,
2013-01-01
The California State Water Resources Control Board’s (SWRCB) GAMA Program is a comprehensive assessment of statewide groundwater quality in California. From 2004 to 2012, the GAMA Program’s Priority Basin Project focused on assessing groundwater resources used for public drinking-water supplies. More than 2,000 public-supply wells were sampled by U.S. Geological Survey (USGS) for this effort. Starting in 2012, the GAMA Priority Basin Project began an assessment of water resources in shallow aquifers in California. These shallow aquifers provide water for domestic and small community-supply wells, which are often drilled to shallower depths in the groundwater system than public-supply wells. Shallow aquifers are of interest because shallow groundwater may respond more quickly and be more susceptible to contamination from human activities at the land surface, than the deeper aquifers. The SWRCB’s GAMA Program was developed in response to the Groundwater Quality Monitoring Act of 2001 (Water Code sections 10780-10782.3): a public mandate to assess and monitor the quality of groundwater resources used for drinking-water supplies, and to increase the availability of information about groundwater quality to the public. The U.S. Geological Survey is the technical lead of the Priority Basin Project. Stewardship of California’s groundwater resources is a responsibility shared between well owners, communities, and the State. Participants and collaborators in the GAMA Program include Regional Water Quality Control Boards, Department of Water Resources, Department of Public Health, local and regional groundwater management entities, county and local water agencies, community groups, and private citizens. Well-owner participation in the GAMA Program is entirely voluntary.
Mathany, Timothy M.; Belitz, Kenneth
2015-01-01
Chloroform, simazine, and perchlorate were observed in the Interior Basins and Coastal Basins study areas, predominantly at shallow sites with top-of-perforation depths ≤70 feet below land surface, with modern water (post-1950s), and with oxic groundwater conditions.
A SCREENING-LEVEL MODEL EVALUATION OF ATRAZINE IN THE LAKE MICHIGAN BASIN
Atrazine, a widely used herbicide in the agricultural regions of the Lake Michigan basin, was selected as a priority toxic chemical study in the United States Environmental Protection Agency (U.S. EPA) - sponsored Lake Michigan Mass Balance Project.
NASA Astrophysics Data System (ADS)
Bring, Arvid; Asokan, Shilpa M.; Jaramillo, Fernando; Jarsjö, Jerker; Levi, Lea; Pietroń, Jan; Prieto, Carmen; Rogberg, Peter; Destouni, Georgia
2015-06-01
The multimodel ensemble of the Coupled Model Intercomparison Project, Phase 5 (CMIP5) synthesizes the latest research in global climate modeling. The freshwater system on land, particularly runoff, has so far been of relatively low priority in global climate models, despite the societal and ecosystem importance of freshwater changes, and the science and policy needs for such model output on drainage basin scales. Here we investigate the implications of CMIP5 multimodel ensemble output data for the freshwater system across a set of drainage basins in the Northern Hemisphere. Results of individual models vary widely, with even ensemble mean results differing greatly from observations and implying unrealistic long-term systematic changes in water storage and level within entire basins. The CMIP5 projections of basin-scale freshwater fluxes differ considerably more from observations and among models for the warm temperate study basins than for the Arctic and cold temperate study basins. In general, the results call for concerted research efforts and model developments for improving the understanding and modeling of the freshwater system and its change drivers. Specifically, more attention to basin-scale water flux analyses should be a priority for climate model development, and an important focus for relevant model-based advice for adaptation to climate change.
Wu, Haibing
2018-01-01
Watershed prioritization with the objective of identifying critical areas to undertake soil and water conservation measures was conducted in the upper Han River basin, the water source area of approximately 95,000 km 2 for the middle route of China's South-to-North Water Transfer Project. Based on the estimated soil erosion intensity in uplands and clustering analysis of measured nutrient concentrations in rivers, the basin was grouped into very-high-, high-, moderate-, and low-priority regions for water and soil conservation, respectively. The results indicated that soil erosion was primarily controlled by topography, and nutrients in rivers were associated with land use and land cover in uplands. Also, there was large spatial disparity between soil erosion intensity in the uplands and nutrient concentrations in the rivers across the basin. Analysis was then performed to prioritize the basin by the integration of the soil erosion intensity and water quality on a GIS platform in order to identify critical areas for water and soil conservation in the basin. The identified high-priority regions which occupy 5.74% of the drainage areas need immediate attention for soil and water conservation treatments, of which 5.28% is critical for soil erosion prevention and 0.46% for water conservation. Understandings of the basin environment and pollutant loading with spatial explicit are critical to the soil and water resource conservation for the interbasin water transfer project.
Groundwater quality in the Tahoe and Martis Basins, California
Fram, Miranda S.; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tahoe and Martis Basins and surrounding watersheds constitute one of the study units being evaluated.
Groundwater quality in the South Coast Interior Basins, California
Parsons, Mary C.; Belitz, Kenneth
2014-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The South Coast Interior Basins constitute one of the study units being evaluated.
Groundwater quality in the San Francisco Bay groundwater basins, California
Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth
2013-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Selected groundwater basins of the San Francisco Bay area constitute one of the study units being evaluated.
Land, Michael; Kulongoski, Justin T.; Belitz, Kenneth
2012-01-01
Groundwater quality in the approximately 460-square-mile San Fernando--San Gabriel (FG) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is in Los Angeles County and includes Tertiary-Quaternary sedimentary basins situated within the Transverse Ranges of southern California. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA FG study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers) throughout California. The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 35 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth interval of the wells listed in the CDPH database for the FG study unit. The quality of groundwater in primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the FG study unit, not the treated drinking water delivered to consumers by water purveyors.
Groundwater quality in the South Coast Range Coastal groundwater basins, California
Burton, Carmen A.; Belitz, Kenneth
2013-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project (PBP) of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The coastal basins in the Southern Coast Ranges constitute one of the study units being evaluated.
Parsons, Mary C.; Belitz, Kenneth
2014-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. Selected groundwater basins in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts constitute one of the study units being evaluated.
Byrne, Michael J.; Wood, Molly S.
2011-01-01
Lake Okeechobee in south-central Florida is the second largest freshwater lake in the contiguous United States. Excessive phosphorus loading, harmful high and low water levels, and rapid expansion of non-native vegetation have threatened the health of the lake in recent decades. A study was conducted to monitor discharge and nutrient concentrations from selected tributaries into Lake Okeechobee and to evaluate nutrient loads. The data analysis was performed at 16 monitoring stations from December 2003 to September 2008. Annual and seasonal discharge measured at monitoring stations is affected by rainfall. Hurricanes affected three wet years (2004, 2005, and the latter part of 2008) and resulted in substantially greater discharge than the drought years of 2006, 2007, and the early part of 2008. Rainfall supplies about 50 percent of the water to Lake Okeechobee, discharge from the Kissimmee River supplies about 25 percent, and discharge from tributaries and groundwater seepage along the lake perimeter collectively provide the remaining 25 percent. Annually, tributary discharge from basins located on the west side of the Kissimmee River is about 5 to 6 times greater than that from basins located on the east side. For the purposes of this study, the basins on the east side of the Kissimmee River are called "priority basins" because of elevated phosphorus concentrations, while those on the west side are called "nonpriority" basins. Total annual discharge in the non-priority basins ranged from 245,000 acre-feet (acre-ft) in 2007 to 1,322,000 acre-ft in 2005, while annual discharge from the priority basins ranged from 41,000 acre-ft in 2007 to 219,000 acre-ft in 2005. Mean total phosphorus concentrations ranged from 0.10 to 0.54 milligrams per liter (mg/L) at the 16 tributaries during 2004–2008. Mean concentrations were significantly higher at priority basin sites than at non-priority basin sites, particularly at Arbuckle Creek and C 41A Canal. Concentrations of organic nitrogen plus ammonia ranged from 1.27 to 2.96 mg/L at the 16 tributaries during 2004–2008. Mean concentrations were highest at Fisheating Creek at Lake Placid (a non-priority site), and lowest at Wolff Creek, Taylor Creek near Grassy Island, and Otter Creek (three priority basin sites), and at Arbuckle Creek (a non-priority basin site). Mean concentrations of nitrite plus nitrate ranged from 0.01 to 0.55 mg/L at the 16 tributaries during 2004–2008. Mean concentrations measured in priority basins were significantly higher than those measured in non-priority basins. Nutrient concentrations were substantially lower in the non-priority basins; however, total loads were substantially higher due to discharge that was 5 to 6 times greater than from the priority basins. Total phosphorus, organic nitrogen plus ammonia, and nitrite plus nitrate loads from the non-priority basins were 1.5, 4.5, and 3.5 times greater, respectively, than were loads from the priority basins. In the non-priority basins, total phosphorus loads ranged from 35 metric tons (MT) in 2007 to 247 MT in 2005. In the priority basins, the loads ranged from 18 MT in 2007 to 136 MT in 2005. In the non-priority basins, organic nitrogen plus ammonia loads ranged from 337 MT in 2007 to 2,817 MT in 2005. In the priority basins, organic nitrogen plus ammonia loads ranged from 85 MT in 2007 to 503 MT in 2005. In the non-priority basins, nitrite plus nitrate loads ranged from 34 MT in 2007 to 143 MT in 2005. In the priority basins, nitrite plus nitrate loads ranged from 4 MT in 2007 to 27 MT in 2005.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Wayne H.; Schricker, Jaym'e; Ruzychi, James R.
The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations remain depressed relative to historic levels and limited information is available for steelhead life history. Numerous habitat protection and rehabilitation projects have been implemented in the basin to improve salmonid freshwater production and survival. However, these projects often lack effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed programmatic or watershed (status and trend) information to help evaluatemore » project-specific effectiveness monitoring efforts as well as meet some data needs as index stocks. Our continued monitoring efforts to estimate salmonid smolt abundance, age structure, SAR, smolts/redd, freshwater habitat use, and distribution of critical life states will enable managers to assess the long-term effectiveness of habitat projects and to differentiate freshwater and ocean survival. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the level of emphasis by the NWPPC Fish and Wildlife Program, Independent Scientific Advisory Board (ISAB), Independent Scientific Review Panel (ISRP), NOAA National Marine Fisheries Service (NMFS), and the Oregon Plan for Salmon and Watersheds (OWEB). Each of these groups have placed priority on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. The objective is to estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook Oncorhynchus tshawytscha and summer steelhead O. mykiss and life history characteristics of summer steelhead.« less
Natural Propagation and Habitat Improvement, Volume 1, Oregon, 1986 Final and Annual Reports.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuart, Amy
1987-01-01
This report describes activities implemented for fisheries habitat improvement work on priority drainages in the Clackamas and Hood River sub-basins. Separate abstracts have been prepared for the reports on individual projects. (ACR)
Great Basin Integrated Landscape Monitoring Pilot Summary Report
Finn, Sean P.; Kitchell, Kate; Baer, Lori Anne; Bedford, David R.; Brooks, Matthew L.; Flint, Alan L.; Flint, Lorraine E.; Matchett, J.R.; Mathie, Amy; Miller, David M.; Pilliod, David S.; Torregrosa, Alicia; Woodward, Andrea
2010-01-01
The Great Basin Integrated Landscape Monitoring Pilot project (GBILM) was one of four regional pilots to implement the U.S. Geological Survey (USGS) Science Thrust on Integrated Landscape Monitoring (ILM) whose goal was to observe, understand, and predict landscape change and its implications on natural resources at multiple spatial and temporal scales and address priority natural resource management and policy issues. The Great Basin is undergoing rapid environmental change stemming from interactions among global climate trends, increasing human populations, expanding and accelerating land and water uses, invasive species, and altered fire regimes. GBLIM tested concepts and developed tools to store and analyze monitoring data, understand change at multiple scales, and forecast landscape change. The GBILM endeavored to develop and test a landscape-level monitoring approach in the Great Basin that integrates USGS disciplines, addresses priority management questions, catalogs and uses existing monitoring data, evaluates change at multiple scales, and contributes to development of regional monitoring strategies. GBILM functioned as an integrative team from 2005 to 2010, producing more than 35 science and data management products that addressed pressing ecosystem drivers and resource management agency needs in the region. This report summarizes the approaches and methods of this interdisciplinary effort, identifies and describes the products generated, and provides lessons learned during the project.
Proceedings of the Klamath Basin Science Conference, Medford, Oregon, February 1-5, 2010
Thorsteinson, Lyman; VanderKooi, Scott; Duffy, Walter
2011-01-01
This report presents the proceedings of the Klamath Basin Science Conference (February 2010). A primary purpose of the meeting was to inform and update Klamath Basin stakeholders about areas of scientific progress and accomplishment during the last 5 years. Secondary conference objectives focused on the identification of outstanding information needs and science priorities as they relate to whole watershed management, restoration ecology, and possible reintroduction of Pacific salmon associated with the Klamath Basin Restoration Agreement (KBRA). Information presented in plenary, technical, breakout, and poster sessions has been assembled into chapters that reflect the organization, major themes, and content of the conference. Chapter 1 reviews the major environmental issues and resource management and other stakeholder needs of the basin. Importantly, this assessment of information needs included the possibility of large-scale restoration projects in the future and lessons learned from a case study in South Florida. Other chapters (2-6) summarize information about key components of the Klamath Basin, support conceptual modeling of the aquatic ecosystem (Chapter 7), and synthesize our impressions of the most pressing science priorities for management and restoration. A wealth of information was presented at the conference and this has been captured in chapters addressing environmental setting and human development of the basin, hydrology, watershed processes, fishery resources, and potential effects from climate change. The final chapter (8) culminates in a discussion of many specific research priorities that relate to and bookend the broader management needs and restoration goals identified in Chapter 1. In many instances, the conferees emphasized long-term and process-oriented approaches to watershed science in the basin as planning moves forward.
Groundwater quality in the Southern Sierra Nevada, California
Fram, Miranda S.; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tehachapi-Cummings Valley and Kern River Valley basins and surrounding watersheds in the Southern Sierra Nevada constitute one of the study units being evaluated.
Fram, Miranda S.
2017-01-18
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the Tulare, Kaweah, and Tule groundwater basins and adjacent highlands areas of the southern San Joaquin Valley constitute one of the study units being evaluated.
Donley, Erin E; Naiman, Robert J; Marineau, Mathieu D
2012-10-01
We provide a case study prioritizing instream flow restoration activities by sub-basin according to the habitat needs of Endangered Species Act (ESA)-listed salmonids relative to climate change in the central Columbia River basin in Washington State (USA). The objective is to employ scenario analysis to inform and improve existing instream flow restoration projects. We assess the sensitivity of late summer (July, August, and September) flows to the following scenario simulations - singly or in combination: climate change, changes in the quantity of water used for irrigation and possible changes to existing water resource policy. Flows for four sub-basins were modeled using the Water Evaluation and Planning system (WEAP) under historical and projected conditions of 2020 and 2040 for each scenario. Results indicate that Yakima will be the most flow-limited sub-basin with average reductions in streamflow of 41% under climate conditions of 2020 and 56% under 2040 conditions; 1.3-2.5 times greater than those of other sub-basins. In addition, irrigation plays a key role in the hydrology of the Yakima sub-basin - with flow reductions ranging from 78% to 90% under severe to extreme (i.e., 20-40%) increases in agricultural water use (2.0-4.4 times the reductions in the other sub-basins). The Yakima and Okanogan sub-basins are the most responsive to simulations of flow-bolstering policy change (providing salmon with first priority water allocation and at biologically relevant flows), as demonstrated by 91-100% target flows attained. The Wenatchee and Methow sub-basins do not exhibit similar responsiveness to simulated policy changes. Considering climate change only, we conclude that flow restoration should be prioritized first in the Yakima and Wenatchee sub-basins, and second in the Okanogan and Methow. Considering both climate change and possible policy changes, we recommend that the Yakima sub-basin receive the highest priority for flow restoration activities to sustain critical instream habitat for ESA-listed salmonids. © 2012 Blackwell Publishing Ltd.
Wright, Michael T.; Fram, Miranda S.; Belitz, Kenneth
2015-01-01
Concentrations of strontium, which exists primarily in a cationic form (Sr2+), were not significantly correlated with either groundwater age or pH. Strontium concentrations showed a strong positive correlation with total dissolved solids (TDS). Dissolved constituents, such as Sr, that interact with mineral surfaces through outer-sphere complexation become increasingly soluble with increasing TDS concentrations of groundwater. Boron concentrations also showed a significant positive correlation with TDS, indicating the B may interact to a large degree with mineral surfaces through outer-sphere complexation.
Burton, Carmen
2018-05-30
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the groundwater basins around Monterey Bay, the Salinas Valley, and the highlands adjacent to the Salinas Valley constitute one of the study units.
Groundwater quality in the Northern Sacramento Valley, California
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth
2011-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Northern Sacramento Valley is one of the study units being evaluated.
Groundwater quality in the Southern Sacramento Valley, California
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth
2011-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Southern Sacramento Valley is one of the study units being evaluated.
Groundwater quality in the Santa Barbara Coastal Plain, California
Davis, Tracy A.; Belitz, Kenneth
2016-10-03
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California established the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Santa Barbara Coastal Plain is one of the study units.
Groundwater quality in the Klamath Mountains, California
Bennett, George L.; Fram, Miranda S.
2014-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Klamath Mountains constitute one of the study units being evaluated.
Groundwater quality in the Sierra Nevada, California
Fram, Miranda S.; Belitz, Kenneth
2014-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project (PBP) of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Sierra Nevada Regional study unit constitutes one of the study units being evaluated.
Groundwater quality in the western San Joaquin Valley, California
Fram, Miranda S.
2017-06-09
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Western San Joaquin Valley is one of the study units being evaluated.
Uddin, Kabir; Murthy, M. S. R.; Wahid, Shahriar M.; Matin, Mir A.
2016-01-01
High levels of water-induced erosion in the transboundary Himalayan river basins are contributing to substantial changes in basin hydrology and inundation. Basin-wide information on erosion dynamics is needed for conservation planning, but field-based studies are limited. This study used remote sensing (RS) data and a geographic information system (GIS) to estimate the spatial distribution of soil erosion across the entire Koshi basin, to identify changes between 1990 and 2010, and to develop a conservation priority map. The revised universal soil loss equation (RUSLE) was used in an ArcGIS environment with rainfall erosivity, soil erodibility, slope length and steepness, cover-management, and support practice factors as primary parameters. The estimated annual erosion from the basin was around 40 million tonnes (40 million tonnes in 1990 and 42 million tonnes in 2010). The results were within the range of reported levels derived from isolated plot measurements and model estimates. Erosion risk was divided into eight classes from very low to extremely high and mapped to show the spatial pattern of soil erosion risk in the basin in 1990 and 2010. The erosion risk class remained unchanged between 1990 and 2010 in close to 87% of the study area, but increased over 9.0% of the area and decreased over 3.8%, indicating an overall worsening of the situation. Areas with a high and increasing risk of erosion were identified as priority areas for conservation. The study provides the first assessment of erosion dynamics at the basin level and provides a basis for identifying conservation priorities across the Koshi basin. The model has a good potential for application in similar river basins in the Himalayan region. PMID:26964039
Uddin, Kabir; Murthy, M S R; Wahid, Shahriar M; Matin, Mir A
2016-01-01
High levels of water-induced erosion in the transboundary Himalayan river basins are contributing to substantial changes in basin hydrology and inundation. Basin-wide information on erosion dynamics is needed for conservation planning, but field-based studies are limited. This study used remote sensing (RS) data and a geographic information system (GIS) to estimate the spatial distribution of soil erosion across the entire Koshi basin, to identify changes between 1990 and 2010, and to develop a conservation priority map. The revised universal soil loss equation (RUSLE) was used in an ArcGIS environment with rainfall erosivity, soil erodibility, slope length and steepness, cover-management, and support practice factors as primary parameters. The estimated annual erosion from the basin was around 40 million tonnes (40 million tonnes in 1990 and 42 million tonnes in 2010). The results were within the range of reported levels derived from isolated plot measurements and model estimates. Erosion risk was divided into eight classes from very low to extremely high and mapped to show the spatial pattern of soil erosion risk in the basin in 1990 and 2010. The erosion risk class remained unchanged between 1990 and 2010 in close to 87% of the study area, but increased over 9.0% of the area and decreased over 3.8%, indicating an overall worsening of the situation. Areas with a high and increasing risk of erosion were identified as priority areas for conservation. The study provides the first assessment of erosion dynamics at the basin level and provides a basis for identifying conservation priorities across the Koshi basin. The model has a good potential for application in similar river basins in the Himalayan region.
Groundwater quality in the North San Francisco Bay shallow aquifer, California
Bennett, George L.; Fram, Miranda S.
2018-02-23
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The North San Francisco Bay Shallow Aquifer constitutes one of the study units being evaluated.
Fitzpatrick, F.A.; Scudder, B.C.; Crawford, J.K.; Schmidt, A.R.; Sieverling, J.B.
1995-01-01
The distribution of 22 major and trace elements was examined in water, sediment, and biota in the upper Illinois River Basin in Illinois, Indiana, and Wisconsin as part of a pilot National Water-Quality Assessment project done by the U.S. Geological Survey from 1987 through 1990. The 22 elements are aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, phosphorus, selenium, silver, strontium, vanadium, and zinc. Concentrations of U.S. Environmental Protection Agency (USEPA) priority pollutants among the 22 elements were elevated in the Chicago area in all three aquatic components (water, sediment, and biota). Further, some of the priority pollutants also were found at elevated concentrations in biota in agricultural areas in the basin. Cadmium, chromium, copper, iron, lead, mercury, silver, and zinc concentrations in water exceeded USEPA acute or chronic water-quality criteria at several sites in the Chicago area. Correlations among concentra- tions of elements in water, sediment, and biota were found, but the correlation analysis was hindered by the large proportion of observations less than the minimum reporting level in water. Those sites where water-quality criteria were sometimes exceeded were not always the same sites where concentrations in biota were the largest. This relation indicates that accumulation of these pollutants in biota is confounded by complex geochemical and biological processes that differ throughout the upper Illinois River Basin.
Groundwater quality in the Central Sierra Nevada, California
Fram, Miranda S.; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. Two small watersheds of the Fresno and San Joaquin Rivers in the Central Sierra Nevada constitute one of the study units being evaluated.
Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California
Mathany, Timothy; Burton, Carmen; Fram, Miranda S.
2017-06-20
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.
Higley, Debra K.
2013-01-01
The U.S. Geological Survey recently completed a geoscience-based assessment of undiscovered oil and gas resources of provinces within the Western Canada Sedimentary Basin. The Western Canada Sedimentary Basin primarily comprises the (1) Alberta Basin Province of Alberta, eastern British Columbia, and the southwestern Northwest Territories; (2) the Williston Basin Province of Saskatchewan, southeastern Alberta, and southern Manitoba; and (3) the Rocky Mountain Deformed Belt Province of western Alberta and eastern British Columbia. This report is part of the U.S. Geological Survey World Petroleum Resources Project assessment of priority geologic provinces of the world. The assessment was based on geoscience elements that define a total petroleum system (TPS) and associated assessment unit(s). These elements include petroleum source rocks (geochemical properties and petroleum generation, migration, and accumulation), reservoir description (reservoir presence, type, and quality), and petroleum traps (trap and seal types, and timing of trap and seal formation relative to petroleum migration). Using this framework, the Elk Point-Woodbend Composite TPS, Exshaw-Fernie-Mannville Composite TPS, and Middle through Upper Cretaceous Composite TPS were defined, and four conventional assessment units within the total petroleum systems were quantitatively assessed for undiscovered resources in the Western Canada Sedimentary Basin.
Groundwater quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California
Fram, Miranda S.; Jasper, Monica; Taylor, Kimberly A.
2017-09-27
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Yuba River and Bear River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking water supplies.
Fram, Miranda S.; Shelton, Jennifer L.
2018-03-23
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Mokelumne, Cosumnes, and American River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking-water supplies.
Ecoregion-Based Conservation Planning in the Mediterranean: Dealing with Large-Scale Heterogeneity
Giakoumi, Sylvaine; Sini, Maria; Gerovasileiou, Vasilis; Mazor, Tessa; Beher, Jutta; Possingham, Hugh P.; Abdulla, Ameer; Çinar, Melih Ertan; Dendrinos, Panagiotis; Gucu, Ali Cemal; Karamanlidis, Alexandros A.; Rodic, Petra; Panayotidis, Panayotis; Taskin, Ergun; Jaklin, Andrej; Voultsiadou, Eleni; Webster, Chloë; Zenetos, Argyro; Katsanevakis, Stelios
2013-01-01
Spatial priorities for the conservation of three key Mediterranean habitats, i.e. seagrass Posidonia oceanica meadows, coralligenous formations, and marine caves, were determined through a systematic planning approach. Available information on the distribution of these habitats across the entire Mediterranean Sea was compiled to produce basin-scale distribution maps. Conservation targets for each habitat type were set according to European Union guidelines. Surrogates were used to estimate the spatial variation of opportunity cost for commercial, non-commercial fishing, and aquaculture. Marxan conservation planning software was used to evaluate the comparative utility of two planning scenarios: (a) a whole-basin scenario, referring to selection of priority areas across the whole Mediterranean Sea, and (b) an ecoregional scenario, in which priority areas were selected within eight predefined ecoregions. Although both scenarios required approximately the same total area to be protected in order to achieve conservation targets, the opportunity cost differed between them. The whole-basin scenario yielded a lower opportunity cost, but the Alboran Sea ecoregion was not represented and priority areas were predominantly located in the Ionian, Aegean, and Adriatic Seas. In comparison, the ecoregional scenario resulted in a higher representation of ecoregions and a more even distribution of priority areas, albeit with a higher opportunity cost. We suggest that planning at the ecoregional level ensures better representativeness of the selected conservation features and adequate protection of species, functional, and genetic diversity across the basin. While there are several initiatives that identify priority areas in the Mediterranean Sea, our approach is novel as it combines three issues: (a) it is based on the distribution of habitats and not species, which was rarely the case in previous efforts, (b) it considers spatial variability of cost throughout this socioeconomically heterogeneous basin, and (c) it adopts ecoregions as the most appropriate level for large-scale planning. PMID:24155901
Geologic Analysis of Priority Basins for Exploration and Drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, H.B.; Reeves, T.K.
1999-04-27
There has been a substantial decline in both exploratory drilling and seismic field crew activity in the United States over the last 10 years, due primarily to the declining price of oil. To reverse this trend and to preserve the entrepreneurial independent operator, the U.S. DOE is attempting to encourage hydrocarbon exploration activities in some of the under exploited regions of the United States. This goal is being accomplished by conducting broad regional reviews of potentially prospective areas within the lower 48 states. Data are being collected on selected areas, and studies are being done on a regional scale generallymore » unavailable to the smaller independent. The results of this work will be made available to the public to encourage the undertaking of operations in areas which have been overlooked until this project. Fifteen criteria have been developed for the selection of study areas. Eight regions have been identified where regional geologic analysis will be performed. This report discusses preliminary findings concerning the geology, early tectonic history, structure and potential unconventional source rocks for the Black Mesa basin and South Central states region, the two highest priority study areas.« less
NASA Astrophysics Data System (ADS)
Foglia, L.; Rossetto, R.; Borsi, I.; Josef, S.; Boukalova, Z.; Triana, F.; Ghetta, M.; Sabbatini, T.; Bonari, E.; Cannata, M.; De Filippis, G.
2016-12-01
The EU H2020 FREEWAT project (FREE and open source software tools for WATer resource management) aims at simplifying the application of EU-water related Directives, by developing an open source and public domain, GIS-integrated platform for planning and management of ground- and surface-water resources. The FREEWAT platform is conceived as a canvas, where several distributed and physically-based simulation codes are virtually integrated. The choice of such codes was supported by the result of a survey performed by means of questionnaires distributed to 14 case study FREEWAT project partners and several stakeholders. This was performed in the first phase of the project within the WP 6 (Enhanced science and participatory approach evidence-based decision making), Task 6.1 (Definition of a "needs/tools" evaluation grid). About 30% among all the invited entities and institutions from several EU and non-EU Countries expressed their interest in contributing to the survey. Most of them were research institutions, government and geoenvironmental companies and river basin authorities.The result of the questionnaire provided a spectrum of needs and priorities of partners/stakeholders, which were addressed during the development phase of the FREEWAT platform. The main needs identified were related to ground- and surface-water quality, sustainable water management, interaction between groundwater/surface-water bodies, and design and management of Managed Aquifer Recharge schemes. Needs and priorities were then connected to the specific EU Directives and Regulations to be addressed.One of the main goals of the questionnaires was to collect information and suggestions regarding the use of existing commercial/open-source software tools to address needs and priorities, and regarding the needs to address specific water-related processes/problems.
Carboniferous-Rotliegend total petroleum system; description and assessment results summary
Gautier, Donald L.
2003-01-01
The Anglo-Dutch Basin and the Northwest German Basin are two of the 76 priority basins assessed by the U.S. Geological Survey World Energy Project. The basins were assessed together because most of the resources occur within a single petroleum system (the Carboniferous-Rotliegend Total Petroleum System) that transcends the combined Anglo-Dutch Basin and Northwest German Basin boundary. The juxtaposition of thermally mature coals and carbonaceous shales of the Carboniferous Coal Measures (source rock), sandstones of the Rotliegend sedimentary systems (reservoir rock), and the Zechstein evaporites (seal) define the total petroleum system (TPS). Three assessment units were defined, based upon technological and geographic (rather than geological) criteria, that subdivide the Carboniferous-Rotliegend Total Petroleum System. These assessment units are (1) the Southern Permian Basin-Offshore Europe Assessment Unit, (2) the Southern Permian Basin Onshore Europe Assessment Unit, and (3) the Southern Permian Basin Onshore United Kingdom Assessment Unit. Although the Carboniferous-Rotliegend Total Petroleum System is one of the most intensely explored volumes of rock in the world, potential remains for undiscovered resources. Undiscovered conventional resources associated with the TPS range from 22 to 184 million barrels of oil, and from 3.6 to 14.9 trillion cubic feet of natural gas. Of these amounts, approximately 62 million barrels of oil and 13 trillion cubic feet of gas are expected in offshore areas, and 26 million barrels of oil and 1.9 trillion cubic feet of gas are predicted in onshore areas.
Fram, Miranda S.; Shelton, Jennifer L.
2018-01-08
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking-water supply and increases public access to groundwater-quality information. Many households and small communities in the Madera– Chowchilla and Kings subbasins of the San Joaquin Valley rely on private domestic wells for their drinking-water supplies.
Thomas M. Quigley; Sylvia J. Arbelbide
1997-01-01
The Assessment of Ecosystem Components in the Interior Columbia Basin and Portions of the Klamath and Great Basins provides detailed information about current conditions and trends for the biophysical and social systems within the Basin. This information can be used by land managers to develop broad land management goals and priorities and provides the context for...
Brack, Werner; Altenburger, Rolf; Schüürmann, Gerrit; Krauss, Martin; López Herráez, David; van Gils, Jos; Slobodnik, Jaroslav; Munthe, John; Gawlik, Bernd Manfred; van Wezel, Annemarie; Schriks, Merijn; Hollender, Juliane; Tollefsen, Knut Erik; Mekenyan, Ovanes; Dimitrov, Saby; Bunke, Dirk; Cousins, Ian; Posthuma, Leo; van den Brink, Paul J; López de Alda, Miren; Barceló, Damià; Faust, Michael; Kortenkamp, Andreas; Scrimshaw, Mark; Ignatova, Svetlana; Engelen, Guy; Massmann, Gudrun; Lemkine, Gregory; Teodorovic, Ivana; Walz, Karl-Heinz; Dulio, Valeria; Jonker, Michiel T O; Jäger, Felix; Chipman, Kevin; Falciani, Francesco; Liska, Igor; Rooke, David; Zhang, Xiaowei; Hollert, Henner; Vrana, Branislav; Hilscherova, Klara; Kramer, Kees; Neumann, Steffen; Hammerbacher, Ruth; Backhaus, Thomas; Mack, Juliane; Segner, Helmut; Escher, Beate; de Aragão Umbuzeiro, Gisela
2015-01-15
SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options. Copyright © 2014 Elsevier B.V. All rights reserved.
Mathany, Timothy M.; Kulongoski, Justin T.; Ray, Mary C.; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 653-square-mile South Coast Interior Basins (SCI) study unit was investigated from August to December 2008, as part of the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project was developed in response to Legislative mandates (Supplemental Report of the 1999 Budget Act 1999-00 Fiscal Year; and, the Groundwater-Quality Monitoring Act of 2001 [Sections 10780-10782.3 of the California Water Code, Assembly Bill 599]) to assess and monitor the quality of groundwater used as public supply for municipalities in California, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). SCI was the 27th study unit to be sampled as part of the GAMA Priority Basins Project. This study was designed to provide a spatially unbiased assessment of the quality of untreated groundwater used for public water supplies within SCI, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 54 wells within the three study areas [Livermore, Gilroy, and Cuyama] of SCI in Alameda, Santa Clara, San Benito, Santa Barbara, Ventura, and Kern Counties. Thirty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 19 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds], constituents of special interest [perchlorate and N-nitrosodimethylamine (NDMA)], naturally occurring inorganic constituents [trace elements, nutrients, major and minor ions, silica, total dissolved solids (TDS), and alkalinity], and radioactive constituents [gross alpha and gross beta radioactivity and radon-222]. Naturally occurring isotopes [stable isotopes of hydrogen, oxygen, and carbon, and activities of tritium and carbon-14] and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 288 constituents and water-quality indicators (field parameters) were investigated. Three types of quality-control samples (blanks, replicates, and matrix spikes) each were collected at approximately 4-11 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a significant source of bias in the data obtained from the groundwater samples. Differences between replicate samples generally were less than 10 percent relative standard deviation, indicating acceptable analytical reproducibility. Matrix spike recoveries were within the acceptable range (70 to 130 percent) for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, and/or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwater were compared with regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH), and to nonregulatory thresholds established for aesthetic and technical concerns by CDPH. Comparisons between data collected for this study and thresholds for drinking water are for illustrative purposes only, and are not indicative of complia
U.S. Geological Survey Hanna, Laramie
2007-01-01
INTRODUCTION The purpose of the U.S. Geological Survey?s (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the Hanna, Laramie, and Shirley Basins Province in Wyoming and northeastern Colorado. The assessment is based on the geologic elements of each total petroleum system (TPS) defined in the province, including hydrocarbon source rocks (source-rock maturation, hydrocarbon generation, and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). Using this geologic framework, the USGS defined three TPSs and seven assessment units (AUs) within them; undiscovered resources for three of the seven AUs were quantitatively assessed.
Innes, Ev; Crowther, Amber; Fonti, Fiona; Quayle, Leonie
2010-01-01
OBJECTIVE/PARTICIPANTS: This report describes a project undertaken by three final (4th) year occupational therapy undergraduate students from the University of Sydney, Australia, in their final fieldwork placement. The project involved women from a Chinese background who worked on market gardens across the Sydney Basin. Its purpose was to identify musculoskeletal risks in the work environment and work practices of a selected group of seven Cantonese-speaking women working on market gardens in the Western Sydney region. The approaches used in the project reflected a risk management approach, and involved background research, initial interviews, task analysis, hazard identification, risk assessment, data analysis, identification of key issues, and developing recommendations, in collaboration with participants and consultation with professionals. The key issues identified as contributing factors to musculoskeletal pain and injuries were: (1) work practices (long work hours, repetitive work); (2) biomechanical factors (repetitive and sustained work postures, poor manual handling practices) and limited training; (3) ergonomics of the equipment used; (4) fatigue. Two priority areas for intervention were identified: (1) pain management, and (2) preventative strategies (improving both the work environment and work practices). Recommendations were made in collaboration with the women, and in consultation with health professionals.
Climate change impact on soil erosion in the Mandakini River Basin, North India
NASA Astrophysics Data System (ADS)
Khare, Deepak; Mondal, Arun; Kundu, Sananda; Mishra, Prabhash Kumar
2017-09-01
Correct estimation of soil loss at catchment level helps the land and water resources planners to identify priority areas for soil conservation measures. Soil erosion is one of the major hazards affected by the climate change, particularly the increasing intensity of rainfall resulted in increasing erosion, apart from other factors like landuse change. Changes in climate have an adverse effect with increasing rainfall. It has caused increasing concern for modeling the future rainfall and projecting future soil erosion. In the present study, future rainfall has been generated with the downscaling of GCM (Global Circulation Model) data of Mandakini river basin, a hilly catchment in the state of Uttarakhand, India, to obtain future impact on soil erosion within the basin. The USLE is an erosion prediction model designed to predict the long-term average annual soil loss from specific field slopes in specified landuse and management systems (i.e., crops, rangeland, and recreational areas) using remote sensing and GIS technologies. Future soil erosion has shown increasing trend due to increasing rainfall which has been generated from the statistical-based downscaling method.
An Estimate of Recoverable Heavy Oil Resources of the Orinoco Oil Belt, Venezuela
Schenk, Christopher J.; Cook, Troy A.; Charpentier, Ronald R.; Pollastro, Richard M.; Klett, Timothy R.; Tennyson, Marilyn E.; Kirschbaum, Mark A.; Brownfield, Michael E.; Pitman, Janet K.
2009-01-01
The Orinoco Oil Belt Assessment Unit of the La Luna-Quercual Total Petroleum System encompasses approximately 50,000 km2 of the East Venezuela Basin Province that is underlain by more than 1 trillion barrels of heavy oil-in-place. As part of a program directed at estimating the technically recoverable oil and gas resources of priority petroleum basins worldwide, the U.S. Geological Survey estimated the recoverable oil resources of the Orinoco Oil Belt Assessment Unit. This estimate relied mainly on published geologic and engineering data for reservoirs (net oil-saturated sandstone thickness and extent), petrophysical properties (porosity, water saturation, and formation volume factors), recovery factors determined by pilot projects, and estimates of volumes of oil-in-place. The U.S. Geological Survey estimated a mean volume of 513 billion barrels of technically recoverable heavy oil in the Orinoco Oil Belt Assessment Unit of the East Venezuela Basin Province; the range is 380 to 652 billion barrels. The Orinoco Oil Belt Assessment Unit thus contains one of the largest recoverable oil accumulations in the world.
7 CFR 1778.7 - Project priority.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false Project priority. 1778.7 Section 1778.7 Agriculture... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.7 Project priority. Paragraph (d... to determine the proposed project's priority for available funds. (b) State Office review. All...
7 CFR 1778.7 - Project priority.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 12 2014-01-01 2013-01-01 true Project priority. 1778.7 Section 1778.7 Agriculture... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.7 Project priority. Paragraph (d... to determine the proposed project's priority for available funds. (b) State Office review. All...
7 CFR 1778.7 - Project priority.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 12 2012-01-01 2012-01-01 false Project priority. 1778.7 Section 1778.7 Agriculture... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.7 Project priority. Paragraph (d... to determine the proposed project's priority for available funds. (b) State Office review. All...
7 CFR 1777.13 - Project priority.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false Project priority. 1777.13 Section 1777.13 Agriculture... (CONTINUED) SECTION 306C WWD LOANS AND GRANTS § 1777.13 Project priority. Paragraphs (a) through (d) of this... applicant eligibility and the proposed project's priority for available funds. Applicants determined...
7 CFR 1777.13 - Project priority.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 12 2012-01-01 2012-01-01 false Project priority. 1777.13 Section 1777.13 Agriculture... (CONTINUED) SECTION 306C WWD LOANS AND GRANTS § 1777.13 Project priority. Paragraphs (a) through (d) of this... applicant eligibility and the proposed project's priority for available funds. Applicants determined...
Libby/Hungry Horse Dams Wildlife Mitigation : Montana Wildlife Habitat Protection : Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Marilyn
1992-12-01
The purpose of this project was to develop and obtain information necessary to evaluate and undertake specific wildlife habitat protection/enhancement actions in northwest Montana as outlined in the Columbia River Basin Fish and Wildlife Program. Three waterfowl projects were evaluated between September 1989 and June 1990. Weaver's Slough project involved the proposed acquisition of 200 acres of irrigated farmland and a donated conservation easement on an additional 213 acres. The proposal included enhancement of the agricultural lands by conversion to upland nesting cover. This project was rated the lowest priority based on limited potential for enhancement and no further actionmore » was pursued. The Crow Creek Ranch project involved the proposed acquisition of approximately 1830 acres of grazing and dryland farming lands. The intent would be to restore drained potholes and provide adjacent upland nesting cover to increase waterfowl production. This project received the highest rating based on the immediate threat of subdivision, the opportunity to restore degraded wetlands, and the overall benefits to numerous species besides waterfowl. Ducks Unlimited was not able to participate as a cooperator on this project due to the jurisdiction concerns between State and tribal ownership. The USFWS ultimately acquired 1,550 acres of this proposed project. No mitigation funds were used. The Ashley Creek project involved acquisition of 870 acres adjacent to the Smith Lake Waterfowl Production Area. The primary goal was to create approximately 470 acres of wetland habitat with dikes and subimpoundments. This project was rated second in priority due to the lesser threat of loss. A feasibility analysis was completed by Ducks Unlimited based on a concept design. Although adequate water was available for the project, soil testing indicated that the organic soils adjacent to the creek would not support the necessary dikes. The project was determined not feasible for mitigation implementation. Although no waterfowl/wetland projects were implemented using mitigation funds, 1,550 acres were protected based on work done under this project.« less
Strecker, A.L.; Olden, J.D.; Whittier, Joanna B.; Paukert, C.P.
2011-01-01
To date, the predominant use of systematic conservation planning has been to evaluate and conserve areas of high terrestrial biodiversity. Although studies in freshwater ecosystems have received recent attention, research has rarely considered the potential tradeoffs between protecting different dimensions of biodiversity and the ecological processes that maintain diversity. We provide the first systematic prioritization for freshwaters (focusing on the highly threatened and globally distinct fish fauna of the Lower Colorado River Basin, USA) simultaneously considering scenarios of: taxonomic, functional, and phylogenetic diversity;contemporary threats to biodiversity (including interactions with nonnative species);and future climate change and human population growth. There was 75% congruence between areas of highest conservation priority for different aspects of biodiversity, suggesting that conservation efforts can concurrently achieve strong complementarity among all types of diversity. However, sizable fractions of the landscape were incongruent across conservation priorities for different diversity scenarios, underscoring the importance of considering multiple dimensions of biodiversity and highlighting catchments that contribute disproportionately to taxonomic, functional, and phylogenetic diversity in the region. Regions of projected human population growth were not concordant with conservation priorities;however, higher human population abundance will likely have indirect effects on native biodiversity by increasing demand for water. This will come in direct conflict with projected reductions in precipitation and warmer temperatures, which have substantial overlap with regions of high contemporary diversity. Native and endemic fishes in arid ecosystems are critically endangered by both current and future threats, but our results highlight the use of systematic conservation planning for the optimal allocation of limited resources that incorporates multiple and complementary conservation values describing taxonomic, functional, and phylogenetic diversity. ??2011 by the Ecological Society of America.
Strecker, Angela L.; Olden, Julian D.; Whittier, Joanna B.; Paukert, Craig P.
2011-01-01
To date, the predominant use of systematic conservation planning has been to evaluate and conserve areas of high terrestrial biodiversity. Although studies in freshwater ecosystems have received recent attention, research has rarely considered the potential trade-offs between protecting different dimensions of biodiversity and the ecological processes that maintain diversity. We provide the first systematic prioritization for freshwaters (focusing on the highly threatened and globally distinct fish fauna of the Lower Colorado River Basin, USA) simultaneously considering scenarios of: taxonomic, functional, and phylogenetic diversity; contemporary threats to biodiversity (including interactions with nonnative species); and future climate change and human population growth. There was 75% congruence between areas of highest conservation priority for different aspects of biodiversity, suggesting that conservation efforts can concurrently achieve strong complementarity among all types of diversity. However, sizable fractions of the landscape were incongruent across conservation priorities for different diversity scenarios, underscoring the importance of considering multiple dimensions of biodiversity and highlighting catchments that contribute disproportionately to taxonomic, functional, and phylogenetic diversity in the region. Regions of projected human population growth were not concordant with conservation priorities; however, higher human population abundance will likely have indirect effects on native biodiversity by increasing demand for water. This will come in direct conflict with projected reductions in precipitation and warmer temperatures, which have substantial overlap with regions of high contemporary diversity. Native and endemic fishes in arid ecosystems are critically endangered by both current and future threats, but our results highlight the use of systematic conservation planning for the optimal allocation of limited resources that incorporates multiple and complementary conservation values describing taxonomic, functional, and phylogenetic diversity.
44 CFR 209.7 - Priorities for project selection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... appropriate means may identify buyout and elevation projects. (b) States will set priorities in their State... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Priorities for project... ASSISTANCE § 209.7 Priorities for project selection. (a) It is the State's responsibility to identify and...
7 CFR 1777.13 - Project priority.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 12 2014-01-01 2013-01-01 true Project priority. 1777.13 Section 1777.13 Agriculture... (CONTINUED) SECTION 306C WWD LOANS AND GRANTS § 1777.13 Project priority. Paragraphs (a) through (d) of this... eligibility and the proposed project's priority for available funds. Applicants determined ineligible will be...
Assessment of Groundwater Pollution Potential Resulting From Stormwater Infiltration BMPs
DOT National Transportation Integrated Search
1995-08-01
Washington State has begun a program to dispose of highway runoff in which a priority has been given to the use of infiltration type technologies (e.g., infiltration basins, dry wells, etc.). Heavy metals are the most prevalent priority pollutant in ...
NASA Astrophysics Data System (ADS)
Tang, Q.; Yin, Y. Y.; Liu, X.; Zhang, X.
2016-12-01
Increasing population and socio-economic development have put great pressure on water resources of the Yellow River Basin. The anticipated climate and socio-economic changes may further increase water stress. In this study, we assess water scarcity under climate change and various socio-economic pathways with an emphasis on the impact of water shortages on food production. The water demands in the 21st century are projected under the new developed Shared Socio-economic Pathways (SSPs). The renewable water supply is estimated from the climate projections under the Representative Concentration Pathways (RCP) 8.5. The agricultural water use is assumed to have the lowest priority of all water consumers when water shortage occurs. The results show that the water demands in domestic and industrial sectors would grow rapidly. As more water resources would be occupied by domestic and industrial sectors, a portion of irrigated land would have to be converted to rain-fed agriculture which would lead to more than a reduction in food production under various socio-economic pathways. This study highlights the links between water, food and ecosystems in a changing environment and suggests that trade-offs should be considered when developing regional adaptation strategies.
Climate change effects on water allocations with season dependent water rights.
Null, Sarah E; Prudencio, Liana
2016-11-15
Appropriative water rights allocate surface water to competing users based on seniority. Often water rights vary seasonally with spring runoff, irrigation schedules, or other non-uniform supply and demand. Downscaled monthly Coupled Model Intercomparison Project multi-model, multi-emissions scenario hydroclimate data evaluate water allocation reliability and variability with anticipated hydroclimate change. California's Tuolumne watershed is a study basin, chosen because water rights are well-defined, simple, and include competing environmental, agricultural, and urban water uses representative of most basins. We assume that dedicated environmental flows receive first priority when mandated by federal law like the Endangered Species Act or hydropower relicensing, followed by senior agricultural water rights, and finally junior urban water rights. Environmental flows vary by water year and include April pulse flows, and senior agricultural water rights are 68% larger during historical spring runoff from April through June. Results show that senior water right holders receive the largest climate-driven reductions in allocated water when peak streamflow shifts from snowmelt-dominated spring runoff to mixed snowmelt- and rainfall-dominated winter runoff. Junior water right holders have higher uncertainty from inter-annual variability. These findings challenge conventional wisdom that water shortages are absorbed by junior water users and suggest that aquatic ecosystems may be disproportionally impaired by hydroclimate change, even when environmental flows receive priority. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Saidi, Mohammad; Hefny, Amr
2018-07-01
Research on water cooperation in the Eastern Nile Basin has focused on expanding policy and diplomacy tools for a better allocation of transboundary water resources confined to the river. Regional cooperation on water and related sectors such as energy and land expands the bargaining and areas for mutual gain, and thus enhances cooperation perspectives. This paper looks at the contribution and the potential benefits of a regional cooperation approach to addressing the underlying challenges of water diplomacy, such as complexity and distrust. It also promotes the understanding of river basins as a "resource basin" of integrated and linked resource-use issues, not always related to the river flow. The paper provides an analysis of priority issues for water-energy-food nexus in regional cooperation in the Eastern Nile Basin. This basin represents an illustrative case for regional cooperation and increased integration due to multiple comparative advantages inherent in the uneven endowments of water, energy and arable land resources, and to varying levels of economic and technological advancement among the three riparian countries: Egypt, Sudan and Ethiopia. The paper also analyzes institutional arrangements on a regional scale, and elaborates on the inherent trade-offs associated with them.
Rosillon, F; Vander Borght, P; Bado Sama, H
2005-01-01
Inspired by the experience of a river contract in Wallonia (Belgium) since 1990, the implementation of a first river contract has been initiated in a West African country, Burkina Faso. This application is not limited to a simple transposition of the Walloon model. The Burkina context calls for adaptation to the local environmental and socio-economical realities with an adequate partnership management. The importance of the mobilization around this project of institutional partners, as well as local collectivities, agricultural producers and water users in general reveals the great expectations of the actors concerning this new tool of water participative management. But will the latter be equal to the task? A first assessment has been drawn up one year after the launch. During the first year of the project, a participative diagnostic was implemented but the understanding of basic notions of water management such as 'river' (not translatable in the local language), 'watershed', 'contract' were not obvious. After the identification of functions and uses of water in the basin, an environmental survey was started. This approach allows study with the river committees of the priority actions to be developed as a first project of restoration of the gallery forest alongside the stream to fight against desertification. This project of integrated and participative management of water at sub-basin level is a concrete example of solidarity and exchange know-how between North and South in the context of a sustainable development.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
...-identified research designs to generate reliable and valid findings. Changes: None. Final Priorities Priority... DEPARTMENT OF EDUCATION Final Priorities; Disability and Rehabilitation Research Projects and Centers Program--Disability Rehabilitation Research Projects, etc. AGENCY: Office of Special Education and...
Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunnigan, James; DeShazer, Jay; Garrow, Larry
2005-06-01
''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine themore » biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.« less
Mitigation for the Construction and Operation of Libby Dam, 2003-2004 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunnigan, James; DeShazer, Jay; Garrow, Larry
2004-06-01
''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determinemore » the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana FWP uses a combination of diverse techniques to collect a variety of physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered, threatened species, and the assessment of restoration or management activities intended to restore native fishes and their habitats.« less
40 CFR 35.2015 - State priority system and project priority list.
Code of Federal Regulations, 2010 CFR
2010-07-01
... achieve optimum water quality management consistent with the goals and requirements of the Act. All..., needs and priorities set forth in areawide water quality management plans, and any other factors... priority to projects in priority water quality areas. The priority system may also include the...
15 CFR 2301.4 - Types of projects and broadcast priorities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Broadcast Priorities are set forth in order of priority for funding. (1) Priority 1—Provision of Public... priorities. 2301.4 Section 2301.4 Commerce and Foreign Trade Regulations Relating to Telecommunications and... TELECOMMUNICATIONS FACILITIES PROGRAM Application Requirements § 2301.4 Types of projects and broadcast priorities...
Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onjukka, Sam T.; Harbeck, Jim
2003-03-01
The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the studymore » of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.« less
Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onjukka, Sam T.; Harbeck, Jim
2003-03-01
The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the studymore » of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.« less
,
2007-01-01
Introduction The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the Eastern Great Basin Province of eastern Nevada, western Utah, southeastern Idaho, and northwestern Arizona. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and three assessment units. All three assessment units were quantitatively assessed for undiscovered oil and gas resources.
Great Basin wildlife disease concerns
Russ Mason
2008-01-01
In the Great Basin, wildlife diseases have always represented a significant challenge to wildlife managers, agricultural production, and human health and safety. One of the first priorities of the U.S. Department of Agriculture, Division of Fish and Wildlife Services was Congressionally directed action to eradicate vectors for zoonotic disease, particularly rabies, in...
Hydrological Modeling and WEB-GIS for the Water Resource Management
NASA Astrophysics Data System (ADS)
Pierleoni, A.; Bellezza, M.; Casadei, S.; Manciola, P.
2006-12-01
Water resources are a strategically natural resource although they can be extremely susceptible to degradation. As a matter of fact the increasing demand from multipurpose uses, which often are in competition amongst themselves, seems to affect the concept of sustainability per se', thus highlighting phenomena of quality-quantity degradation of water resources. In this context, the issue of water resource management rises to a more important role, especially when, other then the traditional uses for civil, industrial and agronomic purposes, environmental demands are taken into consideration. In particular, for environmental demands we mean: to preserve minimal flows, to conserve ecosystems and biodiversities, to protect and improve the environment and finally also the recreational facilities. In the present work, two software tools are presented; they combine the scientific aspect of the issues with a feasible and widely accessible application of the mathematical modeling in techno-operative fields within a sustainable management policy of the water resource at the basin scale. The first evaluation model of the available superficial water resource bases its algorithms upon regionalization procedures of flow parameters deduced from the geomorphologic features of the soil of the basin (BFI, Area) and presents, as output, a set of duration curves (DC) of the natural, measurable (natural after withdrawal), and residual (discharge usable for dissipative use) flow. The hydrological modeling combined with a GIS engine allows to process the dataset and regionalize the information of each section of the hydrographic network, in order to attain information about the effect of upriver withdrawals, in terms of evaluation parameters (measurable DC) to maintain an optimal water supply all along the entire downstream network. This model, projected with a WEB interface developed in PERL and connected to a MySQL database, has also been tested at the basin and sub-basin scale as an effective decision support system (DSS). The second software tool is a simulation model of a managed water resource for multipurpose uses. The algorithm is based on a topological sketch of the hydrographic network in terms of "Nodes" and "Links" combined with computation procedures for managing the water resource of big reservoirs. The peculiar feature of this method is that it performs a preliminary budget between the total available amount and the demand over a time span longer than the simulation step (week, month). During the managing phase, four different allocation methods are available: proportional, percentage, priority and balanced priority, hence this tool becomes flexible and allows to simulate many different management policies. This project was developed in JAVA and as a workstation product. Both software tools will be handled in a single system that, combined with a GIS map engine, is an integrated model for managing the water resource at the basin scale. The final aim of this project is to be able to share these scientific tools and hydrological data among many institutional uses. For this purpose, a WEB-based system, under the control of an administrator, provides on the one hand the possibility to easily keep the database up-to-date and on the other, the possibility to share data and retrieve the results of the procedures optimized for managing superficial water resources at the basin scale.
Status and understanding of groundwater quality in the northern San Joaquin Basin, 2005
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.
2010-01-01
Groundwater quality in the 2,079 square mile Northern San Joaquin Basin (Northern San Joaquin) study unit was investigated from December 2004 through February 2005 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 that was passed by the State of California and is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The Northern San Joaquin study unit was the third study unit to be designed and sampled as part of the Priority Basin Project. Results of the study provide a spatially unbiased assessment of the quality of raw (untreated) groundwater, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 61 wells in parts of Alameda, Amador, Calaveras, Contra Costa, San Joaquin, and Stanislaus Counties; 51 of the wells were selected using a spatially distributed, randomized grid-based approach to provide statistical representation of the study area (grid wells), and 10 of the wells were sampled to increase spatial density and provide additional information for the evaluation of water chemistry in the study unit (understanding/flowpath wells). The primary aquifer systems (hereinafter, primary aquifers) assessed in this study are defined by the depth intervals of the wells in the California Department of Public Health database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource; and (2) understanding, identification of the natural and human factors affecting groundwater quality. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. Benchmarks used in this study were either health-based (regulatory and non-regulatory) or aesthetic based (non-regulatory). For inorganic constituents, relative-concentrations were classified as high (equal to or greater than 1.0), indicating relative-concentrations greater than benchmarks; moderate (equal to or greater than 0.5, and less than 1.0); or, low (less than 0.5). For organic and special- interest constituents [1,2,3-trichloropropane (1,2,3-TCP), N-nitrosodimethylamine (NDMA), and perchlorate], relative- concentrations were classified as high (equal to or greater than 1.0); moderate (equal to or greater than 0.1 and less than 1.0); or, low (less than 0.1). Aquifer-scale proportion was used as the primary metric in the status assessment for groundwater quality. High aquifer- scale proportion is defined as the percentage of the primary aquifer with relative-concentrations greater than 1.0; moderate and low aquifer-scale proportions are defined as the percentage of the primary aquifer with moderate and low relative- concentrations, respectively. The methods used to calculate aquifer-scale proportions are based on an equal-area grid; thus, the proportions are areal rather than volumetric. Two statistical approaches - grid-based, which used one value per grid cell, and spatially weighted, which used the full dataset - were used to calculate aquifer-scale proportions for individual constituents and classes of constituents. The spatially weighted estimates of high aquifer-scale proportions were within the 90-percent confidence intervals of the grid-based estimates in all cases. The understanding assessment used statistical correlations between constituent relative-concentrations and
The International Summer School on Land Cover Change and Hydroclimate of the La Plata Basin
NASA Technical Reports Server (NTRS)
Berbery, Ernesto Hugo; Herdies, Dirceu L.; Alcaraz-Segura, Domingo; de Goncalves, Luis G. G.; Lettenmaier, Dennis P.; Toll, David
2011-01-01
The La Plata Basin (LPB) in southern South America has been subject to land cover and land use changes (LCLUCs) since colonial times and with an accelerated rate in the last decades and over extensive areas. The work of Ameghino even suggested that there were relations between those land use changes and the frequency of droughts and floods in the region. Despite this early knowledge, not much is known of the potential impacts of LCLUC on the hydroclimate of the La Plata basin. Besides, over the last century much of the La Plata Basin has had a reported increase in precipitation and heavy rains, and these changes along with an increase in population growth - have resulted in more adverse effects from flooding. To draw attention to these issues, during two weeks in November 2009 the International Summer School on Land Cover Change and Hydroclimate of the La Plata Basin was organized at the grounds of the Itaip Hydropower Plant in Brazil. The school was the result of the combination of interests between the La Plata Basin Regional Hydroclimate Project, the Inter-American Institute for Global Change Research (IAI), and the International Hydroinformatics Center (IHC) in Itaip . LPB is an umbrella project endorsed by the Global Energy and Water Cycle Experiment (GEWEX) and the Climate Prediction and Variability (CLIVAR), both of the World Climate Research Programme (WCRP). LPB has made a priority to train young scientists and promote interdisciplinary collaborations in areas related to Climate, Hydrology, Ecology and Agriculture. The IAI, with a similar agenda, was a natural partner to develop this Summer School, which in turn benefited from Itaipu s interest in relating with the scientific community of neighboring countries. The choice of location (Itaip Technological Park) was made so that participants could relate research usually done at academic institutions to applications and operations at one of the largest hydropower plants in the world. The school was attended by 45 advanced graduate students and young scientists with different backgrounds from seven countries, including less technically advanced ones in the region..
Klett, T.R.
2011-01-01
The U.S. Geological Survey, using a geology-based assessment methodology, estimated mean volumes of technically recoverable, conventional, undiscovered petroleum resources at 218 million barrels of crude oil, 4.1 trillion cubic feet of natural gas, and 94 million barrels of natural gas liquids for the Azov-Kuban Basin Province as part of a program to estimate petroleum resources for priority basins throughout the world.
Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth
2014-01-01
Groundwater quality in the approximately 653-square-mile (1,691-square-kilometer) South Coast Interior Basins (SCI) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The South Coast Interior Basins study unit contains eight priority groundwater basins grouped into three study areas, Livermore, Gilroy, and Cuyama, in the Southern Coast Ranges hydrogeologic province. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA South Coast Interior Basins study was designed to provide a spatially unbiased assessment of untreated (raw) groundwater quality within the primary aquifer system, as well as a statistically consistent basis for comparing water quality between basins. The assessment was based on water-quality and ancillary data collected by the USGS from 50 wells in 2008 and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH database for the SCI study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as trace elements and minor ions. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifer system of the SCI study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration greater than 1.0 indicates a concentration greater than a benchmark, and a relative-concentration less than or equal to 1.0 indicates a concentration equal to or less than a benchmark. Relative-concentrations of organic constituents and special-interest constituents were classified as “high” (relative-concentration greater than 1.0), “moderate” (relative-concentration greater than 0.1 and less than or equal to 1.0), or “low” (relative-concentration less than or equal to 0.1). Relative-concentrations of inorganic constituents were classified as “high” (relative-concentration greater than 1.0), “moderate” (relative-concentration greater than 0.5 and less than or equal to 1.0), or “low” (relative-concentration less than or equal to 0.5). Aquifer-scale proportion was used as the primary metric in the status assessment for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifer system with a relative-concentration greater than 1.0 for a particular constituent or class of constituents; percentage is based on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the areal percentage of the primary aquifer system with moderate and low relative-concentrations, respectively. Two statistical approaches—grid-based and spatially weighted—were used to evaluate aquifer-scale proportions for individual constituents and classes of constituents. Grid-based and spatially weighted estimates were comparable in the SCI study unit (within 90-percent confidence intervals). Inorganic constituents (one or more) with health-based benchmarks were detected at high relative-concentrations in 29 percent of the primary aquifer system, at moderate relative-concentrations in 37 percent, and at low relative-concentrations in 34 percent. High aquifer-scale proportions of inorganic constituents primarily reflected high aquifer-scale proportions of nitrate (14 percent), boron (8.6 percent), molybdenum (8.6 percent), and arsenic (5.7 percent). In contrast, the relative-concentrations of organic constituents (one or more) were high in 1.6 percent, moderate in 2.0 percent, and low or not detected in 96 percent of the primary aquifer system. Of the 207 organic and special-interest constituents analyzed for, 15 constituents were detected. Perchlorate was found at moderate relative-concentrations in 34 percent of the aquifer. Two organic constituents were frequently detected (in greater than 10 percent of samples): the trihalomethane chloroform and the herbicide simazine. The second component of this study, the understanding assessment, identified natural and human factors that may have affected groundwater quality by evaluating land use, physical characteristics of the wells, and geochemical conditions of the aquifer. This evaluation was done by using statistical tests of correlations between these potential explanatory factors and water-quality data. Concentrations of arsenic, molybdenum, and manganese were generally greater in anoxic and pre-modern groundwater than other groundwater. In contrast, concentrations of nitrate and perchlorate were significantly higher in oxic and modern groundwater. Concentrations of simazine were greater in modern than pre-modern groundwater. Chloroform detections were positively correlated with greater urban land use. Boron concentrations and chloroform detections were higher in the Livermore study area than in the other study areas of the SCI; total dissolved solids and sulfate concentrations were greater in the Cuyama study area.
34 CFR 263.21 - What priority is given to certain projects and applicants?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 34 Education 1 2013-07-01 2013-07-01 false What priority is given to certain projects and... projects and applicants? (a) The Secretary awards a total of 5 competitive preference priority points to an... notice published in the Federal Register. (1) School readiness projects that provide age appropriate...
34 CFR 263.21 - What priority is given to certain projects and applicants?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 1 2011-07-01 2011-07-01 false What priority is given to certain projects and... projects and applicants? (a) The Secretary awards a total of 5 competitive preference priority points to an... notice published in the Federal Register. (1) School readiness projects that provide age appropriate...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Teresa E.; Richards, Maria C.; Horowitz, Franklin G.
Geothermal energy is an attractive sustainable energy source. Yet project developers need confirmation of the resource base to warrant their time and financial resources. The Geothermal Play Fairway Analysis of the Appalachian Basin evaluated risk metrics that communicate the favorability of potential low-temperature geothermal energy resources in reservoirs more than 1000 m below the surface. This analysis is focused on the direct use of the heat, rather than on electricity production. Four risk factors of concern for direct-use geothermal plays in the Appalachian Basin portions of New York, Pennsylvania, and West Virginia are examined individually, and then in combination: 1)more » thermal resource quality, 2) natural reservoir quality, 3) induced seismicity, and 4) utilization opportunities. Uncertainty in the risk estimation is quantified. Based on these metrics, geothermal plays in the Appalachian Basin were identified as potentially viable for a variety of direct-use-heat applications. The methodologies developed in this project may be applied in other sedimentary basins as a foundation for low temperature (50-150 °C), direct use geothermal resource, risk, and uncertainty assessment. Three methods with which to combine the four risk factors were used. Among these, the averaging of the individual risk factors indicates the most favorable counties within the study area are the West Virginia counties of Monongalia, Harrison, Lewis (dubbed the Morgantown–Clarksburg play fairway), Putnam, and Kanawha (Charleston play fairway), the New York counties of Chemung and Steuben plus adjacent Bradford county in Pennsylvania (Corning–Ithaca play fairway), and the Pennsylvania counties of Mercer, Crawford, Erie, and Warren, and adjacent Chautauqua county in New York (together, the Meadville–Jamestown play fairway). These higher priority regions are surrounded by broader medium priority zones. Also worthy of additional exploration is a broad region near Pittsburgh Pennsylvania, for which the available geological data are insufficient to fully analyze the geological risks but yet the population is high. First, to assess the spatial variation in the depth to which one would need to drill to obtain geothermal temperatures that are useful to a future project, the project used bottom-hole temperature data from Appalachian Basin oil and gas exploration. These bottom hole temperature data are abundant but of low quality. Second, the project examined the potential for sufficient water flow rates through rocks to harvest heat from a geothermal well field, considering only natural reservoirs. This analysis provides a very incomplete picture of spatial variability of natural reservoirs because the oil and gas reservoir data lack key properties and are spatially biased toward those locations with profitable amounts of hydrocarbons in the rock pore spaces. Third, in light of the fact that earthquake activity has been induced in several states by subsurface work related to the oil and gas industry, this project examined the potential for similar activity in the Appalachian Basin. Acknowledging that data for such a task are insufficient, we utilized what was available: records of seismic activity, regional estimates of the orientations of stress in the rocks, and locations and orientations of zones of lateral change in rock properties at depths down to several kilometers below Earth’s surface. With these data, we created a first approximation of spatially variable risks for induced earthquakes. Because no data existed with which to test the reliability of these methods, the results have a high degree of uncertainty. Fourth, we examined the spatial variability of the above-the-ground factors that contribute to the economical viability of projects to tap low-temperature geothermal resources for direct-use. We worked principally with population density as a regionally known variable that would impact the cost of district heating. The resulting maps omit the costs of producing the hot water from the ground, because the below-ground costs are directly coupled to the thermal resource risk factor and natural reservoir risk factor – later analyses of those costs will be needed. The result of the district heating analysis is highly skewed: few census locations yielded a low estimated surface cost. The team also identified more than 165 prospects for high value direct-use geothermal energy opportunities such as industrial sites, university campuses, and federal facilities, among others. At the closure of this regional analysis, the most significant technical uncertainties are 1) reservoir distribution and capacities; 2) validity of thermal resource maps, and 3) the holistic estimation of Levelized Cost of Heat for favorable geological situations.« less
Klett, T.R.
2011-01-01
The U.S. Geological Survey, using a geology-based assessment methodology, estimated mean volumes of technically recoverable, conventional, undiscovered petroleum resources at 84 million barrels of crude oil, 4.7 trillion cubic feet of natural gas, and 130 million barrels of natural gas liquids for the Dnieper-Donets Basin Province and 39 million barrels of crude oil, 48 billion cubic feet of natural gas, and 1 million barrels of natural gas liquids for the Pripyat Basin Province. The assessments are part of a program to estimate these resources for priority basins throughout the world.
Global Change and Human Consumption of Freshwater Driven by Flow Regulation and Irrigation
NASA Astrophysics Data System (ADS)
Jaramillo, F.; Destouni, G.
2015-12-01
Recent studies show major uncertainties about the magnitude and key drivers of global freshwater change, historically and projected for the future. The tackling of these uncertainties should be a societal priority to understand: 1) the role of human change drivers for freshwater availability changes, 2) the global water footprint of humanity and 3) the relation of human freshwater consumption to a proposed planetary boundary. This study analyses worldwide hydroclimatic changes, as observed during 1900-2009 in 99 large hydrological basins across all continents. We test whether global freshwater change may be driven by major developments of flow regulation and irrigation (FRI) occurring over this period. Independent categorization of the variability of FRI-impact strength among the studied basins is used to identify statistical basin differences in occurrence and strength of characteristic hydroclimatic signals of FRI. Our results show dominant signals of increasing relative evapotranspiration in basins affected by flow regulation and/or irrigation, in conjunction with decreasing relative intra-annual variability of runoff in basins affected by flow regulation. The FRI-related increase in relative evapotranspiration implies an increase of 4,688 km3/yr in global annual average water flow from land to the atmosphere. This observation-based estimate extends considerably the upper quantification limits of both FRI-driven and total global human consumption of freshwater, as well as the global water footprint of humanity. Our worldwide analysis shows clear FRI-related change signals emerging directly from observations, in spite of large change variability among basins and many other coexisting change drivers in both the atmosphere and the landscape. These results highlight the importance of considering local water use as a key change driver in Earth system studies and modelling, of relevance for global change and human consumption of freshwater.
Comprehensive, Quantitative Risk Assessment of CO{sub 2} Geologic Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepinski, James
2013-09-30
A Quantitative Failure Modes and Effects Analysis (QFMEA) was developed to conduct comprehensive, quantitative risk assessments on CO{sub 2} capture, transportation, and sequestration or use in deep saline aquifers, enhanced oil recovery operations, or enhanced coal bed methane operations. The model identifies and characterizes potential risks; identifies the likely failure modes, causes, effects and methods of detection; lists possible risk prevention and risk mitigation steps; estimates potential damage recovery costs, mitigation costs and costs savings resulting from mitigation; and ranks (prioritizes) risks according to the probability of failure, the severity of failure, the difficulty of early failure detection and themore » potential for fatalities. The QFMEA model generates the necessary information needed for effective project risk management. Diverse project information can be integrated into a concise, common format that allows comprehensive, quantitative analysis, by a cross-functional team of experts, to determine: What can possibly go wrong? How much will damage recovery cost? How can it be prevented or mitigated? What is the cost savings or benefit of prevention or mitigation? Which risks should be given highest priority for resolution? The QFMEA model can be tailored to specific projects and is applicable to new projects as well as mature projects. The model can be revised and updated as new information comes available. It accepts input from multiple sources, such as literature searches, site characterization, field data, computer simulations, analogues, process influence diagrams, probability density functions, financial analysis models, cost factors, and heuristic best practices manuals, and converts the information into a standardized format in an Excel spreadsheet. Process influence diagrams, geologic models, financial models, cost factors and an insurance schedule were developed to support the QFMEA model. Comprehensive, quantitative risk assessments were conducted on three (3) sites using the QFMEA model: (1) SACROC Northern Platform CO{sub 2}-EOR Site in the Permian Basin, Scurry County, TX, (2) Pump Canyon CO{sub 2}-ECBM Site in the San Juan Basin, San Juan County, NM, and (3) Farnsworth Unit CO{sub 2}-EOR Site in the Anadarko Basin, Ochiltree County, TX. The sites were sufficiently different from each other to test the robustness of the QFMEA model.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-29
...-science conference on its designated priority research area in the fourth year of the project period, and... Rehabilitation Research Projects and Centers Program AGENCY: Office of Special Education and Rehabilitative... and Rehabilitative Services proposes two priorities for the Disability and Rehabilitation Research...
76 FR 793 - Multistate Conservation Grant Program; Priority List for Conservation Projects
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-06
...; 91400-9410-0000-7B] Multistate Conservation Grant Program; Priority List for Conservation Projects... 2011 priority list of wildlife and sport fish conservation projects from the Association of Fish and Wildlife Agencies (AFWA). As required by the Wildlife and Sport Fish Restoration Programs Improvement Act...
High Resolution Modelling of the Congo River's Multi-Threaded Main Stem Hydraulics
NASA Astrophysics Data System (ADS)
Carr, A. B.; Trigg, M.; Tshimanga, R.; Neal, J. C.; Borman, D.; Smith, M. W.; Bola, G.; Kabuya, P.; Mushie, C. A.; Tschumbu, C. L.
2017-12-01
We present the results of a summer 2017 field campaign by members of the Congo River users Hydraulics and Morphology (CRuHM) project, and a subsequent reach-scale hydraulic modelling study on the Congo's main stem. Sonar bathymetry, ADCP transects, and water surface elevation data have been collected along the Congo's heavily multi-threaded middle reach, which exhibits complex in-channel hydraulic processes that are not well understood. To model the entire basin's hydrodynamics, these in-channel hydraulic processes must be parameterised since it is not computationally feasible to represent them explicitly. Furthermore, recent research suggests that relative to other large global rivers, in-channel flows on the Congo represent a relatively large proportion of total flow through the river-floodplain system. We therefore regard sufficient representation of in-channel hydraulic processes as a Congo River hydrodynamic research priority. To enable explicit representation of in-channel hydraulics, we develop a reach-scale (70 km), high resolution hydraulic model. Simulation of flow through individual channel threads provides new information on flow depths and velocities, and will be used to inform the parameterisation of a broader basin-scale hydrodynamic model. The basin-scale model will ultimately be used to investigate floodplain fluxes, flood wave attenuation, and the impact of future hydrological change scenarios on basin hydrodynamics. This presentation will focus on the methodology we use to develop a reach-scale bathymetric DEM. The bathymetry of only a small proportion of channel threads can realistically be captured, necessitating some estimation of the bathymetry of channels not surveyed. We explore different approaches to this bathymetry estimation, and the extent to which it influences hydraulic model predictions. The CRuHM project is a consortium comprising the Universities of Kinshasa, Rhodes, Dar es Salaam, Bristol, and Leeds, and is funded by Royal Society-DFID Africa Capacity Building Initiative. The project aims to strengthen institutional research capacity and advance our understanding of the hydrology, hydrodynamics and sediment dynamics of the world's second largest river system through fieldwork and development of numerical models.
Understanding Sediment Processes of Los Laureles Canyon in the Binational Tijuana River Watershed
NASA Astrophysics Data System (ADS)
Yuan, Yongping; Biggs, Trent; Liden, Douglas
2015-04-01
Tijuana River Basin originates in Mexico and drains 4465 km2 into the Tijuana River Estuary National Research Reserve, a protected coastal wetland in California that supports 400 species of birds. Excessive erosion in Tijuana during storms produces sediment loads that bury native vegetation and block the tidal channels. Erosion also threatens human life, causing roads and houses in Mexico to collapse and the Tijuana River Valley in the U.S. to flood. Government agencies in US and Mexico spend millions annually to remove sediment. The EPA-SEMARNAT Border 2020 program identified the reduction of sediment to the Tijuana Estuary as a high priority. Gully formation on unpaved roads, channel erosion, and sheetwash and rill erosion from vacant lots in Tijuana are the primary sources of sediment (Biggs et al, 2009). Because 73% of the watershed is located in Mexico, the problem is likely to worsen as Tijuana continues to urbanize. EPA, with support from USDA, San Diego State University, and CICESE, is developing a model to estimate the sediment loss from a sub-basin of the watershed (Los Laureles Canyon) under existing conditions and under future development. This study will evaluate the reduction/prevention of sediment loss from green infrastructure projects, sediment basins, road paving, and conservation easements.
Priority threat management of invasive animals to protect biodiversity under climate change.
Firn, Jennifer; Maggini, Ramona; Chadès, Iadine; Nicol, Sam; Walters, Belinda; Reeson, Andy; Martin, Tara G; Possingham, Hugh P; Pichancourt, Jean-Baptiste; Ponce-Reyes, Rocio; Carwardine, Josie
2015-11-01
Climate change is a major threat to global biodiversity, and its impacts can act synergistically to heighten the severity of other threats. Most research on projecting species range shifts under climate change has not been translated to informing priority management strategies on the ground. We develop a prioritization framework to assess strategies for managing threats to biodiversity under climate change and apply it to the management of invasive animal species across one-sixth of the Australian continent, the Lake Eyre Basin. We collected information from key stakeholders and experts on the impacts of invasive animals on 148 of the region's most threatened species and 11 potential strategies. Assisted by models of current distributions of threatened species and their projected distributions, experts estimated the cost, feasibility, and potential benefits of each strategy for improving the persistence of threatened species with and without climate change. We discover that the relative cost-effectiveness of invasive animal control strategies is robust to climate change, with the management of feral pigs being the highest priority for conserving threatened species overall. Complementary sets of strategies to protect as many threatened species as possible under limited budgets change when climate change is considered, with additional strategies required to avoid impending extinctions from the region. Overall, we find that the ranking of strategies by cost-effectiveness was relatively unaffected by including climate change into decision-making, even though the benefits of the strategies were lower. Future climate conditions and impacts on range shifts become most important to consider when designing comprehensive management plans for the control of invasive animals under limited budgets to maximize the number of threatened species that can be protected. © 2015 John Wiley & Sons Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13809-000; Project No. 13814-000] Lock+ Hydro Friends Fund XLVIII; FFP Missouri 15, LLC Notice Announcing Filing Priority for... order of priority is as follows: 1. Lock+ Hydro Friends Fund XLVIII........ Project No. 13809-000...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-29
... Fish Restoration Act (16 U.S.C. 777 et seq.) and established the Multistate Conservation Grant Program...-9410-0000] Multistate Conservation Grant Program; Priority List and Approval for Conservation Projects... year 2013 priority list of wildlife and sport fish conservation projects from the Association of Fish...
Monk, Johanna M; Rowley, Kevin G; Anderson, Ian Ps
2009-11-20
Priority setting is about making decisions. Key issues faced during priority setting processes include identifying who makes these decisions, who sets the criteria, and who benefits. The paper reviews the literature and history around priority setting in research, particularly in Aboriginal health research. We explore these issues through a case study of the Cooperative Research Centre for Aboriginal Health (CRCAH)'s experience in setting and meeting priorities.Historically, researchers have made decisions about what research gets done. Pressures of growing competition for research funds and an increased public interest in research have led to demands that appropriate consultation with stakeholders is conducted and that research is of benefit to the wider society. Within Australian Aboriginal communities, these demands extend to Aboriginal control of research to ensure that Aboriginal priorities are met.In response to these demands, research priorities are usually agreed in consultation with stakeholders at an institutional level and researchers are asked to develop relevant proposals at a project level. The CRCAH's experience in funding rounds was that scientific merit was given more weight than stakeholders' priorities and did not necessarily result in research that met these priorities. After reviewing these processes in 2004, the CRCAH identified a new facilitated development approach. In this revised approach, the setting of institutional priorities is integrated with the development of projects in a way that ensures the research reflects stakeholder priorities.This process puts emphasis on identifying projects that reflect priorities prior to developing the quality of the research, rather than assessing the relevance to priorities and quality concurrently. Part of the CRCAH approach is the employment of Program Managers who ensure that stakeholder priorities are met in the development of research projects. This has enabled researchers and stakeholders to come together to collaboratively develop priority-driven research. Involvement by both groups in project development has been found to be essential in making decisions that will lead to robust and useful research.
Fram, Miranda S.; Belitz, Kenneth
2014-01-01
Statistical tests were used to evaluate relations between constituent concentrations and potential explanatory factors descriptive of land use, geography, depth, geochemical conditions, and groundwater age. Higher concentrations of trace elements, radioactive constituents, and constituents with aesthetic-based benchmarks generally were associated with anoxic conditions, higher pH, and location within a particular compositional band in the Sierra Nevada batholith corresponding to the southwestern part of the study unit. High concentrations of organic constituents generally were associated with greater proportions of urban land use. No significant relations were observed between the concentrations of organic constituents and measures of well depth or groundwater age, perhaps because of the high proportions of springs and modern groundwater in the dataset.
Tsibikov, V B; Ragozin, S I; Mikheeva, L V
1985-01-01
A flow-chart is developed demonstrating the relation between medical and prophylactic institutions within the organizational structure of the rehabilitation system and main types of rehabilitation procedures. In order to ascertain the priority in equipping rehabilitation services with adequate hardware the special priority criterion is introduced. The highest priority is assigned to balneotherapeutic and fangotherapeutic services. Based on the operation-by-operation analysis of clinical processes related to service and performance of balneologic procedures the preliminary set of clinical devices designed for baths, basins and showers in hospitals and rehabilitation departments is defined in a generalized form.
Priority research and management issues for the imperiled Great Basin of the western United States
Jeanne C. Chambers; Michael J. Wisdom
2009-01-01
Like many arid and semiarid regions, the Great Basin of the western United States is undergoing major ecological, social, and economic changes that are having widespread detrimental effects on the structure, composition, and function of native ecosystems. The causes of change are highly interactive and include urban, suburban, and exurban growth, past and present land...
Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.
2016-01-01
Cheatgrass (Bromus tectorum L.) is a highly invasive species in the Northern Great Basin that helps decrease fire return intervals. Fire fragments the shrub steppe and reduces its capacity to provide forage for livestock and wildlife and habitat critical to sagebrush obligates. Of particular interest is the greater sage grouse (Centrocercus urophasianus), an obligate whose populations have declined so severely due, in part, to increases in cheatgrass and fires that it was considered for inclusion as an endangered species. Remote sensing technologies and satellite archives help scientists monitor terrestrial vegetation globally, including cheatgrass in the Northern Great Basin. Along with geospatial analysis and advanced spatial modeling, these data and technologies can identify areas susceptible to increased cheatgrass cover and compare these with greater sage grouse priority areas for conservation (PAC). Future climate models forecast a warmer and wetter climate for the Northern Great Basin, which likely will force changing cheatgrass dynamics. Therefore, we examine potential climate-caused changes to cheatgrass. Our results indicate that future cheatgrass percent cover will remain stable over more than 80% of the study area when compared with recent estimates, and higher overall cheatgrass cover will occur with slightly more spatial variability. The land area projected to increase or decrease in cheatgrass cover equals 18% and 1%, respectively, making an increase in fire disturbances in greater sage grouse habitat likely. Relative susceptibility measures, created by integrating cheatgrass percent cover and temporal standard deviation datasets, show that potential increases in future cheatgrass cover match future projections. This discovery indicates that some greater sage grouse PACs for conservation could be at heightened risk of fire disturbance. Multiple factors will affect future cheatgrass cover including changes in precipitation timing and totals and increases in freeze-thaw cycles. Understanding these effects can help direct land management, guide scientific research, and influence policy.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13808-000; Project No. 13813-000] Lock+ Hydro Friends Fund XLIX; FFP Missouri 14, LLC; Notice Announcing Filing Priority for... order of priority is as follows: 1. Lock+ Hydro Friends Fund XLIX: Project No. 13808-000. 2. FFP...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No., 13010-002; Project No., 14272-000] Mississippi 8 Hydro, LLC; FFP Project 98, LLC, ; Notice Announcing Filing Priority for.... Mississippi 8 Hydro, LLC--Project No. 13010-002. 2. FFP Project 98, LLC--Project No. 14272-000. Dated: April...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-11
... of Proposed Pick-Sloan Missouri Basin Program, Eastern and Western Divisions, Project Use Power Rate...) for Project Use Power for the Pick-Sloan Missouri Basin Program (P-SMBP), Eastern and Western... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Pick-Sloan Missouri Basin Program, Eastern and...
Groundwater quality in the Colorado River basins, California
Dawson, Barbara J. Milby; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from subsurface flow from the groundwater basins to the west. Groundwater discharge is primarily to pumping wells, evapotranspiration, and, locally, to the Colorado River.
Navigating the high seas of Federal Programs to ensure usable science delivery
NASA Astrophysics Data System (ADS)
Bachelet, D. M.; Gough, M.; Baker, B.; Sheehan, T.; Mutch, T.; Brown, M.
2016-12-01
Conservation Biology Institute (CBI) has been developing web applications to serve credible and usable information that allows land stewards, as well as the general public, to better understand the challenges posed by on-going environmental change. Working with 18 Landscape Conservation Cooperatives (LCCs), CBI has developed Conservation Atlases that allow users to visualize regional spatial data. Some include specific tools such as the Conservation Blueprint in the South Atlantic LCC conservation atlas which is a living spatial plan that identifies priority areas for shared conservation action based on ecosystem indicator condition and connectivity. More than 400 people from over 100 different organizations have actively participated in its development so far. CBI worked closely with 4 LCCs to design a Landscape Climate Dashboard (http://bit.ly/2atu8Df) that provides CMIP5 climate projections averaged over federally and tribally protected lands in the western US. With support from BLM and Great Basin LCC, a Sagebrush Climate Console provides managers short-term NOAA forecasts, CMIP5 climate projections, regional intactness and site sensitivity over sagebrush extent and grouse range. The USDA Pacific Northwest Climate Hub and the US Forest Service are currently funding a collaborative effort between CBI programmers, USFS and Oregon State University forest geneticists to develop a seedlot source tool for the conterminous US and Alaska. This tool has inspired Great Basin sagebrush restoration scientists who have collected information on seed provenance and will hopefully soon collaborate to help develop the first seed source tool for sagebrush managers. Furthermore, with support from USDA Northwest Climate Hub, CBI's Data Basin site (http://bit.ly/2aLRlhZ) is providing downscaled CMIP5 climate projections and impacts from a Climate Science Center and NOAA Regional Integrated Science Assessment funded project that was the result of a collaborative effort between Oregon State University, University of Idaho, and the University of Washington. With much experience with local and regional managers and federal programs we will show examples of exciting successes and report on some challenges in coordinating exchanges and extracting valuable feedback to improve the usability of web applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14181-000; Project No. 14195-000] Lock+ Hydro Friends Fund XLIII; FFP Project 53, LLC; Notice Announcing Filing Priority for... follows: 1. Lock+ Hydro Friends Fund XLIII, Project No. 14181-000. 2. FFP Project 53, LLC, Project No...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14182-000; Project No. 14192-000] Lock+ Hydro Friends Fund XLI; FFP Project 54, LLC; Notice Announcing Filing Priority for... follows: 1. FFP Project 54, LLC, Project No. 14192-000. 2. Lock+ Hydro Friends Fund XLI, Project No. 14182...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14186-000; Project No. 14197-000] Lock+ Hydro Friends Fund XXXV; FFP Project 57, LLC;Notice Announcing Filing Priority for... follows: 1. Lock+ Hydro Friends Fund XXXV, Project No. 14186-000. 2. FFP Project 57, LLC, Project No...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14184-000; Project No. 14191-000] Lock+ Hydro Friends Fund XXXVIII; FFP Project 1, LLC; Notice Announcing Filing Priority for... follows: 1. Lock+ Hydro Friends Fund XXXVIII, Project No. 14184-000. 2. FFP Project 1, LLC, Project No...
USDA-ARS?s Scientific Manuscript database
The Wildcat Creek, a tributary to the Wabash River was identified by the USDA Natural Resources Conservation Service (NRCS) as a priority watershed for its high sediment and nutrient loading contributions to the Mississippi River. As part of the Mississippi River Basin Initiative (MRBI), the incorpo...
78 FR 53452 - Notice Announcing Filing Priority for Preliminary Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Notice Announcing Filing Priority for Preliminary Permit Applications Lock+ Hydro Friends Fund XXX, LLC.. Project No. 13625-003 FFP Project 121, LLC.... FFP Project 121, LLC Project No. 14504-000 2. Lock+ Hydro Friends Fund XXX, LLC Project No. 13625-003...
NASA Astrophysics Data System (ADS)
Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel
2014-05-01
The main challenge of the BLUEPRINT to safeguard Europe's water resources (EC, 2012) is to guarantee that enough good quality water is available for people's needs, the economy and the environment. In this sense, economic policy instruments such as water pricing policies and water markets can be applied to enhance efficient use of water. This paper presents a method based on hydro-economic tools to assess the effect of economic instruments on water resource systems. Hydro-economic models allow integrated analysis of water supply, demand and infrastructure operation at the river basin scale, by simultaneously combining engineering, hydrologic and economic aspects of water resources management. The method made use of the simulation and optimization hydroeconomic tools SIMGAMS and OPTIGAMS. The simulation tool SIMGAMS allocates water resources among the users according to priorities and operating rules, and evaluate economic scarcity costs of the system by using economic demand functions. The model's objective function is designed so that the system aims to meet the operational targets (ranked according to priorities) at each month while following the system operating rules. The optimization tool OPTIGAMS allocates water resources based on an economic efficiency criterion: maximize net benefits, or alternatively, minimizing the total water scarcity and operating cost of water use. SIMGAS allows to simulate incentive water pricing policies based on marginal resource opportunity costs (MROC; Pulido-Velazquez et al., 2013). Storage-dependent step pricing functions are derived from the time series of MROC values at a certain reservoir in the system. These water pricing policies are defined based on water availability in the system (scarcity pricing), so that when water storage is high, the MROC is low, while low storage (drought periods) will be associated to high MROC and therefore, high prices. We also illustrate the use of OPTIGAMS to simulate the effect of ideal water markets by economic optimization, without considering the potential effect of transaction costs. These methods and tools have been applied to the Jucar River basin (Spain). The results show the potential of economic instruments in setting incentives for a more efficient management of water resources systems. Acknowledgments: The study has been partially supported by the European Community 7th Framework Project (GENESIS project, n. 226536), SAWARES (Plan Nacional I+D+i 2008-2011, CGL2009-13238-C02-01 and C02-02), SCARCE (Consolider-Ingenio 2010 CSD2009-00065) of the Spanish Ministry of Economy and Competitiveness; and EC 7th Framework Project ENHANCE (n. 308438) Reference: Pulido-Velazquez, M., Alvarez-Mendiola, E., and Andreu, J., 2013. Design of Efficient Water Pricing Policies Integrating Basinwide Resource Opportunity Costs. J. Water Resour. Plann. Manage., 139(5): 583-592.
Priority Questions and Horizon Scanning for Conservation: A Comparative Study
Kark, Salit; Sutherland, William J.; Shanas, Uri; Klass, Keren; Achisar, Hila; Dayan, Tamar; Gavrieli, Yael; Justo-Hanani, Ronit; Mandelik, Yael; Orion, Nir; Pargament, David; Portman, Michelle; Reisman-Berman, Orna; Safriel, Uriel N.; Schaffer, Gad; Steiner, Noa; Tauber, Israel; Levin, Noam
2016-01-01
Several projects aimed at identifying priority issues for conservation with high relevance to policy have recently been completed in several countries. Two major types of projects have been undertaken, aimed at identifying (i) policy-relevant questions most imperative to conservation and (ii) horizon scanning topics, defined as emerging issues that are expected to have substantial implications for biodiversity conservation and policy in the future. Here, we provide the first overview of the outcomes of biodiversity and conservation-oriented projects recently completed around the world using this framework. We also include the results of the first questions and horizon scanning project completed for a Mediterranean country. Overall, the outcomes of the different projects undertaken (at the global scale, in the UK, US, Canada, Switzerland and in Israel) were strongly correlated in terms of the proportion of questions and/or horizon scanning topics selected when comparing different topic areas. However, some major differences were found across regions. There was large variation among regions in the percentage of proactive (i.e. action and response oriented) versus descriptive (non-response oriented) priority questions and in the emphasis given to socio-political issues. Substantial differences were also found when comparing outcomes of priority questions versus horizon scanning projects undertaken for the same region. For example, issues related to climate change, human demography and marine ecosystems received higher priority as horizon scanning topics, while ecosystem services were more emphasized as current priority questions. We suggest that future initiatives aimed at identifying priority conservation questions and horizon scanning topics should allow simultaneous identification of both current and future priority issues, as presented here for the first time. We propose that further emphasis on social-political issues should be explicitly integrated into future related projects. PMID:26815653
25 CFR Appendix A to Subpart C - IRR High Priority Project Scoring Matrix
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false IRR High Priority Project Scoring Matrix A Appendix A to...—IRR High Priority Project Scoring Matrix Score 10 5 3 1 0 Accident and fatality rate for candidate...,000 or less 250,001-500,000 500,001-750,000 Over 750,000. Geographic isolation No external access to...
25 CFR Appendix A to Subpart C - IRR High Priority Project Scoring Matrix
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false IRR High Priority Project Scoring Matrix A Appendix A to...—IRR High Priority Project Scoring Matrix Score 10 5 3 1 0 Accident and fatality rate for candidate...,000 or less 250,001-500,000 500,001-750,000 Over 750,000. Geographic isolation No external access to...
25 CFR Appendix A to Subpart C - IRR High Priority Project Scoring Matrix
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false IRR High Priority Project Scoring Matrix A Appendix A to...—IRR High Priority Project Scoring Matrix Score 10 5 3 1 0 Accident and fatality rate for candidate...,000 or less 250,001-500,000 500,001-750,000 Over 750,000. Geographic isolation No external access to...
25 CFR Appendix A to Subpart C - IRR High Priority Project Scoring Matrix
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true IRR High Priority Project Scoring Matrix A Appendix A to...—IRR High Priority Project Scoring Matrix Score 10 5 3 1 0 Accident and fatality rate for candidate...,000 or less 250,001-500,000 500,001-750,000 Over 750,000. Geographic isolation No external access to...
Tiffan, Kenneth F.; Haskell, Craig A.; Connor, William P.
2005-01-01
This report summarizes results of research activities conducted in 2002 and years previous to aid in the management and recovery of fall chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. The report is divided into self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2002. Peer-review publication remains a high priority of this research project, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers coauthored by personnel of project 199102900 that were written or published from 1998 to 2003.
7 CFR 1777.13 - Project priority.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., etc. (d) Selection priorities. The priorities described below will be used to rate preapplications and... may assign up to 15 points for items such as natural disaster, to improve compatibility/coordination between the Agency's and other agencies' selection systems, to assist those projects that are the most...
NASA Astrophysics Data System (ADS)
Groves, D.; Bloom, E.; Fischbach, J. R.; Knopman, D.
2013-12-01
The U.S. Bureau of Reclamation and water management agencies representing the seven Colorado River Basin States initiated the Colorado River Basin Study in January 2010 to evaluate the resiliency of the Colorado River system over the next 50 years and compare different options for ensuring successful management of the river's resources. RAND was asked to join this Basin Study Team in January 2012 to help develop an analytic approach to identify key vulnerabilities in managing the Colorado River basin over the coming decades and to evaluate different options that could reduce this vulnerability. Using a quantitative approach for planning under uncertainty called Robust Decision Making (RDM), the RAND team assisted the Basin Study by: identifying future vulnerable conditions that could lead to imbalances that could cause the basin to be unable to meet its water delivery objectives; developing a computer-based tool to define 'portfolios' of management options reflecting different strategies for reducing basin imbalances; evaluating these portfolios across thousands of future scenarios to determine how much they could improve basin outcomes; and analyzing the results from the system simulations to identify key tradeoffs among the portfolios. This talk will describe RAND's contribution to the Basin Study, focusing on the methodologies used to to identify vulnerabilities for Upper Basin and Lower Basin water supply reliability and to compare portfolios of options. Several key findings emerged from the study. Future Streamflow and Climate Conditions Are Key: - Vulnerable conditions arise in a majority of scenarios where streamflows are lower than historical averages and where drought conditions persist for eight years or more. - Depending where the shortages occur, problems will arise for delivery obligations for the upper river basin and the lower river basin. The lower river basin is vulnerable to a broader range of plausible future conditions. Additional Investments in Infrastructure and Efficiency Could Improve Performance and Reduce Risk: - Different portfolios of water-supply and demand-reduction options offer performance trade-offs. - Different types of options in the portfolios, such as conservation, desalination, or water banking, would affect future outcomes and costs of implementation. - Analysis of all the portfolios identified important near-term, high-priority options that should be implemented in the near future, including municipal, industrial, and agricultural conservation. Other Solutions May Be Required: - If future hydrologic conditions develop in a manner consistent with the more pessimistic projections, the Basin is increasingly likely to face vulnerable conditions. The region may need to consider additional management options.
Bennett, George L.
2017-07-20
Groundwater quality in the North San Francisco Bay Shallow Aquifer study unit (NSF-SA) was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is in Marin, Mendocino, Napa, Solano, and Sonoma Counties and included two physiographic study areas: the Valleys and Plains area and the surrounding Highlands area. The NSF-SA focused on groundwater resources used for domestic drinking water supply, which generally correspond to shallower parts of aquifer systems than that of groundwater resources used for public drinking water supply in the same area. The assessments characterized the quality of untreated groundwater, not the quality of drinking water.This study included three components: (1) a status assessment, which characterized the status of the quality of the groundwater resources used for domestic supply for 2012; (2) an understanding assessment, which evaluated the natural and human factors potentially affecting water quality in those resources; and (3) a comparison between the groundwater resources used for domestic supply and those used for public supply.The status assessment was based on data collected from 71 sites sampled by the U.S. Geological Survey for the GAMA Priority Basin Project in 2012. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and California State Water Resources Control Board Division of Drinking Water regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a grid-based method to estimate the proportion of the groundwater resources that has concentrations of water-quality constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale and permits comparisons to other GAMA Priority Basin Project study areas.In the NSF-SA study unit as a whole, inorganic constituents with human-health benchmarks were detected at high relative concentrations (RCs) in 27 percent of the shallow aquifer system, and inorganic constituents with secondary maximum contaminant levels (SMCL) were detected at high RCs in 24 percent of the system. The inorganic constituents detected at high RCs were arsenic, boron, fluoride, manganese, nitrate, iron, sulfate, and total dissolved solids (TDS). Organic constituents with human-health benchmarks were detected at high RCs in 1 percent of the shallow aquifer system. Of the 148 organic constituents analyzed, 30 constituents were detected, although only 1, chloroform, had a detection frequency greater than 10 percent.Natural and anthropogenic factors that could affect the groundwater quality were evaluated by using results from statistical testing of associations between constituent concentrations and values of potential explanatory factors. Groundwater age class (modern, mixed, or pre-modern), redox class (oxic or anoxic), aquifer lithology class (metamorphic, sedimentary, or volcanic), and dissolved oxygen concentrations were the explanatory factors that explained distribution patterns of most of the inorganic constituents best. Groundwater classified primarily as pre-modern or mixed in age was associated with higher concentrations of arsenic and fluoride than waters classified as modern. Anoxic or mixed redox conditions were associated with higher concentrations of boron, fluoride, and manganese. Similar patterns of association with explanatory variables were seen for inorganic constituents with aesthetic-based benchmarks detected at high concentrations. Nitrate and perchlorate had higher concentrations in oxic than in the anoxic redox class and were positively correlated with urban land use.The NSF-SA water-quality results were compared to those of the GAMA North San Francisco Bay Public-Supply Aquifer study unit (NSF-PA). The NSF-PA was sampled in 2004 and covers much of the same area as the NSF-SA, but focused on the deeper public-supply aquifer system. The comparison of the NSF-PA to the NSF-SA showed that there were more differences between the Valleys and Plains study areas of the two study units than between the Highlands study areas of the two study units. As expected from the shallower depth of wells, the NSF-SA Valleys and Plains study area had a lesser proportion of pre-modern age groundwater and greater proportion of modern age groundwater than the NSF-PA Valleys and Plains study area. In contrast, well depths and groundwater ages were not significantly different between the two Highlands study areas. Arsenic, manganese, and nitrate were present at high RCs, and perchlorate was detected in greater proportions of the NSF-SA Valleys and Plains study area than the NSF-PA Valleys and Plains study area.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-13
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14180-000, 14193-000] Lock+ Hydro Friends Fund XLV, FFP Project 2, LLC; Notice Announcing Filing Priority for Preliminary Permit...+ Hydro Friends Fund XLV Project No. 14180-000. 2. FFP Project 2, LLC Project No. 14193-000. Dated: March...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14189-000, 14198-000] Lock+ Hydro Friends Fund XL; FFP Project 56, LLC; Notice Announcing Filing Priority for Preliminary Permit...+ Hydro Friends Fund XL, Project No. 14189-000. 2. FFP Project 56, LLC, Project No. 14198-000. Dated...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14188-00o, 14200-000] Lock+ Hydro Friends Fund XXVIII; FFP Project 59, LLC; Notice Announcing Filing Priority for Preliminary Permit.... FFP Project 59, LLC, Project No. 14200-000. 2. Lock+ Hydro Friends Fund XXXVIII, Project No. 14188-000...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14178-000, 14190-000] Lock+ Hydro Friends Fund XLVII FFP Project 52, LLC; Notice Announcing Filing Priority for Preliminary Permit...+ Hydro Friends Fund XLVII, Project No. 14178-000. 2. FFP Project 52, LLC, Project No. 14190-000. Dated...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14187-000, 14199-000] Lock+ Hydro Friends Fund XXXIV; FFP Project 58, LLC; Notice Announcing Filing Priority for Preliminary Permit...+ Hydro Friends Fund XXXIV, Project No. 14187-000. 2. FFP Project 58, LLC, Project No. 14199-000. Dated...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14185-000, 14196-000] Lock+ Hydro Friends Fund IV, FFP Project 55, LLC; Notice Announcing Filing Priority for Preliminary Permit... Friends Fund IV: Project No. 14185-000. 2. FFP Project 55, LLC: Project No. 14196-000. Dated: February 29...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14179-000, 14194-000] Lock+ Hydro Friends Fund XLIV FFP Project 51, LLC; Notice Announcing Filing Priority for Preliminary Permit...+ Hydro Friends Fund XLIV, Project No. 14179-000. 2. FFP Project 51, LLC, Project No. 14194-000. Dated...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14298-000, 14299-000, 14301-000] SV Hydro, LLC, Coffeeville, LLC, FFP Project 99, LLC; Notice Announcing Filing Priority for... follows: 1. FFP Project 99, LLC: Project No. 14301-000. 2. SV Hydro, LLC: Project No. 14298-000. 3...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... individuals with disabilities in conducting TBIMS research. Types of Priorities When inviting applications for... Rehabilitation Research--Traumatic Brain Injury Model Systems Centers Collaborative Research Project AGENCY... Services announces a priority for the Disability and Rehabilitation Research Projects and Centers Program...
2013-06-11
The Assistant Secretary for Special Education and Rehabilitative Services announces priorities under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). Specifically, we announce priorities for a Rehabilitation Engineering Research Center (RERC) on Rehabilitation Strategies, Techniques, and Interventions (Priority 1), Information and Communication Technologies Access (Priority 2), Individual Mobility and Manipulation (Priority 3), and Physical Access and Transportation (Priority 4). The Assistant Secretary may use one or more of these priorities for competitions in fiscal year (FY) 2013 and later years. We take this action to focus research attention on areas of national need. We intend these priorities to improve community living and participation, health and function, and employment outcomes of individuals with disabilities.
