law of thermodynamics relies on quantum entanglement. They are conceptually and factually unrelated issues. Entropy and entanglement will be the main theme of our second paper on this subject matter.

  6. Quantum thermodynamics from the nonequilibrium dynamics of open systems: Energy, heat capacity, and the third law

    DOE PAGES

    Hsiang, Jen -Tsung; Chou, Chung Hsien; Subasi, Yigit; ...

    2018-01-23

    In a series of papers, we intend to take the perspective of open quantum systems and examine from their nonequilibrium dynamics the conditions when the physical quantities, their relations, and the laws of thermodynamics become well defined and viable for quantum many-body systems. We first describe how an open-system nonequilibrium dynamics (ONEq) approach is different from the closed combined system + environment in a global thermal state (CGTs) setup. Only after the open system equilibrates will it be amenable to conventional thermodynamics descriptions, thus quantum thermodynamics (QTD) comes at the end rather than assumed in the beginning. The linkage betweenmore » the two comes from the reduced density matrix of ONEq in that stage having the same form as that of the system in the CGTs. We see the open-system approach having the advantage of dealing with nonequilibrium processes as many experiments in the near future will call for. Because it spells out the conditions of QTD's existence, it can also aid us in addressing the basic issues in quantum thermodynamics from first principles in a systematic way. We then study one broad class of open quantum systems where the full nonequilibrium dynamics can be solved exactly, that of the quantum Brownian motion of N strongly coupled harmonic oscillators, interacting strongly with a scalar-field environment. In this paper, we focus on the internal energy, heat capacity, and the third law. We show for this class of physical models, amongst other findings, the extensive property of the internal energy, the positivity of the heat capacity, and the validity of the third law from the perspective of the behavior of the heat capacity toward zero temperature. These conclusions obtained from exact solutions and quantitative analysis clearly disprove claims of negative specific heat in such systems and dispel allegations that in such systems the validity of the third law of thermodynamics relies on quantum entanglement. They are conceptually and factually unrelated issues. As a result, entropy and entanglement will be the main theme of our second paper on this subject matter.« less

  7. Quantum thermodynamics from the nonequilibrium dynamics of open systems: Energy, heat capacity, and the third law

    NASA Astrophysics Data System (ADS)

    Hsiang, J.-T.; Chou, C. H.; Subaşı, Y.; Hu, B. L.

    2018-01-01

    In a series of papers, we intend to take the perspective of open quantum systems and examine from their nonequilibrium dynamics the conditions when the physical quantities, their relations, and the laws of thermodynamics become well defined and viable for quantum many-body systems. We first describe how an open-system nonequilibrium dynamics (ONEq) approach is different from the closed combined system + environment in a global thermal state (CGTs) setup. Only after the open system equilibrates will it be amenable to conventional thermodynamics descriptions, thus quantum thermodynamics (QTD) comes at the end rather than assumed in the beginning. The linkage between the two comes from the reduced density matrix of ONEq in that stage having the same form as that of the system in the CGTs. We see the open-system approach having the advantage of dealing with nonequilibrium processes as many experiments in the near future will call for. Because it spells out the conditions of QTD's existence, it can also aid us in addressing the basic issues in quantum thermodynamics from first principles in a systematic way. We then study one broad class of open quantum systems where the full nonequilibrium dynamics can be solved exactly, that of the quantum Brownian motion of N strongly coupled harmonic oscillators, interacting strongly with a scalar-field environment. In this paper, we focus on the internal energy, heat capacity, and the third law. We show for this class of physical models, amongst other findings, the extensive property of the internal energy, the positivity of the heat capacity, and the validity of the third law from the perspective of the behavior of the heat capacity toward zero temperature. These conclusions obtained from exact solutions and quantitative analysis clearly disprove claims of negative specific heat in such systems and dispel allegations that in such systems the validity of the third law of thermodynamics relies on quantum entanglement. They are conceptually and factually unrelated issues. Entropy and entanglement will be the main theme of our second paper on this subject matter.

  8. Quantum thermodynamics from the nonequilibrium dynamics of open systems: Energy, heat capacity, and the third law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiang, Jen -Tsung; Chou, Chung Hsien; Subasi, Yigit

    In a series of papers, we intend to take the perspective of open quantum systems and examine from their nonequilibrium dynamics the conditions when the physical quantities, their relations, and the laws of thermodynamics become well defined and viable for quantum many-body systems. We first describe how an open-system nonequilibrium dynamics (ONEq) approach is different from the closed combined system + environment in a global thermal state (CGTs) setup. Only after the open system equilibrates will it be amenable to conventional thermodynamics descriptions, thus quantum thermodynamics (QTD) comes at the end rather than assumed in the beginning. The linkage betweenmore » the two comes from the reduced density matrix of ONEq in that stage having the same form as that of the system in the CGTs. We see the open-system approach having the advantage of dealing with nonequilibrium processes as many experiments in the near future will call for. Because it spells out the conditions of QTD's existence, it can also aid us in addressing the basic issues in quantum thermodynamics from first principles in a systematic way. We then study one broad class of open quantum systems where the full nonequilibrium dynamics can be solved exactly, that of the quantum Brownian motion of N strongly coupled harmonic oscillators, interacting strongly with a scalar-field environment. In this paper, we focus on the internal energy, heat capacity, and the third law. We show for this class of physical models, amongst other findings, the extensive property of the internal energy, the positivity of the heat capacity, and the validity of the third law from the perspective of the behavior of the heat capacity toward zero temperature. These conclusions obtained from exact solutions and quantitative analysis clearly disprove claims of negative specific heat in such systems and dispel allegations that in such systems the validity of the third law of thermodynamics relies on quantum entanglement. They are conceptually and factually unrelated issues. As a result, entropy and entanglement will be the main theme of our second paper on this subject matter.« less

  9. Horizon quantum fuzziness for non-singular black holes

    NASA Astrophysics Data System (ADS)

    Giugno, Andrea; Giusti, Andrea; Helou, Alexis

    2018-03-01

    We study the extent of quantum gravitational effects in the internal region of non-singular, Hayward-like solutions of Einstein's field equations according to the formalism known as horizon quantum mechanics. We grant a microscopic description to the horizon by considering a huge number of soft, off-shell gravitons, which superimpose in the same quantum state, as suggested by Dvali and Gomez. In addition to that, the constituents of such a configuration are understood as loosely confined in a binding harmonic potential. A simple analysis shows that the resolution of a central singularity through quantum physics does not tarnish the classical description, which is bestowed upon this extended self-gravitating system by General Relativity. Finally, we estimate the appearance of an internal horizon as being negligible, because of the suppression of the related probability caused by the large number of virtual gravitons.

  10. Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material

    NASA Astrophysics Data System (ADS)

    Christensen, Thomas; Yan, Wei; Jauho, Antti-Pekka; Soljačić, Marin; Mortensen, N. Asger

    2017-04-01

    The classical treatment of plasmonics is insufficient at the nanometer-scale due to quantum mechanical surface phenomena. Here, an extension of the classical paradigm is reported which rigorously remedies this deficiency through the incorporation of first-principles surface response functions—the Feibelman d parameters—in general geometries. Several analytical results for the leading-order plasmonic quantum corrections are obtained in a first-principles setting; particularly, a clear separation of the roles of shape, scale, and material is established. The utility of the formalism is illustrated by the derivation of a modified sum rule for complementary structures, a rigorous reformulation of Kreibig's phenomenological damping prescription, and an account of the small-scale resonance shifting of simple and noble metal nanostructures.

  11. Do the Modified Uncertainty Principle and Polymer Quantization predict same physics?

    NASA Astrophysics Data System (ADS)

    Majumder, Barun; Sen, Sourav

    2012-10-01

    In this Letter we study the effects of the Modified Uncertainty Principle as proposed in Ali et al. (2009) [5] in simple quantum mechanical systems and study its thermodynamic properties. We have assumed that the quantum particles follow Maxwell-Boltzmann statistics with no spin. We compare our results with the results found in the GUP and polymer quantum mechanical frameworks. Interestingly we find that the corrected thermodynamic entities are exactly the same compared to the polymer results but the length scale considered has a theoretically different origin. Hence we express the need of further study for an investigation whether these two approaches are conceptually connected in the fundamental level.

  12. Using Comic Books to Teach Physics

    NASA Astrophysics Data System (ADS)

    Kakalios, James

    2003-03-01

    Whether done deliberately to appear "educational" or simply as a habit of the writers who used to work for science fiction pulp magazines, superhero comic books from the 1960's to today often get their science right more often than one would expect. I will describe physics lessons I've employed in a Freshman Seminar at the University of Minnesota entitled: "Science in Comic Books", where all of the illustrative examples come from the four-color pages of comic books. For example: How much force is required to leap a tall building in a single bound, and what does this imply about the gravity on Krypton? If Spider-Man's webbing is as strong as real spider's silk, can it support his weight as he swings between buildings? If you could run at super speeds like the Flash, could you run up the sides of buildings or across the ocean and more importantly, how frequently would you need to eat? Certain superhero comic book stories feature correct descriptions of basic physical principles for a wide range of topics, from Classical Mechanics, to Electricity and Magnetism to even Quantum Physics - recent results on entangled quantum states (Phys. Rev. Lett., 80, 3891 (1998)) served as a plot point in a popular comic book that same year. Once I explain the science underlying the comic book stories, real world applications of the physics principles are then presented. The students in this class are so busy enjoying their superhero ice cream sundae that they don't notice that I am sneakily getting them to eat their spinach at the same time!

  13. First-principles modeling of biological systems and structure-based drug-design.

    PubMed

    Sgrignani, Jacopo; Magistrato, Alessandra

    2013-03-01

    Molecular modeling techniques play a relevant role in drug design providing detailed information at atomistic level on the structural, dynamical, mechanistic and electronic properties of biological systems involved in diseases' onset, integrating and supporting commonly used experimental approaches. These information are often not accessible to the experimental techniques taken singularly, but are of crucial importance for drug design. Due to the enormous increase of the computer power in the last decades, quantum mechanical (QM) or first-principles-based methods have become often used to address biological issues of pharmaceutical relevance, providing relevant information for drug design. Due to their complexity and their size, biological systems are often investigated by means of a mixed quantum-classical (QM/MM) approach, which treats at an accurate QM level a limited chemically relevant portion of the system and at the molecular mechanics (MM) level the remaining of the biomolecule and its environment. This method provides a good compromise between computational cost and accuracy, allowing to characterize the properties of the biological system and the (free) energy landscape of the process in study with the accuracy of a QM description. In this review, after a brief introduction of QM and QM/MM methods, we will discuss few representative examples, taken from our work, of the application of these methods in the study of metallo-enzymes of pharmaceutical interest, of metal-containing anticancer drugs targeting the DNA as well as of neurodegenerative diseases. The information obtained from these studies may provide the basis for a rationale structure-based drug design of new and more efficient inhibitors or drugs.

  14. Exploiting Locality in Quantum Computation for Quantum Chemistry.

    PubMed

    McClean, Jarrod R; Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-12-18

    Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.

  15. Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle

    DOE PAGES

    Yang, Zhi -Cheng; Rahmani, Armin; Shabani, Alireza; ...

    2017-05-18

    We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale ofmore » the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Moreover, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.« less

  16. The Madelung Picture as a Foundation of Geometric Quantum Theory

    NASA Astrophysics Data System (ADS)

    Reddiger, Maik

    2017-10-01

    Despite its age, quantum theory still suffers from serious conceptual difficulties. To create clarity, mathematical physicists have been attempting to formulate quantum theory geometrically and to find a rigorous method of quantization, but this has not resolved the problem. In this article we argue that a quantum theory recursing to quantization algorithms is necessarily incomplete. To provide an alternative approach, we show that the Schrödinger equation is a consequence of three partial differential equations governing the time evolution of a given probability density. These equations, discovered by Madelung, naturally ground the Schrödinger theory in Newtonian mechanics and Kolmogorovian probability theory. A variety of far-reaching consequences for the projection postulate, the correspondence principle, the measurement problem, the uncertainty principle, and the modeling of particle creation and annihilation are immediate. We also give a speculative interpretation of the equations following Bohm, Vigier and Tsekov, by claiming that quantum mechanical behavior is possibly caused by gravitational background noise.

  17. Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhi -Cheng; Rahmani, Armin; Shabani, Alireza

    We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale ofmore » the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Moreover, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.« less

  18. On quantum models of the human mind.

    PubMed

    Wang, Hongbin; Sun, Yanlong

    2014-01-01

    Recent years have witnessed rapidly increasing interests in developing quantum theoretical models of human cognition. Quantum mechanisms have been taken seriously to describe how the mind reasons and decides. Papers in this special issue report the newest results in the field. Here we discuss why the two levels of commitment, treating the human brain as a quantum computer and merely adopting abstract quantum probability principles to model human cognition, should be integrated. We speculate that quantum cognition models gain greater modeling power due to a richer representation scheme. Copyright © 2013 Cognitive Science Society, Inc.

  19. A Novel Quantum Solution to Privacy-Preserving Nearest Neighbor Query in Location-Based Services

    NASA Astrophysics Data System (ADS)

    Luo, Zhen-yu; Shi, Run-hua; Xu, Min; Zhang, Shun

    2018-04-01

    We present a cheating-sensitive quantum protocol for Privacy-Preserving Nearest Neighbor Query based on Oblivious Quantum Key Distribution and Quantum Encryption. Compared with the classical related protocols, our proposed protocol has higher security, because the security of our protocol is based on basic physical principles of quantum mechanics, instead of difficulty assumptions. Especially, our protocol takes single photons as quantum resources and only needs to perform single-photon projective measurement. Therefore, it is feasible to implement this protocol with the present technologies.

  20. Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jun; Lee, Kim Fook; Kumar, Prem

    2007-09-15

    By utilizing a fiber-based indistinguishable photon-pair source in the 1.55 {mu}m telecommunications band [J. Chen et al., Opt. Lett. 31, 2798 (2006)], we present the first, to the best of our knowledge, deterministic quantum splitter based on the principle of time-reversed Hong-Ou-Mandel quantum interference. The deterministically separated identical photons' indistinguishability is then verified by using a conventional Hong-Ou-Mandel quantum interference, which exhibits a near-unity dip visibility of 94{+-}1%, making this quantum splitter useful for various quantum information processing applications.

  1. Counterfactual quantum cryptography.

    PubMed

    Noh, Tae-Gon

    2009-12-04

    Quantum cryptography allows one to distribute a secret key between two remote parties using the fundamental principles of quantum mechanics. The well-known established paradigm for the quantum key distribution relies on the actual transmission of signal particle through a quantum channel. In this Letter, we show that the task of a secret key distribution can be accomplished even though a particle carrying secret information is not in fact transmitted through the quantum channel. The proposed protocols can be implemented with current technologies and provide practical security advantages by eliminating the possibility that an eavesdropper can directly access the entire quantum system of each signal particle.

  2. Counterfactual Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Noh, Tae-Gon

    2009-12-01

    Quantum cryptography allows one to distribute a secret key between two remote parties using the fundamental principles of quantum mechanics. The well-known established paradigm for the quantum key distribution relies on the actual transmission of signal particle through a quantum channel. In this Letter, we show that the task of a secret key distribution can be accomplished even though a particle carrying secret information is not in fact transmitted through the quantum channel. The proposed protocols can be implemented with current technologies and provide practical security advantages by eliminating the possibility that an eavesdropper can directly access the entire quantum system of each signal particle.

  3. Quantum cellular automata and free quantum field theory

    NASA Astrophysics Data System (ADS)

    D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2017-02-01

    In a series of recent papers [1-4] it has been shown how free quantum field theory can be derived without using mechanical primitives (including space-time, special relativity, quantization rules, etc.), but only considering the easiest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the simple principles of unitarity, homogeneity, locality, and isotropy. This has opened the route to extending the axiomatic information-theoretic derivation of the quantum theory of abstract systems [5, 6] to include quantum field theory. The inherent discrete nature of the informational axiomatization leads to an extension of quantum field theory to a quantum cellular automata theory, where the usual field theory is recovered in a regime where the discrete structure of the automata cannot be probed. A simple heuristic argument sets the scale of discreteness to the Planck scale, and the customary physical regime where discreteness is not visible is the relativistic one of small wavevectors. In this paper we provide a thorough derivation from principles that in the most general case the graph of the quantum cellular automaton is the Cayley graph of a finitely presented group, and showing how for the case corresponding to Euclidean emergent space (where the group resorts to an Abelian one) the automata leads to Weyl, Dirac and Maxwell field dynamics in the relativistic limit. We conclude with some perspectives towards the more general scenario of non-linear automata for interacting quantum field theory.

  4. Classical, Quantum and Superquantum Correlations

    NASA Astrophysics Data System (ADS)

    Ghirardi, Giancarlo; Romano, Raffaele

    2012-04-01

    A deeper understanding of the origin of quantum correlations is expected to allow a better comprehension of the physical principles underlying quantum mechanics. In this work, we reconsider the possibility of devising "crypto-nonlocal theories", using a terminology firstly introduced by Leggett. We generalize and simplify the investigations on this subject which can be found in the literature. At their deeper level, such theories allow nonlocal correlations which can overcome the quantum limit.

  5. Classical, Quantum and Superquantum Correlations

    NASA Astrophysics Data System (ADS)

    Ghirardi, Giancarlo; Romano, Raffaele

    2013-01-01

    A deeper understanding of the origin of quantum correlations is expected to allow a better comprehension of the physical principles underlying quantum mechanics. In this work, we reconsider the possibility of devising "crypto-nonlocal theories", using a terminology firstly introduced by Leggett. We generalize and simplify the investigations on this subject which can be found in the literature. At their deeper level, such theories allow nonlocal correlations which can overcome the quantum limit.

  6. Higher-order gravity and the classical equivalence principle

    NASA Astrophysics Data System (ADS)

    Accioly, Antonio; Herdy, Wallace

    2017-11-01

    As is well known, the deflection of any particle by a gravitational field within the context of Einstein’s general relativity — which is a geometrical theory — is, of course, nondispersive. Nevertheless, as we shall show in this paper, the mentioned result will change totally if the bending is analyzed — at the tree level — in the framework of higher-order gravity. Indeed, to first order, the deflection angle corresponding to the scattering of different quantum particles by the gravitational field mentioned above is not only spin dependent, it is also dispersive (energy-dependent). Consequently, it violates the classical equivalence principle (universality of free fall, or equality of inertial and gravitational masses) which is a nonlocal principle. However, contrary to popular belief, it is in agreement with the weak equivalence principle which is nothing but a statement about purely local effects. It is worthy of note that the weak equivalence principle encompasses the classical equivalence principle locally. We also show that the claim that there exists an incompatibility between quantum mechanics and the weak equivalence principle, is incorrect.

  7. NREL Senior Research Fellow Honored by The Journal of Physical Chemistry |

    Science.gov Websites

    and quantum size effects in semiconductors and carrier dynamics in semiconductor quantum dots and using hot carrier effects, size quantization, and superlattice concepts that could, in principle, enable

  8. Interpretation of Quantum Nonlocality by Conformal Quantum Geometrodynamics

    NASA Astrophysics Data System (ADS)

    De Martini, Francesco; Santamato, Enrico

    2014-10-01

    The principles and methods of the Conformal Quantum Geometrodynamics (CQG) based on the Weyl's differential geometry are presented. The theory applied to the case of the relativistic single quantum spin leads a novel and unconventional derivation of Dirac's equation. The further extension of the theory to the case of two spins in EPR entangled state and to the related violation of Bell's inequalities leads, by a non relativistic analysis, to an insightful resolution of the enigma implied by quantum nonlocality.

