Differences in perceived difficulty in print and online patient education materials.
Farnsworth, Michael
2014-01-01
Written patient education materials frequently exceed the reading ability of the general public. Patients are often intimidated by the task of reading patient education materials, perceiving the materials’ difficulty levels as prohibitive, even when they do not exceed the patients’ reading abilities. It is unclear how the delivery mechanism--print or a computer screen--affects a patient’s reading experience through his/her perception of its difficulty. To determine whether first-year college students perceived online or print-based patient education materials as more difficult to read. Convenience sampling of first-year college students. Some first-year college students perceived online patient education materials to be more difficult to read than print-based ones--even when the reading level of the patient education materials was similar. Demographic information about this sample’s high levels of digital literacy suggests that other populations might also perceive online patient education materials as more difficult to read than print-based equivalents. Patients’ perceptions of the difficulty of patient education materials influenced their ability to effectively learn from those materials. This article concludes with a call for more research into patients’ perceptions of difficulty of patient education materials in print vs on a screen.
Differences in Perceived Difficulty in Print and Online Patient Education Materials
Farnsworth, Michael
2014-01-01
Context: Written patient education materials frequently exceed the reading ability of the general public. Patients are often intimidated by the task of reading patient education materials, perceiving the materials’ difficulty levels as prohibitive, even when they do not exceed the patients’ reading abilities. It is unclear how the delivery mechanism—print or a computer screen—affects a patient’s reading experience through his/her perception of its difficulty. Objective: To determine whether first-year college students perceived online or print-based patient education materials as more difficult to read. Design: Convenience sampling of first-year college students. Results: Some first-year college students perceived online patient education materials to be more difficult to read than print-based ones—even when the reading level of the patient education materials was similar. Demographic information about this sample’s high levels of digital literacy suggests that other populations might also perceive online patient education materials as more difficult to read than print-based equivalents. Patients’ perceptions of the difficulty of patient education materials influenced their ability to effectively learn from those materials. Conclusion: This article concludes with a call for more research into patients’ perceptions of difficulty of patient education materials in print vs on a screen. PMID:25662526
Print material as a public health education tool.
Paul, C L; Redman, S; Sanson-Fisher, R W
1998-02-01
Despite the widespread use of print materials in public health education, little is known about the costs and processes involved in developing these materials and their effectiveness in practice. We examined a sample of printed health education materials, using interviews and checklists. The most cost-effective processes for developing materials were not being used and the effectiveness of materials was rarely evaluated.
Environmental Education. Catalogue of Resources for Grades I to XII.
ERIC Educational Resources Information Center
Houghton, J. R.
Environmental education resources are presented in three categories: (1) print materials; (2) non-print materials; and (3) physical resources. The print material category is subdivided into two sections: books, booklets, and card sets; and magazines, reports, and pamphlets. Entries, arranged alphabetically by title within each section, include…
Wilson, Elizabeth A H; Park, Denise C; Curtis, Laura M; Cameron, Kenzie A; Clayman, Marla L; Makoul, Gregory; Vom Eigen, Keith; Wolf, Michael S
2010-09-01
We examined the effects of presentation medium on immediate and delayed recall of information and assessed the effect of giving patients take-home materials after initial presentations. Primary-care patients received video-based, print-based or no asthma education about asthma symptoms and triggers and then answered knowledge-based questions. Print participants and half the video participants received take-home print materials. A week later, available participants completed the knowledge assessment again. Participants receiving either intervention outperformed controls on immediate and delayed assessments (p<0.001). For symptom-related information, immediate performance did not significantly differ between print and video participants. A week later, receiving take-home print predicted better performance (p<0.05), as did self-reported review among recipients of take-home print (p<0.01). For content about inhaler usage, although video watchers outperformed print participants immediately after seeing the materials (p<0.001), a week later these two groups' performance did not significantly differ. Among participants given take-home materials, review predicted marginally better recall (p=0.06). Video and print interventions can promote recall of health-related information. Additionally, reviewable materials, if they are utilized, may improve retention. When creating educational tools, providers should consider how long information must be retained, its content, and the feasibility of providing tangible supporting materials. Copyright (c) 2010. Published by Elsevier Ireland Ltd.
ERIC Educational Resources Information Center
Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.
2016-01-01
Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…
ERIC Educational Resources Information Center
Jones, Sandra; Neal, Kathy
This consumer education resources catalog provides an annotated guide to 16mm films, multi-media kits, video cassettes, simulations and games, and printed materials related to consumer education available from Michigan Department of Education's Regional Education Media Centers. The first major section lists available media by specific subject…
Energy Education Materials Inventory (e.e.m.i.). Part One: Print Materials.
ERIC Educational Resources Information Center
Energy and Man's Environment, Inc., Portland, OR.
This publication is one of a six-part inventory of energy education materials. Included in this part is a listing of print materials, including the following: teacher's guides, curriculum guides, ditto masters, textbooks, pamphlets, and posters. For each of the materials listed, the following information is included when available: (1) Title; (2)…
ERIC Educational Resources Information Center
Joint Council on Economic Education, New York, NY.
The Materials Evaluation Committee of the Joint Council reviewed both print and non-print supplementary student materials for economics in order to make this selected list of those materials thought to be suitable according to: 1) whether the materials are genuinely concerned with economic matters; 2) whether they are analytical in nature; and, 3)…
Garcia, Justine; Yang, ZhiLin; Mongrain, Rosaire; Leask, Richard L; Lachapelle, Kevin
2018-01-01
3D printing is a new technology in constant evolution. It has rapidly expanded and is now being used in health education. Patient-specific models with anatomical fidelity created from imaging dataset have the potential to significantly improve the knowledge and skills of a new generation of surgeons. This review outlines five technical steps required to complete a printed model: They include (1) selecting the anatomical area of interest, (2) the creation of the 3D geometry, (3) the optimisation of the file for the printing and the appropriate selection of (4) the 3D printer and (5) materials. All of these steps require time, expertise and money. A thorough understanding of educational needs is therefore essential in order to optimise educational value. At present, most of the available printing materials are rigid and therefore not optimum for flexibility and elasticity unlike biological tissue. We believe that the manipuation and tuning of material properties through the creation of composites and/or blending materials will eventually allow for the creation of patient-specific models which have both anatomical and tissue fidelity. PMID:29354281
Garcia, Justine; Yang, ZhiLin; Mongrain, Rosaire; Leask, Richard L; Lachapelle, Kevin
2018-01-01
3D printing is a new technology in constant evolution. It has rapidly expanded and is now being used in health education. Patient-specific models with anatomical fidelity created from imaging dataset have the potential to significantly improve the knowledge and skills of a new generation of surgeons. This review outlines five technical steps required to complete a printed model: They include (1) selecting the anatomical area of interest, (2) the creation of the 3D geometry, (3) the optimisation of the file for the printing and the appropriate selection of (4) the 3D printer and (5) materials. All of these steps require time, expertise and money. A thorough understanding of educational needs is therefore essential in order to optimise educational value. At present, most of the available printing materials are rigid and therefore not optimum for flexibility and elasticity unlike biological tissue. We believe that the manipuation and tuning of material properties through the creation of composites and/or blending materials will eventually allow for the creation of patient-specific models which have both anatomical and tissue fidelity.
Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J; Adams, Justin W; McMenamin, Paul G
2016-05-06
Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized controlled trial was undertaken on undergraduate medical students without prior formal cardiac anatomy teaching. Following a pre-test examining baseline external cardiac anatomy knowledge, participants were randomly assigned to three groups who underwent self-directed learning sessions using either cadaveric materials, 3D prints, or a combination of cadaveric materials/3D prints (combined materials). Participants were then subjected to a post-test written by a third party. Fifty-two participants completed the trial; 18 using cadaveric materials, 16 using 3D models, and 18 using combined materials. Age and time since completion of high school were equally distributed between groups. Pre-test scores were not significantly different (P = 0.231), however, post-test scores were significantly higher for 3D prints group compared to the cadaveric materials or combined materials groups (mean of 60.83% vs. 44.81% and 44.62%, P = 0.010, adjusted P = 0.012). A significant improvement in test scores was detected for the 3D prints group (P = 0.003) but not for the other two groups. The finding of this pilot study suggests that use of 3D prints do not disadvantage students relative to cadaveric materials; maximally, results suggest that 3D may confer certain benefits to anatomy learning and supports their use and ongoing evaluation as supplements to cadaver-based curriculums. Anat Sci Educ 9: 213-221. © 2015 American Association of Anatomists. © 2015 American Association of Anatomists.
Comparative analysis of print and multimedia health materials: a review of the literature.
Wilson, Elizabeth A H; Makoul, Gregory; Bojarski, Elizabeth A; Bailey, Stacy Cooper; Waite, Katherine R; Rapp, David N; Baker, David W; Wolf, Michael S
2012-10-01
Evaluate the evidence regarding the relative effectiveness of multimedia and print as modes of dissemination for patient education materials; examine whether development of these materials addressed health literacy. A structured literature review utilizing Medline, PsycInfo, and the Cumulative Index to the Nursing and Allied Health Literature (CINAHL), supplemented by reference mining. Of 738 studies screened, 30 effectively compared multimedia and print materials. Studies offered 56 opportunities for assessing the effect of medium on various outcomes (e.g., knowledge). In 30 instances (54%), no difference was noted between multimedia and print in terms of patient outcomes. Multimedia led to better outcomes vs. print in 21 (38%) comparisons vs. 5 (9%) instances for print. Regarding material development, 12 studies (40%) assessed readability and 5 (17%) involved patients in tool development. Multimedia appears to be a promising medium for patient education; however, the majority of studies found that print and multimedia performed equally well in practice. Few studies involved patients in material development, and less than half assessed the readability of materials. Future research should focus on comparing message-equivalent tools and assessing their effect on behavioral outcomes. Material development should include explicit attention to readability and patient input. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Kennedy, David M.; Reiman, Cornelis A.
The move from traditional paper-based distance education subject materials to those of information and communication technologies (ICT) has increased the ways in which students can engage with their lecturers, peers and the unit materials. In this paper, strategies for enhancing print-based learning resources are discussed. These include concept…
Interactive Print: The Design of Cognitive Tasks in Blended Augmented Reality and Print Documents
ERIC Educational Resources Information Center
Nadolny, Larysa
2017-01-01
The combination of print materials and augmented reality in education is increasingly accessible due to advances in mobile technologies. Using familiar paper-based activities overlaid with digital items, also known as interactive print, educators can create a custom learning experience for students. There is very little guidance on the design of…
Cramer, Justin; Quigley, Edward; Hutchins, Troy; Shah, Lubdha
2017-06-01
Spine anatomy can be difficult to master and is essential for performing spine procedures. We sought to utilize the rapidly expanding field of 3D technology to create freely available, interactive educational materials for spine procedures. Our secondary goal was to convey lessons learned about 3D modeling and printing. This project involved two parallel processes: the creation of 3D-printed physical models and interactive digital models. We segmented illustrative CT studies of the lumbar and cervical spine to create 3D models and then printed them using a consumer 3D printer and a professional 3D printing service. We also included downloadable versions of the models in an interactive eBook and platform-independent web viewer. We then provided these educational materials to residents with a pretest and posttest to assess efficacy. The "Spine Procedures in 3D" eBook has been downloaded 71 times as of October 5, 2016. All models used in the book are available for download and printing. Regarding test results, the mean exam score improved from 70 to 86%, with the most dramatic improvement seen in the least experienced trainees. Participants reported increased confidence in performing lumbar punctures after exposure to the material. We demonstrate the value of 3D models, both digital and printed, in learning spine procedures. Moreover, 3D printing and modeling is a rapidly expanding field with a large potential role for radiologists. We have detailed our process for creating and sharing 3D educational materials in the hopes of motivating and enabling similar projects.
Strachan, Patricia H.; de Laat, Sonya; Carroll, Sandra L.; Schwartz, Lisa; Vaandering, Katie; Toor, Gurjit K.; Arthur, Heather M.
2012-01-01
Background Implantable cardioverter defibrillators (ICDs) are increasingly offered to patients for primary prevention of sudden cardiac death. Candidates for ICD receive ICD-related patient education material when they make decisions to consent or decline a primary prevention ICD. Printed patient education material directed at ICD candidates has not been the focus of direct appraisal. Objective We evaluated the readability and content of ICD-related print education materials made available to patients who were enrolled in a study involving patient decision making for ICD from 3 ICD sites in southern Ontario, Canada. Methods All ICD print materials referred to during interviews and/or that were available in ICD site waiting rooms were collected for analysis. Readability testing was conducted using the SMOG (“simple measurement of gobbledygook”) and Fry methods. The material was evaluated according to selected plain-language criteria, thematic content analysis, and rhetoric analysis. Results Twenty-one print materials were identified and analyzed. Documents were authored by device manufacturers, tertiary care hospitals, and cardiac support organizations. Although many documents adhered to plain-language recommendations, text-reading levels were higher than recommended. Twelve major content themes were identified. Content focused heavily on the positive aspects of living with the device to the exclusion of other possible information that could be relevant to the decisions that patients made. Conclusions Print-based patient education materials for ICD candidates are geared to a highly literate population. The focus on positive information to the exclusion of potentially negative aspects of the ICD, or alternatives to accepting 1, could influence and/or confuse patients about the purpose and implications of this medical device. Development of print materials is indicated that includes information about possible problems and that would be relevant for the multicultural and debilitated population who may require ICDs. The findings are highly relevant for nurses who care for primary prevention ICD candidates. PMID:21926915
Guide to Packaging Your Educational Programs.
ERIC Educational Resources Information Center
Hunt, Janice M.; And Others
This guide to planning, producing, and disseminating instructional materials includes topics on (1) planning content and form; (2) planning personnel requirements, budget, and scheduling needs; (3) producing printed materials; (4) producing audiovisual materials; and (5) distribution. The main emphasis is on developing printed materials and on the…
AIDS education for a low literate audience in Zambia.
Msimuko, A K
1988-04-01
A workshop funded by the USA Program for Appropriate Technology in Health (PATH) was an effort by Zambia toward prevention and control of AIDS. The lack of educational materials about AIDS for a low-literate audience was the major problem addressed by the workshop. Other problems include the lack of collaborative effort in the development of materials on AIDS, and the lack of skills needed in the development of such materials in Zambia. 1 of the objectives of the workshop was to launch the Planned Parenthood Association of Zambia's (PPAZ) materials development project. The scope of this project includes the production of educational materials on AIDS for low-literate audiences and a counseling handbook for family planning workers. Print materials should be simply written, using words, idioms, and graphics that are familiar to the target audience. Other workshop objectives included the establishment of collaborative relationships between organizations involved in existing AIDS educational activities in Zambia, and the development of practical skills needed to produce print materials. Education was identified as the most important strategy for the prevention and control of AIDS, and PPAZ should be the executing agency of the print materials project. Audience research, using focus group techniques, focus group discussions, behavioral messages, and pretesting of messages, should be the most effective means of reaching targeted audiences. PPAZ is contracted by PATH to begin development of educational materials, and 2 committees have formed to implement the project and to establish interagency collaboration. Audience research was begun between January and March of 1988, focusing on people's beliefs, practices, and ideas about AIDS. The final phase of the project will be the printing, distribution, and use of the AIDS materials and the training of family planning field workers in the proper use of these materials.
ERIC Educational Resources Information Center
Low, Jean Irene
A study investigated the importance adults assign to various techniques used in the design and production of print educational material. Subjects, 103 adults who regularly receive printed educational information and professionals engaged in the production of such information, completed a survey including demographic information, time spent in…
Environmental Print Activities for Teaching Mathematics and Content Areas.
ERIC Educational Resources Information Center
Rule, Audrey C., Ed.; McIntyre, Sandra, Ed.; Ranous, Meg, Ed.
Twenty-three mathematics activities that use environmental print materials are presented, along with two activities that focus on music education, one that highlights history concepts, and five science activities. The environmental print materials are words and images cut from food or other product packaging and mounted on mat board cards.…
ERIC Educational Resources Information Center
Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.
Presented is a compilation of over 3,000 abstracts on print and non-print materials related to water quality and water resources education. Entries are included from all levels of governmental sources, private concerns, and educational institutions. Each entry includes: title, author, cross references, descriptors, and availability. (CLS)
ERIC Educational Resources Information Center
McShane, Michael Q.
2017-01-01
While digital products have made significant inroads into the educational resources market, textbooks and other print materials still command about 60 percent of sales. But whether print or digital, all of these commercial offerings now face threats from a burgeoning effort to promote "open" resources for education--that is, materials…
Forbes, Laura; Baarda, Janis; Mayan, Maria; Bell, Rhonda C
2017-12-01
Printed educational materials are a common source of health information, although their effectiveness in improving women's knowledge or self-care in pregnancy has been questioned. This study describes the information in printed educational materials that address healthy eating during pregnancy and gestational weight gain (GWG) that are currently used in Alberta, Canada. Content of 6 resources was analyzed using a constant comparison qualitative approach. Resources emphasized healthy eating, prenatal supplements, folate supplementation, and healthy weight gain. More resources discussed the importance of "eating enough" than provided guidance on avoiding excessive GWG. Themes identified were: "everything is important" meaning that all healthy behaviours are important, making prioritization difficult; "more is more" emphasized eating more over moderation; "everyone is individual" suggests women seek individualized care through the care provider; and "contradictions" describes differences in content and recommendations within and between resources. New or revised versions of resources should provide congruent information with up-to-date recommendations that are easily prioritized. Care providers should be aware of contradictory information or information that does not align with current recommendations within printed educational materials and be ready to help women address the areas important for her personal behaviour change.
ERIC Educational Resources Information Center
Peiró-Velert, Carmen; Molina-Alventosa, Pere; Kirk, David; Devís-Devís, José
2015-01-01
This paper examines teachers' use of printed curriculum materials (PCM) during physical education (PE) instruction in Spanish secondary schools and the role they play in the enacted curriculum and in the construction of pedagogical knowledge. Three hundred and ten participants (mean age: 37.7 ± 8.7) responded to an interview-questionnaire on…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials; related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and…
Garnweidner-Holme, Lisa Maria; Dolvik, Stina; Frisvold, Cathrine; Mosdøl, Annhild
2016-02-01
To evaluate selected European printed dietary guidelines for pregnant women and parents of infants and toddlers using the suitability assessment of materials (SAM) method. A descriptive study to determine the suitability of 14 printed dietary guidelines from 7 European countries based on deductive quantitative analyses. Materials varied greatly in format and content: 35.7% of materials were rated superior and 64.3% were rated adequate according to the overall SAM score for patient education material. None of the materials were scored not suitable. Among the categories, the highest average scores were for layout and typography and the lowest average scores were for cultural appropriateness and learning stimulation and motivation. Interrater reliability ranged from Cohen's kappa of 0.37 to 0.62 (mean, 0.41), indicating fair to moderate agreement among the 3 investigators. Overall, the suitability of the assessed printed dietary guidelines was adequate. Based on the SAM methodology, printed dietary guidelines may increase in suitability by emphasizing aspects related to health literacy and accommodating the needs of different food cultures within a population. Copyright © 2016 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Etemad, Pontea; Burdette, Paula
2009-01-01
The National Instructional Materials Accessibility Standard (NIMAS) was added to the Individuals with Disabilities Act in 2004. The purpose of this standard is to provide guidance to schools to ensure that students with print disabilities have access to the general education curriculum through specially adapted print materials. In 2007, Project…
Safety and Health Instructional Materials for Vocational Education--A State of the Art Report.
ERIC Educational Resources Information Center
Hull, Daniel M.; Lube, Bruce M.
This report details Task D (of a seventeen-task project), which identified safety and health concepts, knowledge, and skills included in print and non-print materials designed to develop performance outcomes needed by employers and employees. (The project intends to develop performance-based modularized instructional materials for teaching job…
ERIC Educational Resources Information Center
Ozcelik, Erol; Acarturk, Cengiz
2011-01-01
Online information sources, such as pictures and animations on web pages are frequently used for complementing printed course material in educational contexts. The concurrent use of online and printed information sources by students, however, requires going back and forth between physically separated course material, such as a course book and a…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to hazardous materials,…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to hazardous wastes and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of governmental, private concerns, and…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
34 CFR 300.210 - Purchase of instructional materials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 2 2010-07-01 2010-07-01 false Purchase of instructional materials. 300.210 Section... EDUCATION OF CHILDREN WITH DISABILITIES Local Educational Agency Eligibility § 300.210 Purchase of... the National Instructional Materials Access Center (NIMAC), when purchasing print instructional...
Developing and Evaluating Patient Education Materials.
ERIC Educational Resources Information Center
Monsivais, Diane; Reynolds, Audree
2003-01-01
Discusses the rationale for nurse involvement in the development of patient education materials. Presents guidelines for evaluating existing material, including print and web resources, for credibility and readability. Makes recommendations for rewriting material at an easier-to-read level. (SK)
Ho, Evelyn Y; Tran, Henrietta; Chesla, Catherine A
2015-01-01
Type 2 diabetes affects Chinese Americans at an alarming rate. To address this health disparity, research in the area of cultural sensitivity and health literacy provides useful guidelines for creating culturally appropriate health education. In this article, we use discourse analysis to examine a group of locally available, Chinese- and English-language diabetes print documents from a surface level and deep structure level of culture. First, we compared these documents to research findings about printed health information to determine whether and how these documents apply current best practices for health literacy and culturally appropriate health communication. Second, we examined how diabetes as a disease and diabetes management is being constructed. The printed materials addressed surface level culture through the use of Chinese language, pictures, foods, and exercises. From a deeper cultural level, the materials constructed diabetes management as a matter of measurement and control that contrasted with previous research suggesting an alternative construction of balance. A nuanced assessment of both surface and deeper levels of culture is essential for creating health education materials that are more culturally appropriate and can lead to increased health literacy and improved health outcomes.
Ho, Evelyn Y.; Tran, Henrietta; Chesla, Catherine A.
2014-01-01
Type 2 diabetes affects Chinese Americans at an alarming rate. To address this health disparity, research in the area of cultural sensitivity and health literacy provide useful guidelines for creating culturally appropriate health education. In this article, we use discourse analysis to examine a group of locally-available, Chinese and English language diabetes print documents from a surface and deep structure level of culture. First, we compared these documents to research findings about printed health information to determine if and how these documents apply current best practices for health literacy and culturally appropriate health communication. Second, we examined how diabetes as a disease and diabetes management is being constructed. The printed materials addressed surface level culture through the use of Chinese language, pictures, foods and exercises. From a deeper cultural level, the materials constructed diabetes management as a matter of measurement and control that contrasted with previous research suggesting an alternative construction of balance. A nuanced assessment of both surface and deeper levels of culture is essential for creating health education materials that are more culturally appropriate and can lead to increase health literacy and improved health outcomes. PMID:24446839
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
The Environmental Quality Instructional Resources Center acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. This publication contains abstracts and indexes to selected materials related…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracts/indexed materials include all levels of government, private concerns, and educational…
CONSERVATION EDUCATION, A SELECTED BIBLIOGRAPHY.
ERIC Educational Resources Information Center
CARVAJAL, JOAN; MUNZER, MARTHA E.
THIS BIBLIOGRAPHY CONTAINS REFERENCES TO PRINTED MATERIALS COVERING VARIOUS ASPECTS OF CONSERVATION EDUCATION WHICH WERE PUBLISHED IN THE UNITED STATES FROM 1957 TO 1966, WHICH ARE STILL IN PRINT, AND WHICH CAN BE OBTAINED WITHOUT GREAT DIFFICULTY. SOME TITLES PUBLISHED BEFORE 1957 ALSO ARE INCLUDED. PUBLICATIONS OF GOVERNMENTAL AGENCIES OR OF…
ERIC Educational Resources Information Center
Mangano, R. Michael; And Others
This guide to vocational curriculum resources for handicapped students consists of instructional checklists for resources identified in the following areas: agriculture, auto body repair, automobile mechanics, basic math skills, basic reading skills, business education, career education, carpentry, cosmetology, custodial and maintenance, data…
Leveraging Digital Tools to Build Educative Curricula for Teachers: Two Promising Approaches
ERIC Educational Resources Information Center
Bates, Meg S.
2017-01-01
Well-designed curriculum materials include educative components that help teachers effectively plan, implement, and adapt activities for diverse learners. Digital materials offer several affordances over print materials in the format, fit, and flexibility of the educative information provided to teachers, as well as the ability of the materials to…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
Tomko, Catherine; Davis, Kimberly M; Luta, George; Krist, Alexander H; Woolf, Steven H; Taylor, Kathryn L
2015-01-01
Patient decision aids facilitate informed decision making for medical tests and procedures that have uncertain benefits. To describe participants' evaluation and utilization of print-based and web-based prostate cancer screening decision aids that were found to improve decisional outcomes in a prior randomized controlled trial. Men completed brief telephone interviews at baseline, one month, and 13 months post-randomization. Participants were primary care patients, 45-70 years old, who received the print-based (N = 628) or web-based decision aid (N = 625) and completed the follow-up assessments. We assessed men's baseline preference for web-based or print-based materials, time spent using the decision aids, comprehension of the overall message, and ratings of the content. Decision aid use was self-reported by 64.3 % (web) and 81.8 % (print) of participants. Significant predictors of decision aid use were race (white vs. non-white, OR = 2.43, 95 % CI: 1.77, 3.35), higher education (OR = 1.68, 95 % CI: 1.06, 2.70) and trial arm (print vs. web, OR = 2.78, 95 % CI: 2.03, 3.83). Multivariable analyses indicated that web-arm participants were more likely to use the website when they preferred web-based materials (OR: 1.91, CI: 1.17, 3.12), whereas use of the print materials was not significantly impacted by a preference for print-based materials (OR: 0.69, CI: 0.38, 1.25). Comprehension of the decision aid message (i.e., screening is an individual decision) did not significantly differ between arms in adjusted analyses (print: 61.9 % and web: 68.2 %, p = 0.42). Decision aid use was independently influenced by race, education, and the decision aid medium, findings consistent with the 'digital divide.' These results suggest that when it is not possible to provide this age cohort with their preferred decision aid medium, print materials will be more highly used than web-based materials. Although there are many advantages to web-based decision aids, providing an option for print-based decision aids should be considered.
Using the intranet to deliver patient-education materials.
Sorrentino, Catherine; Berger, Ann M; Wardian, Sue; Pattrin, Lynnee M
2002-01-01
Patient education is a critical part of healthcare delivery. Many factors reduce the amount of time nurses can devote to patient teaching. One mode of patient teaching, the use of printed materials, is an efficient and effective way to deliver and reinforce patient education. However, several barriers are associated with the method, including outdated or exhausted supplies of stock materials, expenses related to developing and printing materials, limited storage space, and the inability to locate materials when needed. The authors identified the intranet, an internal network that operates within a larger World Wide Web site, as a potential solution to these barriers. The Outpatient Oncology Clinic and Treatment Center of the Nebraska Health System, a fast-paced care setting in Omaha, agreed to serve as the project pilot area to evaluate using the intranet to generate patient-education materials. Teaching sheets about medication and symptom management, created by the oncology staff, were the first patient-education materials to be made available on the intranet. Advantages of using the intranet for patient education include online storage, decreased costs, easy access, real-time updates and distribution, and unlimited supply availability.
Bolman, Catherine; Peels, Denise Astrid; Volders, Esmee; de Vries, Hein; Lechner, Lilian
2017-01-01
Background Physical activity (PA) is beneficial in improving negative physical and psychological effects of cancer. The rapidly increasing number of cancer survivors, resulting from aging and improved cancer care, emphasizes the importance to develop and provide low cost, easy accessible PA programs. Such programs could be provided through the Internet, but that could result in the exclusion of cancer survivors not familiar with the Internet. Therefore, we developed a computer-tailored PA intervention for prostate and colorectal cancer survivors in which both Web-based and print materials are provided, and participants can choose their own preferred delivery mode. Objective The aim of this study was to assess participants’ characteristics related to delivery mode and use of intervention materials. Methods We studied characteristics of participants using Web-based and printed intervention materials in a randomized controlled trial (RCT). Prostate and colorectal cancer survivors recruited from hospitals were randomized to OncoActive (computer-tailored PA intervention) or a usual-care control group. OncoActive participants received both Web-based and printed materials. Participants were classified into initial print- or Web-based participants based on their preferred mode of completion of the first questionnaire, which was needed for the computer-tailored PA advice. Intervention material use during the remainder of the intervention was compared for initial print- or Web-based participants. Additionally, participants were classified into those using only print materials and those using Web-based materials. Differences in participant characteristics and intervention material use were studied through analysis of variance (ANOVAs), chi-square tests, and logistic regressions. Results The majority of the participants in the intervention group were classified as initial Web-based participants (170/249, 68.3%), and 84.9% (191/249) used Web-based intervention materials. Dropout was low (15/249, 6.0%) and differed between initial Web-based (4/170, 2.4%) and print-based (11/79, 14%) participants. Participants were less likely to start Web-based with higher age (odds ratio [OR]=0.93), longer time since last treatment (OR=0.87), and higher fatigue (OR=0.96), and more likely with higher education (OR=4.08) and having completed treatments (OR=5.58). Those who were older (OR=0.93) and post treatment for a longer time (OR=0.86) were less likely to use Web-based intervention materials. Initial print-based participants predominantly used print-based materials, whereas initial Web-based participants used both print- and Web-based materials. Conclusions To our knowledge, this is one of the first studies that assessed participant characteristics related to delivery mode in an intervention in which participants had a free choice of delivery modes. Use of print-based materials among the initial Web-based participants was substantial, indicating the importance of print-based materials. According to our findings, it may be important to offer Web- and print-based materials alongside each other. Providing Web-based materials only may exclude older, less educated, more fatigued, or currently treated participants; these groups are especially more vulnerable and could benefit most from PA interventions. PMID:28835353
Smoking Education for Low-Educated Adolescents: Comparing Print and Audiovisual Messages.
de Graaf, Anneke; van den Putte, Bas; Zebregs, Simon; Lammers, Jeroen; Neijens, Peter
2016-11-01
This study aims to provide insight into which modality is most effective for educating low-educated adolescents about smoking. It compares the persuasive effects of print and audiovisual smoking education materials. We conducted a field experiment with two conditions (print vs. video) and three measurement times (Time 1, Time 2, and Time 3). A total of 221 high school students in the second year of the lowest levels of education in the Netherlands participated at all three time points of the study. Results showed that participants in both conditions had more negative beliefs about smoking after being exposed to the smoking education than before, but there were no differences between the print and video version in this effect. However, the video version did make the attitude toward smoking more negative at Time 3 compared to baseline, whereas the text version did not, which suggests that the video version was more effective for educating low-educated adolescents about smoking. © 2016 Society for Public Health Education.
Skin Cancer Education Materials: Selected Annotations.
ERIC Educational Resources Information Center
National Cancer Inst. (NIH), Bethesda, MD.
This annotated bibliography presents 85 entries on a variety of approaches to cancer education. The entries are grouped under three broad headings, two of which contain smaller sub-divisions. The first heading, Public Education, contains prevention and general information, and non-print materials. The second heading, Professional Education,…
ERIC Educational Resources Information Center
Minnesota State Dept. of Health, St. Paul. Refugee Education Resource Center.
This is a directory of (print) health education materials for Indochinese refugees, refugee sponsors, and refugee health providers. Materials listed for refugees cover dental health, diseases, family planning, infant and child health, maternal care and pregnancy, legal systems, nutrition, patient instruction, and education. The directory also…
ERIC Educational Resources Information Center
Howe, Robert W.; Disinger, John F.
This digest identifies selected sources of materials for environmental education. Included are: the Educational Resources Information Center; the United States Environmental Protection Agency; the Public Broadcasting System; the National Wildlife Federation; and the National Science Teachers Association. References and reviews of print,…
The Revolution in Print Technology. Text & Readers Programme, Technical Report #1.
ERIC Educational Resources Information Center
Macdonald-Ross, Michael
The two papers presented in this document discuss aspects of the computer revolution and its effects on the production of print materials. The papers are addressed to readers who are educators rather than technologists. The first article, entitled "Print," interprets that term broadly to include text development and production, and…
DECS tries out instructional materials on AIDS prevention education.
1994-01-01
A national try-out of the newly developed print and non-print instructional materials on AIDS Education is being conducted by the Department of Education, Culture and Sports (DECS) this school year 1993-to 1994. To determine the effectiveness of these materials, various public and private schools in Region IV (Southern Tagalog), VII (Central Visayas) XI (Southern Mindanao) and National Capital Region (Metro, Manila) were chosen as try-out institutions. The AIDS education materials will be tried out in different subjects in some grade and year levels such as civics and culture (grade one); science and health (grades three and six); home economics and livelihood education (grade five); physical education, health and music (second year) and Pilipino Language (third year). The materials for the elementary level consist of posters, cut-out pictures, voice tapes, jingles, talking books and slides, while the secondary school level utilizes modules. For the tertiary level, a Resource Book on AIDS Prevention Education is used by the Teacher Training Institutions and the Non-Formal Education employs the Facilitator's Guide for Levels I-III. These materials will be tried out in both urban and rural schools, with control school and experimental school at each level. full text
Golsteijn, Rianne Henrica Johanna; Bolman, Catherine; Peels, Denise Astrid; Volders, Esmee; de Vries, Hein; Lechner, Lilian
2017-08-23
Physical activity (PA) is beneficial in improving negative physical and psychological effects of cancer. The rapidly increasing number of cancer survivors, resulting from aging and improved cancer care, emphasizes the importance to develop and provide low cost, easy accessible PA programs. Such programs could be provided through the Internet, but that could result in the exclusion of cancer survivors not familiar with the Internet. Therefore, we developed a computer-tailored PA intervention for prostate and colorectal cancer survivors in which both Web-based and print materials are provided, and participants can choose their own preferred delivery mode. The aim of this study was to assess participants' characteristics related to delivery mode and use of intervention materials. We studied characteristics of participants using Web-based and printed intervention materials in a randomized controlled trial (RCT). Prostate and colorectal cancer survivors recruited from hospitals were randomized to OncoActive (computer-tailored PA intervention) or a usual-care control group. OncoActive participants received both Web-based and printed materials. Participants were classified into initial print- or Web-based participants based on their preferred mode of completion of the first questionnaire, which was needed for the computer-tailored PA advice. Intervention material use during the remainder of the intervention was compared for initial print- or Web-based participants. Additionally, participants were classified into those using only print materials and those using Web-based materials. Differences in participant characteristics and intervention material use were studied through analysis of variance (ANOVAs), chi-square tests, and logistic regressions. The majority of the participants in the intervention group were classified as initial Web-based participants (170/249, 68.3%), and 84.9% (191/249) used Web-based intervention materials. Dropout was low (15/249, 6.0%) and differed between initial Web-based (4/170, 2.4%) and print-based (11/79, 14%) participants. Participants were less likely to start Web-based with higher age (odds ratio [OR]=0.93), longer time since last treatment (OR=0.87), and higher fatigue (OR=0.96), and more likely with higher education (OR=4.08) and having completed treatments (OR=5.58). Those who were older (OR=0.93) and post treatment for a longer time (OR=0.86) were less likely to use Web-based intervention materials. Initial print-based participants predominantly used print-based materials, whereas initial Web-based participants used both print- and Web-based materials. To our knowledge, this is one of the first studies that assessed participant characteristics related to delivery mode in an intervention in which participants had a free choice of delivery modes. Use of print-based materials among the initial Web-based participants was substantial, indicating the importance of print-based materials. According to our findings, it may be important to offer Web- and print-based materials alongside each other. Providing Web-based materials only may exclude older, less educated, more fatigued, or currently treated participants; these groups are especially more vulnerable and could benefit most from PA interventions. ©Rianne Henrica Johanna Golsteijn, Catherine Bolman, Denise Astrid Peels, Esmee Volders, Hein de Vries, Lilian Lechner. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 23.08.2017.
Gooding, Holly C; Cheever, Elizabeth; Forman, Sara F; Hatoun, Jonathan; Jooma, Farah; Touloumtzis, Currie; Vernacchio, Louis
2017-05-01
Routine screening for disordered eating or body image concerns is recommended by the American Academy of Pediatrics. We evaluated the ability of two educational interventions to increase screening for eating disorders in pediatric primary care practice, predicting that the "active-learning" group would have an increase in documented screening after intervention. We studied 303 practitioners in a large independent practice association located in the northeastern United States. We used a quasi-experimental design to test the effect of printed educational materials ("print-learning" group, n = 280 participants) compared with in-person shared learning followed by on-line spaced education ("active-learning" group, n = 23 participants) on documented screening of adolescents for eating disorder symptoms during preventive care visits. A subset of 88 participants completed additional surveys regarding knowledge of eating disorders, comfort screening for, diagnosing, and treating eating disorders, and satisfaction with their training regarding eating disorders. During the preintervention period, 4.5% of patients seen by practitioners in both the print-learning and active-learning groups had chart documentation of screening for eating disorder symptoms or body image concerns. This increased to 22% in the active-learning group and 5.7% in the print-learning group in the postintervention period, a statistically significant result. Compared with print-learning participants, active-learning group participants had greater eating disorder knowledge scores, increases in comfort diagnosing eating disorders, and satisfaction with their training in this area. In-person shared learning followed by on-line spaced education is more effective than print educational materials for increasing provider documentation of screening for eating disorders in primary care. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Rowe, Sue Ellen, Comp.
Audiovisual materials suitable for the teaching of nutrition are listed. Materials include coloring books, flannelboard stories, games, kits, audiotapes, records, charts, posters, study prints, films, videotapes, filmstrips, slides, and transparencies. Each entry contains bibliographic data, educational level, price and evaluation. Mateiral is…
Florida Marine Education Resources Bibliography. Report Number 51, Florida Sea Grant College.
ERIC Educational Resources Information Center
Gordon, Marjorie R.; Bane, Leni L.
This multidisciplinary, annotated bibliography is offered to K-12 teachers, other educators, librarians, concerned parents, and community leaders to simplify locating and acquiring marine education materials and infusing marine subjects into existing curricula. Included are printed materials currently available from commercial publishers,…
3D Printed Models of Cleft Palate Pathology for Surgical Education.
Lioufas, Peter A; Quayle, Michelle R; Leong, James C; McMenamin, Paul G
2016-09-01
To explore the potential viability and limitations of 3D printed models of children with cleft palate deformity. The advantages of 3D printed replicas of normal anatomical specimens have previously been described. The creation of 3D prints displaying patient-specific anatomical pathology for surgical planning and interventions is an emerging field. Here we explored the possibility of taking rare pediatric radiographic data sets to create 3D prints for surgical education. Magnetic resonance imaging data of 2 children (8 and 14 months) were segmented, colored, and anonymized, and stereolothographic files were prepared for 3D printing on either multicolor plastic or powder 3D printers and multimaterial 3D printers. Two models were deemed of sufficient quality and anatomical accuracy to print unamended. One data set was further manipulated digitally to artificially extend the length of the cleft. Thus, 3 models were printed: 1 incomplete soft-palate deformity, 1 incomplete anterior palate deformity, and 1 complete cleft palate. All had cleft lip deformity. The single-material 3D prints are of sufficient quality to accurately identify the nature and extent of the deformities. Multimaterial prints were subsequently created, which could be valuable in surgical training. Improvements in the quality and resolution of radiographic imaging combined with the advent of multicolor multiproperty printer technology will make it feasible in the near future to print 3D replicas in materials that mimic the mechanical properties and color of live human tissue making them potentially suitable for surgical training.
"Just Say No" Isn't Sex Education.
ERIC Educational Resources Information Center
Osborn, Anne
1991-01-01
Discusses the need for sex education and the inclusion of accurate information in materials produced for young people. Materials that address sexual reproduction, puberty, teenage pregnancy, AIDS, and other sexually transmitted diseases are reviewed, and recommended titles for print and nonprint materials are listed together with resources for…
The Contribution of Text-Highlighting to Comprehension: A Comparison of Print and Digital Reading
ERIC Educational Resources Information Center
Ben-Yehudah, Gal; Eshet-Alkalai, Yoram
2018-01-01
The use of digital materials in educational settings is common, despite evidence indicating that comprehension of digital text is inferior to comprehension of printed text. A potential solution to this problem is to use learning strategies for deeper text processing. Text-highlighting is a strategy known to improve comprehension of printed text;…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. This publication contains abstracts and indexes to selected…
ERIC Educational Resources Information Center
Donkor, Francis
2010-01-01
Print-based instructional materials have been more popular than any other medium for teaching practical skills during the delivery of technical and vocational education and training via distance learning. However, the approach has its shortcomings and in recent times alternatives have been sought. The comparative instructional effectiveness of one…
Boudreault, Patrick; Wolfson, Alicia; Berman, Barbara; Venne, Vickie L; Sinsheimer, Janet S; Palmer, Christina
2018-04-01
Health information about inherited forms of cancer and the role of family history in cancer risk for the American Sign Language (ASL) Deaf community, a linguistic and cultural community, needs improvement. Cancer genetic education materials available in English print format are not accessible for many sign language users because English is not their native or primary language. Per Center for Disease Control and Prevention recommendations, the level of literacy for printed health education materials should not be higher than 6th grade level (~ 11 to 12 years old), and even with this recommendation, printed materials are still not accessible to sign language users or other nonnative English speakers. Genetic counseling is becoming an integral part of healthcare, but often ASL users are not considered when health education materials are developed. As a result, there are few genetic counseling materials available in ASL. Online tools such as video and closed captioning offer opportunities for educators and genetic counselors to provide digital access to genetic information in ASL to the Deaf community. The Deaf Genetics Project team used a bilingual approach to develop a 37-min interactive Cancer Genetics Education Module (CGEM) video in ASL with closed captions and quizzes, and demonstrated that this approach resulted in greater cancer genetic knowledge and increased intentions to obtain counseling or testing, compared to standard English text information (Palmer et al., Disability and Health Journal, 10(1):23-32, 2017). Though visually enhanced educational materials have been developed for sign language users with multimodal/lingual approach, little is known about design features that can accommodate a diverse audience of sign language users so the material is engaging to a wide audience. The main objectives of this paper are to describe the development of the CGEM and to determine if viewer demographic characteristics are associated with two measurable aspects of CGEM viewing behavior: (1) length of time spent viewing and (2) number of pause, play, and seek events. These objectives are important to address, especially for Deaf individuals because the amount of simultaneous content (video, print) requires cross-modal cognitive processing of visual and textual materials. The use of technology and presentational strategies is needed that enhance and not interfere with health learning in this population.
Values Education and Some Suggestions to Teachers
ERIC Educational Resources Information Center
Demirhan Iscan, Canay
2011-01-01
This paper focuses on the process, approaches and teacher roles in values education and offers recommendations for teachers. It uses print materials and Internet sources on values education. These sources were analyzed and synthesized to reveal certain cases and/or opinions. In addition to contemporary sources, older reference materials were also…
Wittenberg, Elaine; Goldsmith, Joy; Ferrell, Betty; Ragan, Sandra L
2017-07-01
Family caregivers of cancer patients have a vital role in facilitating and sharing information about cancer, revealing a need to develop caregiver health literacy skills to support caregiver communication. The goal of this study was to investigate caregiver print materials and develop and assess a new caregiver communication resource titled A Communication Guide for Caregivers TM . Using a model of six domains of caregiver health literacy skills, print cancer education materials were collected and evaluated for caregiver communication support. A new caregiver communication resource was also developed and assessed by caregivers and healthcare providers. Caregivers reviewed content and assessed utility, relatability, and reading quality. Healthcare providers also assessed whether the material would be understandable and usable for cancer caregivers. Only three of the 28 print materials evaluated were written at the recommended sixth grade reading level and only five addressed all six caregiver health literacy skills. Readability scores for A Communication Guide for Caregivers TM were at the sixth grade level, and caregivers reported its contents were relatable, useful, and easy to read. Healthcare providers also rated the material as easy for patient/family members of diverse backgrounds and varying levels of literacy to understand and use. Existing print-based caregiver education materials do not address caregivers' health literacy skill needs and are aimed at a highly literate caregiving population. A Communication Guide for Caregivers TM meets health literacy standards and family caregiver and provider communication needs. The findings are relevant for healthcare professionals who provide cancer education. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Haugh, Dana
2016-01-01
The shift from physical materials to digital holdings has slowly infiltrated libraries across the globe, and librarians are struggling to make sense of these intangible, and sometimes fleeting, resources. Materials budgets have shifted to accommodate large journal and database subscriptions, single-title article access, and, most recently, e-book…
3D Printed Models of Cleft Palate Pathology for Surgical Education
Lioufas, Peter A.; Quayle, Michelle R.; Leong, James C.
2016-01-01
Objective: To explore the potential viability and limitations of 3D printed models of children with cleft palate deformity. Background: The advantages of 3D printed replicas of normal anatomical specimens have previously been described. The creation of 3D prints displaying patient-specific anatomical pathology for surgical planning and interventions is an emerging field. Here we explored the possibility of taking rare pediatric radiographic data sets to create 3D prints for surgical education. Methods: Magnetic resonance imaging data of 2 children (8 and 14 months) were segmented, colored, and anonymized, and stereolothographic files were prepared for 3D printing on either multicolor plastic or powder 3D printers and multimaterial 3D printers. Results: Two models were deemed of sufficient quality and anatomical accuracy to print unamended. One data set was further manipulated digitally to artificially extend the length of the cleft. Thus, 3 models were printed: 1 incomplete soft-palate deformity, 1 incomplete anterior palate deformity, and 1 complete cleft palate. All had cleft lip deformity. The single-material 3D prints are of sufficient quality to accurately identify the nature and extent of the deformities. Multimaterial prints were subsequently created, which could be valuable in surgical training. Conclusion: Improvements in the quality and resolution of radiographic imaging combined with the advent of multicolor multiproperty printer technology will make it feasible in the near future to print 3D replicas in materials that mimic the mechanical properties and color of live human tissue making them potentially suitable for surgical training. PMID:27757345
Designing New Media Education Research: The Materiality of Data, Representation, and Dissemination
ERIC Educational Resources Information Center
Voithofer, Rick
2005-01-01
The current historical moment is marked by the gradual transition from a print culture to a digital new media culture, and this shift carries material effects for how education research contexts are perceived and represented. This discussion uses the concept of materiality to demonstrate how the conceptualization of inquiry through digital…
Florida VIEW 1992-94. Careers.
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee. Div. of Vocational, Adult, and Community Education.
Information on 417 occupations is provided in this book. Introductory materials describe Florida Vital Information for Education and Work (VIEW), a complete system of career, education, and financial aid information; printed information and additional support materials; and use of this book. Four indexes appear first. The interest/occupational…
ERIC Educational Resources Information Center
Educational Media Council, Inc., New York, NY.
THIS 14-VOLUME SERIES INCLUDES TITLES AND DESCRIPTIONS FOR ALL CURRENT AND GENERALLY AVAILABLE EDUCATIONAL MEDIA, EXCLUDING STANDARD PRINT MATERIALS. EACH VOLUME COVERS A SPECIFIC SUBJECT AREA, LISTS TITLES ALPHABETICALLY AND BY SUBJECT, DESCRIBES EACH ENTRY, AND LISTS NAMES AND ADDRESSES OF SOURCES FOR THE MATERIALS. VOLUME 14 IS A CUMULATIVE…
ERIC Educational Resources Information Center
Waters, John K.
