Sample records for priority stream segment

  1. Learning Collaborations between ACE and Vocational Education and Training Providers: Good Practice Partnerships. A National Vocational Education and Training Research and Evaluation Program Report

    ERIC Educational Resources Information Center

    Gelade, Sue; Stehlik, Tom; Willis, Peter

    2006-01-01

    This project developed in response to the national research priority of the role of vocational education and training (VET) in building economic and social capital in regions and communities. Several key streams of work have been identified in relation to this objective, including regional segmentation, indicators and performance measures, and…

  2. Stream classification of the Apalachicola-Chattahoochee-Flint River System to support modeling of aquatic habitat response to climate change

    USGS Publications Warehouse

    Elliott, Caroline M.; Jacobson, Robert B.; Freeman, Mary C.

    2014-01-01

    A stream classification and associated datasets were developed for the Apalachicola-Chattahoochee-Flint River Basin to support biological modeling of species response to climate change in the southeastern United States. The U.S. Geological Survey and the Department of the Interior’s National Climate Change and Wildlife Science Center established the Southeast Regional Assessment Project (SERAP) which used downscaled general circulation models to develop landscape-scale assessments of climate change and subsequent effects on land cover, ecosystems, and priority species in the southeastern United States. The SERAP aquatic and hydrologic dynamics modeling efforts involve multiscale watershed hydrology, stream-temperature, and fish-occupancy models, which all are based on the same stream network. Models were developed for the Apalachicola-Chattahoochee-Flint River Basin and subbasins in Alabama, Florida, and Georgia, and for the Upper Roanoke River Basin in Virginia. The stream network was used as the spatial scheme through which information was shared across the various models within SERAP. Because these models operate at different scales, coordinated pair versions of the network were delineated, characterized, and parameterized for coarse- and fine-scale hydrologic and biologic modeling. The stream network used for the SERAP aquatic models was extracted from a 30-meter (m) scale digital elevation model (DEM) using standard topographic analysis of flow accumulation. At the finer scale, reaches were delineated to represent lengths of stream channel with fairly homogenous physical characteristics (mean reach length = 350 m). Every reach in the network is designated with geomorphic attributes including upstream drainage basin area, channel gradient, channel width, valley width, Strahler and Shreve stream order, stream power, and measures of stream confinement. The reach network was aggregated from tributary junction to tributary junction to define segments for the benefit of hydrological, soil erosion, and coarser ecological modeling. Reach attributes are summarized for each segment. In six subbasins segments are assigned additional attributes about barriers (usually impoundments) to fish migration and stream isolation. Segments in the six sub-basins are also attributed with percent urban area for the watershed upstream from the stream segment for each decade from 2010–2100 from models of urban growth. On a broader scale, for application in a coarse-scale species-response model, the stream-network information is aggregated and summarized by 256 drainage subbasins (Hydrologic Response Units) used for watershed hydrologic and stream-temperature models. A model of soil erodibility based on the Revised Universal Soil Loss Equation also was developed at this scale to parameterize a model to evaluate stream condition. The reach-scale network was classified using multivariate clustering based on modeled channel width, valley width, and mean reach gradient as variables. The resulting classification consists of a 6-cluster and a 12-cluster classification for every reach in the Apalachicola-Chattahoochee-Flint Basin. We present an example of the utility of the classification that was tested using the occurrence of two species of darters and two species of minnows in the Apalachicola-Chattahoochee-Flint River Basin, the blackbanded darter and Halloween darter, and the bluestripe shiner and blacktail shiner.

  3. Segment Fixed Priority Scheduling for Self Suspending Real Time Tasks

    DTIC Science & Technology

    2016-08-11

    Segment-Fixed Priority Scheduling for Self-Suspending Real -Time Tasks Junsung Kim, Department of Electrical and Computer Engineering, Carnegie...4 2.1 Application of a Multi-Segment Self-Suspending Real -Time Task Model ............................. 5 3 Fixed Priority Scheduling...1 Figure 2: A multi-segment self-suspending real -time task model

  4. PRESEE: An MDL/MML Algorithm to Time-Series Stream Segmenting

    PubMed Central

    Jiang, Yexi; Tang, Mingjie; Yuan, Changan; Tang, Changjie

    2013-01-01

    Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream. PMID:23956693

  5. PRESEE: an MDL/MML algorithm to time-series stream segmenting.

    PubMed

    Xu, Kaikuo; Jiang, Yexi; Tang, Mingjie; Yuan, Changan; Tang, Changjie

    2013-01-01

    Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream.

  6. Riparian Land Use/Land Cover Data for Three Study Units in Group II of the Nutrient Enrichment Effects Topical Study of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Johnson, Michaela R.; Clark, Jimmy M.; Dickinson, Ross G.; Sanocki, Chris A.; Tranmer, Andrew W.

    2009-01-01

    This data set was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study. This report is concerned with three of the eight NEET study units distributed across the United States: Ozark Plateaus, Upper Mississippi River Basin, and Upper Snake River Basin, collectively known as Group II of the NEET study. Ninety stream reaches were investigated during 2006-08 in these three study units. Stream segments, with lengths equal to the base-10 logarithm of the basin area, were delineated upstream from the stream reaches through the use of digital orthophoto quarter-quadrangle (DOQQ) imagery. The analysis area for each stream segment was defined by a streamside buffer extending laterally to 250 meters from the stream segment. Delineation of landuse and land-cover (LULC) map units within stream-segment buffers was completed using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were classified using a strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal riparian transects (lines offset from the stream segments) were generated digitally, used to sample the LULC maps, and partitioned in accord with the intersected LULC map-unit types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear estimates of LULC extent filled in the spatial-scale gap between the 30-meter resolution of the 1990s National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The resulting data consisted of 12 geospatial data sets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation at the reach scale (arc); stream reaches (arc); longitudinal LULC transect sample at the reach scale (arc); frequency of gaps in woody vegetation at the segment scale (arc); stream segments (arc); and longitudinal LULC transect sample at the segment scale (arc).

  7. Riparian Land Use/Land Cover Data for Five Study Units in the Nutrient Enrichment Effects Topical Study of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Johnson, Michaela R.; Buell, Gary R.; Kim, Moon H.; Nardi, Mark R.

    2007-01-01

    This dataset was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study for five study units distributed across the United States: Apalachicola-Chattahoochee-Flint River Basin, Central Columbia Plateau-Yakima River Basin, Central Nebraska Basins, Potomac River Basin and Delmarva Peninsula, and White, Great and Little Miami River Basins. One hundred forty-three stream reaches were examined as part of the NEET study conducted 2003-04. Stream segments, with lengths equal to the logarithm of the basin area, were delineated upstream from the downstream ends of the stream reaches with the use of digital orthophoto quarter quadrangles (DOQQ) or selected from the high-resolution National Hydrography Dataset (NHD). Use of the NHD was necessary when the stream was not distinguishable in the DOQQ because of dense tree canopy. The analysis area for each stream segment was defined by a buffer beginning at the segment extending to 250 meters lateral to the stream segment. Delineation of land use/land cover (LULC) map units within stream segment buffers was conducted using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were mapped using a classification strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal transect sampling lines offset from the stream segments were generated and partitioned into the underlying LULC types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear LULC data filled in the spatial-scale gap between the 30-meter resolution of the National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The final data consisted of 12 geospatial datasets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation LULC at the reach scale (arc); stream reaches (arc); longitudinal LULC at the reach scale (arc); frequency of gaps in woody vegetation LULC at the segment scale (arc); stream segments (arc); and longitudinal LULC at the segment scale (arc).

  8. Prioritized Contact Transport Stream

    NASA Technical Reports Server (NTRS)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  9. Communication System and Method

    NASA Technical Reports Server (NTRS)

    Sanders, Adam M. (Inventor); Strawser, Philip A. (Inventor)

    2014-01-01

    A communication system for communicating over high-latency, low bandwidth networks includes a communications processor configured to receive a collection of data from a local system, and a transceiver in communication with the communications processor. The transceiver is configured to transmit and receive data over a network according to a plurality of communication parameters. The communications processor is configured to divide the collection of data into a plurality of data streams; assign a priority level to each of the respective data streams, where the priority level reflects the criticality of the respective data stream; and modify a communication parameter of at least one of the plurality of data streams according to the priority of the at least one data stream.

  10. Stream network and stream segment temperature models software

    USGS Publications Warehouse

    Bartholow, John

    2010-01-01

    This set of programs simulates steady-state stream temperatures throughout a dendritic stream network handling multiple time periods per year. The software requires a math co-processor and 384K RAM. Also included is a program (SSTEMP) designed to predict the steady state stream temperature within a single stream segment for a single time period.

  11. Market segmentation using perceived constraints

    Treesearch

    Jinhee Jun; Gerard Kyle; Andrew Mowen

    2008-01-01

    We examined the practical utility of segmenting potential visitors to Cleveland Metroparks using their constraint profiles. Our analysis identified three segments based on their scores on the dimensions of constraints: Other priorities--visitors who scored the highest on 'other priorities' dimension; Highly Constrained--visitors who scored relatively high on...

  12. REFERENCE CONDITION APPROACH TO THE ASSESSMENT OF BIOLOGICAL INTEGRITY IN STREAMS OF THE SOUTHERN ROCKY MOUNTAINS AND ITS USE IN MEASURING THE EFFECTIVENESS OF MILE-REMEDIATION EFFORTS

    EPA Science Inventory

    A recent development in water quality assessment is the comparison of assemblage data from impacted stream segments with that for groups of segments representing reference (or minimally-impacted) conditions. The degree of impairment of a stream segment is expressed as metrics, su...

  13. Fast algorithm for automatically computing Strahler stream order

    USGS Publications Warehouse

    Lanfear, Kenneth J.

    1990-01-01

    An efficient algorithm was developed to determine Strahler stream order for segments of stream networks represented in a Geographic Information System (GIS). The algorithm correctly assigns Strahler stream order in topologically complex situations such as braided streams and multiple drainage outlets. Execution time varies nearly linearly with the number of stream segments in the network. This technique is expected to be particularly useful for studying the topology of dense stream networks derived from digital elevation model data.

  14. Aquatic insect assemblages associated with subalpine stream segment types in relict glaciated headwaters

    USGS Publications Warehouse

    Kubo, Joshua S.; Torgersen, Christian E.; Bolton, Susan M.; Weekes, Anne A.; Gara, Robert I.

    2013-01-01

    1. Aquatic habitats and biotic assemblages in subalpine headwaters are sensitive to climate and human impacts. Understanding biotic responses to such perturbations and the contribution of high-elevation headwaters to riverine biodiversity requires the assessment of assemblage composition among habitat types. We compared aquatic insect assemblages among headwater stream segment types in relict glaciated subalpine basins in Mt. Rainier National Park, Washington, USA. 2. Aquatic insects were collected during summer and autumn in three headwater basins. In each basin, three different stream segment types were sampled: colluvial groundwater sources, alluvial lake inlets, and cascade-bedrock lake outlets. Ward's hierarchical cluster analysis revealed high β diversity in aquatic insect assemblages, and non-metric multidimensional scaling indicated that spatial and temporal patterns in assemblage composition differed among headwater stream segment types. Aquatic insect assemblages showed more fidelity to stream segment types than to individual basins, and the principal environmental variables associated with assemblage structure were temperature and substrate. 3. Indicator species analyses identified specific aquatic insects associated with each stream segment type. Several rare and potentially endemic aquatic insect taxa were present, including the recently described species, Lednia borealis (Baumann and Kondratieff). 4. Our results indicate that aquatic insect assemblages in relict glaciated subalpine headwaters were strongly differentiated among stream segment types. These results illustrate the contribution of headwaters to riverine biodiversity and emphasise the importance of these habitats for monitoring biotic responses to climate change. Monitoring biotic assemblages in high-elevation headwaters is needed to prevent the potential loss of unique and sensitive biota.

  15. Estimates of Median Flows for Streams on the 1999 Kansas Surface Water Register

    USGS Publications Warehouse

    Perry, Charles A.; Wolock, David M.; Artman, Joshua C.

    2004-01-01

    The Kansas State Legislature, by enacting Kansas Statute KSA 82a?2001 et. seq., mandated the criteria for determining which Kansas stream segments would be subject to classification by the State. One criterion for the selection as a classified stream segment is based on the statistic of median flow being equal to or greater than 1 cubic foot per second. As specified by KSA 82a?2001 et. seq., median flows were determined from U.S. Geological Survey streamflow-gaging-station data by using the most-recent 10 years of gaged data (KSA) for each streamflow-gaging station. Median flows also were determined by using gaged data from the entire period of record (all-available hydrology, AAH). Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating median flows for uncontrolled stream segments. The drainage area of the gaging stations on uncontrolled stream segments used in the regression analyses ranged from 2.06 to 12,004 square miles. A logarithmic transformation of the data was needed to develop the best linear relation for computing median flows. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. Tobit analyses of KSA data yielded a model standard error of prediction of 0.285 logarithmic units, and the best equations using Tobit analyses of AAH data had a model standard error of prediction of 0.250 logarithmic units. These regression equations and an interpolation procedure were used to compute median flows for the uncontrolled stream segments on the 1999 Kansas Surface Water Register. Measured median flows from gaging stations were incorporated into the regression-estimated median flows along the stream segments where available. The segments that were uncontrolled were interpolated using gaged data weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled segments of Kansas streams, the median flow information was interpolated between gaging stations using only gaged data weighted by drainage area. Of the 2,232 total stream segments on the Kansas Surface Water Register, 34.5 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second when the KSA analysis was used. When the AAH analysis was used, 36.2 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second. This report supercedes U.S. Geological Survey Water-Resources Investigations Report 02?4292.

  16. Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream

    DOEpatents

    Jacobson, Stephen C [Knoxville, TN; Ramsey, J Michael [Knoxville, TN

    2008-09-09

    A microfluidic device and method for forming and dispensing minute volume segments of a material are described. In accordance with the present invention, a microfluidic device and method are provided for spatially confining the material in a focusing element. The device is also adapted for segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.

  17. Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream

    DOEpatents

    Jacobson, Stephen C.; Ramsey, J. Michael

    2004-09-14

    A microfluidic device for forming and/or dispensing minute volume segments of a material is described. In accordance with one aspect of the present invention, a microfluidic device and method is provided for spatially confining the material in a focusing element. The device is also capable of segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.

  18. Environmental Factors Affecting Brook Trout Occurrence in Headwater Stream Segments

    Treesearch

    Yoichiro Kanno; Benjamin H. Letcher; Ana L. Rosner; Kyle P. O' Neil; Keith H. Nislow

    2015-01-01

    We analyzed the associations of catchment-scale and riparian-scale environmental factors with occurrence of Brook Trout Salvelinus fontinalis in Connecticut headwater stream segments with catchment areas of 15 < km2. A hierarchical Bayesian approach was applied to a statewide stream survey data set, in which Brook...

  19. Is Statistical Learning Constrained by Lower Level Perceptual Organization?

    PubMed Central

    Emberson, Lauren L.; Liu, Ran; Zevin, Jason D.

    2013-01-01

    In order for statistical information to aid in complex developmental processes such as language acquisition, learning from higher-order statistics (e.g. across successive syllables in a speech stream to support segmentation) must be possible while perceptual abilities (e.g. speech categorization) are still developing. The current study examines how perceptual organization interacts with statistical learning. Adult participants were presented with multiple exemplars from novel, complex sound categories designed to reflect some of the spectral complexity and variability of speech. These categories were organized into sequential pairs and presented such that higher-order statistics, defined based on sound categories, could support stream segmentation. Perceptual similarity judgments and multi-dimensional scaling revealed that participants only perceived three perceptual clusters of sounds and thus did not distinguish the four experimenter-defined categories, creating a tension between lower level perceptual organization and higher-order statistical information. We examined whether the resulting pattern of learning is more consistent with statistical learning being “bottom-up,” constrained by the lower levels of organization, or “top-down,” such that higher-order statistical information of the stimulus stream takes priority over the perceptual organization, and perhaps influences perceptual organization. We consistently find evidence that learning is constrained by perceptual organization. Moreover, participants generalize their learning to novel sounds that occupy a similar perceptual space, suggesting that statistical learning occurs based on regions of or clusters in perceptual space. Overall, these results reveal a constraint on learning of sound sequences, such that statistical information is determined based on lower level organization. These findings have important implications for the role of statistical learning in language acquisition. PMID:23618755

  20. Riverine threat indices to assess watershed condition and identify primary management capacity of agriculture natural resource management agencies.