  9. Fundamental Quantum 1/F Noise in Ultrasmall Semiconductor Devices and Their Optimal Design Principles

    DTIC Science & Technology

    1988-05-31

    Hooge parameter. 2. 1 / f Noise of the Recombination Current Generated in the Depletion Region The quantum i/ f ...theory. There are two forms of quantum 11f noise . In the first place C~ and Cn4 p n to quantum 1 / f noise theory. This would yield Hooge parameters S...Fundamental Quantum 1 / f Noise in Ultrasmall S~ iodcrD’vesadOtm.Dsgn P in. 12. PERSONAL AUTHOR(S) Handel, Peter H. (Princioal investiaat r) 13a. TYPE

  10. Demonstration of measurement-only blind quantum computing

    NASA Astrophysics Data System (ADS)

    Greganti, Chiara; Roehsner, Marie-Christine; Barz, Stefanie; Morimae, Tomoyuki; Walther, Philip

    2016-01-01

    Blind quantum computing allows for secure cloud networks of quasi-classical clients and a fully fledged quantum server. Recently, a new protocol has been proposed, which requires a client to perform only measurements. We demonstrate a proof-of-principle implementation of this measurement-only blind quantum computing, exploiting a photonic setup to generate four-qubit cluster states for computation and verification. Feasible technological requirements for the client and the device-independent blindness make this scheme very applicable for future secure quantum networks.

  11. Physical concepts in the development of constitutive equations

    NASA Technical Reports Server (NTRS)

    Cassenti, B. N.

    1985-01-01

    Proposed viscoplastic material models include in their formulation observed material response but do not generally incorporate principles from thermodynamics, statistical mechanics, and quantum mechanics. Numerous hypotheses were made for material response based on first principles. Many of these hypotheses were tested experimentally. The proposed viscoplastic theories and the experimental basis of these hypotheses must be checked against the hypotheses. The physics of thermodynamics, statistical mechanics and quantum mechanics, and the effects of defects, are reviewed for their application to the development of constitutive laws.

  12. GUP parameter from quantum corrections to the Newtonian potential

    NASA Astrophysics Data System (ADS)

    Scardigli, Fabio; Lambiase, Gaetano; Vagenas, Elias C.

    2017-04-01

    We propose a technique to compute the deformation parameter of the generalized uncertainty principle by using the leading quantum corrections to the Newtonian potential. We just assume General Relativity as theory of Gravitation, and the thermal nature of the GUP corrections to the Hawking spectrum. With these minimal assumptions our calculation gives, to first order, a specific numerical result. The physical meaning of this value is discussed, and compared with the previously obtained bounds on the generalized uncertainty principle deformation parameter.

  13. Horizons of description: Black holes and complementarity

    NASA Astrophysics Data System (ADS)

    Bokulich, Peter Joshua Martin

    Niels Bohr famously argued that a consistent understanding of quantum mechanics requires a new epistemic framework, which he named complementarity . This position asserts that even in the context of quantum theory, classical concepts must be used to understand and communicate measurement results. The apparent conflict between certain classical descriptions is avoided by recognizing that their application now crucially depends on the measurement context. Recently it has been argued that a new form of complementarity can provide a solution to the so-called information loss paradox. Stephen Hawking argues that the evolution of black holes cannot be described by standard unitary quantum evolution, because such evolution always preserves information, while the evaporation of a black hole will imply that any information that fell into it is irrevocably lost---hence a "paradox." Some researchers in quantum gravity have argued that this paradox can be resolved if one interprets certain seemingly incompatible descriptions of events around black holes as instead being complementary. In this dissertation I assess the extent to which this black hole complementarity can be undergirded by Bohr's account of the limitations of classical concepts. I begin by offering an interpretation of Bohr's complementarity and the role that it plays in his philosophy of quantum theory. After clarifying the nature of classical concepts, I offer an account of the limitations these concepts face, and argue that Bohr's appeal to disturbance is best understood as referring to these conceptual limits. Following preparatory chapters on issues in quantum field theory and black hole mechanics, I offer an analysis of the information loss paradox and various responses to it. I consider the three most prominent accounts of black hole complementarity and argue that they fail to offer sufficient justification for the proposed incompatibility between descriptions. The lesson that emerges from this dissertation is that we have as much to learn from the limitations facing our scientific descriptions as we do from the successes they enjoy. Because all of our scientific theories offer at best limited, effective accounts of the world, an important part of our interpretive efforts will be assessing the borders of these domains of description.

  14. Algorithmic complexity of quantum capacity

    NASA Astrophysics Data System (ADS)

    Oskouei, Samad Khabbazi; Mancini, Stefano

    2018-04-01

    We analyze the notion of quantum capacity from the perspective of algorithmic (descriptive) complexity. To this end, we resort to the concept of semi-computability in order to describe quantum states and quantum channel maps. We introduce algorithmic entropies (like algorithmic quantum coherent information) and derive relevant properties for them. Then we show that quantum capacity based on semi-computable concept equals the entropy rate of algorithmic coherent information, which in turn equals the standard quantum capacity. Thanks to this, we finally prove that the quantum capacity, for a given semi-computable channel, is limit computable.

  15. Quantum Monte Carlo studies of solvated systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Kathleen; Letchworth Weaver, Kendra; Arias, T. A.; Hennig, Richard G.

    2011-03-01

    Solvation qualitatively alters the energetics of diverse processes from protein folding to reactions on catalytic surfaces. An explicit description of the solvent in quantum-mechanical calculations requires both a large number of electrons and exploration of a large number of configurations in the phase space of the solvent. These problems can be circumvented by including the effects of solvent through a rigorous classical density-functional description of the liquid environment, thereby yielding free energies and thermodynamic averages directly, while eliminating the need for explicit consideration of the solvent electrons. We have implemented and tested this approach within the CASINO Quantum Monte Carlo code. Our method is suitable for calculations in any basis within CASINO, including b-spline and plane wave trial wavefunctions, and is equally applicable to molecules, surfaces, and crystals. For our preliminary test calculations, we use a simplified description of the solvent in terms of an isodensity continuum dielectric solvation approach, though the method is fully compatible with more reliable descriptions of the solvent we shall employ in the future.

  16. Quantum-Classical Correspondence Principle for Work Distributions

    NASA Astrophysics Data System (ADS)

    Jarzynski, Christopher; Quan, H. T.; Rahav, Saar

    2015-07-01

    For closed quantum systems driven away from equilibrium, work is often defined in terms of projective measurements of initial and final energies. This definition leads to statistical distributions of work that satisfy nonequilibrium work and fluctuation relations. While this two-point measurement definition of quantum work can be justified heuristically by appeal to the first law of thermodynamics, its relationship to the classical definition of work has not been carefully examined. In this paper, we employ semiclassical methods, combined with numerical simulations of a driven quartic oscillator, to study the correspondence between classical and quantal definitions of work in systems with 1 degree of freedom. We find that a semiclassical work distribution, built from classical trajectories that connect the initial and final energies, provides an excellent approximation to the quantum work distribution when the trajectories are assigned suitable phases and are allowed to interfere. Neglecting the interferences between trajectories reduces the distribution to that of the corresponding classical process. Hence, in the semiclassical limit, the quantum work distribution converges to the classical distribution, decorated by a quantum interference pattern. We also derive the form of the quantum work distribution at the boundary between classically allowed and forbidden regions, where this distribution tunnels into the forbidden region. Our results clarify how the correspondence principle applies in the context of quantum and classical work distributions and contribute to the understanding of work and nonequilibrium work relations in the quantum regime.

  17. Quantum-classical correspondence in the vicinity of periodic orbits

    NASA Astrophysics Data System (ADS)

    Kumari, Meenu; Ghose, Shohini

    2018-05-01

    Quantum-classical correspondence in chaotic systems is a long-standing problem. We describe a method to quantify Bohr's correspondence principle and calculate the size of quantum numbers for which we can expect to observe quantum-classical correspondence near periodic orbits of Floquet systems. Our method shows how the stability of classical periodic orbits affects quantum dynamics. We demonstrate our method by analyzing quantum-classical correspondence in the quantum kicked top (QKT), which exhibits both regular and chaotic behavior. We use our correspondence conditions to identify signatures of classical bifurcations even in a deep quantum regime. Our method can be used to explain the breakdown of quantum-classical correspondence in chaotic systems.

  18. The potential of using quantum theory to build models of cognition.

    PubMed

    Wang, Zheng; Busemeyer, Jerome R; Atmanspacher, Harald; Pothos, Emmanuel M

    2013-10-01

    Quantum cognition research applies abstract, mathematical principles of quantum theory to inquiries in cognitive science. It differs fundamentally from alternative speculations about quantum brain processes. This topic presents new developments within this research program. In the introduction to this topic, we try to answer three questions: Why apply quantum concepts to human cognition? How is quantum cognitive modeling different from traditional cognitive modeling? What cognitive processes have been modeled using a quantum account? In addition, a brief introduction to quantum probability theory and a concrete example is provided to illustrate how a quantum cognitive model can be developed to explain paradoxical empirical findings in psychological literature. © 2013 Cognitive Science Society, Inc.

  19. Black Hole Interior in Quantum Gravity.

    PubMed

    Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J

    2015-05-22

    We discuss the interior of a black hole in quantum gravity, in which black holes form and evaporate unitarily. The interior spacetime appears in the sense of complementarity because of special features revealed by the microscopic degrees of freedom when viewed from a semiclassical standpoint. The relation between quantum mechanics and the equivalence principle is subtle, but they are still consistent.

  20. Board Games and Board Game Design as Learning Tools for Complex Scientific Concepts: Some Experiences

    ERIC Educational Resources Information Center

    Chiarello, Fabio; Castellano, Maria Gabriella

    2016-01-01

    In this paper the authors report different experiences in the use of board games as learning tools for complex and abstract scientific concepts such as Quantum Mechanics, Relativity or nano-biotechnologies. In particular we describe "Quantum Race," designed for the introduction of Quantum Mechanical principles, "Lab on a chip,"…

  1. Lectures on Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Weinberg, Steven

    2015-09-01

    Preface; Notation; 1. Historical introduction; 2. Particle states in a central potential; 3. General principles of quantum mechanics; 4. Spin; 5. Approximations for energy eigenstates; 6. Approximations for time-dependent problems; 7. Potential scattering; 8. General scattering theory; 9. The canonical formalism; 10. Charged particles in electromagnetic fields; 11. The quantum theory of radiation; 12. Entanglement; Author index; Subject index.

  2. Fermionic reaction coordinates and their application to an autonomous Maxwell demon in the strong-coupling regime

    NASA Astrophysics Data System (ADS)

    Strasberg, Philipp; Schaller, Gernot; Schmidt, Thomas L.; Esposito, Massimiliano

    2018-05-01

    We establish a theoretical method which goes beyond the weak-coupling and Markovian approximations while remaining intuitive, using a quantum master equation in a larger Hilbert space. The method is applicable to all impurity Hamiltonians tunnel coupled to one (or multiple) baths of free fermions. The accuracy of the method is in principle not limited by the system-bath coupling strength, but rather by the shape of the spectral density and it is especially suited to study situations far away from the wide-band limit. In analogy to the bosonic case, we call it the fermionic reaction coordinate mapping. As an application, we consider a thermoelectric device made of two Coulomb-coupled quantum dots. We pay particular attention to the regime where this device operates as an autonomous Maxwell demon shoveling electrons against the voltage bias thanks to information. Contrary to previous studies, we do not rely on a Markovian weak-coupling description. Our numerical findings reveal that in the regime of strong coupling and non-Markovianity, the Maxwell demon is often doomed to disappear except in a narrow parameter regime of small power output.

  3. Differential geometry-based solvation and electrolyte transport models for biomolecular modeling: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Guowei; Baker, Nathan A.

    2016-11-11

    This chapter reviews the differential geometry-based solvation and electrolyte transport for biomolecular solvation that have been developed over the past decade. A key component of these methods is the differential geometry of surfaces theory, as applied to the solvent-solute boundary. In these approaches, the solvent-solute boundary is determined by a variational principle that determines the major physical observables of interest, for example, biomolecular surface area, enclosed volume, electrostatic potential, ion density, electron density, etc. Recently, differential geometry theory has been used to define the surfaces that separate the microscopic (solute) domains for biomolecules from the macroscopic (solvent) domains. In thesemore » approaches, the microscopic domains are modeled with atomistic or quantum mechanical descriptions, while continuum mechanics models (including fluid mechanics, elastic mechanics, and continuum electrostatics) are applied to the macroscopic domains. This multiphysics description is integrated through an energy functional formalism and the resulting Euler-Lagrange equation is employed to derive a variety of governing partial differential equations for different solvation and transport processes; e.g., the Laplace-Beltrami equation for the solvent-solute interface, Poisson or Poisson-Boltzmann equations for electrostatic potentials, the Nernst-Planck equation for ion densities, and the Kohn-Sham equation for solute electron density. Extensive validation of these models has been carried out over hundreds of molecules, including proteins and ion channels, and the experimental data have been compared in terms of solvation energies, voltage-current curves, and density distributions. We also propose a new quantum model for electrolyte transport.« less

  4. Towards a space-borne quantum gravity gradiometer: progress in laboratory demonstration

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Kohel, James M.; Kellogg, James R.; Maleki, Lute

    2005-01-01

    This paper describes the working principles and technical benefits of atom-wave interferometer-based inertial sensors, and gives a progress report on the development of a quantum gravity gradiometer for space applications at JPL.

  5. Crypto-Unitary Forms of Quantum Evolution Operators

    NASA Astrophysics Data System (ADS)

    Znojil, Miloslav

    2013-06-01

    The description of quantum evolution using unitary operator {u}(t)=exp(-i{h}t) requires that the underlying self-adjoint quantum Hamiltonian {h} remains time-independent. In a way extending the so called {PT}-symmetric quantum mechanics to the models with manifestly time-dependent "charge" {C}(t) we propose and describe an extension of such an exponential-operator approach to evolution to the manifestly time-dependent self-adjoint quantum Hamiltonians {h}(t).

  6. Molecular nanomagnets with switchable coupling for quantum simulation

    DOE PAGES

    Chiesa, Alessandro; Whitehead, George F. S.; Carretta, Stefano; ...

    2014-12-11

    Molecular nanomagnets are attractive candidate qubits because of their wide inter- and intra-molecular tunability. Uniform magnetic pulses could be exploited to implement one- and two-qubit gates in presence of a properly engineered pattern of interactions, but the synthesis of suitable and potentially scalable supramolecular complexes has proven a very hard task. Indeed, no quantum algorithms have ever been implemented, not even a proof-of-principle two-qubit gate. In this paper we show that the magnetic couplings in two supramolecular {Cr7Ni}-Ni-{Cr7Ni} assemblies can be chemically engineered to fit the above requisites for conditional gates with no need of local control. Microscopic parameters aremore » determined by a recently developed many-body ab-initio approach and used to simulate quantum gates. We find that these systems are optimal for proof-of-principle two-qubit experiments and can be exploited as building blocks of scalable architectures for quantum simulation.« less

  7. Semiconductor-inspired design principles for superconducting quantum computing.

    PubMed

    Shim, Yun-Pil; Tahan, Charles

    2016-03-17

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.

  8. Entanglement-Based Machine Learning on a Quantum Computer

    NASA Astrophysics Data System (ADS)

    Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.

    2015-03-01

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  9. What Is Light?. Students' Reflections on the Wave-Particle Duality of Light and the Nature of Physics

    NASA Astrophysics Data System (ADS)

    Henriksen, Ellen Karoline; Angell, Carl; Vistnes, Arnt Inge; Bungum, Berit

    2018-03-01

    Quantum physics describes light as having both particle and wave properties; however, there is no consensus about how to interpret this duality on an ontological level. This article explores how pre-university physics students, while working with learning material focusing on historical-philosophical aspects of quantum physics, interpreted the wave-particle duality of light and which views they expressed on the nature of physics. A thematic analysis was performed on 133 written responses about the nature of light, given in the beginning of the teaching sequence, and 55 audio-recorded small-group discussions addressing the wave-particle duality, given later in the sequence. Most students initially expressed a wave and particle view of light, but some of these gave an "uncritical duality description", accepting without question the two ontologically different descriptions of light. In the small-group discussions, students expressed more nuanced views. Many tried to reconcile the two descriptions using semi-classical reasoning; others entered into philosophical discussions about the status of the current scientific description of light and expected science to come up with a better model. Some found the wave description of light particularly challenging and lacked a conception of "what is waving". Many seemed to implicitly take a realist view on the description of physical phenomena, contrary with the Copenhagen interpretation which is prevalent in textbooks. Results are discussed in light of different interpretations of quantum physics, and we conclude by arguing for a historical-philosophical perspective as an entry point for upper secondary physics students to explore the development and interpretation of quantum physical concepts.

  10. Publicity, Privacy, and Permanence of Information

    NASA Astrophysics Data System (ADS)

    Bennett, Charles H.

    2006-11-01

    The quantum principles of superposition and entanglement have led to a recasting of the foundations of information and computation theory, and are especially helpful in understanding the nature of privacy. The most private information, exemplified by a quantum eraser experiment, is best regarded as existing only conditionally and temporarily-after the experiment is over no trace remains. Less private is classically-secret information-quantum information that has decohered, and thus become recoverable in principle, though not in practice, from portions of the environment. Finally there is public information, which has been replicated so thoroughly throughout the environment as to be infeasible to conceal. The Internet has caused an explosion of public information, with the beneficial side effect of making it harder for despots to rewrite the history of their misdeeds, and it is tempting to hope that all macroscopic information is permanent, making such cover-ups impossible in principle if not in practice. However, by comparing entropy flows into and out of the Earth with estimates of the planet's storage capacity, we conclude that most macroscopic information-for example the pattern of sand grains on an ancient beach-is impermanent, in the sense of becoming irrecoverable in principle from the Earth though still recorded in the Universe.

  11. First-principles anharmonic quantum calculations for peptide spectroscopy: VSCF calculations and comparison with experiments.

    PubMed

    Roy, Tapta Kanchan; Sharma, Rahul; Gerber, R Benny

    2016-01-21

    First-principles quantum calculations for anharmonic vibrational spectroscopy of three protected dipeptides are carried out and compared with experimental data. Using hybrid HF/MP2 potentials, the Vibrational Self-Consistent Field with Second-Order Perturbation Correction (VSCF-PT2) algorithm is used to compute the spectra without any ad hoc scaling or fitting. All of the vibrational modes (135 for the largest system) are treated quantum mechanically and anharmonically using full pair-wise coupling potentials to represent the interaction between different modes. In the hybrid potential scheme the MP2 method is used for the harmonic part of the potential and a modified HF method is used for the anharmonic part. The overall agreement between computed spectra and experiment is very good and reveals different signatures for different conformers. This study shows that first-principles spectroscopic calculations of good accuracy are possible for dipeptides hence it opens possibilities for determination of dipeptide conformer structures by comparison of spectroscopic calculations with experiment.

  12. Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas

    NASA Astrophysics Data System (ADS)

    Zhu, Ding Yu; Shen, Jian Qi

    2016-03-01

    The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth’s gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation.

  13. Nuclear quantum effects of light and heavy water studied by all-electron first principles path integral simulations

    NASA Astrophysics Data System (ADS)

    Machida, Masahiko; Kato, Koichiro; Shiga, Motoyuki

    2018-03-01

    The isotopologs of liquid water, H2O, D2O, and T2O, are studied systematically by first principles PIMD simulations, in which the whole entity of the electrons and nuclei are treated quantum mechanically. The simulation results are in reasonable agreement with available experimental data on isotope effects, in particular, on the peak shift in the radial distributions of H2O and D2O and the shift in the evaporation energies. It is found that, due to differences in nuclear quantum effects, the H atoms in the OH bonds more easily access the dissociative region up to the hydrogen bond center than the D (T) atoms in the OD (OT) bonds. The accuracy and limitation in the use of the current density-functional-theory-based first principles PIMD simulations are also discussed. It is argued that the inclusion of the dispersion correction or relevant improvements in the density functionals are required for the quantitative estimation of isotope effects.