2007-01-01
When Anita Givens, who serves the Texas Education Agency (TEA) as the senior director for instructional materials and educational technology, first began teaching elementary school students to use computers back in the mid-1980s, there were few digital learning materials available and little demand for electronic textbooks. In fact, parents and…
38 CFR 21.5820 - Educational assistance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... consumable materials used as part of classroom or laboratory instruction. (2) Educational expenses may not... benefits from the educational assistance test program. (Authority: 10 U.S.C. 2143(a)) (b) Amount of... printed volume and on GPO Access. ...
Educational Radio: Directions in the Pacific.
ERIC Educational Resources Information Center
Reddy, Sachida
1986-01-01
This personal perspective on developments in educational radio broadcasting in some small island nations of the South Pacific discusses radio as a powerful teaching aid, curriculum development, educational communicators, printed support materials, costs, facilities duplication, and future trends. (MBR)
Bodner, Danielle; LaDeau, Shannon L; Biehler, Dawn; Kirchoff, Nicole; Leisnham, Paul T
2016-01-01
Improving resident-based management and knowledge of mosquitoes is often an integral component of integrated mosquito management, especially in urban landscapes with considerable mosquito habitat on privately owned lands. This study tested the effectiveness of print education materials at reducing urban mosquito exposure through improving resident knowledge of, and attitudes towards, mosquitoes and mosquito management in Washington DC, USA. There was a specific focus on the removal of water-filled containers that are utilized by the developmental stages of the two most common vector species in the region, Aedes albopictus and Culex pipiens. Households in six neighborhoods that varied in socio-economic status were administered knowledge, attitude, and practice (KAP) surveys in 2010 and 2012, and had their yards surveyed for container habitats and immature mosquitoes (larvae and pupae) in 2010, 2011, and 2012. Half the households (intervention, n = 120) received education materials in 2011 and 2012 to yield a before-after control-intervention (BACI) design. Unexpectedly, residents in intervention households were more likely to show decreased concern for mosquito-borne illnesses than residents in control households, which did not receive materials. Moreover, there was a greater probability that control households reduced containers in 2012 than intervention households, particularly when they had low numbers of baseline (2010) containers. Irrespective of control, reductions in containers were associated with decreased abundances of immature mosquitoes. Overall, our findings suggest that print education materials may have unintended negative effects on resident attitudes and household management of mosquito production. We recommend that mosquito control agencies need to carefully consider their content of print messages and the effectiveness of strategies that passively convey information with little or no engagement with control professionals.
Bodner, Danielle; LaDeau, Shannon L.; Biehler, Dawn; Kirchoff, Nicole; Leisnham, Paul T.
2016-01-01
Improving resident-based management and knowledge of mosquitoes is often an integral component of integrated mosquito management, especially in urban landscapes with considerable mosquito habitat on privately owned lands. This study tested the effectiveness of print education materials at reducing urban mosquito exposure through improving resident knowledge of, and attitudes towards, mosquitoes and mosquito management in Washington DC, USA. There was a specific focus on the removal of water-filled containers that are utilized by the developmental stages of the two most common vector species in the region, Aedes albopictus and Culex pipiens. Households in six neighborhoods that varied in socio-economic status were administered knowledge, attitude, and practice (KAP) surveys in 2010 and 2012, and had their yards surveyed for container habitats and immature mosquitoes (larvae and pupae) in 2010, 2011, and 2012. Half the households (intervention, n = 120) received education materials in 2011 and 2012 to yield a before-after control-intervention (BACI) design. Unexpectedly, residents in intervention households were more likely to show decreased concern for mosquito-borne illnesses than residents in control households, which did not receive materials. Moreover, there was a greater probability that control households reduced containers in 2012 than intervention households, particularly when they had low numbers of baseline (2010) containers. Irrespective of control, reductions in containers were associated with decreased abundances of immature mosquitoes. Overall, our findings suggest that print education materials may have unintended negative effects on resident attitudes and household management of mosquito production. We recommend that mosquito control agencies need to carefully consider their content of print messages and the effectiveness of strategies that passively convey information with little or no engagement with control professionals. PMID:27171195
INSTRUCTIONAL TELEVISION FOR THE FOURTH GRADE. A TEACHER GUIDE SEMESTER II.
ERIC Educational Resources Information Center
PELIKAN, ALFRED; AND OTHERS
PROGRAMS FOR FOURTH GRADE ARE DIVIDED INTO FOUR AREAS--ART, MUSIC PHYSICAL EDUCATION AND SCIENCE. ART LESSONS INCLUDE THE PAPER CONSTRUCTION OF ROCKETS AND SPACESHIPS, FINGER PUPPETS, SANDPAPER PRINTS AND GLASS ADDITIVE PRINTS. EACH LESSON IS PRESENTED COMPLETE WITH PURPOSES, PROCESS AND MEDIUM, SUBJECT, MATERIALS, PROPOSED SEQUENCE, AND…
2015-08-18
machine and its impact to the bio properties. Samples are printed and test will be conducted in summer 2015. 5. Selective Melting of Nitinol : The...objective of this research is to print Nitinol and investigate its application in bio implant and aviation. Planned research: 1. Hierarchical
Sander, Ian M; McGoldrick, Matthew T; Helms, My N; Betts, Aislinn; van Avermaete, Anthony; Owers, Elizabeth; Doney, Evan; Liepert, Taimi; Niebur, Glen; Liepert, Douglas; Leevy, W Matthew
2017-07-01
Advances in three-dimensional (3D) printing allow for digital files to be turned into a "printed" physical product. For example, complex anatomical models derived from clinical or pre-clinical X-ray computed tomography (CT) data of patients or research specimens can be constructed using various printable materials. Although 3D printing has the potential to advance learning, many academic programs have been slow to adopt its use in the classroom despite increased availability of the equipment and digital databases already established for educational use. Herein, a protocol is reported for the production of enlarged bone core and accurate representation of human sinus passages in a 3D printed format using entirely consumer-grade printers and a combination of free-software platforms. The comparative resolutions of three surface rendering programs were also determined using the sinuses, a human body, and a human wrist data files to compare the abilities of different software available for surface map generation of biomedical data. Data shows that 3D Slicer provided highest compatibility and surface resolution for anatomical 3D printing. Generated surface maps were then 3D printed via fused deposition modeling (FDM printing). In conclusion, a methodological approach that explains the production of anatomical models using entirely consumer-grade, fused deposition modeling machines, and a combination of free software platforms is presented in this report. The methods outlined will facilitate the incorporation of 3D printed anatomical models in the classroom. Anat Sci Educ 10: 383-391. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
ERIC Educational Resources Information Center
Mogali, Sreenivasulu Reddy; Yeong, Wai Yee; Tan, Heang Kuan Joel; Tan, Gerald Jit Shen; Abrahams, Peter H.; Zary, Nabil; Low-Beer, Naomi; Ferenczi, Michael Alan
2018-01-01
For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the…
ERIC Educational Resources Information Center
Perry, Christina; Albrecht, Julie; Litchfield, Ruth; Meysenburg, Rebecca L.; Er, Ida NgYin; Lum, Adeline; Beattie, Sam; Larvick, Carol; Schwarz, Carol; Temple, Jan; Meimann, Elizabeth
2012-01-01
Printed materials have been used extensively as an educational tool to increase food safety awareness. Few educational materials have been designed to target families with young children for food safety education. This article reports the use of the formative evaluation process to develop a brochure designed to enhance awareness about food safety…
ERIC Educational Resources Information Center
McLaughlin, Elaine Casserly, Comp.; And Others
This resource guide to evaluated print and audiovisual nutrition materials has been developed to assist state and local staff of the Special Supplemental Program for Women, Infants and Children (WIC) and the Commodity Supplemental Foods Program (CSFP), in selecting, acquiring, and developing accurate and appropriate materials for nutrition…
Chang, Shu-Fang; Hung, Chich-Hsiu; Hsu, Yu-Yun; Liu, Yi; Wang, Tsu-Nai
2017-08-01
Many studies have shown that providing health education before surgery may significantly increase health knowledge and decrease anxiety in both patients and their family members. However, few studies have compared the effects on pediatric outpatient surgery outcomes of different health education instruction modes. This study compares the effects of two health education delivery modes on maternal knowledge and anxiety, the number of unexpected early hospital follow-up visits, and the time spent by nurses on health education. A quasi-experimental design with pretest and posttest was used to compare the effect on the outcomes of pediatric circumcision of a multimedia compact disc (CD) and a printed material.Seventy mothers of children who underwent Plastibell circumcision participated in this study. Both the printed material and the multimedia CD significantly increased the knowledge and reduced the anxiety levels of the participants. However, no significant differences in unscheduled early hospital follow-up visits postsurgery were found between the two modes of instruction. Furthermore, we found that significantly fewer hours were spent by nurses on health education for the multimedia CD group in comparison with the printed material group. In the current clinical environment of common staffing shortages, information tools may be used to cost-effectively assist and simplify nursing work. The findings of this study may provide a reference to medical centers that are working to reduce the time spent by nurses on health education for outpatient surgery patients. Furthermore, audiovisual health education tools are recommended to increase nursing effectiveness and save nursing time.
ERIC Educational Resources Information Center
Ritz, John M.; And Others
This document--intended to help technology education teachers plan their classroom curriculum for secondary school and college students--contains units on satellite communication, the nature and properties of engineering materials, careers in technology, new developments in printing, composite materials, ceramics, ceramic materials, and personal…
ERIC Educational Resources Information Center
Curran, Vernon; Noseworthy, Tanya
This synthesis report provides an extensive overview of literature evaluating use and effectiveness of distance learning technologies in delivering continuing education (CE) for health professionals. Chapter 2 discusses advantages and disadvantages of correspondence materials, explores suggestions for improving print-based learning materials, and…
Distance Learners' Perspective on User-Friendly Instructional Materials at the University of Zambia
ERIC Educational Resources Information Center
Simui, F.; Thompson, L. C.; Mundende, K.; Mwewa, G.; Kakana, F.; Chishiba, A.; Namangala, B.
2017-01-01
This case study focuses on print-based instructional materials available to distance education learners at the University of Zambia. Using the Visual Paradigm Software, we model distance education learners' voices into sociograms to make a contribution to the ongoing discourse on quality distance learning in poorly resourced communities. Emerging…
Learning through Plastic Filament Extrusion
ERIC Educational Resources Information Center
Orr, Taylor; Flowers, Jim
2015-01-01
3D printing is becoming ever more popular in both the manufacturing world as well as in technology and engineering education classrooms all over the United States. 3D printing is an additive manufacturing process in which successive layers of material are built up to produce three-dimensional objects from computer-aided design (CAD) files, making…
Dual-Extrusion 3D Printing of Anatomical Models for Education
ERIC Educational Resources Information Center
Smith, Michelle L.; Jones, James F. X.
2018-01-01
Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex[superscript 3D] flexible filament and polylactic acid (PLA)…
ERIC Educational Resources Information Center
Mangano, R. Michael; And Others
Volume 1 of a three-volume guide to vocational curriculum resources for disadvantaged students consists of instructional checklists for resources identified in the following areas: agriculture, auto body repair, automobile mechanics, basic math skills, basic reading skills, business education, carpentry, cosmetology, custodial and maintenance,…
Unit: Petroleum, Inspection Pack, National Trial Print.
ERIC Educational Resources Information Center
Australian Science Education Project, Toorak, Victoria.
This is a National Trial Print of a unit on petroleum developed for the Australian Science Education Project. The package contains the teacher's edition of the written material and a script for a film entitled "The Extraordinary Experience of Nicholas Nodwell" emphasizing the uses of petroleum and petroleum products in daily life and…
Methods and Materials in the Education of the Visually Handicapped.
ERIC Educational Resources Information Center
Association for Education of the Visually Handicapped, Philadelphia, PA.
Presented are 19 selected papers given at the 1972 conference. The following titles are included: "Multi-Handicapped, the King of Challengers"; "Is Listening the Answer?"; "An Aural Study System designed for the Visually Handicapped"; "VOCOM I--Speech Compressor Expander"; "A Comparison of the Effectiveness of Standard Print and Large Print in…
User Education Resources: USER.
ERIC Educational Resources Information Center
Condon, Patrick; Cook, Johanna
This report describes User Education Resources (USER), an Australian database containing both print and audiovisual materials related to library instruction. Intended to make a wide range of ideas readily available to librarians interested in educating library patrons, USER collects catalog guides, classification guides, evaluation forms, floor…
Finnie, Ramona K C; Felder, Tisha M; Linder, Suzanne Kneuper; Mullen, Patricia Dolan
2010-12-01
Consideration of categories related to reading comprehension--beyond reading level--is imperative to reach low literacy populations effectively. "Suitability" has been proposed as a term to encompass six categories of such factors: content, literacy demand graphics, layout/typography, learning stimulation, and cultural appropriateness. Our purpose was to describe instruments used to evaluate categories of suitability in cancer education materials in published reports and their findings. We searched databases and reference lists for evaluations of print and Web-based cancer education materials to identify and describe measures of these categories. Studies had to evaluate reading level and at least one category of suitability. Eleven studies met our criteria. Seven studies reported inter-rater reliability. Cultural appropriateness was most often assessed; four instruments assessed only surface aspects of cultural appropriateness. Only two of seven instruments used, the suitability assessment of materials (SAM) and the comprehensibility assessment of materials (SAM + CAM), were described as having any evidence of validity. Studies using Simplified Measure of Goobledygook (SMOG) and Fry reported higher average reading level scores than those using Flesh-Kincaid. Most materials failed criteria for reading level and cultural appropriateness. We recommend more emphasis on the categories of suitability for those developing cancer education materials and more study of these categories and reliability and validity testing of instruments.
Drug Education: Goals, Approaches, Evaluation, ERS Report.
ERIC Educational Resources Information Center
Bushey, Julia A.
An examination of the extensive drug education literature as well as of specific school drug education programs indicates that the present confusion over drug education results from confusion over definitions, goals, approaches, and evaluation. This report, based on an examination of recent literature and on information and printed materials on…
Metrics in Education - Resource Materials.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Div. of Curriculum Development.
This publication contains materials suitable for reproduction as transparencies or as classroom handouts. These metric materials may be used in a variety of occupational and practical arts courses. The format of the materials is in large print, some with humorous drawing; details of drawings and charts are easy to read. Introductory pages deal…
McClure, Elizabeth; Ng, Jared; Vitzthum, Kelly; Rudd, Rima
2016-05-12
Despite the first goal of the 2010 National Action Plan to Improve Health Literacy, the literacy demands of much health information exceeds the reading skills of most US adults. The objective of this study was to assess the health literacy level of publicly available patient education materials for people with sickle cell disease (SCD). We used 5 validated tools to evaluate 9 print and 4 online patient education materials: the simple measure of gobbledygook (SMOG) to assess reading grade level, the Peter Mosenthal and Irwin Kirsch readability formula (PMOSE/IKIRSCH) to assess structure and density, the Patient Education Materials Assessment Tool (PEMAT) to assess actionability (how well readers will know what to do after reading the material) and understandability, the Centers for Disease Control and Prevention's (CDC's) Clear Communication Index (Index) to obtain a comprehensive literacy demand score, and the Printed Cancer Education Materials for African Americans Cultural Sensitivity Assessment Tool. Materials' scores reflected high reading levels ranging from 8th grade to 12th grade, appropriate (low) structural demand, and low actionability relative to understandability. CDC suggests that an appropriate Index score should fall in or above the 90th percentile. The scores yielded by materials evaluated in this assessment ranged from the 44th to the 76th percentiles. Eight of the 13 materials scored within the acceptable range for cultural sensitivity. Reading levels of available patient education materials exceed the documented average literacy level of the US adult population. Health literacy demands should be a key consideration in the revision and development of patient education materials for people with SCD.
Jih, Jane; Le, Gem; Woo, Kent; Tsoh, Janice Y; Stewart, Susan; Gildengorin, Ginny; Burke, Adam; Wong, Ching; Chan, Elaine; Fung, Lei-Chun; Yu, Filmer; Pasick, Rena; McPhee, Stephen J; Nguyen, Tung T
2016-06-01
To evaluate the efficacy of an in-language intervention of 2 lectures plus printed materials versus printed materials alone on knowledge and adherence to nutrition and physical activity guidelines among older Chinese Americans in San Francisco, California. From August 2010 to September 2013, we randomized 756 Chinese Americans aged 50 to 75 years to either lectures plus print (n = 361) or print (n = 357). Clusters were the participants recruited by each lay health worker. Intervention outcomes were changes in knowledge of recommended vegetable intake, fruit intake, and physical activity level and adherence to those recommendations from pre- to 6 months postintervention. The retention rate was 99%. At baseline, knowledge and adherence to recommendations were low. Print yielded increases in knowledge of recommended vegetable intake and physical activity level and adherence to fruit intake and physical activity recommendations. Lectures plus print had significant increases in all 6 outcomes. In multivariable models, lectures plus print was superior to print for knowledge of vegetable (adjusted odds ratio [AOR] = 12.61; 95% confidence interval [CI] = 6.50, 24.45) and fruit (AOR = 16.16; 95% CI = 5.61, 46.51) intake recommendations and adherence to vegetable intake recommendations (AOR = 5.53; 95% CI = 1.96, 15.58). In-language print materials, alone and combined with lectures, increased nutrition and physical activity knowledge and behaviors among older Chinese Americans.
Quality of the Literacy Environment in Inclusive Early Childhood Special Education Classrooms
ERIC Educational Resources Information Center
Guo, Ying; Sawyer, Brook E.; Justice, Laura M.; Kaderavek, Joan N.
2013-01-01
The purpose of this study was to examine the quality of the literacy environment in inclusive early childhood special education (ECSE) classrooms ("N" = 54). The first aim was to describe the quality of the literacy environment in terms of structure (i.e., book materials and print/writing materials) and instruction (i.e., instructional…
ERIC Educational Resources Information Center
Mullins, June
Intended for producers of educational materials, the document offers guidelines to assure that print and nonprint educational materials reflect a positive, fair, and balanced representation of persons with exceptionalities. Nine guidelines are discussed: (1) 10% of the contents should include or represent children or adults with an exceptionality;…
ERIC Educational Resources Information Center
Gürses, Nedim; Demiray, Emine
2009-01-01
In like manner as conventional education and teaching approaches distance education tends to model the same procedures. Indeed, formerly enriched on printed material served as a primary source. However, thanks to the developments in technology and evolution in education, computerised information has made inroads in distance education programmes.…
ERIC Educational Resources Information Center
Gurses, Nedim; Demiray, Emine
2009-01-01
In like manner as conventional education and teaching approaches distance education tends to model the same procedures. Indeed, formerly enriched on printed material served as a primary source. However, thanks to the developments in technology and evolution in education, computerised information has made inroads in distance education programmes.…
Wireless Rover Meets 3D Design and Product Development
ERIC Educational Resources Information Center
Deal, Walter F., III; Hsiung, Steve C.
2016-01-01
Today there are a number of 3D printing technologies that are low cost and within the budgets of middle and high school programs. Educational technology companies offer a variety of 3D printing technologies and parallel curriculum materials to enable technology and engineering teachers to easily add 3D learning activities to their programs.…
Unit: Plants, Inspection Pack, National Trial Print.
ERIC Educational Resources Information Center
Australian Science Education Project, Toorak, Victoria.
This is a National Trial Print of a unit on plants produced as a part of the Australian Science Education Project. The unit consists of an information booklet for students, a booklet for recording student data, and a teacher's guide. The material, designed for use with students in the upper elementary grades, takes from 15 to 20 forty-minute…
ERIC Educational Resources Information Center
California Community Colleges, Sacramento. Office of the Chancellor.
Title II, Section 504 of the U.S. Department of Education's Office for Civil Rights (OCR) requires community colleges to provide access to print and computer-based information for students with visual impairments. In response, the Chancellor's Office of the California Community College system prepared a budget change proposal (BCP) for the…
Baskaran, Vivek; Štrkalj, Goran; Štrkalj, Mirjana; Di Ieva, Antonio
2016-01-01
3D printing is a form of rapid prototyping technology, which has led to innovative new applications in biomedicine. It facilitates the production of highly accurate three dimensional objects from substrate materials. The inherent accuracy and other properties of 3D printing have allowed it to have exciting applications in anatomy education and surgery, with the specialty of neurosurgery having benefited particularly well. This article presents the findings of a literature review of the Pubmed and Web of Science databases investigating the applications of 3D printing in anatomy and surgical education, and neurosurgery. A number of applications within these fields were found, with many significantly improving the quality of anatomy and surgical education, and the practice of neurosurgery. They also offered advantages over existing approaches and practices. It is envisaged that the number of useful applications will rise in the coming years, particularly as the costs of this technology decrease and its uptake rises. PMID:27445707
Baskaran, Vivek; Štrkalj, Goran; Štrkalj, Mirjana; Di Ieva, Antonio
2016-01-01
3D printing is a form of rapid prototyping technology, which has led to innovative new applications in biomedicine. It facilitates the production of highly accurate three dimensional objects from substrate materials. The inherent accuracy and other properties of 3D printing have allowed it to have exciting applications in anatomy education and surgery, with the specialty of neurosurgery having benefited particularly well. This article presents the findings of a literature review of the Pubmed and Web of Science databases investigating the applications of 3D printing in anatomy and surgical education, and neurosurgery. A number of applications within these fields were found, with many significantly improving the quality of anatomy and surgical education, and the practice of neurosurgery. They also offered advantages over existing approaches and practices. It is envisaged that the number of useful applications will rise in the coming years, particularly as the costs of this technology decrease and its uptake rises.
Continuing medical education challenges in chronic fatigue syndrome.
Brimmer, Dana J; McCleary, K Kimberly; Lupton, Teresa A; Faryna, Katherine M; Reeves, William C
2009-12-02
Chronic fatigue syndrome (CFS) affects at least 4 million people in the United States, yet only 16% of people with CFS have received a diagnosis or medical care for their illness. Educating health care professionals about the diagnosis and management of CFS may help to reduce population morbidity associated with CFS. This report presents findings over a 5-year period from May 2000 to June 2006 during which we developed and implemented a health care professional educational program. The objective of the program was to distribute CFS continuing education materials to providers at professional conferences, offer online continuing education credits in different formats (e.g., print, video, and online), and evaluate the number of accreditation certificates awarded. We found that smaller conference size (OR = 80.17; 95% CI 8.80, 730.25), CFS illness related target audiences (OR = 36.0; 95% CI 2.94, 436.34), and conferences in which CFS research was highlighted (OR = 4.15; 95% CI 1.16, 14.83) significantly contributed to higher dissemination levels, as measured by visit rates to the education booth. While print and online courses were equally requested for continuing education credit opportunities, the online course resulted in 84% of the overall award certificates, compared to 14% for the print course. This remained consistent across all provider occupations: physicians, nurses, physician assistants, and allied health professionals. These findings suggest that educational programs promoting materials at conferences may increase dissemination efforts by targeting audiences, examining conference characteristics, and promoting online continuing education forums.
Paul, C L; Redman, S; Sanson-Fisher, R W
2004-12-01
Printed materials have been a primary mode of communication in public health education. Three major approaches to the development of these materials--the application of characteristics identified in the literature, behavioral strategies and marketing strategies--have major implications for both the effectiveness and cost of materials. However, little attention has been directed towards the cost-effectiveness of such approaches. In the present study, three pamphlets were developed using successive addition of each approach: first literature characteristics only ('C' pamphlet), then behavioral strategies ('C + B' pamphlet) and then marketing strategies ('C + B + M' pamphlet). Each pamphlet encouraged women to join a Pap Test Reminder Service (PTRS). Each pamphlet was mailed to a randomly selected sample of 2700 women aged 50-69 years. Registrations with the PTRS were monitored and 420 women in each pamphlet group were surveyed by telephone. It was reported that the 'C + B' and 'C + B + M' pamphlets were significantly more effective than the 'C' pamphlet. The 'C + B' pamphlet was the most cost-effective of the three pamphlets. There were no significant differences between any of the pamphlet groups on acceptability, knowledge or attitudes. It was suggested that the inclusion of behavioral strategies is likely to be a cost-effective approach to the development of printed health education materials.
ERIC Educational Resources Information Center
Wisconsin State Dept. of Public Instruction, Madison.
This resource document provides information about technical assistance and educational materials that can guide the development, implementation, and evaluation of acquired immunodeficiency syndrome (AIDS) education. The resources also offer information about programs whose goals are to prevent the spread of human immunodeficiency virus (HIV) and…
Lau, Ivan Wen Wen; Liu, Dongting; Xu, Lei; Fan, Zhanming
2018-01-01
Objective Current diagnostic assessment tools remain suboptimal in demonstrating complex morphology of congenital heart disease (CHD). This limitation has posed several challenges in preoperative planning, communication in medical practice, and medical education. This study aims to investigate the dimensional accuracy and the clinical value of 3D printed model of CHD in the above three areas. Methods Using cardiac computed tomography angiography (CCTA) data, a patient-specific 3D model of a 20-month-old boy with double outlet right ventricle was printed in Tango Plus material. Pearson correlation coefficient was used to evaluate correlation of the quantitative measurements taken at analogous anatomical locations between the CCTA images pre- and post-3D printing. Qualitative analysis was conducted by distributing surveys to six health professionals (two radiologists, two cardiologists and two cardiac surgeons) and three medical academics to assess the clinical value of the 3D printed model in these three areas. Results Excellent correlation (r = 0.99) was noted in the measurements between CCTA and 3D printed model, with a mean difference of 0.23 mm. Four out of six health professionals found the model to be useful in facilitating preoperative planning, while all of them thought that the model would be invaluable in enhancing patient-doctor communication. All three medical academics found the model to be helpful in teaching, and thought that the students will be able to learn the pathology quicker with better understanding. Conclusion The complex cardiac anatomy can be accurately replicated in flexible material using 3D printing technology. 3D printed heart models could serve as an excellent tool in facilitating preoperative planning, communication in medical practice, and medical education, although further studies with inclusion of more clinical cases are needed. PMID:29561912
The Cost of Copyright Confusion for Media Literacy
ERIC Educational Resources Information Center
Hobbs, Renee; Jaszi, Peter; Aufderheide, Patricia
2007-01-01
Purpose: Media literacy educators in K-12, higher education, and after-school programs depend on the ability to make use of copyright materials (print, visual, film, video and online) in their teaching. This study investigated the knowledge, attitudes and experiences of media literacy educators regarding copyright and fair use. Methodology:…
Writing for Distance Education. Samples Booklet.
ERIC Educational Resources Information Center
International Extension Coll., Cambridge (England).
Approaches to the format, design, and layout of printed instructional materials for distance education are illustrated in 36 samples designed to accompany the manual, "Writing for Distance Education." Each sample is presented on a single page with a note pointing out its key features. Features illustrated include use of typescript layout, a comic…
Favier, Valentin; Zemiti, Nabil; Caravaca Mora, Oscar; Subsol, Gérard; Captier, Guillaume; Lebrun, Renaud; Crampette, Louis; Mondain, Michel; Gilles, Benjamin
2017-01-01
Endoscopic skull base surgery allows minimal invasive therapy through the nostrils to treat infectious or tumorous diseases. Surgical and anatomical education in this field is limited by the lack of validated training models in terms of geometric and mechanical accuracy. We choose to evaluate several consumer-grade materials to create a patient-specific 3D-printed skull base model for anatomical learning and surgical training. Four 3D-printed consumer-grade materials were compared to human cadaver bone: calcium sulfate hemihydrate (named Multicolor), polyamide, resin and polycarbonate. We compared the geometric accuracy, forces required to break thin walls of materials and forces required during drilling. All materials had an acceptable global geometric accuracy (from 0.083mm to 0.203mm of global error). Local accuracy was better in polycarbonate (0.09mm) and polyamide (0.15mm) than in Multicolor (0.90mm) and resin (0.86mm). Resin and polyamide thin walls were not broken at 200N. Forces needed to break Multicolor thin walls were 1.6-3.5 times higher than in bone. For polycarbonate, forces applied were 1.6-2.5 times higher. Polycarbonate had a mode of fracture similar to the cadaver bone. Forces applied on materials during drilling followed a normal distribution except for the polyamide which was melted. Energy spent during drilling was respectively 1.6 and 2.6 times higher on bone than on PC and Multicolor. Polycarbonate is a good substitute of human cadaver bone for skull base surgery simulation. Thanks to short lead times and reasonable production costs, patient-specific 3D printed models can be used in clinical practice for pre-operative training, improving patient safety.
Citings on the Educational Horizon
ERIC Educational Resources Information Center
Mathies, Lorraine
1975-01-01
Article reviewed programs designed to help blind persons take advantage of information not in print form, programs which offer information on careers, programs designed to foster private sponsorship of basic research expeditions, and programs that eliminate social bias in educational materials. (Author/RK)
ERIC Educational Resources Information Center
Mollica, Anthony S.
It has been said that the classroom must be a multidimensional environment where learning takes place and students are encouraged to realize their own potential. How all the relationships between the student and the components of the environment are cultivated will in large part determine the effectiveness of the teaching-learning process. This…
Product-Quantity/Instructional-Quality Imbalance: The Imperative of Empiricism.
ERIC Educational Resources Information Center
Komoski, P. Kenneth
A major legacy of the "go-go years", the late 50's and 60's when federal and foundation funding of education increased so much, was a huge increase in the number of instructional materials (both print and non-print) available to the schools. The efforts of the non-commercial curriculum development teams have been swamped by this increase and their…
A Guide to Drug Abuse Education and Information Materials.
ERIC Educational Resources Information Center
National Inst. on Drug Abuse (DHEW/PHS), Rockville, MD. National Clearinghouse for Drug Abuse Information.
Drug-abuse-prevention materials developed by and available from the National Institute of Mental Health, National Clearinghouse for Drug Abuse Information are described in this guide. The materials are television and radio spots, print ads, posters, a federal source book, flyers, special audience publications, information for the professional,…
Govsa, Figen; Ozer, Mehmet Asim; Sirinturk, Suzan; Eraslan, Cenk; Alagoz, Ahmet Kemal
2017-08-01
A new application of teaching anatomy includes the use of computed tomography angiography (CTA) images to create clinically relevant three-dimensional (3D) printed models. The purpose of this article is to review recent innovations on the process and the application of 3D printed models as a tool for using under and post-graduate medical education. Images of aortic arch pattern received by CTA were converted into 3D images using the Google SketchUp free software and were saved in stereolithography format. Using a 3D printer (Makerbot), a model mode polylactic acid material was printed. A two-vessel left aortic arch was identified consisting of the brachiocephalic trunk and left subclavian artery. The life-like 3D models were rotated 360° in all axes in hand. The early adopters in education and clinical practices have embraced the medical imaging-guided 3D printed anatomical models for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between the anatomical structures. Printed vascular models are used to assist in preoperative planning, develop intraoperative guidance tools, and to teach patients surgical trainees in surgical practice.
ERIC Educational Resources Information Center
Kindler, Jan
1998-01-01
Describes development of CD-ROM and print materials designed for learners with low literacy levels. Explains the importance of group work, incorporation of different learning styles, and the benefits of flexible delivery. (SK)
ERIC Educational Resources Information Center
Botterbusch, Hope R.
1992-01-01
Reports results of a survey of copyright concerns that was conducted by the Association for Educational Communications and Technology. Areas addressed include video and television; copyright legislation; printed materials; music; audiovisual materials; and computer software. A checklist of proper copyright procedures is included. (six references)…
Finnie, Ramona K.C.; Felder, Tisha M.; Linder, Suzanne Kneuper; Mullen, Patricia Dolan
2010-01-01
Background Consideration of categories related to reading comprehension—beyond reading level—is imperative to reach low literacy populations effectively. “Suitability” has been proposed as a term to encompass six categories of such factors: content, literacy demand graphics, layout/typography, learning stimulation, and cultural appropriateness. Our purpose was to describe instruments used to evaluate categories of suitability in cancer education materials in published reports and their findings. Methods We searched databases and reference lists for evaluations of print and Web-based cancer education materials to identify and describe measures of these categories. Studies had to evaluate reading level and at least one category of suitability. Results Eleven studies met our criteria.. Seven studies reported inter-rater reliability. Cultural appropriateness was most often assessed; four instruments assessed only surface aspects of cultural appropriateness. Only two of seven instruments used, the Suitability Assessment of Materials (SAM) and the Comprehensibility Assessment of Materials (SAM + CAM), were described as having any evidence of validity. Studies using SMOG and Fry reported higher average reading level scores than those using FK. Most materials failed criteria for reading level and cultural appropriateness. Conclusions We recommend more emphasis on the categories of suitability for those developing cancer education materials and more study of these categories and reliability and validity testing of instruments. PMID:20237884
SSRP: Software for Problem Solving and Inquiry in Grades K-4. Ohio SchoolNet. ENC Focus.
ERIC Educational Resources Information Center
Harris, Julia, Ed.
1997-01-01
The number and range of instructional resources in mathematics and science education can be overwhelming to educators. The chief mission of The Eisenhower National Clearinghouse for Mathematics and Science Education (ENC) is to help educators sort through the confusion by identifying relevant resources such as print materials, software, kits, and…
ERIC Educational Resources Information Center
Flores, Alina L.; Prue, Christine E.; Panissidi, Paula
2010-01-01
Objective: This article presents the results of testing draft folic acid educational materials with key gatekeepers, leading to the development of a Spanish-language print advertisement, poster, and radio public service announcement (PSA) aimed at promoting folic acid consumption among 18- to 25-year-old young Latina adults, as well as a…
Form and Function of Educational Technology in Developmental Curricula in a Community College
ERIC Educational Resources Information Center
Hess, Patrice M.
2012-01-01
This qualitative action research study examines the form (where and how) and function (specific use) of Educational Technology in developmental curricula at a community college. The study uses theoretical frameworks of Educational Technology and Instructional Systems Design to review and analyze curricular materials (print and electronic) and…
ED-based Counseling Sessions Reduce Risky Opioid Use Among Certain Patients.
2016-07-01
Investigators at the University of Michigan have shown promising results from an ED-based intervention designed to curb risky opioid use among patients who have reported opioid misuse within the previous three months. The intervention includes a 30-minute counseling session with a therapist who utilizes motivational interviewing techniques to strengthen their desire to move away from opioid use behaviors. The randomized clinical trial included 204 emergency patients, divided between patients receiving printed educational materials and patients receiving printed materials as well as counseling sessions. Researchers followed up with all patients after six months, finding that those who received the counseling intervention demonstrated a substantially higher reduction in behaviors that heighten the risk of an overdose than patients who received only printed materials. Investigators are working now to adapt the counseling intervention so that it can be delivered by more cost-efficient,means, such as via interactive voice response messages or computer.
Gender differences among general practitioners in smoking cessation counseling practices.
O'Loughlin, Jennifer; Makni, Héla; Tremblay, Michèle; Karp, Igor
2007-01-01
To describe gender differences in smoking cessation counseling practices among general practitioners (GPs), and to investigate the association between training for cessation counseling and counseling practices according to gender. Data were collected in two cross-sectional mail surveys conducted in independent random samples of GPs in Montreal, the first in 1998, and the second in 2000. Respondents included 653 GPs (71% of 916 eligible). All indicators of smoking cessation counseling practices were more favorable among female GPs. Higher proportions of female GPs had received training (28% vs. 17%, p=0.002), and were aware of mailed print educational materials related to cessation counseling (81% vs. 57%, p<0.0001). Training among male GPs was associated with higher scores for ascertainment of smoking status (odds ratio (OR) (95% confidence interval)=1.69 (0.97, 2.96)), provision of advice (OR=2.20 (1.23, 3.95)), and provision of adjunct support (OR=2.86 (1.58, 5.16)). Training was not associated with counseling practices among female GPs. Female GPs may not benefit from formal cessation counseling training to the same extent as male GPs, possibly because they read and integrate the content of (easily available) print educational materials into their clinical practice to a greater extent than male GPs. The gender-specific impact of print educational material and formal training on cessation counseling should be evaluated among GPs.
Dual-extrusion 3D printing of anatomical models for education.
Smith, Michelle L; Jones, James F X
2018-01-01
Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex 3D flexible filament and polylactic acid (PLA) filament were extruded respectively via a single 0.4 mm nozzle using a Big Builder printer. For each filament, cubes (5 mm 3 ) were printed and analyzed for X, Y, and Z accuracy. The PLA printed cubes resulted in errors averaging just 1.2% across all directions but for FilaFlex 3D printed cubes the errors were statistically significantly greater (average of 3.2%). As an exemplar, a focus was placed on the muscles, bones and cartilage of upper airway and neck. The resulting single prints combined flexible and hard structures. A single print model of the vocal cords was constructed which permitted movement of the arytenoids on the cricoid cartilage and served to illustrate the action of intrinsic laryngeal muscles. As University libraries become increasingly engaged in offering inexpensive 3D printing services it may soon become common place for both student and educator to access websites, download free models or 3D body parts and only pay the costs of print consumables. Novel models can be manufactured as dissectible, functional multi-layered units and offer rich possibilities for sectional and/or reduced anatomy. This approach can liberate the anatomist from constraints of inflexible hard models or plastinated specimens and engage in the design of class specific models of the future. Anat Sci Educ 11: 65-72. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
Development and validity of a method for the evaluation of printed education material
Castro, Mauro Silveira; Pilger, Diogo; Fuchs, Flávio Danni; Ferreira, Maria Beatriz Cardoso
Objectives To develop and study the validity of an instrument for evaluation of Printed Education Materials (PEM); to evaluate the use of acceptability indices; to identify possible influences of professional aspects. Methods An instrument for PEM evaluation was developed which included tree steps: domain identification, item generation and instrument design. A reading to easy PEM was developed for education of patient with systemic hypertension and its treatment with hydrochlorothiazide. Construct validity was measured based on previously established errors purposively introduced into the PEM, which served as extreme groups. An acceptability index was applied taking into account the rate of professionals who should approve each item. Participants were 10 physicians (9 men) and 5 nurses (all women). Results Many professionals identified intentional errors of crude character. Few participants identified errors that needed more careful evaluation, and no one detected the intentional error that required literature analysis. Physicians considered as acceptable 95.8% of the items of the PEM, and nurses 29.2%. The differences between the scoring were statistically significant in 27% of the items. In the overall evaluation, 66.6% were considered as acceptable. The analysis of each item revealed a behavioral pattern for each professional group. Conclusions The use of instruments for evaluation of printed education materials is required and may improve the quality of the PEM available for the patients. Not always are the acceptability indices totally correct or represent high quality of information. The professional experience, the practice pattern, and perhaps the gendre of the reviewers may influence their evaluation. An analysis of the PEM by professionals in communication, in drug information, and patients should be carried out to improve the quality of the proposed material. PMID:25214924
3D-Printed specimens as a valuable tool in anatomy education: A pilot study.
Garas, Monique; Vaccarezza, Mauro; Newland, George; McVay-Doornbusch, Kylie; Hasani, Jamila
2018-06-06
Three-dimensional (3D) printing is a modern technique of creating 3D-printed models that allows reproduction of human structures from MRI and CT scans via fusion of multiple layers of resin materials. To assess feasibility of this innovative resource as anatomy educational tool, we conducted a preliminary study on Curtin University undergraduate students to investigate the use of 3D models for anatomy learning as a main goal, to assess the effectiveness of different specimen types during the sessions and personally preferred anatomy learning tools among students as secondary aim. The study consisted of a pre-test, exposure to test (anatomical test) and post-test survey. During pre-test, all participants (both without prior experience and experienced groups) were given a brief introduction on laboratory safety and study procedure thus participants were exposed to 3D, wet and plastinated specimens of the heart, shoulder and thigh to identify the pinned structures (anatomical test). Then, participants were provided a post-test survey containing five questions. In total, 23 participants completed the anatomical test and post-test survey. A larger number of participants (85%) achieved right answers for 3D models compared to wet and plastinated materials, 74% of population selected 3D models as the most usable tool for identification of pinned structures and 45% chose 3D models as their preferred method of anatomy learning. This preliminary small-size study affirms the feasibility of 3D-printed models as a valuable asset in anatomy learning and shows their capability to be used adjacent to cadaveric materials and other widely used tools in anatomy education. Copyright © 2018 Elsevier GmbH. All rights reserved.
Computer Conferencing and Electronic Mail.
ERIC Educational Resources Information Center
Kaye, Tony
This paper discusses a number of problems associated with distance education methods used in adult education and training fields, including limited opportunities for dialogue and group interaction among students and between students and tutors; the expense of updating and modifying mass-produced print and audiovisual materials; and the relative…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.
Compiled are abstracts and indexes to selected print and nonprint materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…
Self-Learning through Programmed Learning in Distance Mode.
ERIC Educational Resources Information Center
Rao, D. Prakasa; Reddy, B. Sudhakar
2002-01-01
Presents the characteristics and development of self-learning material (SLM) in distance education. Discusses teaching with programmed learning; structure of SLM; and how SLM helps in self-study. Discusses the advantages of print materials as accompanying programmed instruction, because they are portable, well-structured, compact, and easily…
ERIC Educational Resources Information Center
Johnson, Harry Alleyn, Ed.
Four black professionals (an educational media specialist, an educator, a sociologist, and a historian) present their views on relevant education for minority students from the vantage point of their respective disciplines. An extensive annotated list of non-print media, plus a bibliography of 100 paperback books, provides a body of instructional…
ERIC Educational Resources Information Center
McConnell-Imbriotis, Alison
2001-01-01
Format, graphics, and content of print materials for people with diabetes were analyzed. The materials do not encourage proactive self-direction, the information is not contextualized, and diabetes is not presented as systemic. More flexible and inclusive formats and media, use of analogies, and more diversity were recommended. (47 Contains…
1992-01-01
Southern Asian population education programs have developed common materials on population and family life education. Countries involved were Bangladesh, India, Nepal, Pakistan, and Sri Lanka. The development of materials occurred as a byproduct of workshop conducted in Nepal from December 3-7, 1990 and December 2-10, 1991 in Sri Lanka. The 1st meeting was organized by UNESCO's Population Education Advisory team, and 6 curriculum topics were identified. Pretesting of materials was conducted between meetings. The final product was a set of 10 posters and 2 comic strips on the quality of life developed by India for elementary level use; a family life and sex education syllabus developed by Sri Lanka for secondary school use; 5 modules with teacher's guides and sample lessons for secondary school use; 5 modules and a teacher's guide on transmission of values on population education by Pakistan; 25 flip charts on maternal and child health for illiterates developed by Nepal; and a field guide on environmental protection for nonformal field workers developed by Bangladesh. Materials were designed through brainstorming sessions, designing of materials by experts, review by other groups, and retesting on target audiences. Revision followed pretesting. The plan for assuring use of materials was to have UNESCO print prototypes and then participants would seek financial support for country supplies. A suggestion was made to leave ample space for insertion of local language captions. Another suggestion was that the cartoon strip "Girls are Pearls" be printed on students' exercise books for all member countries. Member countries should also have available selected materials translated into English and distributed. UNESCO should continue to play the role of facilitator of information and expertise exchange among member countries. Another mutually cooperative activity was the Group Training Course on Population Education for the South Asian subregion held in December 1991.
32 CFR Appendix A to Part 231 - Sample Operating Agreement
Code of Federal Regulations, 2012 CFR
2012-07-01
... reasonable local command requests for lectures and printed materials to support consumer credit education... and outdoor maintenance (such as grass cutting and snow removal) on a reimbursable basis. c. DoD housing and minor dependent education in overseas locations for military banking facility (MBF) and credit...
32 CFR Appendix A to Part 231 - Sample Operating Agreement
Code of Federal Regulations, 2014 CFR
2014-07-01
... reasonable local command requests for lectures and printed materials to support consumer credit education... and outdoor maintenance (such as grass cutting and snow removal) on a reimbursable basis. c. DoD housing and minor dependent education in overseas locations for military banking facility (MBF) and credit...
32 CFR Appendix A to Part 231 - Sample Operating Agreement
Code of Federal Regulations, 2013 CFR
2013-07-01
... reasonable local command requests for lectures and printed materials to support consumer credit education... and outdoor maintenance (such as grass cutting and snow removal) on a reimbursable basis. c. DoD housing and minor dependent education in overseas locations for military banking facility (MBF) and credit...
A Guide to Instructional Resources for Consumers' Education.
ERIC Educational Resources Information Center
Johnston, William L.; Greenspan, Nancy B.
This annotated bibliography lists 295 selected instructional references, resources, and teaching aids for consumer education. It includes a variety of both print and nonprint materials, such as films, filmstrips, multimedia kits, games and learning packages for classroom and group instruction, textbooks for all age levels, and references for both…
ERIC Educational Resources Information Center
Flanagin, Jimmie
2013-01-01
Students with print disabilities continue to face inaccessible information and information technologies in higher education institutions despite federal and state legislation and local policies. Although most individuals responsible for making their course materials accessible often express support for the egalitarian principles of such policies,…
Designing CBE for Continuing Professional Education.
ERIC Educational Resources Information Center
Rees, Keith
Deakin Australia (DA) CBE (Continuing Business Education) programs are designed for use in conjunction with print and audio materials which are distributed as distance learning packages to business studies graduates working or planning to work as accountants, who are enrolled in the professional licensing program run by the Australian Society of…
Beyond the Printed Page: Physiology Education without a Textbook?
ERIC Educational Resources Information Center
Stavrianeas, Stasinos; Stewart, Mark; Harmer, Peter
2008-01-01
Pedagogical innovations, ideas, and outcomes designed to enhance student learning in physiology courses are encouraged by our professional organizations and are actively discussed at conferences and in "Advances in Physiological Education." Here, we report our experiment with freely available internet-based material as a substitute for the…
Consumer Health Education. Breast Cancer.
ERIC Educational Resources Information Center
Arkansas Univ., Fayetteville, Cooperative Extension Service.
This short booklet is designed to be used by health educators when teaching women about breast cancer and its early detection and the procedure for breast self-examination. It includes the following: (1) A one-page teaching plan consisting of objectives, subject matter, methods (including titles of films and printed materials), target audience,…
Solar system lithograph set for earth and space science
NASA Technical Reports Server (NTRS)
1995-01-01
A color lithographs of many of the celestial bodies within our solar system are contained in this educational set of materials. Printed on the back of each lithograph is information regarding the particular celestial body. A sheet with information listing NASA resources and electronic resources for education is included.
Applications of three-dimensional printing technology in urological practice.
Youssef, Ramy F; Spradling, Kyle; Yoon, Renai; Dolan, Benjamin; Chamberlin, Joshua; Okhunov, Zhamshid; Clayman, Ralph; Landman, Jaime
2015-11-01
A rapid expansion in the medical applications of three-dimensional (3D)-printing technology has been seen in recent years. This technology is capable of manufacturing low-cost and customisable surgical devices, 3D models for use in preoperative planning and surgical education, and fabricated biomaterials. While several studies have suggested 3D printers may be a useful and cost-effective tool in urological practice, few studies are available that clearly demonstrate the clinical benefit of 3D-printed materials. Nevertheless, 3D-printing technology continues to advance rapidly and promises to play an increasingly larger role in the field of urology. Herein, we review the current urological applications of 3D printing and discuss the potential impact of 3D-printing technology on the future of urological practice. © 2015 The Authors BJU International © 2015 BJU International Published by John Wiley & Sons Ltd.