    PubMed

    Fore, Jeffrey D; Sowa, Scott P; Galat, David L; Annis, Gust M; Diamond, David D; Rewa, Charles

    2014-03-01

    Managers can improve conservation of lotic systems over large geographies if they have tools to assess total watershed conditions for individual stream segments and can identify segments where conservation practices are most likely to be successful (i.e., primary management capacity). The goal of this research was to develop a suite of threat indices to help agriculture resource management agencies select and prioritize watersheds across Missouri River basin in which to implement agriculture conservation practices. We quantified watershed percentages or densities of 17 threat metrics that represent major sources of ecological stress to stream communities into five threat indices: agriculture, urban, point-source pollution, infrastructure, and all non-agriculture threats. We identified stream segments where agriculture management agencies had primary management capacity. Agriculture watershed condition differed by ecoregion and considerable local variation was observed among stream segments in ecoregions of high agriculture threats. Stream segments with high non-agriculture threats were most concentrated near urban areas, but showed high local variability. 60 % of stream segments in the basin were classified as under U.S. Department of Agriculture's Natural Resources Conservation Service (NRCS) primary management capacity and most segments were in regions of high agricultural threats. NRCS primary management capacity was locally variable which highlights the importance of assessing total watershed condition for multiple threats. Our threat indices can be used by agriculture resource management agencies to prioritize conservation actions and investments based on: (a) relative severity of all threats, (b) relative severity of agricultural threats, and (c) and degree of primary management capacity.

  1. Restoring Wood-Rich Hotspots in Mountain Stream Networks

    NASA Astrophysics Data System (ADS)

    Wohl, E.; Scott, D.

    2016-12-01

    Mountain streams commonly include substantial longitudinal variability in valley and channel geometry, alternating repeatedly between steep, narrow and relatively wide, low gradient segments. Segments that are wider and lower gradient than neighboring steeper sections are hotspots with respect to: retention of large wood (LW) and finer sediment and organic matter; uptake of nutrients; and biomass and biodiversity of aquatic and riparian organisms. These segments are also more likely to be transport-limited with respect to floodplain and instream LW. Management designed to protect and restore riverine LW and the physical and ecological processes facilitated by the presence of LW is likely to be most effective if focused on relatively low-gradient stream segments. These segments can be identified using a simple, reach-scale gradient analysis based on high-resolution DEMs, with field visits to identify factors that potentially limit or facilitate LW recruitment and retention, such as forest disturbance history or land use. Drawing on field data from the western US, this presentation outlines a procedure for mapping relatively low-gradient segments in a stream network and for identifying those segments where LW reintroduction or retention is most likely to balance maximizing environmental benefits derived from the presence of LW while minimizing hazards associated with LW.

  2. Event-Related Potentials Index Segmentation of Nonsense Sounds

    ERIC Educational Resources Information Center

    Sanders, Lisa D.; Ameral, Victoria; Sayles, Kathryn

    2009-01-01

    To understand the world around us, continuous streams of information including speech must be segmented into units that can be mapped onto stored representations. Recent evidence has shown that event-related potentials (ERPs) can index the online segmentation of sound streams. In the current study, listeners were trained to recognize sequences of…

  3. Valley segments, stream reaches, and channel units [Chapter 2

    Treesearch

    Peter A. Bisson; David R. Montgomery; John M. Buffington

    2006-01-01

    Valley segments, stream reaches, and channel units are three hierarchically nested subdivisions of the drainage network (Frissell et al. 1986), falling in size between landscapes and watersheds (see Chapter 1) and individual point measurements made along the stream network (Table 2.1; also see Chapters 3 and 4). These three subdivisions compose the habitat for large,...

  4. Biotic Drivers of Spatial Heterogeneity and Implications for River Ecosystems

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2017-04-01

    Rivers throughout the northern hemisphere have been simplified and homogenized by the removal of beavers and instream wood, along with numerous forms of channel engineering and flow regulation. Loss of spatial heterogeneity in river corridors - channels and floodplains - affects downstream fluxes of water, sediment, organic matter, and nutrients, as well as stream metabolism, biomass, and biodiversity. Recent work in streams of the Colorado Rocky Mountains illustrates how the presence of beavers and instream wood can facilitate spatial heterogeneity by creating stable, persistent, multithread channel planform and high channel-floodplain and channel-hyporheic zone connectivity. This spatial heterogeneity facilitates retention of water in pools, floodplain wetlands, and hyporheic storage. Suspended sediment, particulate organic matter (POM), and solutes are also more likely to be retained in these stream segments than in more uniform stream segments with greater downstream conveyance. Retention of POM and solutes equates to greater volumes of organic carbon storage per unit valley length and greater rates of nitrogen uptake. Spatially heterogeneous stream segments also exhibit greater biomass and biodiversity of aquatic macroinvertebrates, salmonid fish, and riparian spiders than do more uniform stream segments. These significant differences in stream form and function are unlikely to be unique to this field area and can provide a conceptual model for understanding and restoring ecosystem functions in other rivers.

  5. Carbon limitation patterns in buried and open urban streams

    EPA Science Inventory

    Urban streams alternate between darkened buried segments dominated by heterotrophic processes and lighted open segments dominated by autotrophic processes. We hypothesized that labile carbon leaking from autotrophic cells would reduce heterotrophic carbon limitation in open chan...

  6. Web server for priority ordered multimedia services

    NASA Astrophysics Data System (ADS)

    Celenk, Mehmet; Godavari, Rakesh K.; Vetnes, Vermund

    2001-10-01

    In this work, our aim is to provide finer priority levels in the design of a general-purpose Web multimedia server with provisions of the CM services. The type of services provided include reading/writing a web page, downloading/uploading an audio/video stream, navigating the Web through browsing, and interactive video teleconferencing. The selected priority encoding levels for such operations follow the order of admin read/write, hot page CM and Web multicasting, CM read, Web read, CM write and Web write. Hot pages are the most requested CM streams (e.g., the newest movies, video clips, and HDTV channels) and Web pages (e.g., portal pages of the commercial Internet search engines). Maintaining a list of these hot Web pages and CM streams in a content addressable buffer enables a server to multicast hot streams with lower latency and higher system throughput. Cold Web pages and CM streams are treated as regular Web and CM requests. Interactive CM operations such as pause (P), resume (R), fast-forward (FF), and rewind (RW) have to be executed without allocation of extra resources. The proposed multimedia server model is a part of the distributed network with load balancing schedulers. The SM is connected to an integrated disk scheduler (IDS), which supervises an allocated disk manager. The IDS follows the same priority handling as the SM, and implements a SCAN disk-scheduling method for an improved disk access and a higher throughput. Different disks are used for the Web and CM services in order to meet the QoS requirements of CM services. The IDS ouput is forwarded to an Integrated Transmission Scheduler (ITS). The ITS creates a priority ordered buffering of the retrieved Web pages and CM data streams that are fed into an auto regressive moving average (ARMA) based traffic shaping circuitry before being transmitted through the network.

  7. Evaluating adequacy of the representative stream reach used in invertebrate monitoring programs

    USGS Publications Warehouse

    Rabeni, C.F.; Wang, N.; Sarver, R.J.

    1999-01-01

    Selection of a representative stream reach is implicitly or explicitly recommended in many biomonitoring protocols using benthic invertebrates. We evaluated the adequacy of sampling a single stream reach selected on the basis of its appearance. We 1st demonstrated the precision of our within-reach sampling. Then we sampled 3 or 4 reaches (each ~20x mean width) within an 8-16 km segment on each of 8 streams in 3 ecoregions and calculated 4 common metrics: 1) total taxa; 2) Ephemeroptera, Plecoptera, and Trichoptera taxa; 3) biotic index; and 4) Sharmon's diversity index. In only 6% of possible cases was the coefficient of variation for any of the metrics reduced >10% by sampling additional reaches. Sampling a 2nd reach on a stream improved the ability to detect impairment by an average of only 9.3%. Sampling a 3rd reach on a stream additionally improved ability to detect impairment by only 4.5%. We concluded that a single well-chosen reach, if adequately sampled, can be representative of an entire stream segment, and sampling additional reaches within a segment may not be cost effective.

  8. Benthic invertebrate fauna, small streams

    Treesearch

    J. Bruce Wallace; S.L. Eggert

    2009-01-01

    Small streams (first- through third-order streams) make up >98% of the total number of stream segments and >86% of stream length in many drainage networks. Small streams occur over a wide array of climates, geology, and biomes, which influence temperature, hydrologic regimes, water chemistry, light, substrate, stream permanence, a basin's terrestrial plant...

  9. Occurrence and in-stream attenuation of wastewater-derived pharmaceuticals in Iberian rivers.

    PubMed

    Acuña, Vicenç; von Schiller, Daniel; García-Galán, Maria Jesús; Rodríguez-Mozaz, Sara; Corominas, Lluís; Petrovic, Mira; Poch, Manel; Barceló, Damià; Sabater, Sergi

    2015-01-15

    A multitude of pharmaceuticals enter surface waters via discharges of wastewater treatment plants (WWTPs), and many raise environmental and health concerns. Chemical fate models predict their concentrations using estimates of mass loading, dilution and in-stream attenuation. However, current comprehension of the attenuation rates remains a limiting factor for predictive models. We assessed in-stream attenuation of 75 pharmaceuticals in 4 river segments, aiming to characterize in-stream attenuation variability among different pharmaceutical compounds, as well as among river segments differing in environmental conditions. Our study revealed that in-stream attenuation was highly variable among pharmaceuticals and river segments and that none of the considered pharmaceutical physicochemical and molecular properties proved to be relevant in determining the mean attenuation rates. Instead, the octanol-water partition coefficient (Kow) influenced the variability of rates among river segments, likely due to its effect on sorption to sediments and suspended particles, and therefore influencing the balance between the different attenuation mechanisms (biotransformation, photolysis, sorption, and volatilization). The magnitude of the measured attenuation rates urges scientists to consider them as important as dilution when aiming to predict concentrations in freshwater ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Cracking the Language Code: Neural Mechanisms Underlying Speech Parsing

    PubMed Central

    McNealy, Kristin; Mazziotta, John C.; Dapretto, Mirella

    2013-01-01

    Word segmentation, detecting word boundaries in continuous speech, is a critical aspect of language learning. Previous research in infants and adults demonstrated that a stream of speech can be readily segmented based solely on the statistical and speech cues afforded by the input. Using functional magnetic resonance imaging (fMRI), the neural substrate of word segmentation was examined on-line as participants listened to three streams of concatenated syllables, containing either statistical regularities alone, statistical regularities and speech cues, or no cues. Despite the participants’ inability to explicitly detect differences between the speech streams, neural activity differed significantly across conditions, with left-lateralized signal increases in temporal cortices observed only when participants listened to streams containing statistical regularities, particularly the stream containing speech cues. In a second fMRI study, designed to verify that word segmentation had implicitly taken place, participants listened to trisyllabic combinations that occurred with different frequencies in the streams of speech they just heard (“words,” 45 times; “partwords,” 15 times; “nonwords,” once). Reliably greater activity in left inferior and middle frontal gyri was observed when comparing words with partwords and, to a lesser extent, when comparing partwords with nonwords. Activity in these regions, taken to index the implicit detection of word boundaries, was positively correlated with participants’ rapid auditory processing skills. These findings provide a neural signature of on-line word segmentation in the mature brain and an initial model with which to study developmental changes in the neural architecture involved in processing speech cues during language learning. PMID:16855090

  11. What's in a Face? Visual Contributions to Speech Segmentation

    ERIC Educational Resources Information Center

    Mitchel, Aaron D.; Weiss, Daniel J.

    2010-01-01

    Recent research has demonstrated that adults successfully segment two interleaved artificial speech streams with incongruent statistics (i.e., streams whose combined statistics are noisier than the encapsulated statistics) only when provided with an indexical cue of speaker voice. In a series of five experiments, our study explores whether…

  12. Development of a cross-section based stream package for MODFLOW

    NASA Astrophysics Data System (ADS)

    Ou, G.; Chen, X.; Irmak, A.

    2012-12-01

    Accurate simulation of stream-aquifer interactions for wide rivers using the streamflow routing package in MODFLOW is very challenging. To better represent a wide river spanning over multiple model grid cells, a Cross-Section based streamflow Routing (CSR) package is developed and incorporated into MODFLOW to simulate the interaction between streams and aquifers. In the CSR package, a stream segment is represented as a four-point polygon instead of a polyline which is traditionally used in streamflow routing simulation. Each stream segment is composed of upstream and downstream cross-sections. A cross-section consists of a number of streambed points possessing coordinates, streambed thicknesses and streambed hydraulic conductivities to describe the streambed geometry and hydraulic properties. The left and right end points are used to determine the locations of the stream segments. According to the cross-section geometry and hydraulic properties, CSR calculates the new stream stage at the cross-section using the Brent's method to solve the Manning's Equation. A module is developed to automatically compute the area of the stream segment polygon on each intersected MODFLOW grid cell as the upstream and downstream stages change. The stream stage and streambed hydraulic properties of model grids are interpolated based on the streambed points. Streambed leakage is computed as a function of streambed conductance and difference between the groundwater level and stream stage. The Muskingum-Cunge flow routing scheme with variable parameters is used to simulate the streamflow as the groundwater (discharge or recharge) contributes as lateral flows. An example is used to illustrate the capabilities of the CSR package. The result shows that the CSR is applicable to describing the spatial and temporal variation in the interaction between streams and aquifers. The input data become simple due to that the internal program automatically interpolates the cross-section data to each model grid cell.

  13. Shot boundary detection and label propagation for spatio-temporal video segmentation

    NASA Astrophysics Data System (ADS)

    Piramanayagam, Sankaranaryanan; Saber, Eli; Cahill, Nathan D.; Messinger, David

    2015-02-01

    This paper proposes a two stage algorithm for streaming video segmentation. In the first stage, shot boundaries are detected within a window of frames by comparing dissimilarity between 2-D segmentations of each frame. In the second stage, the 2-D segments are propagated across the window of frames in both spatial and temporal direction. The window is moved across the video to find all shot transitions and obtain spatio-temporal segments simultaneously. As opposed to techniques that operate on entire video, the proposed approach consumes significantly less memory and enables segmentation of lengthy videos. We tested our segmentation based shot detection method on the TRECVID 2007 video dataset and compared it with block-based technique. Cut detection results on the TRECVID 2007 dataset indicate that our algorithm has comparable results to the best of the block-based methods. The streaming video segmentation routine also achieves promising results on a challenging video segmentation benchmark database.

  14. Visual speech segmentation: using facial cues to locate word boundaries in continuous speech

    PubMed Central

    Mitchel, Aaron D.; Weiss, Daniel J.

    2014-01-01

    Speech is typically a multimodal phenomenon, yet few studies have focused on the exclusive contributions of visual cues to language acquisition. To address this gap, we investigated whether visual prosodic information can facilitate speech segmentation. Previous research has demonstrated that language learners can use lexical stress and pitch cues to segment speech and that learners can extract this information from talking faces. Thus, we created an artificial speech stream that contained minimal segmentation cues and paired it with two synchronous facial displays in which visual prosody was either informative or uninformative for identifying word boundaries. Across three familiarisation conditions (audio stream alone, facial streams alone, and paired audiovisual), learning occurred only when the facial displays were informative to word boundaries, suggesting that facial cues can help learners solve the early challenges of language acquisition. PMID:25018577

  15. Interactions between natural-occurring landscape conditions and land use influencing the abundance of riverine smallmouth bass, micropterus dolomieu

    USGS Publications Warehouse

    Brewer, S.K.; Rabeni, C.F.

    2011-01-01

    This study examined how interactions between natural landscape features and land use influenced the abundance of smallmouth bass, Micropterus dolomieu, in Missouri, USA, streams. Stream segments were placed into one of four groups based on natural-occurring watershed characteristics (soil texture and soil permeability) predicted to relate to smallmouth bass abundance. Within each group, stream segments were assigned forest (n = 3), pasture (n = 3), or urban (n = 3) designations based on the percentages of land use within each watershed. Analyses of variance indicated smallmouth bass densities differed between land use and natural conditions. Decision tree models indicated abundance was highest in forested stream segments and lowest in urban stream segments, regardless of group designation. Land use explained the most variation in decision tree models, but in-channel features of temperature, flow, and sediment also contributed significantly. These results are unique and indicate the importance of natural-occurring watershed conditions in defining the potential of populations and how finer-scale filters interact with land use to further alter population potential. Smallmouth bass has differing vulnerabilities to land-use attributes, and the better the natural watershed conditions are for population success, the more resilient these populations will be when land conversion occurs.

  16. USUING STREAM MORPHOLOGY CLASSIFICATION TO MANAGE ECOLOGICAL RISKS FROM LAND USE CHANGES IN THE LMR WATERSHED

    EPA Science Inventory

    Changes in the amount and types of land use in a watershed can destabilize stream channel structure, increase sediment loading and degrade in-stream habitat. Stream classification systems (e.g. Rosgen) may be useful for determining the susceptibility of stream channel segments t...

  17. GEOMORPHOLOGICAL STUDIES IN THE LITTLE MIAMI RIVER (INITIALLY, OTHER STREAM SYSTEMS TO BE ADDED LATER)

    EPA Science Inventory

    Changes in the amount and types of land use in a watershed can destabilize stream channel structure, increase sediment loading and degrade in-stream habitat. Stream classification systems (e.g., Rosgen) may be useful for determining the susceptibility of stream channel segments t...