  14. Optimal Control for Quantum Driving of Two-Level Systems

    NASA Astrophysics Data System (ADS)

    Qi, Xiao-Qiu

    2018-01-01

    In this paper, the optimal quantum control of two-level systems is studied by the decompositions of SU(2). Using the Pontryagin maximum principle, the minimum time of quantum control is analyzed in detail. The solution scheme of the optimal control function is given in the general case. Finally, two specific cases, which can be applied in many quantum systems, are used to illustrate the scheme, while the corresponding optimal control functions are obtained.

  15. Transfer and retrieval of optical coherence to strain-compensated quantum dots using a heterodyne photon-echo technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kazumasa; Ishi-Hayase, Junko; Akahane, Kouichi

    2013-12-04

    We performed the proof-of-principle demonstration of photon-echo quantum memory using strain-compensated InAs quantum dot ensemble in the telecommunication wavelength range. We succeeded in transfer and retrieval of relative phase of a time-bin pulse with a high fidelity. Our demonstration suggests the possibility of realizing ultrabroadband, high time-bandwidth products, multi-mode quantum memory which is operable at telecommunication wavelength.

  16. More on quantum groups from the quantization point of view

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1994-12-01

    Star products on the classical double group of a simple Lie group and on corresponding symplectic groupoids are given so that the quantum double and the “quantized tangent bundle” are obtained in the deformation description. “Complex” quantum groups and bicovariant quantum Lie algebras are discussed from this point of view. Further we discuss the quantization of the Poisson structure on the symmetric algebra S(g) leading to the quantized enveloping algebra U h (g) as an example of biquantization in the sense of Turaev. Description of U h (g) in terms of the generators of the bicovariant differential calculus on F(G q ) is very convenient for this purpose. Finaly we interpret in the deformation framework some well known properties of compact quantum groups as simple consequences of corresponding properties of classical compact Lie groups. An analogue of the classical Kirillov's universal character formula is given for the unitary irreducble representation in the compact case.

  17. Practical characterization of quantum devices without tomography

    NASA Astrophysics Data System (ADS)

    Landon-Cardinal, Olivier; Flammia, Steven; Silva, Marcus; Liu, Yi-Kai; Poulin, David

    2012-02-01

    Quantum tomography is the main method used to assess the quality of quantum information processing devices, but its complexity presents a major obstacle for the characterization of even moderately large systems. Part of the reason for this complexity is that tomography generates much more information than is usually sought. Taking a more targeted approach, we develop schemes that enable (i) estimating the ?delity of an experiment to a theoretical ideal description, (ii) learning which description within a reduced subset best matches the experimental data. Both these approaches yield a signi?cant reduction in resources compared to tomography. In particular, we show how to estimate the ?delity between a predicted pure state and an arbitrary experimental state using only a constant number of Pauli expectation values selected at random according to an importance-weighting rule. In addition, we propose methods for certifying quantum circuits and learning continuous-time quantum dynamics that are described by local Hamiltonians or Lindbladians.

  18. Quantum reversibility is relative, or does a quantum measurement reset initial conditions?

    PubMed

    Zurek, Wojciech H

    2018-07-13

    I compare the role of the information in classical and quantum dynamics by examining the relation between information flows in measurements and the ability of observers to reverse evolutions. I show that in the Newtonian dynamics reversibility is unaffected by the observer's retention of the information about the measurement outcome. By contrast-even though quantum dynamics is unitary, hence, reversible-reversing quantum evolution that led to a measurement becomes, in principle, impossible for an observer who keeps the record of its outcome. Thus, quantum irreversibility can result from the information gain rather than just its loss-rather than just an increase of the (von Neumann) entropy. Recording of the outcome of the measurement resets, in effect, initial conditions within the observer's (branch of) the Universe. Nevertheless, I also show that the observer's friend-an agent who knows what measurement was successfully carried out and can confirm that the observer knows the outcome but resists his curiosity and does not find out the result-can, in principle, undo the measurement. This relativity of quantum reversibility sheds new light on the origin of the arrow of time and elucidates the role of information in classical and quantum physics. Quantum discord appears as a natural measure of the extent to which dissemination of information about the outcome affects the ability to reverse the measurement.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  19. Quantum Computation: Entangling with the Future

    NASA Technical Reports Server (NTRS)

    Jiang, Zhang

    2017-01-01

    Commercial applications of quantum computation have become viable due to the rapid progress of the field in the recent years. Efficient quantum algorithms are discovered to cope with the most challenging real-world problems that are too hard for classical computers. Manufactured quantum hardware has reached unprecedented precision and controllability, enabling fault-tolerant quantum computation. Here, I give a brief introduction on what principles in quantum mechanics promise its unparalleled computational power. I will discuss several important quantum algorithms that achieve exponential or polynomial speedup over any classical algorithm. Building a quantum computer is a daunting task, and I will talk about the criteria and various implementations of quantum computers. I conclude the talk with near-future commercial applications of a quantum computer.

  20. The Classical Theory of Light Colors: a Paradigm for Description of Particle Interactions

    NASA Astrophysics Data System (ADS)

    Mazilu, Nicolae; Agop, Maricel; Gatu, Irina; Iacob, Dan Dezideriu; Butuc, Irina; Ghizdovat, Vlad

    2016-06-01

    The color is an interaction property: of the interaction of light with matter. Classically speaking it is therefore akin to the forces. But while forces engendered the mechanical view of the world, the colors generated the optical view. One of the modern concepts of interaction between the fundamental particles of matter - the quantum chromodynamics - aims to fill the gap between mechanics and optics, in a specific description of strong interactions. We show here that this modern description of the particle interactions has ties with both the classical and quantum theories of light, regardless of the connection between forces and colors. In a word, the light is a universal model in the description of matter. The description involves classical Yang-Mills fields related to color.

  1. Theory of atomic spectral emission intensity

    NASA Astrophysics Data System (ADS)

    Yngström, Sten

    1994-07-01

    The theoretical derivation of a new spectral line intensity formula for atomic radiative emission is presented. The theory is based on first principles of quantum physics, electrodynamics, and statistical physics. Quantum rules lead to revision of the conventional principle of local thermal equilibrium of matter and radiation. Study of electrodynamics suggests absence of spectral emission from fractions of the numbers of atoms and ions in a plasma due to radiative inhibition caused by electromagnetic force fields. Statistical probability methods are extended by the statement: A macroscopic physical system develops in the most probable of all conceivable ways consistent with the constraining conditions for the system. The crucial role of statistical physics in transforming quantum logic into common sense logic is stressed. The theory is strongly supported by experimental evidence.

  2. Thermodynamics of a class of regular black holes with a generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Maluf, R. V.; Neves, Juliano C. S.

    2018-05-01

    In this article, we present a study on thermodynamics of a class of regular black holes. Such a class includes Bardeen and Hayward regular black holes. We obtained thermodynamic quantities like the Hawking temperature, entropy, and heat capacity for the entire class. As part of an effort to indicate some physical observable to distinguish regular black holes from singular black holes, we suggest that regular black holes are colder than singular black holes. Besides, contrary to the Schwarzschild black hole, that class of regular black holes may be thermodynamically stable. From a generalized uncertainty principle, we also obtained the quantum-corrected thermodynamics for the studied class. Such quantum corrections provide a logarithmic term for the quantum-corrected entropy.

  3. Moments of the Wigner function and Renyi entropies at freeze-out

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Zalewski, K.

    2006-03-01

    The relation between Renyi entropies and moments of the Wigner function, representing the quantum mechanical description of the M-particle semi-inclusive distribution at freeze-out, is investigated. It is shown that in the limit of infinite volume of the system, the classical and quantum descriptions are equivalent. Finite volume corrections are derived and shown to be small for systems encountered in relativistic heavy ion collisions.

  4. Discord as a quantum resource for bi-partite communication

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Helen M.; Gu, Mile; Assad, Syed M.; Symul, Thomas; Modi, Kavan; Ralph, Timothy C.; Vedral, Vlatko; Lam, Ping Koy

    2014-12-01

    Coherent interactions that generate negligible entanglement can still exhibit unique quantum behaviour. This observation has motivated a search beyond entanglement for a complete description of all quantum correlations. Quantum discord is a promising candidate. Here, we experimentally demonstrate that under certain measurement constraints, discord between bipartite systems can be consumed to encode information that can only be accessed by coherent quantum interactions. The inability to access this information by any other means allows us to use discord to directly quantify this `quantum advantage'.

  5. Quantum key distribution protocol based on contextuality monogamy

    NASA Astrophysics Data System (ADS)

    Singh, Jaskaran; Bharti, Kishor; Arvind

    2017-06-01

    The security of quantum key distribution (QKD) protocols hinges upon features of physical systems that are uniquely quantum in nature. We explore the role of quantumness, as qualified by quantum contextuality, in a QKD scheme. A QKD protocol based on the Klyachko-Can-Binicioğlu-Shumovsky (KCBS) contextuality scenario using a three-level quantum system is presented. We explicitly show the unconditional security of the protocol by a generalized contextuality monogamy relationship based on the no-disturbance principle. This protocol provides a new framework for QKD which has conceptual and practical advantages over other protocols.

  6. Fragments of Science: Festschrift for Mendel Sachs

    NASA Astrophysics Data System (ADS)

    Ram, Michael

    1999-11-01

    The Table of Contents for the full book PDF is as follows: * Preface * Sketches at a Symposium * For Mendel Sachs * The Constancy of an Angular Point of View * Information-Theoretic Logic and Transformation-Theoretic Logic * The Invention of the Transistor and the Realization of the Hole * Mach's Principle, Newtonian Gravitation, Absolute Space, and Einstein * The Sun, Our Variable Star * The Inconstant Sun: Symbiosis of Time Variations of Sunspots, Atmospheric Radiocarbon, Aurorae, and Tree Ring Growth * Other Worlds * Super-Classical Quantum Mechanics * A Probabilistic Approach to the Phase Problem of X-Ray Crystallography * A Nonlinear Twist on Inertia Gives Unified Electroweak Gravitation * Neutrino Oscillations * On an Incompleteness in the General-Relativistic Description of Gravitation * All Truth is One * Ideas of Physics: Correspondence between Colleagues * The Influence of the Physics and Philosophy of Einstein's Relativity on My Attitudes in Science: An Autobiography

  7. cDF Theory Software for mesoscopic modeling of equilibrium and transport phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-12-01

    The approach is based on classical Density Functional Theory ((cDFT) coupled with the Poisson-Nernst-Planck (PNP) transport kinetics model and quantum mechanical description of short-range interaction and elementary transport processes. The model we proposed and implemented is fully atomistic, taking into account pairwise short-range and manybody long-range interactions. But in contrast to standard molecular dynamics (MD) simulations, where long-range manybody interactions are evaluated as a sum of pair-wise atom-atom contributions, we include them analytically based on wellestablished theories of electrostatic and excluded volume interactions in multicomponent systems. This feature of the PNP/cDFT approach allows us to reach well beyond the length-scalesmore » accessible to MD simulations, while retaining the essential physics of interatomic interactions from first principles and in a parameter-free fashion.« less

  8. 77 FR 9224 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... following exempt wholesale generator filings: Docket Numbers: EG12-31-000. Applicants: Quantum Choctaw Power, LLC. Description: Quantum Choctaw Power Notice of Self-certification of Exempt Wholesale Generator...

  9. Generalized description of few-electron quantum dots at zero and nonzero magnetic fields

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    2007-01-01

    We introduce a generalized ground state variational wavefunction for parabolically confined two-dimensional quantum dots that equally applies to both cases of weak (or zero) and strong magnetic field. The wavefunction has a Laughlin-like form in the limit of infinite magnetic field, but transforms into a Jastrow-Slater wavefunction at zero magnetic field. At intermediate magnetic fields (where a fraction of electrons is spin-reversed) it resembles Halperin's spin-reversed wavefunction for the fractional quantum Hall effect. The properties of this variational wavefunction are illustrated for the case of two-dimensional quantum dot helium (a system of two interacting electrons in a parabolic confinement potential) where we find the description to be an excellent representation of the true ground state for the whole range of magnetic fields.

  10. Superfluid helium quantum interference devices: physics and applications.

    PubMed

    Sato, Y; Packard, R E

    2012-01-01

    We present an overview of recent developments related to superfluid helium quantum interference devices (SHeQUIDs). We discuss the physics of two reservoirs of superfluid helium coupled together and describe the quantum oscillations that result from varying the coupling strength. We explain the principles behind SHeQUIDs that can be built based on these oscillations and review some techniques and applications.

  11. Implementing quantum logic gates with gradient ascent pulse engineering: principles and practicalities.

    PubMed

    Rowland, Benjamin; Jones, Jonathan A

    2012-10-13

    We briefly describe the use of gradient ascent pulse engineering (GRAPE) pulses to implement quantum logic gates in nuclear magnetic resonance quantum computers, and discuss a range of simple extensions to the core technique. We then consider a range of difficulties that can arise in practical implementations of GRAPE sequences, reflecting non-idealities in the experimental systems used.

  12. Entanglement Entropy of the Six-Dimensional Horowitz-Strominger Black Hole

    NASA Astrophysics Data System (ADS)

    Li, Huai-Fan; Zhang, Sheng-Li; Wu, Yue-Qin; Ren, Zhao

    By using the entanglement entropy method, the statistical entropy of the Bose and Fermi fields in a thin film is calculated and the Bekenstein-Hawking entropy of six-dimensional Horowitz-Strominger black hole is obtained. Here, the Bose and Fermi fields are entangled with the quantum states in six-dimensional Horowitz-Strominger black hole and the fields are outside of the horizon. The divergence of brick-wall model is avoided without any cutoff by the new equation of state density obtained with the generalized uncertainty principle. The calculation implies that the high density quantum states near the event horizon are strongly correlated with the quantum states in black hole. The black hole entropy is a quantum effect. It is an intrinsic characteristic of space-time. The ultraviolet cutoff in the brick-wall model is unreasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. Using the quantum statistical method, we directly calculate the partition function of the Bose and Fermi fields under the background of the six-dimensional black hole. The difficulty in solving the wave equations of various particles is overcome.

  13. Quantum Spacetime: Mimicry of Paths and Black Holes

    NASA Astrophysics Data System (ADS)

    Spaans, Marco

    2015-08-01

    Since its inception, general relativity has been unreceptive to a marriage with the quantum aspects of our universe. Following the ideas of Einstein, one may pursue an approach that allows spacetime itself to take center stage. The quantum properties of matter are then carried by the dynamics of spacetime shape and connectivity. This monograph introduces the reader to the foundations of quantum spacetime in a manner accessible to researchers and students. Likewise, interested laymen that lack a strong background in quantum mechanics or spacetime studies but are keen to learn will find this book worthwhile. It is shown from first principles how spacetime is globally built up by paths which constitute entire histories in four dimensions. The central physical idea is that the collective existence of observers and observed derives from one mimicking the other unremittingly, thereby inducing tangible reality. This world of identity by mimicry creates a multitude of interacting histories. Throughout the text, thought experiments are used to derive physical principles. Obtained results are therefore intuitive and accessible to non-experts. This monograph also discusses consequences of quantum spacetime for black holes, dark energy, inflation, the Higgs boson, and the multiverse.

  14. Simple expression for the quantum Fisher information matrix

    NASA Astrophysics Data System (ADS)

    Šafránek, Dominik

    2018-04-01

    Quantum Fisher information matrix (QFIM) is a cornerstone of modern quantum metrology and quantum information geometry. Apart from optimal estimation, it finds applications in description of quantum speed limits, quantum criticality, quantum phase transitions, coherence, entanglement, and irreversibility. We derive a surprisingly simple formula for this quantity, which, unlike previously known general expression, does not require diagonalization of the density matrix, and is provably at least as efficient. With a minor modification, this formula can be used to compute QFIM for any finite-dimensional density matrix. Because of its simplicity, it could also shed more light on the quantum information geometry in general.

  15. Consistent description of quantum Brownian motors operating at strong friction.

    PubMed

    Machura, L; Kostur, M; Hänggi, P; Talkner, P; Luczka, J

    2004-09-01

    A quantum Smoluchowski equation is put forward that consistently describes thermal quantum states. In particular, it notably does not induce a violation of the second law of thermodynamics. This so modified kinetic equation is applied to study analytically directed quantum transport at strong friction in arbitrarily shaped ratchet potentials that are driven by nonthermal two-state noise. Depending on the mutual interplay of quantum tunneling and quantum reflection these quantum corrections can induce both, a sizable enhancement or a suppression of transport. Moreover, the threshold for current reversals becomes markedly shifted due to such quantum fluctuations.

  16. Experimental Blind Quantum Computing for a Classical Client.

    PubMed

    Huang, He-Liang; Zhao, Qi; Ma, Xiongfeng; Liu, Chang; Su, Zu-En; Wang, Xi-Lin; Li, Li; Liu, Nai-Le; Sanders, Barry C; Lu, Chao-Yang; Pan, Jian-Wei

    2017-08-04

    To date, blind quantum computing demonstrations require clients to have weak quantum devices. Here we implement a proof-of-principle experiment for completely classical clients. Via classically interacting with two quantum servers that share entanglement, the client accomplishes the task of having the number 15 factorized by servers who are denied information about the computation itself. This concealment is accompanied by a verification protocol that tests servers' honesty and correctness. Our demonstration shows the feasibility of completely classical clients and thus is a key milestone towards secure cloud quantum computing.

  17. Experimental Blind Quantum Computing for a Classical Client

    NASA Astrophysics Data System (ADS)

    Huang, He-Liang; Zhao, Qi; Ma, Xiongfeng; Liu, Chang; Su, Zu-En; Wang, Xi-Lin; Li, Li; Liu, Nai-Le; Sanders, Barry C.; Lu, Chao-Yang; Pan, Jian-Wei

    2017-08-01

    To date, blind quantum computing demonstrations require clients to have weak quantum devices. Here we implement a proof-of-principle experiment for completely classical clients. Via classically interacting with two quantum servers that share entanglement, the client accomplishes the task of having the number 15 factorized by servers who are denied information about the computation itself. This concealment is accompanied by a verification protocol that tests servers' honesty and correctness. Our demonstration shows the feasibility of completely classical clients and thus is a key milestone towards secure cloud quantum computing.

  18. Experimental preparation and verification of quantum money

    NASA Astrophysics Data System (ADS)

    Guan, Jian-Yu; Arrazola, Juan Miguel; Amiri, Ryan; Zhang, Weijun; Li, Hao; You, Lixing; Wang, Zhen; Zhang, Qiang; Pan, Jian-Wei

    2018-03-01

    A quantum money scheme enables a trusted bank to provide untrusted users with verifiable quantum banknotes that cannot be forged. In this work, we report a proof-of-principle experimental demonstration of the preparation and verification of unforgeable quantum banknotes. We employ a security analysis that takes experimental imperfections fully into account. We measure a total of 3.6 ×106 states in one verification round, limiting the forging probability to 10-7 based on the security analysis. Our results demonstrate the feasibility of preparing and verifying quantum banknotes using currently available experimental techniques.

  19. 76 FR 75540 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    .... Applicants: Choctaw Gas Generation, LLC, Quantum Choctaw Power, LLC. Description: Application For... For Expedited Action of Choctaw Gas Generation, LLC and Quantum Choctaw Power, LLC. Filed Date: 11/22...

  20. Control of noisy quantum systems: Field-theory approach to error mitigation

    NASA Astrophysics Data System (ADS)

    Hipolito, Rafael; Goldbart, Paul M.