Mathany, Timothy M.; Burton, Carmen A.; Land, Michael; Belitz, Kenneth
2010-01-01
Groundwater quality in the approximately 766-square-mile South Coast Range-Coastal (SCRC) study unit was investigated from May to December 2008, as part of the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project was developed in response to legislative mandates (Supplemental Report of the 1999 Budget Act 1999-00 Fiscal Year; and, the Groundwater Quality Monitoring Act of 2001 [Sections 10780-10782.3 of the California Water Code, Assembly Bill 599]) to assess and monitor the quality of groundwater in California, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The SCRC study unit was the 25th study unit to be sampled as part of the GAMA Priority Basins Project. The SCRC study unit was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems and to facilitate statistically consistent comparisons of untreated groundwater quality throughout California. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the SCRC study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to surficial contamination. In the SCRC study unit, groundwater samples were collected from 70 wells in two study areas (Basins and Uplands) in Santa Barbara and San Luis Obispo Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 15 wells were selected to aid in evaluation of specific water-quality issues (understanding wells). In addition to the 70 wells sampled, 3 surface-water samples were collected in streams near 2 of the sampled wells in order to better comprehend the interaction between groundwater and surface water in the area. The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-TCP), naturally occurring inorganic constituents (trace elements, nutrients, dissolved organic carbon [DOC], major and minor ions, silica, total dissolved solids [TDS], and alkalinity), and radioactive constituents (gross alpha and gross beta radioactivity). Naturally occurring isotopes (stable isotopes of hydrogen and oxygen in water, stable isotopes of nitrogen and oxygen in dissolved nitrate, stable isotopes of sulfur in dissolved sulfate, stable isotopes of carbon in dissolved inorganic carbon, activities of tritium, and carbon-14 abundance), and dissolved gases (including noble gases) also were measured to help identify the sources and ages of the sampled groundwater. In total, 298 constituents and field water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and matrix-spikes) were collected at approximately 3 to 12 percent of the wells in the SCRC study unit, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination from sample collection procedures was not a significant source of bias in the data for the groundwater samples. Differences between replicate samples generally were less than 10 percent relative and/or standard deviation, indicating acceptable analytical reproducibility. Matrix-spike recoveries were within the acceptable range (70 to 130 percent) for approximately 84
Toubal, Abderrezak Kamel; Achite, Mohammed; Ouillon, Sylvain; Dehni, Abdelatif
2018-03-12
Soil losses must be quantified over watersheds in order to set up protection measures against erosion. The main objective of this paper is to quantify and to map soil losses in the Wadi Sahouat basin (2140 km 2 ) in the north-west of Algeria, using the Revised Universal Soil Loss Equation (RUSLE) model assisted by a Geographic Information System (GIS) and remote sensing. The Model Builder of the GIS allowed the automation of the different operations for establishing thematic layers of the model parameters: the erosivity factor (R), the erodibility factor (K), the topographic factor (LS), the crop management factor (C), and the conservation support practice factor (P). The average annual soil loss rate in the Wadi Sahouat basin ranges from 0 to 255 t ha -1 year -1 , maximum values being observed over steep slopes of more than 25% and between 600 and 1000 m elevations. 3.4% of the basin is classified as highly susceptible to erosion, 4.9% with a medium risk, and 91.6% at a low risk. Google Earth reveals a clear conformity with the degree of zones to erosion sensitivity. Based on the soil loss map, 32 sub-basins were classified into three categories by priority of intervention: high, moderate, and low. This priority is available to sustain a management plan against sediment filling of the Ouizert dam at the basin outlet. The method enhancing the RUSLE model and confrontation with Google Earth can be easily adapted to other watersheds.
Groundwater Quality Data in the Mojave Study Unit, 2008: Results from the California GAMA Program
Mathany, Timothy M.; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 1,500 square-mile Mojave (MOJO) study unit was investigated from February to April 2008, as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). MOJO was the 23rd of 37 study units to be sampled as part of the GAMA Priority Basin Project. The MOJO study was designed to provide a spatially unbiased assessment of the quality of untreated ground water used for public water supplies within MOJO, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 59 wells in San Bernardino and Los Angeles Counties. Fifty-two of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and seven were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, and pharmaceutical compounds], constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]) naturally occurring inorganic constituents (nutrients, dissolved organic carbon [DOC], major and minor ions, silica, total dissolved solids [TDS], and trace elements), and radioactive constituents (gross alpha and gross beta radioactivity, radium isotopes, and radon-222). Naturally occurring isotopes (stable isotopes of hydrogen, oxygen, and carbon, stable isotopes of nitrogen and oxygen in nitrate, and activities of tritium and carbon-14), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. In total, over 230 constituents and water-quality indicators (field parameters) were investigated. Three types of quality-control samples (blanks, replicates, and matrix spikes) each were collected at approximately 5-8 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a significant source of bias in the data for the groundwater samples. Differences between replicate samples generally were within acceptable ranges, indicating acceptable analytical reproducibility. Matrix spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to untreated ground water. However, to provide some context for the results, concentrations of constituents measured in the untreated ground water were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic and technical concerns by CDPH. Comparisons between data collected for this study and thresholds for drinking-water are for illustrative purposes only, and are not indicative of compliance or non-compliance with those thresholds. Most constituents that were detected in groundwater samples in the 59 wells in MOJO were found at concentrations below drinking-water thresholds. In MOJO's 52 grid wells, volatile organic compounds (VOCs) were detected in 40 percent of the wells, and pesticides and pesticide degradates were detected in 23 percent of the grid wel
40 CFR 35.915 - State priority system and project priorty list.
Code of Federal Regulations, 2013 CFR
2013-07-01
... OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.915 State priority system and project priorty list. Construction grants will be awarded... State priority system and list must be designed to achieve optimum water quality management consistent...
40 CFR 35.915 - State priority system and project priorty list.
Code of Federal Regulations, 2012 CFR
2012-07-01
... OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.915 State priority system and project priorty list. Construction grants will be awarded... State priority system and list must be designed to achieve optimum water quality management consistent...
40 CFR 35.915 - State priority system and project priorty list.
Code of Federal Regulations, 2011 CFR
2011-07-01
... OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.915 State priority system and project priorty list. Construction grants will be awarded... State priority system and list must be designed to achieve optimum water quality management consistent...
40 CFR 35.915 - State priority system and project priorty list.
Code of Federal Regulations, 2014 CFR
2014-07-01
... OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.915 State priority system and project priorty list. Construction grants will be awarded... State priority system and list must be designed to achieve optimum water quality management consistent...
Thomas A. Abrahamsen
1999-01-01
Bed-sediment and tissue samples were collected and analyzed for the presence of trace elements from 25 sites in the Santee River Basin and coastal drainages study area during 1995-97 as part of the U.S. Geological Survey's National Water-Quality Assessment Program, Sediment trace-element priority-pollutant concentrations were compared among streams draining water-...
NASA Astrophysics Data System (ADS)
Georgievski, Goran; Keuler, Klaus
2013-04-01
Water supply and its potential to increase social, economic and environmental risks are among the most critical challenges for the upcoming decades. Therefore, the assessment of the reliability of regional climate models (RCMs) to represent present-day hydrological balance of river basins is one of the most challenging tasks with high priority for climate modelling in order to estimate range of possible socio-economic impacts of the climate change. However, previous work in the frame of 4th IPCC AR and corresponding regional downscaling experiments (with focus on Europe and Danube river basin) showed that even the meteorological re-analyses provide unreliable data set for evaluations of climate model performance. Furthermore, large discrepancies among the RCMs are caused by internal model deficiencies (for example: systematic errors in dynamics, land-soil parameterizations, large-scale condensation and convection schemes), and in spite of higher resolution RCMs do not always improve much the results from GCMs, but even deteriorate it in some cases. All that has a consequence that capturing impact of climate change on hydrological cycle is not an easy task. Here we present state of the art of RCMs in the frame of the CORDEX project for Europe. First analysis shows again that even the up to date ERA-INTERIM re-analysis is not reliable for evaluation of hydrological cycle in major European midlatitude river basins (Seine, Rhine, Elbe, Oder, Vistula, Danube, Po, Rhone, Garonne and Ebro). Therefore, terrestrial water storage, a quasi observed parameter which is a combination of river discharge (from Global River Discharge Centre data set) and atmospheric moisture fluxes from ERA-INTERIM re-analysis, is used for verification. It shows qualitatively good agreement with COSMO-CLM (CCLM) regional climate simulation (abbreviated CCLM_eval) at 0.11 degrees horizontal resolution forced by ERA-INTERIM re-analysis. Furthermore, intercomparison of terrestrial water storage seasonal cycle averaged in Danube river basin for the ten years (1990-1999) overlapping period between CCLM historical experiment (abbreviated CCLM_hist), its forcing GCM (MPI-ESM-LR, here abbreviated MPI_hist) and CCLM_eval is performed. It reveals that CCLM_hist simulation is in better agreement with quasi observed terrestrial water storage than MPI_hist and CCLM_eval. This result seems promising for the assessment of impact of climate change on hydrological cycle. However, evaluation of the whole ensemble of regional climate downscaling experiments participated in CORDEX-Europe project would provide a more robust estimate.
NOGA Online: a USGS resource for energy GIS data and services
Biewick, Laura; Gunther, Greg L.
2003-01-01
The PowerPoint presentation in this report was given at the BLM Resource Management Tools Conference in Phoenix, Arizona, April, 2003. Some diagrams that appeared in the original presentation have been updated in this report. It informs that the U.S. Geological Survey (USGS) Central Energy Resources Team (CERT) in Denver, Colorado, is providing National Oil and Gas Assessment (NOGA) results online at http://energy.cr.usgs.gov/oilgas/noga/. Available at this site are recently completed assessments of the potential for undiscovered oil and natural gas resources of five priority provinces (Montana Thrust Belt, Powder River Basin, San Juan Basin, Southwestern Wyoming, Uinta-Piceance) to meet the requirements of the Energy Policy and Conservation Act of 2000 (EPCA 2000). High demand for current assessment results and for the entirely digital, 1995 NOGA results for other provinces, prompted CERT to develop an internet map application using ArcIMS to deliver geologic data to the public. CERT continues to work on assessing oil and natural gas resources of priority basins in the United States; assessment results and GIS layers are made available at this site on an ongoing basis.
Integrated water resources modelling for assessing sustainable water governance
NASA Astrophysics Data System (ADS)
Skoulikaris, Charalampos; Ganoulis, Jacques; Tsoukalas, Ioannis; Makropoulos, Christos; Gkatzogianni, Eleni; Michas, Spyros
2015-04-01
Climatic variations and resulting future uncertainties, increasing anthropogenic pressures, changes in political boundaries, ineffective or dysfunctional governance of natural resources and environmental degradation are some of the most fundamental challenges with which worldwide initiatives fostering the "think globally, act locally" concept are concerned. Different initiatives target the protection of the environment through sustainable development; Integrated Water Resources Management (IWRM) and Transboundary Water Resources Management (TWRM) in the case of internationally shared waters are frameworks that have gained wide political acceptance at international level and form part of water resources management planning and implementation on a global scale. Both concepts contribute in promoting economic efficiency, social equity and environmental sustainability. Inspired by these holistic management approaches, the present work describes an effort that uses integrated water resources modelling for the development of an integrated, coherent and flexible water governance tool. This work in which a sequence of computer based models and tools are linked together, aims at the evaluation of the sustainable operation of projects generating renewable energy from water as well as the sustainability of agricultural demands and environmental security in terms of environmental flow under various climatic and operational conditions. More specifically, catchment hydrological modelling is coupled with dams' simulation models and thereafter with models dedicated to water resources management and planning,while the bridging of models is conducted through geographic information systems and custom programming tools. For the case of Mesta/Nestos river basin different priority rules in the dams' operational schedule (e.g. priority given to power production as opposed to irrigation needs and vice versa), as well as different irrigation demands, e.g. current water demands as opposed to those defined in the River Basin Management Plan (RBMP), are thoroughly examined in order to ascertain the river's capability to cover multi water demands and the potential of further infrastructure development. Due to the transboundary nature of the river basin in question, different scenarios quantify the maximum water volumes that could be further exploited in the upper part of the basin in order to avoid adverse consequences to the downstream regional economy, power productivity and environmental flow, and in terms of water governance to satisfy the need to balance water use between socio-economic activities and ecosystems.
40 CFR 35.915-1 - Reserves related to the project priority list.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-Clean Water Act § 35.915-1 Reserves related to the project priority list. In developing the fundable... § 35.908(b)(1)) for construction projects which use innovative or alternative waste water treatment...
40 CFR 35.915-1 - Reserves related to the project priority list.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-Clean Water Act § 35.915-1 Reserves related to the project priority list. In developing the fundable... § 35.908(b)(1)) for construction projects which use innovative or alternative waste water treatment...
40 CFR 35.915-1 - Reserves related to the project priority list.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-Clean Water Act § 35.915-1 Reserves related to the project priority list. In developing the fundable... § 35.908(b)(1)) for construction projects which use innovative or alternative waste water treatment...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Terra Lang; Wilson, Wayne H.; Ruzycki, James R.
The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations, however, remain depressed relative to historic levels. Between the completion of the life history and natural escapement study in 1984 and the start ofmore » this project in 1998, spring Chinook spawning surveys did not provide adequate information to assess age structure, progeny-to-parent production values, smolt-to-adult survival (SAR), or natural spawning escapement. Further, only very limited information is available for steelhead life history, escapement, and productivity measures in the John Day subbasin. Numerous habitat protection and rehabilitation projects to improve salmonid freshwater production and survival have also been implemented in the basin and are in need of effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed background information for developing context for project-specific effectiveness monitoring efforts. To meet the data needs as index stocks, to assess the long-term effectiveness of habitat projects, and to differentiate freshwater and ocean survival, sufficient annual estimates of spawner escapement, age structure, SAR, egg-to-smolt survival, smolt-per-redd ratio, and freshwater habitat use are essential. We have begun to meet this need through spawning ground surveys initiated for spring Chinook salmon in 1998 and smolt PIT-tagging efforts initiated in 1999. Additional sampling and analyses to meet these goals include an estimate of smolt abundance and SAR rates, and an updated measure of the freshwater distribution of critical life stages. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the high level of emphasis the NWPPC Fish and Wildlife Program, Subbasin Summaries, NMFS, and the Oregon Plan for Salmon and Watersheds have placed on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. By implementing the proposed program we have been able to address many of the goals for population status monitoring, such as defining areas currently used by spring Chinook for holding and spawning habitats and determining range expansion or contraction of summer rearing and spawning populations. The BiOp describes these goals as defining population growth rates (adult monitoring), detecting changes in those growth rates or relative abundance in a reasonable time (adult/juvenile monitoring), estimating juvenile abundance and survival rates (juvenile/smolt monitoring), and identifying stage-specific survival (adult-to-smolt, smolt-to-adult).« less
Betanzo, Elin A.; Hagen, Erik R.; Wilson, John T.; Reckhow, Kenneth H.; Hayes, Laura; Argue, Denise M.; Cangelosi, Allegra A.
2016-01-01
Throughout its history, the United States has made major investments in assessing natural resources, such as soils, timber, oil and gas, and water. These investments allow policy makers, the private sector and the American public to make informed decisions about cultivating, harvesting or conserving these resources to maximize their value for public welfare, environmental conservation and the economy. As policy issues evolve, new priorities and challenges arise for natural resource assessment, and new approaches to monitoring are needed. For example, new technologies for oil and gas development or alternative energy sources may present new risks for water resources both above and below ground. There is a need to evaluate whether today’s water monitoring programs are generating the information needed to answer questions surrounding these new policy priorities. The Northeast-Midwest Institute (NEMWI), in cooperation with the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program, initiated this project to explore the types and amounts of water data needed to address water-quality related policy questions of critical concern to today’s policy makers and whether those data are currently available. The collaborating entities identified two urgent water policy questions and conducted case studies in the Northeast-Midwest region to determine the water data needed, water data available, and the best ways to fill the data gaps relative to those questions. This report details the output from one case study and focuses on the Susquehanna River Basin, a data-rich area expected to be a best-case scenario in terms of water data availability.
Global Priority Conservation Areas in the Face of 21st Century Climate Change
Li, Junsheng; Lin, Xin; Chen, Anping; Peterson, Townsend; Ma, Keping; Bertzky, Monika; Ciais, Philippe; Kapos, Valerie; Peng, Changhui; Poulter, Benjamin
2013-01-01
In an era when global biodiversity is increasingly impacted by rapidly changing climate, efforts to conserve global biodiversity may be compromised if we do not consider the uneven distribution of climate-induced threats. Here, via a novel application of an aggregate Regional Climate Change Index (RCCI) that combines changes in mean annual temperature and precipitation with changes in their interannual variability, we assess multi-dimensional climate changes across the “Global 200” ecoregions – a set of priority ecoregions designed to “achieve the goal of saving a broad diversity of the Earth’s ecosystems” – over the 21st century. Using an ensemble of 62 climate scenarios, our analyses show that, between 1991–2010 and 2081–2100, 96% of the ecoregions considered will be likely (more than 66% probability) to face moderate-to-pronounced climate changes, when compared to the magnitudes of change during the past five decades. Ecoregions at high northern latitudes are projected to experience most pronounced climate change, followed by those in the Mediterranean Basin, Amazon Basin, East Africa, and South Asia. Relatively modest RCCI signals are expected over ecoregions in Northwest South America, West Africa, and Southeast Asia, yet with considerable uncertainties. Although not indicative of climate-change impacts per se, the RCCI-based assessment can help policy-makers gain a quantitative and comprehensive overview of the unevenly distributed climate risks across the G200 ecoregions. Whether due to significant climate change signals or large uncertainties, the ecoregions highlighted in the assessment deserve special attention in more detailed impact assessments to inform effective conservation strategies under future climate change. PMID:23359638
7 CFR 621.12 - How to request assistance.
Code of Federal Regulations, 2013 CFR
2013-01-01
... consideration. The proposal should: (a) Describe the basin or study area, including a map of the study area; (b... Federal and State agencies; (f) Discuss views and priorities of affected soil conservation districts...
34 CFR 263.21 - What priority is given to certain projects and applicants?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 1 2014-07-01 2014-07-01 false What priority is given to certain projects and... PROGRAMS Demonstration Grants for Indian Children Program § 263.21 What priority is given to certain... subject matters, including math and science, to enable Indian students to successfully transition to...
Great Basin Research and Management Project: Restoring and maintaining riparian ecosystem integrity
Jeanne C. Chambers
2000-01-01
The Great Basin Research and Management Project was initiated in 1994 by the USDA Forest Service, Rocky Mountain Research Stationâs Ecology, Paleoecology, and Restoration of Great Basin Watersheds Project to address the problems of stream incision and riparian ecosystem degradation in central Nevada. It is a highly interdisciplinary project that is being conducted in...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project AGENCY: Lake Tahoe Basin Management Unit, Forest Service, USDA...: The Epic Discovery Project is intended to enhance summer activities in response to the USDA Forest...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
... the feasibility of the Basin Farm Renewable Energy Project Project, to be located on Saxtons River, in... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13643-000] Basin Farm Renewable, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments...
Battaglin, William; Hay, Lauren E.; Markstrom, Steve
2011-01-01
The mountainous areas of Colorado are used for tourism and recreation, and they provide water storage and supply for municipalities, industries, and agriculture. Recent studies suggest that water supply and tourist industries such as skiing are at risk from climate change. In this study, a distributed-parameter watershed model, the Precipitation-Runoff Modeling System (PRMS), is used to identify the potential effects of future climate on hydrologic conditions for two Colorado basins, the East River at Almont and the Yampa River at Steamboat Springs, and at the subbasin scale for two ski areas within those basins.Climate-change input files for PRMS were generated by modifying daily PRMS precipitation and temperature inputs with mean monthly climate-change fields of precipitation and temperature derived from five general circulation model (GCM) simulations using one current and three future carbon emission scenarios. All GCM simulations of mean daily minimum and maximum air temperature for the East and Yampa River basins indicate a relatively steady increase of up to several degrees Celsius from baseline conditions by 2094. GCM simulations of precipitation in the two basins indicate little change or trend in precipitation, but there is a large range associated with these projections. PRMS projections of basin mean daily streamflow vary by scenario but indicate a central tendency toward slight decreases, with a large range associated with these projections.Decreases in water content or changes in the spatial extent of snowpack in the East and Yampa River basins are important because of potential adverse effects on water supply and recreational activities. PRMS projections of each future scenario indicate a central tendency for decreases in basin mean snow-covered area and snowpack water equivalent, with the range in the projected decreases increasing with time. However, when examined on a monthly basis, the projected decreases are most dramatic during fall and spring. Presumably, ski area locations are picked because of a tendency to receive snow and keep snowpack relative to the surrounding area. This effect of ski area location within the basin was examined by comparing projections of March snow-covered area and snowpack water equivalent for the entire basin with more local projections for the portion of the basin that represents the ski area in the PRMS models. These projections indicate a steady decrease in March snow-covered area for the basins but only small changes in March snow-covered area at both ski areas for the three future scenarios until around 2050. After 2050, larger decreases are possible, but there is a large range in the projections of future scenarios. The rates of decrease for snowpack water equivalent and precipitation that falls as snow are similar at the basin and subbasin scale in both basins. Results from this modeling effort show that there is a wide range of possible outcomes for future snowpack conditions in Colorado. The results also highlight the differences between projections for entire basins and projections for local areas or subbasins within those basins.
Rowat, Anne; Pollock, Alex; St George, Bridget; Cowey, Eileen; Booth, Joanne; Lawrence, Maggie
2016-11-01
To determine the top 10 research priorities specific to stroke nursing. It is important that stroke nurses build their research capability and capacity. This project built on a previous James Lind Alliance prioritization project, which established the shared stroke research priorities of stroke survivors, carers and health professionals. Research priority setting project using James Lind Alliance methods; a survey for interim prioritization and a consensus meeting for final priority setting. Between September - November 2014, stroke nurses were invited to select their top 10 priorities from a previously established list of 226 unique unanswered questions. These data were used to generate a list of shared research priorities (interim priority setting stage). A purposefully selected group of stroke nurses attended a final consensus meeting (April 2015) to determine the top 10 research priorities. During the interim prioritization stage, 97 stroke nurses identified 28 shared priority treatment uncertainties. At the final consensus meeting, 27 stroke nurses reached agreement on the top 10 stroke nursing research priorities. Five of the top 10 questions relate to stroke-specific impairments and five relate to rehabilitation and long-term consequences of stroke. The research agenda for stroke nursing has now been clearly defined, facilitating nurses to undertake research, which is of importance to stroke survivors and carers and central to supporting optimal recovery and quality of life after stroke. © 2016 John Wiley & Sons Ltd.
The Interior Columbia Basin Ecosystem Management Project: scientific assessment.
1999-01-01
This CD-ROM contains digital versions (PDF) of the major scientific documents prepared for the Interior Columbia Basin Ecosystem Management Project (ICBEMP). "A Framework for Ecosystem Management in the Interior Columbia Basin and Portions of the Klamath and Great Basins" describes a general planning model for ecosystem management. The "Highlighted...
The Transboundary Waters Assessment Programme (TWAP) River Basin Component Methods and Results
NASA Astrophysics Data System (ADS)
de Sherbinin, A. M.; Glennie, P.
2014-12-01
The Transboundary Waters Assessment Programme (TWAP) was initiated by the Global Environment Facility (GEF) to create the first baseline assessment of all of the planet's transboundary water resources. The TWAP River Basin component consists of a baseline comparative assessment of 270 transboundary river basins, including all but the smallest basins, to enable the identification of priority issues and hotspots at risk from a variety of stressors. The assessment is indicator based and it is intended to provide a relative analysis of basins based on risks to societies and ecosystems. Models and observational data have been used to create 14 indicators covering environmental, human and agricultural water stress; nutrient and wastewater pollution; extinction risk; governance and institutions; economic dependence on water resources; societal wellbeing at sub-basin scales; and societal risks from climate extremes. The methodology is not limited to transboundary basins, but can be applied to all river basins. This presentation will provide a summary of the methods and results of the TWAP River Basin component. It will also briefly discuss preliminary results of the TWAP lakes and aquifer components.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
...-Toiyabe National Forests; Santa Rosa Ranger District; Martin Basin Rangeland Management Project AGENCY.... The Project Area is located in Humboldt County, Nevada. The preparation of this SEIS is needed because the Record of Decision issued on October 30, 2009 for the Martin Basin Rangeland Management Project...
Priority programming for highway project selections.
DOT National Transportation Integrated Search
1981-01-01
This report provides an introduction to the methodologies of priority programming as developed by state transportation departments in their highway and transportation project selection processes. It explains the interrelationships between needs studi...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-02
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14136-000; Project No. 14139-000] Lock+ Hydro Friends Fund XXXV; Riverbank Hydro No. 4, LLC; Notice Announcing Filing Priority... follows: 1. Lock+ Hydro Friends Fund XXXV--Project No. 14136-000 2. Riverbank Hydro No. 4, LLC--Project No...
40 CFR 47.125 - Eligible and priority projects and activities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... environmental pollution problems; (3) Projects to understand and assess a specific environmental issue or a... activities. 47.125 Section 47.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE NATIONAL ENVIRONMENTAL EDUCATION ACT GRANTS § 47.125 Eligible and priority projects and...
40 CFR 47.125 - Eligible and priority projects and activities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... environmental pollution problems; (3) Projects to understand and assess a specific environmental issue or a... activities. 47.125 Section 47.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE NATIONAL ENVIRONMENTAL EDUCATION ACT GRANTS § 47.125 Eligible and priority projects and...
40 CFR 47.125 - Eligible and priority projects and activities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... environmental pollution problems; (3) Projects to understand and assess a specific environmental issue or a... activities. 47.125 Section 47.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE NATIONAL ENVIRONMENTAL EDUCATION ACT GRANTS § 47.125 Eligible and priority projects and...
40 CFR 47.125 - Eligible and priority projects and activities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... environmental pollution problems; (3) Projects to understand and assess a specific environmental issue or a... activities. 47.125 Section 47.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE NATIONAL ENVIRONMENTAL EDUCATION ACT GRANTS § 47.125 Eligible and priority projects and...
40 CFR 47.125 - Eligible and priority projects and activities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... environmental pollution problems; (3) Projects to understand and assess a specific environmental issue or a... activities. 47.125 Section 47.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE NATIONAL ENVIRONMENTAL EDUCATION ACT GRANTS § 47.125 Eligible and priority projects and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
... Disability and Rehabilitation Research (NIDRR)--Disability and Rehabilitation Research Projects and Centers... notice of final priorities for the Disability and Rehabilitation Research Projects and Centers Program... included in the notice of final priorities for the Disability and Rehabilitation Research Projects and...
25 CFR 170.205 - What is an IRR High Priority Project (IRRHPP)?
Code of Federal Regulations, 2010 CFR
2010-04-01
... RESERVATION ROADS PROGRAM Indian Reservation Roads Program Funding Irr High Priority Project (irrhpp) § 170... applications. (c) IRRHPP funds cannot be used for transportation planning, research, routine maintenance...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE... program. (a) Projects proposing to give priority for available services to rural communities having a... demonstrate sustainability of project without Federal financial support. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE... program. (a) Projects proposing to give priority for available services to rural communities having a... demonstrate sustainability of project without Federal financial support. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE... program. (a) Projects proposing to give priority for available services to rural communities having a... demonstrate sustainability of project without Federal financial support. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE... program. (a) Projects proposing to give priority for available services to rural communities having a... demonstrate sustainability of project without Federal financial support. ...
75 FR 1651 - Multistate Conservation Grant Program; Priority List for Conservation Projects
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-12
...-Johnson Sport Fish Restoration Act (16 U.S.C. 777 et seq.) and established the Multistate Conservation...; 91400-9410-0000-7B] Multistate Conservation Grant Program; Priority List for Conservation Projects... of wildlife and sport fish conservation projects from the Association of Fish and Wildlife Agencies...
ERIC Educational Resources Information Center
National Association for Environmental Education, Miami, FL.
The Maine Environmental Priorities Project (MEPP) is a comparative risk project designed to identify, compare, and rank the most serious environmental problems facing Maine. Once the problems are analyzed and ranked according to their threat or risk to Maine's ecological health, human health, and quality of life, the project will propose…
NASA Astrophysics Data System (ADS)
Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John
2017-10-01
China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.
NASA Astrophysics Data System (ADS)
Callegary, J. B.; Page, W. R.; Megdal, S.; Gray, F.; Scott, C. A.; Berry, M.; Rangel, M.; Oroz Ramos, L.; Menges, C. M.; Jones, A.
2011-12-01
In 2006, the U.S. Congress passed the U.S.-Mexico Transboundary Aquifer Assessment Act which provides a framework for study of aquifers shared by the United States and Mexico. The aquifer of the Upper Santa Cruz Basin was chosen as one of four priority aquifers for several reasons, including water scarcity, a population greater than 300,000, groundwater as the sole source of water for human use, and a riparian corridor that is of regional significance for migratory birds and other animals. Several new mines are also being proposed for this area which may affect water quality and availability. To date, a number of studies have been carried out by a binational team composed of the U.S. Geological Survey, the Mexican National Water Commission, and the Universities of Arizona and Sonora. Construction of a cross-border hydrogeologic framework model of the basin between Amado, Arizona and its southern boundary in Sonora is currently a high priority. The relatively narrow Santa Cruz valley is a structural basin that did not experience the same degree of late Cenozoic lateral extension and consequent deepening as found in other basin-and-range alluvial basins, such as the Tucson basin, where basin depth exceeds 3000 meters. This implies that storage may be much less than that found in other basin-and-range aquifers. To investigate the geometry of the basin and facies changes within the alluvium, a database of over one thousand well logs has been developed, geologic mapping and transient electromagnetic (TEM) surveys have been carried out, and information from previous electromagnetic, magnetic, and gravity studies is being incorporated into the hydrogeologic framework. Initial geophysical surveys and analyses have focused on the portion of the basin west of Nogales, Arizona, because it supplies approximately 50% of that city's water. Previous gravity and magnetic modeling indicate that this area is a narrow, fault-controlled half graben. Preliminary modeling of airborne and ground-based transient electromagnetic surveys corroborates earlier conclusions from the gravity modeling that depth to bedrock is greater than 500 meters in some locations. Results from other portions of the study area including Mexico are still being evaluated and incorporated into the three-dimensional hydrologic framework which will ultimately be used to construct a groundwater flow model.
2013-06-19
The Assistant Secretary for Special Education and Rehabilitative Services announces a priority for a Rehabilitation Engineering Research Center (RERC) on Technologies to Support Successful Aging with Disability under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). The Assistant Secretary may use this priority for a competition in fiscal year (FY) 2013 and later years. We take this action to focus research attention on areas of national need. We intend to use this priority to improve outcomes for individuals with disabilities.
2013-06-14
The Assistant Secretary for Special Education and Rehabilitative Services announces a priority for a Rehabilitation Engineering Research Center (RERC) on Universal Interfaces and Information Technology Access under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). The Assistant Secretary may use this priority for a competition in fiscal year (FY) 2013 and later years. We take this action to focus research attention on areas of national need. We intend to use this priority to improve outcomes for individuals with disabilities.
NASA Astrophysics Data System (ADS)
McDowell, P. F.
2009-12-01
The semi-arid Upper Klamath Basin is a complex landscape of agricultural land, pasture and forests, drained by rivers, lakes, and wetlands. Unique characteristics of the river systems include high natural nutrient loadings, large springs, low gradients, high sinuosity, fine sediment, herbaceous-dominated riparian vegetation, and habitat for salmonid and sucker fish. Following listing of several fish species under the Endangered Species Act in the 1980s to 90s, the Upper Klamath Basin has become a focal point of river management and restoration. Drought conditions in 2001 resulted in a cutoff of irrigation water and a political crisis. The crisis engendered a distrust of scientists by many residents of the basin. Political conflict over allocation of water resources and ecosystem management has continued since 2001. In this environment, multiple groups, including federal and state agencies and NGOs, have developed restoration assessments and agendas, and they have also implemented numerous restoration projects. These restoration guidance documents are typically based on input from local residents and landowners as well as the published scientific literature. The documents from different groups are generally consistent but priorities vary somewhat. Gaps in scientific understanding of the river systems are recognized as a handicap in restoration planning. The science knowledge base has been growing since 2001 but generally lags behind on-the-ground restoration activities. Research can help in addressing two critical questions important in restoration implementation. What restoration strategies are best suited to the processes and dynamics of this system? Are the specific restoration designs being employed effective at meeting restoration goals? In addition to following scientific standards of practice, scientific research needs to be framed with an awareness of how formal and informal knowledge is used in restoration implementation.
34 CFR 1100.6 - What priorities may the Director establish?
Code of Federal Regulations, 2012 CFR
2012-07-01
... literacy. (b) Expanding the use of technology in literacy programs. One of the Institute's major projects... economy, and the well-being of children. Projects that enhance this effort will be given priority...
34 CFR 1100.6 - What priorities may the Director establish?
Code of Federal Regulations, 2014 CFR
2014-07-01
... literacy. (b) Expanding the use of technology in literacy programs. One of the Institute's major projects... economy, and the well-being of children. Projects that enhance this effort will be given priority...
34 CFR 1100.6 - What priorities may the Director establish?
Code of Federal Regulations, 2013 CFR
2013-07-01
... literacy. (b) Expanding the use of technology in literacy programs. One of the Institute's major projects... economy, and the well-being of children. Projects that enhance this effort will be given priority...
Distributed watershed modeling of design storms to identify nonpoint source loading areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endreny, T.A.; Wood, E.F.
1999-03-01
Watershed areas that generate nonpoint source (NPS) polluted runoff need to be identified prior to the design of basin-wide water quality projects. Current watershed-scale NPS models lack a variable source area (VSA) hydrology routine, and are therefore unable to identify spatially dynamic runoff zones. The TOPLATS model used a watertable-driven VSA hydrology routine to identify runoff zones in a 17.5 km{sup 2} agricultural watershed in central Oklahoma. Runoff areas were identified in a static modeling framework as a function of prestorm watertable depth and also in a dynamic modeling framework by simulating basin response to 2, 10, and 25 yrmore » return period 6 h design storms. Variable source area expansion occurred throughout the duration of each 6 h storm and total runoff area increased with design storm intensity. Basin-average runoff rates of 1 mm h{sup {minus}1} provided little insight into runoff extremes while the spatially distributed analysis identified saturation excess zones with runoff rates equaling effective precipitation. The intersection of agricultural landcover areas with these saturation excess runoff zones targeted the priority potential NPS runoff zones that should be validated with field visits. These intersected areas, labeled as potential NPS runoff zones, were mapped within the watershed to demonstrate spatial analysis options available in TOPLATS for managing complex distributions of watershed runoff. TOPLATS concepts in spatial saturation excess runoff modelling should be incorporated into NPS management models.« less
Hinck, Jo Ellen; Ingersoll, Christopher G.; Wang, Ning; Augspurger, Tom; Barnhart, M. Christopher; McMurray, Stephen E.; Roberts, Andrew D.; Schrader, Lynn
2011-01-01
The Meramec River Basin in east-central Missouri is an important stronghold for native freshwater mussels (Order: Unionoida) in the United States. Whereas the basin supports more than 40 mussel species, previous studies indicate that the abundance and distribution of most species are declining. Therefore, resource managers have identified the need to prioritize threats to native mussel populations in the basin and to design a mussel monitoring program. The objective of this study was to identify threats of habitat and water-quality degradation to mussel diversity in the basin. Affected habitat parameters considered as the main threats to mussel conservation included excess sedimentation, altered stream geomorphology and flow, effects on riparian vegetation and condition, impoundments, and invasive non-native species. Evaluating water-quality parameters for conserving mussels was a main focus of this study. Mussel toxicity data for chemical contaminants were compared to national water quality criteria (NWQC) and Missouri water quality standards (MWQS). However, NWQC and MWQS have not been developed for many chemical contaminants and some MWQS may not be protective of native mussel populations. Toxicity data indicated that mussels are sensitive to ammonia, copper, temperature, certain pesticides, pharmaceuticals, and personal care products; these compounds were identified as the priority water-quality parameters for mussel conservation in the basin. Measures to conserve mussel diversity in the basin include expanding the species and life stages of mussels and the list of chemical contaminants that have been assessed, establishing a long term mussel monitoring program that measures physical and chemical parameters of high priority, conducting landscape scale modeling to predict mussel distributions, determining sublethal effects of primary contaminants of concern, deriving risk-based guidance values for mussel conservation, and assessing the effects of wastewater treatment plants and non-point source pollution on mussels. A critical next step to further prioritize these needs is to conduct a watershed risk assessment using local data (for example, land use, flow) when available.
Ruhl, P.M.; Smith, K.E.
1996-01-01
The analysis of potential contaminants in biological tissues is an important part of many water-quality assessment programs, including the National Water-Quality Assessment (NAWQA) Program. Tissue analyses often are used to provide information about (1) direct threats to ecosystem integrity, and (2) the occurrence and distribution of potential contaminants in the environment. During 1992-93, trace elements in Asiatic clam (Corbicula fluminea) soft tissues and redbreast sunfish (Lepomis auritus) livers were analyzed to obtain information about the occurrence and distribution of trace element contaminants in the Albemarle-Pamlico Drainage Basin of North Carolina and Virginia. The investigation was conducted as part of the NAWQA Program. All but 3 of the 22 trace elements that were analyzed were detected. Although all 10 of the U.S. Environmental Protection Agency (U.S. EPA) priority pollutants were detected in the tissues sampled, they were present in relatively low concentrations. Concentrations of U.S. EPA priority pollutants in Asiatic clams collected in the Albemarle-Pamlico Drainage Basin are similar to concentrations observed in other NAWQA study units in the southeastern United States. Mercury (a U.S. EPA priority pollutant) was widely detected, being present in 29 of 30 tissue samples, but concentrations did not exceed the FDA action level for mercury of a risk-based screening value for the general public. Mercury concentrations in Asiatic clams were similar to concentrations in other NAWQA study areas in the Southeast.
Navarro-Ortega, Alícia; Acuña, Vicenç; Batalla, Ramon J; Blasco, Julián; Conde, Carlos; Elorza, Francisco J; Elosegi, Arturo; Francés, Félix; La-Roca, Francesc; Muñoz, Isabel; Petrovic, Mira; Picó, Yolanda; Sabater, Sergi; Sanchez-Vila, Xavier; Schuhmacher, Marta; Barceló, Damià
2012-05-01
The Consolider-Ingenio 2010 project SCARCE, with the full title "Assessing and predicting effects on water quantity and quality in Iberian Rivers caused by global change" aims to examine and predict the relevance of global change on water availability, water quality, and ecosystem services in Mediterranean river basins of the Iberian Peninsula, as well as their socio-economic impacts. Starting in December 2009, it brought together a multidisciplinary team of 11 partner Spanish institutions, as well as the active involvement of water authorities, river basin managers, and other relevant agents as stakeholders. The study areas are the Llobregat, Ebro, Jucar, and Guadalquivir river basins. These basins have been included in previous studies and projects, the majority of whom considered some of the aspects included in SCARCE but individually. Historical data will be used as a starting point of the project but also to obtain longer time series. The main added value of SCARCE project is the inclusion of scientific disciplines ranging from hydrology, geomorphology, ecology, chemistry, and ecotoxicology, to engineering, modeling, and economy, in an unprecedented effort in the Mediterranean area. The project performs data mining, field, and lab research as well as modeling and upscaling of the findings to apply them to the entire river basin. Scales ranging from the laboratory to river basins are addressed with the potential to help improve river basin management. The project emphasizes, thus, linking basic research and management practices in a single framework. In fact, one of the main objectives of SCARCE is to act as a bridge between the scientific and the management and to transform research results on management keys and tools for improving the River Basin Management Plans. Here, we outline the general structure of the project and the activities conducted within the ten Work Packages of SCARCE.
Review of BPA Funded Sturgeon, Resident Fish and Wildlife Projects for 1990/1991.
DOE Office of Scientific and Technical Information (OSTI.GOV)
United States. Bonneville Power Administration.
1990-12-01
The Bonneville Power Administration (BPA) held a public meeting on November 19--21, 1991, for the purpose of review, coordination, and consultation of the BPA-funded projects for sturgeon, resident fish, and wildlife in the Columbia River Basin (Basin). The comments received after the meeting were favorable and the participants agreed that the meeting was stimulating and productive. The information exchanged should lead to better coordination with other projects throughout the Basin. This document list the projects by title, the project leaders and BPA's project officers, and an abstract of each leader's presentation.
77 FR 24197 - Notice Announcing Preliminary Permit Drawing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-23
... Drawing Mississippi 8 Hydro, LLC Project No. 13010-002. FFP Project 98, LLC Project No. 14272-000. The..., or her designee, will conduct a random drawing to determine the filing priority of the applicants... section 4.37 of its regulations.\\2\\ The priority established by this drawing will be used to determine...
77 FR 9915 - Notice Announcing Preliminary Permit Drawing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-21
... Drawing Lock+ Hydro Friends Fund XLI Project No. 14182-000 FFP Project 54, LLC Project No. 14192-000 The... her designee, will conduct a random drawing to determine the filing priority of the applicants... section 4.37 of its regulations.\\2\\ The priority established by this drawing will be used to determine...
25 CFR Appendix A to Subpart C - IRR High Priority Project Scoring Matrix
Code of Federal Regulations, 2010 CFR
2010-04-01
...—IRR High Priority Project Scoring Matrix Score 10 5 3 1 0 Accident and fatality rate for candidate route 1 Severe X Moderate Minimal No accidents. Years since last IRR construction project completed... elements Addresses 1 element. 1 National Highway Traffic Safety Board standards. 2 Total funds requested...
Priority Determination for AVC Funded R&D Projects.
ERIC Educational Resources Information Center
Wilkinson, Gene L.
As an extension of ideas suggested in an earlier paper which proposed a project control system for Indiana University's Audio-Visual Center (see EM 010 306), this paper examines the establishment of project legitimacy and priority within the system and reviews the need to stimulate specific research proposals as well as generating a matrix of…
40 CFR 35.915-1 - Reserves related to the project priority list.
Code of Federal Regulations, 2011 CFR
2011-07-01
... § 35.908(b)(1)) for construction projects which use innovative or alternative waste water treatment... AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.915-1 Reserves related to the project priority list. In developing the fundable...
40 CFR 35.915-1 - Reserves related to the project priority list.
Code of Federal Regulations, 2010 CFR
2010-07-01
... § 35.908(b)(1)) for construction projects which use innovative or alternative waste water treatment... AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.915-1 Reserves related to the project priority list. In developing the fundable...
7 CFR 3430.1004 - Project types and priorities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ADMINISTRATIVE PROVISIONS Sun Grant Program § 3430.1004 Project types and priorities. (a) Project types. The Sun... on the basis of merit, quality, and relevance to advancing the purposes of the Sun Grant Program. (2... provided by NIFA for the Sun Grant Program that are not allocated to the Subcenter. For the Subcenter, the...
7 CFR 3430.1004 - Project types and priorities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ADMINISTRATIVE PROVISIONS Sun Grant Program § 3430.1004 Project types and priorities. (a) Project types. The Sun... on the basis of merit, quality, and relevance to advancing the purposes of the Sun Grant Program. (2... provided by NIFA for the Sun Grant Program that are not allocated to the Subcenter. For the Subcenter, the...
7 CFR 3430.1004 - Project types and priorities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ADMINISTRATIVE PROVISIONS Sun Grant Program § 3430.1004 Project types and priorities. (a) Project types. The Sun... on the basis of merit, quality, and relevance to advancing the purposes of the Sun Grant Program. (2... provided by NIFA for the Sun Grant Program that are not allocated to the Subcenter. For the Subcenter, the...
7 CFR 3430.1004 - Project types and priorities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ADMINISTRATIVE PROVISIONS Sun Grant Program § 3430.1004 Project types and priorities. (a) Project types. The Sun... on the basis of merit, quality, and relevance to advancing the purposes of the Sun Grant Program. (2... provided by NIFA for the Sun Grant Program that are not allocated to the Subcenter. For the Subcenter, the...
Designing coastal conservation to deliver ecosystem and human well-being benefits.
Annis, Gust M; Pearsall, Douglas R; Kahl, Katherine J; Washburn, Erika L; May, Christopher A; Franks Taylor, Rachael; Cole, James B; Ewert, David N; Game, Edward T; Doran, Patrick J
2017-01-01
Conservation scientists increasingly recognize that incorporating human values into conservation planning increases the chances for success by garnering broader project acceptance. However, methods for defining quantitative targets for the spatial representation of human well-being priorities are less developed. In this study we employ an approach for identifying regionally important human values and establishing specific spatial targets for their representation based on stakeholder outreach. Our primary objective was to develop a spatially-explicit conservation plan that identifies the most efficient locations for conservation actions to meet ecological goals while sustaining or enhancing human well-being values within the coastal and nearshore areas of the western Lake Erie basin (WLEB). We conducted an optimization analysis using 26 features representing ecological and human well-being priorities (13 of each), and included seven cost layers. The influence that including human well-being had on project results was tested by running five scenarios and setting targets for human well-being at different levels in each scenario. The most important areas for conservation to achieve multiple goals are clustered along the coast, reflecting a concentration of existing or potentially restorable coastal wetlands, coastal landbird stopover habitat and terrestrial biodiversity, as well as important recreational activities. Inland important areas tended to cluster around trails and high quality inland landbird stopover habitat. Most concentrated areas of importance also are centered on lands that are already conserved, reflecting the lower costs and higher benefits of enlarging these conserved areas rather than conserving isolated, dispersed areas. Including human well-being features in the analysis only influenced the solution at the highest target levels.
Designing coastal conservation to deliver ecosystem and human well-being benefits
Pearsall, Douglas R.; Kahl, Katherine J.; Washburn, Erika L.; May, Christopher A.; Franks Taylor, Rachael; Cole, James B.; Ewert, David N.; Game, Edward T.; Doran, Patrick J.
2017-01-01
Conservation scientists increasingly recognize that incorporating human values into conservation planning increases the chances for success by garnering broader project acceptance. However, methods for defining quantitative targets for the spatial representation of human well-being priorities are less developed. In this study we employ an approach for identifying regionally important human values and establishing specific spatial targets for their representation based on stakeholder outreach. Our primary objective was to develop a spatially-explicit conservation plan that identifies the most efficient locations for conservation actions to meet ecological goals while sustaining or enhancing human well-being values within the coastal and nearshore areas of the western Lake Erie basin (WLEB). We conducted an optimization analysis using 26 features representing ecological and human well-being priorities (13 of each), and included seven cost layers. The influence that including human well-being had on project results was tested by running five scenarios and setting targets for human well-being at different levels in each scenario. The most important areas for conservation to achieve multiple goals are clustered along the coast, reflecting a concentration of existing or potentially restorable coastal wetlands, coastal landbird stopover habitat and terrestrial biodiversity, as well as important recreational activities. Inland important areas tended to cluster around trails and high quality inland landbird stopover habitat. Most concentrated areas of importance also are centered on lands that are already conserved, reflecting the lower costs and higher benefits of enlarging these conserved areas rather than conserving isolated, dispersed areas. Including human well-being features in the analysis only influenced the solution at the highest target levels. PMID:28241018
NASA Astrophysics Data System (ADS)
Brown, I. F.
2015-12-01
Southwestern Amazonia, where Bolivia, Brazil and Peru meet, faces numerous challenges to the sustainable utilization of land and water resources as the region experiences rapid population and economic growth, expanding agriculture, transportation and energy sectors, along with frequent flooding and droughts. It is also predicted to be one of the most susceptible areas for climate change in the coming decade. The Acre River Basin, one of the few trinational basins in Amazonia, lies at the center of the Madre de Dios Region (Peru), Acre State (Brazil) and Pando Department (Bolivia) or MAP Region. It covers approximately 7,500 km2 and its inhabitants range from indigenous groups avoiding contact with industrial society to more than 60,000 dwellers of a binational urban center. The basin incorporates most the challenges facing the region and this paper discusses steps underway to address the basin's vulnerability to climate-related threats. A trinational group of professionals used GIS databases and local knowledge to classify these threats and possible societal responses. To prioritize threats and to propose responses, this group adapted a method proposed by the Queensland Climate Change Centre of Excellence of Australia to develop climate risk matrices for assessing impacts, adaptation, risk and vulnerability. The three priority climate variables were prolonged and more frequent droughts, more intense flooding, and more days with temperatures > 35oC. The final matrix proposed two areas of concentration - 1) Reduce the vulnerability of communities to hydro-meteorological extreme events and 2) Protect and restore ecosystems that maintain critical water-related resources with actions in public policy, capacity-building, and immediate activities. These results are being incorporated into the Amazon Project of the Global Environment Fund of the United Nations Environment Program, administered by the Amazon Cooperation Treaty Organization (ACTO).
Groundwater quality in the Mojave area, California
Dawson, Barbara J. Milby; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Mojave River make up one of the study areas being evaluated. The Mojave study area is approximately 1,500 square miles (3,885 square kilometers) and includes four contiguous groundwater basins: Upper, Middle, and Lower Mojave River Groundwater Basins, and the El Mirage Valley (California Department of Water Resources, 2003). The Mojave study area has an arid climate, and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). Land use in the study area is approximately 82 percent (%) natural (mostly shrubland), 4% agricultural, and 14% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Victorville, Hesperia, and Apple Valley (2010 populations of 116,000, 90,000 and 69,000, respectively). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in the Mojave study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Mojave study area are completed to depths between 200 and 600 feet (18 to 61 meters), consist of solid casing from the land surface to a depth of 130 to 420 feet (40 to 128 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the mountains to the south, mostly through the Mojave River channel. The primary sources of discharge are pumping wells and evapotranspiration.
2014-08-15
N12-P12 TSNRP Research Priorities that Study or Project Addresses Primary Priority Force Health Protection: Fit and ready force Deploy...Mentoring: Health policy Recruitment and retention Preparing tomorrow’s leaders Care of the caregiver Other: Secondary Priority Force... caregiver Other: 5 Principal Investigator (Buonora, John, E) USU Project Number: N12-P12 Progress Towards Achievement of Specific Aims of
Water Accounting Plus for sustainable water management in the Volta river basin, West Africa
NASA Astrophysics Data System (ADS)
Dembélé, Moctar; Schaefli, Bettina; Mariéthoz, Grégroire; Ceperley, Natalie; Zwart, Sander J.
2017-04-01
Water Accounting Plus (WA+) is a standard framework that provides estimates of manageable and unmanageable water flows, stocks, consumption among users, and interactions with land use. The water balance terms are estimated based on remotely sensed data from online open access databases. The main difference with other methods is the use of spatiotemporal data, limiting the errors due to the use of static data. So far, no studies have incorporated climate change scenarios in the WA+ framework to assess future water resources, which would be desirable for developing mitigation and adaptation policies. Moreover WA+ has been implemented using remote sensing data while hydrological models data can also be used as inputs for projections on the future water accounts. This study aims to address the above challenges by providing quantified information on the current and projected state of the Volta basin water resources through the WA+ framework. The transboundary Volta basin in West Africa is vulnerable to floods and droughts that damage properties and take lives. Residents are dependent on subsistence agriculture, mainly rainfed, which is sensitive to changes and variation in the climate. Spatially, rainfall shows high spatiotemporal variability with a south-north gradient of increasing aridity. As in many basins in semi-arid environments, most of the rainfall in the Volta basin returns to the atmosphere. The competition for scarce water resources will increase in the near future due to the combined effects of urbanization, economic development, and rapid population growth. Moreover, upstream and downstream countries do not agree on their national priorities regarding the use of water and this brings tensions among them. Burkina Faso increasingly builds small and medium reservoirs for small-scale irrigation, while Ghana seeks to increase electricity production. Information on current and future water resources and uses is thus fundamental for water actors. The adopted methodology for this study will consist of using hydrological models, downscaled climate scenarios, satellite measurements and public domain data. The expected outputs are an assessment of the impacts of external (climate change) and internal influences (land use change) on water resources, their implications for water availability and current and projected water accounting reports. The WA+ framework allows computing a set of indicators that are used to summarize the overall water resources situation. They give an insight of the parts of water that are available, utilized, utilizable, managed, manageable and beneficial or not for the consumptive use. In a transboundary context, the WA+ methodology can serve as a central database on water-land-ecosystems to be used by decision makers. An independent and unbiased assessment of the spatiotemporal availability of water resources and uses could potentially alleviate tensions among the riparian countries.