  18. USING STREAM MORPHOLOGY CLASSIFICATION TO MANAGE ECOLOGICAL RISKS FROM LAND USE CHANGES IN THE LMR WATERSHED

    EPA Science Inventory

    Changes in the amount and types of land use in a watershed can destabilize stream channel structure, increase sediment loading and degrade in-stream habitat. Stream classification systems (e.g. Rosgen) may be useful for determining the susceptibility of stream channel segments t...

  19. Development of Land Segmentation, Stream-Reach Network, and Watersheds in Support of Hydrological Simulation Program-Fortran (HSPF) Modeling, Chesapeake Bay Watershed, and Adjacent Parts of Maryland, Delaware, and Virginia

    USGS Publications Warehouse

    Martucci, Sarah K.; Krstolic, Jennifer L.; Raffensperger, Jeff P.; Hopkins, Katherine J.

    2006-01-01

    The U.S. Geological Survey, U.S. Environmental Protection Agency Chesapeake Bay Program Office, Interstate Commission on the Potomac River Basin, Maryland Department of the Environment, Virginia Department of Conservation and Recreation, Virginia Department of Environmental Quality, and the University of Maryland Center for Environmental Science are collaborating on the Chesapeake Bay Regional Watershed Model, using Hydrological Simulation Program - FORTRAN to simulate streamflow and concentrations and loads of nutrients and sediment to Chesapeake Bay. The model will be used to provide information for resource managers. In order to establish a framework for model simulation, digital spatial datasets were created defining the discretization of the model region (including the Chesapeake Bay watershed, as well as the adjacent parts of Maryland, Delaware, and Virginia outside the watershed) into land segments, a stream-reach network, and associated watersheds. Land segmentation was based on county boundaries represented by a 1:100,000-scale digital dataset. Fifty of the 254 counties and incorporated cities in the model region were divided on the basis of physiography and topography, producing a total of 309 land segments. The stream-reach network for the Chesapeake Bay watershed part of the model region was based on the U.S. Geological Survey Chesapeake Bay SPARROW (SPAtially Referenced Regressions On Watershed attributes) model stream-reach network. Because that network was created only for the Chesapeake Bay watershed, the rest of the model region uses a 1:500,000-scale stream-reach network. Streams with mean annual streamflow of less than 100 cubic feet per second were excluded based on attributes from the dataset. Additional changes were made to enhance the data and to allow for inclusion of stream reaches with monitoring data that were not part of the original network. Thirty-meter-resolution Digital Elevation Model data were used to delineate watersheds for each stream reach. State watershed boundaries replaced the Digital Elevation Model-derived watersheds where coincident. After a number of corrections, the watersheds were coded to indicate major and minor basin, mean annual streamflow, and each watershed's unique identifier as well as that of the downstream watershed. Land segments and watersheds were intersected to create land-watershed segments for the model.

  20. The life-cycle of upper-tropospheric jet streams identified with a novel data segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Limbach, S.; Schömer, E.; Wernli, H.

    2010-09-01

    Jet streams are prominent features of the upper-tropospheric atmospheric flow. Through the thermal wind relationship these regions with intense horizontal wind speed (typically larger than 30 m/s) are associated with pronounced baroclinicity, i.e., with regions where extratropical cyclones develop due to baroclinic instability processes. Individual jet streams are non-stationary elongated features that can extend over more than 2000 km in the along-flow and 200-500 km in the across-flow direction, respectively. Their lifetime can vary between a few days and several weeks. In recent years, feature-based algorithms have been developed that allow compiling synoptic climatologies and typologies of upper-tropospheric jet streams based upon objective selection criteria and climatological reanalysis datasets. In this study a novel algorithm to efficiently identify jet streams using an extended region-growing segmentation approach is introduced. This algorithm iterates over a 4-dimensional field of horizontal wind speed from ECMWF analyses and decides at each grid point whether all prerequisites for a jet stream are met. In a single pass the algorithm keeps track of all adjacencies of these grid points and creates the 4-dimensional connected segments associated with each jet stream. In addition to the detection of these sets of connected grid points, the algorithm analyzes the development over time of the distinct 3-dimensional features each segment consists of. Important events in the development of these features, for example mergings and splittings, are detected and analyzed on a per-grid-point and per-feature basis. The output of the algorithm consists of the actual sets of grid-points augmented with information about the particular events, and of the so-called event graphs, which are an abstract representation of the distinct 3-dimensional features and events of each segment. This technique provides comprehensive information about the frequency of upper-tropospheric jet streams, their preferred regions of genesis, merging, splitting, and lysis, and statistical information about their size, amplitude and lifetime. The presentation will introduce the technique, provide example visualizations of the time evolution of the identified 3-dimensional jet stream features, and present results from a first multi-month "climatology" of upper-tropospheric jets. In the future, the technique can be applied to longer datasets, for instance reanalyses and output from global climate model simulations - and provide detailed information about key characteristics of jet stream life cycles.

  1. "Quitting like a Turk:" How political priority developed for tobacco control in Turkey.

    PubMed

    Hoe, Connie; Rodriguez, Daniela C; Üzümcüoğlu, Yeşim; Hyder, Adnan A

    2016-09-01

    In recent years, tobacco control emerged as a political priority in Turkey and today the country is widely regarded as one of the global leaders in tackling tobacco use. Although political priority is considered a facilitating factor to the success of addressing public health issues, there is a paucity of research to help us understand how it is developed in middle-income countries. The primary aim of this study is to understand the process and determinants of how tobacco control became a political priority in Turkey using the Multiple Streams Framework. A mixed-methods case study approach was used whereby data were gathered from three different sources: in-depth interviews (N = 19), document reviews (N = 216), and online self-administered surveys (N = 61). Qualitative data were collected for the purpose of understanding the processes and determinants that led to political prioritization of tobacco control and were analyzed using deductive and inductive coding. Quantitative data were collected to examine the actors and were analyzed using descriptive statistics and network nominations. Data were triangulated. Findings revealed that tobacco control achieved political priority in Turkey as a result of the development and convergence of multiple streams, including a fourth, separate global stream. Findings also shed light on the importance of Turkey's foreign policy in the transformation of the political stream. The country's desire for European Union accession and global visibility helped generate a political environment that was receptive to global norms for tobacco control. A diverse but cohesive network of actors joined forces with global allies to capitalize on this opportunity. Results suggest (1) the importance of global-agenda setting activities on political priority development, (2) the utility of aligning public health and foreign policy goals and (3) the need to build a strong global incentive structure to help entice governments to take action on public health issues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Hydropower assessment of Bolivia—A multisource satellite data and hydrologic modeling approach

    USGS Publications Warehouse

    Velpuri, Naga Manohar; Pervez, Shahriar; Cushing, W. Matthew

    2016-11-28

    This study produced a geospatial database for use in a decision support system by the Bolivian authorities to investigate further development and investment potentials in sustainable hydropower in Bolivia. The study assessed theoretical hydropower of all 1-kilometer (km) stream segments in the country using multisource satellite data and a hydrologic modeling approach. With the assessment covering the 2 million square kilometer (km2) region influencing Bolivia’s drainage network, the potential hydropower figures are based on theoretical yield assuming that the systems generating the power are 100 percent efficient. There are several factors to consider when determining the real-world or technical power potential of a hydropower system, and these factors can vary depending on local conditions. Since this assessment covers a large area, it was necessary to reduce these variables to the two that can be modeled consistently throughout the region, streamflow or discharge, and elevation drop or head. First, the Shuttle Radar Topography Mission high-resolution 30-meter (m) digital elevation model was used to identify stream segments with greater than 10 km2 of upstream drainage. We applied several preconditioning processes to the 30-m digital elevation model to reduce errors and improve the accuracy of stream delineation and head height estimation. A total of 316,500 1-km stream segments were identified and used in this study to assess the total theoretical hydropower potential of Bolivia. Precipitation observations from a total of 463 stations obtained from the Bolivian Servicio Nacional de Meteorología e Hidrología (Bolivian National Meteorology and Hydrology Service) and the Brazilian Agência Nacional de Águas (Brazilian National Water Agency) were used to validate six different gridded precipitation estimates for Bolivia obtained from various sources. Validation results indicated that gridded precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM) reanalysis product (3B43) had the highest accuracies. The coarse-resolution (25-km) TRMM data were disaggregated to 5-km pixels using climatology information obtained from the Climate Hazards Group Infrared Precipitation with Stations dataset. About a 17-percent bias was observed in the disaggregated TRMM estimates, which was corrected using the station observations. The bias-corrected, disaggregated TRMM precipitation estimate was used to compute stream discharge using a regionalization approach. In regionalization approach, required homogeneous regions for Bolivia were derived from precipitation patterns and topographic characteristics using a k-means clustering approach. Using the discharge and head height estimates for each 1-km stream segment, we computed hydropower potential for 316,490 stream segments within Bolivia and that share borders with Bolivia. The total theoretical hydropower potential (TTHP) of these stream segments was found to be 212 gigawatts (GW). Out of this total, 77.4 GW was within protected areas where hydropower projects cannot be developed; hence, the remaining total theoretical hydropower in Bolivia (outside the protected areas) was estimated as 135 GW. Nearly 1,000 1-km stream segments, however, were within the boundaries of existing hydropower projects. The TTHP of these stream segments was nearly 1.4 GW, so the residual TTHP of the streams in Bolivia was estimated as 133 GW. Care should be exercised to understand and interpret the TTHP identified in this study because all the stream segments identified and assessed in this study cannot be harnessed to their full capacity; furthermore, factors such as required environmental flows, efficiency, economics, and feasibility need to be considered to better identify a more real-world hydropower potential. If environmental flow requirements of 20–40 percent are considered, the total theoretical power available reduces by 60–80 percent. In addition, a 0.72 efficiency factor further reduces the estimation by another 28 percent. This study provides the base theoretical hydropower potential for Bolivia, the next step is to identify optimal hydropower plant locations and factor in the principles to appraise a real-world power potential in Bolivia.

  3. Estimating cumulative effects of clearcutting on stream temperatures

    USGS Publications Warehouse

    Bartholow, J.M.

    2000-01-01

    The Stream Segment Temperature Model was used to estimate cumulative effects of large-scale timber harvest on stream temperature. Literature values were used to create parameters for the model for two hypothetical situations, one forested and the other extensively clearcut. Results compared favorably with field studies of extensive forest canopy removal. The model provided insight into the cumulative effects of clearcutting. Change in stream shading was, as expected, the most influential factor governing increases in maximum daily water temperature, accounting for 40% of the total increase. Altered stream width was found to be more influential than changes to air temperature. Although the net effect from clearcutting was a 4oC warming, increased wind and reduced humidity tended to cool the stream. Temperature increases due to clearcutting persisted 10 km downstream into an unimpacted forest segment of the hypothetical stream, but those increases were moderated by cooler equilibrium conditions downstream. The model revealed that it is a complex set of factors, not single factors such as shade or air temperature, that governs stream temperature dynamics.

  4. Temporally consistent segmentation of point clouds

    NASA Astrophysics Data System (ADS)

    Owens, Jason L.; Osteen, Philip R.; Daniilidis, Kostas

    2014-06-01

    We consider the problem of generating temporally consistent point cloud segmentations from streaming RGB-D data, where every incoming frame extends existing labels to new points or contributes new labels while maintaining the labels for pre-existing segments. Our approach generates an over-segmentation based on voxel cloud connectivity, where a modified k-means algorithm selects supervoxel seeds and associates similar neighboring voxels to form segments. Given the data stream from a potentially mobile sensor, we solve for the camera transformation between consecutive frames using a joint optimization over point correspondences and image appearance. The aligned point cloud may then be integrated into a consistent model coordinate frame. Previously labeled points are used to mask incoming points from the new frame, while new and previous boundary points extend the existing segmentation. We evaluate the algorithm on newly-generated RGB-D datasets.

  5. Dissociated repetition deficits in aphasia can reflect flexible interactions between left dorsal and ventral streams and gender-dimorphic architecture of the right dorsal stream

    PubMed Central

    Berthier, Marcelo L.; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia

    2013-01-01

    Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and18FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The CA patient showed a greater activation of these cortical areas than the TCMA patient, but these changes did not result in normal performance. Repetition of word triplet lists activated bilateral perisylvian cortices in both patients, but activation in the CA patient with very poor performance was restricted to small frontal and posterior temporal foci bilaterally. These findings suggest that dissociated repetition deficits in our cases are probably reliant on flexible interactions between left dorsal stream (spared segments, short tracts remains) and left ventral stream and on gender-dimorphic architecture of the right dorsal stream. PMID:24391569

  6. Dissociated repetition deficits in aphasia can reflect flexible interactions between left dorsal and ventral streams and gender-dimorphic architecture of the right dorsal stream.

    PubMed

    Berthier, Marcelo L; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez Y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia

    2013-01-01

    Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and(18)FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The CA patient showed a greater activation of these cortical areas than the TCMA patient, but these changes did not result in normal performance. Repetition of word triplet lists activated bilateral perisylvian cortices in both patients, but activation in the CA patient with very poor performance was restricted to small frontal and posterior temporal foci bilaterally. These findings suggest that dissociated repetition deficits in our cases are probably reliant on flexible interactions between left dorsal stream (spared segments, short tracts remains) and left ventral stream and on gender-dimorphic architecture of the right dorsal stream.

  7. Recreation trails in Maine and New Hampshire: A comparison of notorized, non-motorized, and non-mechanized trails

    Treesearch

    Ethel Wilkerson; Andrew. Whitman

    2010-01-01

    We sampled 112 trail segments in Maine and New Hampshire to assess the impact of motorized and non-motorized recreation on trail conditions and stream sedimentation. On each segment, we assessed physical trail conditions (width, cross-sectional area, occurrence of excessively muddy and rutted/eroded sections), presence of trash, and sedimentation at stream crossings....

  8. Groundwater influences on the distribution and abundance of riverine smallmouth bass, Micropterus dolomieu, in pasture landscapes of the midwestern USA

    USGS Publications Warehouse

    Brewer, Shannon K.

    2013-01-01

    This study examined how spring-flow (SF) contributions to streams related to the distribution and abundance of smallmouth bass Micropterus dolomieu in a predominately pasture landscape in Missouri, USA. Stream segments (N=13) with similar landscape characters were classified by SF volume into high SF (HSF) or low SF (LSF) groups. The densities of smallmouth bass, channel unit (CU) use and temperature-selection patterns were assessed for several life stages and frequency distributions for age 0 fish. More smallmouth bass were present in stream segments with HSF influence. Age 0 fish were twice as likely to be present in HSF stream segments. Older age classes were present in stream reaches independent of SF contribution. For all age classes, the use of particular CUs did not depend on SF influence. All age classes were more likely to be present in pools than other CUs. Microhabitat temperature selection differed among age classes. Age 0 fish selected warmer temperatures with a gradual shift towards cooler temperatures for older age classes. The length frequency of age 0 fish was skewed towards larger individuals in streams with limited SF influence, whereas the length frequency in HSF stream segments was skewed towards smaller individuals. The benefits of significant groundwater via SF influence seem to be related to increased hatch or survival of age 0 fish and the availability of optimal temperatures for adult smallmouth bass growth. Thermal refugia and stable flows provided by springs should be recognised for their biological potential to provide suitable habitat as climate change and other land-use alterations increase temperature regimes and alter flow patterns.

  9. The burial of headwater streams in drainage pipes reduces in-stream nitrate retention: results from two US metropolitan areas

    EPA Science Inventory

    Nitrogen (N) retention in stream networks is an important ecosystem service that may be affected by the widespread burial of headwater streams in urban watersheds. Stream burial occurs when segments of a channel are encased in drainage pipe and buried beneath the land surface to...

  10. Aquatic organism passage at road-stream crossings—synthesis and guidelines for effectiveness monitoring

    Treesearch

    Robert L. Hoffman; Jason B. Dunham; Bruce P. Hansen

    2012-01-01

    Restoration and maintenance of passage for aquatic organisms at road-stream crossings represents a major management priority, involving an investment of hundreds of millions of dollars. This report has been written, in part, for field biologists who will be undertaking and evaluating the effectiveness of aquatic organism passage restoration projects at road-stream...

  11. Predicting cutthroat trout (Oncorhynchus clarkii) abundance in high-elevation streams: revisiting a model of translocation success

    Treesearch

    Michael K. Young; Paula M. Guenther-Gloss; Ashley D. Ficke

    2005-01-01

    Assessing viability of stream populations of cutthroat trout (Oncorhynchus clarkii) and identifying streams suitable for establishing populations are priorities in the western United States, and a model was recently developed to predict translocation success (as defined by an index of population size) of two subspecies based on mean July water...

  12. Segmenting Student Markets with a Student Satisfaction and Priorities Survey.

    ERIC Educational Resources Information Center

    Borden, Victor M. H.