MIT Orients Course Materials Online to K-12
ERIC Educational Resources Information Center
Cavanagh, Sean
2008-01-01
Many science and mathematics educators across the country are taking advantage of a Web site created by the Massachusetts Institute of Technology (MIT), the famed research university located in Cambridge, Massachusetts, which offers free video, audio, and print lectures and course material taken straight from the school's classes. Those resources…
Evaluation of printed health education materials for use by low-education families.
Ryan, Lesa; Logsdon, M Cynthia; McGill, Sarah; Stikes, Reetta; Senior, Barbara; Helinger, Bridget; Small, Beth; Davis, Deborah Winders
2014-07-01
Millions of adults lack adequate reading skills and many written patient education materials do not reflect national guidelines for readability and suitability of materials, resulting in barriers to patients being partners in their own health care. The purpose of this study was to evaluate commonly used printed health materials for readability and suitability for patients with limited general or health literacy skills, while providing easy recommendations to health care providers for how to improve the materials. Materials (N = 97) from three clinical areas that represented excellence in nursing care in our organization (stroke, cancer, and maternal-child) were reviewed for a composite reading grade level and a Suitability Assessment of Materials (SAM) score. Twenty-eight percent of the materials were at a 9th grade or higher reading level, and only 23% were 5th grade or below. The SAM ratings for not suitable, adequate, and superior were 11%, 58%, and 31%, respectively. Few materials were superior on both scales. The SAM scale was easy to use and required little training of reviewers to achieve interrater reliability. Improving outcomes and reducing health disparities are increasingly important, and patients must be partners in their care for this to occur. One step to increasing patient understanding of written instructions is improving the quality of the materials in the instruction for all patients and their families, especially those with limited literacy skills. Using materials that are written in a manner that facilitates the uptake and use of patient education content has great potential to improve the ability of patients and families to be partners in care and to improve outcomes, especially for those patients and families with limited general literacy or health literacy skills. © 2014 Sigma Theta Tau International.
Zemiti, Nabil; Caravaca Mora, Oscar; Subsol, Gérard; Captier, Guillaume; Lebrun, Renaud; Crampette, Louis; Mondain, Michel; Gilles, Benjamin
2017-01-01
Introduction Endoscopic skull base surgery allows minimal invasive therapy through the nostrils to treat infectious or tumorous diseases. Surgical and anatomical education in this field is limited by the lack of validated training models in terms of geometric and mechanical accuracy. We choose to evaluate several consumer-grade materials to create a patient-specific 3D-printed skull base model for anatomical learning and surgical training. Methods Four 3D-printed consumer-grade materials were compared to human cadaver bone: calcium sulfate hemihydrate (named Multicolor), polyamide, resin and polycarbonate. We compared the geometric accuracy, forces required to break thin walls of materials and forces required during drilling. Results All materials had an acceptable global geometric accuracy (from 0.083mm to 0.203mm of global error). Local accuracy was better in polycarbonate (0.09mm) and polyamide (0.15mm) than in Multicolor (0.90mm) and resin (0.86mm). Resin and polyamide thin walls were not broken at 200N. Forces needed to break Multicolor thin walls were 1.6–3.5 times higher than in bone. For polycarbonate, forces applied were 1.6–2.5 times higher. Polycarbonate had a mode of fracture similar to the cadaver bone. Forces applied on materials during drilling followed a normal distribution except for the polyamide which was melted. Energy spent during drilling was respectively 1.6 and 2.6 times higher on bone than on PC and Multicolor. Conclusion Polycarbonate is a good substitute of human cadaver bone for skull base surgery simulation. Thanks to short lead times and reasonable production costs, patient-specific 3D printed models can be used in clinical practice for pre-operative training, improving patient safety. PMID:29252993
ERIC Educational Resources Information Center
Valle, Victor M.
Textbooks and other printed materials will be ever present, in the foreseeable future, as major aids for teaching and learning processes. New textbooks imply new guidelines for teachers, and the ways to handle such guidelines demand teacher training. This paper explains some links between inservice teacher training programs and the development of…
ERIC Educational Resources Information Center
Tolbert, Dawn
2014-01-01
Modern higher education includes student-consumers who shop for educational opportunities and institutions that actively market themselves. This study examined the marketing of faith-based institutions to determine how faith-related missions are reflected in the printed recruitment materials, Web sites, and admissions portals of the 112 member…
ERIC Educational Resources Information Center
Jones, Sandra
This supplement to the Consumer Education Resources Catalog (see note) lists teaching-learning resources available for preview at the Michigan Consumer Education Center. A subject index to multi-media identifies titles of films, video cassettes, multi-media kits, and games under seven specific subjects. These are (1) Factors Affecting Consumer…
ERIC Educational Resources Information Center
Gibbon, Sam; Hooper, Kristina
1986-01-01
The Voyage of MIMI is a major educational project housed at Bank Street College (New York) which is directed toward the development of extensive television, computer software, videodisc, and print materials for use in science and mathematics education in grades 5-7. The first series has been completed, and includes a 13-part dramatic television…
ERIC Educational Resources Information Center
Marty, Phillip J.; McDermott, Robert J.
1985-01-01
This study compared instructional outcomes of two education programs about testicular cancer and testicular self-examination. Instruction facilitated by a former testicular cancer patient was compared to information provided by printed materials. There was no difference in information dissemination, but possible differences in attitude resulted.…
Armed Forces VIEW (Vital Information for Education and Work).
ERIC Educational Resources Information Center
Cox, Walter H.; Zerface, W. A., Ed.
Armed Services VIEW (Vital Information for Education and Work) is described as a cooperative program with the Department of Defense which (1) introduces career opportunities and training available through volunteer service enlistment, (2) will be provided to senior high schools at no cost, and (3) presents materials in both printed and microfilm…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-22
...) conduct a comprehensive study, which will--(I) assess the barriers and systemic issues that may affect... approach to improve the opportunities for postsecondary students with print disabilities to access...
76 FR 68690 - Rules and Regulations Under the Textile Fiber Products Identification Act
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
..., particularly small businesses? (19) Should the Commission modify the Rules to add or clarify definitions of... Products Identification Act; add or clarify definitions of terms set forth in the Rules; and modify its consumer and business education materials and continue printing paper copies of these materials. In...
Communication Skills for OMRDD Direct Care Workers: Distance Learning Study Guide.
ERIC Educational Resources Information Center
Denny, Verna Haskins
This self-directed, self-paced adult distance education program provides developmental aides and transitional employees with practice in job-related reading, writing, math, and problem solving. Participants use e-mail, print materials, and videotapes to do assignments. An introductory brochure precedes materials for 12 theme areas and 105 units…
Issues in Nutrition for Adolescents with Chronic Illnesses and Disabilities. CYDLINE Reviews.
ERIC Educational Resources Information Center
Minnesota Univ., Minneapolis. National Center for Youth with Disabilities.
This annotated bibliography lists print materials, training and educational materials, and programs concerned with nutrition for youth with chronic illnesses and disabilities. Basic bibliographic information and a brief abstract are provided for each of the 87 bibliographic citations which date from 1980 through 1991. Citations are organized into…
ERIC Educational Resources Information Center
Compton, Lawrence E.; Sanchez, James Joseph
A bibliography of brief annotations of instructional materials for the Russian language includes 93 documents from the Educational Resources Information Center (ERIC), the National Technical Information Service (NTIS), and the Joint Publications Research Service (JPRS), that do not go out of print and are widely available in depository systems.…
ERIC Educational Resources Information Center
Sanders, Mark
1999-01-01
Graphic Communication Electronic Publishing Project supports a Web site (http://TechEd.vt.edu/gcc/) for graphic communication teachers and students, providing links to Web materials, conversion of print materials to electronic formats, and electronic products and services including job listings, resume posting service, and a listserv. (SK)
3D printing for clinical application in otorhinolaryngology.
Zhong, Nongping; Zhao, Xia
2017-12-01
Three-dimensional (3D) printing is a promising technology that can use a patient's image data to create complex and personalized constructs precisely. It has made great progress over the past few decades and has been widely used in medicine including medical modeling, surgical planning, medical education and training, prosthesis and implants. Three-dimensional (3D) bioprinting is a powerful tool that has the potential to fabricate bioengineered constructs of the desired shape layer-by-layer using computer-aided deposition of living cells and biomaterials. Advances in 3D printed implants and future tissue-engineered constructs will bring great progress to the field of otolaryngology. By integrating 3D printing into tissue engineering and materials, it may be possible for otolaryngologists to implant 3D printed functional grafts into patients for reconstruction of a variety of tissue defects in the foreseeable future. In this review, we will introduce the current state of 3D printing technology and highlight the applications of 3D printed prosthesis and implants, 3D printing technology combined with tissue engineering and future directions of bioprinting in the field of otolaryngology.
Latycheva, O; Chera, R; Hampson, C; Masuda, J R; Stewart, M; Elliott, S J; Fenton, N E
2013-01-01
Asthma is a growing concern in First Nations and Inuit communities. As with many health indicators and outcomes, Aboriginal peoples living in remote areas experience greater disparities in respiratory health compared with non-Aboriginal Canadians. Therefore, it is critically important to take into account their unique needs when developing asthma educational materials and resources. The purpose of this study is to assess the cultural relevance of existing asthma education materials for First Nations and Inuit peoples. Five First Nations and Inuit communities from across Canada participated in the project. A combination of quantitative evaluations (eg surveys) and qualitative approaches (eg open discussion, live chats) were used to assess printed and web-based asthma education materials. Participants represented First Nations and Inuit communities from across Canada and were selected on the basis of age and role: 6 to 12 years old (children), 12 and over (youth), parents and grandparents, community leaders and teachers, and community advisory group members. In general, the results showed that although participants of all age categories liked the selection of asthma educational materials and resources, they identified pictures and images related to First Nations and Inuit people living and coping with asthma as ways of improving cultural relevance. This reinforces findings that tailoring materials to include Aboriginal languages, ceremonies and traditions would enhance their uptake. Our findings also demonstrate that visually based content in both printed and virtual form were the preferred style of learning of all participants, except young children who preferred to learn through play and interactive activities. Asthma is a growing concern in First Nations and Inuit communities. Given this concern, it is essential to understand cultural needs and preferences when developing asthma education materials and resources. The findings from this research emphasize the need to adapt existing asthma educational materials to better suit First Nations and Inuit cultures and the importance of directly engaging community members in the process.
Social and legal frame conditions for 3D (and) bioprinting in medicine.
Bauer, Heide-Katharina; Heller, Martin; Fink, Matthias; Maresch, Daniela; Gartner, Johannes; Gassner, Ulrich M; Al-Nawas, Bilal
The beginnings of three-dimensional (3D) printing and bioprinting can be traced to as early as 1984. From printing inorganic models for the generation of biologic scaffolds, additive manufacturing (AM) developed to the direct printing of organic materials, including specialized tissues, proteins, and cells. In recent years, these technologies have gained significantly in relevance, and there have been several innovations, especially in the field of regenerative medicine. It is becoming increasingly important to consider the economic and social aspects of AM, particularly in education and information of medical human resources, society, and politics, as well as for the establishment of homogenous, globally adapted legal regulations.
[Research progress on the technique and materials for three-dimensional bio-printing].
Yang, Runhuai; Chen, Yueming; Ma, Changwang; Wang, Huiqin; Wang, Shuyue
2017-04-01
Three-dimensional (3D) bio-printing is a novel engineering technique by which the cells and support materials can be manufactured to a complex 3D structure. Compared with other 3D printing methods, 3D bio-printing should pay more attention to the biocompatible environment of the printing methods and the materials. Aimed at studying the feature of the 3D bio-printing, this paper mainly focuses on the current research state of 3D bio-printing, with the techniques and materials of the bio-printing especially emphasized. To introduce current printing methods, the inkjet method, extrusion method, stereolithography skill and laser-assisted technique are described. The printing precision, process, requirements and influence of all the techniques on cell status are compared. For introduction of the printing materials, the cross-link, biocompatibility and applications of common bio-printing materials are reviewed and compared. Most of the 3D bio-printing studies are being remained at the experimental stage up to now, so the review of 3D bio-printing could improve this technique for practical use, and it could also contribute to the further development of 3D bio-printing.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-11
... established to conduct a comprehensive study, which will--(I) ``assess the barriers and systemic issues that... development of a comprehensive approach to improve the opportunities for postsecondary students with print...
Stuff- The Materials that Shape our World - Experimental Learning Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenstein, Pam
2012-04-30
Making Stuff is a four-part series that explores how materials changed history and are shaping the future. To further enhance public engagement in and understanding of materials science, the project convened an extensive network of community coalitions across the country that hosted Making Stuff outreach activities and events, science cafes, and educator workshops in their local areas. Department Of Energy funding enabled us to increase the number of communities formally involved in the project, from 10 to 20 community hubs. Department of Energy funding also made it possible to develop a collection of materials science resources, activities and hands-on demonstrationsmore » for use in a variety of formal and informal settings, and Making Stuff activities were presented at science conferences and festivals around the country. The design, printing and national dissemination of the Making Stuff afterschool activity guide were also developed with DOE funding, as well as professional webinar trainings for scientists and educators to help facilitate many of the community activities and other online and print materials. Thanks to additional funding from the Department of Energy, we were able to expand the reach and scope of the project's outreach plan, specifically in the areas of: 1) content development, 2) training/professional development, 3) educational activities and 4) community partnerships. This report documents how the following DOE project goals were met: (1) Train scientists and provide teachers and informal educators with resources to engage youth with age appropriate information about materials science; (2) Provide activities and resources to five selected communities with ties to DOE researchers; (3) Increase interest in STEM.« less
40 CFR 63.4282 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2010 CFR
2010-07-01
... are used in fabric and other textiles web coating and printing operations. The regulated materials for the web coating and printing subcategory are the coating, printing, thinning and cleaning materials... materials to a substrate on the coating or printing line to prepare it for coating or printing material...
Direct G-code manipulation for 3D material weaving
NASA Astrophysics Data System (ADS)
Koda, S.; Tanaka, H.
2017-04-01
The process of conventional 3D printing begins by first build a 3D model, then convert to the model to G-code via a slicer software, feed the G-code to the printer, and finally start the printing. The most simple and popular 3D printing technique is Fused Deposition Modeling. However, in this method, the printing path that the printer head can take is restricted by the G-code. Therefore the printed 3D models with complex pattern have structural errors like holes or gaps between the printed material lines. In addition, the structural density and the material's position of the printed model are difficult to control. We realized the G-code editing, Fabrix, for making a more precise and functional printed model with both single and multiple material. The models with different stiffness are fabricated by the controlling the printing density of the filament materials with our method. In addition, the multi-material 3D printing has a possibility to expand the physical properties by the material combination and its G-code editing. These results show the new printing method to provide more creative and functional 3D printing techniques.
ERIC Educational Resources Information Center
Jones, Sandra; Bannister, Rosella
This catalog lists teaching-learning resources available for preview at the Michigan Consumer Education Center. A subject index to multi-media identifies titles of films, video casettes, multi-media kits, and games under seven specific subjects. These are (1) Factors Affecting Consumer Behavior, (2) Money Management and Credit, (3) Buying and…
California Guide for Pedestrian Safety Education. Volumes I-III.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento.
This guide is designed to serve as the basis for a pedestrian safety education program for pupils in kindergarten through grade two. The basic printed materials for use in the program are provided in three volumes, each of which is intended for a different audience. Volume I, directed to school administrators and teachers, contains information for…
ERIC Educational Resources Information Center
Ashland Community Coll., KY.
This bibliography provides a list of print and nonprint materials available at Ashland Community College (ACC) that deal with drug abuse education and prevention, along with information on other resources. Information on title, vendor, purchase price, and author is available for 10 books; 18 booklets; 2 audiocassette programs; 13 miscellaneous…
ERIC Educational Resources Information Center
King, Andy J.; Carcioppolo, Nick; Grossman, Douglas; John, Kevin K.; Jensen, Jakob D.
2015-01-01
Objective: Melanoma incidence and mortality rates continue to rise globally, making it essential for researchers to identify effective approaches to disseminating information to the public that improve key outcomes. This study compared two skin self-examination (SSE) educational strategies: the ABCDE (asymmetry, border irregularity, multiple…
Blackboard as an Online Learning Environment: What Do Teacher Education Students and Staff Think?
ERIC Educational Resources Information Center
Heirdsfield, Ann; Walker, Susan; Tambyah, Mallihai; Beutel, Denise
2011-01-01
As online learning environments now have an established presence in higher education we need to ask the question: How effective are these environments for student learning? Online environments can provide a different type of learning experience than traditional face-to-face contexts (for on-campus students) or print-based materials (for distance…
ERIC Educational Resources Information Center
Beamish, Eric; And Others
This resource guide contains over 300 entries which are available through the Optimum Utilization of Resources (OUR's) exchange system. The entries describe learning materials, such as slides, video tapes, audio tapes, films, print material, and computer assisted instructional programs, which have been developed primarily by faculty of the…
How to Set Up a Resource Center to be Compatible with an Outdoor Program.
ERIC Educational Resources Information Center
Stilson, Jan
A materials collection can provide indirect experiences that will supplement the direct learning experiences offered by an outdoor education nature center. The Instructional Materials Center at Lorado Taft Field Campus provides such multiple learning experiences as it offers print media as well as slides, films, tapes, and projection and field…
ERIC Educational Resources Information Center
Rodriguez, Jesus J.
A study was conducted to determine if differences existed between and among the perceptions of commercial printers, printer educators, and printing trade services suppliers in Texas regarding current and future employment trends for skilled workers in commercial printing. A random sample of commercial printers, high school printing educators, and…
Pacific Islands Mass Communications; Selected Information Sources.
ERIC Educational Resources Information Center
Richstad, Jim; McMillan, Michael
1977-01-01
Presents a bibliography of materials on such area of mass communications in the Pacific Islands as broadcasting, radio and television, cinema, communication research, mass media in education, Honululu Media Council, newspapers and newspapermen, and printing and satellite communication. (JEG)
3D Printed Microscope for Mobile Devices that Cost Pennies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erikson, Rebecca; Baird, Cheryl; Hutchinson, Janine
Scientists at PNNL have designed a 3D-printable microscope for mobile devices using pennies worth of plastic and glass materials. The microscope has a wide range of uses, from education to in-the-field science.
Development Communication Report. No. 47, Autumn 1984.
ERIC Educational Resources Information Center
Development Communication Report, 1984
1984-01-01
This newsletter describes development projects that utilize varied media, including microcomputers, videotape, and print materials, and discusses development communications issues. Specific articles are as follows: "Microcomputers for Education in the Developing World" (Kurt D. Moses); "Social Marketing: Two Views, Two…
3D Printed Microscope for Mobile Devices that Cost Pennies
Erikson, Rebecca; Baird, Cheryl; Hutchinson, Janine
2018-02-13
Scientists at PNNL have designed a 3D-printable microscope for mobile devices using pennies worth of plastic and glass materials. The microscope has a wide range of uses, from education to in-the-field science.
3 CFR 9042 - Proclamation 9042 of October 11, 2013. Blind Americans Equality Day, 2013
Code of Federal Regulations, 2014 CFR
2014-01-01
... to information, culture, and education. By facilitating access to books and other printed material... issued new guidance in June for the use of Braille as a literacy tool under the Individuals with...
Lessons Learned from Native C.I.R.C.L.E., a Culturally Specific Resource.
Garcia, Andrea; Baethke, Lisa; Kaur, Judith S
2017-12-01
Cancer is now the second leading cause of death among American Indians and Alaska Natives (AIAN), and trends in cancer-related mortality over the past 2 decades show inferior control in AIAN compared to non-Hispanic Whites. The American Indian/Alaska Native Cancer Information Resource Center and Learning Exchange (Native C.I.R.C.L.E.) was developed in the year 2000 as part of a comprehensive network of partnerships to develop, maintain, and disseminate culturally appropriate cancer and other health information materials for AIAN educators and providers. Now, in its 15th year of existence, enough data has been accumulated by Native C.I.R.C.L.E. to analyze trends in the distribution of culturally relevant cancer information materials and compare access to both printed (hard copy) and online materials. The amount of culturally appropriate materials available since its creation has increased more than 10-fold. Print materials are now distributed throughout the world, and the number of materials requested from print and downloads combined are in the thousands on a monthly basis. Native C.I.R.C.L.E. is in the process of expanding its access and capabilities to target more of the lay AIAN public in order to address the digital divide.
Structural and congenital heart disease interventions: the role of three-dimensional printing.
Meier, L M; Meineri, M; Qua Hiansen, J; Horlick, E M
2017-02-01
Advances in catheter-based interventions in structural and congenital heart disease have mandated an increased demand for three-dimensional (3D) visualisation of complex cardiac anatomy. Despite progress in 3D imaging modalities, the pre- and periprocedural visualisation of spatial anatomy is relegated to two-dimensional flat screen representations. 3D printing is an evolving technology based on the concept of additive manufacturing, where computerised digital surface renders are converted into physical models. Printed models replicate complex structures in tangible forms that cardiovascular physicians and surgeons can use for education, preprocedural planning and device testing. In this review we discuss the different steps of the 3D printing process, which include image acquisition, segmentation, printing methods and materials. We also examine the expanded applications of 3D printing in the catheter-based treatment of adult patients with structural and congenital heart disease while highlighting the current limitations of this technology in terms of segmentation, model accuracy and dynamic capabilities. Furthermore, we provide information on the resources needed to establish a hospital-based 3D printing laboratory.
Using mobile electronic devices to deliver educational resources in developing countries.
Mazal, Jonathan Robert; Ludwig, Rebecca
2015-01-01
Developing countries have far fewer trained radiography professionals than developed countries, which exacerbates the limited access to imaging services. The lack of trained radiographers reflects, in part, limited availability of radiographer-specific educational resources. Historically, organizations that provided such resources in the developing world faced challenges related to the limited stock of current materials as well as expenses associated with shipping and delivery. Four mobile electronic devices (MEDs) were loaded with educational content (e-books, PDFs, and digital applications) spanning major radiography topics. The MEDs were distributed to 4 imaging departments in Ghana, India, Nepal, and Nigeria based on evidence of need for radiography-specific resources, as revealed by survey responses. A cost comparison of postal delivery vs digital delivery of educational content was performed. The effectiveness of delivering additional content via Wi-Fi transmission also was evaluated. Feedback was solicited on users' experience with the MEDs as a delivery tool for educational content. An initial average per e-book expense of $30.05, which included the cost of the device, was calculated for the MED delivery method compared with $15.56 for postal delivery of printed materials. The cost of the MED delivery method was reduced to an average of $10.05 for subsequent e-book deliveries. Additional content was successfully delivered via Wi-Fi transmission to all recipients during the 3-month follow-up period. Overall user feedback on the experience was positive, and ideas for enhancing the MED-based method were identified. Using MEDs to deliver radiography-specific educational content appears to be more cost effective than postal delivery of printed materials on a long-term basis. MEDs are more efficient for providing updates to educational materials. Customization of content to department needs, and using projector devices could enhance the usefulness of MEDs for radiographer training.
Mogali, Sreenivasulu Reddy; Yeong, Wai Yee; Tan, Heang Kuan Joel; Tan, Gerald Jit Shen; Abrahams, Peter H; Zary, Nabil; Low-Beer, Naomi; Ferenczi, Michael Alan
2018-01-01
For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the qualities and limitations of these alternative teaching resources are on-going. We hypothesize that three-dimensional printed (3DP) models can replace or indeed enhance existing resources for anatomical education. A novel multi-colored and multi-material 3DP model of the upper limb was developed based on a plastinated upper limb prosection, capturing muscles, nerves, arteries and bones with a spatial resolution of ∼1 mm. This study aims to examine the educational value of the 3DP model from the learner's point of view. Students (n = 15) compared the developed 3DP models with the plastinated prosections, and provided their views on their learning experience using 3DP models using a survey and focus group discussion. Anatomical features in 3DP models were rated as accurate by all students. Several positive aspects of 3DP models were highlighted, such as the color coding by tissue type, flexibility and that less care was needed in the handling and examination of the specimen than plastinated specimens which facilitated the appreciation of relations between the anatomical structures. However, students reported that anatomical features in 3DP models are less realistic compared to the plastinated specimens. Multi-colored, multi-material 3DP models are a valuable resource for anatomical education and an excellent adjunct to wet cadaveric or plastinated prosections. Anat Sci Educ 11: 54-64. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
48 CFR 1631.205-78 - FEHBP printed material costs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true FEHBP printed material... carrier orders printed material that is available from the Government Printing Office (GPO) under the... COST PRINCIPLES AND PROCEDURES Contracts With Commercial Organizations 1631.205-78 FEHBP printed...
3D-printing of undisturbed soil imaged by X-ray
NASA Astrophysics Data System (ADS)
Bacher, Matthias; Koestel, John; Schwen, Andreas
2014-05-01
The unique pore structures in Soils are altered easily by water flow. Each sample has a different morphology and the results of repetitions vary as well. Soil macropores in 3D-printed durable material avoid erosion and have a known morphology. Therefore potential and limitations of reproducing an undisturbed soil sample by 3D-printing was evaluated. We scanned an undisturbed soil column of Ultuna clay soil with a diameter of 7 cm by micro X-ray computer tomography at a resolution of 51 micron. A subsample cube of 2.03 cm length with connected macropores was cut out from this 3D-image and printed in five different materials by a 3D-printing service provider. The materials were ABS, Alumide, High Detail Resin, Polyamide and Prime Grey. The five print-outs of the subsample were tested on their hydraulic conductivity by using the falling head method. The hydrophobicity was tested by an adapted sessile drop method. To determine the morphology of the print-outs and compare it to the real soil also the print-outs were scanned by X-ray. The images were analysed with the open source program ImageJ. The five 3D-image print-outs copied from the subsample of the soil column were compared by means of their macropore network connectivity, porosity, surface volume, tortuosity and skeleton. The comparison of pore morphology between the real soil and the print-outs showed that Polyamide reproduced the soil macropore structure best while Alumide print-out was the least detailed. Only the largest macropore was represented in all five print-outs. Printing residual material or printing aid material remained in and clogged the pores of all print-out materials apart from Prime Grey. Therefore infiltration was blocked in these print-outs and the materials are not suitable even though the 3D-printed pore shapes were well reproduced. All of the investigated materials were insoluble. The sessile drop method showed angles between 53 and 85 degrees. Prime Grey had the fastest flow rate; the other conducting materials had slow or non-reproducible flow rates. Since only Prime Grey was able to print-out the largest macropore in a discontinuous way, the morphological differences between the five print-outs were not evaluated. Each material has its limitations but only Prime Greys morphology was sufficiently printed and no clogging with residual material occurred. Polyamide and High Detail Resin had clogged pores but were matching the soil's macropore morphology better but further research on removal of residual material blocking pores is needed before they are useable.
Evian, C R; Ijsselmuiden, C B; Padayachee, G N; Hurwitz, H S
1990-11-03
In January 1989, the Johannesburg City Health Department developed an AIDS education poster. The poster was adapted from a cartoon in the Sowetan newspaper and was formally evaluated before its final production. As a result of this evaluation further editing and restructuring of the poster proved necessary. The methodology used in the evaluation is outlined, and some of the findings that emerged during the evaluation are discussed, since few formal evaluations of health education material seem to have been documented in South Africa. This study highlights the importance of formative evaluation of printed health educational media by a sample of the target audience before production and distribution.
Chen, Shi; Pan, Zhouxian; Wu, Yanyan; Gu, Zhaoqi; Li, Man; Liang, Ze; Zhu, Huijuan; Yao, Yong; Shui, Wuyang; Shen, Zhen; Zhao, Jun; Pan, Hui
2017-04-03
Three-dimensional (3D) printed models represent educational tools of high quality compared with traditional teaching aids. Colored skull models were produced by 3D printing technology. A randomized controlled trial (RCT) was conducted to compare the learning efficiency of 3D printed skulls with that of cadaveric skulls and atlas. Seventy-nine medical students, who never studied anatomy, were randomized into three groups by drawing lots, using 3D printed skulls, cadaveric skulls, and atlas, respectively, to study the anatomical structures in skull through an introductory lecture and small group discussions. All students completed identical tests, which composed of a theory test and a lab test, before and after a lecture. Pre-test scores showed no differences between the three groups. In post-test, the 3D group was better than the other two groups in total score (cadaver: 29.5 [IQR: 25-33], 3D: 31.5 [IQR: 29-36], atlas: 27.75 [IQR: 24.125-32]; p = 0.044) and scores of lab test (cadaver: 14 [IQR: 10.5-18], 3D: 16.5 [IQR: 14.375-21.625], atlas: 14.5 [IQR: 10-18.125]; p = 0.049). Scores involving theory test, however, showed no difference between the three groups. In this RCT, an inexpensive, precise and rapidly-produced skull model had advantages in assisting anatomy study, especially in structure recognition, compared with traditional education materials.
Visions: Drug Education for Healthy 21st Century Living. An Infused K-12 Curriculum.
ERIC Educational Resources Information Center
Morton, Claudette, Ed.
This document completes a major goal of the Montana Rural Drug Free Schools Program, the development of an infused drug education curriculum appropriate for Montana's rural and small schools. These materials were first developed as a user-friendly computer program before this print form was produced, and the reader is encouraged to access the…
Bibliography of Educational and Psychological Tests and Measurements. Bulletin, 1923, No. 55
ERIC Educational Resources Information Center
Doherty, Margaret, Comp.; MacLatchy, Josephine, Comp.
1924-01-01
The bibliography presented in this bulletin purports to cover the printed material issued in this country concerning intelligence and educational tests during the period from January 1, 1918 to June 30, 1922. It has been the purpose of the compilers to make the bibliography as useful to students and to practical school people as possible. To that…
Pediatric laryngeal simulator using 3D printed models: A novel technique.
Kavanagh, Katherine R; Cote, Valerie; Tsui, Yvonne; Kudernatsch, Simon; Peterson, Donald R; Valdez, Tulio A
2017-04-01
Simulation to acquire and test technical skills is an essential component of medical education and residency training in both surgical and nonsurgical specialties. High-quality simulation education relies on the availability, accessibility, and reliability of models. The objective of this work was to describe a practical pediatric laryngeal model for use in otolaryngology residency training. Ideally, this model would be low-cost, have tactile properties resembling human tissue, and be reliably reproducible. Pediatric laryngeal models were developed using two manufacturing methods: direct three-dimensional (3D) printing of anatomical models and casted anatomical models using 3D-printed molds. Polylactic acid, acrylonitrile butadiene styrene, and high-impact polystyrene (HIPS) were used for the directly printed models, whereas a silicone elastomer (SE) was used for the casted models. The models were evaluated for anatomic quality, ease of manipulation, hardness, and cost of production. A tissue likeness scale was created to validate the simulation model. Fleiss' Kappa rating was performed to evaluate interrater agreement, and analysis of variance was performed to evaluate differences among the materials. The SE provided the most anatomically accurate models, with the tactile properties allowing for surgical manipulation of the larynx. Direct 3D printing was more cost-effective than the SE casting method but did not possess the material properties and tissue likeness necessary for surgical simulation. The SE models of the pediatric larynx created from a casting method demonstrated high quality anatomy, tactile properties comparable to human tissue, and easy manipulation with standard surgical instruments. Their use in a reliable, low-cost, accessible, modular simulation system provides a valuable training resource for otolaryngology residents. N/A. Laryngoscope, 127:E132-E137, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
ERIC Educational Resources Information Center
Roy, V. Manoj; Ghosh, Chinmoy Kumar
2013-01-01
The establishment of the Indira Gandhi National Open University (IGNOU) in 1985 has been a milestone in the growth of higher education in India. A very special feature of the University is that a composite of several instructional methods in practice are aimed at giving effective support to distance learners. Self-instructional print materials are…
Rahman, Atiya; Leppard, Margaret; Rashid, Sarawat; Jahan, Nauruj; Nasreen, Hashima E
2016-08-16
This qualitative study explored community perceptions of the components of the behaviour change communication (BCC) intervention of the BRAC Improving Maternal, Neonatal and Child Survival (IMNCS) programme in rural Bangladesh. Semi-structured interviews, key informant interviews, focus group discussions and informal group discussions were conducted to elicit community views on interpersonal communication (IPC), printed materials, entertainment education (EE) and mass media, specifically (a) acceptance of and challenges presented by different forms of media, (b) comprehensibility of terms; printed materials and entertainment education and (c) reported influence of BCC messages. IMNCS BCC interventions are well accepted by the community people. IPC is considered an essential aspect of everyday life and community members appreciate personal interaction with the BRAC community health workers. Printed materials assisted in comprehension and memorization of messages particularly when explained by community health workers (CHW) during IPC. Enactment of maternal, neonatal and child health (MNCH) narratives and traditional musical performances in EE helped to give deep insight into life's challenges and the decision making that is inherent in pregnancy, childbirth and childcare. EE also improved memorization of the messages. Some limitations were identified in design of illustrations which hampered message comprehension. Some respondents were unable to differentiate between pregnancy, delivery and postpartum danger signs. Furthermore some women were afraid to view the illustrations of danger signs as they believed seeing that might be associated with the development of these complications in their own lives. Despite these barriers, participants stated that the IMNCS BCC interventions had influenced them to take health promoting decisions and seek MNCH services. Community based maternal and newborn programmes should revise BCC interventions to strengthen IPC, using rigorously tested print materials as aids and stand-alone media. Messages about birth preparedness (especially savings), recognition of danger signs and immediate self-referral to biomedical health services should be carefully aligned and effectively delivered to women, men and older members of the community. Messaging should utilize gendered storyline and address the seasonal cycles of conception, birth, antenatal, post-natal care and childhood illnesses. Future research should identify how best to combine IPC, printed materials, traditional cultural forms, and incorporate use of social media and mass media in different field situations.
Progress in 3D Printing of Carbon Materials for Energy-Related Applications.
Fu, Kun; Yao, Yonggang; Dai, Jiaqi; Hu, Liangbing
2017-03-01
The additive-manufacturing (AM) technique, known as three-dimensional (3D) printing, has attracted much attention in industry and academia in recent years. 3D printing has been developed for a variety of applications. Printable inks are the most important component for 3D printing, and are related to the materials, the printing method, and the structures of the final 3D-printed products. Carbon materials, due to their good chemical stability and versatile nanostructure, have been widely used in 3D printing for different applications. Good inks are mainly based on volatile solutions having carbon materials as fillers such as graphene oxide (GO), carbon nanotubes (CNT), carbon blacks, and solvent, as well as polymers and other additives. Studies of carbon materials in 3D printing, especially GO-based materials, have been extensively reported for energy-related applications. In these circumstances, understanding the very recent developments of 3D-printed carbon materials and their extended applications to address energy-related challenges and bring new concepts for material designs are becoming urgent and important. Here, recent developments in 3D printing of emerging devices for energy-related applications are reviewed, including energy-storage applications, electronic circuits, and thermal-energy applications at high temperature. To close, a conclusion and outlook are provided, pointing out future designs and developments of 3D-printing technology based on carbon materials for energy-related applications and beyond. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Texas Tech Univ., Lubbock. Home Economics Curriculum Center.
This document contains teacher's materials for a seven-unit secondary education vocational home economics course on textiles and apparel design. The units cover: (1) fiber/fiber characteristics and textile development (including fabrication and dyeing, printing, and finishing); (2) textile and apparel design industries (including their history and…
3D Printing of Biosamples: A Concise Review
NASA Astrophysics Data System (ADS)
Zhao, Victoria Xin Ting; Wong, Ten It; Zhou, Xiaodong
This paper reviews the recent development of 3D printing of biosamples, in terms of the 3D structure design, suitable printing technology, and available materials. Successfully printed 3D biosamples should possess the properties of high cell viability, vascularization and good biocompatibility. These goals are attained by printing the materials of hydrogels, polymers and cells, with a carefully selected 3D printer from the categories of inkjet printing, extrusion printing and laser printing, based on the uniqueness, advantages and disadvantages of these technologies. For recent developments, we introduce the 3D applications of creating scaffolds, printing cells for self-assembly and testing platforms. We foresee more bio-applications of 3D printing will be developed, with the advancements on materials and 3D printing machines.
3D printing in social education: Eki-Fab and student PBL
NASA Astrophysics Data System (ADS)
Makino, Masato; Saito, Azusa; Kodama, Mai; Takamatsu, Kyuuichiro; Tamate, Hideaki; Sakai, Kazuyuki; Wada, Masato; Khosla, Ajit; Kawakami, Masaru; Furukawa, Hidemitsu
2017-04-01
Additive manufacturing or 3D printer is one of the most innovative material processing methods. We are considering that human resources for 3D printing would be needed in the future. To educate the abilities of the digital fabrication, we have the public digital fabrication space "Eki-Fab" for junior and high school students and Project Based Learning (PBL) class for undergraduate students. Eki-Fab is held on every Saturday at the Yonezawa train station. In the "Eki-Fab", anybody can study the utilizing of 3D printer and modeling technics under the instruction of staff in Yamagata University. In the PBL class, we have the class every Thursday. The students get the techniques of the digital fabrication through the PBL.
NASA Astrophysics Data System (ADS)
Starosolski, Zbigniew; Ezon, David S.; Krishnamurthy, Rajesh; Dodd, Nicholas; Heinle, Jeffrey; Mckenzie, Dean E.; Annapragada, Ananth
2017-03-01
We developed a technology that allows a simple desktop 3D printer with dual extruder to fabricate 3D flexible models of Major AortoPulmonary Collateral Arteries. The study was designed to assess whether the flexible 3D printed models could help during surgical planning phase. Simple FDM 3D printers are inexpensive, versatile in use and easy to maintain, but complications arise when the designed model is complex and has tubular structures with small diameter less than 2mm. The advantages of FDM printers are cost and simplicity of use. We use precisely selected materials to overcome the obstacles listed above. Dual extruder allows to use two different materials while printing, which is especially important in the case of fragile structures like pulmonary vessels and its supporting structures. The latter should not be removed by hand to avoid a truncation of the model. We utilize the water soluble PVA as a supporting structure and Poro-Lay filament for flexible model of AortoPulmonary collateral arteries. Poro-Lay filament is different as compared to all the other flexible ones like polymer-based. Poro-Lay is rigid while printing and this allows printing of structures small in diameter. It achieves flexibility after washing out of printed model with water. It becomes soft in touch and gelatinous. Using both PVA and Poro-Lay gives a huge advantage allowing to wash out the supporting structures and achieve flexibility in one washing operation, saving time and avoiding human error with cleaning the model. We evaluated 6 models for MAPCAS surgical planning study. This approach is also cost-effective - an average cost of materials for print is less than $15; models are printed in facility without any delays. Flexibility of 3D printed models approximate soft tissues properly, mimicking Aortopulmonary collateral arteries. Second utilization models has educational value for both residents and patients' family. Simplification of 3D flexible process could help in other models of soft tissue pathologies like aneurysms, ventricular septal defects and other vascular anomalies.
3D printed versus conventionally cured provisional crown and bridge dental materials.
Tahayeri, Anthony; Morgan, MaryCatherine; Fugolin, Ana P; Bompolaki, Despoina; Athirasala, Avathamsa; Pfeifer, Carmem S; Ferracane, Jack L; Bertassoni, Luiz E
2018-02-01
To optimize the 3D printing of a dental material for provisional crown and bridge restorations using a low-cost stereolithography 3D printer; and compare its mechanical properties against conventionally cured provisional dental materials. Samples were 3D printed (25×2×2mm) using a commercial printable resin (NextDent C&B Vertex Dental) in a FormLabs1+ stereolithography 3D printer. The printing accuracy of printed bars was determined by comparing the width, length and thickness of samples for different printer settings (printing orientation and resin color) versus the set dimensions of CAD designs. The degree of conversion of the resin was measured with FTIR, and both the elastic modulus and peak stress of 3D printed bars was determined using a 3-point being test for different printing layer thicknesses. The results were compared to those for two conventionally cured provisional materials (Integrity ® , Dentsply; and Jet ® , Lang Dental Inc.). Samples printed at 90° orientation and in a white resin color setting was chosen as the most optimal combination of printing parameters, due to the comparatively higher printing accuracy (up to 22% error), reproducibility and material usage. There was no direct correlation between printing layer thickness and elastic modulus or peak stress. 3D printed samples had comparable modulus to Jet ® , but significantly lower than Integrity ® . Peak stress for 3D printed samples was comparable to Integrity ® , and significantly higher than Jet ® . The degree of conversion of 3D printed samples also appeared higher than that of Integrity ® or Jet ® . Our results suggest that a 3D printable provisional restorative material allows for sufficient mechanical properties for intraoral use, despite the limited 3D printing accuracy of the printing system of choice. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Lindner, James R.; Murphy, Tim H.
2001-01-01
Responses from 89 of 111 agricultural education students explored their perceptions of the use of WebCT. Results show that 72% were able accomplish course objectives and 92% were able to access grades online. However, 82% did not take advantage of the online learning community, and 76% continued to rely on print-based course materials. (Contains…
Three-Dimensional Printing: Basic Principles and Applications in Medicine and Radiology.
Kim, Guk Bae; Lee, Sangwook; Kim, Haekang; Yang, Dong Hyun; Kim, Young-Hak; Kyung, Yoon Soo; Kim, Choung-Soo; Choi, Se Hoon; Kim, Bum Joon; Ha, Hojin; Kwon, Sun U; Kim, Namkug
2016-01-01
The advent of three-dimensional printing (3DP) technology has enabled the creation of a tangible and complex 3D object that goes beyond a simple 3D-shaded visualization on a flat monitor. Since the early 2000s, 3DP machines have been used only in hard tissue applications. Recently developed multi-materials for 3DP have been used extensively for a variety of medical applications, such as personalized surgical planning and guidance, customized implants, biomedical research, and preclinical education. In this review article, we discuss the 3D reconstruction process, touching on medical imaging, and various 3DP systems applicable to medicine. In addition, the 3DP medical applications using multi-materials are introduced, as well as our recent results.
Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications.
Placone, Jesse K; Engler, Adam J
2018-04-01
Additive manufacturing, or 3D printing, has become significantly more commonplace in tissue engineering over the past decade, as a variety of new printing materials have been developed. In extrusion-based printing, materials are used for applications that range from cell free printing to cell-laden bioinks that mimic natural tissues. Beyond single tissue applications, multi-material extrusion based printing has recently been developed to manufacture scaffolds that mimic tissue interfaces. Despite these advances, some material limitations prevent wider adoption of the extrusion-based 3D printers currently available. This progress report provides an overview of this commonly used printing strategy, as well as insight into how this technique can be improved. As such, it is hoped that the prospective report guides the inclusion of more rigorous material characterization prior to printing, thereby facilitating cross-platform utilization and reproducibility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Get Students Excited--3D Printing Brings Designs to Life
ERIC Educational Resources Information Center
Lacey, Gary
2010-01-01
Students in technology education programs from middle school through high school around the nation are benefiting from--and enjoying--hands-on experience in mechanical engineering, applied mathematics, materials processing, basic electronics, robotics, industrial manufacturing, and other STEM (science, technology, engineering, and math)-focused…
ERIC Educational Resources Information Center
England, Robert G.
The Mountain-Plains Course Resource List is presented by job title for 26 curriculum areas. For each area the printed materials, audiovisual aids, and equipment needed for the course are listed. The 26 curriculum areas are: mathematics skills, communication skills, office education, lodging services, food services, marketing and distribution,…
Medical Subspecialty Textbooks in the 21st Century. Essential or Headed for Extinction?
Broaddus, V Courtney; Grippi, Michael A
2015-08-01
In recent years, the role of medical subspecialty textbooks as sources of information for students, trainees, and practicing clinicians has been challenged. Although the structure of textbooks continues to evolve from standard, printed versions to digital formats, including e-books and online texts, we maintain that the authoritative compilation of clinical and scientific material by experts in the field (i.e., a modern-day textbook) remains central to the education, training, and practice of subspecialists. Regardless of format, an effective medical subspecialty textbook is authoritative, comprehensive, and integrated in its coverage of the subject. Textbook content represents a unique synthesis of clinical and scientific material of real educational and clinical value. Incorporation of illustrations, including figures, tables, videos, and audios, bolsters the presentation and further solidifies the reader's understanding of the subject. The textbook, both printed and digital, reinforces the many widely available online resources and serves as a platform from which to evaluate other sources of information and to launch additional scientific and clinical inquiry.
3D bioprinting of tissues and organs.
Murphy, Sean V; Atala, Anthony
2014-08-01
Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.
Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling.
Fafenrot, Susanna; Grimmelsmann, Nils; Wortmann, Martin; Ehrmann, Andrea
2017-10-19
Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid) (PLA) printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength.
Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling
Fafenrot, Susanna; Grimmelsmann, Nils; Wortmann, Martin
2017-01-01
Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid) (PLA) printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength. PMID:29048347
Morony, Suzanne; McCaffery, Kirsten J; Kirkendall, Suzanne; Jansen, Jesse; Webster, Angela C
2017-02-01
People with chronic kidney disease (CKD) need usable information on how to live well and slow disease progression. This information is complex, difficult to communicate, and changes during the course of the disease. We examined lifestyle-related printed CKD patient education materials focusing on actionability and visual aids. From a previous systematic review assessing readability of CKD patient information, we identified materials targeting nutrition, exercise, and self-management. We applied the Suitability Assessment of Materials (SAM) and Patient Education Materials Assessment Tool (PEMAT) to evaluate how easy materials were to understand (understandability) and act on (actionability). We created the 5C image checklist and systematically examined all visual aids for clarity, contribution, contradiction, and caption. Of the 26 materials included, one fifth (n = 5, 19%) were rated "not suitable" on SAM and fewer than half (n = 11, 42%) were rated "superior." PEMAT mean subdomain scores were suboptimal for actionability (52) and visuals (37). Overall, more than half of all 223 graphics (n = 127, 57%) contributed no meaning to the text. Images in three documents (12%) directly contradicted messaging in the text. CKD lifestyle information materials require focused improvements in both actionability of advice given and use of visual aids to support people with CKD to self-manage their condition. The fifth C is culture and is best evaluated by user-testing.
NASA Technical Reports Server (NTRS)
Bathurst, D. B.
1979-01-01
Lay-oriented speakers aids, articles, a booklet, and a press kit were developed to inform the press and the general public with background information on the space transportation system, Spacelab, and Spacelab 1 experiments. Educational materials relating to solar-terrestrial physics and its potential benefits to mankind were also written. A basic network for distributing audiovisual and printed materials to regional secondary schools and universities was developed. Suggested scripts to be used with visual aids describing materials science and technology and astronomy and solar physics are presented.