    2016-04-01

    We consider the basic quantum-control task of obtaining a target unitary operation (i.e., a quantum gate) via control fields that couple to the quantum system and are chosen to best mitigate errors resulting from time-dependent noise, which frustrate this task. We allow for two sources of noise: fluctuations in the control fields and fluctuations arising from the environment. We address the issue of control-error mitigation by means of a formulation rooted in the Martin-Siggia-Rose (MSR) approach to noisy, classical statistical-mechanical systems. To do this, we express the noisy control problem in terms of a path integral, and integrate out the noise to arrive at an effective, noise-free description. We characterize the degree of success in error mitigation via a fidelity metric, which characterizes the proximity of the sought-after evolution to ones that are achievable in the presence of noise. Error mitigation is then best accomplished by applying the optimal control fields, i.e., those that maximize the fidelity subject to any constraints obeyed by the control fields. To make connection with MSR, we reformulate the fidelity in terms of a Schwinger-Keldysh (SK) path integral, with the added twist that the "forward" and "backward" branches of the time contour are inequivalent with respect to the noise. The present approach naturally and readily allows the incorporation of constraints on the control fields—a useful feature in practice, given that constraints feature in all real experiments. In addition to addressing the noise average of the fidelity, we consider its full probability distribution. The information content present in this distribution allows one to address more complex questions regarding error mitigation, including, in principle, questions of extreme value statistics, i.e., the likelihood and impact of rare instances of the fidelity and how to harness or cope with their influence. We illustrate this MSR-SK reformulation by considering a model system consisting of a single spin-s freedom (with s arbitrary), focusing on the case of 1 /f noise in the weak-noise limit. We discover that optimal error mitigation is accomplished via a universal control field protocol that is valid for all s , from the qubit (i.e., s =1 /2 ) case to the classical (i.e., s →∞ ) limit. In principle, this MSR-SK approach provides a transparent framework for addressing quantum control in the presence of noise for systems of arbitrary complexity.

  1. Adaptive Schools in a Quantum Universe.

    ERIC Educational Resources Information Center

    Garmston, Robert; Wellman, Bruce

    1995-01-01

    Information from quantum mechanics, chaos theory, fractal geometry, and the new biology can help educators rethink school-improvement approaches. Chaos and order exist simultaneously. Adaptability, the central operating principle of successful organizations, stems from five human energy fields: efficacy, flexibility, craftsmanship, consciousness,…

  2. Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory

    NASA Technical Reports Server (NTRS)

    Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.

    1990-01-01

    New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.

  3. Split Orthogonal Group: A Guiding Principle for Sign-Problem-Free Fermionic Simulations

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Liu, Ye-Hua; Iazzi, Mauro; Troyer, Matthias; Harcos, Gergely

    2015-12-01

    We present a guiding principle for designing fermionic Hamiltonians and quantum Monte Carlo (QMC) methods that are free from the infamous sign problem by exploiting the Lie groups and Lie algebras that appear naturally in the Monte Carlo weight of fermionic QMC simulations. Specifically, rigorous mathematical constraints on the determinants involving matrices that lie in the split orthogonal group provide a guideline for sign-free simulations of fermionic models on bipartite lattices. This guiding principle not only unifies the recent solutions of the sign problem based on the continuous-time quantum Monte Carlo methods and the Majorana representation, but also suggests new efficient algorithms to simulate physical systems that were previously prohibitive because of the sign problem.

  4. Proposal and proof-of-principle demonstration of non-destructive detection of photonic qubits using a Tm:LiNbO3 waveguide

    PubMed Central

    Sinclair, N.; Heshami, K.; Deshmukh, C.; Oblak, D.; Simon, C.; Tittel, W.

    2016-01-01

    Non-destructive detection of photonic qubits is an enabling technology for quantum information processing and quantum communication. For practical applications, such as quantum repeaters and networks, it is desirable to implement such detection in a way that allows some form of multiplexing as well as easy integration with other components such as solid-state quantum memories. Here, we propose an approach to non-destructive photonic qubit detection that promises to have all the mentioned features. Mediated by an impurity-doped crystal, a signal photon in an arbitrary time-bin qubit state modulates the phase of an intense probe pulse that is stored during the interaction. Using a thulium-doped waveguide in LiNbO3, we perform a proof-of-principle experiment with macroscopic signal pulses, demonstrating the expected cross-phase modulation as well as the ability to preserve the coherence between temporal modes. Our findings open the path to a new key component of quantum photonics based on rare-earth-ion-doped crystals. PMID:27853153

  5. Revealing a quantum feature of dimensionless uncertainty in linear and quadratic potentials by changing potential intervals

    NASA Astrophysics Data System (ADS)

    Kheiri, R.

    2016-09-01

    As an undergraduate exercise, in an article (2012 Am. J. Phys. 80 780-14), quantum and classical uncertainties for dimensionless variables of position and momentum were evaluated in three potentials: infinite well, bouncing ball, and harmonic oscillator. While original quantum uncertainty products depend on {{\\hslash }} and the number of states (n), a dimensionless approach makes the comparison between quantum uncertainty and classical dispersion possible by excluding {{\\hslash }}. But the question is whether the uncertainty still remains dependent on quantum number n. In the above-mentioned article, there lies this contrast; on the one hand, the dimensionless quantum uncertainty of the potential box approaches classical dispersion only in the limit of large quantum numbers (n\\to ∞ )—consistent with the correspondence principle. On the other hand, similar evaluations for bouncing ball and harmonic oscillator potentials are equal to their classical counterparts independent of n. This equality may hide the quantum feature of low energy levels. In the current study, we change the potential intervals in order to make them symmetric for the linear potential and non-symmetric for the quadratic potential. As a result, it is shown in this paper that the dimensionless quantum uncertainty of these potentials in the new potential intervals is expressed in terms of quantum number n. In other words, the uncertainty requires the correspondence principle in order to approach the classical limit. Therefore, it can be concluded that the dimensionless analysis, as a useful pedagogical method, does not take away the quantum feature of the n-dependence of quantum uncertainty in general. Moreover, our numerical calculations include the higher powers of the position for the potentials.

  6. Traceable quantum sensing and metrology relied up a quantum electrical triangle principle

    NASA Astrophysics Data System (ADS)

    Fang, Yan; Wang, Hengliang; Yang, Xinju; Wei, Jingsong

    2016-11-01

    Hybrid quantum state engineering in quantum communication and imaging1-2 needs traceable quantum sensing and metrology, which are especially critical to quantum internet3 and precision measurements4 that are important across all fields of science and technology-. We aim to set up a mode of traceable quantum sensing and metrology. We developed a method by specially transforming an atomic force microscopy (AFM) and a scanning tunneling microscopy (STM) into a conducting atomic force microscopy (C-AFM) with a feedback control loop, wherein quantum entanglement enabling higher precision was relied upon a set-point, a visible light laser beam-controlled an interferometer with a surface standard at z axis, diffractometers with lateral standards at x-y axes, four-quadrant photodiode detectors, a scanner and its image software, a phase-locked pre-amplifier, a cantilever with a kHz Pt/Au conducting tip, a double barrier tunneling junction model, a STM circuit by frequency modulation and a quantum electrical triangle principle involving single electron tunneling effect, quantum Hall effect and Josephson effect5. The average and standard deviation result of repeated measurements on a 1 nm height local micro-region of nanomedicine crystal hybrid quantum state engineering surface and its differential pA level current and voltage (dI/dV) in time domains by using C-AFM was converted into an international system of units: Siemens (S), an indicated value 0.86×10-12 S (n=6) of a relative standard uncertainty was superior over a relative standard uncertainty reference value 2.3×10-10 S of 2012 CODADA quantized conductance6. It is concluded that traceable quantum sensing and metrology is emerging.

  7. Quantum dynamics of the Eley-Rideal hydrogen formation reaction on graphite at typical interstellar cloud conditions.

    PubMed

    Casolo, Simone; Martinazzo, Rocco; Bonfanti, Matteo; Tantardini, Gian Franco

    2009-12-31

    Eley-Rideal formation of hydrogen molecules on graphite, as well as competing collision induced processes, are investigated quantum dynamically at typical interstellar cloud conditions, focusing in particular on gas-phase temperatures below 100 K, where much of the chemistry of the so-called diffuse clouds takes place on the surface of bare carbonaceous dust grains. Collisions of gas-phase hydrogen atoms with both chemisorbed and physisorbed species are considered using available potential energy surfaces (Sha et al., J. Chem. Phys.2002 116, 7158), and state-to-state, energy-resolved cross sections are computed for a number of initial vibrational states of the hydrogen atoms bound to the surface. Results show that (i) product molecules are internally hot in both cases, with vibrational distributions sharply peaked around few (one or two) vibrational levels, and (ii) cross sections for chemisorbed species are 2-3x smaller than those for physisorbed ones. In particular, we find that H(2) formation cross sections out of chemically bound species decrease steadily when the temperature drops below approximately 1000 K, and this is likely due to a quantum reflection phenomenon. This suggests that such Eley-Rideal reaction is all but efficient in the relevant gas-phase temperature range, even when gas-phase H atoms happen to chemisorb barrierless to the surface as observed, e.g., for forming so-called para dimers. Comparison with results from classical trajectory calculations highlights the need of a quantum description of the dynamics in the astrophysically relevant energy range, whereas preliminary results of an extensive first-principles investigation of the reaction energetics reveal the importance of the adopted substrate model.

  8. Quantum-like model for the adaptive dynamics of the genetic regulation of E. coli's metabolism of glucose/lactose.

    PubMed

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2012-06-01

    We developed a quantum-like model describing the gene regulation of glucose/lactose metabolism in a bacterium, Escherichia coli. Our quantum-like model can be considered as a kind of the operational formalism for microbiology and genetics. Instead of trying to describe processes in a cell in the very detail, we propose a formal operator description. Such a description may be very useful in situation in which the detailed description of processes is impossible or extremely complicated. We analyze statistical data obtained from experiments, and we compute the degree of E. coli's preference within adaptive dynamics. It is known that there are several types of E. coli characterized by the metabolic system. We demonstrate that the same type of E. coli can be described by the well determined operators; we find invariant operator quantities characterizing each type. Such invariant quantities can be calculated from the obtained statistical data.

  9. Generalized thermalization for integrable system under quantum quench.

    PubMed

    Muralidharan, Sushruth; Lochan, Kinjalk; Shankaranarayanan, S

    2018-01-01

    We investigate equilibration and generalized thermalization of the quantum Harmonic chain under local quantum quench. The quench action we consider is connecting two disjoint harmonic chains of different sizes and the system jumps between two integrable settings. We verify the validity of the generalized Gibbs ensemble description for this infinite-dimensional Hilbert space system and also identify equilibration between the subsystems as in classical systems. Using Bogoliubov transformations, we show that the eigenstates of the system prior to the quench evolve toward the Gibbs Generalized Ensemble description. Eigenstates that are more delocalized (in the sense of inverse participation ratio) prior to the quench, tend to equilibrate more rapidly. Further, through the phase space properties of a generalized Gibbs ensemble and the strength of stimulated emission, we identify the necessary criterion on the initial states for such relaxation at late times and also find out the states that would potentially not be described by the generalized Gibbs ensemble description.

  10. Geometric descriptions of entangled states by auxiliary varieties

    NASA Astrophysics Data System (ADS)

    Holweck, Frédéric; Luque, Jean-Gabriel; Thibon, Jean-Yves

    2012-10-01

    The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 × 2 × (n + 1), for n ⩾ 1, quantum systems and a new description with the 2 × 3 × 3 quantum system. Our results complete the approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.

  11. Nonequilibrium forces between atoms and dielectrics mediated by a quantum field

    NASA Astrophysics Data System (ADS)

    Behunin, Ryan O.; Hu, Bei-Lok

    2011-07-01

    In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three-dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-graining to the physical variables—the medium, the quantum field, and the atom’s internal degrees of freedom, in that order—to extract their averaged effects from the lowest tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier of coarse-graining over the atom’s internal degrees of freedom results in an equation of motion for the atom’s center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a fully dynamical description of the atom’s motion including back-action effects from all other relevant variables concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined system is in equilibrium or in a nonequilibrium stationary state.

  12. Quantum learning of classical stochastic processes: The completely positive realization problem

    NASA Astrophysics Data System (ADS)

    Monràs, Alex; Winter, Andreas

    2016-01-01

    Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651-664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine learning, device-independent characterization and reverse-engineering of stochastic processes and quantum processors, and more generally, of dynamical processes with quantum memory [M. Guţă, Phys. Rev. A 83(6), 062324 (2011); M. Guţă and N. Yamamoto, e-print arXiv:1303.3771(2013)].

  13. Principles of control for decoherence-free subsystems.

    PubMed

    Cappellaro, P; Hodges, J S; Havel, T F; Cory, D G

    2006-07-28

    Decoherence-free subsystems (DFSs) are a powerful means of protecting quantum information against noise with known symmetry properties. Although Hamiltonians that can implement a universal set of logic gates on DFS encoded qubits without ever leaving the protected subsystem theoretically exist, the natural Hamiltonians that are available in specific implementations do not necessarily have this property. Here we describe some of the principles that can be used in such cases to operate on encoded qubits without losing the protection offered by the DFSs. In particular, we show how dynamical decoupling can be used to control decoherence during the unavoidable excursions outside of the DFS. By means of cumulant expansions, we show how the fidelity of quantum gates implemented by this method on a simple two physical qubit DFS depends on the correlation time of the noise responsible for decoherence. We further show by means of numerical simulations how our previously introduced "strongly modulating pulses" for NMR quantum information processing can permit high-fidelity operations on multiple DFS encoded qubits in practice, provided that the rate at which the system can be modulated is fast compared to the correlation time of the noise. The principles thereby illustrated are expected to be broadly applicable to many implementations of quantum information processors based on DFS encoded qubits.

  14. Quantum computing and probability.

    PubMed

    Ferry, David K

    2009-11-25

    Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.

  15. The Kantian framework of complementarity

    NASA Astrophysics Data System (ADS)

    Cuffaro, Michael

    A growing number of commentators have, in recent years, noted the important affinities in the views of Immanuel Kant and Niels Bohr. While these commentators are correct, the picture they present of the connections between Bohr and Kant is painted in broad strokes; it is open to the criticism that these affinities are merely superficial. In this essay, I provide a closer, structural, analysis of both Bohr's and Kant's views that makes these connections more explicit. In particular, I demonstrate the similarities between Bohr's argument, on the one hand, that neither the wave nor the particle description of atomic phenomena pick out an object in the ordinary sense of the word, and Kant's requirement, on the other hand, that both 'mathematical' (having to do with magnitude) and 'dynamical' (having to do with an object's interaction with other objects) principles must be applicable to appearances in order for us to determine them as objects of experience. I argue that Bohr's 'complementarity interpretation' of quantum mechanics, which views atomic objects as idealizations, and which licenses the repeal of the principle of causality for the domain of atomic physics, is perfectly compatible with, and indeed follows naturally from a broadly Kantian epistemological framework.

  16. Heisenberg and the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian

    2011-09-01

    Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.

  17. Heisenberg and the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian

    2009-02-01

    Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.

  18. Analog cosmological particle generation in a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Tian, Zehua; Jing, Jiliang; Dragan, Andrzej

    2017-06-01

    We propose the use of a waveguidelike transmission line based on direct-current superconducting quantum interference devices (dc-SQUID) and demonstrate that the node flux in this transmission line behaves in the same way as quantum fields in an expanding (or contracting) universe. We show how to detect the analog cosmological particle generation and analyze its feasibility with current circuit quantum electrodynamics (cQED) technology. Our setup in principle paves a new way for the exploration of analog quantum gravitational effects.

  19. Integrated Nano Optoplasmonics (NBIT Phase 2)

    DTIC Science & Technology

    2013-12-16

    of-principle realization demonstrates the potential of integrated plasmonic devices in quantum information processing and cryptography ...photonic/plasmonic devices that are made of nanoscale photonic/plasmonic cavities coupled to quantum emitters, and (2) fabrication of electrically...publications in leading journals (one in Phys. Rev. Lett.,1 one in IEEE J. Sel. Topics Quantum Electron.2 and three publications in Nano Lett.3,4,5) and one

  20. The uncertainty principle in resonant gravitational wave antennae and quantum non-demolition measurement schemes

    NASA Technical Reports Server (NTRS)

    Fortini, Pierluigi; Onofrio, Roberto; Rioli, Alessandro

    1993-01-01

    A review of current efforts to approach and to surpass the fundamental limit in the sensitivity of the Weber type gravitational wave antennae is reported. Applications of quantum non-demolition techniques to the concrete example of an antenna resonant with the transducer are discussed in detail. Analogies and differences from the framework of the squeezed states in quantum optics are discussed.

  1. Quantum Bell inequalities from macroscopic locality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tzyh Haur; Sheridan, Lana; Navascues, Miguel

    2011-02-15

    We propose a method to generate analytical quantum Bell inequalities based on the principle of macroscopic locality. By imposing locality over binary processings of virtual macroscopic intensities, we establish a correspondence between Bell inequalities and quantum Bell inequalities in bipartite scenarios with dichotomic observables. We discuss how to improve the latter approximation and how to extend our ideas to scenarios with more than two outcomes per setting.

  2. Lagrangian dynamics for classical, Brownian, and quantum mechanical particles

    NASA Astrophysics Data System (ADS)

    Pavon, Michele

    1996-07-01

    In the framework of Nelson's stochastic mechanics [E. Nelson, Dynamical Theories of Brownian Motion (Princeton University, Princeton, 1967); F. Guerra, Phys. Rep. 77, 263 (1981); E. Nelson, Quantum Fluctuations (Princeton University, Princeton, 1985)] we seek to develop the particle counterpart of the hydrodynamic results of M. Pavon [J. Math. Phys. 36, 6774 (1995); Phys. Lett. A 209, 143 (1995)]. In particular, a first form of Hamilton's principle is established. We show that this variational principle leads to the correct equations of motion for the classical particle, the Brownian particle in thermodynamical equilibrium, and the quantum particle. In the latter case, the critical process q satisfies a stochastic Newton law. We then introduce the momentum process p, and show that the pair (q,p) satisfies canonical-like equations.

  3. Applications of quantum entropy to statistics

    NASA Astrophysics Data System (ADS)

    Silver, R. N.; Martz, H. F.

    This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to hierarchical Bayes methods.

  4. Cosmological horizons, uncertainty principle, and maximum length quantum mechanics

    NASA Astrophysics Data System (ADS)

    Perivolaropoulos, L.

    2017-05-01

    The cosmological particle horizon is the maximum measurable length in the Universe. The existence of such a maximum observable length scale implies a modification of the quantum uncertainty principle. Thus due to nonlocality of quantum mechanics, the global properties of the Universe could produce a signature on the behavior of local quantum systems. A generalized uncertainty principle (GUP) that is consistent with the existence of such a maximum observable length scale lmax is Δ x Δ p ≥ℏ2/1/1 -α Δ x2 where α =lmax-2≃(H0/c )2 (H0 is the Hubble parameter and c is the speed of light). In addition to the existence of a maximum measurable length lmax=1/√{α }, this form of GUP implies also the existence of a minimum measurable momentum pmin=3/√{3 } 4 ℏ√{α }. Using appropriate representation of the position and momentum quantum operators we show that the spectrum of the one-dimensional harmonic oscillator becomes E¯n=2 n +1 +λnα ¯ where E¯n≡2 En/ℏω is the dimensionless properly normalized n th energy level, α ¯ is a dimensionless parameter with α ¯≡α ℏ/m ω and λn˜n2 for n ≫1 (we show the full form of λn in the text). For a typical vibrating diatomic molecule and lmax=c /H0 we find α ¯˜10-77 and therefore for such a system, this effect is beyond the reach of current experiments. However, this effect could be more important in the early Universe and could produce signatures in the primordial perturbation spectrum induced by quantum fluctuations of the inflaton field.