    1995-01-01

    A market segmentation analysis of 872 university students compared 2 hierarchical clustering procedures for deriving market segments: 1 using matching-type measures and an agglomerative clustering algorithm, and 1 using the chi-square based automatic interaction detection. Results and implications for planning, evaluating, and improving academic…

  13. Prioritizing Road Treatments using the Geomorphic Roads Analysis and Inventory Package (GRAIP) to Improve Watershed Conditions in the Wall Creek Watershed, Oregon

    NASA Astrophysics Data System (ADS)

    Day, K. T.; Black, T.; Clifton, C.; Luce, C.; McCune, S.; Nelson, N.

    2010-12-01

    Wall Creek, tributary to the North Fork John Day River in eastern Oregon, was identified as a priority watershed by the Umatilla National Forest for restoration in 2002. Most streams in this 518 km2 multi-ownership watershed are designated critical habitat for threatened steelhead. Eight streams are listed on the Oregon 303(d) list for elevated temperatures and excess sedimentation. Over 1000 km of public and private roads in the watershed present a major source of potential water quality and habitat impairment. We conducted a watershed-wide inventory of roads using the Geomorphic Roads Analysis and Inventory Package (GRAIP) in 2009 to quantify sediment contributions from roads to streams. GRAIP is a field and GIS-based model developed by the Forest Service Rocky Mountain Research Station and Utah State University that georeferences and quantifies road hydrologic connectivity, sediment production and delivery, mass wasting, and risk of diversion and plugging at stream crossings. Field survey and modeling produced data for 6,473 drainage locations on 726 km of road (most of the publically owned roads) quantifying the location and mass of sediment produced and delivered to streams. Findings indicate a relatively small subset of roads deliver the majority of road-produced fine sediment; 12 percent of the road length delivers 90 percent of the total fine sediment to streams. Overall fine sediment production in the watershed is relatively low (with an estimated background erosion rate of 518,000 kg/yr for the watershed) and sediment produced and delivered from the road system appears to be a modest addition. Road surfaces produce approximately 81,455 kg of fine sediment per year, with 20,976 kg/year delivered to the stream network. Fifty-nine gullies were observed, 41 of which received road runoff. Sixteen road-related landslides were also observed. The excavated volume of these features totals 3,922,000 kg which is equivalent to 175 years of fine sediment delivery at the current rate. These data are being used by the Umatilla National Forest to prioritize road rehabilitation activities including storm risk reduction and road decommissioning, and to move toward an ecologically and economically sustainable road system. The highest sediment-delivering road segments were evaluated in 2010 to prioritize stabilization and storm damage risk reduction projects. Approximately 30 km of hydrologically connected road segments will be proposed for treatments including closure, decommissioning, and stabilization activities. Once complete, these improvements would result in the reduction of about 7,000 kg/year of fine sediment delivered to the fluvial system from the road network, or a third of the total road contribution to stream sedimentation. Methods and results presented are part of federal land management agency involvement in Total Maximum Daily Load development in the John Day Basin. The project is a collaborative effort with funding and support from the Environmental Protection Agency, Bureau of Land Management, and Oregon Department of Environmental Quality.

  14. Application guide for AFINCH (Analysis of Flows in Networks of Channels) described by NHDPlus

    USGS Publications Warehouse

    Holtschlag, David J.

    2009-01-01

    AFINCH (Analysis of Flows in Networks of CHannels) is a computer application that can be used to generate a time series of monthly flows at stream segments (flowlines) and water yields for catchments defined in the National Hydrography Dataset Plus (NHDPlus) value-added attribute system. AFINCH provides a basis for integrating monthly flow data from streamgages, water-use data, monthly climatic data, and land-cover characteristics to estimate natural monthly water yields from catchments by user-defined regression equations. Images of monthly water yields for active streamgages are generated in AFINCH and provide a basis for detecting anomalies in water yields, which may be associated with undocumented flow diversions or augmentations. Water yields are multiplied by the drainage areas of the corresponding catchments to estimate monthly flows. Flows from catchments are accumulated downstream through the streamflow network described by the stream segments. For stream segments where streamgages are active, ratios of measured to accumulated flows are computed. These ratios are applied to upstream water yields to proportionally adjust estimated flows to match measured flows. Flow is conserved through the NHDPlus network. A time series of monthly flows can be generated for stream segments that average about 1-mile long, or monthly water yields from catchments that average about 1 square mile. Estimated monthly flows can be displayed within AFINCH, examined for nonstationarity, and tested for monotonic trends. Monthly flows also can be used to estimate flow-duration characteristics at stream segments. AFINCH generates output files of monthly flows and water yields that are compatible with ArcMap, a geographical information system analysis and display environment. Chloropleth maps of monthly water yield and flow can be generated and analyzed within ArcMap by joining NHDPlus data structures with AFINCH output. Matlab code for the AFINCH application is presented.

  15. Improvement in Recursive Hierarchical Segmentation of Data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    2006-01-01

    A further modification has been made in the algorithm and implementing software reported in Modified Recursive Hierarchical Segmentation of Data (GSC- 14681-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 51. That software performs recursive hierarchical segmentation of data having spatial characteristics (e.g., spectral-image data). The output of a prior version of the software contained artifacts, including spurious segmentation-image regions bounded by processing-window edges. The modification for suppressing the artifacts, mentioned in the cited article, was addition of a subroutine that analyzes data in the vicinities of seams to find pairs of regions that tend to lie adjacent to each other on opposite sides of the seams. Within each such pair, pixels in one region that are more similar to pixels in the other region are reassigned to the other region. The present modification provides for a parameter ranging from 0 to 1 for controlling the relative priority of merges between spatially adjacent and spatially non-adjacent regions. At 1, spatially-adjacent-/spatially- non-adjacent-region merges have equal priority. At 0, only spatially-adjacent-region merges (no spectral clustering) are allowed. Between 0 and 1, spatially-adjacent- region merges have priority over spatially- non-adjacent ones.

  16. Fast simulation of packet loss rates in a shared buffer communications switch

    NASA Technical Reports Server (NTRS)

    Chang, Cheng-Shang; Heidelberger, Philip; Shahabuddin, Perwez

    1993-01-01

    This paper describes an efficient technique for estimating, via simulation, the probability of buffer overflows in a queueing model that arises in the analysis of ATM (Asynchronous Transfer Mode) communication switches. There are multiple streams of (autocorrelated) traffic feeding the switch that has a buffer of finite capacity. Each stream is designated as either being of high or low priority. When the queue length reaches a certain threshold, only high priority packets are admitted to the switch's buffer. The problem is to estimate the loss rate of high priority packets. An asymptotically optimal importance sampling approach is developed for this rare event simulation problem. In this approach, the importance sampling is done in two distinct phases. In the first phase, an importance sampling change of measure is used to bring the queue length up to the threshold at which low priority packets get rejected. In the second phase, a different importance sampling change of measure is used to move the queue length from the threshold to the buffer capacity.

  17. Mesoscale spatial variability of selected aquatic invertebrate community metrics from a minimally impaired stream segment

    USGS Publications Warehouse

    Gebler, J.B.

    2004-01-01

    The related topics of spatial variability of aquatic invertebrate community metrics, implications of spatial patterns of metric values to distributions of aquatic invertebrate communities, and ramifications of natural variability to the detection of human perturbations were investigated. Four metrics commonly used for stream assessment were computed for 9 stream reaches within a fairly homogeneous, minimally impaired stream segment of the San Pedro River, Arizona. Metric variability was assessed for differing sampling scenarios using simple permutation procedures. Spatial patterns of metric values suggest that aquatic invertebrate communities are patchily distributed on subsegment and segment scales, which causes metric variability. Wide ranges of metric values resulted in wide ranges of metric coefficients of variation (CVs) and minimum detectable differences (MDDs), and both CVs and MDDs often increased as sample size (number of reaches) increased, suggesting that any particular set of sampling reaches could yield misleading estimates of population parameters and effects that can be detected. Mean metric variabilities were substantial, with the result that only fairly large differences in metrics would be declared significant at ?? = 0.05 and ?? = 0.20. The number of reaches required to obtain MDDs of 10% and 20% varied with significance level and power, and differed for different metrics, but were generally large, ranging into tens and hundreds of reaches. Study results suggest that metric values from one or a small number of stream reach(es) may not be adequate to represent a stream segment, depending on effect sizes of interest, and that larger sample sizes are necessary to obtain reasonable estimates of metrics and sample statistics. For bioassessment to progress, spatial variability may need to be investigated in many systems and should be considered when designing studies and interpreting data.

  18. Description and User Manual for a Web-Based Interface to a Transit-Loss Accounting Program for Monument and Fountain Creeks, El Paso and Pueblo Counties, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Krammes, Gary S.; Beal, Vivian J.

    2007-01-01

    The U.S. Geological Survey, in cooperation with Colorado Springs Utilities, the Colorado Water Conservation Board, and the El Paso County Water Authority, began a study in 2004 with the following objectives: (1) Apply a stream-aquifer model to Monument Creek, (2) use the results of the modeling to develop a transit-loss accounting program for Monument Creek, (3) revise an existing accounting program for Fountain Creek to easily incorporate ongoing and future changes in management of return flows of reusable water, and (4) integrate the two accounting programs into a single program and develop a Web-based interface to the integrated program that incorporates simple and reliable data entry that is automated to the fullest extent possible. This report describes the results of completing objectives (2), (3), and (4) of that study. The accounting program for Monument Creek was developed first by (1) using the existing accounting program for Fountain Creek as a prototype, (2) incorporating the transit-loss results from a stream-aquifer modeling analysis of Monument Creek, and (3) developing new output reports. The capabilities of the existing accounting program for Fountain Creek then were incorporated into the program for Monument Creek and the output reports were expanded to include Fountain Creek. A Web-based interface to the new transit-loss accounting program then was developed that provided automated data entry. An integrated system of 34 nodes and 33 subreaches was integrated by combining the independent node and subreach systems used in the previously completed stream-aquifer modeling studies for the Monument and Fountain Creek reaches. Important operational criteria that were implemented in the new transit-loss accounting program for Monument and Fountain Creeks included the following: (1) Retain all the reusable water-management capabilities incorporated into the existing accounting program for Fountain Creek; (2) enable daily accounting and transit-loss computations for a variable number of reusable return flows discharged into Monument Creek at selected locations; (3) enable diversion of all or a part of a reusable return flow at any selected node for purposes of storage in off-stream reservoirs or other similar types of reusable water management; (4) and provide flexibility in the accounting program to change the number of return-flow entities, the locations at which the return flows discharge into Monument or Fountain Creeks, or the locations to which the return flows are delivered. The primary component of the Web-based interface is a data-entry form that displays data stored in the accounting program input file; the data-entry form allows for entry and modification of new data, which then is rewritten to the input file. When the data-entry form is displayed, up-to-date discharge data for each station are automatically computed and entered on the data-entry form. Data for native return flows, reusable return flows, reusable return flow diversions, and native diversions also are entered automatically or manually, if needed. In computing the estimated quantities of reusable return flow and the associated transit losses, the accounting program uses two sets of computations. The first set of computations is made between any two adjacent streamflow-gaging stations (termed 'stream-segment loop'); the primary purpose of the stream-segment loop is to estimate the loss or gain in native discharge between the two adjacent streamflow-gaging stations. The second set of computations is made between any two adjacent nodes (termed 'subreach loop'); the actual transit-loss computations are made in the subreach loop, using the result from the stream-segment loop. The stream-segment loop is completed for a stream segment, and then the subreach loop is completed for each subreach within the segment. When the subreach loop is completed for all subreaches within a stream segment, the stream-segment loop is initiated for the ne

  19. Strategy-aligned fuzzy approach for market segment evaluation and selection: a modular decision support system by dynamic network process (DNP)

    NASA Astrophysics Data System (ADS)

    Mohammadi Nasrabadi, Ali; Hosseinpour, Mohammad Hossein; Ebrahimnejad, Sadoullah

    2013-05-01

    In competitive markets, market segmentation is a critical point of business, and it can be used as a generic strategy. In each segment, strategies lead companies to their targets; thus, segment selection and the application of the appropriate strategies over time are very important to achieve successful business. This paper aims to model a strategy-aligned fuzzy approach to market segment evaluation and selection. A modular decision support system (DSS) is developed to select an optimum segment with its appropriate strategies. The suggested DSS has two main modules. The first one is SPACE matrix which indicates the risk of each segment. Also, it determines the long-term strategies. The second module finds the most preferred segment-strategies over time. Dynamic network process is applied to prioritize segment-strategies according to five competitive force factors. There is vagueness in pairwise comparisons, and this vagueness has been modeled using fuzzy concepts. To clarify, an example is illustrated by a case study in Iran's coffee market. The results show that success possibility of segments could be different, and choosing the best ones could help companies to be sure in developing their business. Moreover, changing the priority of strategies over time indicates the importance of long-term planning. This fact has been supported by a case study on strategic priority difference in short- and long-term consideration.

  20. Priority River Metrics for Urban Residents of the Santa Cruz River Watershed

    EPA Science Inventory

    Indicator selection is a persistent question in river and stream assessment and management. We employ qualitative research techniques to identify features of rivers and streams important to urban residents recruited from the general public in the Santa Cruz watershed. Interviews ...

  1. Priority River Metrics for Residents of an Urbanized Arid Watershed

    EPA Science Inventory

    What indicators to use is a persistent question in river and stream assessment and management. We employ qualitative research techniques to identify features of rivers and streams important to the general public in an urbanized watershed of the Southwestern U.S. Transcriptions an...

  2. Using Predictability for Lexical Segmentation

    ERIC Educational Resources Information Center

    Çöltekin, Çagri

    2017-01-01

    This study investigates a strategy based on predictability of consecutive sub-lexical units in learning to segment a continuous speech stream into lexical units using computational modeling and simulations. Lexical segmentation is one of the early challenges during language acquisition, and it has been studied extensively through psycholinguistic…

  3. Contrasting landscape influences on sediment supply and stream restoration priorities in northern Fennoscandia (Sweden and Finland) and coastal British Columbia.

    PubMed

    Rosenfeld, Jordan; Hogan, Daniel; Palm, Daniel; Lundquist, Hans; Nilsson, Christer; Beechie, Timothy J

    2011-01-01

    Sediment size and supply exert a dominant control on channel structure. We review the role of sediment supply in channel structure, and how regional differences in sediment supply and land use affect stream restoration priorities. We show how stream restoration goals are best understood within a common fluvial geomorphology framework defined by sediment supply, storage, and transport. Land-use impacts in geologically young landscapes with high sediment yields (e.g., coastal British Columbia) typically result in loss of in-stream wood and accelerated sediment inputs from bank erosion, logging roads, hillslopes and gullies. In contrast, northern Sweden and Finland are landscapes with naturally low sediment yields caused by low relief, resistant bedrock, and abundant mainstem lakes that act as sediment traps. Land-use impacts involved extensive channel narrowing, removal of obstructions, and bank armouring with boulders to facilitate timber floating, thereby reducing sediment supply from bank erosion while increasing export through higher channel velocities. These contrasting land-use impacts have pushed stream channels in opposite directions (aggradation versus degradation) within a phase-space defined by sediment transport and supply. Restoration in coastal British Columbia has focused on reducing sediment supply (through bank and hillslope stabilization) and restoring wood inputs. In contrast, restoration in northern Fennoscandia (Sweden and Finland) has focused on channel widening and removal of bank-armouring boulders to increase sediment supply and retention. These contrasting restoration priorities illustrate the consequences of divergent regional land-use impacts on sediment supply, and the utility of planning restoration activities within a mechanistic sediment supply-transport framework.

  4. Reach-scale land use drives the stress responses of a resident stream fish.

    PubMed

    Blevins, Zachary W; Wahl, David H; Suski, Cory D

    2014-01-01

    Abstract To date, relatively few studies have tried to determine the practicality of using physiological information to help answer complex ecological questions and assist in conservation actions aimed at improving conditions for fish populations. In this study, the physiological stress responses of fish were evaluated in-stream between agricultural and forested stream reaches to determine whether differences in these responses can be used as tools to evaluate conservation actions. Creek chub Semotilus atromaculatus sampled directly from forested and agricultural stream segments did not show differences in a suite of physiological indicators. When given a thermal challenge in the laboratory, creek chub sampled from cooler forested stream reaches had higher cortisol levels and higher metabolic stress responses to thermal challenge than creek chub collected from warmer and more thermally variable agricultural reaches within the same stream. Despite fish from agricultural and forested stream segments having different primary and secondary stress responses, fish were able to maintain homeostasis of other physiological indicators to thermal challenge. These results demonstrate that local habitat conditions within discrete stream reaches may impact the stress responses of resident fish and provide insight into changes in community structure and the ability of tolerant fish species to persist in agricultural areas.