76 FR 53526 - Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... lists the projects, described below, receiving approval for the consumptive use of water pursuant to the...
77 FR 4859 - Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-31
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... notice lists the projects, described below, receiving approval for the consumptive use of water pursuant...
76 FR 66117 - Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... notice lists the projects, described below, receiving approval for the consumptive use of water pursuant...
76 FR 42159 - Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-18
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... lists the projects, described below, receiving approval for the consumptive use of water pursuant to the...
A Pedagogy of Civic Engagement for the Undergraduate Political Science Classroom
ERIC Educational Resources Information Center
DeLaet, Debra L.
2016-01-01
This article provides an overview of a classroom project, titled the Priorities Project, which is designed to promote responsible and informed civic engagement on the part of students in upper level political science courses at Drake University. It provides an overview of the Priorities Project, a brief summary highlighting the process and results…
Implementation of the "Education" Priority National Project in Tiumen Oblast
ERIC Educational Resources Information Center
Tavokin, Evgenii Petrovich
2009-01-01
In the two years that the "Education" priority national project has been in the process of implementation, it has been found that in spite of its obviously abstract character in terms of strategy (a shortcoming that is characteristic of all four of the national projects), a flexible mechanism of state and civic administration is built…
NASA Astrophysics Data System (ADS)
Boehlert, B. B.; Neumann, J. E.; Strzepek, K.; Sutton, W.; Srivastava, J.
2011-12-01
Uncertainties posed by climate change and rapidly rising global water demand suggest that existing conflicts over water resources are likely to be exacerbated and new conflicts will appear where little or no conflict occurs today. Successfully planning for and preventing conflicts first requires a sound scientific understanding of the timing, location, and magnitude of water resource shortfalls, identification of the most appropriate climate adaptation options based on multiple criteria, and development of broad, multi-level consensus within the affected community. We recently applied this approach in a World Bank-funded adaptation assessment for the agricultural sectors of four countries in Eastern Europe and Central Asia-Albania, Macedonia, Moldova, and Uzbekistan. For each major basin, we first used a hydrological model to project changes in water availability through 2050 under country-specific high, medium, and low climate impact scenarios. Next, under the three climate scenarios, we projected changes in agricultural water demand using a crop model (i.e., AquaCrop and DSSAT), and changes in water demand in other sectors based on population projections and sectoral forecasts of changes in per capita use. We incorporated these water availability and demand projections-along with other characteristics of the water system such as water supply priorities, environmental and transboundary flow requirements, irrigation efficiency, and reservoir locations and volumes-into a monthly integrated water resource planning tool (the Water Evaluation And Planning tool, or WEAP) to generate projected unmet water demand under each climate scenario and to each sector through 2050. The findings suggest that the agricultural sector in each country (except the relatively water-rich Albania) would experience significant unmet water demands, up to 52 percent in the Syr Darya and Amu Darya River basins of Uzbekistan. Potential adaptation responses to address unmet water demands-such as improving farm and basin-level irrigation efficiency -were evaluated using multiple approaches, including participatory farmer consultations, modeling of net economic benefits, and expert assessment. Recommendations were further refined through consensus building discussions among stakeholders at National Conferences. By using sound analytical approaches to evaluate the impacts of climate change, and by consulting government ministries, in-country scientific and academic institutions, and farmers, the final sets of recommendations have gained wide support within the countries and have become strong candidates for multilateral investment. The work also provides a starting point for resolving transboundary conflicts between countries, including the existing disputes over the Amu Darya River between Uzbekistan and upstream Tajikistan, and between Macedonia and downstream Greece over the Vardar-Axios River.
NASA Astrophysics Data System (ADS)
Gökgöz, Türkay; Ozulu, Murat; Erdoǧan, Mustafa; Seyrek, Kemal
2016-04-01
From the view of integrated river basin management, basin/sub-basin boundaries should be determined and encoded systematically with sufficient accuracy and precision. Today basin/sub-basin boundaries are mostly derived from digital elevation models (DEM) in geographic information systems (GIS). The accuracy and precision of the basin/sub-basin boundaries depend primarily on the accuracy and resolution of the DEMs. In this regard, in Turkey, a survey was made for the first time within the scope of this project to identify current situation, problems and needs in General Directorates of State Hydraulic Works, Water Management, Forestry, Meteorology, Combating Desertification and Erosion, which are the major institutions with responsibility and authority. Another factor that determines the accuracy and precision of basin/sub-basin boundaries is the flow accumulation threshold value to be determined at a certain stage according to a specific methodology in deriving the basin/sub-basin boundaries from DEM. Generally, in Turkey, either the default value given by GIS tool is used directly without any geomorphological, hydrological and cartographic bases or it is determined by trial and error. Although there is a system of catchments and rivers network at 1:250,000 scale and a proper method has already been developed on systematic coding of the basin by the General Directorate of State Hydraulic Works, it is stated that a new system of catchments, rivers network and coding at larger scale (i.e. 1:25,000) is needed. In short, the basin/sub-basin boundaries and codes are not available currently at the required accuracy and precision for the fulfilment of the obligations described in European Union (EU) Water Framework Directive (WFD). In this case, it is clear that there is not yet any methodology to obtain such products. However, a series of projects should be completed such that the basin/sub-basin boundaries and codes are the fundamental data infrastructure. This task must be accomplished by the end of the negotiation process with the EU. For these reasons this subject is chosen as primary and important goal in this project issue and it is aimed to develop an original methodology for determining the boundaries and codes of the drainage basins/sub-basins at required accuracy and precision for the fulfilment of obligations described in the WFD. In Turkey, existing highest accuracy and reliable elevation and hydrography data will be used for the first time, in this project. Along with the widely known and used flow accumulation threshold approaches, the approach developed by Gökgöz et al. (2006) will be used as well. The practicability and suitability of the encoding method developed by the General Directorate of State Hydraulic Works and the Infrastructure for Spatial Information in Europe will be verified respectively. The resulting drainage network, basin/sub-basin boundaries and codes will be compared to CCM2 (Catchment Characterisation and Modelling), ECRINS1.5 (European Catchments and Rivers Network System) and Catchments and Rivers Network System of General Directorates of State Hydraulic Works. This project is being supported by The Scientific and Technological Research Council of Turkey, under the project number TUBITAK-115Y411.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Carlon R.; Nash, Gregory D.; Sorkhabi, Rasoul
This report summarizes the activities and key findings of the project team occurring during Phase 1 (August 2014-October 2015) of the Tularosa Basin Geothermal Play Fairway Analysis Project. The Tularosa Basin Play Fairway Analysis (PFA) project tested two distinct geothermal exploration methodologies covering the entire basin within South Central New Mexico and Far West Texas. Throughout the initial phase of the project, the underexplored basin proved to be a challenging, yet ideal test bed to evaluate effectiveness of the team’s data collection techniques as well as the effectiveness of our innovative PFA. Phase 1 of the effort employed a low-cost,more » pragmatic approach using two methods to identify potential geothermal plays within the study area and then compared and contrasted the results of each method to rank and evaluate potential plays. Both methods appear to be very effective and highly transferable to other areas.« less
Davis, Tracy A.; Kulongoski, Justin T.
2016-10-03
Groundwater quality in the 48-square-mile Santa Barbara study unit was investigated in 2011 as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The study unit is mostly in Santa Barbara County and is in the Transverse and Selected Peninsular Ranges hydrogeologic province. The GAMA Priority Basin Project is carried out by the U.S. Geological Survey in collaboration with the California State Water Resources Control Board and Lawrence Livermore National Laboratory.The GAMA Priority Basin Project was designed to provide a statistically unbiased, spatially distributed assessment of the quality of untreated groundwater in the primary aquifer system of California. The primary aquifer system is defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health database for the Santa Barbara study unit. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the Santa Barbara study unit, not the treated drinking water delivered to consumers by water purveyors.The status assessment for the Santa Barbara study unit was based on water-quality and ancillary data collected in 2011 by the U.S. Geological Survey from 23 sites and on water-quality data from the California Department of Public Health database for January 24, 2008–January 23, 2011. The data used for the assessment included volatile organic compounds; pesticides; pharmaceutical compounds; two constituents of special interest, perchlorate and N-nitrosodimethylamine (NDMA); and naturally present inorganic constituents, such as major ions and trace elements. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used to evaluate groundwater quality for those constituents that have federal or California regulatory and non-regulatory benchmarks for drinking-water quality. For inorganic, organic, and special-interest constituents, a relative-concentration greater than 1.0 indicates a concentration greater than the benchmark and is classified as high. Inorganic constituents are classified as moderate if relative-concentrations are greater than 0.5 and less than or equal to 1.0 and are classified as low if relative-concentrations are less than or equal to 0.5. For organic and special-interest constituents, the boundary between moderate and low relative-concentrations was set at 0.1.Aquifer-scale proportion was used as the primary metric for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the areal percentage of the primary aquifer system with a relative-concentration greater than 1.0 for a particular constituent or class of constituents. Moderate and low aquifer-scale proportions were defined as the areal percentage of the primary aquifer system that had moderate and low relative-concentrations, respectively. Two statistical approaches—grid based and spatially weighted—were used to calculate aquifer-scale proportions for individual constituents and constituent classes. Grid-based and spatially weighted estimates were comparable in this the study (within 90-percent confidence intervals). Grid-based results were selected for use in the status assessment unless, as was observed in a few cases, a grid-based result was zero and the spatially weighted result was not zero, in which case, the spatially weighted result was used.Inorganic constituents that have human-health benchmarks were present at high relative-concentrations in 5.3 percent of the primary aquifer system and at moderate concentrations in 32 percent. High aquifer-scale proportions of inorganic constituents primarily were a result of high aquifer-scale proportions of boron (5.3 percent) and fluoride (5.3 percent). Inorganic constituents that have aesthetic-based benchmarks, referred to as secondary maximum contaminant levels, were present at high relative-concentrations in 58 percent of the primary aquifer system and at moderate concentrations in 37 percent. Iron, manganese, sulfate, and total dissolved solids were the inorganic constituents with secondary maximum contaminant levels present at high relative-concentrations.In contrast, organic and special-interest constituents that have health-based benchmarks were not detected at high relative-concentrations in the primary aquifer system. Of the 218 organic constituents analyzed, 10 were detected—9 that had human-health benchmarks. Organic constituents were present at moderate relative-concentrations in 11 percent of the primary aquifer system. The moderate aquifer-scale proportions were a result of moderate relative-concentrations of the volatile organic compounds methyl tert-butyl ether (MTBE, 11 percent) and 1,2-dichloroethane (5.6 percent). The volatile organic compounds 1,1,1-trichloroethane, 1,1-dichloroethane, bromodichloromethane, chloroform, MTBE, and perchloroethene (PCE); the pesticide simazine; and the special-interest constituent perchlorate were detected at more than 10 percent of the sites in the Santa Barbara study unit. Perchlorate was present at moderate relative-concentrations in 50 percent of the primary aquifer system. Pharmaceutical compounds and NDMA were not detected in the Santa Barbara study unit.
7 CFR 3430.704 - Project types and priorities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Biobased Products Development. Research, development, and demonstration activities to support— (i) The....704 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD... ADMINISTRATIVE PROVISIONS Biomass Research and Development Initiative § 3430.704 Project types and priorities. (a...
Katz, Brian; Raabe, Ellen
2004-01-01
In response to the growing number of environmental concerns in the mostly pristine Suwannee River Basin and the Suwannee River Estuary system, the States of Florida and Georgia, the Federal government, and other local organizations have identified the Suwannee River as an ecosystem in need of protection because of its unique biota and important water resources. Organizations with vested interests in the region formed a coalition, the Suwannee Basin Interagency Alliance (SBIA), whose goals are to promote coordination in the identification, management, and scientific knowledge of the natural resources in the basin and estuary. To date, an integrated assessment of the physical, biological, and water resources has not been completed. A holistic, multi-disciplinary approach is being pursued to address the research needs in the basin and estuary and to provide supportive data for meeting management objectives of the entire ecosystem. The USGS is well situated to focus on the larger concerns of the basin and estuary by addressing specific research questions linking water supply and quality to ecosystem function and health across county and state boundaries. A strategic plan is being prepared in cooperation with Federal, State, and local agencies to identify and implement studies to address the most compelling research issues and management questions, and to conduct fundamental environmental monitoring studies. The USGS, Suwannee River Water Management District and the Florida Marine Research Institute are co-sponsoring this scientific workshop on the Suwannee River Basin and Estuary to: Discuss current and past research findings, Identify information gaps and research priorities, and Develop an action plan for coordinated and relevant research activities in the future. This workshop builds on the highly successful basin-wide conference sponsored by the Suwannee Basin Interagency Alliance that was held three years ago in Live Oak, Florida. This years workshop will focus on identifying information needs and priorities and developing partnerships. The USGS is seeking to define the role of the USGS Florida Integrated Science Center (FISC) in conducting integrated research in the Suwannee River Basin, and to establish a cooperative program with other agencies. Participants interested in river, floodplain, springs, estuary, or basin-wide issues are encouraged to attend. Topics for this years workshop include: Water quality and geochemistry: nutrient enrichment, reduction of nutrient loading to ground water, contaminants, and land use, Hydrogeology: interactions among ground water, surface water and ecosystem, modeling, and baseline mapping, Ecosystem dynamics: structure, process, species, and habitats (estuarine, riverine, floodplain, and wetland), and Information management: data sharing, database development, geographic information system (GIS), and basin-wide models.
Parsons, Mary C.; Hancock, Tracy Connell; Kulongoski, Justin T.; Belitz, Kenneth
2014-01-01
Groundwater quality in the approximately 963-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southern California in San Bernardino, Riverside, San Diego, and Imperial Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The GAMA Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected by the U.S. Geological Survey from 52 wells (49 grid wells and 3 understanding wells) and on water-quality data from the California Department of Public Health database. The primary aquifer system was defined by the depth intervals of the wells listed in the California Department of Public Health database for the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration greater than 1.0 indicates a concentration greater than a benchmark, and a relative-concentration less than or equal to 1.0 indicates a concentration equal to or less than a benchmark. Relative-concentrations of organic constituents and special-interest constituents [perchlorate and N-nitrosodimethylamine (NDMA)] were classified as high (relative-concentration greater than 1.0), moderate (relative-concentration greater than 0.1 and less than or equal to 1.0), or low (relative-concentration less than or equal to 0.1). Relative-concentrations of inorganic constituents were classified as high (relative-concentration greater than 1.0), moderate (relative-concentration greater than 0.5 and less than or equal to 1.0), or low (relative-concentration less than or equal to 0.5). Aquifer-scale proportion was used as the primary metric in the status assessment for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifer system with a high relative-concentration for a particular constituent or class of constituents; this percentage is based on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentages of the primary aquifer system with moderate and low relative-concentrations, respectively, of a constituent or class of constituents. Two statistical approaches—grid-based and spatially weighted—were used to evaluate aquifer-scale proportions for individual constituents and classes of constituents. Grid-based and spatially weighted estimates were comparable to each other (within 90-percent confidence intervals) in the study unit. Inorganic constituents (one or more) with health-based benchmarks were detected at high relative-concentrations in 48 percent of the primary aquifer system and at moderate relative-concentrations in 26 percent of the primary aquifer system. The high aquifer-scale proportion of inorganic constituents primarily reflected high aquifer-scale proportions of fluoride (27 percent), arsenic (18 percent), molybdenum (16 percent), boron (10 percent), uranium (5.6 percent), gross alpha radioactivity (9.7 percent), and nitrate (2.7 percent). The inorganic constituents with secondary maximum contaminant levels (SMCLs) were detected at high relative-concentrations in 13 percent of the primary aquifer system and at moderate relative-concentrations in 39 percent. The high aquifer-scale proportion for SMCL constituents reflected high aquifer-scale proportions of total dissolved solids (TDS, 11 percent), manganese (2.8 percent), and chloride (2.8 percent). Organic constituents were not detected at high relative-concentrations in the primary aquifer system, and were present at moderate relative-concentrations in 5.0 percent, and at low relative-concentrations or were not detected in 95 percent of the primary aquifer system. Of the 148 organic constituents analyzed, 12 constituents were detected. Two organic constituents, chloroform and tetrachloroethene (PCE), were detected in more than 10 percent of samples, but were detected mostly at low relative-concentrations.
75 FR 63254 - Notice of Actions Taken at September 16, 2010, Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-14
... water resources projects; (2) approved and tabled certain water resources projects, including approval of one project involving diversions into the basin; and (3) rescinded approval for two water resources projects. DATES: September 16, 2010. ADDRESSES: Susquehanna River Basin Commission, 1721 N. Front...
Zhou, Liang; Xu, Jian-Gang; Sun, Dong-Qi; Ni, Tian-Hua
2013-02-01
Agricultural non-point source pollution is of importance in river deterioration. Thus identifying and concentrated controlling the key source-areas are the most effective approaches for non-point source pollution control. This study adopts inventory method to analysis four kinds of pollution sources and their emissions intensity of the chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in 173 counties (cities, districts) in Huaihe River Basin. The four pollution sources include livestock breeding, rural life, farmland cultivation, aquacultures. The paper mainly addresses identification of non-point polluted sensitivity areas, key pollution sources and its spatial distribution characteristics through cluster, sensitivity evaluation and spatial analysis. A geographic information system (GIS) and SPSS were used to carry out this study. The results show that: the COD, TN and TP emissions of agricultural non-point sources were 206.74 x 10(4) t, 66.49 x 10(4) t, 8.74 x 10(4) t separately in Huaihe River Basin in 2009; the emission intensity were 7.69, 2.47, 0.32 t.hm-2; the proportions of COD, TN, TP emissions were 73%, 24%, 3%. The paper achieves that: the major pollution source of COD, TN and TP was livestock breeding and rural life; the sensitivity areas and priority pollution control areas among the river basin of non-point source pollution are some sub-basins of the upper branches in Huaihe River, such as Shahe River, Yinghe River, Beiru River, Jialu River and Qingyi River; livestock breeding is the key pollution source in the priority pollution control areas. Finally, the paper concludes that pollution type of rural life has the highest pollution contribution rate, while comprehensive pollution is one type which is hard to control.
This paper introduces a collection of four articles describing the San Luis Basin Sustainability Metrics Project. The Project developed a methodology for evaluating regional sustainability. This introduction provides the necessary background information for the project, descripti...
7 CFR 3430.204 - Project types and priorities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Project types and priorities. 3430.204 Section 3430.204 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE COMPETITIVE AND NONCOMPETITIVE NON-FORMULA FEDERAL ASSISTANCE PROGRAMS-GENERAL AWARD...
7 CFR 3430.904 - Project types and priorities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Project types and priorities. 3430.904 Section 3430.904 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE COMPETITIVE AND NONCOMPETITIVE NON-FORMULA...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-07
... Institute on Disability and Rehabilitation Research--Disability and Rehabilitation Research Projects... Rehabilitative Services announces a priority under the Disability Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
... the feasibility of the Basin Farm Renewable Energy Project, to be located on Saxtons River, in... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13640-000] Basin Farm Renewable, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments...
Tiffan, Kenneth F.; Connor, William P.
2006-01-01
This report summarizes results of research activities conducted in 2004 and years previous to aid in the management and recovery of fall Chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall Chinook salmon juveniles for the years 1992-2004. Publication is a high priority of our staff. Publication provides our results to a wide audience, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 1991-02900 that were written or published from 1998 to 2005.
Drought Water Right Curtailment
NASA Astrophysics Data System (ADS)
Walker, W.; Tweet, A.; Magnuson-Skeels, B.; Whittington, C.; Arnold, B.; Lund, J. R.
2016-12-01
California's water rights system allocates water based on priority, where lower priority, "junior" rights are curtailed first in a drought. The Drought Water Rights Allocation Tool (DWRAT) was developed to integrate water right allocation models with legal objectives to suggest water rights curtailments during drought. DWRAT incorporates water right use and priorities with a flow-forecasting model to mathematically represent water law and hydrology and suggest water allocations among water rights holders. DWRAT is compiled within an Excel workbook, with an interface and an open-source solver. By implementing California water rights law as an algorithm, DWRAT provides a precise and transparent framework for the complicated and often controversial technical aspects of curtailing water rights use during drought. DWRAT models have been developed for use in the Eel, Russian, and Sacramento river basins. In this study, an initial DWRAT model has been developed for the San Joaquin watershed, which incorporates all water rights holders in the basin and reference gage flows for major tributaries. The San Joaquin DWRAT can assess water allocation reliability by determining probability of rights holders' curtailment for a range of hydrologic conditions. Forecasted flow values can be input to the model to provide decision makers with the ability to make curtailment and water supply strategy decisions. Environmental flow allocations will be further integrated into the model to protect and improve ecosystem water reliability.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
... al.] Lock+ Hydro Friends Fund XII, BOST2, LLC, et al.; Notice Announcing Filing Priority for Preliminary Permit Applications Project No. Lock+ Hydro Friends Fund XII 14260-000 BOST2, LLC 14264-000.... 2. BOST2, LLC: Project No. 14264-000. 3. Lock+ Hydro Friends Fund XII: Project No. 14260-000. 4...
A spatially explicit suspended-sediment load model for western Oregon
Wise, Daniel R.; O'Connor, Jim
2016-06-27
Knowledge of the regionally important patterns and factors in suspended-sediment sources and transport could support broad-scale, water-quality management objectives and priorities. Because of biases and limitations of this model, however, these results are most applicable for general comparisons and for broad areas such as large watersheds. For example, despite having similar area, precipitation, and land-use, the Umpqua River Basin generates 68 percent more suspended sediment than the Rogue River Basin, chiefly because of the large area of Coast Range sedimentary province in the Umpqua River Basin. By contrast, the Rogue River Basin contains a much larger area of Klamath terrane rocks, which produce significantly less suspended load, although recent fire disturbance (in 2002) has apparently elevated suspended sediment yields in the tributary Illinois River watershed. Fine-scaled analysis, however, will require more intensive, locally focused measurements.
Higley, Debra K.
2007-01-01
The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas resources of the Denver Basin Province (USGS Province 39), Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Petroleum is produced in the province from sandstone, shale, and limestone reservoirs that range from Pennsylvanian to Upper Cretaceous in age. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define seven total petroleum systems and twelve assessment units. Nine of these assessment units were quantitatively assessed for undiscovered oil and gas resources. Gas was not assessed for two coal bed methane assessment units due to lack of information and limited potential; oil resources were not assessed for the Fractured Pierre Shale Assessment Unit due to its mature development status.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.
The John Day River is the nation's second longest free-flowing river in the contiguous United States, which is entirely unsupplemented for it's runs of anadromous fish. Located in eastern Oregon, the John Day Basin drains over 8,000 square miles, is Oregon's fourth largest drainage basin, and the basin incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the mainstem John Day River flows 284 miles in a northwesterly direction entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon, summer steelhead, westslope cutthroat, and redband andmore » bull trout, the John Day system is truly a basin with national significance. The Majority of the John Day Basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in John Day to coordinate basin restoration projects, monitoring, planning, and other watershed restoration activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), also located in John Day, who subcontracts the majority of the construction implementation activities for these restoration projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2001, the JDBO and GSWCD continued their successful partnership between the two agencies and basin landowners to implement an additional ten (10) watershed conservation projects. The project types include permanent lay flat diversions, pump stations, and return-flow cooling systems. Project costs in 2001 totaled $572,766.00 with $361,966.00 (67%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources, such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board (OWEB), and individual landowners.« less
Assessing performance characteristics of sediment basins constructed in Franklin County.
DOT National Transportation Integrated Search
2012-08-01
The objective of the research project was to monitor the performance of newly designed : sediment basins that were constructed on the ALDOT 502 project in Franklin County. The : project included four tasks: (1) assess performance characteristics of s...
Comprehensive evaluation on transit signal priority system impacts using field observed traffic data
DOT National Transportation Integrated Search
2007-06-15
To improve the level of service for Community Transit (CT) buses, the South Snohomish Regional Transit Signal Priority (SS-RTSP) project has been launched. To understand the overall benefit of this project, the SS-RTSP system was tested and evaluated...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-23
... Information; National Institute on Disability and Rehabilitation Research (NIDRR)--Disability and... notice of final priorities for the Disability and Rehabilitation Research Projects and Centers program... priority for the Disability and Rehabilitation Research Projects and Centers Program, published elsewhere...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
....133E-8.] Final Priorities; National Institute on Disability and Rehabilitation Research--Disability and Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research Centers AGENCY: Office... under the Disability and Rehabilitation Research Projects and Centers Program administered by the...
Ahmed, Istak; Das Pan, Nibedita; Debnath, Jatan; Bhowmik, Moujuri
2017-10-31
Erosion-induced land degradation problem has emerged as a serious environmental issue across the world. Assessment of this problem through modelling can generate valuable quantitative information for the planners to identify priority areas for proper soil conservation measures. The Gumti River basin of Tripura falls under humid tropical climate and experiences soil erosion for a prolonged period which has turned into a major environmental issue. Increased sediment supply through top soil erosion is one of the major reasons for reduced navigability of this river. Thus, the present study is an attempt to prioritize the sub-watersheds of the Gumti basin by estimating soil loss through the USLE (Universal Soil Loss Equation) model. For that purpose, five parameters of the USLE model were processed, computed and overlaid in a GIS environment. The result shows that potential mean annual soil loss of the Gumti basin ranges between 0.03 and 114.08 t ha -1 year -1 . The resultant values of soil loss were classified into five categories considering the minimum and maximum values. It has been identified that low, moderate, high, very high and severe soil loss categories occupy 68.71, 8.94, 5.86, 5.02 and 11.47% of the basin respectively. Moreover, it has been recognised that sub-watersheds like SW7, SW8, SW12, SW21, SW24 and SW29 fall under very high priority class for which mitigation measures are essential. Therefore, the present study recommends mitigation measures through terrace cultivation, as an alternative of shifting cultivation in the hilly areas and through construction of check dams at the appropriate sites of the erosion prone sub-watersheds. Moreover, proper afforestation programmes that have been implemented successfully in other parts of Tripura through the Japan International Cooperation Agency, Joint Forest Management, and National Afforestation Programme should be initiated in the highly erosion-prone areas of the Gumti River basin.
21 Years of Investing in a Clear, Healthy Lake Tahoe
Community Information Fact Sheet with information about Lake Tahoe's history, the roles of EPA, state, and local government in protecting the Lake Tahoe Basin, priorities for the next 20 years, as well as actions that you can take to protect Lake Tahoe.
ERIC Educational Resources Information Center
Kelly, Dotty; Guerrero, Vincent Leon
This final report describes activities and accomplishments of the Pacific Basin Deaf-Blind Project, a 3-year federally funded project to provide technical assistance to public and private agencies, institutions, and organizations providing early intervention, educational, transitional, vocational, early identification, and related services to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trabucchi, Chiara
The CarbonSAFE Illinois – East Sub-Basin project is conducting a pre-feasibility assessment for commercial-scale CO2 geological storage complexes. The project aims to identify sites capable of storing more than 50 million tons of industrially-sourced CO2. To support the business development assessment of the economic viability of potential sites in the East Sub-Basin and explore conditions under which a carbon capture and storage (CCS) project therein might be revenue positive, this document provides a summary of carbon storage incentives and legislation of potential relevance to the project.
Goldrath, Dara; Fram, Miranda S.; Land, Michael; Belitz, Kenneth
2012-01-01
Groundwater quality in the approximately 860-square-mile (2,227-square-kilometer) Coastal Los Angeles Basin study unit (CLAB) was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is located in southern California in Los Angeles and Orange Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA CLAB study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2006 by the USGS from 69 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined by the depth interval of the wells listed in the CDPH database for the CLAB study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the CLAB study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration greater than (>) 1.0 indicates a concentration greater than a benchmark, and a relative-concentration less than or equal to (≤) 1.0 indicates a concentration equal to or less than a benchmark. Relative-concentrations of organic and special-interest constituents [perchlorate, N-nitrosodimethylamine (NDMA), 1,2,3-trichloropropane (1,2,3-TCP), and 1,4-dioxane] were classified as "high" (relative-concentration>1.0), "moderate" (0.5status assessment for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifer system with a relative-concentration greater than 1.0 for a particular constituent or class of constituents; percentage is based on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentage of the primary aquifer system with moderate and low relative-concentrations, respectively. Two statistical approaches-grid-based and spatially weighted-were used to evaluate aquifer-scale proportions for individual constituents and classes of constituents. Grid-based and spatially weighted estimates were comparable in the CLAB study unit (within 90-percent confidence intervals). Inorganic constituents with human-health benchmarks were detected at high relative-concentrations in 5.6 percent of the primary aquifer system and moderate in 26 percent. High aquifer-scale proportion of inorganic constituents primarily reflected high aquifer-scale proportions of arsenic (1.9 percent), nitrate (1.9 percent), and uranium (1.2 percent). Inorganic constituents with secondary maximum contaminant levels (SMCL) were detected at high relative-concentrations in 18 percent of the primary aquifer system and moderate in 47 percent. The constituents present at high relative-concentrations included total dissolved solids (1.9 percent), manganese (15 percent), and iron (9.4 percent). Relative-concentrations of organic constituents (one or more) were high in 3.7 percent, and moderate in 13 percent, of the primary aquifer system. The high aquifer-scale proportion of organic constituents primarily reflected high aquifer-scale proportions of solvents, including trichloroethene (TCE; 1.7 percent), perchloroethene (PCE; 1.1 percent), and carbon tetrachloride (1.0 percent). Of the 204 organic constituents analyzed, 44 constituents were detected. Eleven organic constituents had detection frequencies of greater than 10 percent: the trihalomethanes chloroform and bromodichloromethane, the solvents TCE, PCE, cis-1,2-dichloroethene, and 1,1-dichloroethene, the herbicides atrazine, simazine, prometon, and tebuthiuron, and the gasoline additive methyl tert-butyl ether (MTBE). Most detections were at low relative-concentrations. The special-interest constituent perchlorate was detected at high relative-concentrations in 0.5 percent of the primary aquifer system, and at moderate relative-concentrations in 35 percent. The special-interest constituent 1,4-dioxane was detected at high relative-concentrations, but an insufficient number of samples was analyzed to provide a representative estimate of aquifer-scale proportion.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... analyses of data, producing observational findings, and creating other sources of research-based... provide a rationale for the stage of research being proposed and the research methods associated with the... DEPARTMENT OF EDUCATION Final Priority: Disability and Rehabilitation Research Projects and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... Rehabilitation Research--Traumatic Brain Injury Model Systems Centers Collaborative Research Project AGENCY... Brain Injury Model Systems Centers Collaborative Research Projects; Notice inviting applications for new... competition. Priority 1, the DRRP Priority for the Traumatic Brain Injury Model Systems Centers Collaborative...
DOT National Transportation Integrated Search
2006-08-01
To improve the level of Community Transit (CT) services, the South Snohomish Regional Transit Signal Priority (SS-RTSP) project has been launched. To understand the overall benefit of this project, the SS-RTSP system (phase one) was tested and evalua...
Is Combat Exposure Predictive of Higher Preoperative Stress in Military Members?
2015-01-26
Bopp, Eric, Joseph USU Project Number: N12-P16 4 TSNRP Research Priorities that Study or Project Addresses Primary Priority Force Health...of the caregiver Other: Principal Investigator: Bopp, Eric, Joseph USU Project Number: N12-P16 5 Background The preoperative...e.g., diabetes, thyroid disorders), and (c) autoimmune disorders (e.g., Sjogren’s syndrome ). Patients arriving to the Preoperative Teaching Unit
Changes in projected spatial and seasonal groundwater recharge in the upper Colorado River Basin
Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom
2017-01-01
The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.
Changes in Projected Spatial and Seasonal Groundwater Recharge in the Upper Colorado River Basin.
Tillman, Fred D; Gangopadhyay, Subhrendu; Pruitt, Tom
2017-07-01
The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Modeling resource basis for social and economic development strategies: Water resource case
NASA Astrophysics Data System (ADS)
Kosolapova, Natalia A.; Matveeva, Ludmila G.; Nikitaeva, Anastasia Y.; Molapisi, Lesego
2017-10-01
The article substantiates that the effectiveness of implementing socio-economic development strategies is to a large extent determined by the adequate provision of basic resources. The key role of water resources in economic strategic development is empirically illustrated. The article demonstrates the practicability of strategic management of water resources based on the principle of a combination of river basin management approaches and the consideration of regional development strategies. The Game Theory technique was used to develop economic and mathematical tools for supporting decision-making in meeting the needs of regional consumers under water balance deficit conditions. The choice of methods was determined from two positions: the methods should allow for the possibility of multi-variant solutions for the selection of optimal options for the distribution of limited water resources between different consumers; the methods should be orientated on the maximum possible harmonization of multidirectional and multi-scale interests of the subjects in the water management system of the different regions (including the state) in order to achieve a balance. The approbation of developing a toolkit for the example of the regions located in the Don and Kuban river basins resulted in the appropriate selection of priority regions for the allocation of water resources in terms of strategic management as well as the determination of measures of ensuring the sustainable use of the river basins under consideration. The proposed tools can be used for coordinating decisions on the water supply of regional economic systems with actual and projected indicators of socio-economic development of the respective regions for a strategic perspective.
77 FR 21143 - Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...
78 FR 11947 - Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-20
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...
78 FR 17281 - Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-20
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...
78 FR 27471 - Projects Rescinded for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-10
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the approved by rule projects..., being rescinded for the consumptive use of water pursuant to the Commission's approval by rule process...
77 FR 66909 - Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-07
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... below, receiving approval for the consumptive use of water pursuant to the Commission's approval by rule...
78 FR 2315 - Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-10
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...
78 FR 15402 - Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-11
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...
77 FR 25010 - Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... below, receiving approval for the consumptive use of water pursuant to the Commission's approval by rule...
77 FR 55892 - Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...
77 FR 55891 - Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...
77 FR 59239 - Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...
77 FR 16317 - Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-20
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...
77 FR 34455 - Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...
Water Availability for Shale Gas Development in Sichuan Basin, China.
Yu, Mengjun; Weinthal, Erika; Patiño-Echeverri, Dalia; Deshusses, Marc A; Zou, Caineng; Ni, Yunyan; Vengosh, Avner
2016-03-15
Unconventional shale gas development holds promise for reducing the predominant consumption of coal and increasing the utilization of natural gas in China. While China possesses some of the most abundant technically recoverable shale gas resources in the world, water availability could still be a limiting factor for hydraulic fracturing operations, in addition to geological, infrastructural, and technological barriers. Here, we project the baseline water availability for the next 15 years in Sichuan Basin, one of the most promising shale gas basins in China. Our projection shows that continued water demand for the domestic sector in Sichuan Basin could result in high to extremely high water stress in certain areas. By simulating shale gas development and using information from current water use for hydraulic fracturing in Sichuan Basin (20,000-30,000 m(3) per well), we project that during the next decade water use for shale gas development could reach 20-30 million m(3)/year, when shale gas well development is projected to be most active. While this volume is negligible relative to the projected overall domestic water use of ∼36 billion m(3)/year, we posit that intensification of hydraulic fracturing and water use might compete with other water utilization in local water-stress areas in Sichuan Basin.
Using InSAR Remote Sensing Technology to Analyze 3 Basin Aquifer Recharge Areas in Phoenix, Arizona
NASA Astrophysics Data System (ADS)
Smilovsky, D.; Rucker, M. L.
2016-12-01
Land subsidence due to pumping-induced groundwater decline has been well documented in alluviual basins in southern Arizona. Beginning in 2002, satellite-based interferometric synthetic aperture radar (InSAR) began to document post-1992 subsidence across these basins. Several basin aquifer recharge projects using water delivered by the Central Arizona Project (CAP) also began in the early 2000s. Reversal of land subsidence (elastic rebound) associated with recharge is evident in InSAR results across these basins. Projects with rebound documented using InSAR include the Tonopah Desert Recharge Project (permitted 150,000 [ac-ft/yr] starting in 2006) located 40 miles west of Phoenix, and the Hieroglyphic Mountains Recharge Project (permitted 35,000 ac-ft/yr starting in 2003) located several miles north of McMicken Dam in the West Salt River Valley. The Superstition Mountains Recharge Project (ultimate permitting of 85,000 ac-ft/yr, completed in 2011), located at Queen Creek in the East Salt River Valley, has also begun to develop a clear InSAR signature feature. Groundwater level index wells up to several miles downstream from these recharge facilities have indicated groundwater level recoveries of about 70 to 200 feet in the time corresponding to the InSAR studies. Resulting elastic rebound of ground surface elevations due to reduction of effective stresses in the compressible basin alluvium is a function of the effective stress change, the basin alluvium elastic moduli, and the thickness of the effected compressible basin alluvium. The areas and magnitudes of effective stress unloading are indicated from the rebound documented using InSAR. The volumes of aquifer recharge are anticipated to be related to the volumes of InSAR-derived rebound. It is also anticipated that estimates of large-scale horizontal hydraulic conductivity may be approximately verified by areas of ground surface rebound, and gradients driving groundwater flow may be inferred from magnitudes of rebound. These concepts are tested using documented recharge volumes, water level records at index wells, and concurrent InSAR results at the Tonopah and Hieroglyphic Mountains Recharge Projects, and basin alluvium moduli derived from subsidence studies associated with rehabilitation of McMicken Dam.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-07
... Rehabilitation Research--Disability and Rehabilitation Research Projects--Inclusive Cloud and Web Computing... Rehabilitation Research Projects (DRRPs)--Inclusive Cloud and Web Computing Notice inviting applications for new...#DRRP . Priorities: Priority 1--DRRP on Inclusive Cloud and Web Computing-- is from the notice of final...
77 FR 10739 - Notice Announcing Preliminary Permit Drawing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-23
... Drawing Project No. FFP Project 91, LLC 14275-000 Riverbank Hydro No. 23, LLC 14279-000 Lock+ Hydro... conduct a random drawing to determine the filing priority of the applicants identified in this notice. The...\\ The priority established by this drawing will be used to determine which applicant, among those with...
76 FR 16408 - Notice Announcing Preliminary Permit Drawing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
... Drawing Lock+ Hydro Friends Fund XLV..... Project No. 13741-000. FFP Missouri 9, LLC Project No. 13748-000... random drawing to determine the filing priority of the applicants identified in this notice. The...\\ The priority established by this drawing will be used to determine which applicant, among those with...
76 FR 16408 - Notice Announcing Preliminary Permit Drawing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
... Drawing Lock+ Hydro Friends Fund XXXVII.. Project No. 13738-000. FFP Missouri 6, LLC Project No. 13761-000... random drawing to determine the filing priority of the applicants identified in this notice. The...\\ The priority established by this drawing will be used to determine which applicant, among those with...
76 FR 16408 - Notice Announcing Preliminary Permit Drawing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
... Drawing Lock+ Hydro Friends Fund XLII.... Project No. 13739-000. FFP Missouri 10, LLC Project No. 13751... conduct a random drawing to determine the filing priority of the applicants identified in this notice. The...\\ The priority established by this drawing will be used to determine which applicant, among those with...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-09
... and Rehabilitation Research (NIDRR)--Disability Rehabilitation Research Project (DRRP)--Disability in... Rehabilitative Services announces a funding priority for the Disability and Rehabilitation Research Projects and...) 2011 and later years. We take this action to focus research attention on areas of national need. We...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
... designs. The research must focus on outcomes in one or more of the following domains identified in NIDRR's... Rehabilitation Research--Traumatic Brain Injury Model Systems Centers Collaborative Research Project [CFDA Number... Services proposes a priority under the Disability and Rehabilitation Research Projects and Centers Program...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.
The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day systemmore » is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), which contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2003, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional twelve (12) watershed conservation projects. The types of projects include off channel water developments, juniper control, permanent diversions, pump stations, and return-flow cooling systems. Due to funding issues and delays, permitting delays, fire closures and landowner contracting problems, 2 projects were canceled and 7 projects were rescheduled to the 2004 construction season. Project costs in 2003 totaled $115,554.00 with a total amount of $64,981.00 (56%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board, the U.S. Fish & Wildlife Service Partners in Wildlife Program and individual landowners.« less
Esposito, Dominick; Yong, Pierre L; Rich, Eugene; Geonnotti, Kristin; Kimmey, Laura D
2014-11-01
To describe the evaluation design of the American Recovery and Reinvestment Act of 2009 comparative effectiveness research (CER) investment, how funds were allocated and how CER priorities were addressed. Primary and secondary data included information from redacted project proposals, an investigator survey and federal project officers, investigators and expert panel discussions. More than 420 projects (US$1.1 billion) were awarded. Those generating new or synthesizing existing CER made up the plurality (194, or US$524 million). Data infrastructure projects were the second-largest area (28%, US$302 million). More than three-fourths addressed at least one priority population, condition category or intervention category. These investments expanded the nation's CER activities and its future capacity to conduct CER.
Changes in groundwater recharge under projected climate in the upper Colorado River basin
Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom
2016-01-01
Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.
Great Basin Native Plant Selection and Increase Project: 2012 progress report
Nancy Shaw; Mike Pellant
2013-01-01
The Interagency Native Plant Materials Development Program outlined in the 2002 USDA and USDI Report to Congress, USDI Bureau of Land Management programs and policies, and the Great Basin Restoration Initiative encourage the use of native species for rangeland rehabilitation and restoration where feasible. The Great Basin Native Plant Selection and Increase Project was...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-08
... by USACE to operate a system of five Federal reservoir projects in the basin--Allatoona Dam and Lake... manuals for the ACT Basin in order to improve operations for authorized purposes to reflect changed... determine how the federal projects in the ACT Basin should adjust operations for their authorized purposes...
Feng, Qi; Miao, Zheng; Li, Zongxing; Li, Jianguo; Si, Jianhua; S, Yonghong; Chang, Zongqiang
2015-05-01
The need for environmental protection challenges societies to deal with difficult problems because strategies designed by scientists to protect the environment often create negative effects on impoverished local residents. We investigated the effects of China's national and regional policies related to environmental protection and rehabilitation projects in inland river basins, by studying the effect of projects in the Heihe and Shiyang river basins, in northwest China. Interviews and surveys were conducted at 30 sites in the lower reaches of these two arid basins, an area that has experienced severe ecological degradation. The survey results show the ecological rehabilitation projects adversely affected the livelihoods of 70.35% of foresters, 64.89% of farmers and 62.24% of herders in the Minqing region in the lower Shiyang River Basin; also, the projects negatively affected 51.9% of residents in the Ejin Qi in the lower Heihe River Basin. This caused 16.33% of foresters, 39.90% of farmers and 45.32% of herders in the Minqing region to not support the project and 37.5% of residents in the Ejin Qi region said they will deforest and graze again after the project ends. The negative impacts of the policies connected to the projects cause these attitudes. The projects prohibit felling and grazing and require residents to give up groundwater mining; this results in a great amount of uncompensated economic loss to them. Extensive survey data document the concerns of local residents, concerns that are supported by the calculation of actual incomes. In addition, the surveys results show poorer interviewees believe the projects greatly affected their livelihoods. While citizens in this region support environment protection work, the poor require considerable assistance if one expects them to support this type of work. Governmental assistance can greatly improve their living conditions, and hence encourage them to participate in and support the implementation of the projects within and outside the districts where they live. Copyright © 2015 Elsevier Inc. All rights reserved.
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth
2011-01-01
Groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study units are located in California's Central Valley and include parts of Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The three study units were designated to provide spatially-unbiased assessments of the quality of untreated groundwater in three parts of the Central Valley hydrogeologic province, as well as to provide a statistically consistent basis for comparing water quality regionally and statewide. Samples were collected in 2005 (Southern Sacramento Valley), 2006 (Middle Sacramento Valley), and 2007-08 (Northern Sacramento Valley). The GAMA studies in the Southern, Middle, and Northern Sacramento Valley were designed to provide statistically robust assessments of the quality of untreated groundwater in the primary aquifer systems that are used for drinking-water supply. The assessments are based on water-quality data collected by the USGS from 235 wells in the three study units in 2005-08, and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter, referred to as primary aquifers) assessed in this study are defined by the depth intervals of the wells in the CDPH database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. The status of the current quality of the groundwater resource was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the three Sacramento Valley study units, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration greater than 1.0 indicates a concentration greater than a benchmark. For organic (volatile organic compounds and pesticides) and special-interest (perchlorate) constituents, relative-concentrations were classified as high (greater than 1.0); moderate (equal to or less than 1.0 and greater than 0.1); or low (equal to or less than 0.1). For inorganic (major ion, trace element, nutrient, and radioactive) constituents, the boundary between low and moderate relative-concentrations was set at 0.5. Aquifer-scale proportions were used in the status assessment for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifers that have a relative-concentration greater than 1.0 for a particular constituent or class of constituents; percentage is based on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentage of the primary aquifers that have moderate and low relative-concentrations, respectively. Two statistical approaches-grid-based, which used one value per grid cell, and spatially-weighted, which used the full dataset-were used to calculate aquifer-scale proportions for individual constituents and classes of constituents. High and moderate aquifer-scale proportions were significantly greater for inorgani
77 FR 59240 - Projects Rescinded for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects rescinded by the... rescinded for the consumptive use of water pursuant to the Commission's approval by rule process set forth...
77 FR 55893 - Projects Rescinded for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects rescinded by the... the consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...
75 FR 43915 - Basin Electric Power Cooperative: Deer Creek Station
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... factors that could be affected by the proposed Project were evaluated in detail in the EIS. These issues... DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek... Energy Facility project (Project) in Brookings and Deuel Counties, South Dakota. The Administrator of RUS...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.
The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day systemmore » is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day, who contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2002, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional twelve (12) watershed conservation projects. The types of projects include off channel water developments, riparian fencing, juniper control, permanent diversions, pump stations, infiltration galleries and return-flow cooling systems. Project costs in 2002 totaled $423,198.00 with a total amount of $345,752.00 (81%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board, the U.S. Fish & Wildlife Service Partners in Wildlife Program and individual landowners.« less
A Study on Project Priority Evaluation Method on Road Slope Disaster Prevention Management
NASA Astrophysics Data System (ADS)
Sekiguchi, Nobuyasu; Ohtsu, Hiroyasu; Izu, Ryuutarou
To improve the safety and security of driving while coping with today's stagnant economy and frequent natural disasters, road slopes should be appropriately managed. To achieve the goals, road managers should establish project priority evaluation methods for each stage of road slope management by clarifying social losses that would result by drops in service levels. It is important that road managers evaluate a project priority properly to manage the road slope effectively. From this viewpoint, this study proposed "project priority evaluation methods" in road slope disaster prevention, which use available slope information at each stage of road slope management under limited funds. In addition, this study investigated the effect of managing it from the high slope of the priority by evaluating a risk of slope failure. In terms of the amount of available information, staged information provision is needed ranging from macroscopic studies, which involves evaluation of the entire route at each stage of decision making, to semi- and microscopic investigations for evaluating slopes, and microscopic investigations for evaluating individual slopes. With limited funds, additional detailed surveys are difficult to perform. It is effective to use the slope risk assessment system, which was constructed to complement detailed data, to extract sites to perform precise investigations.
Munn, Mark D.; Hamilton, Pixie A.
2003-01-01
In 2001, the U.S. Geological Survey’s National Water-Quality Assessment (NAWQA) Program began an intensive study of nutrient enrichment elevated concentrations of nitrogen and phosphorus in streams in five agricultural basins across the Nation (see map, p. 2). This study is providing nationally consistent and comparable data and analyses of nutrient conditions, including how these conditions vary as a result of natural and human-related factors, and how nutrient conditions affect algae and other biological communities. This information will benefit stakeholders, including the U.S. Environmental Protection Agency (USEPA) and its partners, who are developing nutrient criteria to protect the aquatic health of streams in different geographic regions.Nutrient enrichment is one of five national priority topics addressed by NAWQA in its second decade of studies, which began in 2001. During its first round of assessments in 51 major river basins (referred to as “Study Units”), NAWQA scientists collected data on water chemistry, stream hydrology and habitat, and biological communities; currently, NAWQA is revisiting selected basins and focusing on (1) trends, (2) factors that affect water quality and aquatic health, and (3) national priority water issues related to, for example, the development of nutrient criteria, source-water protection strategies, and stream restoration plans.The nutrient enrichment study has four major objectives that address nutrient conditions, dissolved oxygen, aquatic communities, and geographic and landscape features in agricultural basins (see inset). The focus on agricultural streams is a starting point. As the study progresses, streams draining other land uses, such as those in residential and urban areas, will likely be added.
76 FR 50536 - Projects Approved or Rescinded for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-15
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved or Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects... the consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...
75 FR 71177 - Notice of Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
... SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice of approved projects. SUMMARY: This notice... for the consumptive use of water pursuant to the Commission's approval by rule process set forth in 18...
76 FR 20802 - Projects Approved or Rescinded for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved or Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects... the consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...
75 FR 23837 - Notice of Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice of approved projects. SUMMARY: This notice... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(e...
Great Basin Native Plant Project: 2015 Progress Report
Francis Kilkenny; Fred Edwards; Alexis Malcomb
2016-01-01
The Interagency Native Plant Materials Development Program outlined in the 2002 United States Department of Agriculture (USDA) and United States Department of Interior (USDI) Report to Congress encouraged use of native plant materials for rangeland rehabilitation and restoration where feasible. The Great Basin Native Plant Project is a cooperative project lead...
75 FR 38591 - Notice of Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
... SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice of Approved Projects. SUMMARY: This notice... consumptive use of water pursuant to the Commission's approval by rule process set forth in and 18 CFR 806.22...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allee, Brian J.
1997-06-26
Abstracts are presented from the 1997 Columbia Basin Fish and Wildlife Program Review of Projects. The purpose was to provide information and education on the approximate 127 million dollars in Northwest electric ratepayer fish and wildlife mitigation projects funded annually.
18 CFR 415.21 - Class II projects.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Class II projects. 415.21 Section 415.21 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Types of Projects and Jurisdiction § 415.21 Class...
18 CFR 415.20 - Class I projects.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Class I projects. 415.20 Section 415.20 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Types of Projects and Jurisdiction § 415.20 Class...
75 FR 70670 - Final Vehicle Safety Rulemaking and Research Priority Plan 2010-2013
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... management tool as well as a means to communicate to the public NHTSA's highest priorities to meet the Nation's motor vehicle safety challenges. Among them are programs and projects involving rollover crashes... in this plan. This plan lists the programs and projects the agency anticipates working on even though...
76 FR 16407 - Notice Announcing Preliminary Permit Drawing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
... Drawing Lock+ Hydro Friends Fund XLVI.... Project No. 13734-000. FFP Missouri 17, LLC Project No. 13754... Secretary of the Commission, or her designee, will conduct a random drawing to determine the filing priority... applications as provided in section 4.37 of its regulations.\\3\\ The priority established by this drawing will...