  5. Particle in a box in PT-symmetric quantum mechanics and an electromagnetic analog

    NASA Astrophysics Data System (ADS)

    Dasarathy, Anirudh; Isaacson, Joshua P.; Jones-Smith, Katherine; Tabachnik, Jason; Mathur, Harsh

    2013-06-01

    In PT-symmetric quantum mechanics a fundamental principle of quantum mechanics, that the Hamiltonian must be Hermitian, is replaced by another set of requirements, including notably symmetry under PT, where P denotes parity and T denotes time reversal. Here we study the role of boundary conditions in PT-symmetric quantum mechanics by constructing a simple model that is the PT-symmetric analog of a particle in a box. The model has the usual particle-in-a-box Hamiltonian but boundary conditions that respect PT symmetry rather than Hermiticity. We find that for a broad class of PT-symmetric boundary conditions the model respects the condition of unbroken PT symmetry, namely, that the Hamiltonian and the symmetry operator PT have simultaneous eigenfunctions, implying that the energy eigenvalues are real. We also find that the Hamiltonian is self-adjoint under the PT-symmetric inner product. Thus we obtain a simple soluble model that fulfills all the requirements of PT-symmetric quantum mechanics. In the second part of this paper we formulate a variational principle for PT-symmetric quantum mechanics that is the analog of the textbook Rayleigh-Ritz principle. Finally we consider electromagnetic analogs of the PT-symmetric particle in a box. We show that the isolated particle in a box may be realized as a Fabry-Perot cavity between an absorbing medium and its conjugate gain medium. Coupling the cavity to an external continuum of incoming and outgoing states turns the energy levels of the box into sharp resonances. Remarkably we find that the resonances have a Breit-Wigner line shape in transmission and a Fano line shape in reflection; by contrast, in the corresponding Hermitian case the line shapes always have a Breit-Wigner form in both transmission and reflection.

  6. 78 FR 29363 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 2 Take notice that the Commission received the following electric rate filings: Docket Numbers: ER10-1414-004; ER10-1406-005; ER10-1416-005. Applicants: Quantum Auburndale Power, LP, Quantum Lake Power, LP, Quantum Pasco Power, LP. Description: Notification of...

  7. H-theorem and Maxwell demon in quantum physics

    NASA Astrophysics Data System (ADS)

    Kirsanov, N. S.; Lebedev, A. V.; Sadovskyy, I. A.; Suslov, M. V.; Vinokur, V. M.; Blatter, G.; Lesovik, G. B.

    2018-02-01

    The Second Law of Thermodynamics states that temporal evolution of an isolated system occurs with non-diminishing entropy. In quantum realm, this holds for energy-isolated systems the evolution of which is described by the so-called unital quantum channel. The entropy of a system evolving in a non-unital quantum channel can, in principle, decrease. We formulate a general criterion of unitality for the evolution of a quantum system, enabling a simple and rigorous approach for finding and identifying the processes accompanied by decreasing entropy in energy-isolated systems. We discuss two examples illustrating our findings, the quantum Maxwell demon and heating-cooling process within a two-qubit system.

  8. Wigner flow reveals topological order in quantum phase space dynamics.

    PubMed

    Steuernagel, Ole; Kakofengitis, Dimitris; Ritter, Georg

    2013-01-18

    The behavior of classical mechanical systems is characterized by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.

  9. Classical Physics and the Bounds of Quantum Correlations.

    PubMed

    Frustaglia, Diego; Baltanás, José P; Velázquez-Ahumada, María C; Fernández-Prieto, Armando; Lujambio, Aintzane; Losada, Vicente; Freire, Manuel J; Cabello, Adán

    2016-06-24

    A unifying principle explaining the numerical bounds of quantum correlations remains elusive, despite the efforts devoted to identifying it. Here, we show that these bounds are indeed not exclusive to quantum theory: for any abstract correlation scenario with compatible measurements, models based on classical waves produce probability distributions indistinguishable from those of quantum theory and, therefore, share the same bounds. We demonstrate this finding by implementing classical microwaves that propagate along meter-size transmission-line circuits and reproduce the probabilities of three emblematic quantum experiments. Our results show that the "quantum" bounds would also occur in a classical universe without quanta. The implications of this observation are discussed.

  10. Rydberg Atoms in Strong Fields: a Testing Ground for Quantum Chaos.

    NASA Astrophysics Data System (ADS)

    Courtney, Michael

    1995-01-01

    Rydberg atoms in strong static electric and magnetic fields provide experimentally accessible systems for studying the connections between classical chaos and quantum mechanics in the semiclassical limit. This experimental accessibility has motivated the development of reliable quantum mechanical solutions. This thesis uses both experimental and computed quantum spectra to test the central approaches to quantum chaos. These central approaches consist mainly of developing methods to compute the spectra of quantum systems in non -perturbative regimes, correlating statistical descriptions of eigenvalues with the classical behavior of the same Hamiltonian, and the development of semiclassical methods such as periodic-orbit theory. Particular emphasis is given to identifying the spectral signature of recurrences --quantum wave packets which follow classical orbits. The new findings include: the breakdown of the connection between energy-level statistics and classical chaos in odd-parity diamagnetic lithium, the discovery of the signature of very long period orbits in atomic spectra, quantitative evidence for the scattering of recurrences by the alkali -metal core, quantitative description of the behavior of recurrences near bifurcations, and a semiclassical interpretation of the evolution of continuum Stark spectra. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  11. Some foundational aspects of quantum computers and quantum robots.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benioff, P.; Physics

    1998-01-01

    This paper addresses foundational issues related to quantum computing. The need for a universally valid theory such as quantum mechanics to describe to some extent its own validation is noted. This includes quantum mechanical descriptions of systems that do theoretical calculations (i.e. quantum computers) and systems that perform experiments. Quantum robots interacting with an environment are a small first step in this direction. Quantum robots are described here as mobile quantum systems with on-board quantum computers that interact with environments. Included are discussions on the carrying out of tasks and the division of tasks into computation and action phases. Specificmore » models based on quantum Turing machines are described. Differences and similarities between quantum robots plus environments and quantum computers are discussed.« less

  12. Efficient quantum walk on a quantum processor

    PubMed Central

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  13. Non-Abelian Bosonization and Fractional Quantum Hall Transitions

    NASA Astrophysics Data System (ADS)

    Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah

    A fully satisfying theoretical description for the quantum phase transition between fractional quantum Hall plateaus remains an outstanding problem. Experiments indicate scaling exponents that are not readily obtained in conventional theories. Using insights from duality, we describe a class of quantum critical effective theories that produce qualitatively realistic scaling exponents for the transition. We discuss the implications of our results for the physically-relevant interactions controlling this broad class of quantum critical behavior. Supported by National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1650441.

  14. A quantum-classical theory with nonlinear and stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Burić, N.; Popović, D. B.; Radonjić, M.; Prvanović, S.

    2014-12-01

    The method of constrained dynamical systems on the quantum-classical phase space is utilized to develop a theory of quantum-classical hybrid systems. Effects of the classical degrees of freedom on the quantum part are modeled using an appropriate constraint, and the interaction also includes the effects of neglected degrees of freedom. Dynamical law of the theory is given in terms of nonlinear stochastic differential equations with Hamiltonian and gradient terms. The theory provides a successful dynamical description of the collapse during quantum measurement.

  15. Characterizing Plasmonic Excitations of Quasi-2D Chains

    NASA Astrophysics Data System (ADS)

    Townsend, Emily; Bryant, Garnett

    A quantum description of the optical response of nanostructures and other atomic-scale systems is desirable for modeling systems that use plasmons for quantum information transfer, or coherent transport and interference of quantum states, as well as systems small enough for electron tunneling or quantum confinement to affect the electronic states of the system. Such a quantum description is complicated by the fact that collective and single-particle excitations can have similar energies and thus will mix. We seek to better understand the excitations of nanosystems to identify which characteristics of the excitations are most relevant to modeling their behavior. In this work we use a quasi 2-dimensional linear atomic chain as a model system, and exact diagonalization of the many-body Hamiltonian to obtain its excitations. We compare this to previous work in 1-d chains which used a combination of criteria involving a many-body state's transfer dipole moment, balance, transfer charge, dynamical response, and induced-charge distribution to identify which excitations are plasmonic in character.

  16. The action uncertainty principle for continuous measurements

    NASA Astrophysics Data System (ADS)

    Mensky, Michael B.

    1996-02-01

    The action uncertainty principle (AUP) for the specification of the most probable readouts of continuous quantum measurements is proved, formulated in different forms and analyzed (for nonlinear as well as linear systems). Continuous monitoring of an observable A(p,q,t) with resolution Δa( t) is considered. The influence of the measurement process on the evolution of the measured system (quantum measurement noise) is presented by an additional term δ F(t)A(p,q,t) in the Hamiltonian where the function δ F (generalized fictitious force) is restricted by the AUP ∫|δ F(t)| Δa( t) d t ≲ and arbitrary otherwise. Quantum-nondemolition (QND) measurements are analyzed with the help of the AUP. A simple uncertainty relation for continuous quantum measurements is derived. It states that the area of a certain band in the phase space should be of the order of. The width of the band depends on the measurement resolution while its length is determined by the deviation of the system, due to the measurement, from classical behavior.

  17. The statistical fluctuation study of quantum key distribution in means of uncertainty principle

    NASA Astrophysics Data System (ADS)

    Liu, Dunwei; An, Huiyao; Zhang, Xiaoyu; Shi, Xuemei

    2018-03-01

    Laser defects in emitting single photon, photon signal attenuation and propagation of error cause our serious headaches in practical long-distance quantum key distribution (QKD) experiment for a long time. In this paper, we study the uncertainty principle in metrology and use this tool to analyze the statistical fluctuation of the number of received single photons, the yield of single photons and quantum bit error rate (QBER). After that we calculate the error between measured value and real value of every parameter, and concern the propagation error among all the measure values. We paraphrase the Gottesman-Lo-Lutkenhaus-Preskill (GLLP) formula in consideration of those parameters and generate the QKD simulation result. In this study, with the increase in coding photon length, the safe distribution distance is longer and longer. When the coding photon's length is N = 10^{11}, the safe distribution distance can be almost 118 km. It gives a lower bound of safe transmission distance than without uncertainty principle's 127 km. So our study is in line with established theory, but we make it more realistic.

  18. Niels Bohr's discussions with Albert Einstein, Werner Heisenberg, and Erwin Schroedinger: the origins of the principles of uncertainty and complementarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehra, J.

    1987-05-01

    In this paper, the main outlines of the discussions between Niels Bohr with Albert Einstein, Werner Heisenberg, and Erwin Schroedinger during 1920-1927 are treated. From the formulation of quantum mechanics in 1925-1926 and wave mechanics in 1926, there emerged Born's statistical interpretation of the wave function in summer 1926, and on the basis of the quantum mechanical transformation theory - formulated in fall 1926 by Dirac, London, and Jordan - Heisenberg formulated the uncertainty principle in early 1927. At the Volta Conference in Como in September 1927 and at the fifth Solvay Conference in Brussels the following month, Bohr publiclymore » enunciated his complementarity principle, which had been developing in his mind for several years. The Bohr-Einstein discussions about the consistency and completeness of quantum mechanics and of physical theory as such - formally begun in October 1927 at the fifth Solvay Conference and carried on at the sixth Solvay Conference in October 1930 - were continued during the next decades. All these aspects are briefly summarized.« less

  19. Acceleration of neutrons in a scheme of a tautochronous mathematical pendulum (physical principles)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivlin, Lev A

    We consider the physical principles of neutron acceleration through a multiple synchronous interaction with a gradient rf magnetic field in a scheme of a tautochronous mathematical pendulum. (laser applications and other aspects of quantum electronics)

  20. 77 FR 13586 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ...-5079. Comments Due: 5 p.m. ET 3/21/12. Docket Numbers: ER12-458-003. Applicants: Quantum Choctaw Power, LLC. Description: Quantum Choctaw Power Compliance Filing--Clone--Clone to be effective 2/14/2012...

  1. The uncertainty principle in resonant gravitational wave antennae and quantum non-demolition measurement schemes

    NASA Technical Reports Server (NTRS)

    Fortini, Pierluigi; Onofrio, Roberto; Rioli, Alessandro

    1993-01-01

    A review on the current efforts to approach and to surpass the fundamental limit in the sensitivity of the Weber type gravitational wave antennae is reported. Applications of quantum non-demolition techniques to the concrete example of an antenna resonant with the transducer are discussed in detail. Analogies and differences from the framework of the squeezed states in quantum optics are discussed.

  2. Quantum algorithm for solving some discrete mathematical problems by probing their energy spectra

    NASA Astrophysics Data System (ADS)

    Wang, Hefeng; Fan, Heng; Li, Fuli

    2014-01-01

    When a probe qubit is coupled to a quantum register that represents a physical system, the probe qubit will exhibit a dynamical response only when it is resonant with a transition in the system. Using this principle, we propose a quantum algorithm for solving discrete mathematical problems based on the circuit model. Our algorithm has favorable scaling properties in solving some discrete mathematical problems.

  3. Test on the Effectiveness of the Sum over Paths Approach in Favoring the Construction of an Integrated Knowledge of Quantum Physics in High School

    ERIC Educational Resources Information Center

    Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna

    2017-01-01

    In this paper we present the results of a research-based teaching-learning sequence on introductory quantum physics based on Feynman's sum over paths approach in the Italian high school. Our study focuses on students' understanding of two founding ideas of quantum physics, wave particle duality and the uncertainty principle. In view of recent…

  4. Compensated Crystal Assemblies for Type-II Entangled Photon Generation in Quantum Cluster States

    DTIC Science & Technology

    2010-03-01

    in quantum computational architectures that operate by principles entirely distinct from any based on classical physics. In contrast with other...of the SPDC spectral function, to enable applications in regions that have not been accessible with other methods. Quantum Information and Computation ...Eliminating frequency and space-time correlations in multi-photon states, PRA 64, 063815, 2001 [2]A. Zeilinger et.al. Experimental One-way computing

  5. Blind topological measurement-based quantum computation.

    PubMed

    Morimae, Tomoyuki; Fujii, Keisuke

    2012-01-01

    Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantum computation in realistic noisy conditions. Here we show that fault-tolerant blind quantum computation is possible in a topologically protected manner using the Raussendorf-Harrington-Goyal scheme. The error threshold of our scheme is 4.3 × 10(-3), which is comparable to that (7.5 × 10(-3)) of non-blind topological quantum computation. As the error per gate of the order 10(-3) was already achieved in some experimental systems, our result implies that secure cloud quantum computation is within reach.

  6. Quantum Secure Direct Communication with Quantum Memory

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can

    2017-06-01

    Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.

  7. Quantum Secure Direct Communication with Quantum Memory.

    PubMed

    Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can

    2017-06-02

    Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.

  8. Blind topological measurement-based quantum computation

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki; Fujii, Keisuke

    2012-09-01

    Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantum computation in realistic noisy conditions. Here we show that fault-tolerant blind quantum computation is possible in a topologically protected manner using the Raussendorf-Harrington-Goyal scheme. The error threshold of our scheme is 4.3×10-3, which is comparable to that (7.5×10-3) of non-blind topological quantum computation. As the error per gate of the order 10-3 was already achieved in some experimental systems, our result implies that secure cloud quantum computation is within reach.

  9. Quantum dot properties in the multiband envelope-function approximation using boundary conditions based upon first-principles quantum calculations

    NASA Astrophysics Data System (ADS)

    Flory, Curt A.; Musgrave, Charles B.; Zhang, Zhiyong

    2008-05-01

    A number of physical processes involving quantum dots depend critically upon the “evanescent” electron eigenstate wave function that extends outside of the material surface into the surrounding region. These processes include electron tunneling through quantum dots, as well as interactions between multiple quantum dot structures. In order to unambiguously determine these evanescent fields, appropriate boundary conditions have been developed to connect the electronic solutions interior to the semiconductor quantum dot to exterior vacuum solutions. In standard envelope function theory, the interior wave function consists of products of band edge and envelope functions, and both must be considered when matching to the external solution. While the envelope functions satisfy tractable equations, the band edge functions are generally not known. In this work, symmetry arguments in the spherically symmetric approximation are used in conjunction with the known qualitative behavior of bonding and antibonding orbitals to catalog the behavior of the band edge functions at the unit cell boundary. This physical approximation allows consolidation of the influence of the band edge functions to two simple surface parameters that are incorporated into the boundary conditions and are straightforwardly computed by using numerical first-principles quantum techniques. These new boundary conditions are employed to analyze an isolated spherically symmetric semiconductor quantum dot in vacuum within the analytical model of Sercel and Vahala [Phys. Rev. Lett. 65, 239 (1990); Phys. Rev. B 42, 3690 (1990)]. Results are obtained for quantum dots made of GaAs and InP, which are compared with ab initio calculations that have appeared in the literature.

  10. The Variation Theorem Applied to H-2+: A Simple Quantum Chemistry Computer Project

    ERIC Educational Resources Information Center

    Robiette, Alan G.

    1975-01-01

    Describes a student project which requires limited knowledge of Fortran and only minimal computing resources. The results illustrate such important principles of quantum mechanics as the variation theorem and the virial theorem. Presents sample calculations and the subprogram for energy calculations. (GS)

  11. The Correspondence Principle Revisited.

    ERIC Educational Resources Information Center

    Liboff, Richard L.

    1984-01-01

    Addresses the question of frequency correspondence in the domain of large quantum numbers, with reference to periodic systems. Provides two simple counterexamples (a particle in a cubical box and a rigid rotator) to show that the classical result is not always recovered in the limit of large quantum numbers. (JM)

  12. Quantum Bath Refrigeration towards Absolute Zero: Challenging the Unattainability Principle

    NASA Astrophysics Data System (ADS)

    Kolář, M.; Gelbwaser-Klimovsky, D.; Alicki, R.; Kurizki, G.

    2012-08-01

    A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst’s third-law formulation known as the unattainability principle.

  13. Towards an emergent model of solitonic particles from non-trivial vacuum structure

    NASA Astrophysics Data System (ADS)

    Gillard, Adam B.; Gresnigt, Niels G.

    2017-12-01

    We motivate and introduce what we refer to as the principles of Lie-stability and Hopf-stability and see what the physical theories must look like. Lie-stability is needed on the classical side and Hopf-stability is needed on the quantum side. We implement these two principles together with Lie-deformations consistent with basic constraints on the classical kinematical variables to arrive at the form of a theory that identifies standard model fermions with quantum solitonic trefoil knotted flux tubes which emerge from a flux tube vacuum network. Moreover, twisted unknot fluxtubes form natural dark matter candidates

  14. Quantum bath refrigeration towards absolute zero: challenging the unattainability principle.

    PubMed

    Kolář, M; Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G

    2012-08-31

    A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst's third-law formulation known as the unattainability principle.

  15. Terahertz detection using double quantum well devices

    NASA Astrophysics Data System (ADS)

    Khodier, Majid; Christodoulou, Christos G.; Simmons, Jerry A.

    2001-12-01

    This paper discusses the principle of operation of an electrically tunable THz detector, working around 2.54 THz, integrated with a bowtie antenna. The detection is based on the idea of photon-assisted tunneling (PAT) in a double quantum well (DQW) device. The bowtie antenna is used to collect the THz radiation and feed it to the detector for processing. The Bowtie antenna geometry is integrated with the DQW device to achieve broadband characteristic, easy design, and compatibility with the detector fabrication process. The principle of operation of the detector is introduced first. Then, results of different bowtie antenna layouts are presented and discussed.