  5. Natural landscape and stream segment attributes influencing the distribution and relative abundance of riverine smallmouth bass in Missouri

    USGS Publications Warehouse

    Brewer, S.K.; Rabeni, C.F.; Sowa, S.P.; Annis, G.

    2007-01-01

    Protecting and restoring fish populations on a regional basis are most effective if the multiscale factors responsible for the relative quality of a fishery are known. We spatially linked Missouri's statewide historical fish collections to environmental features in a geographic information system, which was used as a basis for modeling the importance of landscape and stream segment features in supporting a population of smallmouth bass Micropterus dolomieu. Decision tree analyses were used to develop probability-based models to predict statewide occurrence and within-range relative abundances. We were able to identify the range of smallmouth bass throughout Missouri and the probability of occurrence within that range by using a few broad landscape variables: the percentage of coarse-textured soils in the watershed, watershed relief, and the percentage of soils with low permeability in the watershed. The within-range relative abundance model included both landscape and stream segment variables. As with the statewide probability of occurrence model, soil permeability was particularly significant. The predicted relative abundance of smallmouth bass in stream segments containing low percentages of permeable soils was further influenced by channel gradient, stream size, spring-flow volume, and local slope. Assessment of model accuracy with an independent data set showed good concordance. A conceptual framework involving naturally occurring factors that affect smallmouth bass potential is presented as a comparative model for assessing transferability to other geographic areas and for studying potential land use and biotic effects. We also identify the benefits, caveats, and data requirements necessary to improve predictions and promote ecological understanding. ?? Copyright by the American Fisheries Society 2007.

  6. Use of a Corona Discharge to Selectively Pattern a Hydrophilic/Hydrophobic Interface for Integrating Segmented Flow with Microchip Electrophoresis and Electrochemical Detection

    PubMed Central

    Filla, Laura A.; Kirkpatrick, Douglas C.; Martin, R. Scott

    2011-01-01

    Segmented flow in microfluidic devices involves the use of droplets that are generated either on- or off-chip. When used with off-chip sampling methods, segmented flow has been shown to prevent analyte dispersion and improve temporal resolution by periodically surrounding an aqueous flow stream with an immiscible carrier phase as it is transferred to the microchip. To analyze the droplets by methods such as electrochemistry or electrophoresis, a method to “desegment” the flow into separate aqueous and immiscible carrier phase streams is needed. In this paper, a simple and straightforward approach for this desegmentation process was developed by first creating an air/water junction in natively hydrophobic and perpendicular PDMS channels. The air-filled channel was treated with a corona discharge electrode to create a hydrophilic/hydrophobic interface. When a segmented flow stream encounters this interface, only the aqueous sample phase enters the hydrophilic channel, where it can be subsequently analyzed by electrochemistry or microchip-based electrophoresis with electrochemical detection. It is shown that the desegmentation process does not significantly degrade the temporal resolution of the system, with rise times as low as 12 s reported after droplets are recombined into a continuous flow stream. This approach demonstrates significant advantages over previous studies in that the treatment process takes only a few minutes, fabrication is relatively simple, and reversible sealing of the microchip is possible. This work should enable future studies where off-chip processes such as microdialysis can be integrated with segmented flow and electrochemical-based detection. PMID:21718004

  7. WASP7 Stream Transport - Model Theory and User's Guide: Supplement to Water Quality Analysis Simulation Program (WASP) User Documentation

    EPA Science Inventory

    The standard WASP7 stream transport model calculates water flow through a branching stream network that may include both free-flowing and ponded segments. This supplemental user manual documents the hydraulic algorithms, including the transport and hydrogeometry equations, the m...

  8. Feeding kinematics and performance of Hawaiian stream gobies, Awaous guamensis and Lentipes concolor: linkage of functional morphology and ecology.

    PubMed

    Maie, Takashi; Wilson, Megan P; Schoenfuss, Heiko L; Blob, Richard W

    2009-03-01

    Distributions of Hawaiian stream fishes are typically interrupted by waterfalls that divide streams into multiple segments. Larvae hatch upstream, are flushed into the ocean, and must climb these waterfalls to reach adult habitats when returning back to freshwater as part of an amphidromous life cycle. Stream surveys and studies of climbing performance show that Lentipes concolor Gill can reach fast-flowing upper stream segments but that Awaous guamensis Valenciennes reaches only slower, lower stream segments. Gut content analyses for these two species indicate considerable overlap in diet, suggesting that feeding kinematics and performance of these two species might be comparable. Alternatively, feeding kinematics and performance of these species might be expected to differ in relation to the different flow regimes in their habitat (feeding in faster stream currents for L. concolor versus in slower currents for A. guamensis). To test these alternative hypotheses, we compared food capturing kinematics and performance during suction feeding behaviors of A. guamensis and L. concolor using morphological data and high-speed video. Lentipes concolor showed both a significantly larger gape angle and faster jaw opening than A. guamensis. Geometric models calculated that despite the inverse relationship of gape size and suction pressure generation, the fast jaw motions of L. concolor allow it to achieve higher pressure differentials than A. guamensis. Such elevated suction pressure would enhance the ability of L. concolor to successfully capture food in the fast stream reaches it typically inhabits. Differences in jaw morphology may contribute to these differences in performance, as the lever ratio for jaw opening is about 10% lower in L. concolor compared with A. guamensis, suiting the jaws of L. concolor better for fast opening. Copyright 2008 Wiley-Liss, Inc.

  9. Navigation domain representation for interactive multiview imaging.

    PubMed

    Maugey, Thomas; Daribo, Ismael; Cheung, Gene; Frossard, Pascal

    2013-09-01

    Enabling users to interactively navigate through different viewpoints of a static scene is a new interesting functionality in 3D streaming systems. While it opens exciting perspectives toward rich multimedia applications, it requires the design of novel representations and coding techniques to solve the new challenges imposed by the interactive navigation. In particular, the encoder must prepare a priori a compressed media stream that is flexible enough to enable the free selection of multiview navigation paths by different streaming media clients. Interactivity clearly brings new design constraints: the encoder is unaware of the exact decoding process, while the decoder has to reconstruct information from incomplete subsets of data since the server generally cannot transmit images for all possible viewpoints due to resource constrains. In this paper, we propose a novel multiview data representation that permits us to satisfy bandwidth and storage constraints in an interactive multiview streaming system. In particular, we partition the multiview navigation domain into segments, each of which is described by a reference image (color and depth data) and some auxiliary information. The auxiliary information enables the client to recreate any viewpoint in the navigation segment via view synthesis. The decoder is then able to navigate freely in the segment without further data request to the server; it requests additional data only when it moves to a different segment. We discuss the benefits of this novel representation in interactive navigation systems and further propose a method to optimize the partitioning of the navigation domain into independent segments, under bandwidth and storage constraints. Experimental results confirm the potential of the proposed representation; namely, our system leads to similar compression performance as classical inter-view coding, while it provides the high level of flexibility that is required for interactive streaming. Because of these unique properties, our new framework represents a promising solution for 3D data representation in novel interactive multimedia services.

  10. Linking river management to species conservation using dynamic landscape scale models

    USGS Publications Warehouse

    Freeman, Mary C.; Buell, Gary R.; Hay, Lauren E.; Hughes, W. Brian; Jacobson, Robert B.; Jones, John W.; Jones, S.A.; LaFontaine, Jacob H.; Odom, Kenneth R.; Peterson, James T.; Riley, Jeffrey W.; Schindler, J. Stephen; Shea, C.; Weaver, J.D.

    2013-01-01

    Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data to characterize stream segments with respect to channel size, confinement, position and connectedness within the stream network. Simulated streamflow dynamics are then applied to model fish metapopulation dynamics in stream segments, using hypothesized effects of streamflow magnitude and variability on population processes, conditioned by channel characteristics. The resulting time series simulate spatially explicit, annual changes in species occurrences or assemblage metrics (e.g. species richness) across the catchment as outcomes of management scenarios. Sensitivity analyses using alternative, plausible links between streamflow components and metapopulation processes, or allowing for alternative modes of fish dispersal, demonstrate large effects of ecological uncertainty on model outcomes and highlight needed research and monitoring. Nonetheless, with uncertainties explicitly acknowledged, dynamic, landscape-scale simulations may prove useful for quantitatively comparing river management alternatives with respect to species conservation.

  11. A stochastic population model to evaluate Moapa dace (Moapa coriacea) population growth under alternative management scenarios

    USGS Publications Warehouse

    Perry, Russell W.; Jones, Edward; Scoppettone, G. Gary

    2015-07-14

    Increasing or decreasing the total carrying capacity of all stream segments resulted in changes in equilibrium population size that were directly proportional to the change in capacity. However, changes in carrying capacity to some stream segments but not others could result in disproportionate changes in equilibrium population sizes by altering density-dependent movement and survival in the stream network. These simulations show how our IBM can provide a useful management tool for understanding the effect of restoration actions or reintroductions on carrying capacity, and, in turn, how these changes affect Moapa dace abundance. Such tools are critical for devising management strategies to achieve recovery goals.

  12. Segment scheduling method for reducing 360° video streaming latency

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; Asbun, Eduardo; He, Yong; Ye, Yan

    2017-09-01

    360° video is an emerging new format in the media industry enabled by the growing availability of virtual reality devices. It provides the viewer a new sense of presence and immersion. Compared to conventional rectilinear video (2D or 3D), 360° video poses a new and difficult set of engineering challenges on video processing and delivery. Enabling comfortable and immersive user experience requires very high video quality and very low latency, while the large video file size poses a challenge to delivering 360° video in a quality manner at scale. Conventionally, 360° video represented in equirectangular or other projection formats can be encoded as a single standards-compliant bitstream using existing video codecs such as H.264/AVC or H.265/HEVC. Such method usually needs very high bandwidth to provide an immersive user experience. While at the client side, much of such high bandwidth and the computational power used to decode the video are wasted because the user only watches a small portion (i.e., viewport) of the entire picture. Viewport dependent 360°video processing and delivery approaches spend more bandwidth on the viewport than on non-viewports and are therefore able to reduce the overall transmission bandwidth. This paper proposes a dual buffer segment scheduling algorithm for viewport adaptive streaming methods to reduce latency when switching between high quality viewports in 360° video streaming. The approach decouples the scheduling of viewport segments and non-viewport segments to ensure the viewport segment requested matches the latest user head orientation. A base layer buffer stores all lower quality segments, and a viewport buffer stores high quality viewport segments corresponding to the most recent viewer's head orientation. The scheduling scheme determines viewport requesting time based on the buffer status and the head orientation. This paper also discusses how to deploy the proposed scheduling design for various viewport adaptive video streaming methods. The proposed dual buffer segment scheduling method is implemented in an end-to-end tile based 360° viewports adaptive video streaming platform, where the entire 360° video is divided into a number of tiles, and each tile is independently encoded into multiple quality level representations. The client requests different quality level representations of each tile based on the viewer's head orientation and the available bandwidth, and then composes all tiles together for rendering. The simulation results verify that the proposed dual buffer segment scheduling algorithm reduces the viewport switch latency, and utilizes available bandwidth more efficiently. As a result, a more consistent immersive 360° video viewing experience can be presented to the user.

  13. Aquatic insect community structure under the influence of small dams in a stream of the Mogi-Guaçu river basin, state of São Paulo.

    PubMed

    Saulino, H H L; Corbi, J J; Trivinho-Strixino, S

    2014-02-01

    The fragmentation of lotic systems caused by construction of dams has modified many aquatic communities. The objective of this study was to analyse changes in the aquatic insect community structure by discontinuity of habitat created by dams along the Ribeirão das Anhumas, a sub-basin of the Mogi-Guaçu River (state of São Paulo, Brazil). Entomofauna collection was carried out in 10 segments upstream and downstream of five dams along the longitudinal profile of the stream, with a quick sampling method using a D net (mesh 250 mm) with 2 minutes of sampling effort. The insects were sorted and identified to the lowest possible taxonomic level and analysed by the Shannon diversity index, β diversity, richness estimated by rarefaction curves and relative participation of functional feeding groups. The results showed a slight reduction in diversity in the downstream segments, as well as along the longitudinal profile of the stream. However, there were no significant differences in abundance and richness between the upstream and downstream segments, indicating that the dams did not influence these variables. Differences were observed in the functional feeding groups along the longitudinal profile. Predator and gatherer insects were dominant in all segments analysed. The feeding group of shredders was more abundant in the segment DSIII with the participation of Marilia Müller (Odontoceridae - Trichoptera), although we observed a decrease of shredders and scrapers with the decrease of the canopy cover reducing values of β diversity in the continuum of Ribeirão das Anhumas. This result demonstrated the importance of the conservation of the riparian vegetation in order to maintain the integrity of the stream.

  14. Streamflow gain/loss in the Republican River basin, Nebraska, March 1989

    USGS Publications Warehouse

    Johnson, Michaela R.; Stanton, Jennifer S.; Cornwall, James F.; Landon, Matthew K.

    2002-01-01

    This arc and point data set contains streamflow measurement sites and reaches indicating streamflow gain or loss under base-flow conditions along the Republican River and tributaries in Nebraska during March 21 to 22, 1989 (Boohar and others, 1990). These measurements were made to obtain data on ground-water/surface-water interaction. Flow was visually observed to be zero, was measured, or was estimated at 136 sites. The measurements were made on the main stem of the Republican River and all flowing tributaries that enter the Republican River above Swanson Reservoir and parts of the Frenchman, Red Willow, and Medicine Creek drainages in the Nebraska part of the Republican River Basin. Tributaries were followed upstream until the first road crossing where zero flow was encountered. For selected streams, points of zero flow upstream of the first zero flow site were also checked. Streamflow gain or loss for each stream reach was calculated by subtracting the streamflow values measured at the upstream end of the reach and values for contributing tributaries from the downstream value. The data obtained reflected base-flow conditions suitable for estimating streamflow gains and losses for stream reaches between sites. This digital data set was created by manually plotting locations of streamflow measurements. These points were used to designate stream-reach segments to calculate gain/loss per river mile. Reach segments were created by manually splitting the lines from a 1:250,000 hydrography data set (Soenksen and others, 1999) at every location where the streams were measured. Each stream-reach segment between streamflow-measurement sites was assigned a unique reach number. All other lines in the hydrography data set without reach numbers were omitted. This data set was created to archive the calculated streamflow gains and losses of selected streams in part of the Republican River Basin, Nebraska in March 1989, and make the data available for use with geographic information systems (GIS). If measurement sites are used separately from reaches, the maximum scale of 1:100,000 should not be exceeded. When used in conjunction with the reach segments, the maximum scale should not exceed 1:250,000.

  15. U.S. stream flow measurement and data dissemination improve

    USGS Publications Warehouse

    Hirsch, Robert M.; Costa, John E.

    2004-01-01

    Stream flow information is essential for many important uses across a broad range of scales, including global water balances, engineering design, flood forecasting, reservoir operations, navigation, water supply, recreation, and environmental management. Growing populations and competing priorities for water, including preservation and restoration of aquatic habitat, are spurring demand for more accurate, timely, and accessible water data.To be most useful, stream flow information must be collected in a standardized manner, with a known accuracy, and for a long and continuous time period.

  16. INNOVATIVE APPROACHES TO IMPROVE THE TMDL PROCESS: USING ALTERNATIVE WATERSHED SAMPLING DESIGNS TO MEASURE AND CLASSIFY EXPOSURE TO NATURAL AND ANTHROPOGENIC DETERMINANTS OF ECOLOGICAL CONDITION.

    EPA Science Inventory

    As a means to protect the Nation's rivers and streams, states have adopted biocriteria, a narrative or numeric standard for the biological condition of streams. When stream segments or whole watersheds do not meet a state's biocriteria, then that water body is considered impaired...

  17. streamgap-pepper: Effects of peppering streams with many small impacts

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Erkal, Denis; Sanders, Jason

    2017-02-01

    streamgap-pepper computes the effect of subhalo fly-bys on cold tidal streams based on the action-angle representation of streams. A line-of-parallel-angle approach is used to calculate the perturbed distribution function of a given stream segment by undoing the effect of all impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 10^5 Msun, accounting for the stream's internal dispersion and overlapping impacts. This code uses galpy (ascl:1411.008) and the streampepperdf.py galpy extension, which implements the fast calculation of the perturbed stream structure.