NASA Astrophysics Data System (ADS)
Leist, Steven Kyle
4D printing is an emerging additive manufacturing technology that combines 3D printing with smart materials. Current 3D printing technology can print objects with a multitude of materials; however, these objects are usually static, geometrically permanent, and not suitable for multi-functional use. The 4D printed objects can change their shape over time when exposed to different external stimuli such as heat, pressure, magnetic fields, or moisture. In this research, heat and light reactive smart materials are explored as a 4D printing materials. Synthetization of a material that actuates when exposed to stimulus can be a very difficult process, and merging that same material with the ability to be 3D printed can be further difficult. A common 3D printing thermoplastic, poly(lactic) acid (PLA), is used as a shape memory material that is 3D printed using a fused deposition machine (FDM) and combined with nylon fabric for the exploration of smart textiles. The research shows that post printed PLA possesses shape memory properties depending on the thickness of the 3D printed material and the activation temperature. PLA can be thermomechanically trained into temporary shapes and return to its original shape when exposed to high temperatures. PLA can be 3D printed onto nylon fabrics for the creation of the smart textiles. Additionally, a photoisomerable shape changing material is explored because light activation is wireless, controllable, focusable, abundant, causes rapid shape change of the smart material, and induces reversible shape change in the material. This study supports the fundamental research to generate knowledge needed for synthesis of a novel azobenzene shape changing polymer (SCP) and integrating this smart material into objects printed with a 4D printing process using syringe printing. Multiple versions of azobenzene SCP are synthesized that actuate when exposed to 365 nm and 455 nm light. Two SCPs, MeOABHx and DR1Hx, are selected for the 4D printing research because of their ability to photoisomerize at room temperature and 3D printability. The physical properties of these polymers are characterized, photomechanical bending tests are performed, and the photo-generated stress is measured using a dynamic mechanical analyzer (DMA). The SCPs are deposited onto a passive layer to create bilayer films in order to actuate. The photomechanical efficiency of bilayer films is evaluated depending on the thickness of the passive layer film, type of azobenzene SCP, wavelength of the light source, intensity of the light source, and distance between the light and films. 4D printing can be used to streamline the design and manufacturing process of actuating parts. Complex heavy parts can be removed from actuation systems such as onboard power storage, motors, sensors, and processors by embedding these capabilities into the material themselves. This reduces the amount of required parts, the amount of materials, and reduces the cost of producing these parts. 4D printed products possess the properties of programmability, reaction and adaption to their environment, and automation. Therefore, they can find wider applications including foldable unmanned aerial vehicles, artificial muscles, grippers, biomedical drug delivery systems, stents, and minimally invasive surgeries.
Remote C-Print Captioning in the Educational Environment. PEPNet Tipsheet
ERIC Educational Resources Information Center
Riehl, Bambi
2006-01-01
C-Print captioning is a computer-aided speech-to-text service for people who are deaf/hard of hearing and prefer printed text rather than sign language as an accommodation. C-Print often is used in educational settings (see C-Print Tipsheet http://www.netac.rit.edu/publication/tipsheet for further information or visit the C-Print Web site at…
Advertising Content in Physical Activity Print Materials.
ERIC Educational Resources Information Center
Cardinal, Bradley J.
2002-01-01
Evaluated the advertising content contained in physical activity print materials. Analysis of print materials obtained from 80 sources (e.g., physicians' offices and fitness events) indicated that most materials contained some form of advertising. Materials coming from commercial product vendors generally contained more advertising than materials…
SU-E-T-455: Characterization of 3D Printed Materials for Proton Beam Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, W; Siderits, R; McKenna, M
2014-06-01
Purpose: The widespread availability of low cost 3D printing technologies provides an alternative fabrication method for customized proton range modifying accessories such as compensators and boluses. However the material properties of the printed object are dependent on the printing technology used. In order to facilitate the application of 3D printing in proton therapy, this study investigated the stopping power of several printed materials using both proton pencil beam measurements and Monte Carlo simulations. Methods: Five 3–4 cm cubes fabricated using three 3D printing technologies (selective laser sintering, fused-deposition modeling and stereolithography) from five printers were investigated. The cubes were scannedmore » on a CT scanner and the depth dose curves for a mono-energetic pencil beam passing through the material were measured using a large parallel plate ion chamber in a water tank. Each cube was measured from two directions (perpendicular and parallel to printing plane) to evaluate the effects of the anisotropic material layout. The results were compared with GEANT4 Monte Carlo simulation using the manufacturer specified material density and chemical composition data. Results: Compared with water, the differences from the range pull back by the printed blocks varied and corresponded well with the material CT Hounsfield unit. The measurement results were in agreement with Monte Carlo simulation. However, depending on the technology, inhomogeneity existed in the printed cubes evidenced from CT images. The effect of such inhomogeneity on the proton beam is to be investigated. Conclusion: Printed blocks by three different 3D printing technologies were characterized for proton beam with measurements and Monte Carlo simulation. The effects of the printing technologies in proton range and stopping power were studied. The derived results can be applied when specific devices are used in proton radiotherapy.« less
... Printed Materials : To opt out of receiving printed marketing materials at your postal address, such as advertisements, ... address exactly as they appear on the printed marketing materials you received. Emails : To opt out of ...
ERIC Educational Resources Information Center
Lindroth, Linda K.
1996-01-01
Uses Presidential and House of Representatives elections as basis for year-long curriculum focus on civics education, integrating print material, software, and the Internet. Describes classroom activities, Internet sites, and software described for four major areas: (1) campaigning for office; (2) moving into a new home; (3) reporting for work;…
ERIC Educational Resources Information Center
Walker, John R.
1976-01-01
Discusses ways in which industrial education teachers can stretch their budgets, which include reducing waste to a minimum, keeping an accurate and up-to-date inventory, trading surplus or excess materials with neighboring schools, and planning programs more carefully. Money-saving tips concerned with metals, plastics, woods, and printing are also…
Wyoming Mathematics Curriculum Guide, Grades 7-12.
ERIC Educational Resources Information Center
Wyoming State Dept. of Education, Cheyenne.
GRADES OR AGES: 7-12; SUBJECT MATTER: Mathematics. ORGANIZATION AND PHYSICAL APPEARANCE: The guide has an introduction and four chapters: 1) A Sample Mathematics Curriculum; 2) The Exceptional Student in Mathematics; 3) Mathematics Components for Comprehensive Occupational Education; 4) Reference Materials. The guide is printed and spiral bound…
Organic electronics with polymer dielectrics on plastic substrates fabricated via transfer printing
NASA Astrophysics Data System (ADS)
Hines, Daniel R.
Printing methods are fast becoming important processing techniques for the fabrication of flexible electronics. Some goals for flexible electronics are to produce cheap, lightweight, disposable radio frequency identification (RFID) tags, very large flexible displays that can be produced in a roll-to-roll process and wearable electronics for both the clothing and medical industries. Such applications will require fabrication processes for the assembly of dissimilar materials onto a common substrate in ways that are compatible with organic and polymeric materials as well as traditional solid-state electronic materials. A transfer printing method has been developed with these goals and application in mind. This printing method relies primarily on differential adhesion where no chemical processing is performed on the device substrate. It is compatible with a wide variety of materials with each component printed in exactly the same way, thus avoiding any mixed processing steps on the device substrate. The adhesion requirements of one material printed onto a second are studied by measuring the surface energy of both materials and by surface treatments such as plasma exposure or the application of self-assembled monolayers (SAM). Transfer printing has been developed within the context of fabricating organic electronics onto plastic substrates because these materials introduce unique opportunities associated with processing conditions not typically required for traditional semiconducting materials. Compared to silicon, organic semiconductors are soft materials that require low temperature processing and are extremely sensitive to chemical processing and environmental contamination. The transfer printing process has been developed for the important and commonly used organic semiconducting materials, pentacene (Pn) and poly(3-hexylthiophene) (P3HT). A three-step printing process has been developed by which these materials are printed onto an electrode subassembly consisting of previously printed electrodes separated by a polymer dielectric layer all on a plastic substrate. These bottom contact, flexible organic thin-film transistors (OTFT) have been compared to unprinted (reference) devices consisting of top contact electrodes and a silicon dioxide dielectric layer on a silicon substrate. Printed Pn and P3HT TFTs have been shown to out-perform the reference devices. This enhancement has been attributed to an annealing under pressure of the organic semiconducting material.
Carey, Tian; Cacovich, Stefania; Divitini, Giorgio; Ren, Jiesheng; Mansouri, Aida; Kim, Jong M; Wang, Chaoxia; Ducati, Caterina; Sordan, Roman; Torrisi, Felice
2017-10-31
Fully printed wearable electronics based on two-dimensional (2D) material heterojunction structures also known as heterostructures, such as field-effect transistors, require robust and reproducible printed multi-layer stacks consisting of active channel, dielectric and conductive contact layers. Solution processing of graphite and other layered materials provides low-cost inks enabling printed electronic devices, for example by inkjet printing. However, the limited quality of the 2D-material inks, the complexity of the layered arrangement, and the lack of a dielectric 2D-material ink able to operate at room temperature, under strain and after several washing cycles has impeded the fabrication of electronic devices on textile with fully printed 2D heterostructures. Here we demonstrate fully inkjet-printed 2D-material active heterostructures with graphene and hexagonal-boron nitride (h-BN) inks, and use them to fabricate all inkjet-printed flexible and washable field-effect transistors on textile, reaching a field-effect mobility of ~91 cm 2 V -1 s -1 , at low voltage (<5 V). This enables fully inkjet-printed electronic circuits, such as reprogrammable volatile memory cells, complementary inverters and OR logic gates.
The Development of Education, Printing and Publishing in Ethiopia.
ERIC Educational Resources Information Center
Gupta, Sushma
1994-01-01
Discusses the importance of literacy, education, printing, and publishing for the effective use of libraries and gives a detailed account of the development of these factors in Ethiopia. Highlights include the role of the church; the development of education, including higher education; and printing presses and publishing houses. (LRW)
Sauaia, Angela; Min, Sung-joon; Lack, David; Apodaca, Cecilia; Osuna, Diego; Stowe, Angela; MGinnis, Gretchen F; Latts, Lisa M; Byers, Tim
2007-10-01
The Tepeyac Project is a church-based health promotion project that was conducted from 1999 through 2005 to increase breast cancer screening rates among Latinas in Colorado. Previous reports evaluated the project among Medicare and Medicaid enrollees in the state. In this report, we evaluate the program among enrollees in the state's five major insurance plans. We compared the Tepeyac Project's two interventions: the Printed Intervention and the Promotora Intervention. In the first, we mailed culturally tailored education packages to 209 Colorado Catholic churches for their use. In the second, promotoras (peer counselors) in four Catholic churches delivered breast-health education messages personally. We compared biennial mammogram claims from the five insurance plans in the analysis at baseline (1998-1999) and during follow-up (2000-2001) for Latinas who had received the interventions. We used generalized estimating equations (GEE) analysis to adjust rates for confounders. The mammogram rate for Latinas in the Printed Intervention remained the same from baseline to follow-up (58% [2979/5130] vs 58% [3338/5708]). In the Promotora Intervention, the rate was 59% (316/536) at baseline and 61% (359/590) at follow-up. Rates increased modestly over time and varied widely by insurance type. After adjusting for age, income, urban versus rural location, disability, and insurance type, we found that women exposed to the Promotora Intervention had a significantly higher increase in biennial mammograms than did women exposed to the Printed Intervention (GEE parameter estimate = .24 [+/-.11], P = .03). For insured Latinas, personally delivering church-based education through peer counselors appears to be a better breast-health promotion method than mailing printed educational materials to churches.
Ryan, Justin R; Chen, Tsinsue; Nakaji, Peter; Frakes, David H; Gonzalez, L Fernando
2015-11-01
Educational simulators provide a means for students and experts to learn and refine surgical skills. Educators can leverage the strengths of medical simulators to effectively teach complex and high-risk surgical procedures, such as placement of an external ventricular drain. Our objective was to develop a cost-effective, patient-derived medical simulacrum for cerebral lateral ventriculostomy. A cost-effective, patient-derived medical simulacrum was developed for placement of an external lateral ventriculostomy. Elastomeric and gel casting techniques were used to achieve realistic brain geometry and material properties. 3D printing technology was leveraged to develop accurate cranial properties and dimensions. An economical, gravity-driven pump was developed to provide normal and abnormal ventricular pressures. A small pilot study was performed to gauge simulation efficacy using a technology acceptance model. An accurate geometric representation of the brain was developed with independent lateral cerebral ventricular chambers. A gravity-driven pump pressurized the ventricular cavities to physiologic values. A qualitative study illustrated that the simulation has potential as an educational tool to train medical professionals in the ventriculostomy procedure. The ventricular simulacrum can improve learning in a medical education environment. Rapid prototyping and multi-material casting techniques can produce patient-derived models for cost-effective and realistic surgical training scenarios. Copyright © 2015 Elsevier Inc. All rights reserved.
Wear Resistance of 3D Printing Resin Material Opposing Zirconia and Metal Antagonists.
Park, Ji-Man; Ahn, Jin-Soo; Cha, Hyun-Suk; Lee, Joo-Hee
2018-06-20
3D printing offers many advantages in dental prosthesis manufacturing. This study evaluated the wear resistance of 3D printing resin material compared with milling and conventional resin materials. Sixty substrate specimens were prepared with three types of resin materials: 3D printed resin, milled resin, and self-cured resin. The 3D printed specimens were printed at a build angle of 0° and 100 μm layer thickness by digital light processing 3D printing. Two kinds of abraders were made of zirconia and CoCr alloy. The specimens were loaded at 5 kg for 30,000 chewing cycles with vertical and horizontal movements under thermocycling condition. The 3D printed resin did not show significant difference in the maximal depth loss or the volume loss of wear compared to the milled and the self-cured resins. No significant difference was revealed depending on the abraders in the maximal depth loss or the volume loss of wear. In SEM views, the 3D printed resin showed cracks and separation of inter-layer bonds when opposing the metal abrader. The results suggest that the 3D printing using resin materials provides adequate wear resistance for dental use.
NASA Astrophysics Data System (ADS)
Straub, Jeremy
2017-06-01
A wide variety of characteristics of 3D printed objects have been linked to impaired structural integrity and use-efficacy. The printing material can also have a significant impact on the quality, utility and safety characteristics of a 3D printed object. Material issues can be created by vendor issues, physical security issues and human error. This paper presents and evaluates a system that can be used to detect incorrect material use in a 3D printer, using visible light imaging. Specifically, it assesses the ability to ascertain the difference between materials of different color and different types of material with similar coloration.
Helping Families Connect Early Literacy with Social-Emotional Development
ERIC Educational Resources Information Center
Santos, Rosa Milagros; Fettig, Angel; Shaffer, LaShorage
2012-01-01
Early childhood educators know that home is a child's first learning environment. From birth, children are comforted by hearing and listening to their caregivers' voices. The language used by families supports young children's development of oral language skills. Exposure to print materials in the home also supports literacy development. Literacy…
Understanding Taxes. [Teacher's Resource Package. Revised.
ERIC Educational Resources Information Center
Internal Revenue Service (Dept. of Treasury), Washington, DC.
This redesigned version of a high school curriculum on understanding taxes contains 6 units with 12 lessons. The set of video, print, and software lessons is designed to teach students about the United States tax system through integrating the materials in a number of different classrooms: history, economics, math, consumer education, government,…
Effect of Processing Parameters on 3D Printing of Cement - based Materials
NASA Astrophysics Data System (ADS)
Lin, Jia Chao; Wang, Jun; Wu, Xiong; Yang, Wen; Zhao, Ri Xu; Bao, Ming
2018-06-01
3D printing is a new study direction of building method in recent years. The applicability of 3D printing equipment and cement based materials is analyzed, and the influence of 3D printing operation parameters on the printing effect is explored in this paper. Results showed that the appropriate range of 3D printing operation parameters: print height/nozzle diameter is between 0.4 to 0.6, the printing speed 4-8 cm/s with pumpage 9 * 10-2 m 3/ h.
Viscoplastic Matrix Materials for Embedded 3D Printing.
Grosskopf, Abigail K; Truby, Ryan L; Kim, Hyoungsoo; Perazzo, Antonio; Lewis, Jennifer A; Stone, Howard A
2018-03-16
Embedded three-dimensional (EMB3D) printing is an emerging technique that enables free-form fabrication of complex architectures. In this approach, a nozzle is translated omnidirectionally within a soft matrix that surrounds and supports the patterned material. To optimize print fidelity, we have investigated the effects of matrix viscoplasticity on the EMB3D printing process. Specifically, we determine how matrix composition, print path and speed, and nozzle diameter affect the yielded region within the matrix. By characterizing the velocity and strain fields and analyzing the dimensions of the yielded regions, we determine that scaling relationships based on the Oldroyd number, Od, exist between these dimensions and the rheological properties of the matrix materials and printing parameters. Finally, we use EMB3D printing to create complex architectures within an elastomeric silicone matrix. Our methods and findings will both facilitate future characterization of viscoplastic matrices and motivate the development of new materials for EMB3D printing.
Reprocessable thermosets for sustainable three-dimensional printing.
Zhang, Biao; Kowsari, Kavin; Serjouei, Ahmad; Dunn, Martin L; Ge, Qi
2018-05-08
Among all three-dimensional (3D) printing materials, thermosetting photopolymers claim almost half of the market, and have been widely used in various fields owing to their superior mechanical stability at high temperatures, excellent chemical resistance as well as good compatibility with high-resolution 3D printing technologies. However, once these thermosetting photopolymers form 3D parts through photopolymerization, the covalent networks are permanent and cannot be reprocessed, i.e., reshaped, repaired, or recycled. Here, we report a two-step polymerization strategy to develop 3D printing reprocessable thermosets (3DPRTs) that allow users to reform a printed 3D structure into a new arbitrary shape, repair a broken part by simply 3D printing new material on the damaged site, and recycle unwanted printed parts so the material can be reused for other applications. These 3DPRTs provide a practical solution to address environmental challenges associated with the rapid increase in consumption of 3D printing materials.
40 CFR 59.1 - Final determinations under Section 183(e)(3)(C) of the CAA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... furniture coatings; (b) Aerospace coatings; (c) Shipbuilding and repair coatings; (d) Lithographic printing materials; (e) Letterpress printing materials; (f) Flexible packaging printing materials; (g) Flat wood... materials; and (p) Miscellaneous industrial adhesives. [73 FR 58491, Oct. 7, 2008] ...
3D Printing of Living Responsive Materials and Devices.
Liu, Xinyue; Yuk, Hyunwoo; Lin, Shaoting; Parada, German Alberto; Tang, Tzu-Chieh; Tham, Eléonore; de la Fuente-Nunez, Cesar; Lu, Timothy K; Zhao, Xuanhe
2018-01-01
3D printing has been intensively explored to fabricate customized structures of responsive materials including hydrogels, liquid-crystal elastomers, shape-memory polymers, and aqueous droplets. Herein, a new method and material system capable of 3D-printing hydrogel inks with programed bacterial cells as responsive components into large-scale (3 cm), high-resolution (30 μm) living materials, where the cells can communicate and process signals in a programmable manner, are reported. The design of 3D-printed living materials is guided by quantitative models that account for the responses of programed cells in printed microstructures of hydrogels. Novel living devices are further demonstrated, enabled by 3D printing of programed cells, including logic gates, spatiotemporally responsive patterning, and wearable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
O'Loughlin, J; Paradis, G; Meshefedjian, G
1997-01-01
The objective of this study was to evaluate the reach of mass mailings of heart health education print materials in a low-income, urban community. Materials included a monthly newsletter and a self-help behavior change kit, both distributed to all 12,789 households in the study community. Recall, use, and self-reported impact of the materials were measured in a cross-sectional survey of a random sample of 345 adults conducted 2 weeks after distribution of the kit and 18 months after delivery of the first newsletter. Over one-third of the subjects (38.6%) recalled the newsletter and 27.9% had read one or more newsletters; 21.7% recalled the kit and 10.8% had read it. Few subjects had read both materials. Female gender and older age were independent correlates of having seen and read the newsletters. Older age, being widowed/separated/divorced, and infrequent physical activity were correlates of having seen and read the kit. Although the newsletter and kit formats might appeal to different segments of the population, mass mailings of heart health education print materials in a low-income urban community can reach large numbers of individuals. The cost effectiveness of repeated mailings of short, simple newsletters might be higher than a single mailing of a more complex behavior change kit.
Optimisation of Substrate Angles for Multi-material and Multi-functional Inkjet Printing.
Vaithilingam, Jayasheelan; Saleh, Ehab; Wildman, Ricky D; Hague, Richard J M; Tuck, Christopher J
2018-06-13
Three dimensional inkjet printing of multiple materials for electronics applications are challenging due to the limited material availability, inconsistencies in layer thickness between dissimilar materials and the need to expose the printed tracks of metal nanoparticles to temperature above 100 °C for sintering. It is envisaged that instead of printing a dielectric and a conductive material on the same plane, by printing conductive tracks on an angled dielectric surface, the required number of silver layers and consequently, the exposure of the polymer to high temperature and the build time of the component can be significantly reduced. Conductive tracks printed with a fixed print height (FH) showed significantly better resolution for all angles than the fixed slope (FS) sample where the print height varied to maintain the slope length. The electrical resistance of the tracks remained under 10Ω up to 60° for FH; whereas for the FS samples, the resistance remained under 10Ω for samples up to 45°. Thus by fixing the print height to 4 mm, precise tracks with low resistance can be printed at substrate angles up to 60°. By adopting this approach, the build height "Z" can be quickly attained with less exposure of the polymer to high temperature.
Functional Nanoclay Suspension for Printing-Then-Solidification of Liquid Materials.
Jin, Yifei; Compaan, Ashley; Chai, Wenxuan; Huang, Yong
2017-06-14
Additive manufacturing (AM) enables the freeform fabrication of complex structures from various build materials. The objective of this study is to develop a novel Laponite nanoclay-enabled "printing-then-solidification" additive manufacturing approach to extrude complex three-dimensional (3D) structures made of various liquid build materials. Laponite, a member of the smectite mineral family, is investigated to serve as a yield-stress support bath material for the extrusion printing of liquid build materials. Using the printing-then-solidification approach, the printed structure remains liquid and retains its shape with the help of the Laponite support bath. Then the completed liquid structures are solidified in situ by applying suitable cross-linking mechanisms. Finally, the solidified structures are harvested from the Laponite nanoclay support bath for any further processing as needed. Due to its chemical and physical stability, liquid build materials with different solidification/curing/gelation mechanisms can be fabricated in the Laponite bath using the printing-then-solidification approach. The feasibility of the proposed Laponite-enabled printing-then-solidification approach is demonstrated by fabricating several complicated structures made of various liquid build materials, including alginate with ionic cross-linking, gelatin with thermal cross-linking, and SU-8 with photo-cross-linking. During gelatin structure printing, living cells are included and the postfabrication cell viability is above 90%.
Process evaluation of health fairs promoting cancer screenings.
Escoffery, Cam; Liang, Shuting; Rodgers, Kirsten; Haardoerfer, Regine; Hennessy, Grace; Gilbertson, Kendra; Heredia, Natalia I; Gatus, Leticia A; Fernandez, Maria E
2017-12-18
Low income and uninsured individuals often have lower adherence to cancer screening for breast, cervical and colorectal cancer. Health fairs are a common community outreach strategy used to provide cancer-related health education and services. This study was a process evaluation of seven health fairs focused on cancer screening across the U.S. We conducted key-informant interviews with the fair coordinator and conducted baseline and follow-up surveys with fair participants to describe characteristics of participants as well as their experiences. We collected baseline data with participants at the health fairs and telephone follow-up surveys 6 months following the fair. Attendance across the seven health fairs ranged from 41 to 212 participants. Most fairs provided group or individual education, print materials and cancer screening during the event. Overall, participants rated health fairs as very good and participants reported that the staff was knowledgeable and that they liked the materials distributed. After the fairs, about 60% of participants, who were reached at follow-up, had read the materials provided and had conversations with others about cancer screening, and 41% talked to their doctors about screening. Based on findings from evaluation including participant data and coordinator interviews, we describe 6 areas in planning for health fairs that may increase their effectiveness. These include: 1) use of a theoretical framework for health promotion to guide educational content and activities provided, 2) considering the community characteristics, 3) choosing a relevant setting, 4) promotion of the event, 5) considerations of the types of services to deliver, and 6) evaluation of the health fair. The events reported varied in reach and the participants represented diverse races and lower income populations overall. Most health fairs offered education, print materials and onsite cancer screening. Participants reported general satisfaction with these events and were motivated through their participation to read educational materials or discuss screening with providers. Public health professionals can benefit from this process evaluation and recommendations for designing and evaluating health fairs.
Basch, Charles E; Zybert, Patricia; Wolf, Randi L; Basch, Corey H; Ullman, Ralph; Shmukler, Celia; King, Fionnuala; Neugut, Alfred I; Shea, Steven
2015-10-01
This randomized controlled trial assessed different educational approaches for increasing colorectal cancer screening uptake in a sample of primarily non-US born urban minority individuals, over aged 50, with health insurance, and out of compliance with screening guidelines. In one group, participants were mailed printed educational material (n = 180); in a second, participants' primary care physicians received academic detailing to improve screening referral and follow-up practices (n = 185); in a third, physicians received academic detailing and participants received tailored telephone education (n = 199). Overall, 21.5% of participants (n = 121) received appropriate screening within one year of randomization. There were no statistically significant pairwise differences between groups in screening rate. Among those 60 years of age or older, however, the detailing plus telephone education group had a higher screening rate than the print group (27.3 vs. 7.7%, p = .02). Different kinds of interventions will be required to increase colorectal cancer screening among the increasingly small population segment that remains unscreened. ClinicalTrials.gov Identifier: NCT02392143.
NASA Astrophysics Data System (ADS)
Poissenot-Arrigoni, Bastien; Scheyer, Austin; Anton, Steven R.
2017-04-01
The evolution of additive manufacturing has allowed engineers to use 3D printing for many purposes. As a natural consequence of the 3D printing process, the printed object is anisotropic. As part of an ongoing project to embed piezoelectric devices in 3D printed structures for structural health monitoring (SHM), this study aims to find the mechanical properties of the 3D printed material and the influence of different external factors on those properties. The orthotropic mechanical properties of a 3D printed structure are dependent on the printing parameters used to create the structure. In order to develop an orthotropic material model, mechanical properties will be found experimentally from additively manufactured samples created from polylactic acid (PLA) using a consumer-level fused deposition modeling (FDM) printer; the Lulzbot TAZ 6. Nine mechanical constants including three Young's moduli, three Poisson's ratios, and three shear moduli are needed to fully describe the 3D elastic behavior of the material. Printed specimens with different raster orientations and print orientations allow calculation of the different material constants. In this work, seven of the nine mechanical constants were found. Two shear moduli were unable to be measured due to difficulties in printing two of the sample orientations. These mechanical properties are needed in order to develop orthotropic material models of systems employing 3D printed PLA. The results from this paper will be used to create a model of a piezoelectric transducer embedded in a 3D printed structure for structural health monitoring.
New Literacies: Towards a Renewed Role of School Libraries
ERIC Educational Resources Information Center
Asselin, Marlene
2004-01-01
The notion of "new literacies" is appearing increasingly in the news in literacy research, journals and books; and in preservice and inservice teacher education. To function effectively in society now requires more than basic reading and writing with "old technologies" or print materials. Today, in the workplace, in our communities and in our…
The Role of "Kilimani Sesame" in the Healthy Development of Tanzanian Preschool Children
ERIC Educational Resources Information Center
Borzekowski, Dina L. G.; Macha, Jacob E.
2010-01-01
"Kilimani Sesame," a media intervention that employs print, radio, and television, was developed to entertain and educate preschool children in Tanzania. This study examined the effects of a six-week intervention delivering "Kilimani Sesame" material to 223 children in the rural district of Kisarawe and the city of Dar es…
From Tedious to Timely: Screencasting to Troubleshoot Electronic Resource Issues
ERIC Educational Resources Information Center
Hartnett, Eric; Thompson, Carole
2010-01-01
The shift from traditional print materials to electronic resources, in conjunction with the rise in the number of distance education programs, has left many electronic resource librarians scrambling to keep up with the resulting inundation of electronic resource problems. When it comes to diagnosing these problems, words do not always convey all…
Unit: Making Life Easier, Inspection Pack, National Trial Print.
ERIC Educational Resources Information Center
Australian Science Education Project, Toorak, Victoria.
As a part of the unit materials in the series produced by the Australian Science Education Project, this teacher edition is primarily composed of three sections: a core relating to a bicycle, tests, and options. The core is concerned with basic properties of a machine such as force multiplication, speed multiplication, energy dissipation, and…
Resources for Developing Acquaintance Rape Prevention Programs for Men.
ERIC Educational Resources Information Center
Earle, James P.; Nies, Charles T.
1994-01-01
Provides an annotated bibliography of videos and printed materials that may be used as educational tools in rape prevention programs. Focuses on sources that are aimed directly at men. Also outlines the use of consultants or lecturers as one of many resources in the construction and implementation of rape prevention programs. (KW)
Access to Higher Education: Students with Disabilities at the Open University. Working Together?
ERIC Educational Resources Information Center
Child, Derek
Services to students with disabilities at the Open University (OU) in Great Britain are described. This large distance teaching institution offers courses in multi-media form, using printed texts, audio and video material, radio and television programs, microcomputer software, and tutorial support (available either from local study centers or at…
Unit: The Australian Scene, Inspection Pack, National Trial Print.
ERIC Educational Resources Information Center
Australian Science Education Project, Toorak, Victoria.
As a part of the interim unit materials in the series produced by the Australian Science Education Project, this teachers' guide is composed of five sections: an introduction to nature in the balance, tests, excursion activities, options, and research activities. Options are under the headings: The Changing Face, Australian Soils, Distribution of…
Standards for Cataloging Nonprint Materials. Revised Edition.
ERIC Educational Resources Information Center
Quinly, William J.; And Others
Rules and procedures for cataloging non-print media are provided in this manual of the Association for Educational Communications and Technology. The first section on cataloging rules covers all elements which should appear on the catalog card. After some comments on entries, the arrangement of catalog elements, and style, the elements of the…
From Telecourses to Online Courses: A Story of Redesign
ERIC Educational Resources Information Center
Potvin, Claude
2015-01-01
This case deals with the redesign of a standard telecourse--printed material, professional studio video recordings and phone tutoring--into an online course. The redesign involved an adjunct professor in the Humanities having some experience in distance education but little with learning technologies. It was a two-year project including the grant…
Benchmarks: The Development of a New Approach to Student Evaluation.
ERIC Educational Resources Information Center
Larter, Sylvia
The Toronto Board of Education Benchmarks are libraries of reference materials that demonstrate student achievement at various levels. Each library contains video benchmarks, print benchmarks, a staff handbook, and summary and introductory documents. This book is about the development and the history of the benchmark program. It has taken over 3…
Clinician Resources to Improve Evidence-Based Sexual Healthcare: Does Content and Design Matter?
ERIC Educational Resources Information Center
Hosseinzadeh, Hassan; Dadich, Ann; Bourne, Chris; Murray, Carolyn
2014-01-01
This study examines how the design and content of printed educational materials (PEMs) influence clinician capacity to deliver evidence-based sexual healthcare. General practitioners in New South Wales, Australia (n = 214), completed a survey about their use and perceptions of PEMs - a clinical aide, sexual health articles, and an educational…
A Qualitative Case Study of Reading-While-Listening to Audiobooks Simultaneously
ERIC Educational Resources Information Center
Linton, Sorena Christina
2017-01-01
This study was a qualitative, evaluative, multicase study to determine the educator perspectives on the barriers to using Reading While Listening (RWL) simultaneously to audiobooks and their corresponding printed material. The goal of this study was to understand whether RWL should be used more extensively, implemented into a set curriculum, and…
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Child Nutrition Section.
This selected bibliography provides elementary school educators with a list of books currently in print which provide supplementary resources on food, nutrition and related topics. All books listed were judged factually accurate and suitable for the grade level designated, offering material that would implement, enrich and support elementary…
Rx for OTC Users: Improved Health Education.
ERIC Educational Resources Information Center
Shands, Virginia P.; And Others
A self-administered survey was given to 152 college students to test their knowledge and understanding of some basic health facts and terminology commonly found in printed materials affixed to or accompanying common over-the-counter (OTC) drug preparations. The results indicated that 96% of the sample had used OTC medications as college students.…
[Guide for the publication of written materials].
Garcia Campos, M G
1987-01-01
Tips for writing and editing population education or other materials and descriptions of the process of printing a text and of available types of print media are provided. Written materials should be brief and concise, and should avoid bombarding the reader with too many figures or references. Ideas of others must always be acknowledged. Adjectives and metaphors should be used in moderation. The first person and obscure words should both be avoided. Acronyms and abbreviations should be defined at their 1st use. Ideas should be presented in a logical sequence. Illustrations and tables may facilitate comprehension, but only if they are clearly presented and printed. Materials should be adapted to their audiences. In a country with the cultural, racial, and social diversity of Peru, it is impossible to refer to a general audience. Population communication which wishes to influence people must be based on a clear knowledge of the level of information, habits, linguistic practices, and other traits of the intended audience. Once the audience has been characterized, the objectives of the publication should be clearly defined. The technical characteristics of the publication are then selected. The format should be a standard size so that all the available paper can be used. The number of pages is often determined by the funds available although ideally it should be decided in accordance with the information to be presented. The color, type of lettering and spacing, paper, number of copies to be printed, and frequency of appearance are influenced by budgetary considerations, but the letter size and spacing should be generous enough to allow easy reading. The layout, style, and sections of the work must then be determined. A bulletin for example could have an editorial, a central article, reportage, an in-depth interview, correspondence, book reviews, and other regular features. The contents should be carefully checked for accuracy and grammaticality, and each step of technical preparation and printing must be carefully monitored. Among available printed media, most require literate audiences and trained personnel to prepare them. Production costs are relatively high and good distribution networks are needed. Traditional media such as dances or festivals avoid some of these requirements but can only reach limited audiences.
Eaves, Emery R.; Nichter, Mark; Howerter, Amy; Floden, Lysbeth; Ritenbaugh, Cheryl; Gordon, Judith S.; Muramoto, Myra L.
2017-01-01
Printed educational materials (PEMs) have long demonstrated their usefulness as economical and effective media for health communication. In this article, we evaluate the impact of targeted tobacco cessation PEMS for use along with a brief intervention training designed for three types of complementary and alternative medicine (CAM) practitioners: chiropractic, acupuncture, and massage. We describe how PEMs in CAM practitioners’ offices were perceived and used by practitioners and by patients. Semistructured qualitative interviews were conducted with 53 practitioners and 38 of their patients. This analysis specifically focused on developing and distributing project-related posters and pamphlets in CAM practice. Our findings indicate that materials (1) legitimated tobacco-related expertise among CAM practitioners and tobacco-related conversations as part of routine CAM practice, (2) increased practitioners’ willingness to approach the topic of tobacco with patients, (3) created an effective way to communicate tobacco-related information and broaden the reach of brief intervention initiatives, and (4) were given to patients who were not willing to engage in direct discussion of tobacco use with practitioners. PMID:27591225
Gibney, Katherine B; Brass, Amanda; Hume, Sam C; Leder, Karin
2014-01-01
International students in Victoria, Australia, originate from over 140 different countries. They are over-represented in disease notifications for tuberculosis and travel-associated infections, including enteric fever, hepatitis A, and malaria. We describe a public health initiative aimed to increase awareness of these illnesses among international students and their support staff. We identified key agencies including student support advisors, medical practitioners, health insurers, and government and professional organisations. We developed health education materials targeting international students regarding tuberculosis and travel-related infections to be disseminated via a number of different media, including electronic and printed materials. We sought informal feedback from personnel in all interested agencies regarding the materials developed, their willingness to deliver these materials to international students, and their preferred media for disseminating these materials. Education institutions with dedicated international student support staff and on-campus health clinics were more easily engaged to provide feedback and disseminate the health education materials than institutions without such dedicated personnel. Response to contacting off-campus medical practices was poor. Delivery of educational materials via electronic and social media was preferred over face-to-face education. It is feasible to provide health education messages targeting international students for dissemination via appropriately-staffed educational institutions. This initiative could be expanded in terms of age-group, geographic range, and health issues to be targeted. Copyright © 2013 Elsevier Ltd. All rights reserved.
3D-Printed Models of Cleft Lip and Palate for Surgical Training and Patient Education.
Chou, Pang-Yun; Hallac, Rami R; Shih, Ellen; Trieu, Jenny; Penumatcha, Anjani; Das, Priyanka; Meyer, Clark A; Seaward, James R; Kane, Alex A
2018-03-01
Sculpted physical models and castings of the anatomy of cleft lip and palate are used for parent, patient, and trainee education of cleft lip and palate conditions. In this study, we designed a suite of digital 3-dimensional (3D) models of cleft lip and palate anatomy with additive manufacturing techniques for patient education. CT scans of subjects with isolated cleft palate, unilateral and bilateral cleft lip and palate, and a control were obtained. Soft tissue and bony structures were segmented and reconstructed into digital 3D models. The oral soft tissues overlying the cleft palate were manually molded with silicone putty and scanned using CT to create digital 3D models. These were then combined with the original model to integrate with segmentable soft tissues. Bone and soft tissues were 3D printed in different materials to mimic the rigidity/softness of the relevant anatomy. These models were presented to the parents/patients at our craniofacial clinic. Visual analog scale (VAS) surveys were obtained pertaining to the particular use of the models, to ascertain their value in parental education. A total of 30 parents of children with cleft conditions completed VAS evaluations. The models provided the parents with a better understanding of their child's condition with an overall evaluation score of 9.35 ± 0.5. We introduce a suite of 3D-printed models of cleft conditions that has a useful role in patient, parental, and allied health education with highly positive feedback.
Multimaterial magnetically assisted 3D printing of composite materials.
Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R
2015-10-23
3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature.
A Straightforward Approach for 3D Bacterial Printing
2017-01-01
Sustainable and personally tailored materials production is an emerging challenge to society. Living organisms can produce and pattern an extraordinarily wide range of different molecules in a sustainable way. These natural systems offer an abundant source of inspiration for the development of new environmentally friendly materials production techniques. In this paper, we describe the first steps toward the 3-dimensional printing of bacterial cultures for materials production and patterning. This methodology combines the capability of bacteria to form new materials with the reproducibility and tailored approach of 3D printing systems. For this purpose, a commercial 3D printer was modified for bacterial systems, and new alginate-based bioink chemistry was developed. Printing temperature, printhead speed, and bioink extrusion rate were all adapted and customized to maximize bacterial health and spatial resolution of printed structures. Our combination of 3D printing technology with biological systems enables a sustainable approach for the production of numerous new materials. PMID:28225616
A Straightforward Approach for 3D Bacterial Printing.
Lehner, Benjamin A E; Schmieden, Dominik T; Meyer, Anne S
2017-07-21
Sustainable and personally tailored materials production is an emerging challenge to society. Living organisms can produce and pattern an extraordinarily wide range of different molecules in a sustainable way. These natural systems offer an abundant source of inspiration for the development of new environmentally friendly materials production techniques. In this paper, we describe the first steps toward the 3-dimensional printing of bacterial cultures for materials production and patterning. This methodology combines the capability of bacteria to form new materials with the reproducibility and tailored approach of 3D printing systems. For this purpose, a commercial 3D printer was modified for bacterial systems, and new alginate-based bioink chemistry was developed. Printing temperature, printhead speed, and bioink extrusion rate were all adapted and customized to maximize bacterial health and spatial resolution of printed structures. Our combination of 3D printing technology with biological systems enables a sustainable approach for the production of numerous new materials.
Hierarchical Co-Assembly Enhanced Direct Ink Writing.
Li, Longyu; Zhang, Pengfei; Zhang, Zhiyun; Lin, Qianming; Wu, Yuyang; Cheng, Alexander; Lin, Yunxiao; Thompson, Christina M; Smaldone, Ronald A; Ke, Chenfeng
2018-04-23
Integrating intelligent molecular systems into 3D printing materials and transforming their molecular functions to the macroscale with controlled superstructures will unleash great potential for the development of smart materials. Compared to macromolecular 3D printing materials, self-assembled small-molecule-based 3D printing materials are very rare owing to the difficulties of facilitating 3D printability as well as preserving their molecular functions macroscopically. Herein, we report a general approach for the integration of functional small molecules into 3D printing materials for direct ink writing through the introduction of a supramolecular template. A variety of inorganic and organic small-molecule-based inks were 3D-printed, and their superstructures were refined by post-printing hierarchical co-assembly. Through spatial and temporal control of individual molecular events from the nano- to the macroscale, fine-tuned macroscale features were successfully installed in the monoliths. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multimaterial magnetically assisted 3D printing of composite materials
NASA Astrophysics Data System (ADS)
Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R.
2015-10-01
3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature.
Friedman, Daniela B; Hoffman-Goetz, Laurie
2006-06-01
Adequate functional literacy skills positively influence individuals' ability to take control of their health. Print and Web-based cancer information is often written at difficult reading levels. This systematic review evaluates readability instruments (FRE, F-K, Fog, SMOG, Fry) used to assess print and Web-based cancer information and word recognition and comprehension tests (Cloze, REALM, TOFHLA, WRAT) that measure people's health literacy. Articles on readability and comprehension instruments explicitly used for cancer information were assembled by searching MEDLINE and Psyc INFO from 1993 to 2003. In all, 23 studies were included; 16 on readability, 6 on comprehension, and 1 on readability and comprehension. Of the readability investigations, 14 focused on print materials, and 2 assessed Internet information. Comprehension and word recognition measures were not applied to Web-based information. None of the formulas were designed to determine the effects of visuals or design factors that could influence readability and comprehension of cancer education information.
3D printing of bacteria into functional complex materials.
Schaffner, Manuel; Rühs, Patrick A; Coulter, Fergal; Kilcher, Samuel; Studart, André R
2017-12-01
Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of "living materials" capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications.
Electrical and Mechanical Properties of 3D-Printed Graphene-Reinforced Epoxy
NASA Astrophysics Data System (ADS)
Compton, Brett G.; Hmeidat, Nadim S.; Pack, Robert C.; Heres, Maximilian F.; Sangoro, Joshua R.
2018-03-01
Recent developments in additive manufacturing have demonstrated the potential for thermoset polymer feedstock materials to achieve high strength, stiffness, and functionality through incorporation of structural and functional filler materials. In this work, graphene was investigated as a potential filler material to provide rheological properties necessary for direct-write three-dimensional (3D) printing and electrostatic discharge properties to the printed component. The rheological properties of epoxy/graphene mixtures were characterized, and printable epoxy/graphene inks formulated. Sheet resistance values for printed epoxy/graphene composites ranged from 0.67 × 102 Ω/sq to 8.2 × 103 Ω/sq. The flexural strength of printed epoxy/graphene composites was comparable to that of cast neat epoxy ( 80 MPa), suggesting great potential for these new materials in multifunctional 3D-printed devices.
Design and Development of 3D Printed Teaching Aids for Architecture Education
ERIC Educational Resources Information Center
Song, Min Jeong; Ha, Euna; Goo, Sang-Kwon; Cho, JaeKyung
2018-01-01
This article describes how the implementation of 3D printing in classrooms has brought many opportunities to educators as it provides affordability and accessibility in creating and customizing teaching aids. The study reports on the process of fabricating teaching aids for architecture education using 3D printing technologies. The practice-based…
ERIC Educational Resources Information Center
Coursen, David
The term "media," as employed here, refers to printed and audiovisual forms of communication and their accompanying technology. A representative list of printed materials might include books, periodicals, catalogs, and printed programmed materials. Audiovisual materials include films and filmstrips, recordings, slides, graphic materials,…
A brief review of extrusion-based tissue scaffold bio-printing.
Ning, Liqun; Chen, Xiongbiao
2017-08-01
Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Wolfe, Gerri L.; Lee, Christopher
2007-01-01
For postsecondary students with disabilities influencing reading performance, printed class materials pose a substantial barrier and have a negative impact on academic achievement. Digital technologies offer alternative ways of accessing print materials for students with print-related disabilities. Alternative media is a broad term that…
Non-Print Social Studies Materials--Elementary School Level.
ERIC Educational Resources Information Center
Lynn, Karen
Types of non-print social studies materials developed for presentation to, and use by, elementary school students are identified. "Non-print" materials include films, filmstrips, video cassettes, audio recordings, computer databases, telecommunications, and hypertext. An explanation of why elementary school students can benefit from the use of…
Feasibility of Two Educational Methods for Teaching New Mothers: A Pilot Study
Eckert, Diane; Smith, Frances; Stikes, Reetta; Rushton, Jeff; Myers, John; Capps, Joshua; Sparks, Kathryn
2015-01-01
Background Printed health educational materials are commonly issued to prepare patients for hospital discharge. Teaching methods that engage multiple senses have been shown to positively affect learning outcomes, suggesting that paper materials may not be the most effective approach when educating new mothers. In addition, many written patient educational materials do not meet national health literacy guidelines. Videos that stimulate visual and auditory senses provide an alternative, potentially more effective, strategy for delivering health information. The acceptability of these methods, as perceived by nurses executing patient education initiatives, is important for determining the most appropriate strategy. Objective The purpose of this study was to determine the feasibility of 2 educational methods for teaching new mothers how to care for themselves and their infants after hospital discharge. Feasibility was measured by adequate enrollment, acceptability of the intervention to patients and nurses, and initial efficacy. Methods New mothers (n=98) on a Mother-Baby Unit received health information focused on self-care and infant care delivered as either simple printed materials or YouTube videos on an iPad. Mothers completed a pretest, post-test, and an acceptability survey. Following completion of the initiative, nurses who participated in delivering the health education using one of these 2 methods were asked to complete a survey to determine their satisfaction with and confidence in using the materials. Results Mothers, on average, were 26 years old; 72% had a high school education; and 41% were African American. The improvement in knowledge scores was significantly higher for the iPad group (8.6% vs 4.4%, P=.02) compared to the pamphlet group. Group (B=4.81, P=.36) and time (B=6.12, P<.001) significantly affected scores, while no significant interaction effect was observed (B=5.69, P=.09). There were no significant differences in responses between the groups (all P values >.05). The nurses had a mean age of 44.3 years (SD 13.9) and had, on average, 16.6 years of experience (SD 13.8). The nurses felt confident and satisfied administering both educational modalities. Conclusions The pamphlet and iPad were identified as feasible and acceptable modalities for educating new mothers about self-care and infant care, though the iPad was more effective in improving knowledge. Understanding the acceptability of different teaching methods to patient educators is important for successful delivery of informational materials at discharge. PMID:26449647
Novel Materials for 3D Printing by Photopolymerization.
Layani, Michael; Wang, Xiaofeng; Magdassi, Shlomo
2018-05-13
The field of 3D printing, also known as additive manufacturing (AM), is developing rapidly in both academic and industrial research environments. New materials and printing technologies, which enable rapid and multimaterial printing, have given rise to new applications and utilizations. However, the main bottleneck for achieving many more applications is the lack of materials with new physical properties. Here, some of the recent reports on novel materials in this field, such as ceramics, glass, shape-memory polymers, and electronics, are reviewed. Although new materials have been reported for all three main printing approaches-fused deposition modeling, binder jetting or laser sintering/melting, and photopolymerization-based approaches, apparently, most of the novel physicochemical properties are associated with materials printed by photopolymerization approaches. Furthermore, the high resolution that can be achieved using this type of 3D printing, together with the new properties, has resulted in new implementations such as microfluidic, biomedical devices, and soft robotics. Therefore, the focus here is on photopolymerization-based additive manufacturing including the recent development of new methods, novel monomers, and photoinitiators, which result in previously inaccessible applications such as complex ceramic structures, embedded electronics, and responsive 3D objects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Teoh, Joanne Ee Mei; Zhao, Yue; An, Jia; Chua, Chee Kai; Liu, Yong
2017-12-01
Shape memory polymers (SMPs) have gained a presence in additive manufacturing due to their role in 4D printing. They can be printed either in multi-materials for multi-stage shape recovery or in a single material for single-stage shape recovery. When printed in multi-materials, material or material-based design is used as a controlling factor for multi-stage shape recovery. However, when printed in a single material, it is difficult to design multi-stage shape recovery due to the lack of a controlling factor. In this research, we explore the use of geometric thickness as a controlling factor to design smart structures possessing multi-stage shape recovery using a single SMP. L-shaped hinges with a thickness ranging from 0.3-2 mm were designed and printed in four different SMPs. The effect of thickness on SMP’s response time was examined via both experiment and finite element analysis using Ansys transient thermal simulation. A method was developed to accurately measure the response time in millisecond resolution. Temperature distribution and heat transfer in specimens during thermal activation were also simulated and discussed. Finally, a spiral square and an artificial flower consisting of a single SMP were designed and printed with appropriate thickness variation for the demonstration of a controlled multi-stage shape recovery. Experimental results indicated that smart structures printed using single material with controlled thickness parameters are able to achieve controlled shape recovery characteristics similar to those printed with multiple materials and uniform geometric thickness. Hence, the geometric parameter can be used to increase the degree of freedom in designing future smart structures possessing complex shape recovery characteristics.