  16. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    PubMed Central

    Putz, Mihai V.

    2009-01-01

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467

  17. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    PubMed

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  18. An efficient method for quantum transport simulations in the time domain

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Yam, C.-Y.; Frauenheim, Th.; Chen, G. H.; Niehaus, T. A.

    2011-11-01

    An approximate method based on adiabatic time dependent density functional theory (TDDFT) is presented, that allows for the description of the electron dynamics in nanoscale junctions under arbitrary time dependent external potentials. The density matrix of the device region is propagated according to the Liouville-von Neumann equation. The semi-infinite leads give rise to dissipative terms in the equation of motion which are calculated from first principles in the wide band limit. In contrast to earlier ab initio implementations of this formalism, the Hamiltonian is here approximated in the spirit of the density functional based tight-binding (DFTB) method. Results are presented for two prototypical molecular devices and compared to full TDDFT calculations. The temporal profile of the current traces is qualitatively well captured by the DFTB scheme. Steady state currents show considerable variations, both in comparison of approximate and full TDDFT, but also among TDDFT calculations with different basis sets.

  19. Mass density fluctuations in quantum and classical descriptions of liquid water

    NASA Astrophysics Data System (ADS)

    Galib, Mirza; Duignan, Timothy T.; Misteli, Yannick; Baer, Marcel D.; Schenter, Gregory K.; Hutter, Jürg; Mundy, Christopher J.

    2017-06-01

    First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe the properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and both the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.

  20. Mass density fluctuations in quantum and classical descriptions of liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galib, Mirza; Duignan, Timothy T.; Misteli, Yannick

    First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and bothmore » the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.« less

  1. Modeling molecule-plasmon interactions using quantized radiation fields within time-dependent electronic structure theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nascimento, Daniel R.; DePrince, A. Eugene, E-mail: deprince@chem.fsu.edu

    2015-12-07

    We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence ofmore » a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.« less

  2. Transferable Pseudo-Classical Electrons for Aufbau of Atomic Ions

    PubMed Central

    Ekesan, Solen; Kale, Seyit; Herzfeld, Judith

    2014-01-01

    Generalizing the LEWIS reactive force field from electron pairs to single electrons, we present LEWIS• in which explicit valence electrons interact with each other and with nuclear cores via pairwise interactions. The valence electrons are independently mobile particles, following classical equations of motion according to potentials modified from Coulombic as required to capture quantum characteristics. As proof of principle, the aufbau of atomic ions is described for diverse main group elements from the first three rows of the periodic table, using a single potential for interactions between electrons of like spin and another for electrons of unlike spin. The electrons of each spin are found to distribute themselves in a fashion akin to the major lobes of the hybrid atomic orbitals, suggesting a pointillist description of the electron density. The broader validity of the LEWIS• force field is illustrated by predicting the vibrational frequencies of diatomic and triatomic hydrogen species. PMID:24752384

  3. Transferable pseudoclassical electrons for aufbau of atomic ions.

    PubMed

    Ekesan, Solen; Kale, Seyit; Herzfeld, Judith

    2014-06-05

    Generalizing the LEWIS reactive force field from electron pairs to single electrons, we present LEWIS• in which explicit valence electrons interact with each other and with nuclear cores via pairwise interactions. The valence electrons are independently mobile particles, following classical equations of motion according to potentials modified from Coulombic as required to capture quantum characteristics. As proof of principle, the aufbau of atomic ions is described for diverse main group elements from the first three rows of the periodic table, using a single potential for interactions between electrons of like spin and another for electrons of unlike spin. The electrons of each spin are found to distribute themselves in a fashion akin to the major lobes of the hybrid atomic orbitals, suggesting a pointillist description of the electron density. The broader validity of the LEWIS• force field is illustrated by predicting the vibrational frequencies of diatomic and triatomic hydrogen species. Copyright © 2014 Wiley Periodicals, Inc.

  4. Recent Developments and Applications of the CHARMM force fields

    PubMed Central

    Zhu, Xiao; Lopes, Pedro E.M.; MacKerell, Alexander D.

    2011-01-01

    Empirical force fields commonly used to describe the condensed phase properties of complex systems such as biological macromolecules are continuously being updated. Improvements in quantum mechanical (QM) methods used to generate target data, availability of new experimental target data, incorporation of new classes of compounds and new theoretical developments (eg. polarizable methods) make force-field development a dynamic domain of research. Accordingly, a number of improvements and extensions of the CHARMM force fields have occurred over the years. The objective of the present review is to provide an up-to-date overview of the CHARMM force fields. A limited presentation on the historical aspects of force fields will be given, including underlying methodologies and principles, along with a brief description of the strategies used for parameter development. This is followed by information on the CHARMM additive and polarizable force fields, including examples of recent applications of those force fields. PMID:23066428

  5. Bell's theorem and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Rosen, Nathan

    1994-02-01

    Bell showed that assuming locality leads to a disagreement with quantum mechanics. Here the nature of the nonlocality that follows from quantum mechanics is investigated. Note by the Editor—Readers will recognize Professor Rosen, author of this paper, as one of the co-authors of the famous EPR paper, Albert Einstein, Boris Podolsky, and Nathan Rosen, ``Can Quantum-Mechanical Description of Physical Reality be considered Complete?'', Phys. Rev. 47, 770-780 (1935). Robert H. Romer, Editor

  6. Optical communication with two-photon coherent stages. I - Quantum-state propagation and quantum-noise reduction

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Shapiro, J. H.

    1978-01-01

    To determine the ultimate performance limitations imposed by quantum effects, it is also essential to consider optimum quantum-state generation. Certain 'generalized' coherent states of the radiation field possess novel quantum noise characteristics that offer the potential for greatly improved optical communications. These states have been called two-photon coherent states because they can be generated, in principle, by stimulated two-photon processes. The use of two-photon coherent state (TCS) radiation in free-space optical communications is considered. A simple theory of quantum state propagation is developed. The theory provides the basis for representing the free-space channel in a quantum-mechanical form convenient for communication analysis. The new theory is applied to TCS radiation.

  7. Betting on the outcomes of measurements: a Bayesian theory of quantum probability

    NASA Astrophysics Data System (ADS)

    Pitowsky, Itamar

    We develop a systematic approach to quantum probability as a theory of rational betting in quantum gambles. In these games of chance, the agent is betting in advance on the outcomes of several (finitely many) incompatible measurements. One of the measurements is subsequently chosen and performed and the money placed on the other measurements is returned to the agent. We show how the rules of rational betting imply all the interesting features of quantum probability, even in such finite gambles. These include the uncertainty principle and the violation of Bell's inequality among others. Quantum gambles are closely related to quantum logic and provide a new semantics for it. We conclude with a philosophical discussion on the interpretation of quantum mechanics.

  8. Quantum stopwatch: how to store time in a quantum memory.

    PubMed

    Yang, Yuxiang; Chiribella, Giulio; Hayashi, Masahito

    2018-05-01

    Quantum mechanics imposes a fundamental trade-off between the accuracy of time measurements and the size of the systems used as clocks. When the measurements of different time intervals are combined, the errors due to the finite clock size accumulate, resulting in an overall inaccuracy that grows with the complexity of the set-up. Here, we introduce a method that, in principle, eludes the accumulation of errors by coherently transferring information from a quantum clock to a quantum memory of the smallest possible size. Our method could be used to measure the total duration of a sequence of events with enhanced accuracy, and to reduce the amount of quantum communication needed to stabilize clocks in a quantum network.

  9. Quantum decoherence of phonons in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Howl, Richard; Sabín, Carlos; Hackermüller, Lucia; Fuentes, Ivette

    2018-01-01

    We apply modern techniques from quantum optics and quantum information science to Bose-Einstein condensates (BECs) in order to study, for the first time, the quantum decoherence of phonons of isolated BECs. In the last few years, major advances in the manipulation and control of phonons have highlighted their potential as carriers of quantum information in quantum technologies, particularly in quantum processing and quantum communication. Although most of these studies have focused on trapped ion and crystalline systems, another promising system that has remained relatively unexplored is BECs. The potential benefits in using this system have been emphasized recently with proposals of relativistic quantum devices that exploit quantum states of phonons in BECs to achieve, in principle, superior performance over standard non-relativistic devices. Quantum decoherence is often the limiting factor in the practical realization of quantum technologies, but here we show that quantum decoherence of phonons is not expected to heavily constrain the performance of these proposed relativistic quantum devices.

  10. FAST FLUX TEST FACILITY CONCEPTUAL FACILTY DESIGN DESCRIPTION FOR THE INERT GAS CELL EXAMINATION FACILITY NO. 71

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1968-12-12

    The purpose of this Conceptual Facility Design Description (CFDD) is to provide a technical description of the Inert Gas Cell Examination Facility such that agreement with RDT on a Conceptual Design can be reached . The CFDD also serves to establish a common understanding of the facility concept among all responsible FFTF Project parties including the Architect Engineer and Reactor Designer. Included are functions and design requirements, a physical description of the facility, safety considerations, principles of operation, and maintenance principles.

  11. 77 FR 10737 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ...-5126. Comments Due: 5 p.m. ET 3/6/12. Docket Numbers: ER12-458-002. Applicants: Quantum Choctaw Power, LLC. Description: Quantum Choctaw Power Compliance Filing to be effective 2/14/2012. Filed Date: 2/14...

  12. 77 FR 14512 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ...: 5 p.m. ET 3/23/12. Docket Numbers: ER12-458-004. Applicants: Quantum Choctaw Power, LLC. Description: Quantum Choctaw Power Compliance Filing to be effective 2/14/2012. Filed Date: 3/2/12. Accession Number...

  13. Quantum Feynman Ratchet

    NASA Astrophysics Data System (ADS)

    Goyal, Ketan; Kawai, Ryoichi

    As nanotechnology advances, understanding of the thermodynamic properties of small systems becomes increasingly important. Such systems are found throughout physics, biology, and chemistry manifesting striking properties that are a direct result of their small dimensions where fluctuations become predominant. The standard theory of thermodynamics for macroscopic systems is powerless for such ever fluctuating systems. Furthermore, as small systems are inherently quantum mechanical, influence of quantum effects such as discreteness and quantum entanglement on their thermodynamic properties is of great interest. In particular, the quantum fluctuations due to quantum uncertainty principles may play a significant role. In this talk, we investigate thermodynamic properties of an autonomous quantum heat engine, resembling a quantum version of the Feynman Ratchet, in non-equilibrium condition based on the theory of open quantum systems. The heat engine consists of multiple subsystems individually contacted to different thermal environments.

  14. Radio-frequency measurement in semiconductor quantum computation

    NASA Astrophysics Data System (ADS)

    Han, TianYi; Chen, MingBo; Cao, Gang; Li, HaiOu; Xiao, Ming; Guo, GuoPing

    2017-05-01

    Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.

  15. Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light.

    PubMed

    Schäfermeier, Clemens; Kerdoncuff, Hugo; Hoff, Ulrich B; Fu, Hao; Huck, Alexander; Bilek, Jan; Harris, Glen I; Bowen, Warwick P; Gehring, Tobias; Andersen, Ulrik L

    2016-11-29

    Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light. This allows quantum-enhanced feedback cooling with a measurement rate greater than it is possible with classical light, and a consequent reduction in the final oscillator temperature. Our results have significance for future applications in areas ranging from quantum information networks, to quantum-enhanced force and displacement measurements and fundamental tests of macroscopic quantum mechanics.

  16. First-principles quantum transport method for disordered nanoelectronics: Disorder-averaged transmission, shot noise, and device-to-device variability

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Wang, Shizhuo; Xia, Ke; Ke, Youqi

    2017-03-01

    Because disorders are inevitable in realistic nanodevices, the capability to quantitatively simulate the disorder effects on electron transport is indispensable for quantum transport theory. Here, we report a unified and effective first-principles quantum transport method for analyzing effects of chemical or substitutional disorder on transport properties of nanoelectronics, including averaged transmission coefficient, shot noise, and disorder-induced device-to-device variability. All our theoretical formulations and numerical implementations are worked out within the framework of the tight-binding linear muffin tin orbital method. In this method, we carry out the electronic structure calculation with the density functional theory, treat the nonequilibrium statistics by the nonequilbrium Green's function method, and include the effects of multiple impurity scattering with the generalized nonequilibrium vertex correction (NVC) method in coherent potential approximation (CPA). The generalized NVC equations are solved from first principles to obtain various disorder-averaged two-Green's-function correlators. This method provides a unified way to obtain different disorder-averaged transport properties of disordered nanoelectronics from first principles. To test our implementation, we apply the method to investigate the shot noise in the disordered copper conductor, and find all our results for different disorder concentrations approach a universal Fano factor 1 /3 . As the second test, we calculate the device-to-device variability in the spin-dependent transport through the disordered Cu/Co interface and find the conductance fluctuation is very large in the minority spin channel and negligible in the majority spin channel. Our results agree well with experimental measurements and other theories. In both applications, we show the generalized nonequilibrium vertex corrections play a determinant role in electron transport simulation. Our results demonstrate the effectiveness of the first-principles generalized CPA-NVC for atomistic analysis of disordered nanoelectronics, extending the capability of quantum transport simulation.

  17. Hybrid quantum computing with ancillas

    NASA Astrophysics Data System (ADS)

    Proctor, Timothy J.; Kendon, Viv

    2016-10-01

    In the quest to build a practical quantum computer, it is important to use efficient schemes for enacting the elementary quantum operations from which quantum computer programs are constructed. The opposing requirements of well-protected quantum data and fast quantum operations must be balanced to maintain the integrity of the quantum information throughout the computation. One important approach to quantum operations is to use an extra quantum system - an ancilla - to interact with the quantum data register. Ancillas can mediate interactions between separated quantum registers, and by using fresh ancillas for each quantum operation, data integrity can be preserved for longer. This review provides an overview of the basic concepts of the gate model quantum computer architecture, including the different possible forms of information encodings - from base two up to continuous variables - and a more detailed description of how the main types of ancilla-mediated quantum operations provide efficient quantum gates.

  18. Experimental demonstration of a quantum router

    PubMed Central

    Yuan, X. X.; Ma, J.-J.; Hou, P.-Y.; Chang, X.-Y.; Zu, C.; Duan, L.-M.

    2015-01-01

    The router is a key element for a network. We describe a scheme to realize genuine quantum routing of single-photon pulses based on cascading of conditional quantum gates in a Mach-Zehnder interferometer and report a proof-of-principle experiment for its demonstration using linear optics quantum gates. The polarization of the control photon routes in a coherent way the path of the signal photon while preserving the qubit state of the signal photon represented by its polarization. We demonstrate quantum nature of this router by showing entanglement generated between the initially unentangled control and signal photons, and confirm that the qubit state of the signal photon is well preserved by the router through quantum process tomography. PMID:26197928

  19. Is Einsteinian no-signalling violated in Bell tests?

    NASA Astrophysics Data System (ADS)

    Kupczynski, Marian

    2017-11-01

    Relativistic invariance is a physical law verified in several domains of physics. The impossibility of faster than light influences is not questioned by quantum theory. In quantum electrodynamics, in quantum field theory and in the standard model relativistic invariance is incorporated by construction. Quantum mechanics predicts strong long range correlations between outcomes of spin projection measurements performed in distant laboratories. In spite of these strong correlations marginal probability distributions should not depend on what was measured in the other laboratory what is called shortly: non-signalling. In several experiments, performed to test various Bell-type inequalities, some unexplained dependence of empirical marginal probability distributions on distant settings was observed. In this paper we demonstrate how a particular identification and selection procedure of paired distant outcomes is the most probable cause for this apparent violation of no-signalling principle. Thus this unexpected setting dependence does not prove the existence of superluminal influences and Einsteinian no-signalling principle has to be tested differently in dedicated experiments. We propose a detailed protocol telling how such experiments should be designed in order to be conclusive. We also explain how magical quantum correlations may be explained in a locally causal way.

  20. Unified quantum no-go theorems and transforming of quantum pure states in a restricted set

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2017-12-01

    The linear superposition principle in quantum mechanics is essential for several no-go theorems such as the no-cloning theorem, the no-deleting theorem and the no-superposing theorem. In this paper, we investigate general quantum transformations forbidden or permitted by the superposition principle for various goals. First, we prove a no-encoding theorem that forbids linearly superposing of an unknown pure state and a fixed pure state in Hilbert space of a finite dimension. The new theorem is further extended for multiple copies of an unknown state as input states. These generalized results of the no-encoding theorem include the no-cloning theorem, the no-deleting theorem and the no-superposing theorem as special cases. Second, we provide a unified scheme for presenting perfect and imperfect quantum tasks (cloning and deleting) in a one-shot manner. This scheme may lead to fruitful results that are completely characterized with the linear independence of the representative vectors of input pure states. The upper bounds of the efficiency are also proved. Third, we generalize a recent superposing scheme of unknown states with a fixed overlap into new schemes when multiple copies of an unknown state are as input states.

  1. Experimental quantum private queries with linear optics

    NASA Astrophysics Data System (ADS)

    de Martini, Francesco; Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Nagali, Eleonora; Sansoni, Linda; Sciarrino, Fabio

    2009-07-01

    The quantum private query is a quantum cryptographic protocol to recover information from a database, preserving both user and data privacy: the user can test whether someone has retained information on which query was asked and the database provider can test the amount of information released. Here we discuss a variant of the quantum private query algorithm that admits a simple linear optical implementation: it employs the photon’s momentum (or time slot) as address qubits and its polarization as bus qubit. A proof-of-principle experimental realization is implemented.

  2. Connection between optimal control theory and adiabatic-passage techniques in quantum systems

    NASA Astrophysics Data System (ADS)

    Assémat, E.; Sugny, D.

    2012-08-01

    This work explores the relationship between optimal control theory and adiabatic passage techniques in quantum systems. The study is based on a geometric analysis of the Hamiltonian dynamics constructed from Pontryagin's maximum principle. In a three-level quantum system, we show that the stimulated Raman adiabatic passage technique can be associated to a peculiar Hamiltonian singularity. One deduces that the adiabatic pulse is solution of the optimal control problem only for a specific cost functional. This analysis is extended to the case of a four-level quantum system.

  3. Counterfactual Measurements and the Quantum Zeno Effect

    NASA Astrophysics Data System (ADS)

    Russo, Onofrio; Jiang, Liang

    2014-03-01

    The apparent paradoxical paradigm of an interaction free measurement (counterfactual measurement) of the presence of a classical or quantum object without any scattering or absorption of photons is considered in light of the quantum Zeno effect. From one perspective, the counterfactual measurement in principle is consistent with minimizing the interaction between the object and the photon. However, the quantum Zeno effect mandates that repeated interactions with photons (although weakly coupled) are required and necessary to inhibit the coherent evolution of the state of the system. We consider and appraise these seemingly conflicting concepts.

  4. QM Automata: A New Class of Restricted Quantum Membrane Automata.

    PubMed

    Giannakis, Konstantinos; Singh, Alexandros; Kastampolidou, Kalliopi; Papalitsas, Christos; Andronikos, Theodore

    2017-01-01

    The term "Unconventional Computing" describes the use of non-standard methods and models in computing. It is a recently established field, with many interesting and promising results. In this work we combine notions from quantum computing with aspects of membrane computing to define what we call QM automata. Specifically, we introduce a variant of quantum membrane automata that operate in accordance with the principles of quantum computing. We explore the functionality and capabilities of the QM automata through indicative examples. Finally we suggest future directions for research on QM automata.

  5. The actual content of quantum theoretical kinematics and mechanics

    NASA Technical Reports Server (NTRS)

    Heisenberg, W.