  18. Cinnamon gulch revisited: Another look at separating natural and mining-impacted contributions to instream metal load

    USGS Publications Warehouse

    Runkel, Robert L.; Verplanck, Philip; Kimball, Briant; Walton-Day, Katie

    2018-01-01

    Baseline, premining data for streams draining abandoned mine lands is virtually non existent, and indirect methods for estimating premining conditions are needed to establish realistic, cost effective cleanup goals. One such indirect method is the proximal analog approach, in which premining conditions are estimated using data from nearby mineralized areas that are unaffected by mining. In this paper, we combine the proximal analog approach with a quantitative mass balance framework using data from a spatially-detailed synoptic sampling campaign. The combined approach is applied to Cinnamon Gulch, a headwater stream with numerous draining adits. Synoptic sampling results indicate that three of the top five metal sources are affected by mining activities, and stream segments draining these sources account for a large percentage of overall metal loading within the study reach. These initial calculations overestimate the effects of mining, as the affected stream segments were likely acidic and metal rich prior to mining. Premining loads and concentrations were therefore determined through a replacement approach in which the chemistry of each mining-affected stream segment is revised based on proximal analog concentrations. The revised loading profiles indicate that 15–17% of the Al, Cd, Cu, Mn, Ni, and Zn loads are attributable to mining, whereas the mining contribution for Pb is 40%. Premining concentrations of Al, Cd, Cu, Mn, and Zn are estimated to be in excess of aquatic life standards over the length of the study reach.

  19. Geomorphic characteristics and classification of Duluth-area streams, Minnesota

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Peppler, Marie C.; DePhilip, Michele M.; Lee, Kathy E.

    2006-01-01

    In 2003 and 2004, a geomorphic assessment of streams in 20 watersheds in the Duluth, Minn., area was conducted to identify and summarize geomorphic characteristics, processes, disturbance mechanisms, and potential responses to disturbance. Methods used to assess the streams included watershed characterization, descriptions of segment slopes and valley types, historical aerial photograph interpretation, and rapid field assessments and intensive field surveys of stream reaches. Geomorphic conditions were summarized into a segment-scale classification with 15 categories mainly based on drainage-network position and slope, and, secondarily, based on geologic setting, valley type, and dominant geomorphic processes. Main causes of geomorphic disturbance included historical logging and agriculture, and ongoing urban development, human-caused channel alterations, road and storm sewer drainage, ditching, hiking trails, and gravel pits or quarries. Geomorphic responses to these disturbances are dependent on a combination of drainage-network position, slope, and geologic setting. Geologic setting is related to drainage-network position because the geologic deposits parallel the Lake Superior shoreline. Headwater streams in large watersheds flow over glacial deposits above altitudes of about 1,200 feet (ft). Headwater tributaries and upper main stems have ditch-like channels with gentle slopes and no valleys. Urban development and road drainage cause increased runoff and flood peaks in these segments resulting in channel widening. Below about 1,200 ft, main-stem segments generally are affected by bedrock type and structure and have steep slopes and confined or entrenched valleys. Increases in flood peaks do not cause incision or widening in the bedrock-controlled valleys; instead, the flow and scour areas are expanded. Feeder tributaries to these main stems have steep, confined valleys and may be sources for sediment from urban areas, road runoff, or storm sewer outfalls. Main-stem segments near the glacial deposits/surficial bedrock contact (1,000–1,200 ft) have the most potential for response to disturbance because they tend to have narrow valleys with sandy glacial lakeshore deposits and moderate slopes. Increases in flood peaks (from upstream increases in runoff) increase the potential for landslides and mass wasting from valley sides as well as channel widening.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Abdelaziz, Omar; Qu, Ming

    This paper introduces a first-order physics-based model that accounts for the fundamental heat and mass transfer between a humid-air vapor stream on feed side to another flow stream on permeate side. The model comprises a few optional submodels for membrane mass transport; and it adopts a segment-by-segment method for discretizing heat and mass transfer governing equations for flow streams on feed and permeate sides. The model is able to simulate both dehumidifiers and energy recovery ventilators in parallel-flow, cross-flow, and counter-flow configurations. The predicted tresults are compared reasonably well with the measurements. The open-source codes are written in C++. Themore » model and open-source codes are expected to become a fundament tool for the analysis of membrane-based dehumidification in the future.« less

  1. Changing numbers of spawning cutthroat trout in tributary streams of Yellowstone Lake and estimates of grizzly bears visiting streams from DNA

    USGS Publications Warehouse

    Haroldson, M.A.; Gunther, K.A.; Reinhart, Daniel P.; Podruzny, S.R.; Cegelski, C.; Waits, L.; Wyman, T.C.; Smith, J.

    2005-01-01

    Spawning Yellowstone cutthroat trout (Oncorhynchus clarki) provide a source of highly digestible energy for grizzly bears (Ursus arctos) that visit tributary streams to Yellowstone Lake during the spring and early summer. During 1985–87, research documented grizzly bears fishing on 61% of the 124 tributary streams to the lake. Using track measurements, it was estimated that a minimum of 44 grizzly bears fished those streams annually. During 1994, non-native lake trout (Salvelinus namaycush) were discovered in Yellowstone Lake. Lake trout are efficient predators and have the potential to reduce the native cutthroat population and negatively impact terrestrial predators that use cutthroat trout as a food resource. In 1997, we began sampling a subset of streams (n = 25) from areas of Yellowstone Lake surveyed during the previous study to determine if changes in spawner numbers or bear use had occurred. Comparisons of peak numbers and duration suggested a considerable decline between study periods in streams in the West Thumb area of the lake. The apparent decline may be due to predation by lake trout. Indices of bear use also declined on West Thumb area streams. We used DNA from hair collected near spawning streams to estimate the minimum number of bears visiting the vicinity of spawning streams. Seventy-four individual bears were identified from 429 hair samples. The annual number of individuals detected ranged from 15 in 1997 to 33 in 2000. Seventy percent of genotypes identified were represented by more than 1 sample, but only 31% of bears were documented more than 1 year of the study. Sixty-two (84%) bears were only documented in 1 segment of the lake, whereas 12 (16%) were found in 2–3 lake segments. Twenty-seven bears were identified from hair collected at multiple streams. One bear was identified on 6 streams in 2 segments of the lake and during 3 years of the study. We used encounter histories derived from DNA and the Jolly-Seber procedure in Program MARK to produce annual estimates of grizzly bears visiting streams. Approximately 68 grizzly bears visited the vicinity of cutthroat trout spawning streams annually. Thus, approximately 14–21% of grizzly bears in the Greater Yellowstone Ecosystem (GYE) may have used this threatened food resource annually. Yellowstone National Park (YNP) is attempting to control the lake trout population in Yellowstone Lake; our results underscore the importance of that effort to grizzly bears.

  2. Sixteen-Month-Old Infants' Segment Words from Infant- and Adult-Directed Speech

    ERIC Educational Resources Information Center

    Mani, Nivedita; Pätzold, Wiebke

    2016-01-01

    One of the first challenges facing the young language learner is the task of segmenting words from a natural language speech stream, without prior knowledge of how these words sound. Studies with younger children find that children find it easier to segment words from fluent speech when the words are presented in infant-directed speech, i.e., the…

  3. New studies initiated by the U.S. Geological Survey - Effects of nutrient enrichment on stream ecosystems

    USGS Publications Warehouse

    Munn, Mark D.; Hamilton, Pixie A.

    2003-01-01

    In 2001, the U.S. Geological Survey’s National Water-Quality Assessment (NAWQA) Program began an intensive study of nutrient enrichment elevated concentrations of nitrogen and phosphorus in streams in five agricultural basins across the Nation (see map, p. 2). This study is providing nationally consistent and comparable data and analyses of nutrient conditions, including how these conditions vary as a result of natural and human-related factors, and how nutrient conditions affect algae and other biological communities. This information will benefit stakeholders, including the U.S. Environmental Protection Agency (USEPA) and its partners, who are developing nutrient criteria to protect the aquatic health of streams in different geographic regions.Nutrient enrichment is one of five national priority topics addressed by NAWQA in its second decade of studies, which began in 2001. During its first round of assessments in 51 major river basins (referred to as “Study Units”), NAWQA scientists collected data on water chemistry, stream hydrology and habitat, and biological communities; currently, NAWQA is revisiting selected basins and focusing on (1) trends, (2) factors that affect water quality and aquatic health, and (3) national priority water issues related to, for example, the development of nutrient criteria, source-water protection strategies, and stream restoration plans.The nutrient enrichment study has four major objectives that address nutrient conditions, dissolved oxygen, aquatic communities, and geographic and landscape features in agricultural basins (see inset). The focus on agricultural streams is a starting point. As the study progresses, streams draining other land uses, such as those in residential and urban areas, will likely be added.

  4. A simple prioritization tool to diagnose impairment of stream temperature for coldwater fishes in the Great Basin

    USGS Publications Warehouse

    Falke, Jeffrey A.; Dunham, Jason B.; Hockman-Wert, David; Pahl, Randy

    2016-01-01

    We provide a simple framework for diagnosing the impairment of stream water temperature for coldwater fishes across broad spatial extents based on a weight-of-evidence approach that integrates biological criteria, species distribution models, and geostatistical models of stream temperature. As a test case, we applied our approach to identify stream reaches most likely to be thermally impaired for Lahontan Cutthroat Trout Oncorhynchus clarkii henshawi in the upper Reese River, located in the northern Great Basin, Nevada. We first evaluated the capability of stream thermal regime descriptors to explain variation across 170 sites, and we found that the 7-d moving average of daily maximum stream temperatures (7DADM) provided minimal among-descriptor redundancy and, based on an upper threshold of 20°C, was also a good indicator of acute and chronic thermal stress. Next, we quantified the range of Lahontan Cutthroat Trout within our study area using a geographic distribution model. Finally, we used a geostatistical model to assess spatial variation in 7DADM and predict potential thermal impairment at the stream reach scale. We found that whereas 38% of reaches in our study area exceeded a 7DADM of 20°C and 35% were significantly warmer than predicted, only 17% both exceeded the biological criterion and were significantly warmer than predicted. This filtering allowed us to identify locations where physical and biological impairment were most likely within the network and that would represent the highest management priorities. Although our approach lacks the precision of more comprehensive approaches, it provides a broader context for diagnosing impairment and is a useful means of identifying priorities for more detailed evaluations across broad and heterogeneous stream networks.

  5. Opinion Polling and the Measurement of Americans' Attitudes Regarding Education

    ERIC Educational Resources Information Center

    Billingham, Chase M.; Kimelberg, Shelley McDonough

    2016-01-01

    The meaning, measurement, and implications of "public opinion" have long been a source of debate. In this paper, we examine the extent to which the educational priorities of elites in the US reflect the educational priorities of the American public. To do so, we focus on one particular segment of the education policy-making elite --…

  6. Spatially explicit exposure assessment for small streams in catchments of the orchard growing region `Lake Constance

    NASA Astrophysics Data System (ADS)

    Golla, B.; Bach, M.; Krumpe, J.

    2009-04-01

    1. Introduction Small streams differ greatly from the standardised water body used in the context of aquatic risk assessment for the regulation of plant protection products in Germany. The standard water body is static, with a depth of 0.3 m and a width of 1.0 m. No dilution or water replacement takes place. Spray drift happens always in direction to the water body. There is no variability in drift deposition rate (90th percentile spray drift deposition values [2]). There is no spray drift filtering by vegetation. The application takes place directly adjacent to the water body. In order to establish a more realistic risk assessment procedure the Federal Office for Consumer Protection and Food Safety (BVL) and the Federal Environment Agency (UBA) aggreed to replace deterministic assumptions with data distributions and spatially explicit data and introduce probabilistic methods [3, 4, 5]. To consider the spatial and temporal variability in the exposure situations of small streams the hydraulic and morphological characteristics of catchments need to be described as well as the spatial distribution of fields treated with pesticides. As small streams are the dominant type of water body in most German orchard regions, we use the growing region Lake Constance as pilot region. 2. Materials and methods During field surveys we derive basic morphological parameters for small streams in the Lake Constance region. The mean water width/depth ratio is 13 with a mean depth of 0.12 m. The average residence time is 5.6 s/m (n=87) [1]. Orchards are mostly located in the upper parts of the catchments. Based on an authoritative dataset on rivers and streams of Germany (ATKIS DLM25) we constructed a directed network topology for the Lake Constance region. The gradient of the riverbed is calculated for river stretches of > 500 m length. The network for the pilot region consists of 2000 km rivers and streams. 500 km stream length are located within a distance of 150 m to orchards. Within this distance a spray drift exposure with adverse effects is theoretically possible [6]. The network is segmented to approx. 80'000 segments of 25 m length. One segment is the basic element of the exposure assessment. Based on the Manning-Strickler formula and empirically determined relations two equations are developed to express the width and depth of the streams and the flow velocity [7]. Using Java programming and spatial network analysis within Oracle 10g/Spatial DBMS we developed a tool to simulate concentration over time for all single 25 m segments of the stream network. The analysis considers the spatially explicit upstream exposure situations due to the locations of orchards and recovery areas in the catchments. The application which takes place on a specific orchard is simulated according to realistic application patterns or to the simplistic assumption that all orchards are sprayed on the same day. 3. Results The results of the analysis are distributions of time average concentrations (mPEC) for all single stream segments of the stream network. The averaging time window can be defined flexibly between 1 h (mPEC1h) to 24 h (mPEC24h). Spatial network analysis based on georeferenced hydraulic and morphological parameters proved to be a suitable approach for analysing the exposure situation of streams under more realistic aspects. The time varying concentration of single stream segments can be analysed over a vegetation period or a single day. Stream segments which exceed a trigger concentration or segments with a specific pulse concentration pattern in given time windows can be identified and be addressed by e.g. implementing additional drift mitigation measures. References [1] Golla, B., J. Krumpe, J. Strassemeyer, and V. Gutsche. (2008): Refined exposure assessment of small streams in German orchard regions. Part 1. Results of a hydromorphological survey. Journal für Kulturpflanzen (submitted). [2] Rautmann, D., Streloke, M, and Winkler, R (1999): New basic drift values in the authorization procedure for plant protection products, pp. 133-141. In Workshop on risk management and risk mitigation measures in the context of authorization of plant protection products [3] Klein, A. W., Dechet, F., and Streloke, M (2003): Probabilistic Assessment Method for Risk Analysis in the framework of Plant Protection Product Authorisation, Industrieverband Agrar (IVA, 2006), Frankfurt/Main [4] Schulz R, Stehle S, Elsaesser F, Matezki S, Müller A, Neumann M, Ohliger R, Wogram J, Zenker K. 2008. Geodata-based Probabilistic Risk Assessment and Management of Pesticides in Germany, a Conceptual Framework. IEAM_2008-032R [5] Kubiak, R., Hommen, Bach, M., Classen, G. Fent, H.-G. Frede, A. Gergs, B. Golla, M. Klein, J. Krumpe, S. Matetzki, A. Müller, M. Neumann,T. G. Preuss, H. T. Ratte, M. Roß-Nickoll, S. Reichenberger, C. Schäfers, T. Strauss, A. Toschki, M. Trapp, J. Wogram (2009): A new GIS based approach for the assessment and management of environmental risks of plant protection, SETAC EUROPE Göteborg [6] Enzian, S. ,Golla., B. (2006) A method for the identification and classification of "save distance" cropland to the potential drift exposure of pesticides towards surface waters. UBA-Texte [7] Bach, M., Träbing, K. and Frede, H.-G. (2004): Morphological Characteristics of small rivers in the context of probabilistic exposure assessment. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 56

  7. Recommendations and Proposed Strategic Plan: Water Sector Decontamination Priorities

    DTIC Science & Technology

    2008-10-01

    safety and health issues of the utility personnel that may be exposed to treatment processes down stream from the treatment Conducting research on...Government Coordinating Council (GCC). This letter serves as our official transmittal of the Work Group’s final product . As the Co-Chairs...Priorities Page xv LIST OF ACRONYMS ACEIH American Council of Education on Industrial Hygiene AMWA Association of Metropolitan Water Agencies ANSI

  8. Summer stream water temperature models for Great Lakes streams: New York

    USGS Publications Warehouse

    Murphy, Marilyn K.; McKenna, James E.; Butryn, Ryan S.; McDonald, Richard P.

    2010-01-01

    Temperature is one of the most important environmental influences on aquatic organisms. It is a primary driver of physiological rates and many abiotic processes. However, despite extensive research and measurements, synoptic estimates of water temperature are not available for most regions, limiting our ability to make systemwide and large-scale assessments of aquatic resources or estimates of aquatic species abundance and biodiversity. We used subwatershed averaging of point temperature measurements and associated multiscale landscape habitat conditions from over 3,300 lotic sites throughout New York State to develop and train artificial neural network models. Separate models predicting water temperature (in cold, cool, and warm temperature classes) within small catchment–stream order groups were developed for four modeling units, which together encompassed the entire state. Water temperature predictions were then made for each stream segment in the state. All models explained more than 90% of data variation. Elevation, riparian forest cover, landscape slope, and growing degree-days were among the most important model predictors of water temperature classes. Geological influences varied among regions. Predicted temperature distributions within stream networks displayed patterns of generally increasing temperature downstream but were patchy due to the averaging of water temperatures within stream size-classes of small drainages. Models predicted coldwater streams to be most numerous and warmwater streams to be generally associated with the largest rivers and relatively flat agricultural areas and urban areas. Model predictions provide a complete, georeferenced map of summer daytime mean stream temperature potential throughout New York State that can be used for planning and assessment at spatial scales from the stream segment class to the entire state.