Large Print Bibliography, 1990.
ERIC Educational Resources Information Center
South Dakota State Library, Pierre.
This bibliography lists materials that are available in large print format from the South Dakota State Library. The annotated entries are printed in large print and include the title of the material and its author, call number, publication date, and type of story or subject area covered. Some recorded items are included in the list. The entries…
Hermsen, Joshua L; Burke, Thomas M; Seslar, Stephen P; Owens, David S; Ripley, Beth A; Mokadam, Nahush A; Verrier, Edward D
2017-01-01
Static 3-dimensional printing is used for operative planning in cases that involve difficult anatomy. An interactive 3D print allowing deliberate surgical practice would represent an advance. Two patients with hypertrophic cardiomyopathy had 3-dimensional prints constructed preoperatively. Stereolithography files were generated by segmentation of chest computed tomographic scans. Prints were made with hydrogel material, yielding tissue-like models that can be surgically manipulated. Septal myectomy of the print was performed preoperatively in the simulation laboratory. Volumetric measures of print and patient resected specimens were compared. An assessment tool was developed and used to rate the utility of this process. Clinical and echocardiographic data were reviewed. There was congruence between volumes of print and patient resection specimens (patient 1, 3.5 cm 3 and 3.0 cm 3 , respectively; patient 2, 4.0 cm 3 and 4.0 cm 3 , respectively). The prints were rated useful (3.5 and 3.6 on a 5-point Likert scale) for preoperative visualization, planning, and practice. Intraoperative echocardiographic assessment showed adequate relief of left ventricular outflow tract obstruction (patient 1, 80 mm Hg to 18 mm Hg; patient 2, 96 mm Hg to 9 mm Hg). Both patients reported symptomatic improvement (New York Heart Association functional class III to class I). Three-dimensional printing of interactive hypertrophic cardiomyopathy heart models allows for patient-specific preoperative simulation. Resection volume relationships were congruous on both specimens and suggest evidence of construct validity. This model also holds educational promise for simulation of a low-volume, high-risk operation that is traditionally difficult to teach. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
3D Modelling and Printing Technology to Produce Patient-Specific 3D Models.
Birbara, Nicolette S; Otton, James M; Pather, Nalini
2017-11-10
A comprehensive knowledge of mitral valve (MV) anatomy is crucial in the assessment of MV disease. While the use of three-dimensional (3D) modelling and printing in MV assessment has undergone early clinical evaluation, the precision and usefulness of this technology requires further investigation. This study aimed to assess and validate 3D modelling and printing technology to produce patient-specific 3D MV models. A prototype method for MV 3D modelling and printing was developed from computed tomography (CT) scans of a plastinated human heart. Mitral valve models were printed using four 3D printing methods and validated to assess precision. Cardiac CT and 3D echocardiography imaging data of four MV disease patients was used to produce patient-specific 3D printed models, and 40 cardiac health professionals (CHPs) were surveyed on the perceived value and potential uses of 3D models in a clinical setting. The prototype method demonstrated submillimetre precision for all four 3D printing methods used, and statistical analysis showed a significant difference (p<0.05) in precision between these methods. Patient-specific 3D printed models, particularly using multiple print materials, were considered useful by CHPs for preoperative planning, as well as other applications such as teaching and training. This study suggests that, with further advances in 3D modelling and printing technology, patient-specific 3D MV models could serve as a useful clinical tool. The findings also highlight the potential of this technology to be applied in a variety of medical areas within both clinical and educational settings. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Grudniewicz, Agnes; Bhattacharyya, Onil; McKibbon, K Ann; Straus, Sharon E
2016-01-01
It is challenging for primary care physicians (PCPs) to review and apply the growing amount of clinical evidence available. Printed educational materials (PEMs), which synthesize evidence, are often ineffective at improving knowledge, possibly due to poor design and limited uptake. In this study, we collected PCP preferences for the design and content of physician-oriented PEMs and determined key attributes that may increase their usability and uptake. We held 90-minute focus groups with PCPs in Toronto, ON, Canada. Focus groups included discussion about whether and how participants use PEMs, feedback on three examples of PEMs, and a discussion on general format and design preferences in PEMs. We analyzed focus group transcripts using a thematic analysis and summarized results in a list of user preferences. Four focus groups were held with 13 PCPs. We found that participants only read PEMs relevant to their patients and prefer short, concise documents, with links to sources that can provide more detailed information. Simplicity of materials was important, with many participants preferring PEMs without lengthy backgrounds or scientific explanations. Most participants wanted to see key messages highlighted to easily assess the relevance of the materials to their practice. Some participants shared physician-oriented PEMs with patients. This study shows that PCPs may prefer shorter, simpler, and more concise documents that have less scientific detail but provide references to further information sources. It is important to understand end user preferences for the design and content of these materials to enhance their uptake.
The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts
NASA Astrophysics Data System (ADS)
Ćwikła, G.; Grabowik, C.; Kalinowski, K.; Paprocka, I.; Ociepka, P.
2017-08-01
Rapid Prototyping technologies, especially 3D printing are becoming increasingly popular due to their usability and the constant decrease in price of printing equipment and materials. The article focuses on the study of selected mechanical strength properties of 3D-printed elements, which are not very important if the element is only a model for further manufacturing techniques, but which are important when 3D-printed elements will be a part of a functioning device, e.g. a part of unique scientific equipment. The research was carried out on a set of standardised samples, printed with low-cost standard materials (ABS), using a cheap 3D printer. The influence of parameters (such as the type of infill pattern, infill density, shell thickness, printing temperature, the type of material) on selected mechanical properties of the samples, were tested. The obtained results allows making conscious decisions on the printing of elements to be durable enough, either on a non-professional printer, or when to ordered by a professional manufacturer.
3D printing of optical materials: an investigation of the microscopic properties
NASA Astrophysics Data System (ADS)
Persano, Luana; Cardarelli, Francesco; Arinstein, Arkadii; Uttiya, Sureeporn; Zussman, Eyal; Pisignano, Dario; Camposeo, Andrea
2018-02-01
3D printing technologies are currently enabling the fabrication of objects with complex architectures and tailored properties. In such framework, the production of 3D optical structures, which are typically based on optical transparent matrices, optionally doped with active molecular compounds and nanoparticles, is still limited by the poor uniformity of the printed structures. Both bulk inhomogeneities and surface roughness of the printed structures can negatively affect the propagation of light in 3D printed optical components. Here we investigate photopolymerization-based printing processes by laser confocal microscopy. The experimental method we developed allows the printing process to be investigated in-situ, with microscale spatial resolution, and in real-time. The modelling of the photo-polymerization kinetics allows the different polymerization regimes to be investigated and the influence of process variables to be rationalized. In addition, the origin of the factors limiting light propagation in printed materials are rationalized, with the aim of envisaging effective experimental strategies to improve optical properties of printed materials.
Feng, Chunyan; Zhang, Min; Bhandari, Bhesh
2018-06-01
Interest in additive manufacture has grown significantly in recent years, driving a need for printable materials that can sustain high strains and still fulfill their function in applications such as tissue engineering, regenerative medicine field, food engineering and field of aerospace, etc. As an emerging and promising technology, 3Dprinting has attracted more and more attention with fast manipulation, reduce production cost, customize geometry, increase competitiveness and advantages in many hot research areas. Many researchers have done a lot of investigations on printable materials, ranging from a single material to composite material. Main content: This review focuses on the contents of printable edible inks. It also gathers and analyzes information on the effects of printable edible ink material properties on 3D print accuracy. In addition, it discusses the impact of printing parameters on accurate printing, and puts forward current challenges and recommendations for future research and development.
Development and Application of 3D Printed Mesoreactors in Chemical Engineering Education
ERIC Educational Resources Information Center
Tabassum, Tahseen; Iloska, Marija; Scuereb, Daniel; Taira, Noriko; Jin, Chongguang; Zaitsev, Vladimir; Afshar, Fara; Kim, Taejin
2018-01-01
3D printing technology has an enormous potential to apply to chemical engineering education. In this paper, we describe several designs of 3D printed mesoreactors (Y-shape, T-shape, and Long channel shape) using the following steps: reactor sketching, CAD modeling, and reactor printing. With a focus on continuous plug flow mesoreactors (PFRs, i.d.…
Tinkering with Teachers: The Case for 3D Printing in the Education Library
ERIC Educational Resources Information Center
Elrod, Rachael
2016-01-01
Opportunities to utilize 3D printing in the K-12 classroom are growing every day. This paper describes the process of implementing a 3D printing service in the Education Library of The University of Florida, Gainesville, a large, doctoral-degree granting, research university. Included are examples of lesson plans featuring 3D printing, creation of…
HBCU/MI: 3D Formable RF Materials and Devices
2016-08-01
SECURITY CLASSIFICATION OF: The aim of this project was to explore 3D printing for RF/microwave circuits and devices. The research produced several... 3D printed microwave filters, a 3D wifi radio circuit, and new materials for 3D printed electromagnetic devices. The research demonstrates that 3D ...journals: Final Report: HBCU/MI: 3D Formable RF Materials and Devices Report Title The aim of this project was to explore 3D printing for RF/microwave
Unit: Seashores, Inspection Pack, National Trial Print.
ERIC Educational Resources Information Center
Australian Science Education Project, Toorak, Victoria.
As a part of the unit materials in the series produced by the Australian Science Education Project, this teacher edition is primarily composed of three parts: a core, a number of options, and test forms. The core is concerned with seashores, wind, waves, life on seashores, and rocky shore ecosystems. Options are given under the headings: Pollution…
Attitudes and Perceptions of Students to Open and Distance Learning in Nigeria
ERIC Educational Resources Information Center
Ojo, David Olugbenga; Olakulehin, Felix Kayode
2006-01-01
In the West African Region of Africa, the National Open University of Nigeria (NOUN) is the first full fledged university that operates in an exclusively open and distance learning (ODL) mode of education. NOUN focuses mainly on open and distance teaching and learning system, and delivers its courses materials via print in conjunction with…
The Importance of Storybook Reading to Emergent Literacy: A Review of the Research.
ERIC Educational Resources Information Center
McCarthy, Rae Lynn
Educators have known for years that children who come from homes where storybooks are read have an advantage over those children who are not read to. Research has shown that shared reading, reading aloud, making a variety of print materials available, and promoting positive attitudes toward literacy have a significant impact on children's literacy…
Print to Braille: Preparation and Accuracy of Mathematics Materials in K-12 Education
ERIC Educational Resources Information Center
Herzberg, Tina S.; Rosenblum, L. Penny
2014-01-01
Introduction: This study analyzed the accuracy of 107 mathematics worksheets prepared for tactile learners. The mean number of errors was calculated, and we examined whether there was a significant difference in the level of accuracy based on National Library Service for the Blind and Physically Handicapped (NLS) certification or job role of…
Do ELT Coursebooks Still Suffer from Gender Inequalities? A Case Study from Turkey
ERIC Educational Resources Information Center
Demira, Yusuf; Yavuz, Mustafa
2017-01-01
Gender discrimination is still a hot debate running in the periphery of education. One way it is imposed on students is through printed materials and coursebooks, particularly those used for foreign language teaching given their rich linguistic content and content-based nature. This paper reports on a study which investigated gender…
Unit: Electric Circuits, Inspection Pack, National Trial Print.
ERIC Educational Resources Information Center
Australian Science Education Project, Toorak, Victoria.
As a part of the unit materials in the series produced by the Australian Science Education Project, this teacher edition is primarily composed of a core relating to simple circuits, a test form, and options. Options are given under the headings: Your Invention; "How Long Does a Call Last?"; One, Two, Three Wires; Parallel Circuits; More…
3D Printed Surgical Simulation Models as educational tool by maxillofacial surgeons.
Werz, S M; Zeichner, S J; Berg, B-I; Zeilhofer, H-F; Thieringer, F
2018-02-26
The aim of this study was to evaluate whether inexpensive 3D models can be suitable to train surgical skills to dental students or oral and maxillofacial surgery residents. Furthermore, we wanted to know which of the most common filament materials, acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA), can better simulate human bone according to surgeons' subjective perceptions. Upper and lower jaw models were produced with common 3D desktop printers, ABS and PLA filament and silicon rubber for soft tissue simulation. Those models were given to 10 blinded, experienced maxillofacial surgeons to perform sinus lift and wisdom teeth extraction. Evaluation was made using a questionnaire. Because of slightly different density and filament prices, each silicon-covered model costs between 1.40-1.60 USD (ABS) and 1.80-2.00 USD (PLA) based on 2017 material costs. Ten experienced raters took part in the study. All raters deemed the models suitable for surgical education. No significant differences between ABS and PLA were found, with both having distinct advantages. The study demonstrated that 3D printing with inexpensive printing filaments is a promising method for training oral and maxillofacial surgery residents or dental students in selected surgical procedures. With a simple and cost-efficient manufacturing process, models of actual patient cases can be produced on a small scale, simulating many kinds of surgical procedures. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Reading Materials in Large Print: A Resource Guide. Reference Circular No. 97-02.
ERIC Educational Resources Information Center
Mendle, Gillian, Comp.
This reference circular contains information about large-print materials. Section 1 is an annotated list of selected sources of large-print materials available for purchase or loan. The sources are publishers or distributors, specialized libraries, and associations for persons with visual impairments. Several of these sources also provide general…
Creating Printed Materials for Mathematics with a Macintosh Computer.
ERIC Educational Resources Information Center
Mahler, Philip
This document gives instructions on how to use a Macintosh computer to create printed materials for mathematics. A Macintosh computer, Microsoft Word, and objected-oriented (Draw-type) art program, and a function-graphing program are capable of producing high quality printed instructional materials for mathematics. Word 5.1 has an equation editor…
Conductive Carbon Nanotube Inks for Use with Desktop Inkjet Printing Technology
NASA Technical Reports Server (NTRS)
Roberson, Luke; Williams, Martha; Tate, LaNetra; Fortier, Craig; Smith, David; Davia, Kyle; Gibson, Tracy; Snyder, Sarah
2013-01-01
Inkjet printing is a common commercial process. In addition to the familiar use in printing documents from computers, it is also used in some industrial applications. For example, wire manufacturers are required by law to print the wire type, gauge, and safety information on the exterior of each foot of manufactured wire, and this is typically done with inkjet or laser printers. The goal of this work was the creation of conductive inks that can be applied to a wire or flexible substrates via inkjet printing methods. The use of inkjet printing technology to print conductive inks has been in testing for several years. While researchers have been able to get the printing system to mechanically work, the application of conductive inks on substrates has not consistently produced adequate low resistances in the kilohm range. Conductive materials can be applied using a printer in single or multiple passes onto a substrate including textiles, polymer films, and paper. The conductive materials are composed of electrical conductors such as carbon nanotubes (including functionalized carbon nanotubes and metal-coated carbon nanotubes); graphene, a polycyclic aromatic hydrocarbon (e.g., pentacene and bisperipentacene); metal nanoparticles; inherently conductive polymers (ICP); and combinations thereof. Once the conductive materials are applied, the materials are dried and sintered to form adherent conductive materials on the substrate. For certain formulations, increased conductivity can be achieved by printing on substrates supported by low levels of magnetic field alignment. The adherent conductive materials can be used in applications such as damage detection, dust particle removal, smart coating systems, and flexible electronic circuitry. By applying alternating layers of different electrical conductors to form a layered composite material, a single homogeneous layer can be produced with improved electrical properties. It is believed that patterning alternate layers of different conductors may improve electrical pathways through alignment of the conductors and band gap optimization. One feature of this innovation is that flexible conductive traces could be accomplished with a conductive ink having a surface resistivity of less than 10 ohms/square. Another result was that a composite material comprising a mixture of carbon nanotubes and metallic nanoparticles could be applied by inkjet printing to flexible substrates, and the resulting applied material was one to two orders of magnitude more conductive than a material made by printing inks containing carbon nanotubes alone.
Special Issue: NextGen Materials for 3D Printing.
Chua, Chee Kai; Yeong, Wai Yee; An, Jia
2018-04-04
Only a handful of materials are well-established in three-dimensional (3D) printing and well-accepted in industrial manufacturing applications. However, recent advances in 3D printable materials have shown potential for enabling numerous novel applications in the future. This special issue, consisting of 2 reviews and 10 research articles, intends to explore the possible materials that could define next-generation 3D printing.
ERIC Educational Resources Information Center
Mankato State Univ., Minn.
This is an annotated bibliography of print and nonprint materials for programs in Native American Studies. It is divided into elementary level materials and secondary level materials. Each section is arranged alphabetically by subject. Most subject headings in this resource begin with a name of a tribe, nation, or a geographical area. General…
3D printing of bacteria into functional complex materials
Schaffner, Manuel; Rühs, Patrick A.; Coulter, Fergal; Kilcher, Samuel; Studart, André R.
2017-01-01
Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of “living materials” capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications. PMID:29214219
Watermarking and copyright labeling of printed images
NASA Astrophysics Data System (ADS)
Hel-Or, Hagit Z.
2001-07-01
Digital watermarking is a labeling technique for digital images which embeds a code into the digital data so the data are marked. Watermarking techniques previously developed deal with on-line digital data. These techniques have been developed to withstand digital attacks such as image processing, image compression and geometric transformations. However, one must also consider the readily available attack of printing and scanning. The available watermarking techniques are not reliable under printing and scanning. In fact, one must consider the availability of watermarks for printed images as well as for digital images. An important issue is to intercept and prevent forgery in printed material such as currency notes, back checks, etc. and to track and validate sensitive and secrete printed material. Watermarking in such printed material can be used not only for verification of ownership but as an indicator of date and type of transaction or date and source of the printed data. In this work we propose a method of embedding watermarks in printed images by inherently taking advantage of the printing process. The method is visually unobtrusive to the printed image, the watermark is easily extracted and is robust under reconstruction errors. The decoding algorithm is automatic given the watermarked image.
Jo, Angela M; Nguyen, Tung T; Stewart, Susan; Sung, Min J; Gildengorin, Ginny; Tsoh, Janice Y; Tong, Elisa K; Lo, Penny; Cuaresma, Charlene; Sy, Angela; Lam, Hy; Wong, Ching; Jeong, Matthew; Chen, Moon S; Kagawa-Singer, Marjorie
2017-07-15
Colorectal cancer (CRC) is the second most commonly diagnosed cancer among Korean American men and women. Although CRC screening is effective in reducing the burden of this disease, studies have shown that Korean Americans have low screening rates. The authors conducted a 2-arm cluster randomized controlled trial comparing a brochure (print) with a brochure and lay health educator (LHE) outreach (print + LHE) in increasing CRC screening rates among Korean American individuals. Self-administered written surveys at baseline and at 6 months assessed knowledge of CRC and its screening, ever screening, and being up to date with screening. A total of 28 LHEs recruited 348 participants aged 50 to 75 years from their social networks. Significant percentages of participants reported not having health insurance (29.3%) or a usual source of care (35.6%). At 6 months postintervention, the print + LHE participants had a greater increase in knowledge compared with those in the print arm (P = .0013). In multivariable analyses, both groups had significant increases in ever screening (print plus LHE: odds ratio [OR], 1.60 [95% confidence interval (95% CI), 1.26-2.03] and print: OR, 1.42 [95% CI, 1.10-1.82]) and being up to date with screening (print plus LHE: OR, 1.63 [95% CI, 1.23-2.16] and print: OR, 1.40 [95% CI, 1.04-1.89]). However, these increases did not differ significantly between the study arms. Having insurance and having seen a provider within the past year were found to be positively associated with screening. Compared with a brochure, LHE outreach yielded greater increases in knowledge but resulted in similar increases in CRC screening in a Korean American population with barriers to health care access. More work is needed to appropriately address logistical and system barriers in this community. Cancer 2017;123:2705-15. © 2017 American Cancer Society. © 2017 American Cancer Society.
General Atomics Sciences Education Foundation Outreach Programs
NASA Astrophysics Data System (ADS)
Winter, Patricia S.
1997-11-01
Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].
Investigation into the influence of build parameters on failure of 3D printed parts
NASA Astrophysics Data System (ADS)
Fornasini, Giacomo
Additive manufacturing, including fused deposition modeling (FDM), is transforming the built world and engineering education. Deep understanding of parts created through FDM technology has lagged behind its adoption in home, work, and academic environments. Properties of parts created from bulk materials through traditional manufacturing are understood well enough to accurately predict their behavior through analytical models. Unfortunately, Additive Manufacturing (AM) process parameters create anisotropy on a scale that fundamentally affects the part properties. Understanding AM process parameters (implemented by program algorithms called slicers) is necessary to predict part behavior. Investigating algorithms controlling print parameters (slicers) revealed stark differences between the generation of part layers. In this work, tensile testing experiments, including a full factorial design, determined that three key factors, width, thickness, infill density, and their interactions, significantly affect the tensile properties of 3D printed test samples.
SU-F-T-181: Proton Therapy Tissue-Equivalence of 3D Printed Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, P; Craft, D; Followill, D
Purpose: This work investigated the proton tissue-equivalence of various 3D printed materials. Methods: Three 3D printers were used to create 5 cm cubic phantoms made of different plastics with varying percentages of infill. White resin, polylactic acid (PLA), and NinjaFlex plastics were used. The infills ranged from 15% to 100%. Each phantom was scanned with a CT scanner to obtain the HU value. The relative linear stopping power (RLSP) was then determined using a multi-layer ion chamber in a 200 MeV proton beam. The RLSP was measured both parallel and perpendicular to the print direction for each material. Results: Themore » HU values of the materials ranged from lung-equivalent (−820 HU σ160) when using a low infill, to soft-tissue-equivalent 159 (σ12). The RLSP of the materials depended on the orientation of the beam relative to the print direction. When the proton beam was parallel to the print direction, the RLSP was generally higher than the RLSP in the perpendicular orientation, by up to 45%. This difference was smaller (less than 6%) for the materials with 100% infill. For low infill cubes irradiated parallel to the print direction, the SOBP curve showed extreme degradation of the beam in the distal region. The materials with 15–25% infill had wide-ranging agreement with a clinical HU-RLSP conversion curve, with some measurements falling within 1% of the curve and others deviating up to 45%. The materials with 100% infill all fell within 7% of the curve. Conclusion: While some materials tested fall within 1% of a clinical HU-RLSP curve, caution should be taken when using 3D printed materials with proton therapy, as the orientation of the beam relative to the print direction can result in a large change in RLSP. Further investigation is needed to measure how the infill pattern affects the material RLSP. This work was supported by PHS grant CA180803.« less
Special Issue: NextGen Materials for 3D Printing
Yeong, Wai Yee
2018-01-01
Only a handful of materials are well-established in three-dimensional (3D) printing and well-accepted in industrial manufacturing applications. However, recent advances in 3D printable materials have shown potential for enabling numerous novel applications in the future. This special issue, consisting of 2 reviews and 10 research articles, intends to explore the possible materials that could define next-generation 3D printing. PMID:29617311
Audiovisual Presentations on a Handheld PC are Preferred As an Educational Tool by NICU Parents.
Alur, P; Cirelli, J; Goodstein, M; Bell, T; Liss, J
2010-01-01
Health literacy is critical for understanding complex medical problems and necessary for the well being of the patient. Printed educational materials (PM) have limitations in explaining the dynamics of a disease process. Multimedia formats may be useful for enhancing the educational process. To evaluate whether a printed format or animation with commentary on a handheld personal computer (PC) is preferred as an educational tool by parents of a baby in the NICU. PARENTS EVALUATED TWO FORMATS: A 1-page illustrated document from the American Heart Association explaining patent ductus arteriosus (PDA) and animation with commentary on a handheld PC that explained the physiology of PDA in 1 minute. The reading grade level of the PM was 8.6 versus 18.6 for the audio portion of the animated presentation. Parents viewed each format and completed a four-item questionnaire. Parents rated both formats and indicated their preference as printed, animation, or both. Forty-six parents participated in the survey. Parents preferred animation over PM (50% vs. 17.4%. p = 0.02); 39.1% expressed that the animation was excellent; whereas 4.3% expressed that the PM was excellent (p<0.001). The order of presentation of formats, sex, age, and educational level of parents did not influence the method preferred (p>0.05). Parents preferred animation on a small screen handheld PC despite a much higher language level. Because handheld PCs are portable and inexpensive, they can be used effectively at the bedside with low-cost animation to enhance understanding of complex disease conditions.
Audiovisual Presentations on a Handheld PC are Preferred As an Educational Tool by NICU Parents
Alur, P.; Cirelli, J.; Goodstein, M.; Bell, T.; Liss, J.
2010-01-01
Background Health literacy is critical for understanding complex medical problems and necessary for the well being of the patient. Printed educational materials (PM) have limitations in explaining the dynamics of a disease process. Multimedia formats may be useful for enhancing the educational process. Objective To evaluate whether a printed format or animation with commentary on a handheld personal computer (PC) is preferred as an educational tool by parents of a baby in the NICU. Methods Parents evaluated two formats: A 1-page illustrated document from the American Heart Association explaining patent ductus arteriosus (PDA) and animation with commentary on a handheld PC that explained the physiology of PDA in 1 minute. The reading grade level of the PM was 8.6 versus 18.6 for the audio portion of the animated presentation. Parents viewed each format and completed a four-item questionnaire. Parents rated both formats and indicated their preference as printed, animation, or both. Results Forty-six parents participated in the survey. Parents preferred animation over PM (50% vs. 17.4%. p = 0.02); 39.1% expressed that the animation was excellent; whereas 4.3% expressed that the PM was excellent (p<0.001). The order of presentation of formats, sex, age, and educational level of parents did not influence the method preferred (p>0.05). Conclusion Parents preferred animation on a small screen handheld PC despite a much higher language level. Because handheld PCs are portable and inexpensive, they can be used effectively at the bedside with low-cost animation to enhance understanding of complex disease conditions. PMID:23616833
NASA Astrophysics Data System (ADS)
Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.
2014-09-01
Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.
Lin, Kai-Feng; He, Shu; Song, Yue; Wang, Chun-Mei; Gao, Yi; Li, Jun-Qin; Tang, Peng; Wang, Zheng; Bi, Long; Pei, Guo-Xian
2016-03-23
Low-temperature additive manufacturing (AM) holds promise for fabrication of three-dimensional (3D) scaffolds containing bioactive molecules and/or drugs. Due to the strict technical limitations of current approaches, few materials are suitable for printing at low temperature. Here, a low-temperature robocasting method was employed to print biomimic 3D scaffolds for bone regeneration using a routine collagen-hydroxyapatite (CHA) composite material, which is too viscous to be printed via normal 3D printing methods at low temperature. The CHA scaffolds had excellent 3D structure and maintained most raw material properties after printing. Compared to nonprinted scaffolds, printed scaffolds promoted bone marrow stromal cell proliferation and improved osteogenic outcome in vitro. In a rabbit femoral condyle defect model, the interconnecting pores within the printed scaffolds facilitated cell penetration and mineralization before the scaffolds degraded and enhanced repair, compared to nonprinted CHA scaffolds. Additionally, the optimal printing parameters for 3D CHA scaffolds were investigated; 600-μm-diameter rods were optimal in terms of moderate mechanical strength and better repair outcome in vivo. This low-temperature robocasting method could enable a variety of bioactive molecules to be incorporated into printed CHA materials and provides a method of bioprinting biomaterials without compromising their natural properties.
Principles of three-dimensional printing and clinical applications within the abdomen and pelvis.
Bastawrous, Sarah; Wake, Nicole; Levin, Dmitry; Ripley, Beth
2018-04-04
Improvements in technology and reduction in costs have led to widespread interest in three-dimensional (3D) printing. 3D-printed anatomical models contribute to personalized medicine, surgical planning, and education across medical specialties, and these models are rapidly changing the landscape of clinical practice. A physical object that can be held in one's hands allows for significant advantages over standard two-dimensional (2D) or even 3D computer-based virtual models. Radiologists have the potential to play a significant role as consultants and educators across all specialties by providing 3D-printed models that enhance clinical care. This article reviews the basics of 3D printing, including how models are created from imaging data, clinical applications of 3D printing within the abdomen and pelvis, implications for education and training, limitations, and future directions.
Print2Screen Mobile App: Embedding Multimedia in Printed ODL Course Materials Using QR Codes
ERIC Educational Resources Information Center
Abeywardena, Ishan Sudeera
2017-01-01
With the rise of OER and multimedia such as YouTube videos, many academic institutions are becoming mindful of the richness they bring into the teaching and learning process. Given that multimedia resources cannot be directly integrated into printed material, the only available alternative is to print hyperlinks, which teachers and learners can…
Wang, Zhongmin; Liu, Yuhao; Luo, Hongxing; Gao, Chuanyu; Zhang, Jing; Dai, Yuya
2017-11-01
Three-dimensional (3D) printing is a newly-emerged technology converting a series of two-dimensional images to a touchable 3D model, but no studies have investigated whether or not a 3D printing model is better than a traditional cardiac model for medical education. A 3D printing cardiac model was generated using multi-slice computed tomography datasets. Thirty-four medical students were randomized to either the 3D Printing Group taught with the aid of a 3D printing cardiac model or the Traditional Model Group with a commonly used plastic cardiac model. Questionnaires with 10 medical questions and 3 evaluative questions were filled in by the students. A 3D printing cardiac model was successfully generated. Students in the 3D Printing Group were slightly quicker to answer all questions when compared with the Traditional Model Group (224.53 ± 44.13 s vs. 238.71 ± 68.46 s, p = 0.09), but the total score was not significantly different (6.24 ± 1.30 vs. 7.18 ± 1.70, p = 0.12). Neither the students'satisfaction (p = 0.48) nor their understanding of cardiac structures (p = 0.24) was significantly different between two groups. More students in the 3D Printing Group believed that they had understood at least 90% of teaching content (6 vs. 1). Both groups had 12 (70.6%) students who preferred a 3D printing model for medical education. A 3D printing model was not significantly superior to a traditional model in teaching cardiac diseases in our pilot randomized controlled study, yet more studies may be conducted to validate the real effect of 3D printing on medical education.
Wang, Zhongmin; Liu, Yuhao; Luo, Hongxing; Gao, Chuanyu; Zhang, Jing; Dai, Yuya
2017-01-01
Background Three-dimensional (3D) printing is a newly-emerged technology converting a series of two-dimensional images to a touchable 3D model, but no studies have investigated whether or not a 3D printing model is better than a traditional cardiac model for medical education. Methods A 3D printing cardiac model was generated using multi-slice computed tomography datasets. Thirty-four medical students were randomized to either the 3D Printing Group taught with the aid of a 3D printing cardiac model or the Traditional Model Group with a commonly used plastic cardiac model. Questionnaires with 10 medical questions and 3 evaluative questions were filled in by the students. Results A 3D printing cardiac model was successfully generated. Students in the 3D Printing Group were slightly quicker to answer all questions when compared with the Traditional Model Group (224.53 ± 44.13 s vs. 238.71 ± 68.46 s, p = 0.09), but the total score was not significantly different (6.24 ± 1.30 vs. 7.18 ± 1.70, p = 0.12). Neither the students’satisfaction (p = 0.48) nor their understanding of cardiac structures (p = 0.24) was significantly different between two groups. More students in the 3D Printing Group believed that they had understood at least 90% of teaching content (6 vs. 1). Both groups had 12 (70.6%) students who preferred a 3D printing model for medical education. Conclusions A 3D printing model was not significantly superior to a traditional model in teaching cardiac diseases in our pilot randomized controlled study, yet more studies may be conducted to validate the real effect of 3D printing on medical education. PMID:29167621
Stabilization of glucose-oxidase in the graphene paste for screen-printed glucose biosensor
NASA Astrophysics Data System (ADS)
Pepłowski, Andrzej; Janczak, Daniel; Jakubowska, Małgorzata
2015-09-01
Various methods and materials for enzyme stabilization within screen-printed graphene sensor were analyzed. Main goal was to develop technology allowing immediate printing of the biosensors in single printing process. Factors being considered were: toxicity of the materials used, ability of the material to be screen-printed (squeezed through the printing mesh) and temperatures required in the fabrication process. Performance of the examined sensors was measured using chemical amperometry method, then appropriate analysis of the measurements was conducted. The analysis results were then compared with the medical requirements. Parameters calculated were: correlation coefficient between concentration of the analyte and the measured electrical current (0.986) and variation coefficient for the particular concentrations of the analyte used as the calibration points. Variation of the measured values was significant only in ranges close to 0, decreasing for the concentrations of clinical importance. These outcomes justify further development of the graphene-based biosensors fabricated through printing techniques.
Active materials by four-dimension printing
NASA Astrophysics Data System (ADS)
Ge, Qi; Qi, H. Jerry; Dunn, Martin L.
2013-09-01
We advance a paradigm of printed active composite materials realized by directly printing glassy shape memory polymer fibers in an elastomeric matrix. We imbue the active composites with intelligence via a programmed lamina and laminate architecture and a subsequent thermomechanical training process. The initial configuration is created by three-dimension (3D) printing, and then the programmed action of the shape memory fibers creates time dependence of the configuration—the four-dimension (4D) aspect. We design and print laminates in thin plate form that can be thermomechanically programmed to assume complex three-dimensional configurations including bent, coiled, and twisted strips, folded shapes, and complex contoured shapes with nonuniform, spatially varying curvature. The original flat plate shape can be recovered by heating the material again. We also show how the printed active composites can be directly integrated with other printed functionalities to create devices; here we demonstrate this by creating a structure that can assemble itself.
[RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING TECHNIQUE FOR SPINAL IMPLANTS].
Lu, Qi; Yu, Binsheng
2016-09-08
To summarize the current research progress of three-dimensional (3D) printing technique for spinal implants manufacture. The recent original literature concerning technology, materials, process, clinical applications, and development direction of 3D printing technique in spinal implants was reviewed and analyzed. At present, 3D printing technologies used to manufacture spinal implants include selective laser sintering, selective laser melting, and electron beam melting. Titanium and its alloys are mainly used. 3D printing spinal implants manufactured by the above materials and technology have been successfully used in clinical. But the problems regarding safety, related complications, cost-benefit analysis, efficacy compared with traditional spinal implants, and the lack of relevant policies and regulations remain to be solved. 3D printing technique is able to provide individual and customized spinal implants for patients, which is helpful for the clinicians to perform operations much more accurately and safely. With the rapid development of 3D printing technology and new materials, more and more 3D printing spinal implants will be developed and used clinically.
Fully Packaged Carbon Nanotube Supercapacitors by Direct Ink Writing on Flexible Substrates.
Chen, Bolin; Jiang, Yizhou; Tang, Xiaohui; Pan, Yayue; Hu, Shan
2017-08-30
The ability to print fully packaged integrated energy storage components (e.g., supercapacitors) is of critical importance for practical applications of printed electronics. Due to the limited variety of printable materials, most studies on printed supercapacitors focus on printing the electrode materials but rarely the full-packaged cell. This work presents for the first time the printing of a fully packaged single-wall carbon nanotube-based supercapacitor with direct ink writing (DIW) technology. Enabled by the developed ink formula, DIW setup, and cell architecture, the whole printing process is mask free, transfer free, and alignment free with precise and repeatable control on the spatial distribution of all constituent materials. Studies on cell design show that a wider electrode pattern and narrower gap distance between electrodes lead to higher specific capacitance. The as-printed fully packaged supercapacitors have energy and power performances that are among the best in recently reported planar carbon-based supercapacitors that are only partially printed or nonprinted.
Effect of an educational toolkit on quality of care: a pragmatic cluster randomized trial.
Shah, Baiju R; Bhattacharyya, Onil; Yu, Catherine H Y; Mamdani, Muhammad M; Parsons, Janet A; Straus, Sharon E; Zwarenstein, Merrick
2014-02-01
Printed educational materials for clinician education are one of the most commonly used approaches for quality improvement. The objective of this pragmatic cluster randomized trial was to evaluate the effectiveness of an educational toolkit focusing on cardiovascular disease screening and risk reduction in people with diabetes. All 933,789 people aged ≥40 years with diagnosed diabetes in Ontario, Canada were studied using population-level administrative databases, with additional clinical outcome data collected from a random sample of 1,592 high risk patients. Family practices were randomly assigned to receive the educational toolkit in June 2009 (intervention group) or May 2010 (control group). The primary outcome in the administrative data study, death or non-fatal myocardial infarction, occurred in 11,736 (2.5%) patients in the intervention group and 11,536 (2.5%) in the control group (p = 0.77). The primary outcome in the clinical data study, use of a statin, occurred in 700 (88.1%) patients in the intervention group and 725 (90.1%) in the control group (p = 0.26). Pre-specified secondary outcomes, including other clinical events, processes of care, and measures of risk factor control, were also not improved by the intervention. A limitation is the high baseline rate of statin prescribing in this population. The educational toolkit did not improve quality of care or cardiovascular outcomes in a population with diabetes. Despite being relatively easy and inexpensive to implement, printed educational materials were not effective. The study highlights the need for a rigorous and scientifically based approach to the development, dissemination, and evaluation of quality improvement interventions. http://www.ClinicalTrials.gov NCT01411865 and NCT01026688.
The Moon Topography Model as an Astronomy Educational Kit for Visual Impaired Student
NASA Astrophysics Data System (ADS)
Pramudya, Y.; Hikmah, F. N.; Muchlas
2016-08-01
The visual impaired students need science educational kit at the school to assist their learning process in science. However, there are lack of the educational kit especially on the topic of astronomy. To introduce the structure of the moon, the moon topography model has been made in circular shape only shown the near side of the moon. The moon topography module are easy to be made since it was made based on low cost material. The expertise on astronomy and visual impaired media marked the 76.67% and 94% ideal percentage, respectively. The visual impaired students were able to study the moon crater and mare by using the kit and the braille printed learning book. They also showed the improvement in the material understanding skill.
Study of thermo-fluidic behavior of micro-droplet in inkjet-based micro manufacturing processes
NASA Astrophysics Data System (ADS)
Das, Raju; Mahapatra, Abhijit; Ball, Amit Kumar; Roy, Shibendu Shekhar; Murmu, Naresh Chandra
2017-06-01
Inkjet printing technology, a maskless, non-contact patterning operation, which has been a revelation in the field of micro and nano manufacturing for its use in the selective deposition of desired materials. It is becoming an exciting alternative technology such as lithography to print functional material on to a substrate. Selective deposition of functional materials on desired substrates is a basic requirement in many of the printing based micro and nano manufacturing operations like the fabrication of microelectronic devices, solar cell, Light-emitting Diode (LED) research fields like pharmaceutical industries for drug discovery purposes and in biotechnology to make DNA microarrays. In this paper, an attempt has been made to design and develop an indigenous Electrohydrodynamic Inkjet printing system for micro fabrication and to study the interrelationships between various thermos-fluidic parameters of the ink material in the printing process. The effect of printing process parameters on printing performance characteristics has also been studied. And the applicability of the process has also been experimentally demonstrated. The experimentally found results were quite satisfactory and accordance to its applicability.
STONE, COSBY A.; SIRIL, HELLEN; NAMPANDA, EMERENSIANA; GARCIA, MARIA E.; TITO, JUSTINA; NAMBIAR, DEVAKI; CHALAMILLA, GUERINO; KAAYA, SYLVIA F.
2017-01-01
Improving health literacy is a necessary intervention for people with chronic health conditions to ensure adherence with long or life therapies and increase participation in self-care. While adherence is a multifactorial process, increasing health literacy among HIV-infected patients at all stages of living with HIV has been shown to improve treatment outcomes. In the era of rapid scale up of HIV care and treatment, little has been done to evaluate the utility of IEC materials for increasing patient health literacy and how patients perceive such materials. Four patient-oriented print IEC brochures in Swahili were designed to be read at the clinic waiting areas and also carried home by patients to supplement the knowledge received from routine counselling during clinic visits. Brochures detail antiretroviral therapy and address common myths, side effects, types and management of opportunistic infections, and prevention of mother to child transmission of HIV. We conducted focus group discussions with HIV-infected patients to explore patient perceptions of IEC materials in the urban congested HIV care setting of Dar es Salaam, Tanzania. Groups of participants were recruited from eight public PEPFAR-supported HIV care and treatment centres in the city (N=50). In this paper we present the results of those focus group discussions and introduce the print IEC materials as a pilot intervention in a Swahili-speaking setting where a need for additional health literacy exists. Further evaluation of these materials will follow as the data becomes available. PMID:25566605
Strategies for selecting effective patient nutrition education materials.
Clayton, Laura H
2010-10-01
Nutrition and diet therapy are at the center of health promotion activities and self-management of chronic diseases. To assist an individual in making informed decisions regarding his or her diet and increase adherence to dietary recommendations or treatments, healthcare professionals must select health information that is appropriate to the client's level of understanding. A systematic approach in the evaluation of patient education material, whether in print or on the World Wide Web, must focus on the information's content, literacy level, graphical displays, layout and typography, motivating principles, cultural relevance, and feasibility. Additional criteria should be evaluated when accessing Web sites and include source, site credibility, conflict of interest, disclaimer, disclosure, navigation, and interactivity information.
3D printing functional materials and devices (Conference Presentation)
NASA Astrophysics Data System (ADS)
McAlpine, Michael C.
2017-05-01
The development of methods for interfacing high performance functional devices with biology could impact regenerative medicine, smart prosthetics, and human-machine interfaces. Indeed, the ability to three-dimensionally interweave biological and functional materials could enable the creation of devices possessing unique geometries, properties, and functionalities. Yet, most high quality functional materials are two dimensional, hard and brittle, and require high crystallization temperatures for maximal performance. These properties render the corresponding devices incompatible with biology, which is three-dimensional, soft, stretchable, and temperature sensitive. We overcome these dichotomies by: 1) using 3D printing and scanning for customized, interwoven, anatomically accurate device architectures; 2) employing nanotechnology as an enabling route for overcoming mechanical discrepancies while retaining high performance; and 3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This three-dimensional blending of functional materials and `living' platforms may enable next-generation 3D printed devices.
Kurbanoglu, Serap; Boustany, Joumana
2018-01-01
This study reports the descriptive and inferential statistical findings of a survey of academic reading format preferences and behaviors of 10,293 tertiary students worldwide. The study hypothesized that country-based differences in schooling systems, socioeconomic development, culture or other factors might have an influence on preferred formats, print or electronic, for academic reading, as well as the learning engagement behaviors of students. The main findings are that country of origin has little to no relationship with or effect on reading format preferences of university students, and that the broad majority of students worldwide prefer to read academic course materials in print. The majority of participants report better focus and retention of information presented in print formats, and more frequently prefer print for longer texts. Additional demographic and post-hoc analysis suggests that format preference has a small relationship with academic rank. The relationship between task demands, format preferences and reading comprehension are discussed. Additional outcomes and implications for the fields of education, psychology, computer science, information science and human-computer interaction are considered. PMID:29847560
Modes of information delivery in radiologic anatomy education: Impact on student performance.
Ketelsen, Dominik; Schrödl, Falk; Knickenberg, Inés; Heckemann, Rolf A; Hothorn, Torsten; Neuhuber, Winfried; Bautz, Werner A L; Grunewald, Markus
2007-01-01
This study provides a systematic assessment of different methods of delivering radiologic teaching content (lecture, printed text, and digital content delivery) under standard conditions, enabling comparison of the effectiveness of these methods. A printed atlas of sectional anatomy was used as a standard. Digital content was developed on the basis of the printed atlas. Lecturers used both the printed and the digital content to prepare lectures. Standardized teaching material thus created was presented to second-term undergraduate students who had attended the school's anatomy course, but had not received any radiology teaching. Multiple choice examinations were used to assess the students' ability to recognize anatomical structures in known as well as unknown images. In a survey, the students' subjective experience of the learning process was assessed. No difference was seen between the groups regarding examination results. Students preferred a combination of digital media and lectures by enthusiastic teachers. The shortage of teachers requires a compromise concerning the delivery of radiologic anatomy content in a medical school setting. Based on our results, we recommend a combined approach of lecture and digital content delivery.
Systematic Review of the Use of 3-Dimensional Printing in Surgical Teaching and Assessment.
Langridge, Benjamin; Momin, Sheikh; Coumbe, Ben; Woin, Evelina; Griffin, Michelle; Butler, Peter
The use of 3-dimensional (3D) printing in medicine has rapidly expanded in recent years as the technology has developed. The potential uses of 3D printing are manifold. This article provides a systematic review of the uses of 3D printing within surgical training and assessment. A structured literature search of the major literature databases was performed in adherence to PRISMA guidelines. Articles that met predefined inclusion and exclusion criteria were appraised with respect to the key objectives of the review and sources of bias were analysed. Overall, 49 studies were identified for inclusion in the qualitative analysis. Heterogeneity in study design and outcome measures used prohibited meaningful meta-analysis. 3D printing has been used in surgical training across a broad range of specialities but most commonly in neurosurgery and otorhinolaryngology. Both objective and subjective outcome measures have been studied, demonstrating the usage of 3D printed models in training and education. 3D printing has also been used in anatomical education and preoperative planning, demonstrating improved outcomes when compared to traditional educational methods and improved patient outcomes, respectively. 3D printing technology has a broad range of potential applications within surgical education and training. Although the field is still in its relative infancy, several studies have already demonstrated its usage both instead of and in addition to traditional educational methods. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Gira, Emmanuelle C.; Kessler, Michelle L.; Poertner, John
2004-01-01
This study sought to identify lessons for social workers from the health care research on influencing practitioners to use evidence-based practices (EBP). Research reviews of strategies to influence providers to use EBP are summarized. Among the findings are that printed educational materials, the use of local opinion leaders, and continuous…
ERIC Educational Resources Information Center
Peyton, Joy Kreeft
Students at all levels of literacy learning can express their ideas in print. Teachers working with student writers have found that the attempt to express, organize, and understand personal experience is also a powerful language learning device. When students publish their writings, they can see their own thoughts and concerns, and those of others…
ERIC Educational Resources Information Center
Rodriguez, M. Victoria
1999-01-01
Presents results of a study of the home literacy experiences of three Dominican preschool children in New York City and examines the implications for educational practice. Data suggest that children found print materials an interesting part of their world, and that they engaged in literacy play and also explored literacy while watching television…
1984 is Only Nine Years Away; Will School Media Programs Humanize or Dehumanize Schooling?