76 FR 16409 - Notice Announcing Preliminary Permit Drawing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
... Drawing Lock+ Hydro Friends Fund XLVII... Project No. 13743-000. FFP Missouri 16, LLC Project No. 13753... Secretary of the Commission, or her designee, will conduct a random drawing to determine the filing priority... applications as provided in section 4.37 of its regulations.\\3\\ The priority established by this drawing will...
76 FR 16409 - Notice Announcing Preliminary Permit Drawing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
... Drawing Lock+ Hydro Friends Fund XXXIV... Project No. 13742-000. FFP Missouri 5, LLC Project No. 13757-000... Commission, or her designee, will conduct a random drawing to determine the filing priority of the applicants... section 4.37 of its regulations.\\3\\ The priority established by this drawing will be used to determine...
7 CFR 1778.7 - Project priority.
Code of Federal Regulations, 2011 CFR
2011-01-01
... shortage. Grants made in accordance with § 1778.11(b) of this part to assist an established water system remedy an acute shortage of quality water or correct a significant decline in the quantity or quality of... 7 Agriculture 12 2011-01-01 2011-01-01 false Project priority. 1778.7 Section 1778.7 Agriculture...
NASA Astrophysics Data System (ADS)
Blasi, Emanuele; Passeri, Nicolò; Martella, Angelo; Coltorti, Massimo; Faccini, Barbara; Di Giuseppe, Dario; Ferretti, Giacomo
2015-04-01
Farmers' cultivation choices, mainly related to the use of agricultural inputs, affect the natural ecosystem and has an impact on larger scale. In particular the on-land application of swine manure by pigs livestock affects the water quality of waterways and in certain area can compromise the long term sustainability of the agro-ecosystems. The Volano-Burana basin (Ferrara Province, Italy) is a high vulnerable area (under the Directive Nitrate 91/676/CEE) characterized by waterways surrounding terrains with high concentration of croplands that year by year are managed by farmers with slurry and fertilizers application on the soil. A 6 ha agricultural field within this basin has been involved as a case study for the implementation of ZeoLIFE project experimental activities, which consist in the introduction of volcanic rocks called zeolitite, by an innovative integrated cycle, that combines zeolitite with pig slurry, and put it into soil. The zeolitite used for the project, K-Chabazite zeolitite, holds a high cation exchange capacity (up to 2.2 meq/g) and reversible hydration. The granulated waste quarries zeolitite, enriched in ammonium by a treatment with pig slurry and added to agricultural land, have a high fertilization capacity and a slow-realise of nutrients (K, NH4) and water, allowing the solubilisation of tricalcium phosphate, making the P available for plants. Added to agricultural soil it has allowed an increase in yield up to 20% and simultaneously reduce of the amount of fertilizer and irrigation water up to 50%, with a resulting decrease in the nitrate concentration in pore-waters and superficial waters issued from the field in the water system. Starting from project's results, an agro-ecological model of charged zeolite application has been provided taking into account the economic and normative constraints and the main characteristics of the Burana-Volano Basin to identify and promote the best pathways to spread this eco-innovation process and practice. This analysis has been set at regional scale through a GIS mapping framework to focus on the priority areas where the interventions on soil are suitable to preserve environmental functions and land quality, taking into account the environmental policy addresses and the Regional Rural Development Program.
Mapping (un)certainties in the sign of hydrological projections
NASA Astrophysics Data System (ADS)
Melsen, Lieke; Addor, Nans; Mizukami, Naoki; Newman, Andrew; Torfs, Paul; Clark, Martyn; Uijlenhoet, Remko; Teuling, Ryan
2017-04-01
While hydrological projections are of vital importance, particularly for water infrastructure design and food production, they are also prone to different sources of uncertainty. Using a multi-model set-up we investigated the uncertainty in hydrological projections for the period 2070-2100 associated with the parameterization of hydrological models, hydrological model structure, and General Circulation Models (GCMs) needed to force the hydrological model, for 605 basins throughout the contiguous United States. The use of such a large sample of basins gave us the opportunity to recognize spatial patterns in the results, and to attribute the uncertainty to particular hydrological processes. We investigated the sign of the projected change in mean annual runoff. The parameterization influenced the sign of change in 5 to 34% of the basins, depending on the hydrological model and GCM forcing. The hydrological model structure led to uncertainty in the sign of the change in 13 to 26% of the basins, depending on GCM forcing. This uncertainty could largely be attributed to the conceptualization of snow processes in the hydrological models. In 14% of the basins, none of the hydrological models was behavioural, which could be related to catchments with high aridity and intermittent flow behaviour. In 41 to 69% of the basins, the sign of the change was uncertain due to GCM forcing, which could be attributed to disagreement among the climate models regarding the projected change in precipitation. The results demonstrate that even the sign of change in mean annual runoff is highly uncertain in the majority of the investigated basins. If we want to use hydrological projections for water management purposes, including the design of water infrastructure, we clearly need to increase our understanding of climate and hydrological processes and their feedbacks.
Crop expansion and conservation priorities in tropical countries.
Phalan, Ben; Bertzky, Monika; Butchart, Stuart H M; Donald, Paul F; Scharlemann, Jörn P W; Stattersfield, Alison J; Balmford, Andrew
2013-01-01
Expansion of cropland in tropical countries is one of the principal causes of biodiversity loss, and threatens to undermine progress towards meeting the Aichi Biodiversity Targets. To understand this threat better, we analysed data on crop distribution and expansion in 128 tropical countries, assessed changes in area of the main crops and mapped overlaps between conservation priorities and cultivation potential. Rice was the single crop grown over the largest area, especially in tropical forest biomes. Cropland in tropical countries expanded by c. 48,000 km(2) per year from 1999-2008. The countries which added the greatest area of new cropland were Nigeria, Indonesia, Ethiopia, Sudan and Brazil. Soybeans and maize are the crops which expanded most in absolute area. Other crops with large increases included rice, sorghum, oil palm, beans, sugar cane, cow peas, wheat and cassava. Areas of high cultivation potential-while bearing in mind that political and socio-economic conditions can be as influential as biophysical ones-may be vulnerable to conversion in the future. These include some priority areas for biodiversity conservation in tropical countries (e.g., Frontier Forests and High Biodiversity Wilderness Areas), which have previously been identified as having 'low vulnerability', in particular in central Africa and northern Australia. There are also many other smaller areas which are important for biodiversity and which have high cultivation potential (e.g., in the fringes of the Amazon basin, in the Paraguayan Chaco, and in the savanna woodlands of the Sahel and East Africa). We highlight the urgent need for more effective sustainability standards and policies addressing both production and consumption of tropical commodities, including robust land-use planning in agricultural frontiers, establishment of new protected areas or REDD+ projects in places agriculture has not yet reached, and reduction or elimination of incentives for land-demanding bioenergy feedstocks.
Bentanzo, Elin A.; Choquette, Anne F.; Reckhow, Kenneth H.; Hayes, Laura; Hagan, Erik R; Argue, Denise M.; Cangelosi, A.A.
2015-01-01
Throughout its history, the United States has made major investments in assessing natural resources, such as soils, timber, oil and gas, and water. These investments allow policy makers, the private sector and the American public to make informed decisions about cultivating, harvesting or conserving these resources to maximize their value for public welfare, environmental conservation and the economy. As policy issues evolve, new priorities and challenges arise for natural resource assessment, and new approaches to monitoring are needed. For example, informed conservation and use of the nation’s finite fresh water resources in the context of increasingly intensive land development is a priority for today’s policy decisionmakers. There is a need to evaluate whether today’s water monitoring programs are generating the information needed to answer questions surrounding these new policy priorities. The Northeast-Midwest Institute (NEMWI), in cooperation with the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program, initiated this project to explore the types and amounts of water data needed to address water-quality related policy questions of critical concern to today’s policy makers. The collaborating entities identified two urgent water policy questions and conducted case studies in the Northeast-Midwest region to determine the water data needed, water data available, and the best ways to fill the data gaps relative to those questions. This report details the output from one case study and focuses on the Lake Erie drainage basin, a data-rich area expected to be a best-case scenario in terms of water data availability.
Crustal architecture of the eastern margin of Japan Sea: back-arc basin opening and contraction
NASA Astrophysics Data System (ADS)
No, T.; Sato, T.; Takahashi, N.; Kodaira, S.; Kaneda, Y.; Ishiyama, T.; Sato, H.
2012-12-01
Although large earthquakes such as the 1964 Niigata earthquake (M 7.5), 1983 Nihonkai-Chubu earthquake (M 7.8), and 1993 Hokkaido Nansei-Oki earthquake (M 7.8) have caused large amounts of damage to the eastern margin of the Japan Sea, a substantial number of seismic studies have been conducted for the seismogenic zone on the Pacific Ocean side of Japan. In addition, the detail of the source fault model for the eastern margin of the Japan Sea is not well defined for all cases. This highlights the need for further studies to investigate seismic imaging. Therefore, we have collaborated with other Japanese research institutions for a project titled "Priority Investigations of Strain Concentration Areas" (which is funded by Special Coordination Funds for Promoting Science and Technology, Japan). This project has conducted seismic surveys from 2009 to 2012 using the deep-sea research vessel, Kairei, from the Japan Agency for Marine-Earth Science and Technology. There is a strain concentration area in the eastern part of the survey area (Okamura et al., 1995). The western part of the survey area includes the Yamato Basin and Japan Basin. It is very important to study the crustal structure in the seismotectonic studies of the eastern margin of the Japan Sea. We conducted a marine seismic survey by using a multichannel seismic (MCS) system and ocean bottom seismographs (OBSs) along the eastern margin of the Japan Sea. Seismic data were acquired along 42 lines with a total length of approximately 9,000 km. The following results were obtained from seismic imaging. On the basis of the results of the MCS imaging, active reverse faults and folds were observed in the margin of the Toyama Trough; however, the sedimentary layers in the trough were flat. In the sedimentary layers and crusts of the Sado Ridge, Mogami Trough, and source area of the 1964 Niigata earthquake located north of the Sado Island, greater deformation was observed. The deformation weakened toward the Yamato Basin and Japan Basin; however, the development of an asymmetric anticline and its associated reverse fault was observed off Akita prefecture, which could indicate a very recent growth structure. This development is associated with an active structure on the southern extension of the fault that caused the 1983 Nihonkai-Chubu Earthquake. On the other hand, the results from the seismic refraction/wide-angle reflection imaging using OBSs indicated that the area from the basin to the continental shelf, including the source area of the 1964 Niigata Earthquake, and the island arc crust had a large lateral variation in the upper and middle crust. In contrast, beneath the source area of the 1983 Nihonkai-Chubu Earthquake, the crustal structure is interpreted as a transitional crust between oceanic and island arc crusts, with larger variation in the P-wave velocity than those of the surrounding areas. Furthermore, the crust of the Yamato Basin area is thicker than a typical oceanic crust, whereas the crust of the Japan Basin area is similar to a typical oceanic crust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunnigan, James; DeShazer, J.; Garrow, L.
Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possiblemore » conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries and fish habitat in basin streams and lakes. 'Mitigation for the Construction and Operation of Libby Dam' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan.« less
LESSONS LEARNED IN OPERATING THE HOSE-IN-HOSE SYSTEM FOR TRANSFSERRING SLUDGE AT HANFORDS K-BASINS
DOE Office of Scientific and Technical Information (OSTI.GOV)
PERES MW
In May 2007, the Department of Energy and the Fluor Hanford K Basin Closure Project completed transferring sludge from the K East Basin to new containers in the K West Basin using a Hose-in-Hose system. This project presented a number of complex and unique technical, operational, and management challenges that had to be resolved to complete the required transfers and satisfy project milestones. The project team (including DOE; regulators; and Fluor management, operations, maintenance, engineering and all other support organizations) found innovative solutions to each challenge. This paper records lessons learned during the operational phase of the sludge transfer viamore » the Hose-In-Hose system. The subject is limited to the operational phase and does not cover design, development, testing or turnover. A discussion of the situation or problem encountered is provided, along with the lesson learned as applicable to a future program or project.« less
Highlighted scientific findings of the Interior Columbia Basin Ecosystem Management Project.
Thomas M. Quigley; Heidi Bigler Cole
1997-01-01
Decisions regarding 72 million acres of Forest Service- and Bureau of Land Management- administered lands will be based on scientific findings brought forth in the Interior Columbia Basin Ecosystem Management Project. Some highlights of the scientific findings are presented here. Project scientists drew three general conclusions: (1) Conditions and trends differ widely...
Great Basin Native Plant Project: 2014 Progress Report
Francis Kilkenny; Anne Halford; Alexis Malcomb
2015-01-01
The Interagency Native Plant Materials Development Program outlined in the 2002 United States Department of Agriculture (USDA) and United States Department of Interior (USDI) Report to Congress encouraged use of native plant materials for rangeland rehabilitation and restoration where feasible. The Great Basin Native Plant Project is a cooperative project lead by the...
Great Basin Native Plant Project: 2013 Progress Report
Francis Kilkenny; Nancy Shaw; Corey Gucker
2014-01-01
The Interagency Native Plant Materials Development Program outlined in the 2002 United States Department of Agriculture (USDA) and United States Department of Interior (USDI) Report to Congress encouraged use of native plant materials for rangeland rehabilitation and restoration where feasible. The Great Basin Native Plant Project is a cooperative project lead by the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Bunker Hill Groundwater Basin, Riverside-Corona...) will prepare a joint EIS/EIR for the proposed Riverside-Corona Feeder Project. The public and agencies... participate in the planning, design, and construction of the Riverside-Corona Feeder Project including: (i) 20...
ERIC Educational Resources Information Center
Roberts, Philip; Downes, Natalie; Cook, Louise; Heiner, Irmgard; Caffery, Jo
2014-01-01
This report has been developed as part of the MDBfutures Collaborative Research Network project "Towards Place Based Education in the Murray-Darling Basin." The project explores the ways in which sustainability is understood in Murray Darling Basin (MDB) communities of Australia (including Indigenous, rural, small towns and regional…
NASA Astrophysics Data System (ADS)
Lyon, D. R.; Alvarez, R.; Zavala Araiza, D.; Hamburg, S.
2017-12-01
We develop a county-level inventory of U.S. anthropogenic methane emissions by integrating multiple data sources including the Drillinginfo oil and gas (O&G) production database, Environmental Protection Agency (EPA) Greenhouse Gas Reporting Program, a previously published gridded EPA Greenhouse Gas Inventory (Maasakkers et al 2016), and recent measurements studies of O&G pneumatic devices, equipment leaks, abandoned wells, and midstream facilities. Our bottom-up estimates of total and O&G methane emissions are consistently lower than top-down, aerial mass balance estimates in ten O&G production areas. We evaluate several hypotheses for the top-down/bottom-up discrepancy including potential bias of the aerial mass balance method, temporal mismatch of top-down and bottom-up emission estimates, and source attribution errors. In most basins, the top-down/bottom-up gap cannot be explained fully without additional O&G emissions from sources not included in traditional inventories, such as super-emitters caused by malfunctions or abnormal process conditions. Top-down/bottom-up differences across multiple basins are analyzed to estimate the magnitude of these additional emissions and constrain total methane emissions from the U.S. O&G supply chain. We discuss the implications for mitigating O&G methane emissions and suggest research priorities for increasing the accuracy of future emission inventories.
Developing a Framework and Priorities to Promote Mobility among Older Adults
ERIC Educational Resources Information Center
Anderson, Lynda A.; Slonim, Amy; Yen, Irene H.; Jones, Dina L.; Allen, Peg; Hunter, Rebecca H.; Goins, R. Turner; Leith, Katherine H.; Rosenberg, Dori; Satariano, William A.; McPhillips-Tangum, Carol
2014-01-01
Mobility, broadly defined as movement in all of its forms from ambulation to transportation, is critical to supporting optimal aging. This article describes two projects to develop a framework and a set of priority actions designed to promote mobility among community-dwelling older adults. Project 1 involved a concept-mapping process to solicit…
The Next Linear Collider Program-News
The Next Linear Collider at SLAC Navbar The Next Linear Collider In The Press The Secretary of Linear Collider is a high-priority goal of this plan. http://www.sc.doe.gov/Sub/Facilities_for_future/20 -term projects in conceputal stages (the Linear Collider is the highest priority project in this
76 FR 19063 - Applications for New Awards; Educational Opportunity Centers (EOC) Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... application meets this priority. This priority is: Projects that are designed to address the needs of military... other community resources in order to carry out projects that are cost-effective and best meet the needs....23). 3. Special Conditions: Under 34 CFR 74.14 and 80.12, the Secretary may impose special conditions...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.
2001-03-01
The John Day is the second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles--Oregon's third largest drainage basin--and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly amore » basin with national significance. Most all of the entire John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the Basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Using funding from the Bonneville Power Administration, Bureau of Reclamation, and others, the John Day Basin Office (JDBO) subcontracts the majority of its construction implementation activities with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/review, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2000, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional six watershed conservation projects funded by the BPA. The types of projects include permanent diversions, pump stations, and return-flow cooling systems. Project costs in 2000 totaled $533,196.00 with a total amount of $354,932.00 (67%) provided by the Bonneville Power Administration and the remainder coming from other sources such as the BOR, Oregon Watershed Enhancement Board, and individual landowners.« less
John Day Watershed Restoration Projects, annual report 2003.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Linda
The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day systemmore » is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), which contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2003, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional twelve (12) watershed conservation projects. The types of projects include off channel water developments, juniper control, permanent diversions, pump stations, and return-flow cooling systems. Due to funding issues and delays, permitting delays, fire closures and landowner contracting problems, 2 projects were canceled and 7 projects were rescheduled to the 2004 construction season. Project costs in 2003 totaled $115,554.00 with a total amount of $64,981.00 (56%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board, the U.S. Fish & Wildlife Service Partners in Wildlife Program and individual landowners.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
... research, demonstration projects, training, and related activities, to develop methods, procedures, and... DEPARTMENT OF EDUCATION [CFDA Number: 84.133B-1] Final Priority; Rehabilitation Research and... priority for a Rehabilitation Research and Training Center (RRTC) on Interventions to Promote Community...
Vision and Voyages: Lessons Learned from the Planetary Decadal Survey
NASA Astrophysics Data System (ADS)
Squyres, S. W.
2015-12-01
The most recent planetary decadal survey, entitled Vision and Voyages for Planetary Science in the Decade 2013-2022, provided a detailed set of priorities for solar system exploration. Those priorities drew on broad input from the U.S. and international planetary science community. Using white papers, town hall meetings, and open meetings of the decadal committees, community views were solicited and a consensus began to emerge. The final report summarized that consensus. Like many past decadal reports, the centerpiece of Vision and Voyages was a set of priorities for future space flight projects. Two things distinguished this report from some previous decadals. First, conservative and independent cost estimates were obtained for all of the projects that were considered. These independent cost estimates, rather than estimates generated by project advocates, were used to judge each project's expected science return per dollar. Second, rather than simply accepting NASA's ten-year projection of expected funding for planetary exploration, decision rules were provided to guide program adjustments if actual funding did not follow projections. To date, NASA has closely followed decadal recommendations. In particular, the two highest priority "flagship" missions, a Mars rover to collect samples for return to Earth and a mission to investigate a possible ocean on Europa, are both underway. The talk will describe the planetary decadal process in detail, and provide a more comprehensive assessment of NASA's response to it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dustin, R.
Modernization and renovation of sports facilities challenge the design team to balance a number of requirements: spectator and owner expectations, existing building and site conditions, architectural layouts, code and legislation issues, time constraints and budget issues. System alternatives are evaluated and selected based on the relative priorities of these requirements. These priorities are unique to each project. At Alexander Memorial Coliseum, project schedules, construction funds and facility usage became the priorities. The ACC basketball schedule and arrival of the Centennial Olympics dictated the construction schedule. Initiation and success of the project depended on the commitment of the design team tomore » meet coliseum funding levels established three years ago. Analysis of facility usage and system alternative capabilities drove the design team to select a system that met the project requirements and will maximize the benefits to the owner and spectators for many years to come.« less
NASA Astrophysics Data System (ADS)
Pulido-Velazquez, Manuel; Lopez-Nicolas, Antonio; Harou, Julien J.; Andreu, Joaquin
2013-04-01
Hydrologic-economic models allow integrated analysis of water supply, demand and infrastructure management at the river basin scale. These models simultaneously analyze engineering, hydrology and economic aspects of water resources management. Two new tools have been designed to develop models within this approach: a simulation tool (SIM_GAMS), for models in which water is allocated each month based on supply priorities to competing uses and system operating rules, and an optimization tool (OPT_GAMS), in which water resources are allocated optimally following economic criteria. The characterization of the water resource network system requires a connectivity matrix representing the topology of the elements, generated using HydroPlatform. HydroPlatform, an open-source software platform for network (node-link) models, allows to store, display and export all information needed to characterize the system. Two generic non-linear models have been programmed in GAMS to use the inputs from HydroPlatform in simulation and optimization models. The simulation model allocates water resources on a monthly basis, according to different targets (demands, storage, environmental flows, hydropower production, etc.), priorities and other system operating rules (such as reservoir operating rules). The optimization model's objective function is designed so that the system meets operational targets (ranked according to priorities) each month while following system operating rules. This function is analogous to the one used in the simulation module of the DSS AQUATOOL. Each element of the system has its own contribution to the objective function through unit cost coefficients that preserve the relative priority rank and the system operating rules. The model incorporates groundwater and stream-aquifer interaction (allowing conjunctive use simulation) with a wide range of modeling options, from lumped and analytical approaches to parameter-distributed models (eigenvalue approach). Such functionality is not typically included in other water DSS. Based on the resulting water resources allocation, the model calculates operating and water scarcity costs caused by supply deficits based on economic demand functions for each demand node. The optimization model allocates the available resource over time based on economic criteria (net benefits from demand curves and cost functions), minimizing the total water scarcity and operating cost of water use. This approach provides solutions that optimize the economic efficiency (as total net benefit) in water resources management over the optimization period. Both models must be used together in water resource planning and management. The optimization model provides an initial insight on economically efficient solutions, from which different operating rules can be further developed and tested using the simulation model. The hydro-economic simulation model allows assessing economic impacts of alternative policies or operating criteria, avoiding the perfect foresight issues associated with the optimization. The tools have been applied to the Jucar river basin (Spain) in order to assess the economic results corresponding to the current modus operandi of the system and compare them with the solution from the optimization that maximizes economic efficiency. Acknowledgments: The study has been partially supported by the European Community 7th Framework Project (GENESIS project, n. 226536) and the Plan Nacional I+D+I 2008-2011 of the Spanish Ministry of Science and Innovation (CGL2009-13238-C02-01 and CGL2009-13238-C02-02).
Umatilla Basin Natural Production Monitoring and Evaluation; 2003-2004 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Jesse D.M.; Contor, Craig C.; Hoverson, Eric
2005-10-01
The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). UBNPMEP is coordinated with two ODFW research projects that also monitor and evaluatemore » the success of the Umatilla Fisheries Restoration Plan. Our project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 19000500, Umatilla Hatchery M & E) and smolt outmigration (project No. 198902401, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects comprehensively monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. Table 1 outlines relationships with other BPA supported projects. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan (ODFW and CTUIR 2004), the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (Schwartz & Cameron Under Revision). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPPC 2004). The need for monitoring the natural production of salmonids in the Umatilla River Basin developed with the efforts to restore natural populations of spring and fall Chinook salmon, (Oncorhynchus tshawytsha) coho salmon and (O. kisutch) and enhance summer steelhead (O. mykiss). The need for restoration began with agricultural development in the early 1900's that extirpated salmon and reduced steelhead runs (BOR 1988). The most notable development was the construction and operation of Three-Mile Falls Dam (3MD) and other irrigation projects that dewatered the Umatilla River during salmon migrations. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and the Oregon Department of Fish and Wildlife (ODFW) developed the Umatilla Hatchery Master Plan to restore the historical fisheries in the basin. The plan was completed in 1990 and included the following objectives: (1) Establish hatchery and natural runs of Chinook and coho salmon. (2) Enhance existing summer steelhead populations through a hatchery program. (3) Provide sustainable tribal and non-tribal harvest of salmon and steelhead. (4) Maintain the genetic characteristics of salmonids in the Umatilla River Basin. (5) Produce almost 48,000 adult returns to Three-Mile Falls Dam. The goals were reviewed in 1999 and were changed to 31,500 adult salmon and steelhead returns (Table 2). We conduct core long-term monitoring activities each year as well as two and three-year projects that address special needs for adaptive management. Examples of these projects include adult passage evaluations (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998), genetic monitoring (Currens & Schreck 1995, Narum et al. 2004), and habitat assessment surveys (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998). Our project goal is to provide quality information to managers and researchers working to restore anadromous salmonids to the Umatilla River Basin. This is the only project that monitors the restoration of naturally producing salmon and steelhead in the basin.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-29
... priority is an invitational priority for applications that promote science, technology, engineering, and... Priority 1--Science, Technology, Engineering and Mathematics (STEM) Education: Projects that are designed... prepared for postsecondary or graduate study and careers in STEM, with a specific focus on an increase in...
40 CFR 35.2024 - Combined sewer overflows.
Code of Federal Regulations, 2010 CFR
2010-07-01
... project priority list, it addresses impaired uses in priority water quality areas which are due to the... must demonstrate to the Administrator that the water quality goals of the Act will not be achieved... priority water quality areas in marine bays and estuaries due to the impacts of combined sewer overflows...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-15
... Rehabilitation Research--Disability and Rehabilitation Research Project--Inclusive Cloud and Web Computing CFDA... inclusive Cloud and Web computing. The Assistant Secretary may use this priority for competitions in fiscal... Priority for Inclusive Cloud and Web Computing'' in the subject line of your electronic message. FOR...
Environmental assessment of complex mixtures typically requires integration of chemical and biological measurements. This study demonstrates the use of a combination of instrumental chemical analyses, effects-based monitoring, and bio-effects prediction approaches to help identi...
McCarthy, K.A.; Gale, R.W.
2001-01-01
Persistent hydrophobic organic compounds are of concern in the Columbia River because they have been correlated with adverse effects on wildlife. We analysed samples from nine main-stem and six tributary sites throughout the Columbia River Basin (Washington and Oregon) for polychlorinated dibenzo-p-dioxins, dibenzofurans, polychlorinated biphenyls, organochlorine pesticides, and priority-pollutant polycyclic aromatic hydrocarbons. Because these compounds may have important biological consequences at aqueous concentrations well below the detection limits associated with conventional sampling methods, we used semipermeable-membrane devices to sample water and achieved parts-per-quintillion detection limits. All of these compound classes were prevalent within the basin, but concentrations of many analytes were highest in the vicinity of Portland-Vancouver, indicating that the Willamette subbasin-and perhaps the urban area in particular-is an important source of these compounds. Data collected during basin low-flow conditions in 1997 and again during basin high-flow conditions in 1998 indicate that in-stream processes such as dilution by relatively clean inflow, and flow through island hyporheic zones may be important mechanisms for attenuating dissolved concentrations of hydrophobic compounds.
NASA Astrophysics Data System (ADS)
Ho, Long-Phi; Chau, Nguyen-Xuan-Quang; Nguyen, Hong-Quan
2013-04-01
The Nhieu Loc - Thi Nghe basin is the most important administrative and business area of Ho Chi Minh City. Due to system complexity of the basin such as the increasing trend of rainfall intensity, (tidal) water level and land subsidence, the simulation of hydrological, hydraulic variables for flooding prediction seems rather not adequate in practical projects. The basin is still highly vulnerable despite of multi-million USD investment for urban drainage improvement projects since the last decade. In this paper, an integrated system analysis in both spatial and temporal aspects based on statistical, GIS and modelling approaches has been conducted in order to: (1) Analyse risks before and after projects, (2) Foresee water-related risk under uncertainties of unfavourable driving factors and (3) Develop a sustainable flood risk management strategy for the basin. The results show that given the framework of risk analysis and adaptive strategy, certain urban developing plans in the basin must be carefully revised and/or checked in order to reduce the highly unexpected loss in the future
Job Priorities on Peregrine | High-Performance Computing | NREL
allocation when run with qos=high. Requesting a Node Reservation If you are doing work that requires real scheduler more efficiently plan resources for larger jobs. When projects reach their allocation limit, jobs associated with those projects will run at very low priority, which will ensure that these jobs run only when
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-14
The Tutu Wellfield National Priorities List (NPL) site is in east-central St. Thomas, U.S. Virgin Island. Twenty-two wells in the Turpentine Run Basin contain at minimum a trace of volatile organic contaminants. Volatile and chlorinated hydrocarbons including benzene; toluene; 1,2-trans-dichloroethene (DCE); trichloroethene (TCE); and tetrachloroethene (PCE) were detected in several of the wells. The Agency for Toxic Substances and Disease Registry (ATSDR) has concluded that the Tutu Wellfield National Priorities List (NPL) site, St. Thomas, U.S. Virgin Islands, poses a public health hazard for past, present, and possible future ingestion of contaminated groundwater.
Umatilla River Basin Anadromous Fsh Habitat Enhancement Project : 2000 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, R. Todd
2001-12-31
The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2000 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla River Basin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Habitat enhancement projects continued to be maintained on 44 private properties, four riparian easements and one in-stream enhancement agreement were secured, two new projects implemented and two existing projects improved to enhance anadromous fish habitat and natural fisheries production capabilitiesmore » in the Umatilla River Basin. New project locations included sites on the mid Umatilla River and Buckaroo Creek. Improvements were implemented at existing project sites on the upper Umatilla River and Wildhorse Creek. A stream bank stabilization project was implemented at approximately River Mile 37.4 Umatilla River to stabilize 760 feet of eroding stream bank and improve in-stream habitat diversity. Habitat enhancements at this site included construction of six rock barbs with one large conifer root wad incorporated into each barb, stinging approximately 10,000 native willow cuttings, planting 195 tubling willows and 1,800 basin wildrye grass plugs, and seeding 40 pounds of native grass seed. Staff time to assist in development of a subcontract and fence materials were provided to establish eight spring sites for off-stream watering and to protect wetlands within the Buckaroo Creek Watershed. A gravel bar was moved and incorporated into an adjacent point bar to reduce stream energy and stream channel confinement within the existing project area at River Mile 85 Umatilla River. Approximately 10,000 native willow cuttings were stung and trenched into the stream channel margins and stream banks, and 360 basin wildrye grass plugs planted and 190 pounds of native grass seed broadcast on terraces between River Mile 10 and 12.5 within the existing Wildhorse Creek Project Area. Approximately 70 pounds of native grasses were seeded in the existing McKay Creek Project Area at approximately River Mile 21.5. Financial and in-kind cost share assistance was provided by the Confederated Tribes of the Umatilla Indian Reservation, U.S. Bureau of Indian Affairs, U.S. Department of Agriculture, U.S. Fish and Wildlife Service, National Fish and Wildlife Federation and the Umatilla National Forest for the enhancements at River Mile 37.4 Umatilla River and within the Buckaroo Creek Watershed. Monitoring continued to quantify effects of habitat enhancements in the upper basin. Maximum, minimum and average daily stream temperatures were collected from June through September at 22 sites. Suspended sediment samples were obtained at three gage stations to arrive at daily sediment load estimates. Photographs were taken at 94 existing and two newly established photo points to document habitat recovery. Umatilla Basin Watershed Assessment efforts were continued under a subcontract with Washington State University. This endeavor involves compiling existing information, identifying data gaps, determining habitat-limiting factors and recommending actions to improve anadromous fisheries habitat. This watershed assessment document and working databases will be completed in fiscal year 2002 and made available to assist project personnel with sub-watershed prioritization of habitat needs.« less
40 CFR 35.2015 - State priority system and project priority list.
Code of Federal Regulations, 2014 CFR
2014-07-01
... I); (B) Treatment more stringent than secondary (category II); (C) Infiltration/inflow correction... cost-effective alternative; (C) New interceptors and appurtenances; and (D) Infiltration/inflow...
40 CFR 35.2015 - State priority system and project priority list.
Code of Federal Regulations, 2013 CFR
2013-07-01
... I); (B) Treatment more stringent than secondary (category II); (C) Infiltration/inflow correction... cost-effective alternative; (C) New interceptors and appurtenances; and (D) Infiltration/inflow...
40 CFR 35.2015 - State priority system and project priority list.
Code of Federal Regulations, 2011 CFR
2011-07-01
... I); (B) Treatment more stringent than secondary (category II); (C) Infiltration/inflow correction... cost-effective alternative; (C) New interceptors and appurtenances; and (D) Infiltration/inflow...
40 CFR 35.2015 - State priority system and project priority list.
Code of Federal Regulations, 2012 CFR
2012-07-01
... I); (B) Treatment more stringent than secondary (category II); (C) Infiltration/inflow correction... cost-effective alternative; (C) New interceptors and appurtenances; and (D) Infiltration/inflow...
Short-term climate change impacts on Mara basin hydrology
NASA Astrophysics Data System (ADS)
Demaria, E. M.; Roy, T.; Valdés, J. B.; Lyon, B.; Valdés-Pineda, R.; Serrat-Capdevila, A.; Durcik, M.; Gupta, H.
2017-12-01
The predictability of climate diminishes significantly at shorter time scales (e.g. decadal). Both natural variability as well as sampling variability of climate can obscure or enhance climate change signals in these shorter scales. Therefore, in order to assess the impacts of climate change on basin hydrology, it is important to design climate projections with exhaustive climate scenarios. In this study, we first create seasonal climate scenarios by combining (1) synthetic precipitation projections generated from a Vector Auto-Regressive (VAR) model using the University of East Anglia Climate Research Unit (UEA-CRU) data with (2) seasonal trends calculated from 31 models in the Coupled Model Intercomparison Project Phase 5 (CMIP). The seasonal climate projections are then disaggregated to daily level using the Agricultural Modern-Era Retrospective Analysis for Research and Applications (AgMERRA) data. The daily climate data are then bias-corrected and used as forcings to the land-surface model, Variable Infiltration Capacity (VIC), to generate different hydrological projections for the Mara River basin in East Africa, which are then evaluated to study the hydrologic changes in the basin in the next three decades (2020-2050).
,
2013-01-01
The U.S Geological Survey (USGS) periodically conducts assessments of undiscovered oil and gas resources in the United States. The purpose of the U.S. Geological Survey National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The last major USGS assessment of oil and gas of the most important oil and gas provinces in the United States was in 1995 (Gautier and others, 1996). Since then a number of individual assessment provinces have been reappraised using new methodology. This was done particularly for those provinces where new information has become available, where new methodology was expected to reveal more insight to provide a better estimate, where additional geologic investigation was needed, or where continuous accumulations were deemed important. The San Juan Basin was reevaluated because of industry exploitation of new hydrocarbon accumulations that were not previously assessed and because of a change in application of assessment methodology to potential undiscovered hydrocarbon accumulations. Several changes have been made in this study. The methodology is different from that used in 1995 (Schmoker, 2003; Schmoker and Klett, 2003). In this study the total petroleum system (TPS) approach (Magoon and Dow, 1994) is used rather than the play approach. The Chama Basin is not included. The team of scientists studying the basin is different. The 1995 study focused on conventional accumulations, whereas in this 2002 assessment, it was a priority to assess continuous-type accumulations, including coal-bed gas. Consequently we are presenting here an entirely new study and results for the San Juan Basin Province. The results of this 2002 assessment of undiscovered oil and gas resources in the San Juan Basin Province (5022) are presented in this report within the geologic context of individual TPSs and their assessment units (AU) (table 1). Results are reported as the estimated mean of potential additions to reserves as well as for the 95, 50, and 5 percent fractiles.
14. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM TOWARD SETTLING BASIN, ...
14. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM TOWARD SETTLING BASIN, SHOWING RIGHT FORK TO BYPASS, LEFT FORK TO BASIN - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA
ERIC Educational Resources Information Center
Nevada Univ. System, Reno.
Goals and priorities of the University of Nevada System for 1987-1991 are presented, with attention to growth projections, campus academic and budget priorities, capital construction needs, economic development, strengthening higher education in the state, and data collection. In addition to the System's goals, academic priorities are described…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-06
... Civil Rights Act of 1964 (prohibiting discrimination on the basis of race, color, or national origin... maximum of two of the competitive preference priorities. Therefore, an applicant must identify in the project narrative section of its application the priority or the two priorities it wishes the Department...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-20
... discrimination on the basis of race, color, or national origin); Section 504 of the Rehabilitation Act of 1973... maximum of two of the competitive preference priorities. Therefore, an applicant must identify in the project narrative section of its application the priority or the two priorities it wishes the Department...
[National and regional prioritisation in Swedish health care: experiences from cardiology].
Carlsson, Jörg
2012-01-01
Prioritisation of medical services in Sweden takes place on two different levels. On the national level, the Swedish priority guidelines ascribe priority values ranging from 1 (high priority) to 10 (low priority) to measures (in terms of condition-treatment pairs) of prevention, diagnosis, treatment and rehabilitation of cardiovascular diseases. In addition, this list contains interventions that should be avoided and those that should only be provided as part of clinical research projects. The government then commissions a multi-professional team under the supervision of the National Board of Health and Welfare "Socialstyelsen" with the development of corresponding guidelines. In addition to the scientific evidence, the priority lists incorporate ethical and economical aspects and are based on the so-called ethics platform consisting of human dignity, needs, solidarity and cost-effectiveness. At the other level of prioritisation there are regional projects aiming at the in- and exclusion of medical measures. The Swedish prioritisation process will be described using the example of priority lists in cardiology. (As supplied by publisher). Copyright © 2012. Published by Elsevier GmbH.
Odaga, John; Henriksson, Dorcus K; Nkolo, Charles; Tibeihaho, Hector; Musabe, Richard; Katusiime, Margaret; Sinabulya, Zaccheus; Mucunguzi, Stephen; Mbonye, Anthony K; Valadez, Joseph J
2016-01-01
Local health system managers in low- and middle-income countries have the responsibility to set health priorities and allocate resources accordingly. Although tools exist to aid this process, they are not widely applied for various reasons including non-availability, poor knowledge of the tools, and poor adaptability into the local context. In Uganda, delivery of basic services is devolved to the District Local Governments through the District Health Teams (DHTs). The Community and District Empowerment for Scale-up (CODES) project aims to provide a set of management tools that aid contextualised priority setting, fund allocation, and problem-solving in a systematic way to improve effective coverage and quality of child survival interventions. Although the various tools have previously been used at the national level, the project aims to combine them in an integral way for implementation at the district level. These tools include Lot Quality Assurance Sampling (LQAS) surveys to generate local evidence, Bottleneck analysis and Causal analysis as analytical tools, Continuous Quality Improvement, and Community Dialogues based on Citizen Report Cards and U reports. The tools enable identification of gaps, prioritisation of possible solutions, and allocation of resources accordingly. This paper presents some of the tools used by the project in five districts in Uganda during the proof-of-concept phase of the project. All five districts were trained and participated in LQAS surveys and readily adopted the tools for priority setting and resource allocation. All districts developed health operational work plans, which were based on the evidence and each of the districts implemented more than three of the priority activities which were included in their work plans. In the five districts, the CODES project demonstrated that DHTs can adopt and integrate these tools in the planning process by systematically identifying gaps and setting priority interventions for child survival.
Szilard, Istvan; Cserti, Arpad; Hoxha, Ruhija; Gorbacheva, Olga; O'Rourke, Thomas
2002-04-01
The International Organization for Migration (IOM) developed and implemented a three-month project entitled Priority Medical Screening of Kosovar Refugees in Macedonia, within the Humanitarian Evacuation Program (HEP) for Kosovar refugees from FR Yugoslavia, which was adopted in May 1999. The project was based on an agreement with the office of United Nations High Commission for Refugees (UNHCR) and comprised the entry of registration data of refugees with medical condition (Priority Medical Database), and classification (Priority Medical Screening) and medical evacuation of refugees (Priority Medical Evacuation) in Macedonia. To realize the Priority Medical Screening project plan, IOM developed and set up a Medical Database linked to IOM/UNHCR HEP database, recruited and trained a four-member data entry team, worked out and set up a referral system for medical cases from the refugee camps, and established and staffed medical contact office for refugees in Skopje and Tetovo. Furthermore, it organized and staffed a mobile medical screening team, developed and implemented the system and criteria for the classification of referred medical cases, continuously registered and classified the incoming medical reports, contacted regularly the national delegates and referred to them the medically prioritized cases asking for acceptance and evacuation, and co-operated and continuously exchanged the information with UNHCR Medical Co-ordination and HEP team. Within the timeframe of the project, 1,032 medical cases were successfully evacuated for medical treatment to 25 host countries throughout the world. IOM found that those refugees suffering from health problems, who at the time of the termination of the program were still in Macedonia and had not been assisted by the project, were not likely to have been priority one cases, whose health problems could be solved only in a third country. The majority of these vulnerable people needed social rather than medical care and assistance a challenge that international aid agencies needed to address in Macedonia and will need to address elsewhere.
Odaga, John; Henriksson, Dorcus K.; Nkolo, Charles; Tibeihaho, Hector; Musabe, Richard; Katusiime, Margaret; Sinabulya, Zaccheus; Mucunguzi, Stephen; Mbonye, Anthony K.; Valadez, Joseph J.
2016-01-01
Background Local health system managers in low- and middle-income countries have the responsibility to set health priorities and allocate resources accordingly. Although tools exist to aid this process, they are not widely applied for various reasons including non-availability, poor knowledge of the tools, and poor adaptability into the local context. In Uganda, delivery of basic services is devolved to the District Local Governments through the District Health Teams (DHTs). The Community and District Empowerment for Scale-up (CODES) project aims to provide a set of management tools that aid contextualised priority setting, fund allocation, and problem-solving in a systematic way to improve effective coverage and quality of child survival interventions. Design Although the various tools have previously been used at the national level, the project aims to combine them in an integral way for implementation at the district level. These tools include Lot Quality Assurance Sampling (LQAS) surveys to generate local evidence, Bottleneck analysis and Causal analysis as analytical tools, Continuous Quality Improvement, and Community Dialogues based on Citizen Report Cards and U reports. The tools enable identification of gaps, prioritisation of possible solutions, and allocation of resources accordingly. This paper presents some of the tools used by the project in five districts in Uganda during the proof-of-concept phase of the project. Results All five districts were trained and participated in LQAS surveys and readily adopted the tools for priority setting and resource allocation. All districts developed health operational work plans, which were based on the evidence and each of the districts implemented more than three of the priority activities which were included in their work plans. Conclusions In the five districts, the CODES project demonstrated that DHTs can adopt and integrate these tools in the planning process by systematically identifying gaps and setting priority interventions for child survival. PMID:27225791
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
... transmission lines, 5 new substations, modifications to 4 existing substations, maintenance access roads... address the construction, operation, and maintenance of Basin Electric's proposed Project. The Project includes construction, operation and maintenance of approximately 275 [[Page 50027
Development of adaptive IWRM options for climate change mitigation and adaptation
NASA Astrophysics Data System (ADS)
Flügel, W.-A.
2011-04-01
Adaptive Integrated Water Resources Management (IWRM) options related to the impacts of climate change in the twinning basins of the Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basin (UBRB) are developed based on the results obtained in the different work packages of the BRAHMATWINN project. They have been described and discussed in Chapter 2 till Chapter 9 and the paper is referring to and is integrating these findings with respect to their application and interpretation for the development of adaptive IWRM options addressing impacts of climate change in river basins. The data and information related to the results discussed in Chapter 2 till 8 have been input to the RBIS as a central component of the IWRMS (Chapter 9). Meanwhile the UDRB has been analysed with respect to IWRM and climate change impacts by various projects, i.e. the GLOWA-Danube BMBF funded project (GLOWA Danube, 2009; Mauser and Ludwig, 2002) the UBRB has not been studied so far in a similar way as it was done in the BRAHMATWINN project. Therefore the IWRM option development is focussing on the UBRB but the methodology presented can be applied for the UDRB and other river basins as well. Data presented and analysed in this chapter have been elaborated by the BRAHMATWINN project partners and are published in the project deliverable reports available from the project homepage http://www.brahmatwinn.uni-jena.de/index.php?id=5311&L=2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Presto, Albert A
The objectives of the project were to determine the leakage rates of methane and ozone-forming Volatile Organic Compounds (VOCs) and the emission rates of air toxics from Marcellus shale gas activities. Methane emissions in the Marcellus Shale region were differentiated between “newer” sources associated with shale gas development and “older” sources associated with coal or conventional natural gas exploration. This project conducted measurements of methane and VOC emissions from both shale and non-shale natural gas resources. The initial scope of the project was the Marcellus Shale basin, and measurements were conducted in both the western wet gas regions (southwest PAmore » and WV) and eastern dry gas region (northeast PA) of the basin. During this project, we obtained additional funding from other agencies to expand the scope of measurements to include additional basins. The data from both the Marcellus and other basins were combined to construct a national analysis of methane emissions from oil & gas production activities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Shawn W.
2001-03-01
The John Day River is the second longest free-flowing river in the contiguous United States and one of the few major subbasins in the Columbia River basin containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, the fourth largest drainage area in Oregon. With its beginning in the Strawberry Mountains near the town of Prairie City, the John Day flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring chinook salmon and summer steelhead, red band,more » westslope cutthroat, and redband trout, the John Day system is truly one of national significance. The entire John Day basin was granted to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) initiated contracting the majority of its construction implementation actions with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of the projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 1999, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional eleven (11) watershed conservation projects. The types of projects implemented included installation of infiltration galleries, permanent diversions, pumping stations, and irrigation efficiency upgrades. Project costs in 1999 totaled $284,514.00 with a total amount of $141,628.00 (50%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Confederated Tribes of Warm Springs, Oregon Watershed Enhancement Board, and individual landowners.« less
Geothermal energy: opportunities for California commerce. Phase I report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longyear, A.B.
1981-12-01
The potential geothermal direct-use energy market and its application to projects in California are assessed. Project identification effort is to be focused on those that have the highest probability for near-term successful commercial operations. Near-term herein means 2 to 5 years for project implementation. Phase I has been focused on defining and assessing: (1) the geothermal direct-use resources that are suitable for near-term utilization; and (2) the generic applications (municipal heating districts, horticultural greenhouse firms, laundries, etc.) that are suitable for near-term projects. Five economic development regions in the state, containing recognized geothermal direct-use resources, have been defined. Thirty-eight directmore » use resources have been evaluated in these regions. After assessment against pre-selected criteria, twenty-seven have been rated with a priority of I, II or III, thereby qualifying them for further marketing effort. The five areas with a priority of I are summarized. These areas have no perceived impediments to near-term development. Twenty-nine generic categories of applications were assessed against previously selected criteria to determine their near term potential for direct use of geothermal fluids. Some twenty industry, commercial and institutional application categories were rated with a priority of I, II or III and warrant further marketing efforts. The seven categories with a priority of I are listed. These categories were found to have the least impediments to near-term application projects.« less
Research on relationships between dissolved nutrients and land use at the watershed scale is a high priority for protecting surface water quality. We measured dissolved nitrogen (DN) and ortho-phosphorus (P) along 130 km of the Calapooia River (Oregon, USA) and 44 of its sub-bas...
Impact of native grasses and cheatgrass (Bromus tectorum) on Great Basin forb seedling growth
Hilary Parkinson; Cathy Zabinski; Nancy Shaw
2013-01-01
Re-establishing native communities that resist exotic weed invasion and provide diverse habitat for wildlife are high priorities for restoration in sagebrush ecosystems. Native forbs are an important component of healthy rangelands in this system, but they are rarely included in seedings. Understanding competitive interactions between forb and grass seedlings is...
The development of rapid assessment methods has become a priority for many organizations that want to report on the condition of wetlands at larger scales requiring many sampling sites. To have faith in these rapid methods, however, requires that they be verified with more compr...
Transit signal priority research tools
DOT National Transportation Integrated Search
2008-05-01
This report presents the results of a research project that addresses Transit Signal Priority (TSP) deployment issues. The report reviews National Transportation Communications for ITS Protocol (NTCIP) 1211 Signal Control and Prioritization (SCP) sta...
Mississippi Basin Carbon Project science plan
Sundquist, E.T.; Stallard, R.F.; Bliss, N.B.; Markewich, H.W.; Harden, J.W.; Pavich, M.J.; Dean, M.D.
1998-01-01
Understanding the carbon cycle is one of the most difficult challenges facing scientists who study the global environment. Lack of understanding of global carbon cycling is perhaps best illustrated by our inability to balance the present-day global CO2 budget. The amount of CO2 produced by burning fossil fuels and by deforestation appears to exceed the amount accumulating in the atmosphere and oceans. The carbon needed to balance the CO2 budget (the so-called "missing" carbon) is probably absorbed by land plants and ultimately deposited in soils and sediments. Increasing evidence points toward the importance of these terrestrial processes in northern temperate latitudes. Thus, efforts to balance the global CO2 budget focus particular attention on terrestrial carbon uptake in our own North American "backyard."The USGS Mississippi Basin Carbon Project conducts research on the carbon budget in soils and sediments of the Mississippi River basin. The project focuses on the effects of land-use change on carbon storage and transport, nutrient cycles, and erosion and sedimentation throughout the Mississippi River Basin. Particular emphasis is placed on understanding the interactions among changes in erosion, sedimentation, and soil dynamics. The project includes spatial analysis of a wide variety of geographic data sets, estimation of whole-basin and sub-basin carbon and sediment budgets, development and implementation of terrestrial carbon-cycle models, and site-specific field studies of relevant processes. The USGS views this project as a "flagship" effort to demonstrate its capabilities to address the importance of the land surface to biogeochemical problems such as the global carbon budget.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Dan
The US Congress funded the Puget Sound and Coastal Washington Hatchery Reform Project via annual appropriations to the US Fish and Wildlife Service (USFWS) beginning in fiscal year 2000. Congress established the project because it recognized that while hatcheries have a necessary role to play in meeting harvest and conservation goals for Pacific Northwest salmonids, the hatchery system was in need of comprehensive reform. Most hatcheries were producing fish for harvest primarily to mitigate for past habitat loss (rather than for conservation of at-risk populations) and were not taking into account the effects of their programs on naturally spawning populations.more » With numerous species listed as threatened or endangered under the Endangered Species Act (ESA), conservation of salmon in the Puget Sound area was a high priority. Genetic resources in the region were at risk and many hatchery programs as currently operated were contributing to those risks. Central to the project was the creation of a nine-member independent scientific review panel called the Hatchery Scientific Review Group (HSRG). The HSRG was charged by Congress with reviewing all state, tribal and federal hatchery programs in Puget Sound and Coastal Washington as part of a comprehensive hatchery reform effort to: conserve indigenous salmonid genetic resources; assist with the recovery of naturally spawning salmonid populations; provide sustainable fisheries; and improve the quality and cost-effectiveness of hatchery programs. The HSRG worked closely with the state, tribal and federal managers of the hatchery system, with facilitation provided by the non-profit organization Long Live the Kings and the law firm Gordon, Thomas, Honeywell, to successfully complete reviews of over 200 hatchery programs at more than 100 hatcheries across western Washington. That phase of the project culminated in 2004 with the publication of reports containing the HSRG's principles for hatchery reform and recommendations for Puget Sound/Coastal Washington hatchery programs, followed by the development in 2005 of a suite of analytical tools to support application of the principles (all reports and tools are available at www.hatcheryreform.us). In 2005, Congress directed the National Oceanic and Atmospheric Administration-Fisheries (NOAA Fisheries) to replicate the Puget Sound and Coastal Washington Hatchery Reform Project in the Columbia River Basin. The HSRG was expanded to 14 members to include individuals with specific knowledge about the Columbia River salmon and steelhead populations. This second phase was initially envisioned as a one-year review, with emphasis on the Lower Columbia River hatchery programs. It became clear however, that the Columbia River Basin needed to be viewed as an inter-connected ecosystem in order for the review to be useful. The project scope was subsequently expanded to include the entire Basin, with funding for a second year provided by the Bonneville Power Administration (BPA) under the auspices of the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program. The objective of the HSRG's Columbia River Basin review was to change the focus of the Columbia River hatchery system. In the past, these hatchery programs have been aimed at supplying adequate numbers of fish for harvest as mitigation primarily for hydropower development in the Basin. A new, ecosystem-based approach is founded on the idea that harvest goals are sustainable only if they are compatible with conservation goals. The challenge before the HSRG was to determine whether or not conservation and harvest goals could be met by fishery managers and, if so, how. The HSRG determined that in order to address these twin goals, both hatchery and harvest reforms are necessary. The HSRG approach represents an important change of direction in managing hatcheries in the region. It provides a clear demonstration that current hatchery programs can indeed be redirected to better meet both conservation and harvest goals. For each Columbia River Basin Environmentally Significant Unit (ESU), Distinct Population Segment (MPG) or Major Population Group (MPG) reviewed, the HSRG presents its findings and recommendations in the form of an HSRG solution. This package of recommended changes to current hatchery and harvest program design and operation is intended to demonstrate how the programs could be managed to significantly increase the likelihood of meeting the managers goals for both harvest and conservation of the ESU/DPS/MPG. The 'HSRG solution' also highlights the biological principles that the HSRG believes must form the foundation for successful use of hatcheries and fisheries as management tools.« less
76 FR 60774 - Review and Approval of Projects
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... SUSQUEHANNA RIVER BASIN COMMISSION 18 CFR Part 806 Review and Approval of Projects AGENCY: Susquehanna River Basin Commission. ACTION: Notice of proposed rulemaking; reopening of comment period. SUMMARY: The purpose of this document is to inform the public of an extension of the comment period for...