    1983-01-01

    First, exact definitions are supplied for the terms: position, velocity, energy, etc. (of the electron, for instance), such that they are valid also in quantum mechanics. Canonically conjugated variables are determined simultaneously only with a characteristic uncertainty. This uncertainty is the intrinsic reason for the occurrence of statistical relations in quantum mechanics. Mathematical formulation is made possible by the Dirac-Jordan theory. Beginning from the basic principles thus obtained, macroscopic processes are understood from the viewpoint of quantum mechanics. Several imaginary experiments are discussed to elucidate the theory.

  6. Emergent "Quantum" Theory in Complex Adaptive Systems.

    PubMed

    Minic, Djordje; Pajevic, Sinisa

    2016-04-30

    Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective "Planck constant" associated with such emergent "quantum" theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems.

  7. Secure Multiparty Quantum Computation for Summation and Multiplication.

    PubMed

    Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2016-01-21

    As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics.

  8. Secure Multiparty Quantum Computation for Summation and Multiplication

    PubMed Central

    Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2016-01-01

    As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics. PMID:26792197

  9. A sub-ensemble theory of ideal quantum measurement processes

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Balian, Roger; Nieuwenhuizen, Theo M.

    2017-01-01

    In order to elucidate the properties currently attributed to ideal measurements, one must explain how the concept of an individual event with a well-defined outcome may emerge from quantum theory which deals with statistical ensembles, and how different runs issued from the same initial state may end up with different final states. This so-called "measurement problem" is tackled with two guidelines. On the one hand, the dynamics of the macroscopic apparatus A coupled to the tested system S is described mathematically within a standard quantum formalism, where " q-probabilities" remain devoid of interpretation. On the other hand, interpretative principles, aimed to be minimal, are introduced to account for the expected features of ideal measurements. Most of the five principles stated here, which relate the quantum formalism to physical reality, are straightforward and refer to macroscopic variables. The process can be identified with a relaxation of S + A to thermodynamic equilibrium, not only for a large ensemble E of runs but even for its sub-ensembles. The different mechanisms of quantum statistical dynamics that ensure these types of relaxation are exhibited, and the required properties of the Hamiltonian of S + A are indicated. The additional theoretical information provided by the study of sub-ensembles remove Schrödinger's quantum ambiguity of the final density operator for E which hinders its direct interpretation, and bring out a commutative behaviour of the pointer observable at the final time. The latter property supports the introduction of a last interpretative principle, needed to switch from the statistical ensembles and sub-ensembles described by quantum theory to individual experimental events. It amounts to identify some formal " q-probabilities" with ordinary frequencies, but only those which refer to the final indications of the pointer. The desired properties of ideal measurements, in particular the uniqueness of the result for each individual run of the ensemble and von Neumann's reduction, are thereby recovered with economic interpretations. The status of Born's rule involving both A and S is re-evaluated, and contextuality of quantum measurements is made obvious.

  10. Effect of atomic-scale defects and dopants on phosphorene electronic structure and quantum transport properties

    DOE PAGES

    Lopez-Bezanilla, Alejandro

    2016-01-20

    By means of a multi-scale first-principles approach, a description of the local electronic structure of 2D and narrow phosphorene sheets with various types of modifications is presented. Firtly, a rational argument based on the geometry of the pristine and modified P network, and supported by the Wannier functions formalism is introduced to describe a hybridization model of the P atomic orbitals. Ab initio calculations show that non-isoelectronic foreign atoms form quasi-bound states at varying energy levels and create different polarization states depending on the number of valence electrons between P and the doping atom. The quantum transport properties of modifiedmore » phosphorene ribbons are further described with great accuracy. The distortions on the electronic bands induced by the external species lead to strong backscattering effects on the propagating charge carriers. Depending on the energy of the charge carrier and the type of doping, the conduction may range from the diffusive to the localized regime. Interstitial defects at vacant sites lead to homogeneous transport fingerprints across different types of doping atoms. We suggest that the relatively low values of charge mobility reported in experimental measurements may have its origin in the presence of defects.« less

  11. Experimental Evidence for Wigner’s Tunneling Time

    NASA Astrophysics Data System (ADS)

    Camus, N.; Yakaboylu, E.; Fechner, L.; Klaiber, M.; Laux, M.; Mi, Y.; Hatsagortsyan, K. Z.; Pfeifer, T.; Keitel, C. H.; Moshammer, R.

    2018-04-01

    Tunneling of a particle through a barrier is one of the counter-intuitive properties of quantum mechanical motion. Thanks to advances in the generation of strong laser fields, new opportunities to dynamically investigate this process have been developed. In the so-called attoclock measurements the electron’s properties after tunneling are mapped on its emission direction. We investigate the tunneling dynamics and achieve a high sensitivity thanks to two refinements of the attoclock principle. Using near-IR wavelength we place firmly the ionization process in the tunneling regime. Furthermore, we compare the electron momentum distributions of two atomic species of slightly different atomic potentials (argon and krypton) being ionized under absolutely identical conditions. Experimentally, using a reaction microscope, we succeed in measuring the 3D electron momentum distributions for both targets simultaneously. Theoretically, the time resolved description of tunneling in strong-field ionization is studied using the leading quantum-mechanical Wigner treatment. A detailed analysis of the most probable photoelectron emission for Ar and Kr allows testing the theoretical models and a sensitive check of the electron initial conditions at the tunnel exit. The agreement between experiment and theory provides a clear evidence for a non-zero tunneling time delay and a non-vanishing longitudinal momentum at this point.

  12. Irreversibility in physics stemming from unpredictable symbol-handling agents

    NASA Astrophysics Data System (ADS)

    Myers, John M.; Madjid, F. Hadi

    2016-05-01

    The basic equations of physics involve a time variable t and are invariant under the transformation t --> -t. This invariance at first sight appears to impose time reversibility as a principle of physics, in conflict with thermodynamics. But equations written on the blackboard are not the whole story in physics. In prior work we sharpened a distinction obscured in today's theoretical physics, the distinction between obtaining evidence from experiments on the laboratory bench and explaining that evidence in mathematical symbols on the blackboard. The sharp distinction rests on a proof within the mathematics of quantum theory that no amount of evidence, represented in quantum theory in terms of probabilities, can uniquely determine its explanation in terms of wave functions and linear operators. Building on the proof we show here a role in physics for unpredictable symbol-handling agents acting both at the blackboard and at the workbench, communicating back and forth by means of transmitted symbols. Because of their unpredictability, symbol-handling agents introduce a heretofore overlooked source of irreversibility into physics, even when the equations they write on the blackboard are invariant under t --> -t. Widening the scope of descriptions admissible to physics to include the agents and the symbols that link theory to experiments opens up a new source of time-irreversibility in physics.

  13. Quantum Theory from Observer's Mathematics Point of View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khots, Dmitriy; Khots, Boris

    2010-05-04

    This work considers the linear (time-dependent) Schrodinger equation, quantum theory of two-slit interference, wave-particle duality for single photons, and the uncertainty principle in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics, see [1]. Certain theoretical results and communications pertaining to these theorems are also provided.

  14. From Einstein-Podolsky-Rosen paradox to quantum nonlocality: experimental investigation of quantum correlations

    NASA Astrophysics Data System (ADS)

    Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can

    2016-11-01

    In 1935, Einstein, Podolsky and Rosen published their influential paper proposing a now famous paradox (the EPR paradox) that threw doubt on the completeness of quantum mechanics. Two fundamental concepts: entanglement and steering, were given in the response to the EPR paper by Schrodinger, which both reflect the nonlocal nature of quantum mechanics. In 1964, John Bell obtained an experimentally testable inequality, in which its violation contradicts the prediction of local hidden variable models and agrees with that of quantum mechanics. Since then, great efforts have been made to experimentally investigate the nonlocal feature of quantum mechanics and many distinguished quantum properties were observed. In this work, along with the discussion of the development of quantum nonlocality, we would focus on our recent experimental efforts in investigating quantum correlations and their applications with optical systems, including the study of entanglement-assisted entropic uncertainty principle, Einstein-Podolsky-Rosen steering and the dynamics of quantum correlations.

  15. Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm.

    PubMed

    Godfrin, C; Ferhat, A; Ballou, R; Klyatskaya, S; Ruben, M; Wernsdorfer, W; Balestro, F

    2017-11-03

    Quantum algorithms use the principles of quantum mechanics, such as, for example, quantum superposition, in order to solve particular problems outperforming standard computation. They are developed for cryptography, searching, optimization, simulation, and solving large systems of linear equations. Here, we implement Grover's quantum algorithm, proposed to find an element in an unsorted list, using a single nuclear 3/2 spin carried by a Tb ion sitting in a single molecular magnet transistor. The coherent manipulation of this multilevel quantum system (qudit) is achieved by means of electric fields only. Grover's search algorithm is implemented by constructing a quantum database via a multilevel Hadamard gate. The Grover sequence then allows us to select each state. The presented method is of universal character and can be implemented in any multilevel quantum system with nonequal spaced energy levels, opening the way to novel quantum search algorithms.

  16. Rough set classification based on quantum logic

    NASA Astrophysics Data System (ADS)

    Hassan, Yasser F.

    2017-11-01

    By combining the advantages of quantum computing and soft computing, the paper shows that rough sets can be used with quantum logic for classification and recognition systems. We suggest the new definition of rough set theory as quantum logic theory. Rough approximations are essential elements in rough set theory, the quantum rough set model for set-valued data directly construct set approximation based on a kind of quantum similarity relation which is presented here. Theoretical analyses demonstrate that the new model for quantum rough sets has new type of decision rule with less redundancy which can be used to give accurate classification using principles of quantum superposition and non-linear quantum relations. To our knowledge, this is the first attempt aiming to define rough sets in representation of a quantum rather than logic or sets. The experiments on data-sets have demonstrated that the proposed model is more accuracy than the traditional rough sets in terms of finding optimal classifications.

  17. Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm

    NASA Astrophysics Data System (ADS)

    Godfrin, C.; Ferhat, A.; Ballou, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F.

    2017-11-01

    Quantum algorithms use the principles of quantum mechanics, such as, for example, quantum superposition, in order to solve particular problems outperforming standard computation. They are developed for cryptography, searching, optimization, simulation, and solving large systems of linear equations. Here, we implement Grover's quantum algorithm, proposed to find an element in an unsorted list, using a single nuclear 3 /2 spin carried by a Tb ion sitting in a single molecular magnet transistor. The coherent manipulation of this multilevel quantum system (qudit) is achieved by means of electric fields only. Grover's search algorithm is implemented by constructing a quantum database via a multilevel Hadamard gate. The Grover sequence then allows us to select each state. The presented method is of universal character and can be implemented in any multilevel quantum system with nonequal spaced energy levels, opening the way to novel quantum search algorithms.

  18. Evaluation, Ethnography, and Auditing in Educational Research: Methodological and Conceptual Comparisons.

    ERIC Educational Resources Information Center

    Fetterman, David M.

    The most important distinction between evaluation (in the psychometric tradition), ethnography, and auditing is that they are guided by three distinctively separate principles. The underlying principle guiding evaluation is assessment. Ethnography is guided by description. Auditing uses description and assessment to establish an opinion on…

  19. Quantum learning of classical stochastic processes: The completely positive realization problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monràs, Alex; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543; Winter, Andreas

    2016-01-15

    Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651–664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece inmore » the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine learning, device-independent characterization and reverse-engineering of stochastic processes and quantum processors, and more generally, of dynamical processes with quantum memory [M. Guţă, Phys. Rev. A 83(6), 062324 (2011); M. Guţă and N. Yamamoto, e-print http://arxiv.org/abs/1303.3771 (2013)].« less

  20. Quantum descriptions of singularities leading to pair creation. [of gravitons

    NASA Technical Reports Server (NTRS)

    Misner, C. W.

    1974-01-01

    A class of cosmological models is analyzed which provide a mathematically convenient (but idealized) description of a cosmological singularity that develops into a pair creation epoch and terminates in an adiabatic expansion with redshifting particle energies. This class of models was obtained by Gowdy (1971, 1974) as a set of exact solutions of the classical empty space Einstein equations describing inhomogeneous universes populated only by gravitational waves. It is shown that these models can be used to exhibit simplified models of quantized gravitational fields, and that a quantum description can be given arbitrarily near a cosmological singularity. Graviton pair creation occurs, and can be seen to convert anisotropic expansion rates into the energy of graviton pairs.

  1. Geometric descriptions of entangled states by auxiliary varieties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holweck, Frederic; Luque, Jean-Gabriel; Thibon, Jean-Yves

    2012-10-15

    The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 Multiplication-Sign 2 Multiplication-Sign (n+ 1), for n Greater-Than-Or-Slanted-Equal-To 1, quantum systems and a new description with the 2 Multiplication-Sign 3 Multiplication-Sign 3 quantum system. Our results complete themore » approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.« less

  2. Thermodynamic power of non-Markovianity

    PubMed Central

    Bylicka, Bogna; Tukiainen, Mikko; Chruściński, Dariusz; Piilo, Jyrki; Maniscalco, Sabrina

    2016-01-01

    The natural framework to discuss thermodynamics at the quantum level is the theory of open quantum systems. Memory effects arising from strong system-environment correlations may lead to information back-flow, that is non-Markovian behaviour. The relation between non-Markovianity and quantum thermodynamics has been until now largely unexplored. Here we show by means of Landauer’s principle that memory effects control the amount of work extraction by erasure in presence of realistic environments. PMID:27323947

  3. Modeling decoherence with qubits

    NASA Astrophysics Data System (ADS)

    Heusler, Stefan; Dür, Wolfgang

    2018-03-01

    Quantum effects like the superposition principle contradict our experience of daily life. Decoherence can be viewed as a possible explanation why we do not observe quantum superposition states in the macroscopic world. In this article, we use the qubit ansatz to discuss decoherence in the simplest possible model system and propose a visualization for the microscopic origin of decoherence, and the emergence of a so-called pointer basis. Finally, we discuss the possibility of ‘macroscopic’ quantum effects.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, P.A.; Sanz, L., E-mail: lsanz@infis.ufu.br

    This work provides a complete description of entanglement properties between electrons inside coupled quantum molecules, nanoestructures which consist of two quantum dots. Each electron can tunnel between the two quantum dots inside the molecule, being also coupled by Coulomb interaction. First, it is shown that Bell states act as a natural basis for the description of this physical system, defining the characteristics of the energy spectrum and the eigenstates. Then, the entanglement properties of the eigenstates are discussed, shedding light on the roles of each physical parameters on experimental setup. Finally, a detailed analysis of the dynamics shows the pathmore » to generate states with a high degree of entanglement, as well as physical conditions associated with coherent oscillations between separable and Bell states.« less

  5. On quantum effects in a theory of biological evolution.

    PubMed

    Martin-Delgado, M A

    2012-01-01

    We construct a descriptive toy model that considers quantum effects on biological evolution starting from Chaitin's classical framework. There are smart evolution scenarios in which a quantum world is as favorable as classical worlds for evolution to take place. However, in more natural scenarios, the rate of evolution depends on the degree of entanglement present in quantum organisms with respect to classical organisms. If the entanglement is maximal, classical evolution turns out to be more favorable.

  6. On Quantum Effects in a Theory of Biological Evolution

    PubMed Central

    Martin-Delgado, M. A.

    2012-01-01

    We construct a descriptive toy model that considers quantum effects on biological evolution starting from Chaitin's classical framework. There are smart evolution scenarios in which a quantum world is as favorable as classical worlds for evolution to take place. However, in more natural scenarios, the rate of evolution depends on the degree of entanglement present in quantum organisms with respect to classical organisms. If the entanglement is maximal, classical evolution turns out to be more favorable. PMID:22413059

  7. Observation of Multimode Quantum Correlations in Fiber Optical Solitons

    NASA Astrophysics Data System (ADS)

    Spälter, S.; Korolkova, N.; König, F.; Sizmann, A.; Leuchs, G.

    1998-07-01

    Quantum correlations of photon numbers in different spectral components of ultrashort optical solitons have been observed experimentally. These correlations are crucial for the understanding and characterization of the internal quantum structure of soliton pulses and contribute significantly to soliton squeezing by spectral filtering. The accessible information on the nonclassical state of the correlated spectral components is discussed with the example of two modes. The method may be generalized to obtain a complete quantum description of a multimode field.

  8. A quantum framework for likelihood ratios

    NASA Astrophysics Data System (ADS)

    Bond, Rachael L.; He, Yang-Hui; Ormerod, Thomas C.

    The ability to calculate precise likelihood ratios is fundamental to science, from Quantum Information Theory through to Quantum State Estimation. However, there is no assumption-free statistical methodology to achieve this. For instance, in the absence of data relating to covariate overlap, the widely used Bayes’ theorem either defaults to the marginal probability driven “naive Bayes’ classifier”, or requires the use of compensatory expectation-maximization techniques. This paper takes an information-theoretic approach in developing a new statistical formula for the calculation of likelihood ratios based on the principles of quantum entanglement, and demonstrates that Bayes’ theorem is a special case of a more general quantum mechanical expression.

  9. Quantum non-Gaussianity and quantification of nonclassicality

    NASA Astrophysics Data System (ADS)

    Kühn, B.; Vogel, W.

    2018-05-01

    The algebraic quantification of nonclassicality, which naturally arises from the quantum superposition principle, is related to properties of regular nonclassicality quasiprobabilities. The latter are obtained by non-Gaussian filtering of the Glauber-Sudarshan P function. They yield lower bounds for the degree of nonclassicality. We also derive bounds for convex combinations of Gaussian states for certifying quantum non-Gaussianity directly from the experimentally accessible nonclassicality quasiprobabilities. Other quantum-state representations, such as s -parametrized quasiprobabilities, insufficiently indicate or even fail to directly uncover detailed information on the properties of quantum states. As an example, our approach is applied to multi-photon-added squeezed vacuum states.

  10. Consistent resolution of some relativistic quantum paradoxes

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2002-12-01

    A relativistic version of the (consistent or decoherent) histories approach to quantum theory is developed on the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave packet collapse, Bohm's formulation of the Einstein-Podolsky-Rosen paradox, and Hardy's paradox. It is argued that wave function collapse is not needed for introducing probabilities into relativistic quantum mechanics, and in any case should never be thought of as a physical process. Alternative approaches to stochastic time dependence can be used to construct a physical picture of the measurement process that is less misleading than collapse models. In particular, one can employ a coarse-grained but fully quantum-mechanical description in which particles move along trajectories, with behavior under Lorentz transformations the same as in classical relativistic physics, and detectors are triggered by particles reaching them along such trajectories. States entangled between spacelike separate regions are also legitimate quantum descriptions, and can be consistently handled by the formalism presented here. The paradoxes in question arise because of using modes of reasoning which, while correct for classical physics, are inconsistent with the mathematical structure of quantum theory, and are resolved (or tamed) by using a proper quantum analysis. In particular, there is no need to invoke, nor any evidence for, mysterious long-range superluminal influences, and thus no incompatibility, at least from this source, between relativity theory and quantum mechanics.

  11. Principle and experimental investigation of current-driven negative-inductance superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Li, Hao; Liu, Jianshe; Zhang, Yingshan; Cai, Han; Li, Gang; Liu, Qichun; Han, Siyuan; Chen, Wei

    2017-03-01

    A negative-inductance superconducting quantum interference device (nSQUID) is an adiabatic superconducting logic device with high energy efficiency, and therefore a promising building block for large-scale low-power superconducting computing. However, the principle of the nSQUID is not that straightforward and an nSQUID driven by voltage is vulnerable to common mode noise. We investigate a single nSQUID driven by current instead of voltage, and clarify the principle of the adiabatic transition of the current-driven nSQUID between different states. The basic logic operations of the current-driven nSQUID with proper parameters are simulated by WRspice. The corresponding circuit is fabricated with a 100 A cm-2 Nb-based lift-off process, and the experimental results at low temperature confirm the basic logic operations as a gated buffer.