ERIC Educational Resources Information Center
Belland, John C.
A media program should be developed and integrated into the curriculum at the same rate as print material. Because media are a useful educational aid and should be an extension of the curriculum, the instructional specialist of the future will be a media specialist who can coordinate curriculum and media and also design instructional methods…
Guiding principles for printed education materials: design preferences of people with aphasia.
Rose, Tanya A; Worrall, Linda E; Hickson, Louise M; Hoffmann, Tammy C
2012-02-01
The objectives of this study were to obtain the preferences of people with aphasia for the design of stroke and aphasia printed education materials (PEMs) and to compare these preferences with recommendations in the literature for developing written information for other populations. A face-to-face quantitative questionnaire was completed with 40 adults with aphasia post-stroke. The questionnaire explored preferences for: (1) the representation of numbers, (2) font size and type, (3) line spacing, (4) document length, and (5) graphic type. Most preferences (62.4%, n = 146) were for numbers expressed as figures rather than words. The largest proportion of participants selected 14 point (28.2%, n = 11) and Verdana ref (33.3%, n = 13) as the easiest font size and type to read, and a preference for 1.5 line spacing (41.0%, n = 16) was identified. Preference for document length was not related to the participant's reading ability or aphasia severity. Most participants (95.0%, n = 38) considered graphics to be helpful, with photographs more frequently reported as a helpful graphic type. The identified preferences support many of the formatting recommendations found within the literature. This research provides guiding principles for developing PEMs in preferred formats for people with aphasia.
Professional and patient perspectives on nutritional needs of patients with cancer.
Hartmuller, Vriginia W; Desmond, Sharon M
2004-09-01
To identify and compare perceptions of RNs, registered dietitians (RDs), and patients regarding the best format and key nutrition information components that should be provided to patients during cancer treatment. Cross-sectional study using an opinion-based questionnaire. Outpatient cancer centers. 506 RNs and 367 RDs, as well as 653 patients undergoing cancer treatment. Two similar self-administered questionnaires were developed, one for patients and one for healthcare professionals. Face and content validity were assessed by a panel of experts. Data were analyzed using descriptive statistics, chi-square statistic, and a Spearman Correlation Coefficient to compare responses. Patient nutrition concerns as well as format and content of printed educational materials. Significant differences existed among groups regarding the most common nutrition concerns, the perception of importance of information frequently provided to patients with cancer, and rank order of importance for eight items typically provided to patients. The dietary information format preferred by all groups was an all-inclusive booklet; RNs (75%) were more likely than RDs (43%) or patients (50%) to prefer this format. Data also revealed that almost half of the patients (47%) received no dietary counseling, including 18% who experienced significant weight loss. RNs and RDs who provide nutrition education to patients with cancer should consider the need to develop and use a variety of printed materials to meet individual needs. Because major concerns of patients and healthcare professionals were related to patients ability to consume adequate amounts of food, this should be the primary focus of any nutrition education materials. These findings provide information that can be applied to the development of informational materials and counseling practices.
Lee, Tai-Kuang; Liuand, Chao-Te; Lee, Wen-Hsi
2017-01-01
Recently, Thin Film Transistors (TFTs) have been studied widely because of potential applications in low cost, low-temperature process and flexible displays. They can be fabricated by easy processes based on solution methods. But the mobility of organic TFTs is lower and the threshold voltage is higher than amorphous Si TFTs. In order to enhance the channel mobility and satisfy with the requirement of low-cost fabrication, we prepare a low-cost, mask-free, reduced material wastage, deposited technology using transparent, directly printable, air-stable semiconductor slurries and dielectric solutions. In our investigations, we attempt to obtain a high performance and low-cost TFT via preparing materials, designing device structure, and using PZT inkjet-printing technology. A stable and non-precipitated metal oxide ink with appropriate doping was prepared for the fabrication of an InxZn1.5Sn1.0 (IZTO) by PZT inkjet-printing. The soluble direct-printing process is a powerful tool for material research and implies that the printable materials and the printing technology enable the use of all-printed low-cost flexible displays and other transparent electronic applications. Transparent materials including dielectric PVP, conductive carbon nanotube (CNT) and active IZTO were employed into the fabrication of our PZT inkjet-printing process. After annealed at 180 °C, The experimental all-printed TFT exhibit the carrier mobility of 0.194 cm2/Vs, sub-threshold slope of 20 V/decade, and the threshold voltage of 5 V, initially. All-inkjet-printed films have great transparency, potentially in transparent electronics and the transmittance pattern in visible part of the spectrum (400–700 nm) is over 80%.
Universally-Usable Interactive Electronic Physics Instructional And Educational Materials
NASA Astrophysics Data System (ADS)
Gardner, John
2000-03-01
Recent developments of technologies that promote full accessibility of electronic information by future generations of people with print disabilities will be described. ("Print disabilities" include low vision, blindness, and dyslexia.) The guiding philosophy of these developments is that information should be created and transmitted in a form that is as display-independent as possible, and that the user should have maximum freedom over how that information is to be displayed. This philosophy leads to maximum usability by everybody and is, in the long run, the only way to assure truly equal access. Research efforts to be described include access to mathematics and scientific notation and to graphs, tables, charts, diagrams, and general object-oriented graphics.
Guo, Ting; Holzberg, Timothy R; Lim, Casey G; Gao, Feng; Gargava, Ankit; Trachtenberg, Jordan E; Mikos, Antonios G; Fisher, John P
2018-01-01
In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science. In this study, we printed poly(lactic-co-glycolic acid) (PLGA) utilizing a direct melt extrusion technique without additional ingredients. We investigated PLGA with various lactic acid: glycolic acid (LA:GA) molecular weight ratios and end caps to demonstrate the dependence of the extrusion process on the polymer composition. Micro-computed tomography was then used to evaluate printed scaffolds containing different LA:GA ratios, composed of different fiber patterns, and processed under different printing conditions. We built a statistical model to reveal the correlation and predominant factors that determine printing precision. Our model showed a strong linear relationship between the actual and predicted precision under different combinations of printing conditions and material compositions. This quantitative examination establishes a significant foreground to 3D print biomaterials following a systematic fabrication procedure. Additionally, our proposed statistical models can be applied to couple specific biomaterials and 3D printing applications for patient implants with particular requirements. PMID:28244880
Guo, Ting; Holzberg, Timothy R; Lim, Casey G; Gao, Feng; Gargava, Ankit; Trachtenberg, Jordan E; Mikos, Antonios G; Fisher, John P
2017-04-12
In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science. In this study, we printed poly(lactic-co-glycolic acid) (PLGA) utilizing a direct melt extrusion technique without additional ingredients. We investigated PLGA with various lactic acid:glycolic acid (LA:GA) molecular weight ratios and end caps to demonstrate the dependence of the extrusion process on the polymer composition. Micro-computed tomography was then used to evaluate printed scaffolds containing different LA:GA ratios, composed of different fiber patterns, and processed under different printing conditions. We built a statistical model to reveal the correlation and predominant factors that determine printing precision. Our model showed a strong linear relationship between the actual and predicted precision under different combinations of printing conditions and material compositions. This quantitative examination establishes a significant foreground to 3D print biomaterials following a systematic fabrication procedure. Additionally, our proposed statistical models can be applied to couple specific biomaterials and 3D printing applications for patient implants with particular requirements.
Study of gelatin as an effective energy absorbing layer for laser bioprinting.
Xiong, Ruitong; Zhang, Zhengyi; Chai, Wenxuan; Chrisey, Douglas B; Huang, Yong
2017-06-09
Laser-induced forward transfer printing, also commonly known as laser printing, has been widely implemented for three-dimensional bioprinting due to its unique orifice-free nature during printing. However, the printing quality has the potential to be further improved for various laser bioprinting applications. The objectives of this study are to investigate the feasibility of using gelatin as an energy absorbing layer (EAL) material for laser bioprinting and its effects on the quality of printed constructs, bioink printability, and post-printing cell viability and process-induced DNA damage. The gelatin EAL is applied between the quartz support and the coating of build material, which is to be printed. Printing quality can be improved by EAL-assisted laser printing when using various alginate solutions (1%, 2%, and 4%) and cell-laden bioinks (2% alginate and 5 × 10 6 cells ml -1 in cell culture medium). The required laser fluence is also reduced due to a higher absorption coefficient of gelatin gel, in particular when to achieve the best printing type/quality. The post-printing cell viability is improved by ∼10% and DNA double-strand breaks are reduced by ∼50%. For all the build materials investigated, the gelatin EAL helps reduce the droplet size and average jet velocity.
Two-Component Additive Manufacturing of Nanothermite by Reactive Inkjet Printing
NASA Astrophysics Data System (ADS)
Murray, Allison; Novotny, Whitney; Fleck, Trevor; Gunduz, Emre; Son, Steven; Chiu, George; Rhoads, Jeffrey
2017-06-01
To broaden the type of energetic materials that can be selectively deposited and improve the safety of their deposition, this work demonstrates the use of combinatorial inkjet printing for the selective deposition of energetic material. Two inert colloidal suspensions of nano-aluminum and nano-copper (II) oxide in dimethylformamide (DMF) with polyvinylpyrrolidone (PVP) were sequentially deposited on a substrate using piezoelectric inkjet printing. By depositing the materials at the same location, in situ mixing produced a reactive nanothermite. This process was continued to produce layers of nanothermite until the desired quantity of material was deposited. Samples with precise geometric control and high fidelity energetic performance were achieved. This work proves the feasibility of reactive inkjet printing as a means for depositing energetic materials from two largely-inert suspensions. In doing so, it opens the doors for safe material handling and the development of a wide array of energetic materials that were previously deemed incompatible with inkjet printing. This research is supported by the U.S. Department of Defense, Defense Threat Reduction Agency through Grant No. HDTRA1-15-1-0010.
A new photocrosslinkable polycaprolactone-based ink for three-dimensional inkjet printing.
He, Yinfeng; Tuck, Christopher J; Prina, Elisabetta; Kilsby, Sam; Christie, Steven D R; Edmondson, Stephen; Hague, Richard J M; Rose, Felicity R A J; Wildman, Ricky D
2017-08-01
A new type of photocrosslinkable polycaprolactone (PCL) based ink that is suitable for three-dimensional (3D) inkjet printing has been developed. Photocrosslinkable Polycaprolactone dimethylacrylate (PCLDMA) was synthesized and mixed with poly(ethylene glycol) diacrylate (PEGDA) to prepare an ink with a suitable viscosity for inkjet printing. The ink performance under different printing environments, initiator concentrations, and post processes was studied. This showed that a nitrogen atmosphere during printing was beneficial for curing and material property optimization, as well as improving the quality of structures produced. A simple structure, built in the z-direction, demonstrated the potential for this material for the production of 3D printed objects. Cell tests were carried out to investigate the biocompatibility of the developed ink. © 2016 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1645-1657, 2017. © 2016 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Reitberger, Thomas; Hoffmann, Gerd-Albert; Wolfer, Tim; Overmeyer, Ludger; Franke, Joerg
2016-09-01
The optical data transfer is considered as the future of signal transfer due to its various advantages compared to conventional copper-based technologies. The Aerosol Jet Printing (AJP) technology offers the opportunity to print materials with high viscosities, such as liquid transparent polymer adhesives (epoxy resins), on almost any possible substrate material and even in third dimension. This paper introduces a new flexible and comparatively cost-effective way of generating polymer optical waveguides through AJP. Furthermore, the conditioning of the substrate material and the printing process of planar waveguides are presented. In the first step, two lines with hydrophobic behavior are applied on foil material (PMMA, PVC, PI) by using a flexographic printing machine. These silicone based patterns containing functional polymer form barriers for the core material due to their low surface energy after curing. In the second step, the core material (liquid polymer, varnish) is printed between the barrier lines. Because of the hydrophobic behavior of the lines, the contact angle between the substrate surface and the liquid core material is increased which yields to higher aspect ratio. The distance between the barrier lines is at least 100 μm, which defines the width of the waveguide. The minimum height of the core shall be 50 μm. After UV-curing of the core polymer, the cladding material is printed on the top. This is also applied by using the AJP technology. Various tests were performed to achieve the optimal surface properties for adequate adhesion and machine process parameters.
Opportunities and challenges for 3D printing of solid-state lighting systems
NASA Astrophysics Data System (ADS)
Narendran, Nadarajah; Perera, Indika U.; Mou, Xi; Thotagamuwa, Dinusha R.
2017-09-01
Low energy use and reduced maintenance have made the LED, a solid-state light (SSL) source, the preferred technology for many lighting applications. With the explosion of products in the marketplace and subsequent price erosion, manufacturers are looking for lower cost materials and manufacturing methods. 3-D printing, also known as additive manufacturing, could be a potential solution. Recently, manufacturers in the automotive, aerospace, and medical industries have embraced 3-D printing for manufacturing parts and systems. This could pave the way for the lighting industry to produce lower cost, custom lighting systems that are 3-D printed on-site to achieve on-time and on-demand manufacturing. One unique aspect of LED fixture manufacturing is that it requires thermo-mechanical, electrical, and optical components. The goal of our investigation was to understand if current 3-D printing technologies and materials can be used to manufacture functional thermo-mechanical, electrical, and optical components for SSL fixtures. We printed heat sink components and electrical traces using an FFF-type 3-D printer with different filaments. The results showed that the printed heat sinks achieved higher thermal conductivity values compared to components made with plastic materials. For electrical traces, graphene-infused PLA showed low resistivity but it is much higher than bulk copper resistivity. For optics, SLA-printed optical components showed that print resolution, print orientation, and postprocessing affect light transmission and light scatter properties. Overall, 3-D printing offers an opportunity for mass customization of SSL fixtures and changing architectural lighting practice, but several challenges in terms of process and materials still have to be overcome.
Hong, Kihyon; Kim, Se Hyun; Mahajan, Ankit; Frisbie, C Daniel
2014-11-12
Printing electrically functional liquid inks is a promising approach for achieving low-cost, large-area, additive manufacturing of flexible electronic circuits. To print thin-film transistors, a basic building block of thin-film electronics, it is important to have several options for printable electrode materials that exhibit high conductivity, high stability, and low-cost. Here we report completely aerosol jet printed (AJP) p- and n-type electrolyte-gated transistors (EGTs) using a variety of different electrode materials including highly conductive metal nanoparticles (Ag), conducting polymers (polystyrenesulfonate doped poly(3,4-ethylendedioxythiophene, PEDOT:PSS), transparent conducting oxides (indium tin oxide), and carbon-based materials (reduced graphene oxide). Using these source-drain electrode materials and a PEDOT:PSS/ion gel gate stack, we demonstrated all-printed p- and n-type EGTs in combination with poly(3-hexythiophene) and ZnO semiconductors. All transistor components (including electrodes, semiconductors, and gate insulators) were printed by AJP. Both kinds of devices showed typical p- and n-type transistor characteristics, and exhibited both low-threshold voltages (<2 V) and high hole and electron mobilities. Our assessment suggests Ag electrodes may be the best option in terms of overall performance for both types of EGTs.
[Printed material distributed by pharmaceutical propaganda agents].
Mejía, R; Avalos, A
2001-01-01
Pharmaceutical sales representatives (drug reps) frequently visit 70% to 90% of physicians during their daily clinical practice and many consider the promotional printed material to be a major source of clinical information. We evaluated samples of the promotional printed material distributed to physicians by drug reps in order to determine whether the data contained in the promotional material is correct and supported by references accessible in Argentina. A consecutive sample of all the promotional material distributed by drug reps in the general internal medicine program (Hospital de Clínicas) was collected between March 15 and April 15, 2000. Reprints and monographs were excluded. Clinical information was reviewed by two general internists and compared to information in a major pharmacology textbook and in an electronic medical information program. References cited were reviewed for correct listing and accessibility in any of the four major medical libraries in Buenos Aires. Of the sixty-four pieces of promotional material collected, thirty were randomly selected and evaluated. In twenty one (70%) the therapeutic effect promoted in advertisement appeared in Goodman & Gilman's 9th edition textbook of pharmacology, in the pharmacology section of the Up-to-Date version 8.1 or in both. Only eighteen (60%) of the thirty promotional printed material evaluated had statements supported by cited references. From a total of 131 references cited in promotional materials, sixty (46%) were incorrectly listed according to the International Committee of Medical Journal Editors. These references were inaccessible. Of the 71 references correctly cited, 49 (69%) were not available in any of the four major medical libraries in Buenos Aires and 8 were available in only two of the libraries. Twenty-two references were reviewed, and in twelve of these (54%), the objective of the research study concurred with the statement of the promotional printed material. Adverse reactions, warnings about drug interactions and contraindications were absent from all promotional printed material. It can be concluded that the promotional printed material distributed by the drug reps in Buenos Aires are biased and provide misinformation more often than not. We recommend that practicing physicians routinely disregard promotional printed material as a source of clinical information.
NASA Astrophysics Data System (ADS)
Jackson, Amiee; Ray, Lawrence A.; Dangi, Shusil; Ben-Zikri, Yehuda K.; Linte, Cristian A.
2017-03-01
With increasing resolution in image acquisition, the project explores capabilities of printing toward faithfully reflecting detail and features depicted in medical images. To improve safety and efficiency of orthopedic surgery and spatial conceptualization in training and education, this project focused on generating virtual models of orthopedic anatomy from clinical quality computed tomography (CT) image datasets and manufacturing life-size physical models of the anatomy using 3D printing tools. Beginning with raw micro CT data, several image segmentation techniques including thresholding, edge recognition, and region-growing algorithms available in packages such as ITK-SNAP, MITK, or Mimics, were utilized to separate bone from surrounding soft tissue. After converting the resulting data to a standard 3D printing format, stereolithography (STL), the STL file was edited using Meshlab, Netfabb, and Meshmixer. The editing process was necessary to ensure a fully connected surface (no loose elements), positive volume with manifold geometry (geometry possible in the 3D physical world), and a single, closed shell. The resulting surface was then imported into a "slicing" software to scale and orient for printing on a Flashforge Creator Pro. In printing, relationships between orientation, print bed volume, model quality, material use and cost, and print time were considered. We generated anatomical models of the hand, elbow, knee, ankle, and foot from both low-dose high-resolution cone-beam CT images acquired using the soon to be released scanner developed by Carestream, as well as scaled models of the skeletal anatomy of the arm and leg, together with life-size models of the hand and foot.
Multi-Scale Hierarchical and Topological Design of Structures for Failure Resistance
2013-10-04
materials, simulation, 3D printing , advanced manufacturing, design, fracture Markus J. Buehler Massachusetts Institute of Technology (MIT) 77...by Mineralized Natural Materials: Computation, 3D printing , and Testing, Advanced Functional Materials, (09 2013): 0. doi: 10.1002/adfm.201300215 10...have made substantial progress. Recent work focuses on the analysis of topological effects of composite design, 3D printing of bioinspired and
NASA Astrophysics Data System (ADS)
Bartolone, L.; Nichols-Yehling, M.; Davis, H. B.; Davey, B.
2014-07-01
The Interstellar Boundary Explorer mission includes a comprehensive Education and Public Outreach (EPO) program in heliophysics that is overseen and implemented by the Adler Planetarium and evaluated by Technology for Learning Consortium, Inc. Several components of the IBEX EPO program were developed during the prime phase of the mission that were specifically designed for use in informal institutions, especially museums and planetaria. The program included a widely distributed planetarium show with accompanying informal education activities, printed posters, lithographs and other resources, funding for the development of the GEMS Space Science Sequence for Grades 6-8 curriculum materials, development of the IBEX mission website, development of materials for people with special needs, participation in the Heliophysics Educator Ambassador program, and support for the Space Explorers Afterschool Science Club for Chicago Public Schools. In this paper, we present an overview of the IBEX EPO program summative evaluation techniques and results for 2008 through 2012.
Esters, Onikia N; Boeckner, Linda S; Hubert, Melanie; Horacek, Tanya; Kritsch, Karen R; Oakland, Mary J; Lohse, Barbara; Greene, Geoffrey; Nitzke, Susan
2008-01-01
To identify strengths and weaknesses of nutrition education via telephone calls as part of a larger stage-of-change tailored intervention with mailed materials. Evaluative feedback was elicited from educators who placed the calls and respondents who received the calls. An internet and telephone survey of 10 states in the midwestern United States. 21 educators in 10 states reached via the internet and 50 young adults reached via telephone. VARIABLES MEASURED AND ANALYSIS: Rankings of intervention components, ratings of key aspects of educational calls, and cost data (as provided by a lead researcher in each state) were summarized via descriptive statistics. RESULTS, CONCLUSIONS, AND IMPLICATIONS: Educational calls used 6 to 17 minutes of preparation time, required 8 to 15 minutes of contact time, and had a mean estimated cost of $5.82 per call. Low-income young adults favored print materials over educational calls. However, the calls were reported to have positive effects on motivating participants to set goals. Educators who use educational telephone calls to reach young adults, a highly mobile target audience, may require a robust and flexible contact plan.
Zero Launch Mass Three Dimensional Print Head
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Gelino, Nathan J.; Smith, Jonathan D.; Buckles, Brad C.; Lippitt, Thomas; Schuler, Jason M.; Nick, Andrew J.; Nugent, Matt W.; Townsend, Ivan I.
2018-01-01
NASA's strategic goal is to put humans on Mars in the 2030's. The NASA Human Spaceflight Architecture Team (HAT) and NASA Mars Design Reference Architecture (DRA) 5.0 has determined that in-situ resource utilization (ISRU) is an essential technology to accomplish this mission. Additive construction technology using in-situ materials from planetary surfaces will reduce launch mass, allow structures to be three dimensionally (3D) printed on demand, and will allow building designs to be transmitted digitally from Earth and printed in space. This will ultimately lead to elimination of reliance on structural materials launched from Earth (zero launch mass of construction consumables). The zero launch mass (ZLM) 3D print head project addressed this need by developing a system that 3D prints using a mixture of in-situ regolith and polymer as feedstock, determining the optimum mixture ratio and regolith particle size distribution, developing software to convert g-code into motion instructions for a FANUC robotic arm, printing test samples, performing materials testing, and printing a reduced scale habitable structure concept. This paper will focus on the ZLM 3D Print Head design, materials selection, software development, and lessons learned from operating the system in the NASA KSC Swamp Works Granular Mechanics & Regolith Operations (GMRO) Laboratory.
Investigation of Dynamic Crack Coalescence Using a Gypsum-Like 3D Printing Material
NASA Astrophysics Data System (ADS)
Jiang, Chao; Zhao, Gao-Feng; Zhu, Jianbo; Zhao, Yi-Xin; Shen, Luming
2016-10-01
Dynamic crack coalescence attracts great attention in rock mechanics. However, specimen preparation in experimental study is a time-consuming and difficult procedure. In this work, a gypsum-like material by powder bed and inkjet 3D printing technique was applied to produce specimens with preset cracks for split Hopkinson pressure bar (SHPB) test. From micro X-ray CT test, it was found that the 3D printing technique could successfully prepare specimens that contain preset cracks with width of 0.2 mm. Basic mechanical properties of the 3D printing material, i.e., the elastic modulus, the Poisson's ratio, the density, the compressive strength, the indirect tensile strength, and the fracture toughness, were obtained and reported. Unlike 3D printed specimens using polylactic acid, these gypsum-like specimens can produce failure patterns much closer to those observed in classical rock mechanical tests. Finally, the dynamic crack coalescence of the 3D printed specimens with preset cracks were captured using a high-speed camera during SHPB tests. Failure patterns of these 3D printed specimens are similar to the specimens made by Portland cement concrete. Our results indicate that sample preparation by 3D printing is highly competitive due to its quickness in prototyping, precision and flexibility on the geometry, and high material homogeneity.
The Status of Resources in Teacher Education.
ERIC Educational Resources Information Center
Yarger, Sam J.
This overview of the use of educational resources in teacher education discusses the concept of an educational resource as a reserve source of supply or support, and outlines a simple category system to describe the various types of educational resources: print, non-print, electronic/mechanical, management, intact, and human. The primary focus is…
Integrating Resources in the Education Library: Trends, Issues, and Reality
ERIC Educational Resources Information Center
Osa, Justina O.
2005-01-01
Resources found in the typical education library that supports teacher education programs often include print and non-print library items, and other items that are unique to education library collections. This article attempts to share what the education library is doing to integrate all of its resources irrespective of their formats. The main…
NASA Astrophysics Data System (ADS)
Novak, Elena; Wisdom, Sonya
2018-05-01
3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.
Girolametto, Luigi; Weitzman, Elaine; Lefebvre, Pascal; Greenberg, Janice
2007-01-01
The purpose of this study was to determine the feasibility of a 2-day in-service education program for (a) promoting the use of two emergent literacy strategies by early childhood educators and (b) increasing children's responses to these strategies. Sixteen early childhood educators were randomly assigned to an experimental and a control group. The experimental in-service program sought to increase educators' use of abstract utterances and print references. Educators were videotaped with small groups of preschoolers during storybook reading and a post-story craft activity. Pretest and posttest videotapes were coded to yield rates of abstract language, verbal print references, and children's responses. In comparison to the control group, educators in the experimental program used more abstract utterances that elicited talk about emotions and children's past experiences during storybook reading. They also used significantly more print references during a post-story craft activity. In addition, children in the experimental group responded more often with appropriate responses to abstract utterances and print references in comparison to children in the control group. A 2-day in-service education program resulted in short-term behavioral changes in educators' use of abstract language and print references. Suggestions for improving instruction include providing opportunities for classroom practice with feedback, modeling the use of strategies in classroom routines, and long-term mentoring of educators to promote retention of gains.
Genova, Juliana; Nahon-Serfaty, Isaac; Dansokho, Selma Chipenda; Gagnon, Marie-Pierre; Renaud, Jean-Sébastien; Giguère, Anik M C
2014-01-01
There is little guidance available on strategies to improve the communication quality of printed educational materials (PEMs) for clinicians. The purposes of this study were to conceptualize PEM communication quality, develop a checklist based on this conceptualization, and validate the checklist with a selection of PEMs. From a literature review of the strategies influencing communication quality, we generated a conceptual map and developed the Communication AssessmenT Checklist in Health (CATCH) consisting of 55 items nested in 12 concepts. Two raters independently applied CATCH to 45 PEMs evaluated in the studies included in a Cochrane systematic review. From these results, we conducted an item analysis and assessed content validity of CATCH using a hierarchical cluster analysis to explore the extent to which our CATCH operationalization truly represented the communication quality concepts. Some concepts were better covered in the studied PEMs, whereas others were not covered consistently. We observed 3 contrasting PEM clusters. A first cluster (n = 22) was characterized by longer PEMs and comprised mostly high-impact peer-reviewed scientific articles or clinical practice guidelines. A second cluster (n = 22) consisted of PEMs shorter than 4 pages that used special fonts, color, pictures, and graphics. A third cluster consisted of a single brief PEM. With CATCH it is possible to categorize and understand the mechanisms that can trigger a change in behavior in health care providers. Additional research is needed to validate CATCH before it can be recommended for use. © 2014 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on Continuing Medical Education, Association for Hospital Medical Education.
Printable Transparent Conductive Films for Flexible Electronics.
Li, Dongdong; Lai, Wen-Yong; Zhang, Yi-Zhou; Huang, Wei
2018-03-01
Printed electronics are an important enabling technology for the development of low-cost, large-area, and flexible optoelectronic devices. Transparent conductive films (TCFs) made from solution-processable transparent conductive materials, such as metal nanoparticles/nanowires, carbon nanotubes, graphene, and conductive polymers, can simultaneously exhibit high mechanical flexibility, low cost, and better photoelectric properties compared to the commonly used sputtered indium-tin-oxide-based TCFs, and are thus receiving great attention. This Review summarizes recent advances of large-area flexible TCFs enabled by several roll-to-roll-compatible printed techniques including inkjet printing, screen printing, offset printing, and gravure printing using the emerging transparent conductive materials. The preparation of TCFs including ink formulation, substrate treatment, patterning, and postprocessing, and their potential applications in solar cells, organic light-emitting diodes, and touch panels are discussed in detail. The rational combination of a variety of printed techniques with emerging transparent conductive materials is believed to extend the opportunities for the development of printed electronics within the realm of flexible electronics and beyond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Milburn, Trelani F; Hipfner-Boucher, Kathleen; Weitzman, Elaine; Greenberg, Janice; Pelletier, Janette; Girolametto, Luigi
2015-04-01
The current study investigated the effects of coaching as part of an emergent literacy professional development program to increase early childhood educators' use of verbal references to print and phonological awareness during interactions with children. Thirty-one educators and 4 children from each of their classrooms (N = 121) were randomly assigned to an experimental group (21 hr of in-service workshops plus 5 coaching sessions) and a comparison group (workshops alone). The in-service workshops included instruction on how to talk about print and phonological awareness during a post-story craft/writing activity. All educators were video-recorded during a 15-min craft/writing activity with a small group of preschoolers at pretest and posttest. All videotapes were transcribed and coded for verbal references to print and phonological awareness by the educators and children. Although at posttest, there were no significant group differences in the educators' or the children's references to print as measured by rate per minute, both the educators and the children in the experimental group used a significantly higher rate per minute of references to phonological awareness relative to the comparison group. Professional development that included coaching with a speech-language pathologist enabled educators and children to engage in more phonological awareness talk during this activity.
Medical 3D Printing for the Radiologist
Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A.; Cai, Tianrun; Kumamaru, Kanako K.; George, Elizabeth; Wake, Nicole; Caterson, Edward J.; Pomahac, Bohdan; Ho, Vincent B.; Grant, Gerald T.
2015-01-01
While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. ©RSNA, 2015 PMID:26562233
Medical 3D Printing for the Radiologist.
Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J
2015-01-01
While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. (©)RSNA, 2015.
NASA Centennial Challenge: Three Dimensional (3D) Printed Habitat, Phase 2
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Roman, Monserrate C.; Kim, Hong S.
2017-01-01
The NASA Centennial Challenges: 3D-Printed Habitat Challenge seeks to develop the fundamental technologies necessary to manufacture an off-world habitat using mission recycled materials andor local indigenous materials. The vision is that autonomous habitat manufacturing machines will someday be deployed to the Moon or Mars to construct shelters for human habitation.NASA and Bradley University, are holding a new US$ 2.5 million competition to design and build a 3-D printed habitat for deep space exploration, including the agencys journey to Mars.The multi-phase 3-D Printed Habitat Challenge, part of NASA's Centennial Challenges program, is designed to advance the additive construction technology needed to create sustainable housing solutions for Earth and beyond.The first phase of the competition ran through Sept. 27, 2015. This phase, a design competition, called on participants to develop state-of-the-art architectural concepts that take advantage of the unique capabilities 3-D printing offers. The top 3 prizes with a prize purse of $40,000 were awarded at the 2015 World Maker Faire in New York.The second phase of the competition is called the Structural Member Competition and it is divided into three levels happening in the spring and summer of 2017. The Compression Test Competition (Level 1) focuses on the fabrication technologies needed to manufacture structural components from a combination of indigenous materials and recyclables, or indigenous materials alone. For Level 1, teams will develop 3D printable materials, build a 3D printing machine, and print two specimens: a truncated cone and a cylinder. The Level 2 Beam Member Competition is the second of three sub-competitions within the overall Structural Member Competition. For Level 2, teams will print a beam that will be tested.The Level 3 Head to Head Competition is the third of three sub-competitions within the overall Structural Member Competition. For Level 3, teams will develop 3D printable materials, use a 3D printing machine, and print three compression specimens of the elected material, three flexural specimens of the elected material, and one dome structure. Tests conducted on the specimens and the dome structure will determine Level 3 scores and awards. On Earth these same habitat manufacturing capabilities could be used to produce housing wherever affordable housing is needed and access to conventional building materials and skills is limited. Terrestrially, it is envisioned that local indigenous materials (dirt, clay, sand, etc.) could be combined with readily available recyclable materials and used to construct semi-permanent shelters against environmental elements for human habitation. The goal of the 3D-Printed Habitat Challenge is to foster the development of new technologies necessary to additively manufacture a habitat using local indigenous materials with, or without, recyclable materials. This paper will summarize the Level 2 results of this NASA Centennial Challenge competition and it will discuss related technology advancement.
3-D printing of liquid metals for stretchable and flexible conductors
NASA Astrophysics Data System (ADS)
Trlica, Chris; Parekh, Dishit Paresh; Panich, Lazar; Ladd, Collin; Dickey, Michael D.
2014-06-01
3-D printing is an emerging technology that has been used primarily on small scales for rapid prototyping, but which could also herald a wider movement towards decentralized, highly customizable manufacturing. Polymers are the most common materials to be 3-D printed today, but there is great demand for a way to easily print metals. Existing techniques for 3-D printing metals tend to be expensive and energy-intensive, and usually require high temperatures or pressures, making them incompatible with polymers, organics, soft materials, and biological materials. Here, we describe room temperature liquid metals as complements to polymers for 3-D printing applications. These metals enable the fabrication of soft, flexible, and stretchable devices. We survey potential room temperature liquid metal candidates and describe the benefits of gallium and its alloys for these purposes. We demonstrate the direct printing of a liquid gallium alloy in both 2-D and 3-D and highlight the structures and shapes that can be fabricated using these processes.
3D printing for soft robotics – a review
Gul, Jahan Zeb; Sajid, Memoon; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Shah, Imran; Kim, Kyung-Hwan; Lee, Jae-Wook; Choi, Kyung Hyun
2018-01-01
Abstract Soft robots have received an increasing attention due to their advantages of high flexibility and safety for human operators but the fabrication is a challenge. Recently, 3D printing has been used as a key technology to fabricate soft robots because of high quality and printing multiple materials at the same time. Functional soft materials are particularly well suited for soft robotics due to a wide range of stimulants and sensitive demonstration of large deformations, high motion complexities and varied multi-functionalities. This review comprises a detailed survey of 3D printing in soft robotics. The development of key 3D printing technologies and new materials along with composites for soft robotic applications is investigated. A brief summary of 3D-printed soft devices suitable for medical to industrial applications is also included. The growing research on both 3D printing and soft robotics needs a summary of the major reported studies and the authors believe that this review article serves the purpose. PMID:29707065
3D printing for soft robotics - a review.
Gul, Jahan Zeb; Sajid, Memoon; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Shah, Imran; Kim, Kyung-Hwan; Lee, Jae-Wook; Choi, Kyung Hyun
2018-01-01
Soft robots have received an increasing attention due to their advantages of high flexibility and safety for human operators but the fabrication is a challenge. Recently, 3D printing has been used as a key technology to fabricate soft robots because of high quality and printing multiple materials at the same time. Functional soft materials are particularly well suited for soft robotics due to a wide range of stimulants and sensitive demonstration of large deformations, high motion complexities and varied multi-functionalities. This review comprises a detailed survey of 3D printing in soft robotics. The development of key 3D printing technologies and new materials along with composites for soft robotic applications is investigated. A brief summary of 3D-printed soft devices suitable for medical to industrial applications is also included. The growing research on both 3D printing and soft robotics needs a summary of the major reported studies and the authors believe that this review article serves the purpose.
Navy Additive Manufacturing: Policy Analysis for Future DLA Material Support
2014-12-01
printing (3DP) for it is a direct offshoot of inkjet paper printing. There are two subtypes to his modality that both involve depositing droplets of...liquid material in layers. The first is material jetting, which uses an inkjet head to move across a print area and deposit a polymer or wax in layers... inkjet printer, this means that the product can be made in multiple colors. Supports have to be built, but they can be made of a different material that
ERIC Educational Resources Information Center
National Indian Education Association, Minneapolis, Minn.
The second edition of the Media Resources Catalogue, this document is considerably reduced in size and includes only evaluated materials. The five sections of this catalogue are as follows: (1) print materials (categorized as fiction and non-fiction, this section includes 55 and 239 citations, respectively and is further categorized in terms of…
Printed health information materials: evaluation of readability and suitability.
Shieh, Carol; Hosei, Barbara
2008-01-01
This study examined readability and suitability of printed health information materials colleted from multiple sources. In phase I, nursing students used Simple Measure of Gobbledygook (SMOG; McLaughlin, 1969) to assess the readability of 21 materials collected from the community. In phases II and III, nursing students and registered nurses used SMOG and the Suitability Assessment of Materials (SAM; Doak, Doak, & Root, 1996) to evaluate 15 prenatal materials from a Healthy Start program. SMOG assigns a reading grade level based on the number of words with 3 or more syllables. SAM has 22 items in 6 evaluation areas: content, literacy demand, graphics, layout and typography, learning stimulation and motivation, and cultural appropriateness. Major findings included that 53% to 86% of the printed materials had a reading level at or higher than 9th grade; materials lacked summary, interaction, and modeled behaviors, and registered nurses rated more materials as not suitable and fewer as superior for suitability qualities than students. Improving printed materials to have lower reading levels and better suitability qualities are indicated.
Micro-masonry for 3D additive micromanufacturing.
Keum, Hohyun; Kim, Seok
2014-08-01
Transfer printing is a method to transfer solid micro/nanoscale materials (herein called 'inks') from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boutopoulos, Christos; Zergioti, Ioanna; Touloupakis, Eleftherios
This letter demonstrates the direct laser printing of photosynthetic material onto low cost nonfunctionalized screen printed electrodes for the fabrication of photosynthesis-based amperometric biosensors. The high kinetic energy of the transferred material induces direct immobilization of the thylakoids onto the electrodes without the use of linkers. This type of immobilization is able to establish efficient electrochemical contact between proteins and electrode, stabilizing the photosynthetic biomolecule and transporting electrons to the solid state device with high efficiency. The functionality of the laser printed biosensors was evaluated by the detection of a common herbicide such as Linuron.
Inkjet printing of 2D layered materials.
Li, Jiantong; Lemme, Max C; Östling, Mikael
2014-11-10
Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.
2013-01-01
Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.
Readability and suitability assessment of patient education materials in rheumatic diseases.
Rhee, Rennie L; Von Feldt, Joan M; Schumacher, H Ralph; Merkel, Peter A
2013-10-01
Web-based patient education materials and printed pamphlets are frequently used by providers to inform patients about their rheumatic disease. Little attention has been given to the readability and appropriateness of patient materials. The objective of this study was to examine the readability and suitability of commonly used patient education materials for osteoarthritis (OA), rheumatoid arthritis, systemic lupus erythematosus, and vasculitis. Five or 6 popular patient resources for each disease were chosen for evaluation. Readability was measured using the Flesch-Kincaid reading grade level and suitability was determined by the Suitability Assessment of Materials (SAM), a score that considers characteristics such as content, graphics, layout/topography, and cultural appropriateness. Three different reviewers rated the SAM score and means were used in the analysis. Twenty-three resources written on the 4 diseases were evaluated. The education material for all 4 diseases studied had readability above the eighth-grade level and readability did not differ among the diseases. Only 5 of the 23 resources received superior suitability scores, and 3 of these 5 resources were written for OA. All 4 diseases received adequate suitability scores, with OA having the highest mean suitability score. Most patient education materials for rheumatic diseases are written at readability levels above the recommended sixth-grade reading level and have only adequate suitability. Developing more appropriate educational resources for patients with rheumatic diseases may improve patient comprehension. Copyright © 2013 by the American College of Rheumatology.
Rocha, Victoria G; García-Tuñón, Esther; Botas, Cristina; Markoulidis, Foivos; Feilden, Ezra; D'Elia, Eleonora; Ni, Na; Shaffer, Milo; Saiz, Eduardo
2017-10-25
The current lifestyles, increasing population, and limited resources result in energy research being at the forefront of worldwide grand challenges, increasing the demand for sustainable and more efficient energy devices. In this context, additive manufacturing brings the possibility of making electrodes and electrical energy storage devices in any desired three-dimensional (3D) shape and dimensions, while preserving the multifunctional properties of the active materials in terms of surface area and conductivity. This paves the way to optimized and more efficient designs for energy devices. Here, we describe how three-dimensional (3D) printing will allow the fabrication of bespoke devices, with complex geometries, tailored to fit specific requirements and applications, by designing water-based thermoresponsive inks to 3D-print different materials in one step, for example, printing the active material precursor (reduced chemically modified graphene (rCMG)) and the current collector (copper) for supercapacitors or anodes for lithium-ion batteries. The formulation of thermoresponsive inks using Pluronic F127 provides an aqueous-based, robust, flexible, and easily upscalable approach. The devices are designed to provide low resistance interface, enhanced electrical properties, mechanical performance, packing of rCMG, and low active material density while facilitating the postprocessing of the multicomponent 3D-printed structures. The electrode materials are selected to match postprocessing conditions. The reduction of the active material (rCMG) and sintering of the current collector (Cu) take place simultaneously. The electrochemical performance of the rCMG-based self-standing binder-free electrode and the two materials coupled rCMG/Cu printed electrode prove the potential of multimaterial printing in energy applications.
Chemically Driven Printed Textile Sensors Based on Graphene and Carbon Nanotubes
Skrzetuska, Ewa; Puchalski, Michał; Krucińska, Izabella
2014-01-01
The unique properties of graphene, such as the high elasticity, mechanical strength, thermal conductivity, very high electrical conductivity and transparency, make them it an interesting material for stretchable electronic applications. In the work presented herein, the authors used graphene and carbon nanotubes to introduce chemical sensing properties into textile materials by means of a screen printing method. Carbon nanotubes and graphene pellets were dispersed in water and used as a printing paste in the screen printing process. Three printing paste compositions were prepared—0%, 1% and 3% graphene pellet content with a constant 3% carbon nanotube mass content. Commercially available materials were used in this process. As a substrate, a twill woven cotton fabric was utilized. It has been found that the addition of graphene to printing paste that contains carbon nanotubes significantly enhances the electrical conductivity and sensing properties of the final product. PMID:25211197
ERIC Educational Resources Information Center
Waseem, Kainat; Kazmi, Hasnain Alam; Qureshi, Ovais Hussain
2017-01-01
On this research, the traditional education system of Pakistan has been analyzed in comparison to international modern education system with 3D printing technology. Also how this technology results in revolutionizing current education system and its future aspects. The study adopted semi-structured interviews to solicit an understanding of…
ERIC Educational Resources Information Center
Waseem, Kainat; Kainat, Hasnain Alam; Qureshi, Ovais Hussain
2016-01-01
On this research, the traditional education system of Pakistan has been analyzed in comparison to international modern education system with 3D printing technology. Also how this technology results in revolutionizing current education system and its future aspects. The study adopted semi-structured interviews to solicit an understanding of…
NASA Astrophysics Data System (ADS)
Wahyu Utami, Niken; Aziz Saefudin, Abdul
2018-01-01
This study aims to determine: 1) differences in students taking independent learning by using e-learning and the students who attend the learning by using the print instructional materials ; 2) differences in the creativity of students who follow learning with e-learning and the students who attend the learning by using the print instructional materials ; 3) differences in learning independence and creativity of students attend learning with e-learning and the students who attend lessons using printed teaching materials in the subject of Mathematics Instructional Media Development. This study was a quasi-experimental research design using only posttest control design. The study population was all students who take courses in Learning Mathematics Media Development, Academic Year 2014/2015 100 students and used a random sample (random sampling) is 60 students. To test the hypothesis used multivariate analysis of variance or multivariable analysis of variance (MANOVA) of the track. The results of this study indicate that 1) There is a difference in student learning independence following study using the e-learning and the students who attend lessons using printed teaching materials in the lecture PMPM ( F = 4.177, p = 0.046 < 0.05 ) ; 2 ) There is no difference in the creativity of the students who complete the learning by using e -learning and students to follow the learning using printed teaching materials in the lecture PMPM ( F = 0.470, p = 0.496 > 0.05) ; No difference learning independence and creativity of students attend learning by using e-learning and the students who attend the learning using printed teaching materials in the lecture PMPM (F = 2.452, p = 0.095 > 0.05). Based on these studies suggested that the learning using e -learning can be used to develop student creativity, while learning to use e -learning and teaching materials can be printed to use to develop students’ independence.
ERIC Educational Resources Information Center
Hurlburt, Carol J.
2000-01-01
Provides descriptions of jobs related to the printing industry. Includes information on salaries, labor market outlook, and education/training needed. Describes careers in commercial printing and graphic communications. (JOW)
Print-Focused Read-Alouds in Early Childhood Special Education Programs
ERIC Educational Resources Information Center
Justice, Laura M.; Logan, Jessica A. R.; Kaderavek, Joan N.; Dynia, Jaclyn M.
2015-01-01
The purpose of this study was to examine the impacts of print-focused read-alouds, implemented by early childhood special education (ECSE) teachers alone or in conjunction with caregivers, on the print knowledge of children with language impairment (LI). Using random assignment to conditions, children with LI were exposed, over an academic year of…
ERIC Educational Resources Information Center
Wilson, Elizabeth Anne Hamann
2009-01-01
Educational tools such as printed pamphlets and videos can enhance patients' understanding and memory of health-related information, but in order for such materials to be effective, designers of such tools should take care to understand the impact of variables such as the medium in which information is displayed, the type of information to be…
Combating Stability Concerns and Promoting Development Through Literacy and Education
2016-06-10
Leavenworth, Kansas 2016 Approved for public release; distribution is unlimited. United States Fair Use determination or copyright permission...has been obtained for the use of pictures, maps, graphics, and any other works incorporated into the manuscript. This author may be protected by more...compute using printed and written materials associated with varying contexts. Literacy involves a continuum of learning in enabling individuals to
ERIC Educational Resources Information Center
Bhola, H. S.
At the heart of the enterprise of providing reading materials to new readers is the writer. The writer must write before the new literates can read and must write both effectively and interestingly. Although talent helps, acquired skills play an important part in writing, especially in expository writing. More important, to enable them to produce…
ERIC Educational Resources Information Center
Maidana, Nora L.; da Fonseca, Monaliza; Barros, Suelen F.; Vanin, Vito R.
2016-01-01
The Virtual Laboratory was created as a complementary educational activity, with the aim of working abstract concepts from an experimental point of view. In this work, the motion of a ring rolling and slipping in front of a grid printed panel was recorded. The frames separated from this video received a time code, and the resulting set of images…
ERIC Educational Resources Information Center
American Council on Education, Washington, DC.
A comprehensive, interactive conference was designed to help improve the quality of external degree programs and adult education. Sixteen papers are presented as follows: (1) "Designing Self-Instructional Print Material for the Adult Learner" (Diane J. Davis); (2) "Degrees by Alternative Delivery for U.S. Soldiers and Sailors"…
ERIC Educational Resources Information Center
JENSEN, ARTHUR K.
THE INVESTIGATION RESULTED IN THE PRODUCTION OF 88 LOW-COST OVERHEAD PROJECTION TRANSPARENCIES ON THE BASIC PRINCIPLES OF POWER TRANSMISSION IN AGRICULTURAL MACHINERY. DEVELOPING TECHNIQUES FOR OFFSET PRINTING ON PLASTIC REQUIRED OVERCOMING PROBLEMS OF STATIC ELECTRICITY, INK ADHESION, OFFSETTING, AND DRYING. MACHINERY, ENVIRONMENT, AND INK WERE…
ERIC Educational Resources Information Center
National Education Association, Washington, DC. Project on Utilization of Inservice Education R & D Outcomes.
As a description of a "survival kit" for teachers confronted with the instruction of severely/profoundly handicapped children, complete information with regard to purposes of the kit, printed and audiovisual contents, scope and sequencing of topics for the six training modules, and activities and resources involved in the use of the kit is…
ERIC Educational Resources Information Center
Lonsdale, Helen C.; O'Neill, Donald W.