Tracking Hazard Analysis Data in a Jungle of Changing Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Robin S.; Young, Jonathan
2006-05-14
The biggest fear of the hazard analyst is the loss of data in the middle of the design jungle. When project schedules are demanding and design is changing rapidly it is essential that the hazard analysis data be tracked and kept current in order to provide the required project design, development, and regulatory support. Being able to identify the current information, as well as the past archived information, as the design progresses and to be able to show how the project is designing in safety through modifications based on hazard analysis results is imperative. At the DOE Hanford site inmore » Washington State, Flour Hanford Inc is in the process of the removal and disposition of sludge from the 100 Area K Basins. The K Basins were used to store spent fuel from the operating reactors at the Hanford Site. The sludge is a by-product from the corrosion of the fuel and fuel storage canisters. The sludge removal project has been very dynamic involving the design, procurement and, more recently, the operation of processes at two basins, K East and K West. The project has an ambitious schedule with a large number of changes to design concepts. In order to support the complex K Basins project a technique to track the status of the hazard analysis data was developed. This paper will identify the most important elements of the tracking system and how it was used to assist the project in ensuring that current design data was reflected in a specific version of the hazard analysis and to show how the project was keeping up with the design and ensuring compliance with the requirements to design in safety. While the specifics of the data tracking strategy for the K Basins sludge removal project will be described in the paper, the general concepts of the strategy are applicable to similar projects requiring iteration of hazard analysis and design.« less
Learning Spaces as a Strategic Priority
ERIC Educational Resources Information Center
George, Gene; Erwin, Tom; Barnes, Briony
2009-01-01
In April 2007 Butler Community College made learning spaces one of its five strategic priorities. The college had just completed a major renovation of the work spaces for the IT division and had started a project to build a student union and create informal learning spaces at the Andover campus. With learning spaces becoming a strategic priority,…
Shi, Hua; Singh, Ashbindu; Kant, S.; Zhu, Zhiliang; Waller, E.
2005-01-01
Priority setting is an essential component of biodiversity conservation. Existing methods to identify priority areas for conservation have focused almost entirely on biological factors. We suggest a new relative ranking method for identifying priority conservation areas that integrates both biological and social aspects. It is based on the following criteria: the habitat's status, human population pressure, human efforts to protect habitat, and number of endemic plant and vertebrate species. We used this method to rank 25 hotspots, 17 megadiverse countries, and the hotspots within each megadiverse country. We used consistent, comprehensive, georeferenced, and multiband data sets and analytical remote sensing and geographic information system tools to quantify habitat status, human population pressure, and protection status. The ranking suggests that the Philippines, Atlantic Forest, Mediterranean Basin, Caribbean Islands, Caucasus, and Indo-Burma are the hottest hotspots and that China, the Philippines, and India are the hottest megadiverse countries. The great variation in terms of habitat, protected areas, and population pressure among the hotspots, the megadiverse countries, and the hotspots within the same country suggests the need for hotspot- and country-specific conservation policies.
Anderson, Elizabeth P.; Pringle, Catherine M.; Freeman, Mary C.
2008-01-01
Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiquí River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (<15 m tall) and operate as water diversion projects.While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiquí River Basin.Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiquí River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9 km) and Lower Montane Rain Forest (168.2 km).Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiquí River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.
Clackamas/Hood River Habitat Enhancement Program, 1987 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Ken; Cain, Thomas C.; Heller, David A.
1988-03-01
Fisheries habitat improvement work is being done on priority drainages in the Clackamas and Rood River sub-basins under program measure 704(c), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program. This report describes the work completed in 1987 for Bonneville Power Administration (BPA) project number 84-11, the Clackamas/Hood River Habitat Enhancement Program. The program is composed of six projects: Collawash River Habitat Improvement Project; Collawash River Falls Passage Improvement Project, Oak Grove Fork Habitat Improvement Project; Lake Branch/West Fork Hood River Habitat Improvement Project; Fifteenmile Creek Habitat Improvement Project; and Abundance, Behavior, andmore » Habitat Utilization by Coho Salmon and Steelhead Trout in Fish Creek, Oregon, As Influenced by Habitat Enhancement. This ongoing program was initiated in 1984, although some of the projects were begun with BPA funding support as early as 1983. The projects are complemented by a variety of habitat improvement and management activities funded from a variety of Forest Service sources. This report describes the activities implemented for five of the six projects. A separate annual report on the 1987 habitat improvement and monitoring/evaluation efforts in the Fish Creek drainage has been prepared. Species for management emphasis include spring chinook and coho salmon, and summer and winter steelhead trout. Project work in 1987 primarily focused on increasing the quantity and quality of available rearing habitat, and improving access at passage barriers. The underlying theme of the improvement work has been to increase habitat diversity through the introduction of ''structure''. Structure provided by logs and boulders serves to deflect, pond, or otherwise disrupt flow patterns within a stream channel. This alteration of flow patterns results in formation of an increased number of habitat niches (i.e. pools, glides, alcoves, etc. ) in which a variety of species and age group: of salmon and trout can rear. It also results in the sorting of gravel, rubble, and boulders being transported downstream, creating high quality spawning and rearing habitats, and food producing areas. In 1987, a total of 11.0 miles of stream were treated; 334 log structures (Including: ''deflector'', ''digger'', ''sill'', and ''cover'' logs) and 141 boulder structures (including: single boulder placement, ''berms'', ''alcoves'', and ''clusters'') were completed to meet habitat improvement objectives. In addition to these direct habitat improvement activities, BPA and the Forest Service financed a number of project and program assessment activities that have improved the efficiency and effectiveness of the Forest's fisheries management program. Notable findings relate to the durability of habitat improvement structures, the associated changes in physical habitat, and biological response to the improvement activities. A discussion of the 1987 habitat monitoring and evaluation program results can be found in the supplemental document, Appendix: Monitoring and Evaluation of Mt. Hood National Forest Stream Habitat Improvement and Rehabilitation Projects: 1987 Annual Report (Forsgren, Heller, and Ober, 1988).« less
18 CFR 415.21 - Class II projects.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Class II projects. 415.21 Section 415.21 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... flooded, would pollute the waters of the basin or threaten damage to off-site areas, including, without...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Bunker Hill Groundwater Basin, Riverside-Corona... Draft Environmental Impact Statement (SDEIR/DEIS) for the proposed Riverside-Corona Feeder (RCF) Project... Bernardino, California 92410 Corona Public Library, 650 South Main Street, Corona, California 92882 Riverside...
BIG SIOUX RIVER DRAINAGE BASIN INFORMATION OUTREACH PROJECT
The main goal of the proposed project is to raise public awareness about the importance of protecting the Big Sioux River drainage basin. To accomplish this goal, the City and its partnering agencies are seeking to expand and improve public accessibility to a wide variety of r...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cathcart, J.D.
1984-01-01
This bibliography includes reports on coal drilling, geophysical logging projects, and related geologic uses, in the Powder River Basin of Montana and Wyoming. Reports on chemical analyses of Powder River Basin coals, coal quality, methane studies, and geotechnical studies are also included, as are EMRIA (Energy Mineral Rehabilitation Inventory and Analysis) reports on resource and potential reclamation of selected study areas in Montana and Wyoming.
NASA Astrophysics Data System (ADS)
Flügel, W.-A.
2011-04-01
The EC-project BRAHMATWINN was carrying out a harmonised integrated water resources management (IWRM) approach as addressed by the European Water Initiative (EWI) in headwater river systems of alpine mountain massifs of the twinning Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basins (UBRB) in Europe and Southeast Asia respectively. Social and natural scientists in cooperation with water law experts and local stakeholders produced the project outcomes presented in Chapter 2 till Chapter 10 of this publication. BRAHMATWINN applied a holistic approach towards IWRM comprising climate modelling, socio-economic and governance analysis and concepts together with methods and integrated tools of applied Geoinformatics. A detailed description of the deliverables produced by the BRAHMATWINN project is published on the project homepage http://www.brahmatwinn.uni-jena.de.
[The Danish Debate on Priority Setting in Medicine--An Update].
Pornak, S C; Raspe, H
2015-09-01
In the last years, the Danish debate about priority setting in medicine has gained new strength. This paper shows the main focuses of the current discussion based on a research of Danish primary literature. For the first time since the 1990s the Danish Council of Ethics has been involved with priority setting in medicine in a project running from 2011 to 2013. The Council emphasises the importance of legitimate processes and calls for visible values and criteria. A focus of the debate is how to deal with new expensive drugs. Politicians, physicians, health economists and the Council of Ethics have called for a national institution for priority setting in medicine. They have mainly looked to the Norwegian National Council for Priority Setting in Health Care and the British National Institute for Health and Care Excellence for inspiration. The Danish Government considered establishing a national institute for priority setting, but the plans were not put into practice. In the year 2012 a new national project was launched to create clinical guidelines. Danish doctors welcome the guidelines as a good basis for priority setting. Just like in earlier Danish priority setting debates, a coordinating institution is lacking to bundle the discussion and keep it going. The debate seems to have come to an end once again. The fact that it was seriously considered to establish an institute for priority setting is a new development. It can be expected that the discussion will be resumed in the near future, possibly the idea of an institute for priority setting will be readopted. The general conditions for priority setting in health care have improved. © Georg Thieme Verlag KG Stuttgart · New York.
Mador, Rebecca L; Kornas, Kathy; Simard, Anne; Haroun, Vinita
2016-03-23
Given the context-specific nature of health research prioritization and the obligation to effectively allocate resources to initiatives that will achieve the greatest impact, evaluation of priority setting processes can refine and strengthen such exercises and their outcomes. However, guidance is needed on evaluation tools that can be applied to research priority setting. This paper describes the adaption and application of a conceptual framework to evaluate a research priority setting exercise operating within the public health sector in Ontario, Canada. The Nine Common Themes of Good Practice checklist, described by Viergever et al. (Health Res Policy Syst 8:36, 2010) was used as the conceptual framework to evaluate the research priority setting process developed for the Locally Driven Collaborative Projects (LDCP) program in Ontario, Canada. Multiple data sources were used to inform the evaluation, including a review of selected priority setting approaches, surveys with priority setting participants, document review, and consultation with the program advisory committee. The evaluation assisted in identifying improvements to six elements of the LDCP priority setting process. The modifications were aimed at improving inclusiveness, information gathering practices, planning for project implementation, and evaluation. In addition, the findings identified that the timing of priority setting activities and level of control over the process were key factors that influenced the ability to effectively implement changes. The findings demonstrate the novel adaptation and application of the 'Nine Common Themes of Good Practice checklist' as a tool for evaluating a research priority setting exercise. The tool can guide the development of evaluation questions and enables the assessment of key constructs related to the design and delivery of a research priority setting process.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-28
...: Reopening of comment period for review of the Pick-Sloan Missouri Basin Program, Eastern and Western... reopening the comment period for the Pick-Sloan Missouri Basin Program, Eastern and Western Division... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Pick-Sloan Missouri Basin Program, Eastern and...
Development of a new model to engage patients and clinicians in setting research priorities.
Pollock, Alex; St George, Bridget; Fenton, Mark; Crowe, Sally; Firkins, Lester
2014-01-01
Equitable involvement of patients and clinicians in setting research and funding priorities is ethically desirable and can improve the quality, relevance and implementation of research. Survey methods used in previous priority setting projects to gather treatment uncertainties may not be sufficient to facilitate responses from patients and their lay carers for some health care topics. We aimed to develop a new model to engage patients and clinicians in setting research priorities relating to life after stroke, and to explore the use of this model within a James Lind Alliance (JLA) priority setting project. We developed a model to facilitate involvement through targeted engagement and assisted involvement (FREE TEA model). We implemented both standard surveys and the FREE TEA model to gather research priorities (treatment uncertainties) from people affected by stroke living in Scotland. We explored and configured the number of treatment uncertainties elicited from different groups by the two approaches. We gathered 516 treatment uncertainties from stroke survivors, carers and health professionals. We achieved approximately equal numbers of contributions; 281 (54%) from stroke survivors/carers; 235 (46%) from health professionals. For stroke survivors and carers, 98 (35%) treatment uncertainties were elicited from the standard survey and 183 (65%) at FREE TEA face-to-face visits. This contrasted with the health professionals for whom 198 (84%) were elicited from the standard survey and only 37 (16%) from FREE TEA visits. The FREE TEA model has implications for future priority setting projects and user-involvement relating to populations of people with complex health needs. Our results imply that reliance on standard surveys may result in poor and unrepresentative involvement of patients, thereby favouring the views of health professionals.
NASA Astrophysics Data System (ADS)
Appleyard, S. J.
1993-08-01
Twelve bores were sunk adjacent to three stormwater infiltration basins in the Perth metropolitan area to examine the impact of runoff from a light industrial area, a medium-density residential area, and a major arterial road on groundwater quality, and to examine the hydrological response of the aquifer to runoff recharge. Automatic and manual water level monitoring between April and November 1990 indicated that groundwater levels responded within minutes to recharge from the infiltration basins. Peak water levels of up to 2.5 m above rest levels occurred 6 24 h after the commencement of ponding in the infiltration basins. There was a marked reduction in salinity and increase in dissolved oxygen concentrations in the upper part of the aquifer downgradient of the infiltration basins. Concentrations of toxic metals, nutrients, pesticides, and phenolic compounds in groundwater near the infiltration basins were low and generally well within Australian drinking water guidelines. However, sediment in the base of an infiltration basin draining a major road contained in excess of 3500 ppm of lead. Phthalates, which are US EPA priority pollutants, were detected in all but one bore near the infiltration basins. Their detection may be a sampling artifact, but they may also be derived from the plastic litter that accumulates in the infiltration basins. The concentration of iron in groundwater near the infiltration basins appears to be controlled by dissolved oxygen concentrations, with high iron concentrations occurring where dissolved oxygen concentrations are low. Pumping bores located near infiltration basins may suffer from iron encrustation problems caused by the mixing of shallow, oxygenated groundwater with water containing higher concentrations of iron from deeper in the aquifer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronson, James P.; Duke, Bill; Loffink, Ken
2008-12-30
In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. Migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival ofmore » migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage and trapping facility design, operation, and criteria. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. Beginning in March of 2007, two work elements from the Walla Walla Fish Passage Operations Project were transferred to other projects. The work element Enumeration of Adult Migration at Nursery Bridge Dam is now conducted under the Walla Walla Basin Natural Production Monitoring and Evaluation Project and the work element Provide Transportation Assistance is conducted under the Umatilla Satellite Facilities Operation and Maintenance Project. Details of these activities can be found in those project's respective annual reports.« less
Kernodle, J.M.
1996-01-01
This report presents the computer input files required to run the three-dimensional ground-water-flow model of the Albuquerque Basin, central New Mexico, documented in Kernodle and others (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.) and revised by Kernodle (Kernodle, J.M., 1998, Simulation of ground-water flow in the Albuquerque Basin, 1901-95, with projections to 2020 (supplement two to U.S. Geological Survey Water-Resources Investigations Report 94-4251): U.S. Geological Survey Open-File Report 96-209, 54 p.). Output files resulting from the computer simulations are included for reference.
NASA Technical Reports Server (NTRS)
Habib, Shahid; Zaitchik, Benjamin; Alo, Clement; Ozdogan, Mutlu; Anderson, Martha; Policelli, Fritz
2011-01-01
The Nile basin River system spans 3 million km(exp 2) distributed over ten nations. The eight upstream riparian nations, Ethiopia, Eretria, Uganda, Rwanda, Burundi, Congo, Tanzania and Kenya are the source of approximately 86% of the water inputs to the Nile, while the two downstream riparian countries Sudan and Egypt, presently rely on the river's flow for most of the their needs. Both climate and agriculture contribute to the complicated nature of Nile River management: precipitation in the headwaters regions of Ethiopia and Lake Victoria is variable on a seasonal and inter-annual basis, while demand for irrigation water in the arid downstream region is consistently high. The Nile is, perhaps, one of the most difficult trans-boundary water issue in the world, and this study would be the first initiative to combine NASA satellite observations with the hydrologic models study the overall water balance in a to comprehensive manner. The cornerstone application of NASA's Earth Science Research Results under this project are the NASA Land Data Assimilation System (LDAS) and the USDA Atmosphere-land Exchange Inverse (ALEXI) model. These two complementary research results are methodologically independent methods for using NASA observations to support water resource analysis in data poor regions. Where an LDAS uses multiple sources of satellite data to inform prognostic simulations of hydrological process, ALEXI diagnoses evapotranspiration and water stress on the basis of thermal infrared satellite imagery. Specifically, this work integrates NASA Land Data Assimilation systems into the water management decision support systems that member countries of the Nile Basin Initiative (NBI) and Regional Center for Mapping of Resources for Development (RCMRD, located in Nairobi, Kenya) use in water resource analysis, agricultural planning, and acute drought response to support sustainable development of Nile Basin water resources. The project is motivated by the recognition that accurate, frequent, and spatially distributed estimates of the water balance are necessary for effective water management. This creates a challenge for watersheds that are large, include data poor regions, and/or span multiple nations. All of these descriptors apply to the Nile River basin, yet successful management of the Nile is critical for development and political stability in the region. For this reason, improved hydrological data to support cooperative water management in the Nile basin is a priority for USAID, the US State Department, the World Bank and other international organizations. In this project, the U.S. based research team is working with partners at RCMRD, Nile Basin Initiative (NBI), and their member national-level agencies to develop satellite-based land cover maps, satellite-derived evapotranspiration estimates (using the ALEXI algorithm), and NASA's Land Data Assimilation System (LDAS) customized to match identified information needs. The cornerstone applied sciences product of the project is the development of a customized "Nile LDAS" that will produce optimal estimates of hydrological states and fluxes, as vetted against the in situ observations of NBI and RCMRD member organizations and independent satellite-derived hydrological estimates. Nile LDAS will be applied to improve the reliability of emerging Decision Support Systems in applications that include drought monitoring, reservoir management, and irrigation planning. The end-users such as RCMRD, NBI, Ethiopian and Kenya Meteorological and Famine Early Warning System Network (FEWSNet) will be the eventual benefactors of this work. There will be a capacity building process involving the above end-user organizations and transfer the models and the results for these organizations to execute for future use. The team has already initiated this study and the early results of first years' work are shown. The plan is to complete this work by late 2013.
NASA Astrophysics Data System (ADS)
Comendant, T.; Strittholt, J. R.; Ward, B. C.; Bachelet, D. M.; Grossman, D.; Stevenson-Molnar, N.; Henifin, K.; Lundin, M.; Marvin, T. S.; Peterman, W. L.; Corrigan, G. N.; O'Connor, K.
2013-12-01
A multi-disciplinary team of scientists, software engineers, and outreach staff at the Conservation Biology Institute launched an open-access, web-based spatial data platform called Data Basin (www.databasin.org) in 2010. Primarily built to support research and environmental resource planning, Data Basin provides the capability for individuals and organizations to explore, create, interpret, and collaborate around their priority topics and geographies. We used a stakeholder analysis to assess the needs of data consumers/produces and help prioritize primary and secondary audiences. Data Basin's simple and user-friendly interface makes mapping and geo-processing tools more accessible to less technical audiences. Input from users is considered in system planning, testing, and implementation. The team continually develops using an agile software development approach, which allows new features, improvements, and bug fixes to be deployed to the live system on a frequent basis. The data import process is handled through administrative approval and Data Basin requires spatial data (biological, physical, and socio-economic) to be well-documented. Outreach and training is used to convey the scope and appropriate use of the scientific information and available resources.
Fishes of the Cusiana River (Meta River basin, Colombia), with an identification key to its species
Urbano-Bonilla, Alexander; Ballen, Gustavo A.; Herrera-R, Guido A.; Jhon Zamudio; Herrera-Collazos, Edgar E.; DoNascimiento, Carlos; Saúl Prada-Pedreros; Maldonado-Ocampo, Javier A.
2018-01-01
Abstract The Cusiana River sub-basin has been identified as a priority conservation area in the Orinoco region in Colombia due to its high species diversity. This study presents an updated checklist and identification key for fishes of the Cusiana River sub-basin. The checklist was assembled through direct examination of specimens deposited in the main Colombian ichthyological collections. A total of 2020 lots from 167 different localities from the Cusiana River sub-basin were examined and ranged from 153 to 2970 m in elevation. The highest number of records were from the piedmont region (1091, 54.0 %), followed by the Llanos (878, 43.5 %) and Andean (51, 2.5 %). 241 species distributed in 9 orders, 40 families, and 158 genera were found. The fish species richness observed (241), represents 77.7 % of the 314 estimated species (95 % CI=276.1–394.8). The use of databases to develop lists of fish species is not entirely reliable; therefore taxonomic verification of specimens in collections is essential. The results will facilitate comparisons with other sub-basins of the Orinoquia, which are not categorized as areas of importance for conservation in Colombia. PMID:29416408
NASA Astrophysics Data System (ADS)
Shrestha, Sangam; Shrestha, Manish; Babel, Mukand S.
2017-04-01
This paper analyzes the climate change impact on water diversion plan of Melamchi Water Supply Project (MWSP) in Nepal. The MWSP is an interbasin water transfer project aimed at diverting water from the Melamchi River of the Indrawati River basin to Kathmandu Valley for drinking water purpose. Future temperature and precipitation of the basin were predicted using the outputs of two regional climate models (RCMs) and two general circulation models (GCMs) under two representative concentration pathway (RCP) scenarios which were then used as inputs to Soil and Water Assessment Tool (SWAT) to predict the water availability and evaluate the water diversion strategies in the future. The average temperature of the basin is projected to increase by 2.35 to 4.25 °C under RCP 4.5 and RCP 8.5, respectively, by 2085s. The average precipitation in the basin is projected to increase by 6-18 % in the future. The annual water availability is projected to increase in the future; however, the variability is observed in monthly water availability in the basin. The water supply and demand scenarios of Kathmandu Valley was also examined by considering the population increase, unaccounted for water and water diversion from MWSP in the future. It is observed that even with the additional supply of water from MWSP and reduction of unaccounted for water, the Kathmandu Valley will be still under water scarcity in the future. The findings of this study can be helpful to formulate water supply and demand management strategies in Kathmandu Valley in the context of climate change in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Robert; Payne, William; Kirksey, Jim
2015-06-01
The Midwest Geological Sequestration Consortium (MGSC) has partnered with Archer Daniels Midland Company (ADM) and Schlumberger Carbon Services to conduct a large-volume, saline reservoir storage project at ADM’s agricultural products processing complex in Decatur, Illinois. The Development Phase project, named the Illinois Basin Decatur Project (IBDP) involves the injection of 1 million tonnes of carbon dioxide (CO 2) into a deep saline formation of the Illinois Basin over a three-year period. This report focuses on objectives, execution, and lessons learned/unanticipated results from the site development (relating specifically to surface equipment), operations, and the site closure plan.
,
2008-01-01
The purpose of the U.S. Geological Survey's (USGS) World Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the world. The U.S. Geological Survey (USGS) completed an assessment of the undiscovered oil and gas potential of the North Cuba Basin. The assessment is based on the geologic elements of the total petroleum system (TPS) defined in the province, including petroleum source rocks (source-rock maturation, generation, and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and petroleum traps (Trap formation and timing). Using this geologic framework, the USGS defined a Jurassic-Cretaceous Total Petroleum System in the North Cuba Basin Province. Within this TPS, three assessment units were defined and assessed for undiscovered oil and gas resources.
[Hygienic evaluation of transboundary pollution of the Ural River basin].
Iskakov, A Zh; Lestsova, N A; Zasorin, B V; Boev, M V
2009-01-01
The anthropogenic pollution of the Ural River and its tributaries is the most important problem of the Ural-Caspian basin. Transboundary inflow from Kazakhstan to Russian is 30.9 km3/year. The border Ilek river pollution was hygienically evaluated and the contribution of pollution sources was ascertained, with the seasonal variations and hydrochemical background being kept in mind, from 2002 to 2007. The monitoring data on the content of priority pollutants of the surface waters of the basin of the Ilek River, a tributary of the Ural River, which come from the Republic of Kazakhstan, are given. Semiquantitative spectral estimation and the atomic absorption method were used to study the chemical composition of bottom sediments in the Ilek River and its tributaries. The magnitude and sources of influence of man-caused pollution on the quality of the river water were established.
Houser, B.B.; Gettings, M.E.; Bultman, M.W.; Gray, Floyd; Caruthers, K.R.; Hirschberg, D.M.
1999-01-01
The Southwest Mineral and Environmental Investigations Project is designed to address issues raised by rapid urban development in the basins of the southwestern U.S. These issues require objective geoscientific data that can be used by land managers and stakeholders to develop informed land and water use strategies. The project integrates new and existing geologic, geophysical, and geochemical data, and imagery to provide three-dimensional visualizations of the basins of southeastern Arizona. Emphasis is on developing better knowledge of the aquifer systems of both the basins and the ranges, on acquiring background and baseline information, and on determining the distribution of metals related to mineralization and the fate of these metals in surface and subsurface environments. The products of the project will be used in resolving issues of water quality and quantity, in understanding environmental impacts such as riparian ecosystem maintenace, and in evaluating mineral resources beneath and within the basins. The field trip highlights three topics and areas (figs. 1 and 2): (1) geology and geophysics of the upper San Pedro and upper Santa Cruz basins (M.E. Gettings, M. W. Bultman, and B.B. Houser), (2) geology, geophysics, and mineral resource potential of the San Rafael basin (M.W. Bultman), and (3) hydrology and aqueous geochemistry of the Red Mountain and Sonoita Creek drainage system (Floyd Gray). The trip guide, which begins and ends in Tucson, Arizona, also includes commentary on the cultural and mining history of the area.
NASA Astrophysics Data System (ADS)
Bongartz, K.; Flügel, W. A.
2003-04-01
In the joint research project “Development of an integrated methodology for the sustainable management of river basins The Saale River Basin example”, coordinated by the Centre of Environmental Research (UFZ), concepts and tools for an integrated management of large river basins are developed and applied for the Saale river basin. The ultimate objective of the project is to contribute to the holistic assessment and benchmarking approaches in water resource planning, as required by the European Water Framework Directive. The study presented here deals (1) with the development of a river basin information and modelling system, (2) with the refinement of a regionalisation approach adapted for integrated basin modelling. The approach combines a user friendly basin disaggregation method preserving the catchment’s physiographic heterogeneity with a process oriented hydrological basin assessment for scale bridging integrated modelling. The well tested regional distribution concept of Response Units (RUs) will be enhanced by landscape metrics and decision support tools for objective, scale independent and problem oriented RU delineation to provide the spatial modelling entities for process oriented and distributed simulation of vertical and lateral hydrological transport processes. On basis of this RUs suitable hydrological modelling approaches will be further developed with strong respect to a more detailed simulation of the lateral surface and subsurface flows as well as the channel flow. This methodical enhancement of the well recognised RU-concept will be applied to the river basin of the Saale (Ac: 23 179 km2) and validated by a nested catchment approach, which allows multi-response-validation and estimation of uncertainties of the modelling results. Integrated modelling of such a complex basin strongly influenced by manifold human activities (reservoirs, agriculture, urban areas and industry) can only be achieved by coupling the various modelling approaches within a well defined model framework system. The latter is interactively linked with a sophisticated geo-relational database (DB) serving all research teams involved in the project. This interactive linkage is a core element comprising an object-oriented, internet-based modelling framework system (MFS) for building interdisciplinary modelling applications and offering different analysis and visualisation tools.
Using Baltimore HIV behavioral surveillance data for local HIV prevention planning.
German, Danielle; Linton, Sabriya; Cassidy-Stewart, Hope; Flynn, Colin
2014-04-01
In response to the National HIV/AIDS Strategy (NHAS) and as part of CDC's Enhanced Comprehensive HIV Prevention Plan (ECHPP) project, Maryland developed a comprehensive local HIV prevention plan for the Baltimore-Towson Metropolitan Statistical Area and identified a series of priority HIV prevention and service goals. The current project sought to: (1) determine how well National HIV Behavioral Surveillance (NHBS) indicators were aligned with NHAS/ECHPP-informed local HIV prevention goals (2) facilitate on-going NHBS data utilization to inform on-going local HIV prevention and service planning, and (3) build a foundation for future NHBS data utilization in local HIV decision-making. Project activities identified key HIV-related indicators in NHBS that are directly or indirectly related to local HIV priorities as informed by NHAS/ECHPP, which can be used for HIV prevention planning in the Baltimore area. Areas for enhancing NHBS and local data collection to further inform HIV prevention priorities are highlighted.
Carlson, Carl S.; Desimone, Leslie A.; Weiskel, Peter K.
2008-01-01
Continued population growth and land development for commercial, industrial, and residential uses have created concerns regarding the future supply of potable water and the quantity of ground water discharging to streams in the area of Interstate 495 in eastern Massachusetts. Two ground-water models developed in 2002-2004 for the Assabet and Upper Charles River Basins were used to simulate water supply and land-use scenarios relevant for the entire Interstate-495 corridor. Future population growth, water demands, and commercial and residential growth were projected for year 2030 by the Metropolitan Area Planning Council. To assess the effects of future development on subbasin streamflows, seven scenarios were simulated by using existing computer-based ground-water-flow models with the data projected for year 2030. The scenarios incorporate three categories of projected 2030 water- and land-use data: (1) 2030 water use, (2) 2030 land use, and (3) a combination of 2030 water use and 2030 land use. Hydrologic, land-use, and water-use data from 1997 through 2001 for the Assabet River Basin study and 1989 through 1998 for the Upper Charles River Basin study were used to represent current conditions - referred to as 'basecase' conditions - in each basin to which each 2030 scenario was compared. The effects of projected 2030 land- and water-use change on streamflows in the Assabet River Basin depended upon the time of year, the hydrologic position of the subbasin in the larger basin, and the relative areas of new commercial and residential development projected for a subbasin. Effects of water use and land use on streamflow were evaluated by comparing average monthly nonstorm streamflow (base flow) for March and September simulated by using the models. The greatest decreases in streamflow (up to 76 percent in one subbasin), compared to the basecase, occurred in September, when streamflows are naturally at their lowest level. By contrast, simulated March streamflows decreased less than 6.5 percent from basecase streamflows in all subbasins for all scenarios. The simulations showed similar effects in the Upper Charles River Basin, but increased water use contributed to decreased simulated streamflow in most subbasins. Simulated changes in March streamflows for 2030 in the Upper Charles River Basin were within +- 6 percent of the basecase for all scenarios and subbasins. Percentage decreases in simulated September streamflows for 2030 were greater than in March but less than the September decreases that resulted for some subbasins in the Assabet River Basin. Only two subbasins of the Upper Charles River Basin had projected decreases greater than 5 percent. In the Mill River subbasin, the decrease was 11 percent, and in the Mine Brook subbasin, 6.6 percent. Changes in water use and wastewater return flow generally were found to have the greatest effect in the summer months when streamflow and aquifer recharge rates are low and water use is high. September increases in main-stem streamflow of both basins were due mainly to increased discharge of treated effluent from wastewater-treatment facilities on the main-stem rivers. In the Assabet River Basin, wastewater-treatment-facility discharge became a smaller proportion of total streamflow with distance downstream. In contrast, wastewater-treatment facility discharge in the Upper Charles River Basin became a greater proportion of streamflow with distance downstream. The effects of sewer-line extension and low-impact development on streamflows in two different subbasins of the Assabet River Basin also were simulated. The result of extending sewer lines with a corresponding decrease in septic-system return flow caused September streamflows to decrease as much as 15 percent in the Fort Pond Brook subbasin. The effect of low-impact development was simulated in the Hop Brook subbasin in areas projected for commercial development. In this simulation, the greater the area where low-i
Identifying priorities for improving rear seat occupant protection.
DOT National Transportation Integrated Search
2009-03-01
This project helped to identify priorities for improving the safety of rear seat occupants through a literature review and NASS-CDS injury analysis. The literature review covers injury patterns of rear seat occupants, new safety technologies intended...
Submittal for 2003 Project of the Year K Basins Fuel Transfer System Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
GERBER, M.S.
2003-01-29
Fluor Hanford, Inc. is pleased to submit the K Basins Fuel Transfer System (FTS) for consideration by the Project Management Institute as Project of the Year for 2003. The FTS involved installing a unique, unproven system in an inhospitable and deteriorating radiological and hazardous environment, under very stringent requirements and within an extremely condensed schedule, just 19 months, from authorization to full operations. The FTS, therefore, is an excellent example of effective project management, and the dynamic involvement of an integrated team representing a broad spectrum of personnel, disciplines, and services. The FTS is an integral and critical part ofmore » a larger project at Hanford -the Spent Nuclear Fuel Project (SNF). The mission of the SNF Project is to relocate used, or spent, nuclear fuel to safe interim storage, permanently dispose of radioactive debris in the K-Basins, and deactivate all related facilities and prepare them for demolition. Today, the FTS is being used to remove highly radioactive nuclear fuel from an aging, and potentially unstable storage in underground pools of water--the K-Basins--and safely transport it to a processing area to be cleaned, dried and sent to safe storage. The role the FTS plays in successfully completing the mission of the SNF Project is concrete evidence of the intrinsic value of project management and a testimonial to the innovation, ingenuity, and teamwork of many--from workers to management and subcontractors, and regulators to stakeholders. It's a true success story and one that will have a happy ending, safely eliminating the risk of potentially contaminating one of Washington state's most valuable natural resources, the Columbia River. This nomination is dedicated to that Project Team.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-02
..., modifications to 4 existing substations, a 345-kV switchyard, maintenance access roads, temporary construction... will address the construction, operation, and maintenance of Basin Electric's proposed Project. The Project includes construction, operation and maintenance of approximately 190 miles of new 345-kV single...
17. VIEW OF SETTLING BASIN, SHOWING FLUME TRACK SPUR CROSSING ...
17. VIEW OF SETTLING BASIN, SHOWING FLUME TRACK SPUR CROSSING OVER SETTLING BASIN, SPARE BENT MATERIAL IN RIGHT-HAND FOREGROUND, BYPASS FLUME, AND SHACK #6 IN BACKGROUND, LOOKING NORTHWEST - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA
Stilling basin design and operation for water quality.
DOT National Transportation Integrated Search
2007-04-30
Many construction projects involve the need to pump turbid water from borrow pits or : other excavations into stilling basins or sediment bags prior to discharge. The design and : operation of these basins needs to be optimized to provide the best wa...
2001-11-01
provides the foundation for implementing stream and river enhancement projects, timber sales, and road building and decommissioning projects. According...monitoring of project results to ensure they are successful. For example, Oregon’s Rogue River Basin Fish Access Team, composed of local stakeholders...across the Rogue River basin. Potential techniques suggested to determine effectiveness include spawning and snorkeling (underwater observation
Metagenomics Analysis of Microorganisms in Freshwater Lakes of the Amazon Basin.
Toyama, Danyelle; Kishi, Luciano Takeshi; Santos-Júnior, Célio Dias; Soares-Costa, Andrea; de Oliveira, Tereza Cristina Souza; de Miranda, Fernando Pellon; Henrique-Silva, Flávio
2016-12-22
The Amazon Basin is the largest hydrographic basin on the planet, and the dynamics of its aquatic microorganisms strongly impact global biogeochemical cycles. However, it remains poorly studied. This metagenome project was performed to obtain a snapshot of prokaryotic microbiota from four important lakes in the Amazon Basin. Copyright © 2016 Toyama et al.
NASA Astrophysics Data System (ADS)
Lin, Jingjing; Ma, Rui; Hu, Yalu; Sun, Ziyong; Wang, Yanxin; McCarter, Colin P. R.
2018-03-01
The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114 × 104 m3/year in 2017 to 11,875 × 104 m3/year in 2021, and to 17,039 × 104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277 × 104 m3/year in 2017 to 1857 × 104 m3/year in 2021, and to 510 × 104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem.
Pholkern, Kewaree; Saraphirom, Phayom; Srisuk, Kriengsak
2018-08-15
The Central Huai Luang Basin is one of the important rice producing areas of Udon Thani Province in Northeastern Thailand. The basin is underlain by the rock salt layers of the Maha Sarakham Formation and is the source of saline groundwater and soil salinity. The regional and local groundwater flow systems are the major mechanisms responsible for spreading saline groundwater and saline soils in this basin. Climate change may have an impact on groundwater recharge, on water table depth and the consequences of waterlogging, and on the distribution of soil salinity in this basin. Six future climate conditions from the SEACAM and CanESM2 models were downscaled to investigate the potential impact of future climate conditions on groundwater quantity and quality in this basin. The potential impact was investigated by using a set of numerical models, namely HELP3 and SEAWAT, to estimate the groundwater recharge and flow and the salt transport of groundwater simulation, respectively. The results revealed that within next 30years (2045), the future average annual temperature is projected to increase by 3.1°C and 2.2°C under SEACAM and CanESM2 models, respectively, while the future precipitation is projected to decrease by 20.85% under SEACAM and increase by 18.35% under the CanESM2. Groundwater recharge is projected to increase under the CanESM2 model and to slightly decrease under the SEACAM model. Moreover, for all future climate conditions, the depths of the groundwater water table are projected to continuously increase. The results showed the impact of climate change on salinity distribution for both the deep and shallow groundwater systems. The salinity distribution areas are projected to increase by about 8.08% and 56.92% in the deep and shallow groundwater systems, respectively. The waterlogging areas are also projected to expand by about 63.65% from the baseline period. Copyright © 2018 Elsevier B.V. All rights reserved.
Butler, D.L.
2001-01-01
Selenium and salinity are water-quality issues in the Upper Colorado River Basin. Certain water bodies in the lower Gunnison River Basin, including the lower Gunnison River and the Uncompahgre River, exceed the State standard for selenium of 5 micrograms per liter. Remediation methods to reduce selenium and salt loading in the lower Gunnison River Basin were examined. A demonstration project in Montrose Arroyo, located in the Uncompahgre River Basin near Montrose, was done during 1998-2000 to determine the effects on selenium and salt loads in Montrose Arroyo from replacing 8.5 miles of open-ditch irrigation laterals with 7.5 miles of pipe. The participants in the project were the National Irrigation Water Quality Program, the Colorado River Basin Salinity Control Program, the Uncompahgre Valley Water Users Association, and the U.S. Geological Survey. The placing of five laterals in pipe significantly decreased selenium loads in Montrose Arroyo. The selenium load at the outflow monitoring site was about 194 pounds per year less (28-percent decrease) in the period after the laterals were placed in pipe. More than 90 percent of the decrease in selenium load was attributed to a decrease in ground-water load. Salt loads also decreased because of the lateral project, but by a smaller percentage than the selenium loads. The salt load at the outflow site on Montrose Arroyo was about 1,980 tons per year less in the post-project period than in the pre-project period. All of the effects of the demonstration project on selenium and salt loads probably were not measured by this study because some of the lateral leakage that was eliminated had not necessarily discharged to Montrose Arroyo upstream from the monitoring sites. A greater decrease in selenium loads relative to salt loads may have been partially the result of decreases in selenium concentrations in ground water in some areas.
NASA Astrophysics Data System (ADS)
Setegn, S. G.; Ortiz, J.; Melendez, J.; Barreto, M.; Torres-Perez, J. L.; Guild, L. S.
2015-12-01
There are limited studies in Puerto Rico that shows the water resources availability and variability with respect to changing climates and land use. The main goal of the HICE-PR (Human Impacts to Coastal Ecosystems in Puerto Rico (HICE-PR): the Río Loco Watershed (southwest coast PR) project which was funded by NASA is to evaluate the impacts of land use/land cover changes on the quality and extent of coastal and marine ecosystems (CMEs) in two priority watersheds in Puerto Rico (Manatí and Guánica).The main objective of this study is to set up a physically based spatially distributed hydrological model, Soil and Water Assessment Tool (SWAT) for the analysis of hydrological processes in the Rio Grande de Manati river basin. SWAT (soil and water assessment tool) is a spatially distributed watershed model developed to predict the impact of land management practices on water, sediment and agricultural chemical yields in large complex watersheds. For efficient use of distributed models for hydrological and scenario analysis, it is important that these models pass through a careful calibration and uncertainty analysis. The model was calibrated and validated using Sequential Uncertainty Fitting (SUFI-2) calibration and uncertainty analysis algorithms. The model evaluation statistics for streamflows prediction shows that there is a good agreement between the measured and simulated flows that was verified by coefficients of determination and Nash Sutcliffe efficiency greater than 0.5. Keywords: Hydrological Modeling; SWAT; SUFI-2; Rio Grande De Manati; Puerto Rico
An IODP proposal to drill the Godzilla Megamullion as a step to Mohole
NASA Astrophysics Data System (ADS)
Ohara, Y.; Michibayashi, K.; Dick, H. J. B.; Snow, J. E.; Ono, S.
2017-12-01
The year 2017 represents the 60th anniversary of the "original" project Mohole, which was coined by Walter Munk in 1957. Although the project Mohole has not yet been realized, the hard-rock community is now striving hard to understand the upper mantle in a variety of ways. Firstly, the present-day project Mohole, M2M (Moho-to-Mantle) project, will move forward in this September, conducting multi-channel seismic profiling off Hawaii as a site survey. Oman Drilling Project has started last December, and the drilled cores are being described aboard D/V Chikyu from July, this year. Furthermore, the forearc M2M proposal to drill the Bonin Trench forearc mantle was submitted to IODP in April 2016. Being a part of these efforts, we are preparing an IODP proposal to drill the Godzilla Megamullion, the largest known oceanic core complex on the Earth, located in the Parece Vela Basin in the Philippine Sea. A significant fraction of the ocean floor is created in backarc basins, while there have been no single long core of backarc basin lower ocean crust, from which to understand the likely differences in magmatic evolution and crustal structure in this key setting. The opportunity to explore the formation of the backarc basin lower crust and upper mantle is, therefore, an important contribution to understanding the ocean basins. At the same time, a better understanding of the architecture of backarc basin lower crust and upper mantle will greatly aid in the interpretation of the results of ophiolite study, since much of our understanding of the architecture of oceanic lower crust and upper mantle comes from ophiolites, most of which are thought to have at least some arc and/or backarc component. The Godzilla Megamullion is unique in its huge size as well as its development in a backarc basin, a rare tectonic window to study backarc basin lithosphere. The Godzilla Megamullion is prepared for full drilling proposal, with complete bathymetric data, multiple bottom samplings, and multi-channel seismic profilings as well as P-wave velocity structures. We will propose substantial riserless drilling at Godzilla Megamullion that will provide an excellent opportunity to understand backarc basin lower crust and upper mantle. In this contribution, we will make use of this opportunity to share the general scheme of the proposal with the community.
Assessing and managing water scarcity within the Nile River Transboundary Basin
NASA Astrophysics Data System (ADS)
Butts, M. B.; Wendi, D.; Jessen, O. Z.; Riegels, N. D.
2012-04-01
The Nile Basin is the main source of water in the North Eastern Region of Africa and is perhaps one of the most critical river basins in Africa as the riparian countries constitute 40% of the population on the continent but only 10% of the area. This resource is under considerable stress with rising levels of water scarcity, high population growth, watershed degradation, and loss of environmental services. The potential impacts of climate change may significantly exacerbate this situation as the water resources in the Nile Basin are critically sensitive to climate change (Conway, Hanson, Doherty, & Persechino, 2007). The motivation for this study is an assessment of climate change impacts and adaptation potential for floods and droughts within the UNEP project "Adapting to climate change induced water stress in the Nile River Basin", supported by SIDA. This project is being carried out as collaboration between DHI, the UK Met Office, and the Nile Basin Initiative (NBI). The Nile Basin exhibits highly diverse climatological and hydrological characteristics. Thus climate change impacts and adaptive capacity must be addressed at both regional and sub-basin scales. While the main focus of the project is the regional scale, sub-basin scale modelling is required to reflect variability within the basin. One of the major challenges in addressing this variability is the scarcity of data. This paper presents an initial screening modelling study of the water balance of the Nile Basin along with estimates of expected future impacts of climate change on the water balance. This initial study is focussed on the Ethiopian Highlands and the Lake Victoria regions, where the impact of climate change on rainfall is important. A robust sub-basin based monthly water balance model is developed and applied to selected sub-basins. The models were developed and calibrated using publicly available data. One of the major challenges in addressing this variability within the basin is the scarcity of spatial data and the results for the Kagera sub-basin show that it is important to represent the spatial distribution of the hydro-geographic characteristics such as rainfall, soil type, etc., in order to develop a reasonable representation of the water balance. These initial results show that the changes in the water balance and flow regime under climate change exhibit large uncertainty. From an examination the flow duration curves, however, there seems to be a consensus, based on an ensemble of climate projections, that flows will increase slightly the short term (2011-2030) and decrease significantly in the long term 2080-2099. The large uncertainties together with the natural variability in the Nile suggest that there is a strong need to maximise adaptive capacity with the region.
The protection of RIVERLIFE by mitigation of flood damages RIVERLIFE
NASA Astrophysics Data System (ADS)
Adler, M. J.
2003-04-01
The long-term development objective of the RIVERLIFE project is to contribute to sustainable human end economic development in the Timis-Bega river basin area as part of the Danube River Basin (DRB), through reinforcing the capacities of Romanian central and local authorities to develop effective mechanisms and tools for integrated river basin management in the Timis-Bega basin. The overall objective of the project is to assist the country in the EU enlargement and accession process to meet the EU requirements of water related Directives with emphasis on the EU Water Framework Directive (WFD). The specific objective of the project is to support the WFD implementation process at the level of a sub-unit within the limits of the DRB, through the development of a River Basin Management Plan (RBMP). The project will also facilitate the implementation of the Danube River Protection Convention (DRPC) as an essential element in the implementation of the Directive in the transboundary river basins. Expected outcomes in the recipient country consist of (i) responding to a real hazard problem, which affects the quality of life of many citizens, and (ii) improvement in the environmental conditions in the targeted areas. Flooding is one of the major natural hazards to human society and an important influence on social and economic development for Romania causing financially greater losses per annum on average than any other natural hazard. One key concept of the WFD is the coordination, organization and regulation of water management at the level of river basins. Therefore, river basin districts are shaped in such a way as to include not only the surface run-off through streams and rivers to the sea, but the total area of land and sea together with the associated groundwater and coastal waters. The concept allows even for the small river basins directly discharging into the sea to be combined into one river basin district. As a principle, the complex decisions on the use or interventions in the aquatic systems within the river basin district limits should take place in an integrated and co-coordinated approach as part of the RBMP. The process includes all RBMP plan development phases for Timis-Bega basin from planning and analysis phases to the assessment and the identification of respective programs of measures intended to achieve the defined environmental objectives for the respective river basin. The central administrative tool of the WFD is the River Basin Management Plan, around which all other elements are set. The river basin becomes the basic unit for all water planning and management interventions according with the physical and hydrological boundaries, but not necessary with its political and administrative limits.
Future Visions of the Brahmaputra - Establishing Hydrologic Baseline and Water Resources Context
NASA Astrophysics Data System (ADS)
Ray, P. A.; Yang, Y. E.; Wi, S.; Brown, C. M.
2013-12-01
The Brahmaputra River Basin (China-India-Bhutan-Bangladesh) is on the verge of a transition from a largely free flowing and highly variable river to a basin of rapid investment and infrastructure development. This work demonstrates a knowledge platform for the basin that compiles available data, and develops hydrologic and water resources system models of the basin. A Variable Infiltration Capacity (VIC) model of the Brahmaputra basin supplies hydrologic information of major tributaries to a water resources system model, which routes runoff generated via the VIC model through water infrastructure, and accounts for water withdrawals for agriculture, hydropower generation, municipal demand, return flows and others human activities. The system model also simulates agricultural production and the economic value of water in its various uses, including municipal, agricultural, and hydropower. Furthermore, the modeling framework incorporates plausible climate change scenarios based on the latest projections of changes to contributing glaciers (upstream), as well as changes to monsoon behavior (downstream). Water resources projects proposed in the Brahmaputra basin are evaluated based on their distribution of benefits and costs in the absence of well-defined water entitlements, and relative to a complex regional water-energy-food nexus. Results of this project will provide a basis for water sharing negotiation among the four countries and inform trans-national water-energy policy making.
Williams, Donald R.; Clark, Mary E.; Brown, Juliane B.
1999-01-01
IntroductionThe Cheat River Basin is in the Allegheny Plateau and Allegheny Mountain Sections of the Appalachian Plateau Physiographic Province (Fenneman, 1946) and is almost entirely within the state of West Virginia. The Cheat River drains an area of 1,422 square miles in Randolph, Tucker, Preston, and Monongalia Counties in West Virginia and Fayette County in Pennsylvania. From its headwaters in Randolph County, W.Va., the Cheat River flows 157 miles north to the Pennsylvania state line, where it enters the Monongahela River. The Cheat River drainage comprises approximately 19 percent of the total Monongahela River Basin. The Cheat River and streams within the Cheat River Basin are characterized by steep gradients, rock channels, and high flow velocities that have created a thriving white-water rafting industry for the area. The headwaters of the Cheat River contain some of the most pristine and aesthetic streams in West Virginia. The attraction to the area, particularly the lower part of the Cheat River Basin (the lower 412 square miles of the basin), has been suppressed because of poor water quality. The economy of the Lower Cheat River Basin has been dominated by coal mining over many decades. As a result, many abandoned deep and surface mines discharge untreated acid mine drainage (AMD), which degrades water quality, into the Cheat River and many of its tributary streams. Approximately 60 regulated mine-related discharges (West Virginia Department of Environmental Protection, 1996) and 185 abandoned mine sites (U.S. Office of Surface Mining, 1998) discharge treated and untreated AMD into the Cheat River and its tributaries.The West Virginia Department of Environmental Protection (WVDEP) Office of Abandoned Mine Lands and Reclamation (AML&R) has recently completed several AMD reclamation projects throughout the Cheat River Basin that have collectively improved the mainstem water quality. The AML&R office is currently involved in acquiring grant funds and designing treatment facilities for several additional AMD sites that adversely affect the Cheat River and its tributaries. To obtain the baseline water-quality information necessary to evaluate instream treatment and alternative methods for remediating AMD and its effects, the U.S. Geological Survey (USGS), in cooperation with the WVDEP, collected stream water samples at 111 sites throughout the Lower Cheat River Basin during low-flow conditions from July 16-18, 1997. The data also will provide information on stream water quality in areas affected by AMD and thus would point to priority areas of focus, such as the sources of the AMD. This report presents the results of analyses of the samples collected in July 1997 and describes a process for ranking of stream water-quality degradation as a guide to water-resource managers considering AMD remediation activities.