  12. Almost-Quantum Correlations Violate the No-Restriction Hypothesis

    NASA Astrophysics Data System (ADS)

    Sainz, Ana Belén; Guryanova, Yelena; Acín, Antonio; Navascués, Miguel

    2018-05-01

    To identify which principles characterize quantum correlations, it is essential to understand in which sense this set of correlations differs from that of almost-quantum correlations. We solve this problem by invoking the so-called no-restriction hypothesis, an explicit and natural axiom in many reconstructions of quantum theory stating that the set of possible measurements is the dual of the set of states. We prove that, contrary to quantum correlations, no generalized probabilistic theory satisfying the no-restriction hypothesis is able to reproduce the set of almost-quantum correlations. Therefore, any theory whose correlations are exactly, or very close to, the almost-quantum correlations necessarily requires a rule limiting the possible measurements. Our results suggest that the no-restriction hypothesis may play a fundamental role in singling out the set of quantum correlations among other nonsignaling ones.

  13. Quantum repeaters using continuous-variable teleportation

    NASA Astrophysics Data System (ADS)

    Dias, Josephine; Ralph, T. C.

    2017-02-01

    Quantum optical states are fragile and can become corrupted when passed through a lossy communication channel. Unlike for classical signals, optical amplifiers cannot be used to recover quantum signals. Quantum repeaters have been proposed as a way of reducing errors and hence increasing the range of quantum communications. Current protocols target specific discrete encodings, for example quantum bits encoded on the polarization of single photons. We introduce a more general approach that can reduce the effect of loss on any quantum optical encoding, including those based on continuous variables such as the field amplitudes. We show that in principle the protocol incurs a resource cost that scales polynomially with distance. We analyze the simplest implementation and find that while its range is limited it can still achieve useful improvements in the distance over which quantum entanglement of field amplitudes can be distributed.

  14. Relativistic quantum chaos-An emergent interdisciplinary field.

    PubMed

    Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso

    2018-05-01

    Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics-all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.

  15. Black holes are almost optimal quantum cloners

    NASA Astrophysics Data System (ADS)

    Adami, Christoph; Ver Steeg, Greg

    2015-06-01

    If black holes were able to clone quantum states, a number of paradoxes in black hole physics would disappear. However, the linearity of quantum mechanics forbids exact cloning of quantum states. Here we show that black holes indeed clone incoming quantum states with a fidelity that depends on the black hole’s absorption coefficient, without violating the no-cloning theorem because the clones are only approximate. Perfectly reflecting black holes are optimal universal ‘quantum cloning machines’ and operate on the principle of stimulated emission, exactly as their quantum optical counterparts. In the limit of perfect absorption, the fidelity of clones is only equal to what can be obtained via quantum state estimation methods. But for any absorption probability less than one, the cloning fidelity is nearly optimal as long as ω /T≥slant 10, a common parameter for modest-sized black holes.

  16. Decoherence and dissipation for a quantum system coupled to a local environment

    NASA Technical Reports Server (NTRS)

    Gallis, Michael R.

    1994-01-01

    Decoherence and dissipation in quantum systems has been studied extensively in the context of Quantum Brownian Motion. Effective decoherence in coarse grained quantum systems has been a central issue in recent efforts by Zurek and by Hartle and Gell-Mann to address the Quantum Measurement Problem. Although these models can yield very general classical phenomenology, they are incapable of reproducing relevant characteristics expected of a local environment on a quantum system, such as the characteristic dependence of decoherence on environment spatial correlations. I discuss the characteristics of Quantum Brownian Motion in a local environment by examining aspects of first principle calculations and by the construction of phenomenological models. Effective quantum Langevin equations and master equations are presented in a variety of representations. Comparisons are made with standard results such as the Caldeira-Leggett master equation.

  17. Almost-Quantum Correlations Violate the No-Restriction Hypothesis.

    PubMed

    Sainz, Ana Belén; Guryanova, Yelena; Acín, Antonio; Navascués, Miguel

    2018-05-18

    To identify which principles characterize quantum correlations, it is essential to understand in which sense this set of correlations differs from that of almost-quantum correlations. We solve this problem by invoking the so-called no-restriction hypothesis, an explicit and natural axiom in many reconstructions of quantum theory stating that the set of possible measurements is the dual of the set of states. We prove that, contrary to quantum correlations, no generalized probabilistic theory satisfying the no-restriction hypothesis is able to reproduce the set of almost-quantum correlations. Therefore, any theory whose correlations are exactly, or very close to, the almost-quantum correlations necessarily requires a rule limiting the possible measurements. Our results suggest that the no-restriction hypothesis may play a fundamental role in singling out the set of quantum correlations among other nonsignaling ones.

  18. Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killoran, N.; Huelga, S. F.; Plenio, M. B.

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system’s power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principlemore » and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle’s relevance in parameter regimes connected to natural light-harvesting structures.« less

  19. Relativistic quantum chaos—An emergent interdisciplinary field

    NASA Astrophysics Data System (ADS)

    Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso

    2018-05-01

    Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics—all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.

  20. From classical to quantum mechanics: ``How to translate physical ideas into mathematical language''

    NASA Astrophysics Data System (ADS)

    Bergeron, H.

    2001-09-01

    Following previous works by E. Prugovečki [Physica A 91A, 202 (1978) and Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)] on common features of classical and quantum mechanics, we develop a unified mathematical framework for classical and quantum mechanics (based on L2-spaces over classical phase space), in order to investigate to what extent quantum mechanics can be obtained as a simple modification of classical mechanics (on both logical and analytical levels). To obtain this unified framework, we split quantum theory in two parts: (i) general quantum axiomatics (a system is described by a state in a Hilbert space, observables are self-adjoints operators, and so on) and (ii) quantum mechanics proper that specifies the Hilbert space as L2(Rn); the Heisenberg rule [pi,qj]=-iℏδij with p=-iℏ∇, the free Hamiltonian H=-ℏ2Δ/2m and so on. We show that general quantum axiomatics (up to a supplementary "axiom of classicity") can be used as a nonstandard mathematical ground to formulate physical ideas and equations of ordinary classical statistical mechanics. So, the question of a "true quantization" with "ℏ" must be seen as an independent physical problem not directly related with quantum formalism. At this stage, we show that this nonstandard formulation of classical mechanics exhibits a new kind of operation that has no classical counterpart: this operation is related to the "quantization process," and we show why quantization physically depends on group theory (the Galilei group). This analytical procedure of quantization replaces the "correspondence principle" (or canonical quantization) and allows us to map classical mechanics into quantum mechanics, giving all operators of quantum dynamics and the Schrödinger equation. The great advantage of this point of view is that quantization is based on concrete physical arguments and not derived from some "pure algebraic rule" (we exhibit also some limit of the correspondence principle). Moreover spins for particles are naturally generated, including an approximation of their interaction with magnetic fields. We also recover by this approach the semi-classical formalism developed by E. Prugovečki [Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)].

  1. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    PubMed

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  2. Reply to "Comment on 'Fractional quantum mechanics' and 'Fractional Schrödinger equation' ".

    PubMed

    Laskin, Nick

    2016-06-01

    The fractional uncertainty relation is a mathematical formulation of Heisenberg's uncertainty principle in the framework of fractional quantum mechanics. Two mistaken statements presented in the Comment have been revealed. The origin of each mistaken statement has been clarified and corrected statements have been made. A map between standard quantum mechanics and fractional quantum mechanics has been presented to emphasize the features of fractional quantum mechanics and to avoid misinterpretations of the fractional uncertainty relation. It has been shown that the fractional probability current equation is correct in the area of its applicability. Further studies have to be done to find meaningful quantum physics problems with involvement of the fractional probability current density vector and the extra term emerging in the framework of fractional quantum mechanics.

  3. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source.

    PubMed

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-06-28

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication.

  4. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source

    PubMed Central

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-01-01

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication. PMID:27350159

  5. Trapped-Ion Quantum Logic with Global Radiation Fields.

    PubMed

    Weidt, S; Randall, J; Webster, S C; Lake, K; Webb, A E; Cohen, I; Navickas, T; Lekitsch, B; Retzker, A; Hensinger, W K

    2016-11-25

    Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.

  6. Single electron relativistic clock interferometer

    NASA Astrophysics Data System (ADS)

    Bushev, P. A.; Cole, J. H.; Sholokhov, D.; Kukharchyk, N.; Zych, M.

    2016-09-01

    Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.

  7. X-ray phase-contrast imaging: the quantum perspective

    NASA Astrophysics Data System (ADS)

    Slowik, J. M.; Santra, R.

    2013-08-01

    Time-resolved phase-contrast imaging using ultrafast x-ray sources is an emerging method to investigate ultrafast dynamical processes in matter. Schemes to generate attosecond x-ray pulses have been proposed, bringing electronic timescales into reach and emphasizing the demand for a quantum description. In this paper, we present a method to describe propagation-based x-ray phase-contrast imaging in nonrelativistic quantum electrodynamics. We explain why the standard scattering treatment via Fermi’s golden rule cannot be applied. Instead, the quantum electrodynamical treatment of phase-contrast imaging must be based on a different approach. It turns out that it is essential to select a suitable observable. Here, we choose the quantum-mechanical Poynting operator. We determine the expectation value of our observable and demonstrate that the leading order term describes phase-contrast imaging. It recovers the classical expression of phase-contrast imaging. Thus, it makes the instantaneous electron density of non-stationary electronic states accessible to time-resolved imaging. Interestingly, inelastic (Compton) scattering does automatically not contribute in leading order, explaining the success of the semiclassical description.

  8. Quantum Landau damping in dipolar Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Terças, H.; Gammal, A.

    2018-06-01

    We consider Landau damping of elementary excitations in Bose-Einstein condensates (BECs) with dipolar interactions. We discuss quantum and quasiclassical regimes of Landau damping. We use a generalized wave-kinetic description of BECs which, apart from the long-range dipolar interactions, also takes into account the quantum fluctuations and the finite-energy corrections to short-range interactions. Such a description is therefore more general than the usual mean-field approximation. The present wave-kinetic approach is well suited for the study of kinetic effects in BECs, such as those associated with Landau damping, atom trapping, and turbulent diffusion. The inclusion of quantum fluctuations and energy corrections changes the dispersion relation and the damping rates, leading to possible experimental signatures of these effects. Quantum Landau damping is described with generality, and particular examples of dipolar condensates in two and three dimensions are studied. The occurrence of roton-maxon excitations, and their relevance to Landau damping, are also considered in detail. The present approach is mainly based on a linear perturbative procedure, but the nonlinear regime of Landau damping, which includes atom trapping and atom diffusion, is also briefly discussed.

  9. Loop Quantum Cosmology.

    PubMed

    Bojowald, Martin

    2008-01-01

    Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.

  10. Quantum chemistry simulation on quantum computers: theories and experiments.

    PubMed

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  11. Quantum-secure covert communication on bosonic channels.

    PubMed

    Bash, Boulat A; Gheorghe, Andrei H; Patel, Monika; Habif, Jonathan L; Goeckel, Dennis; Towsley, Don; Guha, Saikat

    2015-10-19

    Computational encryption, information-theoretic secrecy and quantum cryptography offer progressively stronger security against unauthorized decoding of messages contained in communication transmissions. However, these approaches do not ensure stealth--that the mere presence of message-bearing transmissions be undetectable. We characterize the ultimate limit of how much data can be reliably and covertly communicated over the lossy thermal-noise bosonic channel (which models various practical communication channels). We show that whenever there is some channel noise that cannot in principle be controlled by an otherwise arbitrarily powerful adversary--for example, thermal noise from blackbody radiation--the number of reliably transmissible covert bits is at most proportional to the square root of the number of orthogonal modes (the time-bandwidth product) available in the transmission interval. We demonstrate this in a proof-of-principle experiment. Our result paves the way to realizing communications that are kept covert from an all-powerful quantum adversary.

  12. Conformational Dynamics Guides Coherent Exciton Migration in Conjugated Polymer Materials: First-Principles Quantum Dynamical Study

    NASA Astrophysics Data System (ADS)

    Binder, Robert; Lauvergnat, David; Burghardt, Irene

    2018-06-01

    We report on high-dimensional quantum dynamical simulations of photoinduced exciton migration in a single-chain oligothiophene segment, in view of elucidating the controversial nature of the elementary exciton transport steps in semiconducting polymers. A novel first-principles parametrized Frenkel J aggregate Hamiltonian is employed that goes significantly beyond the standard Frenkel-Holstein Hamiltonian. Departing from a nonequilibrium state created by photoexcitation, these simulations provide evidence of an ultrafast two-timescale process at low temperatures, involving exciton-polaron formation within tens of femtoseconds (fs), followed by torsional relaxation on an ˜400 fs timescale. The second step is the driving force for exciton migration, as initial conjugation breaks are removed by dynamical planarization. The quantum coherent nature of the elementary exciton migration step is consistent with experimental observations highlighting the correlated and vibrationally coherent nature of the dynamics on ultrafast timescales.

  13. Infinite order quantum-gravitational correlations

    NASA Astrophysics Data System (ADS)

    Knorr, Benjamin

    2018-06-01

    A new approximation scheme for nonperturbative renormalisation group equations for quantum gravity is introduced. Correlation functions of arbitrarily high order can be studied by resolving the full dependence of the renormalisation group equations on the fluctuation field (graviton). This is reminiscent of a local potential approximation in O(N)-symmetric field theories. As a first proof of principle, we derive the flow equation for the ‘graviton potential’ induced by a conformal fluctuation and corrections induced by a gravitational wave fluctuation. Indications are found that quantum gravity might be in a non-metric phase in the deep ultraviolet. The present setup significantly improves the quality of previous fluctuation vertex studies by including infinitely many couplings, thereby testing the reliability of schemes to identify different couplings to close the equations, and represents an important step towards the resolution of the Nielsen identity. The setup further allows one, in principle, to address the question of putative gravitational condensates.

  14. Ignorance is a bliss: Mathematical structure of many-box models

    NASA Astrophysics Data System (ADS)

    Tylec, Tomasz I.; Kuś, Marek

    2018-03-01

    We show that the propositional system of a many-box model is always a set-representable effect algebra. In particular cases of 2-box and 1-box models, it is an orthomodular poset and an orthomodular lattice, respectively. We discuss the relation of the obtained results with the so-called Local Orthogonality principle. We argue that non-classical properties of box models are the result of a dual enrichment of the set of states caused by the impoverishment of the set of propositions. On the other hand, quantum mechanical models always have more propositions as well as more states than the classical ones. Consequently, we show that the box models cannot be considered as generalizations of quantum mechanical models and seeking additional principles that could allow us to "recover quantum correlations" in box models are, at least from the fundamental point of view, pointless.

  15. Conformational Dynamics Guides Coherent Exciton Migration in Conjugated Polymer Materials: First-Principles Quantum Dynamical Study.

    PubMed

    Binder, Robert; Lauvergnat, David; Burghardt, Irene

    2018-06-01

    We report on high-dimensional quantum dynamical simulations of photoinduced exciton migration in a single-chain oligothiophene segment, in view of elucidating the controversial nature of the elementary exciton transport steps in semiconducting polymers. A novel first-principles parametrized Frenkel J aggregate Hamiltonian is employed that goes significantly beyond the standard Frenkel-Holstein Hamiltonian. Departing from a nonequilibrium state created by photoexcitation, these simulations provide evidence of an ultrafast two-timescale process at low temperatures, involving exciton-polaron formation within tens of femtoseconds (fs), followed by torsional relaxation on an ∼400  fs timescale. The second step is the driving force for exciton migration, as initial conjugation breaks are removed by dynamical planarization. The quantum coherent nature of the elementary exciton migration step is consistent with experimental observations highlighting the correlated and vibrationally coherent nature of the dynamics on ultrafast timescales.

  16. Maximum predictive power and the superposition principle

    NASA Technical Reports Server (NTRS)

    Summhammer, Johann

    1994-01-01

    In quantum physics the direct observables are probabilities of events. We ask how observed probabilities must be combined to achieve what we call maximum predictive power. According to this concept the accuracy of a prediction must only depend on the number of runs whose data serve as input for the prediction. We transform each probability to an associated variable whose uncertainty interval depends only on the amount of data and strictly decreases with it. We find that for a probability which is a function of two other probabilities maximum predictive power is achieved when linearly summing their associated variables and transforming back to a probability. This recovers the quantum mechanical superposition principle.

  17. Quantum Interference Effects in Resonant Raman Spectroscopy of Single- and Triple-Layer MoTe2 from First-Principles

    NASA Astrophysics Data System (ADS)

    Miranda, Henrique P. C.; Reichardt, Sven; Froehlicher, Guillaume; Molina-Sánchez, Alejandro; Berciaud, Stéphane; Wirtz, Ludger

    2017-04-01

    We present a combined experimental and theoretical study of resonant Raman spectroscopy in single- and triple-layer MoTe$_2$. Raman intensities are computed entirely from first principles by calculating finite differences of the dielectric susceptibility. In our analysis, we investigate the role of quantum interference effects and the electron-phonon coupling. With this method, we explain the experimentally observed intensity inversion of the $A^\\prime_1$ vibrational modes in triple-layer MoTe2 with increasing laser photon energy. Finally, we show that a quantitative comparison with experimental data requires the proper inclusion of excitonic effects.

  18. Superposing pure quantum states with partial prior information

    NASA Astrophysics Data System (ADS)

    Dogra, Shruti; Thomas, George; Ghosh, Sibasish; Suter, Dieter

    2018-05-01

    The principle of superposition is an intriguing feature of quantum mechanics, which is regularly exploited in many different circumstances. A recent work [M. Oszmaniec et al., Phys. Rev. Lett. 116, 110403 (2016), 10.1103/PhysRevLett.116.110403] shows that the fundamentals of quantum mechanics restrict the process of superimposing two unknown pure states, even though it is possible to superimpose two quantum states with partial prior knowledge. The prior knowledge imposes geometrical constraints on the choice of input states. We discuss an experimentally feasible protocol to superimpose multiple pure states of a d -dimensional quantum system and carry out an explicit experimental realization for two single-qubit pure states with partial prior information on a two-qubit NMR quantum information processor.

  19. Experimental Realization of a Quantum Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Li, Zhaokai; Liu, Xiaomei; Xu, Nanyang; Du, Jiangfeng

    2015-04-01

    The fundamental principle of artificial intelligence is the ability of machines to learn from previous experience and do future work accordingly. In the age of big data, classical learning machines often require huge computational resources in many practical cases. Quantum machine learning algorithms, on the other hand, could be exponentially faster than their classical counterparts by utilizing quantum parallelism. Here, we demonstrate a quantum machine learning algorithm to implement handwriting recognition on a four-qubit NMR test bench. The quantum machine learns standard character fonts and then recognizes handwritten characters from a set with two candidates. Because of the wide spread importance of artificial intelligence and its tremendous consumption of computational resources, quantum speedup would be extremely attractive against the challenges of big data.

  20. Quantum cryptography over underground optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.J.; Luther, G.G.; Morgan, G.L.

    1996-05-01

    Quantum cryptography is an emerging technology in which two parties may simultaneously generated shared, secret cryptographic key material using the transmission of quantum states of light whose security is based on the inviolability of the laws of quantum mechanics. An adversary can neither successfully tap the key transmissions, nor evade detection, owing to Heisenberg`s uncertainty principle. In this paper the authors describe the theory of quantum cryptography, and the most recent results from their experimental system with which they are generating key material over 14-km of underground optical fiber. These results show that optical-fiber based quantum cryptography could allow secure,more » real-time key generation over ``open`` multi-km node-to-node optical fiber communications links between secure ``islands.``« less

Top