To implement a career education program for junior high school students in the rural, isolated areas of the Rocky Mountain States, Satellite Technology Demonstration (STD) tested the use of a satellite-assisted communications system for the delivery of social services. A magazine was designed to promote acceptance of the television programing and…
The Art of Small Job Printing.
ERIC Educational Resources Information Center
Fairhurst, Millicent
1978-01-01
Presents guidelines for the design and production of printed promotional materials for library programs, lectures, movies, exhibits, and community events. Areas covered are typography, printing, production, costs, copyfitting and layout, printing stock, and binding. (VT)
Code of Federal Regulations, 2010 CFR
2010-01-01
... footnote 1 221112 Fossil Fuel Electric Power Generation See footnote 1 221113 Nuclear Electric Power... 500 323115 Digital Printing 500 323116 Manifold Business Forms Printing 500 323117 Books Printing 500... 424590 Other Farm Product Raw Material Merchant Wholesalers 100 424610 Plastics Materials and Basic Forms...
Code of Federal Regulations, 2013 CFR
2013-07-01
... roller that transfers material to a raised image (type or art) on a plate cylinder. The material is then transferred from the image on the plate cylinder to the web or sheet to be printed. A flexographic print... press means any press which prints only non-saleable items used to check the quality of image formation...
Code of Federal Regulations, 2012 CFR
2012-07-01
... roller that transfers material to a raised image (type or art) on a plate cylinder. The material is then transferred from the image on the plate cylinder to the web or sheet to be printed. A flexographic print... press means any press which prints only non-saleable items used to check the quality of image formation...
Code of Federal Regulations, 2014 CFR
2014-07-01
... roller that transfers material to a raised image (type or art) on a plate cylinder. The material is then transferred from the image on the plate cylinder to the web or sheet to be printed. A flexographic print... press means any press which prints only non-saleable items used to check the quality of image formation...
Study of the thermal properties of filaments for 3D printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trhlíková, Lucie, E-mail: xctrhlikova@fch.vutbr.cz; Zmeskal, Oldrich, E-mail: zmeskal@fch.vutbr.cz; Florian, Pavel, E-mail: xcflorianp@fch.vutbr.cz
Various materials are used for 3D printing, most commonly Acrylonitrile butadiene styrene (ABS), Polylactic acid (PLA), Polyethylene (PET) and Polypropylene (PP). These materials differ mainly in their melting point, which significantly influences the properties of the final products. Filaments are melted in the print head during the printing process. The temperature range is from 150 °C to 250 °C depending on the technology used. The optimum temperature for the cooling substrate on which printing is carried out is chosen so as to ensure uniform cooling and deformation. It generally varies between (40 – 100) °C. From the above it ismore » clear that both temperatures can significantly affect the properties of the printed 3D object. It is therefore important to determine the thermal parameters (thermal conductivity, specific heat and thermal diffusivity) of the materials used across the entire range of temperatures. For evaluating the properties of different types of PLA materials, the step transient method was used, which allows determination of all required parameters using a fractal heat transfer model.« less
ERIC Educational Resources Information Center
Ayvaci, Hakan Sevki; Yildiz, Mehmet; Bakirci, Hasan
2015-01-01
This study employed a print laboratory material based on 5E model of constructivist learning approach to teach reflection of light and Image on a Plane Mirror. The effect of the instruction which conducted with the designed print laboratory material on academic achievements of prospective science and technology teachers and their attitudes towards…
The potential of 3D printing in urological research and patient care.
Colaco, Marc; Igel, Daniel A; Atala, Anthony
2018-04-01
3D printing is an evolving technology that enables the creation of unique organic and inorganic structures with high precision. In urology, the technology has demonstrated potential uses in both patient and clinician education as well as in clinical practice. The four major techniques used for 3D printing are inkjet printing, extrusion printing, laser sintering, and stereolithography. Each of these techniques can be applied to the production of models for education and surgical planning, prosthetic construction, and tissue bioengineering. Bioengineering is potentially the most important application of 3D printing, as the ability to produce functional organic constructs might, in the future, enable urologists to replicate and replace abnormal tissues with neo-organs, improving patient survival and quality of life.
NASA Astrophysics Data System (ADS)
Priyadarshini, Lakshmi
Frequently transported packaging goods are more prone to damage due to impact, jolting or vibration in transit. Fragile goods, for example, glass, ceramics, porcelain are susceptible to mechanical stresses. Hence ancillary materials like cushions play an important role when utilized within package. In this work, an analytical model of a 3D cellular structure is established based on Kelvin model and lattice structure. The research will provide a comparative study between the 3D printed Kelvin unit structure and 3D printed lattice structure. The comparative investigation is based on parameters defining cushion performance such as cushion creep, indentation, and cushion curve analysis. The applications of 3D printing is in rapid prototyping where the study will provide information of which model delivers better form of energy absorption. 3D printed foam will be shown as a cost-effective approach as prototype. The research also investigates about the selection of material for 3D printing process. As cushion development demands flexible material, three-dimensional printing with material having elastomeric properties is required. Further, the concept of cushion design is based on Kelvin model structure and lattice structure. The analytical solution provides the cushion curve analysis with respect to the results observed when load is applied over the cushion. The results are reported on basis of attenuation and amplification curves.
The Various Applications of 3D Printing in Cardiovascular Diseases.
El Sabbagh, Abdallah; Eleid, Mackram F; Al-Hijji, Mohammed; Anavekar, Nandan S; Holmes, David R; Nkomo, Vuyisile T; Oderich, Gustavo S; Cassivi, Stephen D; Said, Sameh M; Rihal, Charanjit S; Matsumoto, Jane M; Foley, Thomas A
2018-05-10
To highlight the various applications of 3D printing in cardiovascular disease and discuss its limitations and future direction. Use of handheld 3D printed models of cardiovascular structures has emerged as a facile modality in procedural and surgical planning as well as education and communication. Three-dimensional (3D) printing is a novel imaging modality which involves creating patient-specific models of cardiovascular structures. As percutaneous and surgical therapies evolve, spatial recognition of complex cardiovascular anatomic relationships by cardiologists and cardiovascular surgeons is imperative. Handheld 3D printed models of cardiovascular structures provide a facile and intuitive road map for procedural and surgical planning, complementing conventional imaging modalities. Moreover, 3D printed models are efficacious educational and communication tools. This review highlights the various applications of 3D printing in cardiovascular diseases and discusses its limitations and future directions.
All dispenser printed flexible 3D structured thermoelectric generators
NASA Astrophysics Data System (ADS)
Cao, Z.; Shi, J. J.; Torah, R. N.; Tudor, M. J.; Beeby, S. P.
2015-12-01
This work presents a vertically fabricated 3D thermoelectric generator (TEG) by dispenser printing on flexible polyimide substrate. This direct-write technology only involves printing of electrodes, thermoelectric active materials and structure material, which needs no masks to transfer the patterns onto the substrate. The dimension for single thermoelectric element is 2 mm × 2 mm × 0.5 mm while the distance between adjacent cubes is 1.2 mm. The polymer structure layer was used to support the electrodes which are printed to connect the top ends of the thermoelectric material and ensure the flexibility as well. The advantages and the limitations of the dispenser printed 3D TEGs will also be evaluated in this paper. The proposed method is potential to be a low-cost and scalable fabrication solution for TEGs.
Composites of 3D-Printed Polymers and Textile Fabrics*
NASA Astrophysics Data System (ADS)
Martens, Yasmin; Ehrmann, Andrea
2017-08-01
3D printing belongs to the rapidly emerging technologies of our time. Due to its recent drawback - the technology is relatively slow compared with other primary shaping methods, such as injection molding -, 3D printing is often not used for creating complete large components but to add specific features to existing larger objects. One of the possibilities to create such composites with an additional value consists in combining 3D printed polymers with textile fabrics. Several attempts have been made to enhance the adhesion between both materials, a task which is still challenging for diverse material combinations. Our paper reports about new experiments combining 3D printed embossed designs, snap fasteners and zip fasteners with different textile base materials, showing the possibilities and technical limits of these novel composites.
Cibachrome testing. [photographic processing and printing materials
NASA Technical Reports Server (NTRS)
Weinstein, M. S.
1974-01-01
The use of Cibachrome products as a solution to problems encountered when contact printing Kodak film type SO-397 onto Kodak Ektrachrome color reversal paper type 1993 is investigated. A roll of aerial imagery consisting of Kodak film types SO-397 and 2443 was contact printed onto Cibachrome and Kodak materials and compared in terms of color quality, resolution, cost, and compatibility with existing equipment and techniques. Objective measurements are given in terms of resolution and sensitometric response. Comparison prints and transparencies were viewed and ranked according to overall quality and aesthetic appeal. It is recommended that Cibachrome Print material be used in place of Kodak Ektachrome paper because it is more easily processed, the cost is equivalent, and it provides improved resolution, color quality, and image fade resistance.
The use of technologies in African programmes of population education.
Krystall, A; Johnston, T
1985-06-01
In Africa South of the Sahara, the most commonly expressed purpose of population education, whether in or out of school, is an improved quality of life for the individual, family, community or nation. Use of the technologies available for population education can contribute to the efficiency and effectiveness of the learning process in a variety of ways. A significant contribution of visual and audiovisual media to population education is the power to stimulate visualization and imaginative comprehension, thereby increasing understanding and inducing affective change. Population education programs in schools and teacher training institutions in sub-Saharan Africa seem to rely heavily on the single technology of the printed text. This paper suggests that the initial priority when selecting materials for population education may be to explore the possible advantages of nontext technologies. Visual material loses its power to influence people's attitudes and actions if they are unable to identify with what they see; in some places, adequate localization may have a linguistic dimension. Basing materials on issues of relevance to specific target groups is only part of the task when the educational intent is behavior change. Pre-testing is necessary to determine the overall relevance of media materials for an intended audience. The assumption that educational media must be produced by educational experts has caused planners to make minimal use of other strategies such as: 1) users as producers and 2) professionals as producers. 4 suggestions to contribute to the quality of population education are: 1) for the 2 regional offices to disseminate all population-related materials used at the national level, 2) training for population educators in media use, 3) initiating and supporting comparisons of various technologies, and 4) assisting users to become producers of their own materials.
3D printing technologies for electrochemical energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Feng; Wei, Min; Viswanathan, Vilayanur V.
We present that fabrication and assembly of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limitations in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, and morphology) and structure with enhanced specific energy and power densities. Moreover, the “additive” manufacturing nature ofmore » 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. Additionally, with the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nano-materials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focus on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over multiple length scale from nano to macro for EES applications.« less
3D printing technologies for electrochemical energy storage
Zhang, Feng; Wei, Min; Viswanathan, Vilayanur V.; ...
2017-08-24
We present that fabrication and assembly of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limitations in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, and morphology) and structure with enhanced specific energy and power densities. Moreover, the “additive” manufacturing nature ofmore » 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. Additionally, with the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nano-materials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focus on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over multiple length scale from nano to macro for EES applications.« less
Printing on Paper: Costly Nuisance or Pedagogical Imperative?
ERIC Educational Resources Information Center
Gupta, Pranjal; Matulich, Erika; Yalabik, Baris
2011-01-01
What are the typical printing behaviors of students? What is the extent of wastage? What are student attitudes towards different pay-per-print schemes? What might be strategies for educational institutions to achieve less printing while not impeding pedagogical quality?
Educator Resource Center for NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Bridgford, Todd; Koltun, Nick R.
2003-01-01
The goal of the ERCN is to provide expertise and facilities to help educators access and utilize science, mathematics, and technology instructional products aligned with national standards and appropriate state frameworks and based on NASA s unique mission and results. The NASA Langley s Office of Education has established the service area for this ERC to be the five states of Kentucky, North Carolina, South Carolina, Virginia and West Virginia. This educational grant activity is associated with NASA s Mission to inspire the next generation of explorers.. .as only NASA can. The communication of NASA s knowledge is the prime role of this ERC. Functioning as a dissemination system of instructional materials and support for pre-college education programs we have met the NASA Education ERCN Program's goal. The following ERCN objectives have been accomplished: Demonstrate and facilitate the use of NASA educational products and technologies in print, video and web based formats. Examples include but are not limited to NASA approved Educator s Guides with Activities based on national standards for appropriate subjects and grade levels. We have demonstrated the use videotape series in analogue format and the new digital video instructional systems along with the use of NASA TV. The promotion of web page based resources such as the new NASA Portal web and the ability to download print resources is continuously facilitated in workshops. This objective has been completed by educator contacts that include on-site visits, phone requests, postal mail requests, e-mail requests, fax requests and workshops offered.
Song, Jun Hyuk; Kim, Young-Tae; Cho, Sunghwan; Song, Woo-Jin; Moon, Sungmin; Park, Chan-Gyung; Park, Soojin; Myoung, Jae Min; Jeong, Unyong
2017-11-01
Printing is one of the easy and quick ways to make a stretchable wearable electronics. Conventional printing methods deposit conductive materials "on" or "inside" a rubber substrate. The conductors made by such printing methods cannot be used as device electrodes because of the large surface topology, poor stretchability, or weak adhesion between the substrate and the conducting material. Here, a method is presented by which conductive materials are printed in the way of being surface-embedded in the rubber substrate; hence, the conductors can be widely used as device electrodes and circuits. The printing process involves a direct printing of a metal precursor solution in a block-copolymer rubber substrate and chemical reduction of the precursor into metal nanoparticles. The electrical conductivity and sensitivity to the mechanical deformation can be controlled by adjusting the number of printing operations. The fabrication of highly sensitive vibration sensors is thus presented, which can detect weak pulses and sound waves. In addition, this work takes advantage of the viscoelasticity of the composite conductor to fabricate highly conductive stretchable circuits for complicated 3D structures. The printed electrodes are also used to fabricate a stretchable electrochemiluminescence display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michiels, Steven, E-mail: michiels.steven@kuleuven
Purpose: 3D printing technology is investigated for the purpose of patient immobilization during proton therapy. It potentially enables a merge of patient immobilization, bolus range shifting, and other functions into one single patient-specific structure. In this first step, a set of 3D printed materials is characterized in detail, in terms of structural and radiological properties, elemental composition, directional dependence, and structural changes induced by radiation damage. These data will serve as inputs for the design of 3D printed immobilization structure prototypes. Methods: Using four different 3D printing techniques, in total eight materials were subjected to testing. Samples with a nominalmore » dimension of 20 × 20 × 80 mm{sup 3} were 3D printed. The geometrical printing accuracy of each test sample was measured with a dial gage. To assess the mechanical response of the samples, standardized compression tests were performed to determine the Young’s modulus. To investigate the effect of radiation on the mechanical response, the mechanical tests were performed both prior and after the administration of clinically relevant dose levels (70 Gy), multiplied with a safety factor of 1.4. Dual energy computed tomography (DECT) methods were used to calculate the relative electron density to water ρ{sub e}, the effective atomic number Z{sub eff}, and the proton stopping power ratio (SPR) to water SPR. In order to validate the DECT based calculation of radiological properties, beam measurements were performed on the 3D printed samples as well. Photon irradiations were performed to measure the photon linear attenuation coefficients, while proton irradiations were performed to measure the proton range shift of the samples. The directional dependence of these properties was investigated by performing the irradiations for different orientations of the samples. Results: The printed test objects showed reduced geometric printing accuracy for 2 materials (deviation > 0.25 mm). Compression tests yielded Young’s moduli ranging from 0.6 to 2940 MPa. No deterioration in the mechanical response was observed after exposure of the samples to 100 Gy in a therapeutic MV photon beam. The DECT-based characterization yielded Z{sub eff} ranging from 5.91 to 10.43. The SPR and ρ{sub e} both ranged from 0.6 to 1.22. The measured photon attenuation coefficients at clinical energies scaled linearly with ρ{sub e}. Good agreement was seen between the DECT estimated SPR and the measured range shift, except for the higher Z{sub eff}. As opposed to the photon attenuation, the proton range shifting appeared to be printing orientation dependent for certain materials. Conclusions: In this study, the first step toward 3D printed, multifunctional immobilization was performed, by going through a candidate clinical workflow for the first time: from the material printing to DECT characterization with a verification through beam measurements. Besides a proof of concept for beam modification, the mechanical response of printed materials was also investigated to assess their capabilities for positioning functionality. For the studied set of printing techniques and materials, a wide variety of mechanical and radiological properties can be selected from for the intended purpose. Moreover the elaborated hybrid DECT methods aid in performing in-house quality assurance of 3D printed components, as these methods enable the estimation of the radiological properties relevant for use in radiation therapy.« less
A simple, low-cost conductive composite material for 3D printing of electronic sensors.
Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A
2012-01-01
3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.
Personalized development of human organs using 3D printing technology.
Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander
2016-02-01
3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of organ transplantation created by the lack of organ donors and life-long immunosuppression. We hypothesized a precision medicine approach to human organ fabrication using 3D printed technology, in which the digital volumetric data would be collected by imaging of a patient, i.e. CT or MRI images followed by mathematical modeling to create a digital 3D image. Then a suitable biocompatible material, with an optimal resolution for cells seeding and maintenance of cell viability during the printing process, would be printed with a compatible printer type and finally implanted into the patient. Life-saving operations with 3D printed implants were already performed in patients. However, several issues need to be addressed before translational application of 3D printing into clinical medicine. These are vascularization, innervation, and financial cost of 3D printing and safety of biomaterials used for the construct. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Geoscape Poster: Maximum Impact in Geoscience Education With Minimal Funding
NASA Astrophysics Data System (ADS)
Aubele, J. C.; Newsom, J.; Crumpler, L. S.
2004-12-01
A geologist/educator and a research curator of the New Mexico Museum of Natural History and Science and a geologist/middle school teacher from the Albuquerque Public Schools have created an educational poster that uses the landscape around Albuquerque in order to teach fundamental geoscience concepts. "Albuquerque's Geoscape" is based on the innovative "Geoscape Vancouver" produced by the Geological Survey of Canada. The Albuquerque poster required four years of development including the creation of unique graphics and text, evaluations, and reviews by geologists and classroom educators. The poster content is aligned with state and national science standards at the middle school level and can be modified by teachers from K-12. All information that a teacher might need in order to teach a thematic unit on major geological topics is included in the poster, and linked to the local landscape. An accompanying web site for teachers includes additional materials. The initial funding for the project was an Intel Innovations in Teaching Grant, in the amount of 3K, awarded to Newsom. Museum in-house resources in science, education and graphics were utilized in the poster design and development. Funding for printing required small contributions from many local and regional organizations supporting science education. These contributors included Sandia National Lab, Rocky Mountain Section AAPG Foundation, New Mexico Academy of Science, ExxonMobile Volunteer Involvement Grant, Federal Bureau of Land Management, Albuquerque Rotary Club and Albuquerque Geological Society. Printing at-cost through a local company produced a poster on high quality paper at low cost. An initial printing of 5000 copies has enabled the Museum to offer the poster free of charge to all greater Albuquerque area K-12 teachers. In addition, the poster is on sale to the general public at the museum store. The response by classroom educators, local geologists, and the general public has been enthusiastic. The Rocky Mountain Section AAPG Foundation Board recently voted to use the poster as a model and encourage creation of other similar posters.
O'Reilly, Michael K; Reese, Sven; Herlihy, Therese; Geoghegan, Tony; Cantwell, Colin P; Feeney, Robin N M; Jones, James F X
2016-01-01
For centuries, cadaveric dissection has been the touchstone of anatomy education. It offers a medical student intimate access to his or her first patient. In contrast to idealized artisan anatomical models, it presents the natural variation of anatomy in fine detail. However, a new teaching construct has appeared recently in which artificial cadavers are manufactured through three-dimensional (3D) printing of patient specific radiological data sets. In this article, a simple powder based printer is made more versatile to manufacture hard bones, silicone muscles and perfusable blood vessels. The approach involves blending modern approaches (3D printing) with more ancient ones (casting and lost-wax techniques). These anatomically accurate models can augment the approach to anatomy teaching from dissection to synthesis of 3D-printed parts held together with embedded rare earth magnets. Vascular simulation is possible through application of pumps and artificial blood. The resulting arteries and veins can be cannulated and imaged with Doppler ultrasound. In some respects, 3D-printed anatomy is superior to older teaching methods because the parts are cheap, scalable, they can cover the entire age span, they can be both dissected and reassembled and the data files can be printed anywhere in the world and mass produced. Anatomical diversity can be collated as a digital repository and reprinted rather than waiting for the rare variant to appear in the dissection room. It is predicted that 3D printing will revolutionize anatomy when poly-material printing is perfected in the early 21st century. © 2015 American Association of Anatomists.
Three-Dimensional Printing with Biomass-Derived PEF for Carbon-Neutral Manufacturing.
Kucherov, Fedor A; Gordeev, Evgeny G; Kashin, Alexey S; Ananikov, Valentine P
2017-12-11
Biomass-derived poly(ethylene-2,5-furandicarboxylate) (PEF) has been used for fused deposition modeling (FDM) 3D printing. A complete cycle from cellulose to the printed object has been performed. The printed PEF objects created in the present study show higher chemical resistance than objects printed with commonly available materials (acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), glycol-modified poly(ethylene terephthalate) (PETG)). The studied PEF polymer has shown key advantages for 3D printing: optimal adhesion, thermoplasticity, lack of delamination and low heat shrinkage. The high thermal stability of PEF and relatively low temperature that is necessary for extrusion are optimal for recycling printed objects and minimizing waste. Several successive cycles of 3D printing and recycling were successfully shown. The suggested approach for extending additive manufacturing to carbon-neutral materials opens a new direction in the field of sustainable development. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direct Desktop Printed-Circuits-on-Paper Flexible Electronics
Zheng, Yi; He, Zhizhu; Gao, Yunxia; Liu, Jing
2013-01-01
There currently lacks of a way to directly write out electronics, just like printing pictures on paper by an office printer. Here we show a desktop printing of flexible circuits on paper via developing liquid metal ink and related working mechanisms. Through modifying adhesion of the ink, overcoming its high surface tension by dispensing machine and designing a brush like porous pinhead for printing alloy and identifying matched substrate materials among different papers, the slightly oxidized alloy ink was demonstrated to be flexibly printed on coated paper, which could compose various functional electronics and the concept of Printed-Circuits-on-Paper was thus presented. Further, RTV silicone rubber was adopted as isolating inks and packaging material to guarantee the functional stability of the circuit, which suggests an approach for printing 3D hybrid electro-mechanical device. The present work paved the way for a low cost and easygoing method in directly printing paper electronics.
Future enhancements to 3D printing and real time production
NASA Astrophysics Data System (ADS)
Landa, Joseph; Jenkins, Jeffery; Wu, Jerry; Szu, Harold
2014-05-01
The cost and scope of additive printing machines range from several hundred to hundreds of thousands of dollars. For the extra money, one can get improvements in build size, selection of material properties, resolution, and consistency. However, temperature control during build and fusing predicts outcome and protects the IP by large high cost machines. Support material options determine geometries that can be accomplished which drives cost and complexity of printing heads. Historically, 3D printers have been used for design and prototyping efforts. Recent advances and cost reduction sparked new interest in developing printed products and consumables such as NASA who is printing food, printing consumer parts (e.g. cell phone cases, novelty toys), making tools and fixtures in manufacturing, and recursively print a self-similar printer (c.f. makerbot). There is a near term promise of the capability to print on demand products at the home or office... directly from the printer to use.
Tian, Junfei; Shen, Wei
2011-02-07
We used relief and planographic printing methods to print the catalytic effect of an enzyme, but not the enzyme molecules, onto paper. Printing enzymatic reactions have applications in bioactive papers, low-cost diagnostics, anti-counterfeiting devices and advanced packaging materials. These methods can create novel printing effects on commodity surfaces for advanced applications.
Craft, Daniel F; Kry, Stephen F; Balter, Peter; Salehpour, Mohammad; Woodward, Wendy; Howell, Rebecca M
2018-04-01
Using 3D printing to fabricate patient-specific devices such as tissue compensators, boluses, and phantoms is inexpensive and relatively simple. However, most 3D printing materials have not been well characterized, including their radiologic tissue equivalence. The purposes of this study were to (a) determine the variance in Hounsfield Units (HU) for printed objects, (b) determine if HU varies over time, and (c) calculate the clinical dose uncertainty caused by these material variations. For a sample of 10 printed blocks each of PLA, NinjaFlex, ABS, and Cheetah, the average HU and physical density were tracked at initial printing and over the course of 5 weeks, a typical timeframe for a standard course of radiotherapy. After initial printing, half the blocks were stored in open boxes, the other half in sealed bags with desiccant. Variances in HU and density over time were evaluated for the four materials. Various clinical photon and electron beams were used to evaluate potential errors in clinical depth dose as a function of assumptions made during treatment planning. The clinical depth error was defined as the distance between the correctly calculated 90% isodose line and the 90% isodose line calculated using clinically reasonable, but simplified, assumptions. The average HU measurements of individual blocks of PLA, ABS, NinjaFlex, and Cheetah varied by as much as 121, 30, 178, and 30 HU, respectively. The HU variation over 5 weeks was much smaller for all materials. The magnitude of clinical depth errors depended strongly on the material, energy, and assumptions, but some were as large as 9.0 mm. If proper quality assurance steps are taken, 3D printed objects can be used accurately and effectively in radiation therapy. It is critically important, however, that the properties of any material being used in patient care be well understood and accounted for. © 2018 American Association of Physicists in Medicine.
Creation of a 3D printed temporal bone model from clinical CT data.
Cohen, Joss; Reyes, Samuel A
2015-01-01
Generate and describe the process of creating a 3D printed, rapid prototype temporal bone model from clinical quality CT images. We describe a technique to create an accurate, alterable, and reproducible rapid prototype temporal bone model using freely available software to segment clinical CT data and generate three different 3D models composed of ABS plastic. Each model was evaluated based on the appearance and size of anatomical structures and response to surgical drilling. Mastoid air cells had retained scaffolding material in the initial versions. This required modifying the model to allow drainage of the scaffolding material. External auditory canal dimensions were similar to those measured from the clinical data. Malleus, incus, oval window, round window, promontory, horizontal semicircular canal, and mastoid segment of the facial nerve canal were identified in all models. The stapes was only partially formed in two models and absent in the third. Qualitative feel of the ABS plastic was softer than bone. The pate produced by drilling was similar to bone dust when appropriate irrigation was used. We present a rapid prototype temporal bone model made based on clinical CT data using 3D printing technology. The model can be made quickly and inexpensively enough to have potential applications for educational training. Copyright © 2015 Elsevier Inc. All rights reserved.
Projection transparencies from printed material
NASA Technical Reports Server (NTRS)
Grunewald, L. S.; Nickerson, T. B.
1968-01-01
Method for preparing project transparencies, or view graphs, permits the use of almost any expendable printed material, pictures, charts, or text, in unlimited color or black and white. The method can be accomplished by either of two techniques, with a slight difference in materials.
NASA Astrophysics Data System (ADS)
Yang, Kai Ke; Zhu, Ji Hong; Wang, Chuang; Jia, Dong Sheng; Song, Long Long; Zhang, Wei Hong
2018-05-01
The purpose of this paper is to investigate the structures achieved by topology optimization and their fabrications by 3D printing considering the particular features of material microstructures and macro mechanical performances. Combining Digital Image Correlation and Optical Microscope, this paper experimentally explored the anisotropies of stiffness and strength existing in the 3D printed polymer material using Stereolithography (SLA) and titanium material using Selective Laser Melting (SLM). The standard specimens and typical structures obtained by topology optimization were fabricated along different building directions. On the one hand, the experimental results of these SLA produced structures showed stable properties and obviously anisotropic rules in stiffness, ultimate strengths and places of fractures. Further structural designs were performed using topology optimization when the particular mechanical behaviors of SLA printed materials were considered, which resulted in better structural performances compared to the optimized designs using `ideal' isotropic material model. On the other hand, this paper tested the mechanical behaviors of SLM printed multiscale lattice structures which were fabricated using the same metal powder and the same machine. The structural stiffness values are generally similar while the strength behaviors show a difference, which are mainly due to the irregular surface quality of the tiny structural branches of the lattice. The above evidences clearly show that the consideration of the particular behaviors of 3D printed materials is therefore indispensable for structural design and optimization in order to improve the structural performance and strengthen their practical significance.
NASA Astrophysics Data System (ADS)
Yang, Kai Ke; Zhu, Ji Hong; Wang, Chuang; Jia, Dong Sheng; Song, Long Long; Zhang, Wei Hong
2018-02-01
The purpose of this paper is to investigate the structures achieved by topology optimization and their fabrications by 3D printing considering the particular features of material microstructures and macro mechanical performances. Combining Digital Image Correlation and Optical Microscope, this paper experimentally explored the anisotropies of stiffness and strength existing in the 3D printed polymer material using Stereolithography (SLA) and titanium material using Selective Laser Melting (SLM). The standard specimens and typical structures obtained by topology optimization were fabricated along different building directions. On the one hand, the experimental results of these SLA produced structures showed stable properties and obviously anisotropic rules in stiffness, ultimate strengths and places of fractures. Further structural designs were performed using topology optimization when the particular mechanical behaviors of SLA printed materials were considered, which resulted in better structural performances compared to the optimized designs using `ideal' isotropic material model. On the other hand, this paper tested the mechanical behaviors of SLM printed multiscale lattice structures which were fabricated using the same metal powder and the same machine. The structural stiffness values are generally similar while the strength behaviors show a difference, which are mainly due to the irregular surface quality of the tiny structural branches of the lattice. The above evidences clearly show that the consideration of the particular behaviors of 3D printed materials is therefore indispensable for structural design and optimization in order to improve the structural performance and strengthen their practical significance.
Micro-masonry for 3D Additive Micromanufacturing
Keum, Hohyun; Kim, Seok
2014-01-01
Transfer printing is a method to transfer solid micro/nanoscale materials (herein called ‘inks’) from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices. PMID:25146178
The NIH 3D Print Exchange: A Public Resource for Bioscientific and Biomedical 3D Prints.
Coakley, Meghan F; Hurt, Darrell E; Weber, Nick; Mtingwa, Makazi; Fincher, Erin C; Alekseyev, Vsevelod; Chen, David T; Yun, Alvin; Gizaw, Metasebia; Swan, Jeremy; Yoo, Terry S; Huyen, Yentram
2014-09-01
The National Institutes of Health (NIH) has launched the NIH 3D Print Exchange, an online portal for discovering and creating bioscientifically relevant 3D models suitable for 3D printing, to provide both researchers and educators with a trusted source to discover accurate and informative models. There are a number of online resources for 3D prints, but there is a paucity of scientific models, and the expertise required to generate and validate such models remains a barrier. The NIH 3D Print Exchange fills this gap by providing novel, web-based tools that empower users with the ability to create ready-to-print 3D files from molecular structure data, microscopy image stacks, and computed tomography scan data. The NIH 3D Print Exchange facilitates open data sharing in a community-driven environment, and also includes various interactive features, as well as information and tutorials on 3D modeling software. As the first government-sponsored website dedicated to 3D printing, the NIH 3D Print Exchange is an important step forward to bringing 3D printing to the mainstream for scientific research and education.
Gittelsohn, Joel; Dennisuk, Lauren A; Christiansen, Karina; Bhimani, Roshni; Johnson, Antoinette; Alexander, Eleanore; Lee, Matthew; Lee, Seung Hee; Rowan, Megan; Coutinho, Anastasia J
2013-08-01
Poor accessibility to affordable healthy foods is associated with higher rates of obesity and diet-related chronic diseases. We present our process evaluation of a youth-targeted environmental intervention (Baltimore Healthy Eating Zones) that aimed to increase the availability of healthy foods and promote these foods through signage, taste tests and other interactive activities in low-income Baltimore City. Trained peer educators reinforced program messages. Dose, fidelity and reach-as measured by food stocking, posting of print materials, distribution of giveaways and number of interactions with community members-were collected in six recreation centers and 21 nearby corner stores and carryouts. Participating stores stocked promoted foods and promotional print materials with moderate fidelity. Interactive sessions were implemented with high reach and dose among both adults and youth aged 10-14 years, with more than 4000 interactions. Recreation centers appear to be a promising location to interact with low-income youth and reinforce exposure to messages.
Farahani, Rouhollah D; Dubé, Martine; Therriault, Daniel
2016-07-01
The integration of nanotechnology into three-dimensional printing (3DP) offers huge potential and opportunities for the manufacturing of 3D engineered materials exhibiting optimized properties and multifunctionality. The literature relating to different 3DP techniques used to fabricate 3D structures at the macro- and microscale made of nanocomposite materials is reviewed here. The current state-of-the-art fabrication methods, their main characteristics (e.g., resolutions, advantages, limitations), the process parameters, and materials requirements are discussed. A comprehensive review is carried out on the use of metal- and carbon-based nanomaterials incorporated into polymers or hydrogels for the manufacturing of 3D structures, mostly at the microscale, using different 3D-printing techniques. Several methods, including but not limited to micro-stereolithography, extrusion-based direct-write technologies, inkjet-printing techniques, and popular powder-bed technology, are discussed. Various examples of 3D nanocomposite macro- and microstructures manufactured using different 3D-printing technologies for a wide range of domains such as microelectromechanical systems (MEMS), lab-on-a-chip, microfluidics, engineered materials and composites, microelectronics, tissue engineering, and biosystems are reviewed. Parallel advances on materials and techniques are still required in order to employ the full potential of 3D printing of multifunctional nanocomposites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators.
Memon, Muhammad Usman; Lim, Sungjoon
2017-09-09
The significant improvements observed in the field of bulk-production of printed microchip technologies in the past decade have allowed the fabrication of microchip printing on numerous materials including organic and flexible substrates. Printed sensors and electronics are of significant interest owing to the fast and low-cost fabrication techniques used in their fabrication. The increasing amount of research and deployment of specially printed electronic sensors in a number of applications demonstrates the immense attention paid by researchers to this topic in the pursuit of achieving wider-scale electronics on different dielectric materials. Although there are many traditional methods for fabricating radio frequency (RF) components, they are time-consuming, expensive, complicated, and require more power for operation than additive fabrication methods. This paper serves as a summary/review of improvements made to the additive printing technologies. The article focuses on three recently developed printing methods for the fabrication of wireless sensors operating at microwave frequencies. The fabrication methods discussed include inkjet printing, three-dimensional (3D) printing, and screen printing.
Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators
2017-01-01
The significant improvements observed in the field of bulk-production of printed microchip technologies in the past decade have allowed the fabrication of microchip printing on numerous materials including organic and flexible substrates. Printed sensors and electronics are of significant interest owing to the fast and low-cost fabrication techniques used in their fabrication. The increasing amount of research and deployment of specially printed electronic sensors in a number of applications demonstrates the immense attention paid by researchers to this topic in the pursuit of achieving wider-scale electronics on different dielectric materials. Although there are many traditional methods for fabricating radio frequency (RF) components, they are time-consuming, expensive, complicated, and require more power for operation than additive fabrication methods. This paper serves as a summary/review of improvements made to the additive printing technologies. The article focuses on three recently developed printing methods for the fabrication of wireless sensors operating at microwave frequencies. The fabrication methods discussed include inkjet printing, three-dimensional (3D) printing, and screen printing. PMID:28891947
Evaluating the Use of Cleft Lip and Palate 3D-Printed Models as a Teaching Aid.
AlAli, Ahmad B; Griffin, Michelle F; Calonge, Wenceslao M; Butler, Peter E
Visualization tools are essential for effective medical education, to aid students understanding of complex anatomical systems. Three dimensional (3D) printed models are showing a wide-reaching potential in the field of medical education, to aid the interpretation of 2D imaging. This study investigates the use of 3D-printed models in educational seminars on cleft lip and palate, by comparing integrated "hands-on" student seminars, with 2D presentation seminar methods. Cleft lip and palate models were manufactured using 3D-printing technology at the medical school. Sixty-seven students from two medical schools participated in the study. The students were randomly allocated to 2 groups. Knowledge was compared between the groups using a multiple-choice question test before and after the teaching intervention. Group 1 was the control group with a PowerPoint presentation-based educational seminar and group 2 was the test group, with the same PowerPoint presentation, but with the addition of a physical demonstration using 3D-printed models of unilateral and bilateral cleft lips and palate. The level of knowledge gained was established using a preseminar and postseminar assessment, in 2 different institutions, where the addition of the 3D-printed model resulted in a significant improvement in the mean percentage of knowledge gained (44.65% test group; 32.16%; control group; p = 0.038). Student experience was assessed using a postseminar survey, where students felt the 3D-printed model significantly improved the learning experience (p = 0.005) and their visualization (p = 0.001). This study highlights the benefits of the use of 3D-printed models as visualization tools in medical education and the potential of 3D-printing technology to become a standard and effective tool in the interpretation of 2D imaging. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
The study on surface characteristics of high transmission components by 3D printing technique
NASA Astrophysics Data System (ADS)
Kuo, Hui-Jean; Huang, Chien-Yao; Wang, Wan-Hsuan; Lin, Ping-Hung; Tsay, Ho-Lin; Hsu, Wei-Yao
2017-06-01
3D printing is a high freedom fabrication technique. Any components, which designed by 3D design software or scanned from real parts, can be printed. The printing materials include metals, plastics and biocompatible materials etc. Especially for those high transmission components used in optical system or biomedical field can be printed, too. High transmission lens increases the performances of optical system. And high transmission cover or shell using in biomedical field helps observers to see the structures inside, such as brain, bone, and vessels. But the surface of printed components is not transparent, even the inside layer is transparent. If we increase the transmittance of surface, the components which fabricated by 3D printing process could have high transmission. In this paper, we using illuminating and polishing methods to improve the transmittance of printing surface. The illuminating time is the experiment parameters in illuminating method. The roughness and transmission of printing components are the evaluating targets. A 3D printing machine, Stratasys Connex 500, has been used to print high transmittance components in this paper. The surface transmittance of printing components is increasing above 80 % by polishing method.
Sander, Ian M; Liepert, Taimi T; Doney, Evan L; Leevy, W Matthew; Liepert, Douglas R
2017-04-07
Within the Ear, Nose, and Throat (ENT) medical space, a relatively small fraction of patients follow through with elective surgeries to fix ailments such as a deviated septum or occluded sinus passage. Patient understanding of their diagnosis and treatment plan is integral to compliance, which ultimately yields improved medical outcomes and better quality of life. Here we report the usage of advanced, polyjet 3D printing methods to develop a multimaterial replica of human nasal sinus anatomy, derived from clinical X-ray computed tomography (CT) data, to be used as an educational aid during physician consultation. The final patient education model was developed over several iterations to optimize material properties, anatomical accuracy and overall display. A two-arm, single-center, randomized, prospective study was then performed in which 50 ENT surgical candidates (and an associated control group, n = 50) were given an explanation of their anatomy, disease state, and treatment options using the education model as an aid. Statistically significant improvements in patient ratings of their physician's explanation of their treatment options ( p = 0.020), self-rated anatomical understanding ( p = 0.043), self-rated understanding of disease state ( p = 0.016), and effectiveness of the visualization ( p = 0.007) were noted from the population that viewed the 3D education model, indicating it is an effective tool which ENT surgeons may use to educate and interact with patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Kai; Li, Ruixin; Jiang, Wenxue, E-mail: jiangortholivea@sina.cn
In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young’s modulus of the material obtained via 3D printing were significantly higher thanmore » those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. - Highlights: • Silk fibroin/collagen was fabricated using 3D printing. • Physical characterization and Cell compatibility were compared. • 3D printed scaffold exhibited better overall performance.« less
3-D printed 2.4 GHz rectifying antenna for wireless power transfer applications
NASA Astrophysics Data System (ADS)
Skinner, Matthew
In this work, a 3D printed rectifying antenna that operates at the 2.4GHz WiFi band was designed and manufactured. The printed material did not have the same properties of bulk material, so the printed materials needed to be characterized. The antenna and rectifying circuit was printed out of Acrylonitrile Butadiene Styrene (ABS) filament and a conductive silver paste, with electrical components integrated into the circuit. Before printing the full rectifying antenna, each component was printed and evaluated. The printed antenna operated at the desired frequency with a return loss of -16 dBm with a bandwidth of 70MHz. The radiation pattern was measured in an anechoic chamber with good matching to the model. The rectifying circuit was designed in Ansys Circuit Simulation using Schottky diodes to enable the circuit to operate at lower input power levels. Two rectifying circuits were manufactured, one by printing the conductive traces with silver ink, and one with traces made from copper. The printed silver ink is less conductive than the bulk copper and therefore the output voltage of the printed rectifier was lower than the copper circuit. The copper circuit had an efficiency of 60% at 0dBm and the printed silver circuit had an efficiency of 28.6% at 0dBm. The antenna and rectifying circuits were then connected to each other and the performance was compared to a fully printed integrated rectifying antenna. The rectifying antennas were placed in front of a horn antenna while changing the power levels at the antenna. The efficiency of the whole system was lower than the individual components but an efficiency of 11% at 10dBm was measured.
ERIC Educational Resources Information Center
Milwaukee Public Schools, WI. Div. of Curriculum and Instruction.
In order to overcome the educational deficit of children of low income families provisions were planned for the establishment of libraries staffed full time with a librarian-aide in each of seven elementary schools, having a total project enrollment of 5,713. In addition to the usual printed material the libraries were to have audiovisual…
Engaging the YouTube Google-Eyed Generation: Strategies for Using Web 2.0 in Teaching and Learning
ERIC Educational Resources Information Center
Duffy, Peter
2008-01-01
YouTube, Podcasting, Blogs, Wikis and RSS are buzz words currently associated with the term Web 2.0 and represent a shifting pedagogical paradigm for the use of a new set of tools within education. The implication here is a possible shift from the basic archetypical vehicles used for (e)learning today (lecture notes, printed material, PowerPoint,…
ERIC Educational Resources Information Center
Nihuka, Kassimu A.; Voogt, Joke
2011-01-01
In most sub-Sahara African countries, distance education is delivered using print materials complemented by a few face-to-face sessions. The approach is associated with a myriad of challenges some of which can be addressed by appropriately selected e-learning technologies based on the context in which they need to be used. This study was designed…
Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen
NASA Astrophysics Data System (ADS)
Cruz, P.; Shoemake, E. D.; Adam, P.; Leachman, J.
2015-12-01
Advances in additive manufacturing technology have made 3D printing a viable solution for many industries, allowing for the manufacture of designs that could not be made through traditional subtractive methods. Applicability of additive manufacturing in cryogenic applications is hindered, however, by a lack of accurate material properties information. Nylon is available for printing using fused deposition modeling (FDM) and selective laser sintering (SLS). We selected 5 SLS (DuraForm® EX, DuraForm® HST, DuraForm® PA, PA 640-GSL, and PA 840-GSL) and 2 FDM (Nylon 12, ULTEM) nylon variants based on the bulk material properties and printed properties at room temperature. Tensile tests were performed on five samples of each material while immersed in liquid nitrogen at approximately 77 Kelvin. Samples were tested in XY and, where available, Z printing directions to determine influence on material properties. Results show typical SLS and FDM nylon ultimate strength retention at 77 K, when compared to (extruded or molded) nylon ultimate strength.
Aerosol jet printed silver nanowire transparent electrode for flexible electronic application
NASA Astrophysics Data System (ADS)
Tu, Li; Yuan, Sijian; Zhang, Huotian; Wang, Pengfei; Cui, Xiaolei; Wang, Jiao; Zhan, Yi-Qiang; Zheng, Li-Rong
2018-05-01
Aerosol jet printing technology enables fine feature deposition of electronic materials onto low-temperature, non-planar substrates without masks. In this work, silver nanowires (AgNWs) are proposed to be printed into transparent flexible electrodes using a Maskless Mesoscale Material Deposition Aerosol Jet® printing system on a glass substrate. The influence of the most significant process parameters, including printing cycles, printing speed, and nozzle size, on the performance of AgNW electrodes was systematically studied. The morphologies of printed patterns were characterized by scanning electron microscopy, and the transmittance was evaluated using an ultraviolet-visible spectrophotometer. Under optimum conditions, high transparent AgNW electrodes with a sheet resistance of 57.68 Ω/sq and a linewidth of 50.9 μm were obtained, which is an important step towards a higher performance goal for flexible electronic applications.
NASA Astrophysics Data System (ADS)
Ding, Yaoyu; Kovacevic, Radovan
2016-07-01
Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.
Plasma jet printing of electronic materials on flexible and nonconformal objects.
Gandhiraman, Ram P; Jayan, Vivek; Han, Jin-Woo; Chen, Bin; Koehne, Jessica E; Meyyappan, M
2014-12-10
We present a novel approach for the room-temperature fabrication of conductive traces and their subsequent site-selective dielectric encapsulation for use in flexible electronics. We have developed an aerosol-assisted atmospheric pressure plasma-based deposition process for efficiently depositing materials on flexible substrates. Silver nanowire conductive traces and silicon dioxide dielectric coatings for encapsulation were deposited using this approach as a demonstration. The paper substrate with silver nanowires exhibited a very low change in resistance upon 50 cycles of systematic deformation, exhibiting high mechanical flexibility. The applicability of this process to print conductive traces on nonconformal 3D objects was also demonstrated through deposition on a 3D-printed thermoplastic object, indicating the potential to combine plasma printing with 3D printing technology. The role of plasma here includes activation of the material present in the aerosol for deposition, increasing the deposition rate, and plasma polymerization in the case of inorganic coatings. The demonstration here establishes a low-cost, high-throughput, and facile process for printing electronic components on nonconventional platforms.
36 CFR 2.52 - Sale or distribution of printed matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Sale or distribution of printed matter. 2.52 Section 2.52 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF... matter. (a) Printed Matter. The term “printed matter” means message-bearing textual printed material such...
Printing of Patterned, Engineered E. coli Biofilms with a Low-Cost 3D Printer.
Schmieden, Dominik T; Basalo Vázquez, Samantha J; Sangüesa, Héctor; van der Does, Marit; Idema, Timon; Meyer, Anne S
2018-05-18
Biofilms can grow on virtually any surface available, with impacts ranging from endangering the lives of patients to degrading unwanted water contaminants. Biofilm research is challenging due to the high degree of biofilm heterogeneity. A method for the production of standardized, reproducible, and patterned biofilm-inspired materials could be a boon for biofilm research and allow for completely new engineering applications. Here, we present such a method, combining 3D printing with genetic engineering. We prototyped a low-cost 3D printer that prints bioink, a suspension of bacteria in a solution of alginate that solidifies on a calcium-containing substrate. We 3D-printed Escherichia coli in different shapes and in discrete layers, after which the cells survived in the printing matrix for at least 1 week. When printed bacteria were induced to form curli fibers, the major proteinaceous extracellular component of E. coli biofilms, they remained adherent to the printing substrate and stably spatially patterned even after treatment with a matrix-dissolving agent, indicating that a biofilm-mimicking structure had formed. This work is the first demonstration of patterned, biofilm-inspired living materials that are produced by genetic control over curli formation in combination with spatial control by 3D printing. These materials could be used as living, functional materials in applications such as water filtration, metal ion sequestration, or civil engineering, and potentially as standardizable models for certain curli-containing biofilms.