Puls, Amy L.; Anlauf Dunn, Kara; Graham Hudson, Bernadette
2014-01-01
The lower Columbia River and its tributaries once supported abundant runs of salmon and steelhead; however, there are five species currently listed under the federal Endangered Species Act (ESA). The National Marine Fisheries Service has completed, and is proposing for adoption, a comprehensive ESA Recovery Plan for the Lower Columbia Evolutionarily Significant Units (ESUs) based on the recovery plans developed by Oregon and Washington. One of the primary factors attributed to the decline of these species is habitat degradation. There are numerous entities conducting status and/or trends monitoring of instream habitat in the lower Columbia River Basin, but because the programs were developed for agency specific reasons, the existing monitoring efforts are not well coordinated, and often lack the spatial coverage, certainty, or species coverage necessary to answer questions related to status and trends of the ESA listed populations. The Pacific Northwest Aquatic Monitoring Partnership’s Integrated Status and Trends Monitoring (ISTM) project was initiated to improve integration of existing and new monitoring efforts by developing recommendations for sampling frames, protocols, and data sharing. In an effort to meet the ISTM project goals, five objectives were identified: (1) identify and prioritize decisions, questions, and monitoring objectives, (2) evaluate how existing programs align with these management decisions, questions, and objectives, (3) identify the most appropriate monitoring design to inform priority management decisions, questions, and objectives, (4) use trade-off analysis to develop specific recommendations for monitoring based on outcomes of Objectives 1-3 and (5) recommend implementation and reporting mechanisms. This report summarizes the effort to address Objectives 1 and 2, detailing the commonalities among the habitat characteristics that all entities measure and monitor, and how the metrics align with the priorities listed in the comprehensive recovery plan for the Lower Columbia ESUs.
Global Conservation Priorities for Marine Turtles
Wallace, Bryan P.; DiMatteo, Andrew D.; Bolten, Alan B.; Chaloupka, Milani Y.; Hutchinson, Brian J.; Abreu-Grobois, F. Alberto; Mortimer, Jeanne A.; Seminoff, Jeffrey A.; Amorocho, Diego; Bjorndal, Karen A.; Bourjea, Jérôme; Bowen, Brian W.; Briseño Dueñas, Raquel; Casale, Paolo; Choudhury, B. C.; Costa, Alice; Dutton, Peter H.; Fallabrino, Alejandro; Finkbeiner, Elena M.; Girard, Alexandre; Girondot, Marc; Hamann, Mark; Hurley, Brendan J.; López-Mendilaharsu, Milagros; Marcovaldi, Maria Angela; Musick, John A.; Nel, Ronel; Pilcher, Nicolas J.; Troëng, Sebastian; Witherington, Blair; Mast, Roderic B.
2011-01-01
Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs), and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts) we developed a “conservation priorities portfolio” system using categories of paired risk and threats scores for all RMUs (n = 58). We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority-setting for widespread, long-lived taxa. PMID:21969858
Walker, John F.; Hay, Lauren E.; Markstrom, Steven L.; Dettinger, Michael D.
2011-01-01
The U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) model was applied to basins in 14 different hydroclimatic regions to determine the sensitivity and variability of the freshwater resources of the United States in the face of current climate-change projections. Rather than attempting to choose a most likely scenario from the results of the Intergovernmental Panel on Climate Change, an ensemble of climate simulations from five models under three emissions scenarios each was used to drive the basin models. Climate-change scenarios were generated for PRMS by modifying historical precipitation and temperature inputs; mean monthly climate change was derived by calculating changes in mean climates from current to various future decades in the ensemble of climate projections. Empirical orthogonal functions (EOFs) were fitted to the PRMS model output driven by the ensemble of climate projections and provided a basis for randomly (but representatively) generating realizations of hydrologic response to future climates. For each realization, the 1.5-yr flood was calculated to represent a flow important for sediment transport and channel geomorphology. The empirical probability density function (pdf) of the 1.5-yr flood was estimated using the results across the realizations for each basin. Of the 14 basins studied, 9 showed clear temporal shifts in the pdfs of the 1.5-yr flood projected into the twenty-first century. In the western United States, where the annual peak discharges are heavily influenced by snowmelt, three basins show at least a 10% increase in the 1.5-yr flood in the twenty-first century; the remaining two basins demonstrate increases in the 1.5-yr flood, but the temporal shifts in the pdfs and the percent changes are not as distinct. Four basins in the eastern Rockies/central United States show at least a 10% decrease in the 1.5-yr flood; the remaining two basins demonstrate decreases in the 1.5-yr flood, but the temporal shifts in the pdfs and the percent changes are not as distinct. Two basins in the eastern United States show at least a 10% decrease in the 1.5-yr flood; the remaining basin shows little or no change in the 1.5-yr flood.
NASA Astrophysics Data System (ADS)
Wei, J.; Wang, G.; Liu, R.
2008-12-01
The Tarim River Basin is the longest inland river in China. Due to water scarcity, ecologically-fragile is becoming a significant constraint to sustainable development in this region. To effectively manage the limited water resources for ecological purposes and for conventional water utilization purposes, a real-time water resources allocation Decision Support System (DSS) has been developed. Based on workflows of the water resources regulations and comprehensive analysis of the efficiency and feasibility of water management strategies, the DSS includes information systems that perform data acquisition, management and visualization, and model systems that perform hydrological forecast, water demand prediction, flow routing simulation and water resources optimization of the hydrological and water utilization process. An optimization and process control strategy is employed to dynamically allocate the water resources among the different stakeholders. The competitive targets and constraints are taken into considered by multi-objective optimization and with different priorities. The DSS of the Tarim River Basin has been developed and been successfully utilized to support the water resources management of the Tarim River Basin since 2005.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-09
... Institute on Disability and Rehabilitation Research (NIDRR)-- Disability and Rehabilitation Research Projects and Centers Program-- Disability and Rehabilitation Research Projects (DRRPs) and Special Projects... Research Projects. General Disability and Rehabilitation Research Projects (DRRP) Requirements priority...
Ranking the Project Management Success Factors for Construction Project in South India
NASA Astrophysics Data System (ADS)
Aneesha, K.; Haridharan, M. K.
2017-07-01
In Today’s construction industry, to achieve a greater advantage over the firms, success of each project and efficiency is required. Effective Project Management overcomes these types of challenges. This study identifies the success factors which are important for project management in construction project success. From the literature review, 26 factors were found to be critical. Project managers, construction managers, civil engineers, contractors and site engineers were the respondents. After analyzing the data in SPSS software, the dominant factors from the regression analysis are top management support, competent project team, abilities to solve problems, realistic cost and time estimates, information/communication, competency of the project manager are the 6 factors out of 12 in 26 factors. Effective communication between stakeholders got highest priority and client involvement, good leadership, clarity of project goals got second priority. Informal communication gives better results compared to formal communications like written formats. To remove communication barrier with the stakeholders, informal communication like speaking face-to-face with the language this fits for the stakeholders.
Climate change adaptation in a highly urbanized snowmelt dominated basin in Central Chile
NASA Astrophysics Data System (ADS)
Vicuna, S.; Bustos, E.; Merino, P.; Henriquez Dole, L. E.; Jansen, S.; Gil, M.; Ocampo, A.; Poblete, D.; Tosoni, D.; Meza, F. J.; Donoso, G.; Melo, O.
2015-12-01
The Maipo river basin holds 40% of Chile's total population and produces almost half of the country's Gross Domestic Product. The basin is located in the semiarid and snowmelt dominated central region of the country and, aside from the typical pressures of growth in developing country basins, the Maipo river basin faces climate change impacts associated with a reduction in total runoff and changes in its seasonality. Surface water is the main water source for human settlements, natural ecosystems, and economic activities including agriculture, mining and hydropower production. In 2012 a research project, called MAPA (Maipo Plan de Adaptacion), began with the objective of articulating a climate variability and climate change adaptation plan for the Maipo river basin. The project engaged at the beginning a group of relevant water and land use stakeholders which allowed for a good representation of critical aspects of an adaptation plan such as the definition of objectives and performance indicators, future land use scenarios, modeling of the different components of the system and design of adaptation strategies. The presentation will highlight the main results of the research project with a special focus on the upper catchments of the basin. These results include the assessment of impacts associated with future climate and land use scenarios on key components of the hydrologic cycle including snowmelt and glacier contribution to runoff and subsequent impacts on water availability for the operation of hydropower facilities, satisfaction of instream (recreation and aquatic ecosystem) uses and provision of water for the city of Santiago (7 million people) and to irrigate more than 100,000 hectares of high value crops. The integrative approach followed in this project including different perspectives on the use of water in the basin provides a good opportunity to test the varying degree of impacts that could be associated with a given future scenario and also understand the challenges and opportunities that exist in the process of designing and implementing adaptation strategies.
Impact of Climate Change on Irrigation and Hydropower Potential: A Case of Upper Blue Nile Basin
NASA Astrophysics Data System (ADS)
Abdella, E. J.; Gosain, A. K.; Khosa, R.
2017-12-01
Due to the growing pressure in water resource and climate change there is great uncertainty in the availability of water for existing as well as proposed irrigation and hydropower projects in the Upper Blue Nile basin (longitude 34oE and 39oE and latitude 7oN and 12oN). This study quantitatively assessed the impact of climate change on the hydrological regime of the basin which intern affect water availability for different use including hydropower and irrigation. Ensemble of four bias corrected regional climate models (RCM) of CORDEX Africa domain and two scenarios (RCP 4.5 and RCP 8.5) were used to determine climate projections for future (2021-2050) period. The outputs from the climate models used to drive the calibrated Soil and Water Assessment Tool (SWAT) hydrologic model to simulate future runoff. The simulated discharge were used as input to a Water Evaluation and Planning (WEAP) water allocation model to determine the implication in hydropower and irrigation potential of the basin. The WEAP model was setup to simulate three scenarios which includes Current, Medium-term (by 2025) and Long-term (by 2050) Development scenario. The projected mean annual temperature of the basin are warmer than the baseline (1982 - 2005) average in the range of 1 to 1.4oC. Projected mean annual precipitation varies across the basin in the range of - 3% to 7%, much of the expected increase is in the highland region of the basin. The water use simulation indicate that the current annual average irrigation water demand in the basin is 1.29Bm3y-1 with 100% coverage. By 2025 and 2050, with the development of new schemes and changing climate, water demand for irrigation is estimated to increase by 2.5 Bm3y-1 and 3.4 Bm3y-1 with 99 % and 96% coverage respectively. Simulation for domestic water demand coverage for all scenarios shows that there will be 100% coverage for the two major cities in the basin. The hydropower generation simulation indicate that 98% of hydroelectricity potential could be produced if all planed dams are constructed. The results in this study demonstrate the general idea of future water availability for different purpose in the basin, but uncertainties still exist in the projected future climate and simulated runoff. Optimal operation of existing and proposed reservoirs is also crucial in the context of climate change.
Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal.
Bajracharya, Ajay Ratna; Bajracharya, Sagar Ratna; Shrestha, Arun Bhakta; Maharjan, Sudan Bikash
2018-06-01
The Hindu Kush-Himalayan region is an important global freshwater resource. The hydrological regime of the region is vulnerable to climatic variations, especially precipitation and temperature. In our study, we modelled the impact of climate change on the water balance and hydrological regime of the snow dominated Kaligandaki Basin. The Soil and Water Assessment Tool (SWAT) was used for a future projection of changes in the hydrological regime of the Kaligandaki basin based on Representative Concentration Pathways Scenarios (RCP 4.5 and RCP 8.5) of ensemble downscaled Coupled Model Intercomparison Project's (CMIP5) General Circulation Model (GCM) outputs. It is predicted to be a rise in the average annual temperature of over 4°C, and an increase in the average annual precipitation of over 26% by the end of the 21st century under RCP 8.5 scenario. Modeling results show these will lead to significant changes in the basin's water balance and hydrological regime. In particular, a 50% increase in discharge is expected at the outlet of the basin. Snowmelt contribution will largely be affected by climate change, and it is projected to increase by 90% by 2090.Water availability in the basin is not likely to decrease during the 21st century. The study demonstrates that the important water balance components of snowmelt, evapotranspiration, and water yield at higher elevations in the upper and middle sub-basins of the Kaligandaki Basin will be most affected by the increasing temperatures and precipitation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Great Basin Native Plant Selection and Increase Project: FY2010 Progress Report
Nancy Shaw; Mike Pellant
2011-01-01
The Interagency Native Plant Materials Development Program outlined in the 2002 Report to Congress (USDI and USDA 2002), USDI Bureau of Land Management programs and policies, and the Great Basin Restoration Initiative encourage the use of native species for rangeland rehabilitation and restoration where feasible. This project was initiated to foster the development of...
Great Basin Native Plant Selection and Increase Project FY08 Progress Report
Nancy Shaw; Mike Pellant
2009-01-01
The Interagency Native Plant Materials Development Program (USDI and USDA 2002), USDI Bureau of Land Management programs and policies, and the Great Basin Restoration Initiative encourage the use of native species for rangeland rehabilitation and restoration where feasible. This project was initiated to foster the development of native plant materials for use in the...
Great Basin Native Plant Selection and Increase Project: 2011 Progress Report
Nancy Shaw; Mike Pellant
2012-01-01
The Interagency native Plant Materials Development Program outlined in the 2002 Report to Congress (USDI and USDA 2002), USDI Bureau of Land Management programs and policies, and the Great Basin Restoration Initiative encourage the use of native species for rangeland rehabilitation and restoration where feasible. This project was initiated to foster the development of...
We tested two methods for dataset generation and model construction, and three tree-classifier variants to identify the most parsimonious and thematically accurate mapping methodology for the SW ReGAP project. Competing methodologies were tested in the East Great Basin mapping un...
Status of the interior Columbia Basin: summary of scientific findings.
Forest Service. U.S. Department of Agriculture
1996-01-01
The Status of the Interior Columbia Basin is a summary of the scientific findings from the Interior Columbia Basin Ecosystem Management Project. The Interior Columbia Basin includes some 145 million acres within the northwestern United Stales. Over 75 million acres of this area are managed by the USDA Forest Service or the USDI Bureau of Land Management. A framework...
Stilling basin design and operation for water quality : field testing, final report.
DOT National Transportation Integrated Search
2008-06-15
Many construction projects involve the need to pump turbid water from borrow pits or other excavations into stilling : basins or sediment bags prior to discharge. The design and operation of these basins needs to be optimized to : provide the best wa...
U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2015 annual report
Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bartos, Timothy T.; Chalfoun, Anna D.; Chong, Geneva W.; Dematatis, Marie K.; Eddy-Miller, Cheryl; Garman, Steven L.; Germaine, Stephen S.; Homer, Collin G.; Kauffman, Matthew J.; Huber, Christopher C.; Manier, Daniel J.; Melcher, Cynthia P.; Miller, Kirk A.; Norkin, Tamar; Sanders, Lindsey E.; Walters, Annika W.; Wilson, Anna B.; Wyckoff, Teal B.
2016-09-28
This is the eighth annual report highlighting U.S. Geological Survey (USGS) science and decision-support activities conducted for the Wyoming Landscape Conservation Initiative (WLCI). The activities address specific management needs identified by WLCI partner agencies. In 2015, USGS scientists continued 24 WLCI projects in 5 categories: (1) acquiring and analyzing resource-condition data to form a foundation for understanding and monitoring landscape conditions and projecting changes; (2) using new technologies to improve the scope and accuracy of landscape-scale monitoring and assessments, and applying them to monitor indicators of ecosystem conditions and the effectiveness of on-the-ground habitat projects; (3) conducting research to elucidate the mechanisms that drive wildlife and habitat responses to changing land uses; (4) managing and making accessible the large number of databases, maps, and other products being developed; and (5) coordinating efforts among WLCI partners, helping them to use USGS-developed decision-support tools, and integrating WLCI outcomes with future habitat enhancement and research projects. Of the 24 projects, 21 were ongoing, including those that entered new phases or more in-depth lines of inquiry, 2 were new, and 1 was completed.A highlight of 2015 was the WLCI science conference sponsored by the USGS, Bureau of Land Management, and National Park Service in coordination with the Wyoming chapter of The Wildlife Society. Of 260 participants, 41 were USGS professionals representing 13 USGS science centers, field offices, and Cooperative Wildlife Research Units. Major themes of USGS presentations included using new technologies for developing more efficient research protocols for modeling and monitoring natural resources, researching effects of energy development and other land uses on wildlife species and habitats of concern, and modeling species distributions, population trends, habitat use, and effects of land-use changes. There was also a special session on the effectiveness of Wyoming’s Sage-Grouse Executive Order. Combined, USGS presentations provided WLCI partners with a wealth of information and conservation tools.The project completed in 2015 yielded an index of important agricultural lands in the WLCI region. The index improves upon existing measures of agricultural productivity and provides planners and managers with additional values to consider when making decisions about land use and conservation actions. The two new projects include an analysis of satellite imagery to quantify sagebrush productivity and mortality, and an evaluation of how groundwater and small streams interact in the upper Green River Basin. Initiated in response to concern among WLCI partners that large areas of sagebrush appear to have died recently, the sagebrush study objectives are to assess effects of these mortality events on overall sagebrush ecosystem productivity, evaluate the feasibility of using satellite imagery to detect patterns in sagebrush mortality over time, and identify factors driving these mortality events. The groundwater-streamflow interaction study is being conducted by hydrologists and fish ecologists to better understand how groundwater-streamflow interactions are affected by energy-resource development and how native fish communities are affected by these factors. Expected outcomes of both new projects will provide WLCI partners with additional information and decision-support tools.Highlights of ongoing science foundation activities included simulations of nine alternative build-out scenarios for oil and gas development and an associated online fact sheet that explains how the simulations were conducted, with an applied example for the Atlantic Rim. Also completed in 2015 was an update of the USGS online inventory of mineral resources data, and publication of a USGS uranium resource survey for the WLCI region. Combined, the outcomes of this work provide decisionmakers and managers with important baseline information for existing and (or) future planning and monitoring efforts.Terrestrial monitoring activities in 2015 emphasized the use of satellite data in combination with other technologies and field data to monitor, assess, and (or) forecast distribution patterns and (or) trends in sagebrush ecosystems, seasonal and migration stopover habitats used by mule deer and elk, and semi-arid aspen woodlands. Several professional papers detailing new monitoring models and results have been published. Combined, this and related work will help managers understand distribution patterns and trends among priority habitats, identify areas in need of restoration or conservation, and monitor the effectiveness of habitat-management actions.Aquatic monitoring activities entailed not only the new groundwater-streamflow interaction study already mentioned, but also continued monitoring with streamgages paired with nearby wells in the Green River Basin to assess groundwater effects on streamflow and surface water temperatures. A map that portrays groundwater levels and general direction of flow in the Green River Basin was published as well. Overall, outcomes of USGS hydrological research and monitoring will inform WLCI partners about water resources in the WLCI region and help to explain fish-community responses to energy-resource development.In 2015, USGS terrestrial wildlife ecologists continued to make crucial strides towards better understanding wildlife species responses to energy-resource development and other land-use changes. This body of research includes six taxa that require or heavily depend on sagebrush habitats: sage-grouse, pygmy rabbits, 3 songbird species, and mule deer. Native fish communities are also being evaluated. Approaches include modeling and mapping wildlife species distributions, abundances, and trends; using satellite and other technologies to track wildlife seasonal movements; conducting successive phases of research that build on the knowledge gained through prior phases to reveal the specific factors or thresholds that drive population- or individual-level responses to changes; and conducting population viability analyses. Additionally, wildlife habitat association models for pygmy rabbit and sage-grouse were combined with the oil and gas build-out scenarios to project species responses to alternative energy development scenarios. Outcomes of the wildlife response research are helping decisionmakers and managers identify specific factors that contribute to species population trends, the potential for spatial overlap between important wildlife habitats and proposed energy-resource development, locations of priority habitats for restoration and conservation, and more.Data and WLCI Web site management highlights of 2015 included not only ongoing software upgrades, but also an update of the datasets displayed in two of the online products developed for the WLCI effort: (1) a map of 15,532 oil and natural gas well pad scars and other features associated with oil and gas extraction, and (2) a map of oil and gas, oil shale, uranium, and solar energy production, both for southwestern Wyoming. In addition, a map viewer was developed for a previously published map of coal and wind production in relation to sage-grouse distribution and core management areas in southwestern Wyoming. Combined, these maps place valuable decision-support tools in the hands of WLCI partners.The USGS coordination efforts on behalf of the WLCI in 2015 included significant work on planning and executing the WLCI science conference. They also included ongoing efforts to support Local Project Development Teams and the WLCI Coordination Team (CT) with developing conservation priorities and strategies, identifying priority areas for future conservation actions, supporting the evaluation and ranking of conservation projects, and evaluating the ways in which proposed habitat projects relate to WLCI priorities. In 2015, the USGS also assisted the WLCI CT with updating the WLCI Conservation Action Plan.
Resource allocation in road infrastructure using ANP priorities with ZOGP formulation-A case study
NASA Astrophysics Data System (ADS)
Alias, Suriana; Adna, Norfarziah; Soid, Siti Khuzaimah; Kardri, Mahani
2013-09-01
Road Infrastructure (RI) project evaluation and selection is concern with the allocation of scarce organizational resources. In this paper, it is suggest an improved RI project selection methodology which reflects interdependencies among evaluation criteria and candidate projects. Fuzzy Delphi Method (FDM) is use to evoking expert group opinion and also to determine a degree of interdependences relationship between the alternative projects. In order to provide a systematic approach to set priorities among multi-criteria and trade-off among objectives, Analytic Network Process (ANP) is suggested to be applied prior to Zero-One Goal Programming (ZOGP) formulation. Specifically, this paper demonstrated how to combined FDM and ANP with ZOGP through a real-world RI empirical example on an ongoing decision-making project in Johor, Malaysia.
Crop Expansion and Conservation Priorities in Tropical Countries
Phalan, Ben; Bertzky, Monika; Butchart, Stuart H. M.; Donald, Paul F.; Scharlemann, Jörn P. W.; Stattersfield, Alison J.; Balmford, Andrew
2013-01-01
Expansion of cropland in tropical countries is one of the principal causes of biodiversity loss, and threatens to undermine progress towards meeting the Aichi Biodiversity Targets. To understand this threat better, we analysed data on crop distribution and expansion in 128 tropical countries, assessed changes in area of the main crops and mapped overlaps between conservation priorities and cultivation potential. Rice was the single crop grown over the largest area, especially in tropical forest biomes. Cropland in tropical countries expanded by c. 48,000 km2 per year from 1999–2008. The countries which added the greatest area of new cropland were Nigeria, Indonesia, Ethiopia, Sudan and Brazil. Soybeans and maize are the crops which expanded most in absolute area. Other crops with large increases included rice, sorghum, oil palm, beans, sugar cane, cow peas, wheat and cassava. Areas of high cultivation potential—while bearing in mind that political and socio-economic conditions can be as influential as biophysical ones—may be vulnerable to conversion in the future. These include some priority areas for biodiversity conservation in tropical countries (e.g., Frontier Forests and High Biodiversity Wilderness Areas), which have previously been identified as having ‘low vulnerability’, in particular in central Africa and northern Australia. There are also many other smaller areas which are important for biodiversity and which have high cultivation potential (e.g., in the fringes of the Amazon basin, in the Paraguayan Chaco, and in the savanna woodlands of the Sahel and East Africa). We highlight the urgent need for more effective sustainability standards and policies addressing both production and consumption of tropical commodities, including robust land-use planning in agricultural frontiers, establishment of new protected areas or REDD+ projects in places agriculture has not yet reached, and reduction or elimination of incentives for land-demanding bioenergy feedstocks. PMID:23326316
Hanford Spent Nuclear Fuel Project recommended path forward
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, J.C.
The Spent Nuclear Fuel Project (the Project), in conjunction with the U.S. Department of Energy-commissioned Independent Technical Assessment (ITA) team, has developed engineered alternatives for expedited removal of spent nuclear fuel, including sludge, from the K Basins at Hanford. These alternatives, along with a foreign processing alternative offered by British Nuclear Fuels Limited (BNFL), were extensively reviewed and evaluated. Based on these evaluations, a Westinghouse Hanford Company (WHC) Recommended Path Forward for K Basins spent nuclear fuel has been developed and is presented in Volume I of this document. The recommendation constitutes an aggressive series of projects to construct andmore » operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. The overall processing and storage scheme is based on the ITA team`s proposed passivation and vault storage process. A dual purpose staging and vault storage facility provides an innovative feature which allows accelerated removal of fuel and sludge from the basins and minimizes programmatic risks beyond any of the originally proposed alternatives. The projects fit within a regulatory and National Environmental Policy Act (NEPA) overlay which mandates a two-phased approach to construction and operation of the needed facilities. The two-phase strategy packages and moves K Basins fuel and sludge to a newly constructed Staging and Storage Facility by the year 2000 where it is staged for processing. When an adjoining facility is constructed, the fuel is cycled through a stabilization process and returned to the Staging and Storage Facility for dry interim (40-year) storage. The estimated total expenditure for this Recommended Path Forward, including necessary new construction, operations, and deactivation of Project facilities through 2012, is approximately $1,150 million (unescalated).« less
Water reuse in the Apatlaco River Basin (México): a feasibility study.
Moeller-Chávez, G; Seguí-Amórtegui, L; Alfranca-Burriel, O; Escalante-Estrada, V; Pozo-Román, F; Rivas-Hernández, A
2004-01-01
The aim of this work is to determine the technical and economic feasibility of implementing different reclamation and reuse projects that improve the quality of the Apatlaco river basin located in the central part of Mexico. A special methodology based on a decision support system was developed. This methodology allows to decide if it is convenient or not to finance a reclamation or reuse project for the most common water uses in the basin. This methodology is based on the net present value criteria (NPV) of the effective cash flow during the useful life of the project. The results obtained reveal a technical and economical feasibility for industrial reuse in Jiutepec and for agricultural reuse in Zacatepec and Emiliano Zapata. On the other hand, sanitation projects are not feasible in all cases analyzed. Therefore, Mexican Regulation (Ley Federal de Derechos en Materia de Agua) as currently implemented, does not promote and support this kind of projects.
NASA Astrophysics Data System (ADS)
Carroll, R. W. H.; Pohll, G.; Benedict, J.; Felling, R.
2016-12-01
Many arid and semi-arid agricultural systems of the Great Basin in the western United States depend on supplemental groundwater pumping to augment diminished surface water flows during periods of drought. As droughts become longer and more severe in the region, unprecedented drawdown in these aquifer systems has occurred with legal and environmental implications on both surface and groundwater. The Walker River in the Great Basin supports extensive agriculture in the region and is the sole perennial stream to one of the few desert terminal lakes in North America. Continuous declines in the lake have spurred extensive research into management options to balance demands of agriculture and increase water deliveries to the lake. Smith and Mason Valleys are important agricultural centers within the Walker Basin. In 2015 the region entered its fifth year of drought and both valleys were the focus of curtailment orders to restrict the use of supplemental groundwater rights. To aid management decisions, hydrologic models were developed that simulate complex feedbacks between surface diversions, crop consumptive needs, groundwater recharge, return flow, and groundwater-surface water interactions. Demand-driven pumping that incorporates priority dates and maximum duty allocations are directly input to the hydrologic model to allow an assessment of groundwater curtailment options under a variety of drought scenarios to meet targeted water levels and downstream conveyance of surface water in a legally defensible framework. Hydrologic results using a sliding scale approach to priority based curtailment are presented in the arena of stakeholder participation and response.
NASA Astrophysics Data System (ADS)
Pool, Thomas K.; Strecker, Angela L.; Olden, Julian D.
2013-03-01
A commonly overlooked aspect of conservation planning assessments is that wildlife managers are increasingly focused on habitats that contain non-native species. We examine this management challenge in the Gila River basin (150,730 km2), and present a new planning strategy for fish conservation. By applying a hierarchical prioritization algorithm to >850,000 fish records in 27,181 sub-watersheds we first identified high priority areas (PAs) termed "preservation PAs" with high native fish richness and low non-native richness; these represent traditional conservation targets. Second, we identified "restoration PAs" with high native fish richness that also contained high numbers of non-native species; these represent less traditional conservation targets. The top 10 % of preservation and restoration PAs contained common native species (e.g., Catostomus clarkii, desert sucker; Catostomus insignis, Sonora sucker) in addition to native species with limited distributions (i.e., Xyrauchen texanus, razorback sucker; Oncorhynchus gilae apache, Apache trout). The top preservation and restoration PAs overlapped by 42 %, indicating areas with high native fish richness range from minimally to highly invaded. Areas exclusively identified as restoration PAs also encompassed a greater percentage of native species ranges than would be expected by the random addition of an equivalent basin area. Restoration PAs identified an additional 19.0 and 26.6 % of the total ranges of two federally endangered species— Meda fulgida (spikedace) and Gila intermedia (Gila chub), respectively, compared to top preservation PAs alone—despite adding only 5.8 % of basin area. We contend that in addition to preservation PAs, restoration PAs are well suited for complementary management activities benefiting native fishes.
Project #OPE-FY13-0018, July 30, 2013. The Office of Inspector General conducted preliminary research to evaluate proposed Superfund sites on the U.S. Environmental Protection Agency’s National Priorities List.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeckel, D.R.
A practical, objective guide for ranking projects based on risk-based priorities has been developed by Sun Pipe Line Co. The deliberately simple system guides decisions on how to allocate scarce company resources because all managers employ the same criteria in weighing potential risks to the company versus benefits. Managers at all levels are continuously having to comply with an ever growing amount of legislative and regulatory requirements while at the same time trying to run their businesses effectively. The system primarily is designed for use as a compliance oversight and tracking process to document, categorize, and follow-up on work concerningmore » various issues or projects. That is, the system consists of an electronic database which is updated periodically, and is used by various levels of management to monitor progress of health, safety, environmental and compliance-related projects. Criteria used in determining a risk factor and assigning a priority also have been adapted and found useful for evaluating other types of projects. The process enables management to better define potential risks and/or loss of benefits that are being accepted when a project is rejected from an immediate work plan or budget. In times of financial austerity, it is extremely important that the right decisions are made at the right time.« less
2014-06-05
The Assistant Secretary for Special Education and Rehabilitative Services announces a priority for the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). Specifically, we announce a priority for a Rehabilitation Engineering Research Center (RERC) on Technologies to Enhance Independence in Daily Living for Adults with Cognitive Impairments. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. We take this action to focus research attention on an area of national need. We intend the priority to contribute to improved outcomes related to independence in daily activities in the home, community, or workplace setting for adults with cognitive impairments.
2014-07-09
The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). Specifically, we announce a priority for a Rehabilitation Engineering Research Center (RERC) on Improving the Accessibility, Usability, and Performance of Technology for Individuals who are Deaf or Hard of Hearing. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. We take this action to focus research attention on an area of national need. We intend the priority to contribute to improving the accessibility, usability, and performance of technology for individuals who are deaf or hard of hearing.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-19
...Because of the high level of public interest in projects within the Delaware Basin that are associated with natural gas drilling activities, the Delaware River Basin Commission (DRBC or ``Commission'') will hold a special public hearing on two projects sponsored by the Stone Energy Corporation (hereinafter, ``Stone Energy'') to support natural gas exploration and development activities within the basin. One of the two projects entails a surface water withdrawal from the West Branch Lackawaxen River in Mount Pleasant Township, Pennsylvania (Docket No. D-2009-13-1). The other concerns an existing natural gas well drilling pad site in Clinton Township, Pennsylvania (Docket No. D-2009-18-1). Both projects are located in Wayne County, Pennsylvania, within the drainage area of a portion of the main stem Delaware River that the Commission has classified as Special Protection Waters.
Modeled streamflow metrics on small, ungaged stream reaches in the Upper Colorado River Basin
Reynolds, Lindsay V.; Shafroth, Patrick B.
2016-01-20
Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow metrics and environmental variables. Flow metrics were then projected to ungaged reaches in the Upper Colorado River Basin using environmental variables for each stream, represented as raster cells, in the basin. Last, the projected random forest models of minimum flow coefficient of variation and specific mean daily flow were used to highlight streams that had greater than 61.84 percent minimum flow coefficient of variation and less than 0.096 specific mean daily flow and suggested that these streams will be most threatened to shift to intermittent flow regimes under drier climate conditions. Map projection products can help scientists, land managers, and policymakers understand current hydrology in the Upper Colorado River Basin and make informed decisions regarding water resources. With knowledge of which streams are likely to undergo significant drying in the future, managers and scientists can plan for stream-dependent ecosystems and human water users.
Can the global carbon budget be balanced?
Markewich, Helaine W.; Bliss, Norman B.; Stallard, Robert F.; Sundquist, Eric T.
1997-01-01
The Mississippi Basin Carbon Project of the U.S. Geological Survey (USGS) is an effort to examine interactions between the global carbon cycle and human-induced changes to the land surface, such as farming and urbanization. Investigations in the Mississippi River basin will provide the data needed for calculating the global significance of land-use changes on land-based carbon cycling. These data are essential for predicting and mitigating the effects of global environmental change.The Mississippi Basin Carbon Project is focused on the third largest river system in the world. The Mississippi River and its tributaries drain more than 40% of the conterminous United States. The basin includes areas that typify vast regions of the Earth's surface that have undergone human development.
Paleozoic shale gas resources in the Sichuan Basin, China
Potter, Christopher J.
2018-01-01
The Sichuan Basin, China, is commonly considered to contain the world’s most abundant shale gas resources. Although its Paleozoic marine shales share many basic characteristics with successful United States gas shales, numerous geologic uncertainties exist, and Sichuan Basin shale gas production is nascent. Gas retention was likely compromised by the age of the shale reservoirs, multiple uplifts and orogenies, and migration pathways along unconformities. High thermal maturities raise questions about gas storage potential in lower Paleozoic shales. Given these uncertainties, a new look at Sichuan Basin shale gas resources is advantageous. As part of a systematic effort to quantitatively assess continuous oil and gas resources in priority basins worldwide, the US Geological Survey (USGS) completed an assessment of Paleozoic shale gas in the Sichuan Basin in 2015. Three organic-rich marine Paleozoic shale intervals meet the USGS geologic criteria for quantitative assessment of shale gas resources: the lower Cambrian Qiongzhusi Formation, the uppermost Ordovician Wufeng through lowermost Silurian Longmaxi Formations (currently producing shale gas), and the upper Permian Longtan and Dalong Formations. This study defined geologically based assessment units and calculated probabilistic distributions of technically recoverable shale gas resources using the USGS well productivity–based method. For six assessment units evaluated in 2015, the USGS estimated a mean value of 23.9 tcf (677 billion cubic meters) of undiscovered, technically recoverable shale gas. This result is considerably lower than volumes calculated in previous shale gas assessments of the Sichuan Basin, highlighting a need for caution in this geologically challenging setting.
STREAM FLOW BASIN CHARACTERISTICS FOR THE MID-ATLANTIC INTEGRATED ASSESSMENT (MAIA) STUDY AREA
This data set is a GIS coverage of the stream flow basin characteristics for drainage basins of selected US Geological Survey (USGS) gauging stations the United States Environmental Protection Agency (USEPA) Mid-Atlantic Integrated Assessment (MAIA) Project region. This data se...
Mallory, Michael J.; Swain, Lindsay A.; Tyley, Stephen J.
1980-01-01
This report presents a preliminary evaluation of the geohydrologic factors affecting storage of water by artificial recharge in the upper Coachella Valley, Calif. The ground-water basin of the upper Coachella Valley seems to be geologically suitable for large-scale artificial recharge. A minimum of 900 ,000 acre-feet of water could probably be stored in the basin without raising basinwide water levels above those that existed in 1945. Preliminary tests indicate that a long-term artificial recharge rate of 5 feet per day may be feasible for spreading grounds in the basin if such factors as sediment and bacterial clogging can be controlled. The California Department of Water Resources, through the Future Water Supply Program, is investigating the use of ground-water basins for storage of State Water Project water in order to help meet maximum annual entitlements to water project contractors. (USGS)
The First 75 Years: History of Hydraulics Engineering at the Waterways Experiment Station
2004-01-01
Report, 10-12. Gilsonite is a variety of asphalt that occurs in the Uinta Basin of northeastern Utah. Haydite is an expanded shale or clay...River Fish Mitigation: Gas Abatement." 76. John George i11terview. 77. "SCT Completes Mainstem Project Ranking," Columbia Basin Bulletin: Weekly...view of the Mississippi Basin Model looking toward the Gulf of Mexico. (Ohio River Basin in lower right foreground; Atchafalaya Basin in extreme
Priority-pollutant trace elements in streambed sediments of the Cook Inlet basin, Alaska, 1998-2000
Frenzel, Steven A.
2002-01-01
Trace element concentrations in 48 streambed sediment samples collected at 47 sites in the Cook Inlet Basin, Alaska, were compared to concentrations from studies in the conterminous United States using identical methods and to Probable Effect Concentrations. Concentrations of arsenic, chromium, mercury, and nickel in the 0.063-mm size fraction of streambed sediments from the Cook Inlet Basin were elevated relative to reference sites in the conterminous United States. Concentrations of cadmium, lead, and zinc were highest at the most urbanized site in Anchorage and at two sites downstream from an ore body in Lake Clark National Park and Preserve. At least 35 percent of the 48 samples collected in the Cook Inlet Basin exceeded the Probable Effect Concentration for arsenic, chromium, or nickel. More than 50 percent of the samples were considered to have low potential toxicity for cadmium, lead, mercury, nickel, selenium, and zinc. A Probable Effect Concentration quotient that reflects the combined toxicity of arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc was exceeded in 44 percent of the samples from the Cook Inlet Basin. The potential toxicity was high in the Denali and Lake Clark National Parks and Preserves where organic carbon concentrations in streambed sediments were low. However, potential toxicity results should be considered in context with the very small amounts of fine-grained sediment present in the streambed sediments of the Cook Inlet Basin.
Water scarcity in Beijing and countermeasures to solve the problem at river basins scale
NASA Astrophysics Data System (ADS)
Wang, Lixia; Gao, Jixi; Zou, Changxin; Wang, Yan; Lin, Naifeng
2017-11-01
Beijing has been subject to water scarcity in recent decades. Over-exploitation of water resources reduced water availability, and water-saving measures were not enough to mitigate the water scarcity. To address this problem, water transfer projects across river basins are being built. This paper assessed water scarcity in Beijing and the feasibility of solving the problem at river basins scale. The results indicate that there was an average annual water deficit of 13×108 m3 y-1 in Beijing, which totaled 208.9 ×108 m3 for 1998-2014, despite the adoption of various measures to alleviate water scarcity. Three of the adjacent four sub-river basins suffered a serious water deficit from 1998-2014. It was therefore impossible to transfer enough water from the adjacent river basins to mitigate the water scarcity in Beijing. However, the annual water deficit will be eliminated after the comprehensive operation of the world’s largest water transfer project (the South-to-North Water Transfer Project, SNWTP) in 2020, but it will take approximately 200 years before Beijing’s water resources are restored to the 1998 levels.
NASA Astrophysics Data System (ADS)
van Sickle, J.; Baker, J.; Herlihy, A.
2005-05-01
We built multiple regression models for Emphemeroptera/ Plecoptera/ Tricoptera (EPT) taxon richness and other indicators of biological condition in streams of the Willamette River Basin, Oregon, USA. The models were used to project the changes in condition that would be expected in all 2-4th order streams of the 30000 sq km basin under alternative scenarios of future land use. In formulating the models, we invoked the theory of limiting factors to express the interactive effects of stream power and watershed land use on EPT richness. The resulting models were parsimonious, and they fit the data in our wedge-shaped scatterplots slightly better than did a naive additive-effects model. Just as theory helped formulate our regression models, the models in turn helped us identify a new research need for the Basin's streams. Our future scenarios project that conversions of agricultural to urban uses may dominate landscape dynamics in the basin over the next 50 years. But our models could not detect any difference between the effects of agricultural and urban development in watersheds on stream biota. This result points to an increased need for understanding how agricultural and urban land uses in the Basin differentially influence stream ecosystems.
1982-06-01
interested citizens. An impact assessment has been performed to determine both short and long range effects of project implementation. A system of accounts...of the flood problem in the Belmont Park area of Warwick is essential to the formulation of an effective water resources project. This section of the...the moderating effect of Narragansett Bay. Basin Description The Pawtuxet River Basin (see Plate 1) lies entirely within the State of Rhode Island and
NASA Astrophysics Data System (ADS)
Marchamalo, Miguel; González-Rodrigo, Beatriz
2017-04-01
Costa Rica is located in the Central American tropical isthmus. It presents high precipitations (ranging from 1400-8500 mm) and protection levels (27% of national territory). However, intensive land use and increasing population in headwaters are major threats for water resource management in this country. Birrís Basin is a 4800 hectares sub-watershed of the River Reventazón Basin, the major hydroelectric source in Costa Rica. Birrís Basin was selected for its high estimated erosion rates and its potential for demonstrative projects (ICE, 1999). Some pilot projects have been developed in this watershed starting from 1999, when major Costa Rican energy producer, Instituto Costarricense de Electricidad, began with a long term watershed management program for the Reventazón Basin. This study aims at measuring runoff and initial splash and sheet erosion to assess the hydrological response of two pilot land use projects. Erosion and runoff plots were established and monitored in a one year period for two pilot projects (fruit trees and forage pastures) and their respective traditional land uses (vegetable crops and extensive pastures). Improved forage pastures showed reduced runoff by 73% and split erosion by 55% compared to prior extensive pastures. Conversion of vegetable crop lands into fruit tree plantations (apricot and avocado) made possible a 97% reduction of soil initial erosion. Land use pilot projects have succeeded in runoff and soil erosion reduction. Now it is time for a wider technology transfer program to expand improved land uses within Birrís Basin.
Project #OPE-FY13-0018, April 4, 2013. The Office of Inspector General plans to begin preliminary research to evaluate proposed Superfund sites on the U.S. Environmental Protection Agency’s National Priorities List.
Transit signal priority project, phase II : field and simulation evaluation results.
DOT National Transportation Integrated Search
2006-01-01
Transit Signal Priority (TSP) is recognized as an emerging technology that is capable of enhancing traditional transit services. Basic green-extension TSP was implemented on U.S. Route 1 in the Northern Virginia Area (or Washington, DC metropolitan a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... priority group does not include applications for the addition or replacement of building utility systems, such as heating and air conditioning systems or building features, such as roof replacements. Projects... Americans with Disabilities Act; building systems and utilities (e.g., electrical; heating, ventilation, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
... Institute on Disability and Rehabilitation Research--Advanced Rehabilitation Research Training Program... priority for the Advanced Rehabilitation Research Training (ARRT) program under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-18
... Institute on Disability and Rehabilitation Research--Rehabilitation Research and Training Centers AGENCY... for the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). Specifically, we announce a priority...
Mapping Water Resources, Allocation and Consumption in the Mills River Basin
NASA Astrophysics Data System (ADS)
Hodes, J.; Jeuland, M. A.; Barros, A. P.
2014-12-01
Mountain basins and the headwaters of river basins along the foothills of major mountain ranges are undergoing rapid environmental change due to urban development, land acquisition by investors, population increase, and climate change. Classical water infrastructure in these regions is primarily designed to meet human water demand associated with agriculture, tourism, and economic development. Often overlooked and ignored is the fundamental interdependence of human water demand, ecosystem water demand, water rights and allocation, and water supply. A truly sustainable system for water resources takes into account ecosystem demand along with human infrastructure and economic demand, as well as the feedbacks that exist between them. Allocation policies need to take into account basin resilience that is the amount of stress the system can handle under varying future scenarios. Changes in stress on the system can be anthropogenic in the form of population increase, land use change, economic development, or may be natural in the form of climate change and decrease in water supply due to changes in precipitation. Mapping the water rights, supply, and demands within the basin can help determine the resiliency and sustainability of the basin. Here, we present a coupled natural human system project based in the French Broad River Basin, in the Southern Appalachians. In the first phase of the project, we are developing and implementing a coupled hydro-economics modeling framework in the Mills River Basin (MRB), a tributary of the French Broad. The Mills River Basin was selected as the core basin for implementing a sustainable system of water allocation that is adaptive and reflects the interdependence of water dependent sectors. The headwaters of the Mills River are in the foothills of the Appalachians, and are currently under substantial land use land cover (LULC) change pressure for agricultural purposes. In this regard, the MRB is representative of similar headwater basins in regions of complex terrain undergoing similar pressures such as the Andes and Himalayas. First results of the project including a quantitative organigram mapping water availability, water consumption, and the relationships among water stakeholders within the basin will be presented.
Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution.
Xu, Wen; Zhao, Yuanhong; Liu, Xuejun; Dore, Anthony J; Zhang, Lin; Liu, Lei; Cheng, Miaomiao
2018-01-01
The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (N r ) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha -1 yr -1 on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of N r emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH 3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Glaves, Helen; Schaap, Dick
2016-04-01
The increasingly ocean basin level approach to marine research has led to a corresponding rise in the demand for large quantities of high quality interoperable data. This requirement for easily discoverable and readily available marine data is currently being addressed by initiatives such as SeaDataNet in Europe, Rolling Deck to Repository (R2R) in the USA and the Australian Ocean Data Network (AODN) with each having implemented an e-infrastructure to facilitate the discovery and re-use of standardised multidisciplinary marine datasets available from a network of distributed repositories, data centres etc. within their own region. However, these regional data systems have been developed in response to the specific requirements of their users and in line with the priorities of the funding agency. They have also been created independently of the marine data infrastructures in other regions often using different standards, data formats, technologies etc. that make integration of marine data from these regional systems for the purposes of basin level research difficult. Marine research at the ocean basin level requires a common global framework for marine data management which is based on existing regional marine data systems but provides an integrated solution for delivering interoperable marine data to the user. The Ocean Data Interoperability Platform (ODIP/ODIP II) project brings together those responsible for the management of the selected marine data systems and other relevant technical experts with the objective of developing interoperability across the regional e-infrastructures. The commonalities and incompatibilities between the individual data infrastructures are identified and then used as the foundation for the specification of prototype interoperability solutions which demonstrate the feasibility of sharing marine data across the regional systems and also with relevant larger global data services such as GEO, COPERNICUS, IODE, POGO etc. The potential impact for the individual regional data infrastructures of implementing these prototype interoperability solutions is also being evaluated to determine both the technical and financial implications of their integration within existing systems. These impact assessments form part of the strategy to encourage wider adoption of the ODIP solutions and approach beyond the current scope of the project which is focussed on regional marine data systems in Europe, Australia, the USA and, more recently, Canada.
NASA Astrophysics Data System (ADS)
Schmidt, R. D.; Taylor, R. G.; Stodick, L. D.; Contor, B. A.
2009-12-01
A recent federal interagency report on climate change and water management (Brekke et. al., 2009) describes several possible management responses to the impacts of climate change on water supply and demand. Management alternatives include changes to water supply infrastructure, reservoir system operations, and water demand policies. Water users in the Bureau of Reclamation’s Boise Project (located in the Lower Boise River basin in southwestern Idaho) would be among those impacted both hydrologically and economically by climate change. Climate change and management responses to climate change are expected to cause shifts in water supply and demand. Supply shifts would result from changes in basin precipitation patterns, and demand shifts would result from higher evapotranspiration rates and a longer growing season. The impacts would also extend to non-Project water users in the basin, since most non-Project groundwater pumpers and drain water diverters rely on hydrologic externalities created by seepage losses from Boise Project water deliveries. An integrated hydrologic-economic model was developed for the Boise basin to aid Reclamation in evaluating the hydrologic and economic impacts of various management responses to climate change. A spatial, partial-equilibrium, economic optimization model calculates spatially-distinct equilibrium water prices and quantities, and maximizes a social welfare function (the sum of consumer and producers surpluses) for all agricultural and municipal water suppliers and demanders (both Project and non-Project) in the basin. Supply-price functions and demand-price functions are exogenous inputs to the economic optimization model. On the supply side, groundwater and river/reservoir models are used to generate hydrologic responses to various management alternatives. The response data is then used to develop water supply-price functions for Project and non-Project water users. On the demand side, crop production functions incorporating crop distribution, evapotranspiration rates, irrigation efficiencies, and crop prices are used to develop water demand-price functions for agricultural water users. Demand functions for municipal and industrial water users are also developed. Recent applications of the integrated model have focused on the hydrologic and economic impacts of demand management alternatives, including large-scale canal lining conservation measures, and market-based water trading between canal diverters and groundwater pumpers. A supply management alternative being investigated involves revising reservoir rule curves to compensate for climate change impacts on timing of reservoir filling.
Jeanne C. Chambers; Jerry R. Miller
2011-01-01
This report contains the results of a 6-year project conducted by the U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station and U.S. Environmental Protection Agency, Office of Research and Development on stream incision and meadow ecosystem degradation in the central Great Basin. The project included a coarse-scale assessment of 56 different...
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Jackson; Katherine Jackson
2008-09-30
Large volumes of oil and gas remain in the mature basins of North America. This is nowhere more true than in the Permian Basin of Texas and New Mexico. A critical barrier to recovery of this vast remaining resource, however, is information. Access to accurate geological data and analyses of the controls of hydrocarbon distribution is the key to the knowledge base as well as the incentives needed by oil and gas companies. The goals of this project were to collect, analyze, synthesize, and deliver to industry and the public fundamental information and data on the geology of oil andmore » gas systems in the Permian Basin. This was accomplished in two ways. First we gathered all available data, organized it, and placed it on the web for ready access. Data include core analysis data, lists of pertinent published reports, lists of available cores, type logs, and selected PowerPoint presentations. We also created interpretive data such as type logs, geological cross sections, and geological maps and placed them in a geospatially-registered framework in ARC/GIS. Second, we created new written syntheses of selected reservoir plays in the Permian basin. Although only 8 plays were targeted for detailed analysis in the project proposal to DOE, 14 were completed. These include Ellenburger, Simpson, Montoya, Fusselman, Wristen, Thirtyone, Mississippian, Morrow, Atoka, Strawn, Canyon/Cisco, Wolfcamp, Artesia Group, and Delaware Mountain Group. These fully illustrated reports include critical summaries of published literature integrated with new unpublished research conducted during the project. As such these reports provide the most up-to-date analysis of the geological controls on reservoir development available. All reports are available for download on the project website and are also included in this final report. As stated in our proposal, technology transfer is perhaps the most important component of the project. In addition to providing direct access to data and reports through the web, we published 29 papers dealing with aspects of Permian Basin and Fort Worth Basin Paleozoic geology, and gave 35 oral and poster presentations at professional society meetings, and 116 oral and poster presentations at 10 project workshops, field trips, and short courses. These events were attended by hundreds of scientists and engineers representing dozens of oil and gas companies. This project and the data and interpretations that have resulted from it will serve industry, academic, and public needs for decades to come. It will be especially valuable to oil and gas companies in helping to better identify opportunities for development and exploration and reducing risk. The website will be continually added to and updated as additional data and information become available making it a long term source of key information for all interested in better understanding the Permian Basin.« less
The development of the ''Sleeping Giant'' deep basin natural gas, Alberta Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, D.L.