  9. The influence of natural and anthropic environmental variables on the structure and spatial distribution along longitudinal gradient of macroinvertebrate communities in southern Brazilian streams

    PubMed Central

    Batalla Salvarrey, Andrea Vanessa; Kotzian, Carla Bender; Spies, Márcia Regina; Braun, Bruna

    2014-01-01

    Abstract Southern Brazilian rivers and streams have been intensively affected by human activities, especially agriculture and the release of untreated domestic sewage. However, data about the aquatic macroinvertebrates in these streams are scarce and limited to only certain groups. In addition, studies focusing on the structure and spatial distribution of these communities are lacking. This study analyzed the effects of natural and anthropic variables on the community structure of macroinvertebrates along a longitudinal gradient in three microbasins located in a region of landscape transition in the state of Rio Grande do Sul, Brazil. Sampling was conducted in the Vacacaí-Mirim River (August 2008) and in the Ibicuí-Mirim and Tororaipí rivers (August 2009) following an environmental gradient including 1 st , 2 nd , 3 rd , and 4 th order segments. Local natural factors that were analyzed include water temperature, pH, electrical conductivity, dissolved oxygen, substrate granulometry, and the presence of aquatic vegetation. Anthropic variables that were analyzed include including bank erosion, land use, urbanization, riparian deforestation, and fine sediments input. A total of 42 families and 129 taxa were found, with predominance of environmentally tolerant taxa. Geological context (landscape transition and large hydrographic basins) tended to influence natural environmental factors along the rivers’ longitudinal gradients. However, changes in anthropic variables were not affected by these geological differences and therefore did not correlate with patterns of spatial distribution in macroinvertebrate communities. Only 1 st order stream segments showed a community composition with high richness of taxa intolerant to anthropic disturbance. Richness as a whole tended to be higher in 3 rd to 4 th order set of segments, but this trend was a result of local anthropic environmental disturbances. Future inventories conducted in similar landscape transition regions of Brazil, for conservation purposes, must consider stream segments of different orders, microbasins, and major basins in order to obtain data that faithfully reflect the regional diversity. Additionally, it is necessary to consider environmental gradients of land use and anthropic impacts in order to suggest appropriate strategies for conserving the environmental integrity of streams. PMID:25373160

  10. A Study of the Effectiveness of the Army’s National Advertising Expenditures. Volume 3. Appendices.

    DTIC Science & Technology

    1981-08-31

    N W Ayer Incorpor- ated to study the effectiveness of the Army’s national recruitment advertising . N W Ayer’s Marketing Services Department undertook...Army priorities for the quality of the recruit mix required investigating the differential impact of advertising on key market segments. Segmentation... market segment. Three key considerations in specifying the advertising variables are that 𔄃’ *individual media components were analyzed to account for

  11. Movement of road salt to a small New Hampshire lake

    USGS Publications Warehouse

    Rosenberry, D.O.; Bukaveckas, P.A.; Buso, D.C.; Likens, G.E.; Shapiro, A.M.; Winter, T.C.

    1999-01-01

    Runoff of road salt from an interstate highway in New Hampshire has led to contamination of a lake and a stream that flows into the lake, in spite of the construction of a diversion berm to divert road salt runoff out of the lake drainage basin. Chloride concentration in the stream has increased by over an order of magnitude during the 23 yr since the highway was opened, and chloride concentration in the lake has tripled. Road salt moves to the lake primarily via the contaminated stream, which provides 53% of all the chloride to the lake and only 3% of the total streamflow to the lake. The stream receives discharge of salty water froth leakage through the diversion berm. Uncontaminated ground water dilutes the stream downstream of the berm. However, reversals of gradient during summer months, likely caused by transpiration from deciduous trees, result in flow of contaminated stream water into the adjacent ground water along the lowest 40-m reach of the stream. This contaminated ground water then discharges into the lake along a 70-m-wide segment of lake shore. Road salt is pervasive in the bedrock between the highway and the lake, but was not detected at all of the wells in the glacial overburden. Of the 500 m of shoreline that could receive discharge of saly ground water directly from the highway, only a 50-m-long segment appears to be contaminated.

  12. Seasonal variation of selenium in outdoor experimental stream-wetland systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, K.N.

    Two outdoor experimental stream-wetland systems were exposed continuously to 10 {mu}g/L Se(IV) over a 2-yr period. A seasonal variation in the water column Se concentrations was found in wetlands; a comparable variation was not observed in the stream segment. Water column Se was never reduced by more than 20% in the streams, but was reduced by greater than 90% in midsummer in the wetlands. Accumulation of Se in plants was much higher in the wetlands than in the streams, particularly in duckweed (Lemma minor). The deposition of Se in sediments was extremely variable within the wetlands.

  13. Electrospinning fundamentals: optimizing solution and apparatus parameters.

    PubMed

    Leach, Michelle K; Feng, Zhang-Qi; Tuck, Samuel J; Corey, Joseph M

    2011-01-21

    Electrospun nanofiber scaffolds have been shown to accelerate the maturation, improve the growth, and direct the migration of cells in vitro. Electrospinning is a process in which a charged polymer jet is collected on a grounded collector; a rapidly rotating collector results in aligned nanofibers while stationary collectors result in randomly oriented fiber mats. The polymer jet is formed when an applied electrostatic charge overcomes the surface tension of the solution. There is a minimum concentration for a given polymer, termed the critical entanglement concentration, below which a stable jet cannot be achieved and no nanofibers will form - although nanoparticles may be achieved (electrospray). A stable jet has two domains, a streaming segment and a whipping segment. While the whipping jet is usually invisible to the naked eye, the streaming segment is often visible under appropriate lighting conditions. Observing the length, thickness, consistency and movement of the stream is useful to predict the alignment and morphology of the nanofibers being formed. A short, non-uniform, inconsistent, and/or oscillating stream is indicative of a variety of problems, including poor fiber alignment, beading, splattering, and curlicue or wavy patterns. The stream can be optimized by adjusting the composition of the solution and the configuration of the electrospinning apparatus, thus optimizing the alignment and morphology of the fibers being produced. In this protocol, we present a procedure for setting up a basic electrospinning apparatus, empirically approximating the critical entanglement concentration of a polymer solution and optimizing the electrospinning process. In addition, we discuss some common problems and troubleshooting techniques.

  14. Transport behaviour of xenobiotic micropollutants in surface waters - an experimental assessment

    NASA Astrophysics Data System (ADS)

    Schwientek, Marc; Kuch, Bertram; Rügner, Hermann; Dobramysl, Lorenz; Grathwohl, Peter

    2013-04-01

    Xenobiotics are substances that do not exist in natural systems but are increasingly produced by industrial processes and introduced into the environment. While many of these compounds are eliminated in waste water treatment plants, some are only barely degraded and are discharged into receiving water bodies. Often little is known about their acute or chronic toxicity and even less about their persistence or transport behaviour in aquatic systems. In the present study, the stability and turnover of selected micropollutants along a 7.5 km long segment of the River Ammer in Southwest Germany was investigated (catchment area 134 km²). This stream carries a proportion of treated wastewater which is clearly above the average in German rivers, mainly supplied by a major waste water treatment plant at the upstream end of the studied stream segment. An experimental mass balance approach was chosen where in- and outflow of water and target compounds into and out of the balanced stream segment was measured during base flow conditions. To cover a complete diurnal cycle of wastewater input, pooled samples were collected every 2 h over a sampling period of 24 h. A comparison of bulk mass fluxes showed that carbamazepine, a pharmaceutical, and phosphorous flame retardants, such as TCPP, behave conservative under the given conditions. Some retention was observed for the disinfectant product Triclosan and some polycyclic musk fragrances (e.g., HHCB). TAED, a bleaching activator used in detergents, was completely eliminated along the stream segment. The outcome of the experiment demonstrates the very different persistence of some widely-used micropollutants in aquatic systems. However, the mechanisms involved in their attenuation as well as the fate of the most persistent compounds still remain subject to further research.

  15. Impact analysis of freight vehicle access restriction (A case study of Jakarta Intra Urban Toll way)

    NASA Astrophysics Data System (ADS)

    Irbany, Ferdian; Hadiwardoyo, Sigit P.; Nahry, Nahdalina

    2017-06-01

    Since the access restriction policy on freight vehicles was implemented in some parts of Jakarta Intra-Urban Tollway (JIUT) in 2011, i.e. section Cawang - Tomang - Pluit, several sections had an improved performance. However, there were sections that showed the opposite effect. The purpose of this research was to analyze the impact of the policy on JIUT as a whole by using the parameters based on sustainable transportation indicators. The study area was divided into the statutory segment (Cawang - Tomang - Pluit) and the affected segment (Cawang - Tanjung Priok - Pluit). The assessment results of five parameters including travel time, fuel consumption, fatality rate, CO2 emissions, and noise level indicated that the implementation of the policy provided an advantage to the traffic smoothness priority at the statutory segment, but it did not support the sustainable urban transportation priority of the entire JIUT system. The proposed solution to maintain the sustainable condition of urban transportation is to complement the statutory system with the advisory system within Jakarta's territory.

  16. Trace Elements in Bed Sediments and Biota from Streams in the Santee River Basin and Coastal Drainages, North and South Carolina, 1995-97

    Treesearch

    Thomas A. Abrahamsen

    1999-01-01

    Bed-sediment and tissue samples were collected and analyzed for the presence of trace elements from 25 sites in the Santee River Basin and coastal drainages study area during 1995-97 as part of the U.S. Geological Survey's National Water-Quality Assessment Program, Sediment trace-element priority-pollutant concentrations were compared among streams draining water-...

  17. Large in-stream wood studies: A call for common metrics

    Treesearch

    Ellen Wohl; Daniel A. Cenderelli; Kathleen A. Dwire; Sandra E. Ryan-Burkett; Michael K. Young; Kurt D. Fausch

    2010-01-01

    During the past decade, research on large in-stream wood has expanded beyond North America's Pacific Northwest to diverse environments and has shifted toward increasingly holistic perspectives that incorporate processes of wood recruitment, retention, and loss at scales from channel segments to entire watersheds. Syntheses of this rapidly expanding literature can...

  18. A method for measuring sediment production from forest roads.

    Treesearch

    Keith Kahklen

    2001-01-01

    Predicting sediment production from forest roads is necessary to determine their impact on watersheds and associated terrestrial and stream biota. A method is presented for measuring sediment originating from a road segment for individual storm events and quantifying the delivery to streams. Site selection criteria are listed to describe the characteristics for...

  19. Clean Streams in Southern Sonoma County

    EPA Pesticide Factsheets

    This project broadens existing public/private partnerships to reduce pollutant loading at high-priority sites in the Sonoma Creek and Petaluma River watersheds by implementing activities called for in TMDLs for sediment, pesticides, and pathogens

  20. Introducing New Priority Setting and Resource Allocation Processes in a Canadian Healthcare Organization: A Case Study Analysis Informed by Multiple Streams Theory.

    PubMed

    Smith, Neale; Mitton, Craig; Dowling, Laura; Hiltz, Mary-Ann; Campbell, Matthew; Gujar, Shashi Ashok

    2015-09-24

    In this article, we analyze one case instance of how proposals for change to the priority setting and resource allocation (PSRA) processes at a Canadian healthcare institution reached the decision agenda of the organization's senior leadership. We adopt key concepts from an established policy studies framework - Kingdon's multiple streams theory - to inform our analysis. Twenty-six individual interviews were conducted at the IWK Health Centre in Halifax, NS, Canada. Participants were asked to reflect upon the reasons leading up to the implementation of a formal priority setting process - Program Budgeting and Marginal Analysis (PBMA) - in the 2012/2013 fiscal year. Responses were analyzed qualitatively using Kingdon's model as a template. The introduction of PBMA can be understood as the opening of a policy window. A problem stream - defined as lack of broad engagement and information sharing across service lines in past practice - converged with a known policy solution, PBMA, which addressed the identified problems and was perceived as easy to use and with an evidence-base from past applications across Canada and elsewhere. Conditions in the political realm allowed for this intervention to proceed, but also constrained its potential outcomes. Understanding in a theoretically-informed way how change occurs in healthcare management practices can provide useful lessons to researchers and decision-makers whose aim is to help health systems achieve the most effective use of available financial resources. © 2016 by Kerman University of Medical Sciences.

  1. Priority-based methods for reducing the impact of packet loss on HEVC encoded video streams

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2013-02-01

    The rapid growth in the use of video streaming over IP networks has outstripped the rate at which new network infrastructure has been deployed. These bandwidth-hungry applications now comprise a significant part of all Internet traffic and present major challenges for network service providers. The situation is more acute in mobile networks where the available bandwidth is often limited. Work towards the standardisation of High Efficiency Video Coding (HEVC), the next generation video coding scheme, is currently on track for completion in 2013. HEVC offers the prospect of a 50% improvement in compression over the current H.264 Advanced Video Coding standard (H.264/AVC) for the same quality. However, there has been very little published research on HEVC streaming or the challenges of delivering HEVC streams in resource-constrained network environments. In this paper we consider the problem of adapting an HEVC encoded video stream to meet the bandwidth limitation in a mobile networks environment. Video sequences were encoded using the Test Model under Consideration (TMuC HM6) for HEVC. Network abstraction layers (NAL) units were packetized, on a one NAL unit per RTP packet basis, and transmitted over a realistic hybrid wired/wireless testbed configured with dynamically changing network path conditions and multiple independent network paths from the streamer to the client. Two different schemes for the prioritisation of RTP packets, based on the NAL units they contain, have been implemented and empirically compared using a range of video sequences, encoder configurations, bandwidths and network topologies. In the first prioritisation method the importance of an RTP packet was determined by the type of picture and the temporal switching point information carried in the NAL unit header. Packets containing parameter set NAL units and video coding layer (VCL) NAL units of the instantaneous decoder refresh (IDR) and the clean random access (CRA) pictures were given the highest priority followed by NAL units containing pictures used as reference pictures from which others can be predicted. The second method assigned a priority to each NAL unit based on the rate-distortion cost of the VCL coding units contained in the NAL unit. The sum of the rate-distortion costs of each coding unit contained in a NAL unit was used as the priority weighting. The preliminary results of extensive experiments have shown that all three schemes offered an improvement in PSNR, when comparing original and decoded received streams, over uncontrolled packet loss. Using the first method consistently delivered a significant average improvement of 0.97dB over the uncontrolled scenario while the second method provided a measurable, but less consistent, improvement across the range of testing conditions and encoder configurations.

  2. Speech Segmentation by Statistical Learning Depends on Attention

    ERIC Educational Resources Information Center

    Toro, Juan M.; Sinnett, Scott; Soto-Faraco, Salvador

    2005-01-01

    We addressed the hypothesis that word segmentation based on statistical regularities occurs without the need of attention. Participants were presented with a stream of artificial speech in which the only cue to extract the words was the presence of statistical regularities between syllables. Half of the participants were asked to passively listen…

  3. How Transitional Probabilities and the Edge Effect Contribute to Listeners' Phonological Bootstrapping Success

    ERIC Educational Resources Information Center

    Sohail, Juwairia; Johnson, Elizabeth K.

    2016-01-01

    Much of what we know about the development of listeners' word segmentation strategies originates from the artificial language-learning literature. However, many artificial speech streams designed to study word segmentation lack a salient cue found in all natural languages: utterance boundaries. In this study, participants listened to a…

  4. Statistical Segmentation of Tone Sequences Activates the Left Inferior Frontal Cortex: A Near-Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Abla, Dilshat; Okanoya, Kazuo

    2008-01-01

    Word segmentation, that is, discovering the boundaries between words that are embedded in a continuous speech stream, is an important faculty for language learners; humans solve this task partly by calculating transitional probabilities between sounds. Behavioral and ERP studies suggest that detection of sequential probabilities (statistical…

  5. Reduction in oxidative stress levels in the colonic mucosa without fecal stream after the application of enemas containing aqueous Ilex paraguariensis extract.