The influence of the accelerated ageing on the black screen element of the Electroink prints
NASA Astrophysics Data System (ADS)
Majnaric, I.; Bolanca, Z.; Bolanca Mirkovic, I.
2010-06-01
Printing material and prints undergo changes during ageing which can be recognized in deterioration in the physical, chemical and optical properties. The aim of this work is to determine the optical changes of the prints caused by ageing of the printing material and of the prints obtained by the application of the indirect electrophotography. The change of the screen elements in lighter halftone areas, which was obtained by the usage of the microscopic image analysis, has been discussed in the article. For the preparation of samples the following papers were used: fine art paper, recycled paper and offset paper as well as black Electroink. Three sample series were observed: prints on nonaged paper and ElectroInk, prints on aged paper and ElectroInk and prints on aged paper and nonaged ElectroInk. The investigation results show that by ageing of the uncoated printing substrates the decrease of the dots on prints can be expected, while the printing on the aged paper results in the increased reproduction of the halftone dots. The obtained results are the contribution to the explanation of the influence of the accelerated ageing process of papers which are used for printing and the aged prints on the halftone dot changes. Except the mentioned determined scientific contribution the results are applicable in the area of the printing product quality as well as in the forensic science.
ERIC Educational Resources Information Center
Sander, Ian M.; McGoldrick, Matthew T.; Helms, My N.; Betts, Aislinn; van Avermaete, Anthony; Owers, Elizabeth; Doney, Evan; Liepert, Taimi; Niebur, Glen; Liepert, Douglas; Leevy, W. Matthew
2017-01-01
Advances in three-dimensional (3D) printing allow for digital files to be turned into a "printed" physical product. For example, complex anatomical models derived from clinical or pre-clinical X-ray computed tomography (CT) data of patients or research specimens can be constructed using various printable materials. Although 3D printing…
NASA Astrophysics Data System (ADS)
Alssabbagh, Moayyad; Tajuddin, Abd Aziz; Abdulmanap, Mahayuddin; Zainon, Rafidah
2017-06-01
Recently, the three-dimensional printer has started to be utilized strongly in medical industries. In the human body, many parts or organs can be printed from 3D images to meet accurate organ geometries. In this study, five common 3D printing materials were evaluated in terms of their elementary composition and the mass attenuation coefficients. The online version of XCOM photon cross-section database was used to obtain the attenuation values of each material. The results were compared with the attenuation values of the thyroid listed in the International Commission on Radiation Units and Measurements - ICRU 44. Two original thyroid models (hollow-inside and solid-inside) were designed from scratch to be used in nuclear medicine, diagnostic radiology and radiotherapy for dosimetry and image quality purposes. Both designs have three holes for installation of radiation dosimeters. The hollow-inside model has more two holes in the top for injection the radioactive materials. The attenuation properties of the Polylactic Acid (PLA) material showed a very good match with the thyroid tissue, which it was selected to 3D print the phantom using open source RepRap, Prusa i3 3D printer. The scintigraphy images show that the phantom simulates a real healthy thyroid gland and thus it can be used for image quality purposes. The measured CT numbers of the PA material after the 3D printing show a close match with the human thyroid CT numbers. Furthermore, the phantom shows a good accommodation of the TLD dosimeters inside the holes. The 3D fabricated thyroid phantom simulates the real shape of the human thyroid gland with a changeable geometrical shape-size feature to fit different age groups. By using 3D printing technology, the time required to fabricate the 3D phantom was considerably shortened compared to the longer conventional methods, where it took only 30 min to print out the model. The 3D printing material used in this study is commercially available and cost-effective compared to current commercial tissue-equivalent materials.
3D Printed Bionic Nanodevices.
Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C
2016-06-01
The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the versatility of extrusion-based 3D printing technologies to interweave nanomaterials and fabricate novel bionic devices.
Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.
2016-01-01
Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the versatility of extrusion-based 3D printing technologies to interweave nanomaterials and fabricate novel bionic devices. PMID:27617026
Gagliardi, Anna R; Légaré, France; Brouwers, Melissa C; Webster, Fiona; Badley, Elizabeth; Straus, Sharon
2016-02-29
Patient-mediated knowledge translation (PKT) interventions engage patients in their own health care. Insight on which PKT interventions are effective is lacking. We sought to describe the type and impact of PKT interventions. We performed a systematic review of PKT interventions, defined as strategies that inform, educate and engage patients in their own health care. We searched MEDLINE, EMBASE and the Cochrane Library from 2005 to 2014 for English language studies that evaluated PKT interventions delivered immediately before, during or upon conclusion of clinical encounters to individual patients with arthritis or cancer. Data were extracted on study characteristics, PKT intervention (theory, content, delivery, duration, personnel, timing) and outcomes. Interventions were characterized by type of patient engagement (inform, activate, collaborate). We performed content analysis and reported summary statistics. Of 694 retrieved studies, 16 were deemed eligible (5 arthritis, 11 cancer; 12 RCTs, 4 cohort studies; 7 low, 3 uncertain, 6 high risk of bias). PKT interventions included print material in 10 studies (brochures, booklets, variety of print material, list of websites), electronic material in 10 studies (video, computer program, website) and counselling in 2 studies. They were offered before, during and after consultation in 4, 1 and 4 studies, respectively; as single or multifaceted interventions in 10 and 6 studies, respectively; and by clinicians, health educators, researchers or volunteers in 4, 3, 5 and 1 study, respectively. Most interventions informed or activated patients. All studies achieved positive impact in one or more measures of patient knowledge, decision-making, communication and behaviour. This was true regardless of condition, PKT intervention, timing, personnel, type of engagement or delivery (single or multifaceted). No studies assessed patient harms, or interventions for providers to support PKT intervention delivery. Two studies evaluated the impact on providers of PKT interventions aimed at patients. Single interventions involving print material achieved beneficial outcomes as did more complex interventions. Few studies were eligible, and no studies evaluated patient harms, or provider outcomes. Further research is warranted to evaluate these PKT interventions in more patients, or patients with different conditions; different types of PKT interventions for patients and for providers; and potential harms associated with interventions.
How reliable is computerized assessment of readability?
Mailloux, S L; Johnson, M E; Fisher, D G; Pettibone, T J
1995-01-01
To assess the consistency and comparability of readability software programs, four software programs (Corporate Voice, Grammatix IV, Microsoft Word for Windows, and RightWriter) were compared. Standard materials included 28 pieces of printed educational materials on human immunodeficiency virus/acquired immunodeficiency syndrome distributed nationally and the Gettysburg Address. Statistical analyses for the educational materials revealed that each of the three formulas assessed (Flesch-Kincaid, Flesch Reading Ease, and Gunning Fog Index) provided significantly different grade equivalent scores and that the Microsoft Word program provided significantly lower grade levels and was more inconsistent in the scores provided. For the Gettysburg Address, considerable variation was revealed among formulas, with the discrepancy being up to two grade levels. When averaging across formulas, there was a variation of 1.3 grade levels between the four software programs. Given the variation between formulas and programs, implications for decisions based on results of these software programs are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craft, D; Kry, S; Salehpour, M
Purpose: Patient-specific tissue equivalent compensators can be used for post-mastectomy radiation therapy (PMRT) to achieve homogenous dose distributions with single-field treatments. However, current fabrication methods are time consuming and expensive. 3D-printing technology could overcome these limitations. The purposes of this study were to [1] evaluate materials for 3D-printed compensators [2] design and print a compensator to achieve a uniform thickness to a clinical target volume (CTV), and [3] demonstrate that a single-field electron compensator plan is a clinically feasible treatment option for PMRT. Methods: Blocks were printed with three materials; print accuracy, density, Hounsfield units (HU), and percent depth dosesmore » (PDD) were evaluated. For a CT scan of an anthropomorphic phantom, we used a ray-tracing method to design a compensator that achieved uniform thickness from compensator surface to CTV. The compensator was printed with flexible tissue equivalent material whose physical and radiological properties were most similar to soft tissue. A single-field electron compensator plan was designed and compared with two standard-of-care techniques. The compensator plan was validated with thermoluminescent dosimeter (TLD) measurements. Results: We identified an appropriate material for 3D-printed compensators that had high print accuracy (99.6%) and was similar to soft tissue; density was 1.04, HU was - 45 ± 43, and PDD curves agreed with clinical curves within 3 mm. We designed and printed a compensator that conformed well to the phantom surface and created a uniform thickness to the CTV. In-house fabrication was simple and inexpensive (<$75). Compared with the two standard plans, the compensator plan resulted in overall more homogeneous dose distributions and performed similarly in terms of lung/heart doses and 90% isodose coverage of the CTV. TLD measurements agreed well with planned doses (within 5 %). Conclusions: We have demonstrated that 3D-printed compensators make single-field electron therapy a clinically feasible treatment option for PMRT.« less
A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors
Leigh, Simon J.; Bradley, Robert J.; Purssell, Christopher P.; Billson, Duncan R.; Hutchins, David A.
2012-01-01
3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319
16 CFR 305.16 - Labeling and marking for plumbing products.
Code of Federal Regulations, 2010 CFR
2010-01-01
... printed matter distributed or displayed in connection with such product (including packaging and point-of-sale material, catalog material, and print advertising) shall include, in a conspicuous manner, the...
3D printing of soft-matter to open a new era of soft-matter MEMS/robotics (Conference Presentation)
NASA Astrophysics Data System (ADS)
Furukawa, Hidemitsu
2017-04-01
3D printing technology is becoming useful and applicable by the progress of information and communication technology (ICT). It means 3D printer is a kind of useful robot for additive manufacturing and is controlled by computer with human-friendly software. Once user starts to use 3D printing of soft-matter, one can immediately understand computer-aided design (CAD) and engineering (CAE) technology will be more important and applicable for soft-matter systems. User can easily design soft-matter objects and 3D-print them. User can easily apply 3D-printed soft-matter objects to develop new research and application on MEMS and robotics. Here we introduce the recent progress of 3D printing (i.e. additive manufacturing), especially focusing on our 3D gel printing. We are trying to develop new advanced research and applications of 3D gel printer, including GEL-MECHANICS, GEL-PHOTONICS, and GEL-ROBOTICS. In the gel-mechanics, we are developing new gel materials for mechanical engineering. Some gels have high-mechanical strength and shape memory properties. In the gel-photonics. We are applying our original characterizing system, named `Scanning Microscopic Light Scattering (SMILS)', to analyze 3D printed gel materials. In the gel-robotics, we focus on 3D printing of soft parts for soft-robotics made form gel materials, like gel finger. Also we are challenging to apply 3D gel printing to start new company, to innovate new businesses in county side, and to create new 3D-printed foods.
Comparison of cadaveric and isomorphic three-dimensional printed models in temporal bone education.
Hochman, Jordan B; Rhodes, Charlotte; Wong, Dana; Kraut, Jay; Pisa, Justyn; Unger, Bertram
2015-10-01
Current three-dimensional (3D) printed simulations are complicated by insufficient void spaces and inconsistent density. We describe a novel simulation with focus on internal anatomic fidelity and evaluate against template/identical cadaveric education. Research ethics board-approved prospective cohort study. Generation of a 3D printed temporal bone was performed using a proprietary algorithm that deconstructs the digital model into slices prior to printing. This supplemental process facilitates removal of residual material from air-containing spaces and permits requisite infiltrative access to the all regions of the model. Ten otolaryngology trainees dissected a cadaveric temporal bone (CTB) followed by a matched/isomorphic 3D printed bone model (PBM), based on derivative micro-computed tomography data. Participants rated 1) physical characteristics, 2) specific anatomic constructs, 3) usefulness in skill development, and 4) perceived educational value. The survey instrument employed a seven-point Likert scale. Trainees felt physical characteristics of the PBM were quite similar to CTB, with highly ranked cortical (5.5 ± 1.5) and trabecular (5.2 ± 1.3) bone drill quality. The overall model was considered comparable to CTB (5.9 ± 0.74), with respectable air cell reproduction (6.1 ± 1.1). Internal constructs were rated as satisfactory (range, 4.9-6.2). The simulation was considered a beneficial training tool for all types of mastoidectomy (range, 5.9-6.6), posterior tympanotomy (6.5 ± 0.71), and skull base approaches (range, 6-6.5). Participants believed the model to be an effective training instrument (6.7 ± 0.68), which should be incorporated into the temporal bone lab (7.0 ± 0.0). The PBM was thought to improve confidence (6.7 ± 0.68) and operative performance (6.7 ± 0.48). Study participants found the PBM to be an effective platform that compared favorably to CTB. The model was considered a valuable adjunctive training tool with both realistic mechanical and visual character. NA © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
4D printing of a self-morphing polymer driven by a swellable guest medium.
Su, Jheng-Wun; Tao, Xiang; Deng, Heng; Zhang, Cheng; Jiang, Shan; Lin, Yuyi; Lin, Jian
2018-01-31
There is a significant need of advanced materials that can be fabricated into functional devices with defined three-dimensional (3D) structures for application in tissue engineering, flexible electronics, and soft robotics. This need motivates an emerging four-dimensional (4D) printing technology, by which printed 3D structures consisting of active materials can transform their configurations over time in response to stimuli. Despite the ubiquity of active materials in performing self-morphing processes, their potential for 4D printing has not been fully explored to date. In this study, we demonstrate 4D printing of a commercial polymer, SU-8, which has not been reported to date in this field. The working principle is based on a self-morphing process of the printed SU-8 structures through spatial control of the swelling medium inside the polymer matrix by a modified process. To understand the self-morphing behavior, fundamental studies on the effect of the geometries including contours and filling patterns were carried out. A soft electronic device as an actuator was demonstrated to realize an application of this programmable polymer using the 3D printing technology. These studies provide a new paradigm for application of SU-8 in 4D printing, paving a new route to the exploration of more potential candidates by this demonstrated strategy.
Hung, Kun-Che; Tseng, Ching-Shiow; Hsu, Shan-Hui
2014-10-01
Biodegradable materials that can undergo degradation in vivo are commonly employed to manufacture tissue engineering scaffolds, by techniques including the customized 3D printing. Traditional 3D printing methods involve the use of heat, toxic organic solvents, or toxic photoinitiators for fabrication of synthetic scaffolds. So far, there is no investigation on water-based 3D printing for synthetic materials. In this study, the water dispersion of elastic and biodegradable polyurethane (PU) nanoparticles is synthesized, which is further employed to fabricate scaffolds by 3D printing using polyethylene oxide (PEO) as a viscosity enhancer. The surface morphology, degradation rate, and mechanical properties of the water-based 3D-printed PU scaffolds are evaluated and compared with those of polylactic-co-glycolic acid (PLGA) scaffolds made from the solution in organic solvent. These scaffolds are seeded with chondrocytes for evaluation of their potential as cartilage scaffolds. Chondrocytes in 3D-printed PU scaffolds have excellent seeding efficiency, proliferation, and matrix production. Since PU is a category of versatile materials, the aqueous 3D printing process developed in this study is a platform technology that can be used to fabricate devices for biomedical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Clinical evaluation of final impressions from three-dimensional printed custom trays.
Sun, Yuchun; Chen, Hu; Li, Hong; Deng, Kehui; Zhao, Tian; Wang, Yong; Zhou, Yongsheng
2017-11-02
This study aimed to evaluate the quality of the final impressions taken by three-dimensional printed custom trays for edentulous patients. Custom trays were designed with or without saddle-shaped tissue stops and fabricated by three-dimensional printing techniques. Manually made trays with photocurable materials were produced as controls. Both 3D printed custom trays and manually made ones were used to take impressions from edentulous patients. After 3D scanning of the final impression, the impression materials were removed, thus the underneath tray surfaces were able to be scanned, allowing the thickness of the impression materials to be measured. Final impressions obtained by pre-border-molded 3D printed trays were scanned as references, to which the flange extension deviations and morphology deviations of the impressions taken by both 3D printed trays and manually made ones were calculated. The results showed that (1) impressions from 3D printed custom trays had better thickness distribution than that of manually made ones; (2) impression morphology deviations in non-marginal area were neither statistic different between 3D printed trays and manually made trays, nor between trays with and without tissue stops; and (3) final impressions taken by custom trays without pre-border-molding were tended to have insufficient flange extensions.
Greaney, Mary L; Puleo, Elaine; Bennett, Gary G; Haines, Jess; Viswanath, K; Gillman, Matthew W; Sprunck-Harrild, Kim; Coeling, Molly; Rusinak, Donna; Emmons, Karen M
2014-02-01
Many U.S. adults have multiple behavioral risk factors, and effective, scalable interventions are needed to promote population-level health. In the health care setting, interventions are often provided in print, although accessible to nearly everyone, are brief (e.g., pamphlets), are not interactive, and can require some logistics around distribution. Web-based interventions offer more interactivity but may not be accessible to all. Healthy Directions 2 was a primary care-based cluster randomized controlled trial designed to improve five behavioral cancer risk factors among a diverse sample of adults (n = 2,440) in metropolitan Boston. Intervention materials were available via print or the web. Purpose. To (a) describe the Healthy Directions 2 study design and (b) identify baseline factors associated with whether participants opted for print or web-based materials. Hierarchical regression models corrected for clustering by physician were built to examine factors associated with choice of intervention modality. At baseline, just 4.0% of participants met all behavioral recommendations. Nearly equivalent numbers of intervention participants opted for print and web-based materials (44.6% vs. 55.4%). Participants choosing web-based materials were younger, and reported having a better financial status, better perceived health, greater computer comfort, and more frequent Internet use (p < .05) than those opting for print. In addition, Whites were more likely to pick web-based material than Black participants. Interventions addressing multiple behaviors are needed in the primary care setting, but they should be available in web and print formats as nearly equal number of participants chose each option, and there are significant differences in the population groups using each modality.
Streamlined, Inexpensive 3D Printing of the Brain and Skull.
Naftulin, Jason S; Kimchi, Eyal Y; Cash, Sydney S
2015-01-01
Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3-4 in consumable plastic filament as described, and the total process takes 14-17 hours, almost all of which is unsupervised (preprocessing = 4-6 hr; printing = 9-11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1-5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes.
Patnaik, Lipilekha; Joshi, Ashish; Sahu, Trilochan
2015-01-01
Stress among diabetic patients is much more as compared to normal individuals. A delayed recognition of stress undoubtedly worsens the prognosis for survival for many diabetic patients. Hence, this study was planned to develop an intervention model for the reduction of stress among diabetic patients and to evaluate the developed intervention model in the proposed group. This study was conducted in endocrinology outpatient department of a tertiary care hospital. Starting at random, the patients were allocated to control group and test group. Controls were given printed educational materials. Test group were counseled with intense lifestyle education using both printed materials and computers; they were contacted by telephones by the investigator every 3 weeks for 3 months and SMS were sent every week containing some educational tips. Mean age was 54 ± 11.5 years overall ranging from 30 years to 80 years. About two-third of participants were males with similar distribution in both the groups (intervention = 66%, control = 64%). Half (50%) of the participants lived in joint families, followed by nuclear families (40%). Most (83%) were married and with either graduate or above graduate education (n = 39%). No significant difference was observed in socio-demographic characteristics among both control and intervention groups (P > 0.05). The average stress scores were similar (18.9) at baseline for control and intervention arms. At 3-month follow-up, however, these scores reduced to 17.05 in the intervention arm while they increased to 20.7 in the control arm. At 3 months follow-up, higher proportion of stress reduction was seen in the intervention group. Intervention in the form of intensive lifestyle education and phone calls and SMS significantly decrease their stress score. Mobile-based education has great potential to improve their mental status and increase patient-provider communication, and to decrease stress.
In situ electrical and thermal monitoring of printed electronics by two-photon mapping.
Pastorelli, Francesco; Accanto, Nicolò; Jørgensen, Mikkel; van Hulst, Niek F; Krebs, Frederik C
2017-06-19
Printed electronics is emerging as a new, large scale and cost effective technology that will be disruptive in fields such as energy harvesting, consumer electronics and medical sensors. The performance of printed electronic devices relies principally on the carrier mobility and molecular packing of the polymer semiconductor material. Unfortunately, the analysis of such materials is generally performed with destructive techniques, which are hard to make compatible with in situ measurements, and pose a great obstacle for the mass production of printed electronics devices. A rapid, in situ, non-destructive and low-cost testing method is needed. In this study, we demonstrate that nonlinear optical microscopy is a promising technique to achieve this goal. Using ultrashort laser pulses we stimulate two-photon absorption in a roll coated polymer semiconductor and map the resulting two-photon induced photoluminescence and second harmonic response. We show that, in our experimental conditions, it is possible to relate the total amount of photoluminescence detected to important material properties such as the charge carrier density and the molecular packing of the printed polymer material, all with a spatial resolution of 400 nm. Importantly, this technique can be extended to the real time mapping of the polymer semiconductor film, even during the printing process, in which the high printing speed poses the need for equally high acquisition rates.
Recent progress in printed 2/3D electronic devices
NASA Astrophysics Data System (ADS)
Klug, Andreas; Patter, Paul; Popovic, Karl; Blümel, Alexander; Sax, Stefan; Lenz, Martin; Glushko, Oleksandr; Cordill, Megan J.; List-Kratochvil, Emil J. W.
2015-09-01
New, energy-saving, efficient and cost-effective processing technologies such as 2D and 3D inkjet printing (IJP) for the production and integration of intelligent components will be opening up very interesting possibilities for industrial applications of molecular materials in the near future. Beyond the use of home and office based printers, "inkjet printing technology" allows for the additive structured deposition of photonic and electronic materials on a wide variety of substrates such as textiles, plastics, wood, stone, tiles or cardboard. Great interest also exists in applying IJP in industrial manufacturing such as the manufacturing of PCBs, of solar cells, printed organic electronics and medical products. In all these cases inkjet printing is a flexible (digital), additive, selective and cost-efficient material deposition method. Due to these advantages, there is the prospect that currently used standard patterning processes can be replaced through this innovative material deposition technique. A main issue in this research area is the formulation of novel functional inks or the adaptation of commercially available inks for specific industrial applications and/or processes. In this contribution we report on the design, realization and characterization of novel active and passive inkjet printed electronic devices including circuitry and sensors based on metal nanoparticle ink formulations and the heterogeneous integration into 2/3D printed demonstrators. The main emphasis of this paper will be on how to convert scientific inkjet knowledge into industrially relevant processes and applications.
Pocket Pal: A Graphic Arts Digest for Printers and Advertising Production Managers. Tenth Edition.
ERIC Educational Resources Information Center
1970
In this digest of information about printing a brief survey of the history of printing precedes detailed explanations of the processes and the materials involved in printing. The four major printing processes--letterpress, gravure, offset lithography, and screen--are explained. Steps in preparing art and copy for printing, including selection of…
[RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING POROUS SCAFFOLDS FOR BONE TISSUE ENGINEERING].
Wu, Tianqi; Yang, Chunxi
2016-04-01
To summarize the research progress of several three-dimensional (3-D)-printing scaffold materials in bone tissue engineering. The recent domestic and international articles about 3-D printing scaffold materials were reviewed and summarized. Compared with conventional manufacturing methods, 3-D printing has distinctive advantages, such as enhancing the controllability of the structure and increasing the productivity. In addition to the traditional metal and ceramic scaffolds, 3-D printing scaffolds carrying seeding cells and tissue factors as well as scaffolds filling particular drugs for special need have been paid more and more attention. The development of 3-D printing porous scaffolds have revealed new perspectives in bone repairing. But it is still at the initial stage, more basic and clinical researches are still needed.
Future opportunities for advancing glucose test device electronics.
Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z
2011-09-01
Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano "ink" composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, "ink," and continuous processing development presents the opportunity for research collaboration with medical device designers. © 2011 Diabetes Technology Society.
[Application and outlook of three-dimensional printing in prosthetic dentistry].
Sun, Y C; Li, R; Zhou, Y S; Wang, Y
2017-06-09
At present, three-dimensional (3D) printing has been applied in many aspects in the field of prosthodontics, such as dental models, wax patterns, guide plates, dental restoration and customized implants. The common forming principles include light curing, sintering and melting-condensation, the materials include pure wax, resin, metal and ceramics. However, the printing precision and the strength of multi-material integrated forming, remains to be improved. In addition, as a technology by which the internal structure of a material can be customized manufacturing, further advantage of 3D printing used in the manufacture of dental restoration lies in the customization functional bionic micro-structures, but the related research is still in its infancy. The review briefly summarizes the commonly used 3D printing crafts in prosthetic dentistry, and details clinical applications and evaluations, provides references for clinical decision and further research.
MO-B-BRD-01: Creation of 3D Printed Phantoms for Clinical Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehler, E.
This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus andmore » compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data is used to 3D print individualized physical models of patient’s unique anatomy for aid in planning complex and challenging surgical procedures. Methods, techniques and imaging requirements for 3D printing anatomic models from imaging data will be discussed. Specific applications currently being used in the radiology clinic will be detailed. Standardized phantoms for radiation therapy are abundant. However, custom phantom designs can be advantageous for both clinical tasks and research. 3D printing is a useful method of custom fabrication that allows one to construct custom objects relatively quickly. Possibilities for custom radiotherapy phantoms range from 3D printing a hollow shell and filling the shell with tissue equivalent materials to fully printing the entire phantom with materials that are tissue equivalent as well as suitable for 3D printing. A range of materials available for use in radiotherapy phantoms and in the case of phantoms for dosimetric measurements, this choice is critical. The necessary steps required will be discussed including: modalities of 3D model generation, 3D model requirements for 3D printing, generation of machine instructions from the 3D model, and 3D printing techniques, choice of phantoms material, and troubleshooting techniques for each step in the process. Case examples of 3D printed phantoms will be shown. Learning Objectives: Understand the types of 3D modeling software required to design your device, the file formats required for data transfer from design software to 3D printer, and general troubleshooting techniques for each step of the process. Learn the differences between materials and design for photons vs. electrons vs. protons. Understand the importance of material choice and design geometries for your custom phantoms. Learn specific steps of quality assurance and quality control for 3D printed beam filters and compensators for proton therapy. Learn of special 3D printing applications for imaging. Cunha: Research support from Phillips Healthcare.« less
MO-B-BRD-03: Principles, Pitfalls and Techniques of 3D Printing for Bolus and Compensators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, J.
This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus andmore » compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data is used to 3D print individualized physical models of patient’s unique anatomy for aid in planning complex and challenging surgical procedures. Methods, techniques and imaging requirements for 3D printing anatomic models from imaging data will be discussed. Specific applications currently being used in the radiology clinic will be detailed. Standardized phantoms for radiation therapy are abundant. However, custom phantom designs can be advantageous for both clinical tasks and research. 3D printing is a useful method of custom fabrication that allows one to construct custom objects relatively quickly. Possibilities for custom radiotherapy phantoms range from 3D printing a hollow shell and filling the shell with tissue equivalent materials to fully printing the entire phantom with materials that are tissue equivalent as well as suitable for 3D printing. A range of materials available for use in radiotherapy phantoms and in the case of phantoms for dosimetric measurements, this choice is critical. The necessary steps required will be discussed including: modalities of 3D model generation, 3D model requirements for 3D printing, generation of machine instructions from the 3D model, and 3D printing techniques, choice of phantoms material, and troubleshooting techniques for each step in the process. Case examples of 3D printed phantoms will be shown. Learning Objectives: Understand the types of 3D modeling software required to design your device, the file formats required for data transfer from design software to 3D printer, and general troubleshooting techniques for each step of the process. Learn the differences between materials and design for photons vs. electrons vs. protons. Understand the importance of material choice and design geometries for your custom phantoms. Learn specific steps of quality assurance and quality control for 3D printed beam filters and compensators for proton therapy. Learn of special 3D printing applications for imaging. Cunha: Research support from Phillips Healthcare.« less
MO-B-BRD-00: Clinical Applications of 3D Printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus andmore » compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data is used to 3D print individualized physical models of patient’s unique anatomy for aid in planning complex and challenging surgical procedures. Methods, techniques and imaging requirements for 3D printing anatomic models from imaging data will be discussed. Specific applications currently being used in the radiology clinic will be detailed. Standardized phantoms for radiation therapy are abundant. However, custom phantom designs can be advantageous for both clinical tasks and research. 3D printing is a useful method of custom fabrication that allows one to construct custom objects relatively quickly. Possibilities for custom radiotherapy phantoms range from 3D printing a hollow shell and filling the shell with tissue equivalent materials to fully printing the entire phantom with materials that are tissue equivalent as well as suitable for 3D printing. A range of materials available for use in radiotherapy phantoms and in the case of phantoms for dosimetric measurements, this choice is critical. The necessary steps required will be discussed including: modalities of 3D model generation, 3D model requirements for 3D printing, generation of machine instructions from the 3D model, and 3D printing techniques, choice of phantoms material, and troubleshooting techniques for each step in the process. Case examples of 3D printed phantoms will be shown. Learning Objectives: Understand the types of 3D modeling software required to design your device, the file formats required for data transfer from design software to 3D printer, and general troubleshooting techniques for each step of the process. Learn the differences between materials and design for photons vs. electrons vs. protons. Understand the importance of material choice and design geometries for your custom phantoms. Learn specific steps of quality assurance and quality control for 3D printed beam filters and compensators for proton therapy. Learn of special 3D printing applications for imaging. Cunha: Research support from Phillips Healthcare.« less
MO-B-BRD-04: Sterilization for 3D Printed Brachytherapy Applicators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunha, J.
This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus andmore » compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data is used to 3D print individualized physical models of patient’s unique anatomy for aid in planning complex and challenging surgical procedures. Methods, techniques and imaging requirements for 3D printing anatomic models from imaging data will be discussed. Specific applications currently being used in the radiology clinic will be detailed. Standardized phantoms for radiation therapy are abundant. However, custom phantom designs can be advantageous for both clinical tasks and research. 3D printing is a useful method of custom fabrication that allows one to construct custom objects relatively quickly. Possibilities for custom radiotherapy phantoms range from 3D printing a hollow shell and filling the shell with tissue equivalent materials to fully printing the entire phantom with materials that are tissue equivalent as well as suitable for 3D printing. A range of materials available for use in radiotherapy phantoms and in the case of phantoms for dosimetric measurements, this choice is critical. The necessary steps required will be discussed including: modalities of 3D model generation, 3D model requirements for 3D printing, generation of machine instructions from the 3D model, and 3D printing techniques, choice of phantoms material, and troubleshooting techniques for each step in the process. Case examples of 3D printed phantoms will be shown. Learning Objectives: Understand the types of 3D modeling software required to design your device, the file formats required for data transfer from design software to 3D printer, and general troubleshooting techniques for each step of the process. Learn the differences between materials and design for photons vs. electrons vs. protons. Understand the importance of material choice and design geometries for your custom phantoms. Learn specific steps of quality assurance and quality control for 3D printed beam filters and compensators for proton therapy. Learn of special 3D printing applications for imaging. Cunha: Research support from Phillips Healthcare.« less
MO-B-BRD-02: 3D Printing in the Clinic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remmes, N.
This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus andmore » compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data is used to 3D print individualized physical models of patient’s unique anatomy for aid in planning complex and challenging surgical procedures. Methods, techniques and imaging requirements for 3D printing anatomic models from imaging data will be discussed. Specific applications currently being used in the radiology clinic will be detailed. Standardized phantoms for radiation therapy are abundant. However, custom phantom designs can be advantageous for both clinical tasks and research. 3D printing is a useful method of custom fabrication that allows one to construct custom objects relatively quickly. Possibilities for custom radiotherapy phantoms range from 3D printing a hollow shell and filling the shell with tissue equivalent materials to fully printing the entire phantom with materials that are tissue equivalent as well as suitable for 3D printing. A range of materials available for use in radiotherapy phantoms and in the case of phantoms for dosimetric measurements, this choice is critical. The necessary steps required will be discussed including: modalities of 3D model generation, 3D model requirements for 3D printing, generation of machine instructions from the 3D model, and 3D printing techniques, choice of phantoms material, and troubleshooting techniques for each step in the process. Case examples of 3D printed phantoms will be shown. Learning Objectives: Understand the types of 3D modeling software required to design your device, the file formats required for data transfer from design software to 3D printer, and general troubleshooting techniques for each step of the process. Learn the differences between materials and design for photons vs. electrons vs. protons. Understand the importance of material choice and design geometries for your custom phantoms. Learn specific steps of quality assurance and quality control for 3D printed beam filters and compensators for proton therapy. Learn of special 3D printing applications for imaging. Cunha: Research support from Phillips Healthcare.« less
3D-printing porosity: A new approach to creating elevated porosity materials and structures.
Jakus, A E; Geisendorfer, N R; Lewis, P L; Shah, R N
2018-05-01
We introduce a new process that enables the ability to 3D-print high porosity materials and structures by combining the newly introduced 3D-Painting process with traditional salt-leaching. The synthesis and resulting properties of three 3D-printable inks comprised of varying volume ratios (25:75, 50:50, 70:30) of CuSO 4 salt and polylactide-co-glycolide (PLGA), as well as their as-printed and salt-leached counterparts, are discussed. The resulting materials are comprised entirely of PLGA (F-PLGA), but exhibit porosities proportional to the original CuSO 4 content. The three distinct F-PLGA materials exhibit average porosities of 66.6-94.4%, elastic moduli of 112.6-2.7 MPa, and absorbency of 195.7-742.2%. Studies with adult human mesenchymal stem cells (hMSCs) demonstrated that elevated porosity substantially promotes cell adhesion, viability, and proliferation. F-PLGA can also act as carriers for weak, naturally or synthetically-derived hydrogels. Finally, we show that this process can be extended to other materials including graphene, metals, and ceramics. Porosity plays an essential role in the performance and function of biomaterials, tissue engineering, and clinical medicine. For the same material chemistry, the level of porosity can dictate if it is cell, tissue, or organ friendly; with low porosity materials being far less favorable than high porosity materials. Despite its importance, it has been difficult to create three-dimensionally printed structures that are comprised of materials that have extremely high levels of internal porosity yet are surgically friendly (able to handle and utilize during surgical operations). In this work, we extend a new materials-centric approach to 3D-printing, 3D-Painting, to 3D-printing structures made almost entirely out of water-soluble salt. The structures are then washed in a specific way that not only extracts the salt but causes the structures to increase in size. With the salt removed, the resulting medical polymer structures are almost entirely porous and contain very little solid material, but the maintain their 3D-printed form and are highly compatible with adult human stem cells, are mechanically robust enough to use in surgical manipulations, and can be filled with and act as carriers for biologically active liquids and gels. We can also extend this process to three-dimensionally printing other porous materials, such as graphene, metals, and even ceramics. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Craft, Daniel F; Howell, Rebecca M
2017-09-01
Patient-specific 3D-printed phantoms have many potential applications, both research and clinical. However, they have been limited in size and complexity because of the small size of most commercially available 3D printers as well as material warping concerns. We aimed to overcome these limitations by developing and testing an effective 3D printing workflow to fabricate a large patient-specific radiotherapy phantom with minimal warping errors. In doing so, we produced a full-scale phantom of a real postmastectomy patient. We converted a patient's clinical CT DICOM data into a 3D model and then sliced the model into eleven 2.5-cm-thick sagittal slices. The slices were printed with a readily available thermoplastic material representing all body tissues at 100% infill, but with air cavities left open. Each slice was printed on an inexpensive and commercially available 3D printer. Once the printing was completed, the slices were placed together for imaging and verification. The original patient CT scan and the assembled phantom CT scan were registered together to assess overall accuracy. The materials for the completed phantom cost $524. The printed phantom agreed well with both its design and the actual patient. Individual slices differed from their designs by approximately 2%. Registered CT images of the assembled phantom and original patient showed excellent agreement. Three-dimensional printing the patient-specific phantom in sagittal slices allowed a large phantom to be fabricated with high accuracy. Our results demonstrate that our 3D printing workflow can be used to make large, accurate, patient-specific phantoms at 100% infill with minimal material warping error. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Standardized Sample Preparation Using a Drop-on-Demand Printing Platform
2013-05-07
successful and robust methodology for energetic sample preparation. Keywords: drop-on-demand; inkjet printing; sample preparation OPEN ACCESS...on a similar length scale. Recently, drop-on-demand inkjet printing technology has emerged as an effective approach to produce test materials to...which most of the material is concentrated along the edges, samples prepared using drop-on-demand inkjet technology demonstrate excellent uniform
Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J; Zhang, Yanliang
2016-09-12
Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm(2) with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varghese, Tony; Hollar, Courtney; Richardson, Joseph
Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstratemore » a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm 2 with 60°C temperature difference between the hot side and cold side. In conclusion, the highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.« less
Varghese, Tony; Hollar, Courtney; Richardson, Joseph; ...
2016-09-12
Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstratemore » a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm 2 with 60°C temperature difference between the hot side and cold side. In conclusion, the highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.« less
Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J.; Zhang, Yanliang
2016-01-01
Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm2 with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications. PMID:27615036
Bringing 3D Printing to Geophysical Science Education
NASA Astrophysics Data System (ADS)
Boghosian, A.; Turrin, M.; Porter, D. F.
2014-12-01
3D printing technology has been embraced by many technical fields, and is rapidly making its way into peoples' homes and schools. While there is a growing educational and hobbyist community engaged in the STEM focused technical and intellectual challenges associated with 3D printing, there is unrealized potential for the earth science community to use 3D printing to communicate scientific research to the public. Moreover, 3D printing offers scientists the opportunity to connect students and the public with novel visualizations of real data. As opposed to introducing terrestrial measurements through the use of colormaps and gradients, scientists can represent 3D concepts with 3D models, offering a more intuitive education tool. Furthermore, the tactile aspect of models make geophysical concepts accessible to a wide range of learning styles like kinesthetic or tactile, and learners including both visually impaired and color-blind students.We present a workflow whereby scientists, students, and the general public will be able to 3D print their own versions of geophysical datasets, even adding time through layering to include a 4th dimension, for a "4D" print. This will enable scientists with unique and expert insights into the data to easily create the tools they need to communicate their research. It will allow educators to quickly produce teaching aids for their students. Most importantly, it will enable the students themselves to translate the 2D representation of geophysical data into a 3D representation of that same data, reinforcing spatial reasoning.
3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.
Bootsma, Katherine; Fitzgerald, Martha M; Free, Brandon; Dimbath, Elizabeth; Conjerti, Joe; Reese, Greg; Konkolewicz, Dominik; Berberich, Jason A; Sparks, Jessica L
2017-06-01
Interpenetrating network (IPN) hydrogel materials are recognized for their unique mechanical properties. While IPN elasticity and toughness properties have been explored in previous studies, the factors that impact the time-dependent stress relaxation behavior of IPN materials are not well understood. Time-dependent (i.e. viscoelastic) mechanical behavior is a critical design parameter in the development of materials for a variety of applications, such as medical simulation devices, flexible substrate materials, cellular mechanobiology substrates, or regenerative medicine applications. This study reports a novel technique for 3D printing alginate-polyacrylamide IPN gels with tunable elastic and viscoelastic properties. The viscoelastic stress relaxation behavior of the 3D printed alginate-polyacrylamide IPN hydrogels was influenced most strongly by varying the concentration of the acrylamide cross-linker (MBAA), while the elastic modulus was affected most by varying the concentration of total monomer material. The material properties of our 3D printed IPN constructs were consistent with those reported in the biomechanics literature for soft tissues such as skeletal muscle, cardiac muscle, skin and subcutaneous tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.
Highly Conductive Nano-Silver Circuits by Inkjet Printing
NASA Astrophysics Data System (ADS)
Zhu, Dongbin; Wu, Minqiang
2018-06-01
Inkjet technology has become popular in the field of printed electronics due to its superior properties such as simple processes and printable complex patterns. Electrical conductivity of the circuits is one of the key factors in measuring the performance of printed electronics, which requires great material properties and a manufactured process. With excellent conductivity and ductility, silver is an ideal material as the wire connecting components. This review summarizes the progress of conductivity studies on inkjet printed nano-silver lines, including ink composition and nanoparticle morphology, deposition of nano-silver lines with uniform and high aspect ratios, sintering mechanisms and alternative methods of thermal sintering. Finally, the research direction on inkjet printed electronics is proposed.
3D-printed Bioanalytical Devices
Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F
2016-01-01
While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897
Multifunctional optical security features based on bacteriorhodopsin
NASA Astrophysics Data System (ADS)
Hampp, Norbert A.; Neebe, Martin; Juchem, Thorsten; Wolperdinger, Markus; Geiger, Markus; Schmuck, Arno
2004-06-01
Bacteriorhodopsin (BR), a photochromic retinal protein, has been developed into a new materials platform for applications in anti-counterfeiting. The combination of three different properties of the material on its molecular level, a light-inducible color change, photochemical data storage and traceability of the protein due to molecular marker sequences make this protein a promising material for security applications. The crystalline structure of the biopigment combines these properties with high stability. As BR is a biological material specialized knowledge for modification, cost- effective production and suitable processing of the material is required. Photochromic BR-based inks have been developed for screen printing, pad printing and ink jet printing. These prints show a high photochromic sensitivity towards variation of illumination. For this reason it is not possible to reproduce the dynamic color by photocopying. In addition to such visual inspection the printed symbols offer the possibility for digital write-once-read-many (WORM) data storage. Photochemical recording is accomplished by a two-photon process. Recording densities in a range from 106 bit/cm2 to 108 bit/cm2 have been achieved. Data structures are stored in a polarization sensitive mode which allows an easy and efficient data encryption.
Kim, Chun-Ja; Kang, Duck-Hee
2006-01-01
Despite the numerous benefits of physical activity for patients with diabetes, most healthcare providers in busy clinical settings rarely find time to counsel their patients about it. A Web-based program for healthcare providers can be used as an effective counseling tool, when strategies are outlined for specific stages of readiness for physical activity. Seventy-three adults with type 2 diabetes were randomly assigned to Web-based intervention, printed-material intervention, or usual care. After 12 weeks, the effects of the interventions on physical activity, fasting blood sugar, and glycosylated hemoglobin were evaluated. Both Web-based and printed material intervention, compared with usual care, were effective in increasing physical activity (P < .001) and decreasing fasting blood sugar (P<.01) and glycosylated hemoglobin (P < .01). Post hoc analysis for change scores indicated significant differences between Web-based intervention and usual care and between printed material intervention and usual care, but not between web-based and printed material intervention. The findings of this study support the value of Web-based and printed material interventions in healthcare counseling. With increasing Web access, the effectiveness of Web-based programs offered directly to patients needs to be tested.
3D printing of concentrated emulsions into multiphase biocompatible soft materials.
Sommer, Marianne R; Alison, Lauriane; Minas, Clara; Tervoort, Elena; Rühs, Patrick A; Studart, André R
2017-03-01
3D printing via direct ink writing (DIW) is a versatile additive manufacturing approach applicable to a variety of materials ranging from ceramics over composites to hydrogels. Due to the mild processing conditions compared to other additive manufacturing methods, DIW enables the incorporation of sensitive compounds such as proteins or drugs into the printed structure. Although emulsified oil-in-water systems are commonly used vehicles for such compounds in biomedical, pharmaceutical, and cosmetic applications, printing of such emulsions into architectured soft materials has not been fully exploited and would open new possibilities for the controlled delivery of sensitive compounds. Here, we 3D print concentrated emulsions into soft materials, whose multiphase architecture allows for site-specific incorporation of both hydrophobic and hydrophilic compounds into the same structure. As a model ink, concentrated emulsions stabilized by chitosan-modified silica nanoparticles are studied, because they are sufficiently stable against coalescence during the centrifugation step needed to create a bridging network of droplets. The resulting ink is ideal for 3D printing as it displays high yield stress, storage modulus and elastic recovery, through the formation of networks of droplets as well as of gelled silica nanoparticles in the presence of chitosan. To demonstrate possible architectures, we print biocompatible soft materials with tunable hierarchical porosity containing an encapsulated hydrophobic compound positioned in specific locations of the structure. The proposed emulsion-based ink system offers great flexibility in terms of 3D shaping and local compositional control, and can potentially help address current challenges involving the delivery of incompatible compounds in biomedical applications.
Material and fabrication strategies for artificial muscles (Conference Presentation)
NASA Astrophysics Data System (ADS)
Spinks, Geoffrey M.
2017-04-01
Soft robotic and wearable robotic devices seek to exploit polymer based artificial muscles and sensor materials to generate biomimetic movements and forces. A challenge is to integrate the active materials into a complex, three-dimensional device with integrated electronics, power supplies and support structures. Both 3D printing and textiles technologies offer attractive fabrication strategies, but require suitable functional materials. 3D printing of actuating hydrogels has been developed to produce simple devices, such as a prototype valve. Tough hydrogels based on interpenetrating networks of ionicially crosslinked alginate and covalently crosslinked polyacrylamide and poly(N-isopropylacrylamide) have been developed in a form suitable for extrusion printing with UV curing. Combined with UV-curable and extrudable rigid acrylated urethanes, the tough hydrogels can be 3D printed into composite materials or complex shapes with multiple different materials. An actuating valve was printed that operated thermally to open or close the flow path using 6 parallel hydrogel actuators. Textile processing methods such as knitting and weaving can be used to generate assemblies of actuating fibres. Low cost and high performance coiled fibres made from oriented polymers have been used for developing actuating textiles. Similarly, braiding methods have been developed to fabricate new forms of McKibben muscles that operate without any external apparatus, such as pumps, compressors or piping.
ERIC Educational Resources Information Center
Koppenhaver, David A.; Erickson, Karen A.
2003-01-01
Print materials, experiences, and writing technologies were introduced to three preschoolers (age 3) with autism and severe communication impairments. The goal was to increase natural literacy learning opportunities. Children found the materials and experiences interesting and their understanding and use of print materials and tools increased in…
The Internet: A Selective Annotated Bibliography of Print Material.
ERIC Educational Resources Information Center
Giguere, Marlene
1993-01-01
Describes 38 introductory print materials the novice may consult before using the Internet, including guides and directories to resources; general information about the Internet; materials about Internet applications such as electronic mail, remote login, and file transfer; and information about Internet tools such as Archie, Gopher, and WAIS…
Text and graphics: manipulating nutrition brochures to maximize recall.
Clark, K L; AbuSabha, R; von Eye, A; Achterberg, C
1999-08-01
This study examined how altering text and graphics of a nutrition brochure could affect the ability to remember the content of the message. Two theoretical models were used to guide alterations: dual-coding theory and the communications model. Three brochure formats were tested: the original brochure containing abstract text and abstract graphics, a modified brochure with relatively concrete text and abstract graphics, and a relatively concrete text brochure with concrete graphics. Participants (N = 239 women) were divided into four age groups: 20-30, 40-50, 60-70 and over 70 years. Women were randomly assigned into each of the three experimental brochure formats or a control group. Participants completed recalled materials from the assigned brochures (the no treatment control group did not include a brochure) at two different sessions, 30 days apart. Data were content analyzed and results were compared using analysis of covariance to test differences by age and brochure types. Younger women (20-30 and 40-50 years) recalled more information than women over 60 years. More concrete nutrition education print materials enhanced recall of information presented immediately after reading the material; however, this effect was transient and lasted less than 30 days after a one-time reading. The implications of these data for communicating nutrition messages with print materials are discussed.
ERIC Educational Resources Information Center
Franklin, Ann York
The purpose of this paper is to study the effect of the national library standards, beginning with a synopsis of the 1945 version up to the latest revision of 1969, and to show how the addition of audiovisuals, or non-print materials, has affected the connotation of the library or librarian. The definition or explanation of the library becomes…