1984-02-01
During the past seven years attention has been focused on ''mega'' projects and the frontier areas for continental energy self sufficiency. However, a giant conventional resource project has been developing without fanfare. This project has potential impact on the well being of Canada and the North American energy scene. This ''Sleeping Giant'', which delivered its initial sales gas on November 1, 1979 is the Alberta (Elmworth) Deep Basin. The project area covers 67,400 square km (26,000 square miles) and contains potentially hydrocarbon bearing sediments over a thickness of 4,572 meters (15,000 feet). This basin is best equated in terms ofmore » size and reserves to the famous San Juan Basin. Since its discovery in 1976 approximately 1,000 multi-zoned gas wells have been drilled and reserves in the order of 140,000 10/sup 6/m/sup 3/ (5 trillion cubic feet) have been recognized by gas purchasers. Ten gas plants have been constructed with capacity of roughly 28,174 10/sup 3/m/sup 3/ (1 billion cubic feet) per day. This paper documents the development of these reserves and the stages in the construction of field facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-31
Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and by the year 2000. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potentialmore » impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. These research and education projects are particularly relevant to the US Department of Energy`s programs aimed at addressing aquatic pollution problems associated with DOE National Laboratories. First year funding supported seven collaborative cluster projects and twelve initiation projects. This report summarizes research results for period December 1992--December 1993.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trotter, Patrick C.; McMillan, Bill; Gayeski, Nick
1999-10-01
The objective of this project is to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique.
EVALUATING POINT-NONPOINT SOURCE WATER QUALITY TRADING IN A RARITAN RIVER BASIN SUB-WATERSHED
This project addresses water quality issues in the Raritan River Basin of New Jersey. It will build upon an existing study that determined the technical feasibility of implementing a point-nonpoint source water quality trading program in the Basin. Water quality trading is ...
Using evaluation theory in priority setting and resource allocation.
Smith, Neale; Mitton, Craig; Cornelissen, Evelyn; Gibson, Jennifer; Peacock, Stuart
2012-01-01
Public sector interest in methods for priority setting and program or policy evaluation has grown considerably over the last several decades, given increased expectations for accountable and efficient use of resources and emphasis on evidence-based decision making as a component of good management practice. While there has been some occasional effort to conduct evaluation of priority setting projects, the literatures around priority setting and evaluation have largely evolved separately. In this paper, the aim is to bring them together. The contention is that evaluation theory is a means by which evaluators reflect upon what it is they are doing when they do evaluation work. Theories help to organize thinking, sort out relevant from irrelevant information, provide transparent grounds for particular implementation choices, and can help resolve problematic issues which may arise in the conduct of an evaluation project. A detailed review of three major branches of evaluation theory--methods, utilization, and valuing--identifies how such theories can guide the development of efforts to evaluate priority setting and resource allocation initiatives. Evaluation theories differ in terms of their guiding question, anticipated setting or context, evaluation foci, perspective from which benefits are calculated, and typical methods endorsed. Choosing a particular theoretical approach will structure the way in which any priority setting process is evaluated. The paper suggests that explicitly considering evaluation theory makes key aspects of the evaluation process more visible to all stakeholders, and can assist in the design of effective evaluation of priority setting processes; this should iteratively serve to improve the understanding of priority setting practices themselves.
Scanlan, Justin Newton; Pépin, Geneviève; Haracz, Kirsti; Ennals, Priscilla; Webster, Jayne S; Meredith, Pamela J; Batten, Rachel; Bowman, Siann; Bonassi, Marianne; Bruce, Rosie
2015-10-01
The effective preparation of occupational therapy students for mental health practice is critical to facilitate positive consumer outcomes, underpin optimal practice and support new graduates' professional identity. This project was established to determine a set of 'educational priorities' for occupational therapy students to prepare them for current (and future) entry-level practice in mental health, from the perspective of mental health occupational therapists in Australia and New Zealand. The study included two phases. In Phase One, participants identified what they considered to be important educational priorities for occupational therapy students to prepare them for practice in mental health. For Phase Two, an 'expert panel' was assembled to review and rank these using a Policy Delphi approach. Eighty-five participants provided educational priorities in Phase One. These were grouped into a total of 149 educational themes. In Phase Two, the expert panel (consisting of 37 occupational therapists from diverse locations and practice settings) prioritised these themes across three Delphi rounds. A final priority list was generated dividing educational themes into three prioritised categories: 29 'Essential', 25 'Important' and 44 'Optional' priorities. Highest-ranked priorities were: clinical reasoning, client-centred practice, therapeutic use of self, functional implications of mental illness, therapeutic use of occupation and mental health fieldwork experience. The priority list developed as part of this project provides additional information to support the review of occupational therapy curricula across Australia and New Zealand to ensure that new graduates are optimally prepared for mental health practice. © 2015 Occupational Therapy Australia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulus, Fritz
2003-12-01
This is the Final Report submitted regarding Oregon Water Trust's Combined Work Plan for fiscal year 2003, with the contract period April 2002 to May 2003. Of this 12 month period, six month were spent concluding our work for the 2002 irrigation season and six months were spent preparing for the 2003 irrigation season. After this grant was completed, projects were finished with funding from the Columbia Basin Water Transactions Program. Many of the 2003 irrigation season successes began in the fall of 2002, when projects were researched and partnerships were developed. Trout Creek Ranch was one of the largemore » successes. During the 2003 irrigation season, 2.6 cfs was leased which led to a permanent instream transfer, protecting critical spawning habitat for summer steelhead in the Deschutes basin. Another success was the Walla Walla Lease Bank project. This project is an agreement between the OWT, the Walla Walla Irrigation District and 11 individual landowners. Through this single year lease, 7.9 cfs of water was legally protected in the Walla Walla River. The Vidando lease on Middle Fork John Day River was renewed for 2 more years, protecting 11.29 cfs. An innovative single year split-season lease was conducted with Voight on Standard Creek in the John Day basin to protect 4.93 cfs. Many other deals were conducted and the total was an impressive 50.43 cfs instream during 2003 and 9.39 cfs pending approval for the 2004 season. Included is a summary of the activities within the Fifteenmile subbasin and the Columbia Plateau basin by quarter and two tables. The summary of activities is broken down by objectives and quarters. The first summarizes the total cfs by type of lease or transfer. The second table lists all the projects by subbasin and provides project type, lease number, cfs, cost of acquisition, partners in the project and funding source.« less
The Saskatchewan River Basin - a large scale observatory for water security research (Invited)
NASA Astrophysics Data System (ADS)
Wheater, H. S.
2013-12-01
The 336,000 km2 Saskatchewan River Basin (SaskRB) in Western Canada illustrates many of the issues of Water Security faced world-wide. It poses globally-important science challenges due to the diversity in its hydro-climate and ecological zones. With one of the world's more extreme climates, it embodies environments of global significance, including the Rocky Mountains (source of the major rivers in Western Canada), the Boreal Forest (representing 30% of Canada's land area) and the Prairies (home to 80% of Canada's agriculture). Management concerns include: provision of water resources to more than three million inhabitants, including indigenous communities; balancing competing needs for water between different uses, such as urban centres, industry, agriculture, hydropower and environmental flows; issues of water allocation between upstream and downstream users in the three prairie provinces; managing the risks of flood and droughts; and assessing water quality impacts of discharges from major cities and intensive agricultural production. Superimposed on these issues is the need to understand and manage uncertain water futures, including effects of economic growth and environmental change, in a highly fragmented water governance environment. Key science questions focus on understanding and predicting the effects of land and water management and environmental change on water quantity and quality. To address the science challenges, observational data are necessary across multiple scales. This requires focussed research at intensively monitored sites and small watersheds to improve process understanding and fine-scale models. To understand large-scale effects on river flows and quality, land-atmosphere feedbacks, and regional climate, integrated monitoring, modelling and analysis is needed at large basin scale. And to support water management, new tools are needed for operational management and scenario-based planning that can be implemented across multiple scales and multiple jurisdictions. The SaskRB has therefore been developed as a large scale observatory, now a Regional Hydroclimate Project of the World Climate Research Programme's GEWEX project, and is available to contribute to the emerging North American Water Program. State-of-the-art hydro-ecological experimental sites have been developed for the key biomes, and a river and lake biogeochemical research facility, focussed on impacts of nutrients and exotic chemicals. Data are integrated at SaskRB scale to support the development of improved large scale climate and hydrological modelling products, the development of DSS systems for local, provincial and basin-scale management, and the development of related social science research, engaging stakeholders in the research and exploring their values and priorities for water security. The observatory provides multiple scales of observation and modelling required to develop: a) new climate, hydrological and ecological science and modelling tools to address environmental change in key environments, and their integrated effects and feedbacks at large catchment scale, b) new tools needed to support river basin management under uncertainty, including anthropogenic controls on land and water management and c) the place-based focus for the development of new transdisciplinary science.
NASA Astrophysics Data System (ADS)
Inguane, Ronaldo; Gallego-Ayala, Jordi; Juízo, Dinis
In the context of integrated water resources management implementation, the decentralization of water resources management (DWRM) at the river basin level is a crucial aspect for its success. However, decentralization requires the creation of new institutions on the ground, to stimulate an environment enabling stakeholder participation and integration into the water management decision-making process. In 1991, Mozambique began restructuring its water sector toward operational decentralized water resources management. Within this context of decentralization, new legal and institutional frameworks have been created, e.g., Regional Water Administrations (RWAs) and River Basin Committees. This paper identifies and analyzes the key institutional challenges and opportunities of DWRM implementation in Mozambique. The paper uses a critical social science research methodology for in-depth analysis of the roots of the constraining factors for the implementation of DWRM. The results obtained suggest that RWAs should be designed considering the specific geographic and infrastructural conditions of their jurisdictional areas and that priorities should be selected in their institutional capacity building strategies that match local realities. Furthermore, the results also indicate that RWAs have enjoyed limited support from basin stakeholders, mainly in basins with less hydraulic infrastructure, in securing water availability for their users and minimizing the effect of climate variability.
Forecasting domestic water demand in the Haihe river basin under changing environment
NASA Astrophysics Data System (ADS)
Wang, Xiao-Jun; Zhang, Jian-Yun; Shahid, Shamsuddin; Xie, Yu-Xuan; Zhang, Xu
2018-02-01
A statistical model has been developed for forecasting domestic water demand in Haihe river basin of China due to population growth, technological advances and climate change. Historical records of domestic water use, climate, population and urbanization are used for the development of model. An ensemble of seven general circulation models (GCMs) namely, BCC-CSM1-1, BNU-ESM, CNRM-CM5, GISS-E2-R, MIROC-ESM, PI-ESM-LR, MRI-CGCM3 were used for the projection of climate and the changes in water demand in the Haihe River basin under Representative Concentration Pathways (RCPs) 4.5. The results showed that domestic water demand in different sub-basins of the Haihe river basin will gradually increase due to continuous increase of population and rise in temperature. It is projected to increase maximum 136.22 × 108 m3 by GCM BNU-ESM and the minimum 107.25 × 108 m3 by CNRM-CM5 in 2030. In spite of uncertainty in projection, it can be remarked that climate change and population growth would cause increase in water demand and consequently, reduce the gap between water supply and demand, which eventually aggravate the condition of existing water stress in the basin. Water demand management should be emphasized for adaptation to ever increasing water demand and mitigation of the impacts of environmental changes.
The Mars Express - NASA Project at JPL
NASA Technical Reports Server (NTRS)
Thompson, Thomas W.; Horttor, Richard L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S. W.; Goltz, G.
2006-01-01
This viewgraph presentation gives a general overview of the Mars Express NASA Project at JPL. The contents include: 1) Mars Express/NASA Project Overview; 2) Experiment-Investigator Matrix; 3) Mars Express Support of NASA's Mars Exploration Objectives; 4) U.S./NASA Support of Mars Express; 5) Mars Express Schedule (2003-2007); 6) Mars Express Data Rates; 7) MARSIS Overview Results; 8) MARSIS with Antennas Deployed; 9) MARSIS Science Objectives; 10) Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) Experiment Overview; 11) Mars Express Orbit Evolution; 12) MARSIS Science - Subsurface Sounding; 13) MARSIS-North Polar Ice Cap; 14) MARSIS Data-Buried Basin; 15) MARSIS over a Crater Basin; 16) MARSIS-Buried Basin; 17) Ionogram - Orbit 2032 (example from Science paper); 18) Ionogram-Orbit 2018 (example from Science paper); and 19) Recent MARSIS Results ESA Press Releases.
NASA Astrophysics Data System (ADS)
Lafontaine, J.; Hay, L.; Viger, R.; Markstrom, S. L.
2010-12-01
In order to help environmental resource managers assess potential effects of climate change on ecosystems, the Southeast Regional Assessment Project (SERAP) began in 2009. One component of the SERAP is development and calibration of a set of multi-resolution hydrologic models of the Apalachicola-Chattahoochee-Flint (ACF) River Basin. The ACF River Basin is home to multiple fish and wildlife species of conservation concern, is regionally important for water supply, and has been a recent focus of complementary environmental and climate-change research. Hydrologic models of varying spatial extents and resolutions are required to address varied local to regional water-resource management questions as required by the scope and limits of potential management actions. These models were developed using the U.S. Geological Survey (USGS) Precipitation Runoff Modeling System (PRMS). The coarse-resolution model for the ACF Basin has a contributing area of approximately 19,200 mi2 with the model outlet located at the USGS streamflow gage on the Apalachicola River near Sumatra, Florida. Six fine-resolution PRMS models ranging in size from 153 mi2 to 1,040 mi2 are nested within the coarse-scale model, and have been developed for the following basins: upper Chattahoochee, Chestatee, and Chipola Rivers, Ichawaynochaway, Potato, and Spring Creeks. All of the models simulate basin hydrology using a daily time-step, measured climate data, and basin characteristics such as land cover and topography. Measured streamflow data are used to calibrate and evaluate computed basin hydrology. Land cover projections will be used in conjunction with downscaled Global Climate Model results to project future hydrologic conditions for this set of models.
Advanced spacecraft fire safety: Proposed projects and program plan
NASA Technical Reports Server (NTRS)
Youngblood, Wallace W.; Vedha-Nayagam, M.
1989-01-01
A detailed review identifies spacecraft fire safety issues and the efforts for their resolution, particularly for the threats posed by the increased on-orbit duration, size, and complexity of the Space Station Freedom. Suggestions provided by a survey of Wyle consultants and outside fire safety experts were combined into 30 research and engineering projects. The projects were then prioritized with respect to urgency to meet Freedom design goals, status of enabling technology, cost, and so on, to yield 14 highest priority projects, described in terms of background, work breakdown structure, and schedule. These highest priority projects can be grouped into the thematic areas of fire detection, fire extinguishment, risk assessment, toxicology and human effects, and ground based testing. Recommendations for overall program management stress the need for NASA Headquarters and field center coordination, with information exchange through spacecraft fire safety oversight committees.
7 CFR 1780.17 - Selection priorities and process.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Projects that primarily recycle solid waste products thereby limiting the need for solid waste disposal—5..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS General Policies and Requirements... solid waste violations—15 points. (c) Median household income priorities. The median household income of...
7 CFR 1780.17 - Selection priorities and process.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Projects that primarily recycle solid waste products thereby limiting the need for solid waste disposal—5..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS General Policies and Requirements... solid waste violations—15 points. (c) Median household income priorities. The median household income of...
7 CFR 1780.17 - Selection priorities and process.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Projects that primarily recycle solid waste products thereby limiting the need for solid waste disposal—5..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS General Policies and Requirements... solid waste violations—15 points. (c) Median household income priorities. The median household income of...
34 CFR 376.30 - What priorities are considered for support by the Secretary under this part?
Code of Federal Regulations, 2012 CFR
2012-07-01
... demonstrate effective Statewide approaches to transitional rehabilitation service delivery for youths with... illness, mental retardation, and learning disability. (d) Transitional rehabilitation services for institutionalized persons. This priority supports projects that demonstrate effective ways to assist youths and...
34 CFR 376.30 - What priorities are considered for support by the Secretary under this part?
Code of Federal Regulations, 2011 CFR
2011-07-01
... demonstrate effective Statewide approaches to transitional rehabilitation service delivery for youths with... illness, mental retardation, and learning disability. (d) Transitional rehabilitation services for institutionalized persons. This priority supports projects that demonstrate effective ways to assist youths and...
34 CFR 376.30 - What priorities are considered for support by the Secretary under this part?
Code of Federal Regulations, 2014 CFR
2014-07-01
... demonstrate effective Statewide approaches to transitional rehabilitation service delivery for youths with... illness, mental retardation, and learning disability. (d) Transitional rehabilitation services for institutionalized persons. This priority supports projects that demonstrate effective ways to assist youths and...
34 CFR 376.30 - What priorities are considered for support by the Secretary under this part?
Code of Federal Regulations, 2013 CFR
2013-07-01
... demonstrate effective Statewide approaches to transitional rehabilitation service delivery for youths with... illness, mental retardation, and learning disability. (d) Transitional rehabilitation services for institutionalized persons. This priority supports projects that demonstrate effective ways to assist youths and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-28
... Rehabilitation Research--Rehabilitation Research and Training Centers AGENCY: Office of Special Education and... Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). Specifically, we announce a priority for a Rehabilitation...
Plant invaders, global change and landscape restoration
Pyke, D.A.; Knick, S.T.
2005-01-01
Modifications in land uses, technology, transportation and biogeochemical cycles currently influence the spread of organisms by reducing the barriers that once restricted their movements. We provide an overview of the spatial and temporal extent for agents of environmental change (land and disturbance transformations, biogeochemical modifications, biotic additions and losses) and highlight those that strongly influence rangeland ecosystems. Restoration may provide a mechanism for ameliorating the impacts of invasive species, but applications of restoration practices over large scales, e.g. ecoregions, will yield benefits earlier when the landscape is prioritised by criteria that identify locations where critical restoration species can grow and where success will be high. We used the Great Basin, USA as our region of interest where the invasive annual grass, cheatgrass (Bromus tectorum), dominates millions of hectares. A landscape-level restoration model for sagebrush (Artemisia tridentata ssp. tridentata and ssp. wyomingensis) was developed to meet the goal of establishing priority habitat for wildlife. This approach could be used in long-range planning of rangeland ecosystems where funds and labour for restoration projects may vary annually. Copyright ?? NISC Pty Ltd.
A framework for the identification of hotspots of climate change risk for mammals.
Pacifici, Michela; Visconti, Piero; Rondinini, Carlo
2018-04-01
As rates of global warming increase rapidly, identifying species at risk of decline due to climate impacts and the factors affecting this risk have become key challenges in ecology and conservation biology. Here, we present a framework for assessing three components of climate-related risk for species: vulnerability, exposure and hazard. We used the relationship between the observed response of species to climate change and a set of intrinsic traits (e.g. weaning age) and extrinsic factors (e.g. precipitation seasonality within a species geographic range) to predict, respectively, the vulnerability and exposure of all data-sufficient terrestrial non-volant mammals (3,953 species). Combining this information with hazard (the magnitude of projected climate change within a species geographic range), we identified global hotspots of species at risk from climate change that includes the western Amazon basin, south-western Kenya, north-eastern Tanzania, north-eastern South Africa, Yunnan province in China, and mountain chains in Papua-New Guinea. Our framework identifies priority areas for monitoring climate change effects on species and directing climate mitigation actions for biodiversity. © 2017 John Wiley & Sons Ltd.
Are we studying what matters? Health priorities and NIH-funded biomedical engineering research.
Rubin, Jessica B; Paltiel, A David; Saltzman, W Mark
2010-07-01
With the founding of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) in 1999, the National Institutes of Health (NIH) made explicit its dedication to expanding research in biomedical engineering. Ten years later, we sought to examine how closely federal funding for biomedical engineering aligns with U.S. health priorities. Using a publicly accessible database of research projects funded by the NIH in 2008, we identified 641 grants focused on biomedical engineering, 48% of which targeted specific diseases. Overall, we found that these disease-specific NIH-funded biomedical engineering research projects align with national health priorities, as quantified by three commonly utilized measures of disease burden: cause of death, disability-adjusted survival losses, and expenditures. However, we also found some illnesses (e.g., cancer and heart disease) for which the number of research projects funded deviated from our expectations, given their disease burden. Our findings suggest several possibilities for future studies that would serve to further inform the allocation of limited research dollars within the field of biomedical engineering.
NASA Astrophysics Data System (ADS)
Shamil Iliasov, Shamil; Dolgikh, Svetlana; Lipponen, Annukka; Novikov, Viktor
2014-05-01
The observed long-term trends, variability and projections of future climate and hydrology of the Chu and Talas transboundary rivers basin were analysed using a common approach for Kazakhstan and Kyrgyzstan parts of the basin. Historical, current and forecasted demands and main uses of water in the basin were elaborated by the joint effort of both countries. Such cooperative approach combining scientific data, water practitioners' outlook with decision making needs allowed the first time to produce a comprehensive assessment of climate change impacts on water resources in the Chu-Talas transboundary rivers basin, identify future needs and develop the initial set of adaptation measures and recommendations. This work was carried out under the project "Promoting Cooperation to Adapt to Climate Change in the Chu and Talas Transboundary Basin", supported by the United Nations Economic Commission for Europe (UNECE) and the United Nations Development Programme (UNDP). Climate change projections, including air temperatures and rainfall in the 21st century were determined with a spatial resolution 0.5 degrees based on the integration of 15 climate change model outputs (derived from IPCC's 4th Assessment Report, and partially 5th Assessment Report) combined with locally-designed hydrology and glacier models. A significant increase in surface air temperatures by 3-6°C may be expected in the basin area, especially in summer and autumn. This change is likely to be accompanied by rainfall increase during the cold season and a decrease in the warm half of the year. As a result, a deterioration of moisture conditions during the summer-autumn period is possible. Furthermore, milder winters and hotter summers can be expected. Mountains will likely receive more liquid precipitation, than snow, while the area and volume of glaciers may significantly reduce. Projected changes in climate and glaciers have implications for river hydrology and different sectors of the economy dependent on water use. Assessment of agricultural sector vulnerability, which is the key water user in the basin, led to identification of the potential adaptation measures and discussion with relevant national and river basin authorities and the major stakeholders. Proposed adaptation measures range from technical - such as rehabilitation of irrigation systems to reduce water losses, modernize water reservoirs and adjust river regulation to environmental flow needs, changing land use and crop diversification - to policy and finance measures, including revision of subsidies, economic consideration of ecosystem services, etc. Next steps include a more detailed assessment of economics, effectiveness and feasibility of the initially proposed adaptation measures and additional research.
Smith, Neale; Mitton, Craig; Peacock, Stuart; Cornelissen, Evelyn; MacLeod, Stuart
2009-01-01
Background To date there has been relatively little published about how research priorities are set, and even less about methods by which decision-makers can be engaged in defining a relevant and appropriate research agenda. We report on a recent effort in British Columbia to have researchers and decision-makers jointly establish an agenda for future research into questions of resource allocation. Methods The researchers enlisted decision-maker partners from each of British Columbia's six health authorities. Three forums were held, at which researchers and decision-makers from various levels in the health authorities considered possible research areas related to three key focus areas: (1) generation and use of decision criteria and measurement of 'benefit' against such criteria; (2) identification of so-called 'disinvestment' opportunities; and (3) evaluation of the effectiveness of priority setting procedures. Detailed notes were taken from each forum and synthesized into a set of qualitative themes. Results Forum participants suggested that future research into healthcare priority setting would benefit from studies that were longitudinal, comparative, and/or interdisciplinary. As well, participants identified two broad theme areas in which specific research projects were deemed desirable. First, future research might usefully consider how formal priority setting and resource allocation projects are situated within a larger organizational and political context. Second, additional research efforts should be devoted to better understanding and improving the actual implementation of priority setting frameworks, particularly with respect to issues of change management and the resolution of impediments to action on recommendations for resource allocation. Conclusion We were able to validate the importance of initial areas posed to the group and observed emergence of additional concerns and directions of critical importance to these decision-makers at this time. It is likely that the results are broadly applicable to other healthcare contexts. The implementation of this research agenda in British Columbia will depend upon the ability of the researchers and decision-makers to develop particular projects that fit within the constraints of existing funding opportunities. The process of engagement itself had benefits in terms of connecting decision-makers with their peers and sparking increased interest in the use and refinement of priority setting frameworks. PMID:19754969
NASA Astrophysics Data System (ADS)
Essoudry, E.; Wilson, K.; Ely, J.; Patadia, N.; Zajic, B.; Torres-Perez, J. L.; Schmidt, C.
2014-12-01
The Great Basin ecoregion in the western United States represents one of the last large expanses of wild lands in the nation and is currently facing significant challenges due to human impacts, drought, invasive species encroachment such as cheatgrass, and climate change. Rangelands in the Great Basin are of important ecological and economic significance for the United States; however, 40% of public rangelands fail to meet required health standards set by the Bureau of Land Management (BLM). This project provided a set of assessment tools for researchers and land managers that integrate remotely-sensed and in situ datasets to quantify and mitigate threats to public lands in the Great Basin ecoregion. The study area, which accounts for 20% of the total Great Basin ecoregion, was analyzed using 30 m resolution data from Landsat 8. Present conditions were evaluated from vegetation indices, landscape features, hydrological processes, and atmospheric conditions derived from the remotely-sensed data and validated with available in situ ground survey data, provided by the BLM. Rangeland health metrics were developed and landscape change drivers were identified. Subsequently, projected climate conditions derived from the Coupled Model Intercomparison Project (CMIP5) were used to forecast the impact of changing climatic conditions within the study area according to the RCP4.5 and RCP8.5 projections. These forecasted conditions were used in the Maximum Entropy Model (MaxEnt) to predict areas at risk for rangeland degradation on 30 year intervals for 2040, 2070, and 2100. Finally, vegetation health risk maps were provided to the project partners to aid in future land management decisions in the Great Basin ecoregion. These tools provide a low cost solution to assess landscape conditions, provide partners with a metric to identify potential problematic areas, and mitigate serious threats to the ecosystems.
Bruce G. Marcot
1997-01-01
Research information needs on selected invertebrates and all vertebrates of the interior Columbia River basin and adjacent areas in the United States were collected into a research, development, and application database as part of the Interior Columbia Basin Ecosystem Management Project. The database includes 482 potential research study topics on 232 individual...
BASIN-CENTERED GAS SYSTEMS OF THE U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman
2000-11-01
The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographicmore » distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.« less
NASA Astrophysics Data System (ADS)
Thirel, Guillaume; de Lavenne, Alban; Wagner, Jean-Pierre; Perrin, Charles; Gerlinger, Kai; Drogue, Gilles; Renard, Benjamin
2016-04-01
Several projects studied the impact of climate change on the Rhine basin during the past years, using the CMIP3 projections (see Explore2070, FLOW MS, RheinBlick2050 or VULNAR), either on the French or German sides. These studies showed the likely decrease of low flows and a high uncertainty regarding the evolution of high flows. This may have tremendous impacts on several aspects related to discharge, including pollution, flood protection, irrigation, rivers ecosystems and drinking water. While focusing on the same basin (or part of it), many differences including the climate scenarios and models, the hydrological models and the study periods used for these projects make the outcomes of these projects difficult to compare rigorously. Therefore the MOSARH21 (stands for MOselle-SArre-RHine discharge in the 21st century) was built to update and homogenise discharge projections for the French tributaries of the Rhine basin. Two types of models were used: the physically-oriented LARSIM model, which is widely used in Germany and was used in one of the previous projects (FLOW MS), and the semi-distributed conceptual GRSD model tested on French catchments for various objectives. Through the use of these two hydrological models and multiple sets of parameters obtained by various calibrations runs, the structural and parametric uncertainties in the hydrological projections were quantified, as they tend to be neglected in climate change impact studies. The focus of the impact analysis is put on low flows, high flows and regime. Although this study considers only French tributaries of the Rhine, it will foster further cooperation on transboundary basins across Europe, and should contribute to propose better bases for the future definition of adaptation strategies between riverine countries.
Groundwater quality in the Antelope Valley, California
Dawson, Barbara J. Milby; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds.
Groundwater quality in Coachella Valley, California
Dawson, Barbara J. Milby; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Salton Sea and Imperial Valley areas.
Kernodle, J.M.
1998-01-01
The ground-water-flow model of the Albuquerque Basin (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.) was updated to include new information on the hydrogeologic framework (Hawley, J.W., Haase, C.S., and Lozinsky, R.P., 1995, An underground view of the Albuquerque Basin: Proceedings of the 39th Annual New Mexico Water Conference, November 3-4, 1994, p. 37-55). An additional year of ground-water-withdrawal data was appended to the simulation of the historical period and incorporated into the base for future projections to the year 2020. The revised model projects the simulated ground-water levels associated with an aerally enlarged occurrence of the relatively high hydraulic conductivity in the upper part of the Santa Fe Group east and west of the Rio Grande in the Albuquerque area and north to Bernalillo. Although the differences between the two model versions are substantial, the revised model does not contradict any previous conclusions about the effect of City of Albuquerque ground-water withdrawals on flow in the Rio Grande or the net benefits of an effort to conserve ground water. Recent revisions to the hydrogeologic model (Hawley, J.W., Haneberg, W.C., and Whitworth, P.M., in press, Hydrogeologic investigations in the Albuquerque Basin, central New Mexico, 1992-1995: Socorro, New Mexico Bureau of Mines and Mineral Resources Open- File Report 402) of the Albuquerque Basin eventually will require that this model version also be revised and updated.
Ocean gliders as key component within the AORAC-SA
NASA Astrophysics Data System (ADS)
Barrera, C.; Hernandez Brito, J.; Castro, A.; Rueda, M. J.; Llinas, O.
2016-02-01
The Atlantic Ocean Research Alliance Coordination and Support Action (AORAC-SA) is designed to provide scientific, technical and logistical support to the EU in developing and implementing transAtlantic Marine Research Cooperation between the European Union, the United States of America and Canada. The Coordination and Support Action (CSA) is carried out within the framework of the Atlantic Ocean Research Alliance (AORA) as outlined in the Galway Statement on Atlantic Ocean Cooperation (May 2013). The CSA will be responsible for the organization of expert and stakeholder meetings, workshops and conferences required by the AORA and related to identified research priorities support actions and other initiatives as they arise, taking into account related Horizon 2020 supported transAtlantic projects and on-going national and EU collaborative projects. The AORAC-SA support and governance structure comprises a Secretariat and Management Team, guided by a high-level Operational Board, representative of the major European Marine Research Programming and Funding Organizations as well as those of the USA and Canada. As example of this research cooperative framework, ocean gliders have become nowadays a common, innovative and sustainable ocean-observations tool for the Atlantic basin, linking research groups, govermental institutions and private companies from both sides in terms of technical developments, transatlantic missions in partnership, training forums, etc. aiming to develop common practices and protocols for a better ocean resources management and understanding. Within this context, the Oceanic Platform of the Canary Islands (PLOCAN), as AORAC-SA partner, is working on specific actions like ocean glider observations programs (endurance line) by AtlantOS project (www.atlantos-h2020.eu), related new technical developments by NeXOS FP-7 project (www.nexosproject.eu) and a yearly International Glider School forum hosting (www.gliderschool.eu).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mobrand, Lars Erik; Lestelle, Lawrence C.
In the spring of 1994 a technical planning support project was initiated by the Grande Ronde Model Watershed Board of Directors (Board) with funding from the Bonneville Power Administration. The project was motivated by a need for a science based method for prioritizing restoration actions in the basin that would promote effectiveness and accountability. In this section the authors recall the premises for the project. The authors also present a set of recommendations for implementing a watershed planning process that incorporates a science-based framework to help guide decision making. This process is intended to assist the Grande Ronde Model Watershedmore » Board in its effort to plan and implement watershed improvement measures. The process would also assist the Board in coordinating its efforts with other entities in the region. The planning process is based on an approach for developing an ecosystem management strategy referred to as the Ecosystem Diagnosis and Treatment (EDT) method (Lichatowich et al. 1995, Lestelle et al. 1996). The process consists of an on-going planning cycle. Included in this cycle is an assessment of the ability of the watershed to support and sustain natural resources and other economic and societal values. This step in the process, which the authors refer to as the diagnosis, helps guide the development of actions (also referred to as treatments) aimed at improving the conditions of the watershed to achieve long-term objectives. The planning cycle calls for routinely reviewing and updating, as necessary, the basis for the diagnosis and other analyses used by the Board in adopting actions for implementation. The recommendations offered here address this critical need to habitually update the information used in setting priorities for action.« less
Assessment of soil disturbance in forests of the interior Columbia River basin: a critique
Richard E. Miller; James D. McIver; Steven W. Howes; William B. Gaeuman
2010-01-01
We present results and inferences from 15 soil-monitoring projects by the USDA Forest Service (USFS) after logging in the interior Columbia River basin. Details and comments about each project are provided in separate appendixes. In general, application of past protocols overestimated the percentage of âdetrimentallyâ disturbed soil in harvested units. Based on this...
C. J. Cederholm; L. M. Reid
1987-01-01
Abstract - In 1972, declining coho salmon production and visible forestry impacts on coho habitats prompted the initiation of an ongoing fisheries research project in the Clearwater River basin of the Olympic Peninsula. Heavy fishery catches have resulted in a general under-seeding of the basin, as demonstrated by stocking experiments and inventories of potential...
NASA Astrophysics Data System (ADS)
Krysanova, Valentina; Vetter, Tobias; Eisner, Stephanie; Huang, Shaochun; Pechlivanidis, Ilias; Strauch, Michael; Gelfan, Alexander; Kumar, Rohini; Aich, Valentin; Arheimer, Berit; Chamorro, Alejandro; van Griensven, Ann; Kundu, Dipangkar; Lobanova, Anastasia; Mishra, Vimal; Plötner, Stefan; Reinhardt, Julia; Seidou, Ousmane; Wang, Xiaoyan; Wortmann, Michel; Zeng, Xiaofan; Hattermann, Fred F.
2017-10-01
An intercomparison of climate change impacts projected by nine regional-scale hydrological models for 12 large river basins on all continents was performed, and sources of uncertainty were quantified in the framework of the ISIMIP project. The models ECOMAG, HBV, HYMOD, HYPE, mHM, SWAT, SWIM, VIC and WaterGAP3 were applied in the following basins: Rhine and Tagus in Europe, Niger and Blue Nile in Africa, Ganges, Lena, Upper Yellow and Upper Yangtze in Asia, Upper Mississippi, MacKenzie and Upper Amazon in America, and Darling in Australia. The model calibration and validation was done using WATCH climate data for the period 1971-2000. The results, evaluated with 14 criteria, are mostly satisfactory, except for the low flow. Climate change impacts were analyzed using projections from five global climate models under four representative concentration pathways. Trends in the period 2070-2099 in relation to the reference period 1975-2004 were evaluated for three variables: the long-term mean annual flow and high and low flow percentiles Q 10 and Q 90, as well as for flows in three months high- and low-flow periods denoted as HF and LF. For three river basins: the Lena, MacKenzie and Tagus strong trends in all five variables were found (except for Q 10 in the MacKenzie); trends with moderate certainty for three to five variables were confirmed for the Rhine, Ganges and Upper Mississippi; and increases in HF and LF were found for the Upper Amazon, Upper Yangtze and Upper Yellow. The analysis of projected streamflow seasonality demonstrated increasing streamflow volumes during the high-flow period in four basins influenced by monsoonal precipitation (Ganges, Upper Amazon, Upper Yangtze and Upper Yellow), an amplification of the snowmelt flood peaks in the Lena and MacKenzie, and a substantial decrease of discharge in the Tagus (all months). The overall average fractions of uncertainty for the annual mean flow projections in the multi-model ensemble applied for all basins were 57% for GCMs, 27% for RCPs, and 16% for hydrological models.
Dettinger, Michael D.
2013-01-01
Recent projections of global climate changes in response to increasing greenhouse-gas concentrations in the atmosphere include warming in the Southwestern US and, especially, in the vicinity of Lake Tahoe of from about +3°C to +6°C by end of century and changes in precipitation on the order of 5-10 % increases or (more commonly) decreases, depending on the climate model considered. Along with these basic changes, other climate variables like solar insolation, downwelling (longwave) radiant heat, and winds may change. Together these climate changes may result in changes in the hydrology of the Tahoe basin and potential changes in lake overturning and ecological regimes. Current climate projections, however, are generally spatially too coarse (with grid cells separated by 1 to 2° latitude and longitude) for direct use in assessments of the vulnerabilities of the much smaller Tahoe basin. Thus, daily temperatures, precipitation, winds, and downward radiation fluxes from selected global projections have been downscaled by a statistical method called the constructed-analogues method onto 10 to 12 km grids over the Southwest and especially over Lake Tahoe. Precipitation, solar insolation and winds over the Tahoe basin change only moderately (and with indeterminate signs) in the downscaled projections, whereas temperatures and downward longwave fluxes increase along with imposed increases in global greenhouse-gas concentrations.
Scott, Anna Mae; Clark, Justin; Dooley, Liz; Jones, Ann; Jones, Mark; Del Mar, Chris
2018-05-22
Cochrane Acute Respiratory Infections (ARI) Group conducts systematic reviews of the evidence for treatment and prevention of ARIs. We report the results of a prioritisation project, aiming to identify highest priority systematic review topics. The project consisted of 2 Phases. Phase 1 analysed the gap between existing RCTs and Cochrane Systematic Reviews (reported previously). Phase 2 (reported here) consisted of a two-round survey. In round 1, respondents prioritised 68 topics and suggested up to 10 additional topics; in Round 2, respondents prioritised top 25 topics from Round 1. Respondents included clinicians, researchers, systematic reviewers, allied health, patients, and carers, from 33 different countries. In Round 1, 154 respondents identified 20 priority topics, most commonly selecting topics in non-specific ARIs, influenza, and common cold. 50 respondents also collectively suggested 134 additional topics. In Round 2, 78 respondents prioritised top 25 topics, most commonly in the areas of non-specific ARIs, pneumonia and influenza. We generated a list of priority systematic review topics, to guide the Cochrane ARI Group's systematic review work for the next 24 months. Stakeholder involvement enhanced the transparency of the process, and will increase the usability and relevance of the Group's work to stakeholders. Copyright © 2018 Elsevier Inc. All rights reserved.
Assessing surface water availability considering human water use and projected climate variability
NASA Astrophysics Data System (ADS)
Ashraf, Batool; AghaKouchak, Amir; Mousavi-Baygi, Mohammd; Moftakhari, Hamed; Anjileli, Hassan
2017-04-01
Climate variability along with anthropogenic activities alter the hydrological cycle and local water availability. The overarching goal of this presentation is to demonstrate the compounding interactions between human water use/withdrawals and climate change and variability. We focus on Karkheh River basin and Urmia basin, in western Iran, that have high level of human activity and water use, and suffer from low water productivity. The future of these basins and their growth relies on sustainable water resources and hence, requires a holistic, basin-wide management to cope with water scarcity challenges. In this study, we investigate changes in the hydrology of the basin including human-induced alterations of the system, during the past three decades. Then, we investigate the individual and combined effects of climate variability and human water withdrawals on surface water storage in the 21st century. We use bias-corrected historical simulations and future projections from ensemble mean of eleven General Circulation Models (GCMs) under two climate change scenarios RCP4.5 and RCP8.5. The results show that, hydrology of the studied basins are significantly dominated by human activities over the baseline period (1976 - 2005). Results show that the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades have put significant stress on water resources. We evaluate a number of future water demand scenarios and their interactions with future climate projections. Our results show that by the end of the 21st century, the compounding effects of increased irrigation water demand and precipitation variability may lead to severe local water scarcity in these basins. Our study highlights the necessity for understanding and considering the compounding effects of human water use and future climate projections. Such studies would be useful for improving water management and developing adaption plans in water scarce regions.
Evaluation of organic compounds and trace elements in Amazon Creek Basin, Oregon, September 1990
Rinella, F.A.
1993-01-01
Water and bottom sediment were collected from Amazon Creek, Oregon during a summer low-flow condition and analyzed for different classes of organic compounds, including many from the U.S. Environmental Protection Agency's priority pollutant list. Bottom sediment also was analyzed for trace elements typically associated with urban runoff. Trace-element concentrations in the less than 63 micrometer fraction of Amazon Creek bottom-sediment samples were compared with baseline concentrations (expected 95 percent confidence range) for soils from the Western United States and with concen- trations found in bottom sediment from the Willamette River Basin. Total-digestion concentrations of antimony, arsenic, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, silver, titanium, and zinc were enriched at some or all sites sampled. Whole-water samples from some sites contained concentrations of several chlorophenoxy-acid herbicides, the organophosphorus insecticide diazinon, and several semivolatile priority pollutants. Classes of compounds not detected in whole-water samples included carbamate insecticides, triazine and other nitrogen-containing herbicides, and purgeable organic compounds. Bottom-sediment samples contained many organochlorine compounds, including chlordane, DDT plus metabolites, dieldrin, endrin, heptachlor epoxide (a metabolite of heptachlor), and PCBs at some or all sites sampled. Twenty-four of 54 semivolatile compounds were detected in bottom- sediment samples at some or all sites sampled.
NASA Astrophysics Data System (ADS)
Turner, D. P.; Conklin, D. R.; Vache, K. B.; Schwartz, C.; Nolin, A. W.; Chang, H.; Watson, E.; John, B.
2016-12-01
Projected changes in air temperature, precipitation, and vapor pressure for the Willamette River Basin (Oregon, USA) over the next century will have significant impacts on the river basin water balance, notably on the amount of evapotranspiration (ET). Mechanisms of impact on ET will be both direct and indirect, but there is limited understanding of their absolute and relative magnitudes. Here we developed a spatially-explicit, daily time-step, modeling infrastructure to simulate the basin-wide water balance that accounts for meteorological influences, as well as effects mediated by changing vegetation cover type, leaf area, and ecophysiology. Three CMIP5 climate scenarios (LowClim, Reference, HighClim) were run for the 2010 to 2100 period. Besides warmer temperatures, the climate scenarios were characterized by wetter winters and increasing vapor pressure deficits. In the mid-range Reference scenario, our landscape simulation model (Envision) projected a continuation of forest cover on the uplands but a 3-fold increase in area burned per year. A decline (12-30%) in basin-wide mean leaf area index (LAI) in forests was projected in all scenarios. The lower LAIs drove a corresponding decline in ET. In a sensitivity test, the effect of increasing CO2 on stomatal conductance induced a further substantial decrease (11-18%) in basin-wide mean ET. The net effect of decreases in ET and increases in winter precipitation was an increase in annual streamflow. These results support the inclusion of changes in land cover, land use, LAI, and ecophysiology in efforts to anticipate impacts of climate change on basin-scale water balances.
40 CFR 35.915 - State priority system and project priorty list.
Code of Federal Regulations, 2010 CFR
2010-07-01
... State priority system and list must be designed to achieve optimum water quality management consistent... water quality management (WQM) plans. The State shall hold a public hearing before submission of the... also sets forth the administrative, management, and public participation procedures required to develop...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-07
... and refined analyses of data, producing observational findings, and creating other sources of research... Services announces priorities and definitions for the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR...
75 FR 26952 - National Institute on Disability and Rehabilitation Research (NIDRR)-Disability and...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-13
... Social Security Administration, the Centers for Medicare and Medicaid Services, and other agencies, as... Education. ACTION: Notice of proposed priority. SUMMARY: The Assistant Secretary for Special Education and Rehabilitative Services proposes a priority for the Disability and Rehabilitation Research Projects and Centers...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... contribute to this outcome by emphasizing the principles of universal design in its product research and... Rehabilitation Research (NIDRR)--Rehabilitation Engineering Research Centers (RERCs)--Technologies To Support... priority for the Disability and Rehabilitation Research Projects and Centers Program administered by NIDRR...
43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund... deposited by Western and shall be available without further appropriation for: (1) Defraying the costs of... River Basin Project Act; (5) Transfers to the Lower Colorado River Basin Development Fund and subsequent...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-01
... 4 p.m. ADDRESSES: The meeting will be held at the Bureau of Reclamation, Yakima Field Office, 1917... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Yakima River Basin Conservation Advisory Group...: Notice of public meeting. SUMMARY: As required by the Federal Advisory Committee Act, the Yakima River...
Trippi, Michael H.; Stricker, Gary D.; Flores, Romeo M.; Stanton, Ronald W.; Chiehowsky, Lora A.; Moore, Timothy A.
2010-01-01
Between 1999 and 2007, the U.S. Geological Survey (USGS) investigated coalbed methane (CBM) resources in the Wyoming portion of the Powder River Basin. The study also included the CBM resources in the North Dakota portion of the Williston Basin of North Dakota and the Wyoming portion of the Green River Basin of Wyoming. This project involved the cooperation of the State Office, Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) in Casper, Wyo., and 16 independent gas operators in the Powder River, Williston, and Green River Basins. The USGS and BLM entered into agreements with these CBM operators to supply samples for the USGS to analyze and provide the RMG with rapid, timely results of total gas desorbed, coal quality, and high-pressure methane adsorption isotherm data. This program resulted in the collection of 963 cored coal samples from 37 core holes. This report presents megascopic lithologic descriptive data collected from canister samples extracted from the 37 wells cored for this project.
NASA Astrophysics Data System (ADS)
Rojali, Aditia; Budiaji, Abdul Somat; Pribadi, Yudhistira Satya; Fatria, Dita; Hadi, Tri Wahyu
2017-07-01
This paper addresses on the numerical modeling approaches for flood inundation in urban areas. Decisive strategy to choose between 1D, 2D or even a hybrid 1D-2D model is more than important to optimize flood inundation analyses. To find cost effective yet robust and accurate model has been our priority and motivation in the absence of available High Performance Computing facilities. The application of 1D, 1D/2D and full 2D modeling approach to river flood study in Jakarta Ciliwung river basin, and a comparison of approaches benchmarked for the inundation study are presented. This study demonstrate the successful use of 1D/2D and 2D system to model Jakarta Ciliwung river basin in terms of inundation results and computational aspect. The findings of the study provide an interesting comparison between modeling approaches, HEC-RAS 1D, 1D-2D, 2D, and ANUGA when benchmarked to the Manggarai water level measurement.
Xu, Jiuping; Feng, Cuiying
2014-01-01
This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method.
Xu, Jiuping
2014-01-01
This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method. PMID:24550708
34 CFR 642.34 - Priorities for funding.
Code of Federal Regulations, 2010 CFR
2010-07-01
... associations of persons having special knowledge with respect to the training needs of Special Programs... preparing students for doctoral studies. (14) Project evaluation. (15) Budget management. (16) Personnel management. (17) Reporting student and project performance. (18) Coordinating project activities with other...
NASA Astrophysics Data System (ADS)
Garcia Galiano, S. G.; Olmos, P.; Giraldo Osorio, J. D.
2015-12-01
In the Mediterranean area, significant changes on temperature and precipitation are expected throughout the century. These trends could exacerbate the existing conditions in regions already vulnerable to climatic variability, reducing the water availability. Improving knowledge about plausible impacts of climate change on water cycle processes at basin scale, is an important step for building adaptive capacity to the impacts in this region, where severe water shortages are expected for the next decades. RCMs ensemble in combination with distributed hydrological models with few parameters, constitutes a valid and robust methodology to increase the reliability of climate and hydrological projections. For reaching this objective, a novel methodology for building Regional Climate Models (RCMs) ensembles of meteorological variables (rainfall an temperatures), was applied. RCMs ensembles are justified for increasing the reliability of climate and hydrological projections. The evaluation of RCMs goodness-of-fit to build the ensemble is based on empirical probability density functions (PDF) extracted from both RCMs dataset and a highly resolution gridded observational dataset, for the time period 1961-1990. The applied method is considering the seasonal and annual variability of the rainfall and temperatures. The RCMs ensembles constitute the input to a distributed hydrological model at basin scale, for assessing the runoff projections. The selected hydrological model is presenting few parameters in order to reduce the uncertainties involved. The study basin corresponds to a head basin of Segura River Basin, located in the South East of Spain. The impacts on runoff and its trend from observational dataset and climate projections, were assessed. Considering the control period 1961-1990, plausible significant decreases in runoff for the time period 2021-2050, were identified.
DOT National Transportation Integrated Search
1978-08-01
The purposes of the report are to: (1) describe recent High Occupancy Vehicle (HOV) preferential projects in the United States; (2) summarize the results of these projects and draw implications; and (3) outline projects which are to be implemented ov...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-22
... least one, but no more than two, site-specific research projects to test innovative approaches to... Criterion; Disability and Rehabilitation Research Projects and Spinal Cord Injury Model Systems Centers and Multi-Site Collaborative Research Projects AGENCY: Office of Special Education and Rehabilitative...
Model Special Education Manpower Information and Management System. Final Report.
ERIC Educational Resources Information Center
Gilles, Cynthia
The Massachusetts Special Education Manpower Planning Project is described. Relying on cooperative planning, the project developed a system to provide information on manpower planning, a system to link other agencies with the project, and annual statements of state special education training priorities. The project also collaborated with six other…
Maritime Security: Potential Terrorist Attacks and Protection Priorities
2007-01-09
Liquefied Natural Gas: Siting and Safety .” Feb. 15, 2005. 108 U.S. Coast Guard. U.S. Coast Guard Captain of the Port Long Island Sound Waterways...Order Code RL33787 Maritime Security: Potential Terrorist Attacks and Protection Priorities January 9, 2007 Paul W. Parfomak and John Frittelli...Terrorist Attacks and Protection Priorities 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK
Archuleta, Christy-Ann M.; Eames, Deanna R.
2009-01-01
The Rio Grande Civil Works and Restoration Projects Web Application, developed by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers (USACE) Albuquerque District, is designed to provide publicly available information through the Internet about civil works and restoration projects in the Rio Grande Basin. Since 1942, USACE Albuquerque District responsibilities have included building facilities for the U.S. Army and U.S. Air Force, providing flood protection, supplying water for power and public recreation, participating in fire remediation, protecting and restoring wetlands and other natural resources, and supporting other government agencies with engineering, contracting, and project management services. In the process of conducting this vast array of engineering work, the need arose for easily tracking the locations of and providing information about projects to stakeholders and the public. This fact sheet introduces a Web application developed to enable users to visualize locations and search for information about USACE (and some other Federal, State, and local) projects in the Rio Grande Basin in southern Colorado, New Mexico, and Texas.
Pawcatuck and Woonasquatucket River Basins and Narragansett Bay Local Drainage Area. Main Report.
1981-10-01
building and housing codes are recommended. Flood warning systems, urban renewal, tax incentives, and public open space acquisition will also help...RIVER GROUP WATERSHEDLD LOCAL DRAINAGE PD, WOONASQUATUCKET - MOSI4ASSUCK - PROVIDENCE RIVERS SUB-BASIN PD2 BLACKSTONE RIVER SUB-BASIN orPD 3 TENMiLE...of the Taunton River Basin in Massachusetts, 1979 PNB Water Supply Study, January 1979 Big River Reservoir Project, July 1981 Blackstone River