    PubMed

    Cunha, Fernando Lorenzetti da; Silva, Camila Morais Gonçalves da; Almeida, Marcos Gonçalves de; Lameiro, Thais Miguel do Monte; Marques, Letícia Helena Souza; Margarido, Nelson Fontana; Martinez, Carlos Augusto Real

    2011-08-01

    To evaluate the antioxidant effects of enemas containing aqueous extract of Ilex paraguariensis, comparing segments with and without fecal stream and correlating the segments with the duration of intervention. Twenty-six Wistar rats were subjected to a diversion of the fecal stream in the left colon by a proximal colostomy and distal mucosal fistula. The rats were distributed randomly into two experimental groups of 13 animals each based on the time of sacrifice after surgical procedure (two or four weeks). Each group was then divided into two experimental subgroups that received either second daily enemas containing 0.9% saline solution or aqueous extract of Ilex paraguariensis at 0.2g/100g. Colitis was diagnosed by histopathological analysis and the detection of oxidative tissue damage by measuring the levels of malondialdehyde. The Mann-Whitney test was used to compare the tissue levels of malondialdehyde between colon segments with and without fecal stream in each experimental group, and the Kruskal-Wallis test was used to verify the variance between the levels of oxidative stress according the duration of the irrigation; both tests determined significance at 5% (p<0.05). The levels of malondialdehyde in the animals subjected to intervention in the colon with saline with and without fecal stream after two and four weeks of irrigation were 0.05±0.006 and 0.06±0.006, and 0.05± 0.03 and 0.08 ±0.02, respectively. The malondialdehyde levels in the animals irrigated with Ilex paraguariensis with and without fecal stream after two and four weeks of irrigation were 0.010±0.002 and 0.02±0.004, and 0.03±0.007 and 0.04±0.01, respectively. After two and four weeks of intervention, the levels of malondialdehyde were lower in the animals irrigated with Ilex paraguariensis regardless of the time of irrigation (p=0.0001 and p=0.002, respectively). The daily rectal application of enemas containing aqueous extract of Ilex paraguariensis decreases oxidative tissue damage in the colon without fecal stream regardless of the time of irrigation.

  6. From Acoustic Segmentation to Language Processing: Evidence from Optical Imaging

    PubMed Central

    Obrig, Hellmuth; Rossi, Sonja; Telkemeyer, Silke; Wartenburger, Isabell

    2010-01-01

    During language acquisition in infancy and when learning a foreign language, the segmentation of the auditory stream into words and phrases is a complex process. Intuitively, learners use “anchors” to segment the acoustic speech stream into meaningful units like words and phrases. Regularities on a segmental (e.g., phonological) or suprasegmental (e.g., prosodic) level can provide such anchors. Regarding the neuronal processing of these two kinds of linguistic cues a left-hemispheric dominance for segmental and a right-hemispheric bias for suprasegmental information has been reported in adults. Though lateralization is common in a number of higher cognitive functions, its prominence in language may also be a key to understanding the rapid emergence of the language network in infants and the ease at which we master our language in adulthood. One question here is whether the hemispheric lateralization is driven by linguistic input per se or whether non-linguistic, especially acoustic factors, “guide” the lateralization process. Methodologically, functional magnetic resonance imaging provides unsurpassed anatomical detail for such an enquiry. However, instrumental noise, experimental constraints and interference with EEG assessment limit its applicability, pointedly in infants and also when investigating the link between auditory and linguistic processing. Optical methods have the potential to fill this gap. Here we review a number of recent studies using optical imaging to investigate hemispheric differences during segmentation and basic auditory feature analysis in language development. PMID:20725516

  7. Development of Relations of Stream Stage to Channel Geometry and Discharge for Stream Segments Simulated with Hydrologic Simulation Program-Fortran (HSPF), Chesapeake Bay Watershed and Adjacent Parts of Virginia, Maryland, and Delaware

    USGS Publications Warehouse

    Moyer, Douglas; Bennett, Mark

    2007-01-01

    The U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (USEPA), Chesapeake Bay Program (CBP), Interstate Commission for the Potomac River Basin (ICPRB), Maryland Department of the Environment (MDE), Virginia Department of Conservation and Recreation (VADCR), and University of Maryland (UMD) are collaborating to improve the resolution of the Chesapeake Bay Regional Watershed Model (CBRWM). This watershed model uses the Hydrologic Simulation Program-Fortran (HSPF) to simulate the fate and transport of nutrients and sediment throughout the Chesapeake Bay watershed and extended areas of Virginia, Maryland, and Delaware. Information from the CBRWM is used by the CBP and other watershed managers to assess the effectiveness of water-quality improvement efforts as well as guide future management activities. A critical step in the improvement of the CBRWM framework was the development of an HSPF function table (FTABLE) for each represented stream channel. The FTABLE is used to relate stage (water depth) in a particular stream channel to associated channel surface area, channel volume, and discharge (streamflow). The primary tool used to generate an FTABLE for each stream channel is the XSECT program, a computer program that requires nine input variables used to represent channel morphology. These input variables are reach length, upstream and downstream elevation, channel bottom width, channel bankfull width, channel bankfull stage, slope of the floodplain, and Manning's roughness coefficient for the channel and floodplain. For the purpose of this study, the nine input variables were grouped into three categories: channel geometry, Manning's roughness coefficient, and channel and floodplain slope. Values of channel geometry for every stream segment represented in CBRWM were obtained by first developing regional regression models that relate basin drainage area to observed values of bankfull width, bankfull depth, and bottom width at each of the 290 USGS streamflow-gaging stations included in the areal extent of the model. These regression models were developed on the basis of data from stations in four physiographic provinces (Appalachian Plateaus, Valley and Ridge, Piedmont, and Coastal Plain) and were used to predict channel geometry for all 738 stream segments in the modeled area from associated basin drainage area. Manning's roughness coefficient for the channel and floodplain was represented in the XSECT program in two forms. First, all available field-estimated values of roughness were compiled for gaging stations in each physiographic province. The median of field-estimated values of channel and floodplain roughness for each physiographic province was applied to all respective stream segments. The second representation of Manning's roughness coefficient was to allow roughness to vary with channel depth. Roughness was estimated at each gaging station for each 1-foot depth interval. Median values of roughness were calculated for each 1-foot depth interval for all stations in each physiographic province. Channel and floodplain slope were determined for every stream segment in CBRWM using the USGS National Elevation Dataset. Function tables were generated by the XSECT program using values of channel geometry, channel and floodplain roughness, and channel and floodplain slope. The FTABLEs for each of the 290 USGS streamflow-gaging stations were evaluated by comparing observed discharge to the XSECT-derived discharge. Function table stream discharge derived using depth-varying roughness was found to be more representative of and statistically indistinguishable from values of observed stream discharge. Additionally, results of regression analysis showed that XSECT-derived discharge accounted for approximately 90 percent of the variability associated with observed discharge in each of the four physiographic provinces. The results of this study indicate that the methodology developed to generate FTABLEs for every s

  8. Inferring Aquifer Transmissivity from River Flow Data

    NASA Astrophysics Data System (ADS)

    Trichakis, Ioannis; Pistocchi, Alberto

    2016-04-01

    Daily streamflow data is the measurable result of many different hydrological processes within a basin; therefore, it includes information about all these processes. In this work, recession analysis applied to a pan-European dataset of measured streamflow was used to estimate hydrogeological parameters of the aquifers that contribute to the stream flow. Under the assumption that base-flow in times of no precipitation is mainly due to groundwater, we estimated parameters of European shallow aquifers connected with the stream network, and identified on the basis of the 1:1,500,000 scale Hydrogeological map of Europe. To this end, Master recession curves (MRCs) were constructed based on the RECESS model of the USGS for 1601 stream gauge stations across Europe. The process consists of three stages. Firstly, the model analyses the stream flow time-series. Then, it uses regression to calculate the recession index. Finally, it infers characteristics of the aquifer from the recession index. During time-series analysis, the model identifies those segments, where the number of successive recession days is above a certain threshold. The reason for this pre-processing lies in the necessity for an adequate number of points when performing regression at a later stage. The recession index derives from the semi-logarithmic plot of stream flow over time, and the post processing involves the calculation of geometrical parameters of the watershed through a GIS platform. The program scans the full stream flow dataset of all the stations. For each station, it identifies the segments with continuous recession that exceed a predefined number of days. When the algorithm finds all the segments of a certain station, it analyses them and calculates the best linear fit between time and the logarithm of flow. The algorithm repeats this procedure for the full number of segments, thus it calculates many different values of recession index for each station. After the program has found all the recession segments, it performs calculations to determine the expression for the MRC. Further processing of the MRCs can yield estimates of transmissivity or response time representative of the aquifers upstream of the station. These estimates can be useful for large scale (e.g. continental) groundwater modelling. The above procedure allowed calculating values of transmissivity for a large share of European aquifers, ranging from Tmin = 4.13E-04 m²/d to Tmax = 8.12E+03 m²/d, with an average value Taverage = 9.65E+01 m²/d. These results are in line with the literature, indicating that the procedure may provide realistic results for large-scale groundwater modelling. In this contribution we present the results in the perspective of their application for the parameterization of a pan-European bi-dimensional shallow groundwater flow model.

  9. Habitat type and Permanence determine local aquatic invertebrate community structure in the Madrean Sky Islands

    Treesearch

    Michael T. Bogan; Oscar Gutierrez-Ruacho; J. Andres Alvarado-Castro; David A. Lytle

    2013-01-01

    Aquatic environments in the Madrean Sky Islands (MSI) consist of a matrix of perennial and intermittent stream segments, seasonal ponds, and human-built cattle trough habitats that support a diverse suite of aquatic macroinvertebrates. Although environmental conditions and aquatic communities are generally distinct in lotic and lentic habitats, MSI streams are...

  10. Wild, scenic, and transcendental rivers

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    “A more lovely stream than this has never flowed on Earth,” 19th century American author Nathaniel Hawthorne wrote about the confluence of the Assabet and Concord Rivers, streams that meander about 40 km west of Boston, Massachusetts.Segments of these streams as well as the Assabet River became the newest additions to the U.S. National Wild and Scenic Rivers System, when President Bill Clinton signed into law the “Sudbury, Assabet, and Concord Wild and Scenic River Act” on April 9.

  11. Hydrogeomorphic and hydraulic habitats of the Niobrara River, Nebraska-with special emphasis on the Niobrara National Scenic River

    USGS Publications Warehouse

    Alexander, Jason S.; Zelt, Ronald B.; Schaepe, Nathan J.

    2010-01-01

    The Niobrara River is an ecologically and economically important resource in Nebraska. The Nebraska Department of Natural Resources' recent designation of the hydraulically connected surface- and groundwater resources of the Niobrara River Basin as ?fully appropriated? has emphasized the importance of understanding linkages between the physical and ecological dynamics of the Niobrara River so it can be sustainably managed. In cooperation with the Nebraska Game and Parks Commission, the U.S. Geological Survey investigated the hydrogeomorphic and hydraulic attributes of the Niobrara River in northern Nebraska. This report presents the results of an analysis of hydrogeomorphic segments and hydraulic microhabitats of the Niobrara River and its valley for the approximately 330-mile reach from Dunlap Diversion Dam to its confluence with the Missouri River. Two spatial scales were used to examine and quantify the hydrogeomorphic segments and hydraulic microhabitats of the Niobrara River: a basin scale and a reach scale. At the basin scale, digital spatial data and hydrologic data were analyzed to (1) test for differences between 36 previously determined longitudinal hydrogeomorphic segments; (2) quantitatively describe the hydrogeomorphic characteristics of the river and its valley; and (3) evaluate differences in hydraulic microhabitat over a range of flow regimes among three fluvial geomorphic provinces. The statistical analysis of hydrogeomorphic segments resulted in reclassification rates of 3 to 28 percent of the segments for the four descriptive geomorphic elements. The reassignment of classes by discriminant analysis resulted in a reduction from 36 to 25 total hydrogeomorphic segments because several adjoining segments shared the same ultimate class assignments. Virtually all of the segment mergers were in the Canyons and Restricted Bottoms (CRB) fluvial geomorphic province. The most frequent classes among hydrogeomorphic segments, and the dominant classes per unit length of river, are: a width-restricted valley confinement condition, sinuous-planview pattern, irregular channel width, and an alternate bar configuration. The Niobrara River in the study area flows through a diversity of fluvial geomorphic settings in its traverse across northern Nebraska. In the Meandering Bottoms (MB) fluvial geomorphic province, river discharge magnitudes are low, and the valley exerts little control on the channel-planview pattern. Within the CRB province, the river flows over a diversity of geologic formations, and the valley and river narrow and expand in approximate synchronicity. In the Braided Bottoms (BB) fluvial geomorphic province, the river primarily flows over Cretaceous Pierre Shale, the valley and channel are persistently wide, and the channel slope is generally uniform. The existence of vegetated islands and consequent multithread channel environments, indicated by a higher braided index, mostly coincided with reaches having gentler slopes and less unit stream power. Longitudinal hydrology curves indicate that the flow of the Niobrara River likely is dominated by groundwater as far downstream as Norden. Unit stream power values in the study area vary between 0 and almost 2 pounds per foot per second. Within the MB province, unit stream power steadily increases as the Niobrara gains discharge from groundwater inflow, and the channel slope steepens. The combination of steep slopes, a constrained channel width, and persistent flow within the CRB province results in unit stream power values that are between three and five times greater than those in less confined segments with comparable or greater discharges. With the exception of hydrogeomorphic segment 3, which is affected by Spencer Dam, unit stream power values in the BB province are generally uniform. Channel sinuosity values in the study area varied generally between 1 and 2.5, but with locally higher values measured in the MB province and at the entrenched bedrock me

  12. Native Language Influence in the Segmentation of a Novel Language

    ERIC Educational Resources Information Center

    Ordin, Mikhail; Nespor, Marina

    2016-01-01

    A major problem in second language acquisition (SLA) is the segmentation of fluent speech in the target language, i.e., detecting the boundaries of phonological constituents like words and phrases in the speech stream. To this end, among a variety of cues, people extensively use prosody and statistical regularities. We examined the role of pitch,…

  13. The Effect of Sonority on Word Segmentation: Evidence for the Use of a Phonological Universal

    ERIC Educational Resources Information Center

    Ettlinger, Marc; Finn, Amy S.; Hudson Kam, Carla L.

    2012-01-01

    It has been well documented how language-specific cues may be used for word segmentation. Here, we investigate what role a language-independent phonological universal, the sonority sequencing principle (SSP), may also play. Participants were presented with an unsegmented speech stream with non-English word onsets that juxtaposed adherence to the…

  14. Modeling the Contribution of Phonotactic Cues to the Problem of Word Segmentation

    ERIC Educational Resources Information Center

    Blanchard, Daniel; Heinz, Jeffrey; Golinkoff, Roberta

    2010-01-01

    How do infants find the words in the speech stream? Computational models help us understand this feat by revealing the advantages and disadvantages of different strategies that infants might use. Here, we outline a computational model of word segmentation that aims both to incorporate cues proposed by language acquisition researchers and to…

  15. Beyond Event Segmentation: Spatial- and Social-Cognitive Processes in Verb-to-Action Mapping

    ERIC Educational Resources Information Center

    Friend, Margaret; Pace, Amy

    2011-01-01

    The present article investigates spatial- and social-cognitive processes in toddlers' mapping of concepts to real-world events. In 2 studies we explore how event segmentation might lay the groundwork for extracting actions from the event stream and conceptually mapping novel verbs to these actions. In Study 1, toddlers demonstrated the ability to…

  16. Implicit Segmentation of a Stream of Syllables Based on Transitional Probabilities: An MEG Study

    ERIC Educational Resources Information Center

    Teinonen, Tuomas; Huotilainen, Minna

    2012-01-01

    Statistical segmentation of continuous speech, i.e., the ability to utilise transitional probabilities between syllables in order to detect word boundaries, is reflected in the brain's auditory event-related potentials (ERPs). The N1 and N400 ERP components are typically enhanced for word onsets compared to random syllables during active…

  17. Strategies for Transporting Data Between Classified and Unclassified Networks

    DTIC Science & Technology

    2016-03-01

    datagram protocol (UDP) must be used. The UDP is typically used when speed is a higher priority than data integrity, such as in music or video streaming ...and the exit point of data are separate and can be tightly controlled. This does effectively prevent the comingling of data and is used in industry to...perform functions such as streaming video and audio from secure to insecure networks (ref. 1). A second disadvantage lies in the fact that the

  18. 20 CFR 663.310 - Who may receive training services?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... whose services are provided through the adult funding stream, are determined eligible in accordance with the State and local priority system, if any, in effect for adults under WIA section 134(d)(4)(E) and...

  19. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales

    USGS Publications Warehouse

    Freeman, Mary C.; Pringle, C.M.; Jackson, C.R.

    2007-01-01

    Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water-mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two-thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large-scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free-flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large-scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream-system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large-scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity.

  20. Introducing New Priority Setting and Resource Allocation Processes in a Canadian Healthcare Organization: A Case Study Analysis Informed by Multiple Streams Theory

    PubMed Central

    Smith, Neale; Mitton, Craig; Dowling, Laura; Hiltz, Mary-Ann; Campbell, Matthew; Gujar, Shashi Ashok

    2016-01-01

    Background: In this article, we analyze one case instance of how proposals for change to the priority setting and resource allocation (PSRA) processes at a Canadian healthcare institution reached the decision agenda of the organization’s senior leadership. We adopt key concepts from an established policy studies framework – Kingdon’s multiple streams theory – to inform our analysis. Methods: Twenty-six individual interviews were conducted at the IWK Health Centre in Halifax, NS, Canada. Participants were asked to reflect upon the reasons leading up to the implementation of a formal priority setting process – Program Budgeting and Marginal Analysis (PBMA) – in the 2012/2013 fiscal year. Responses were analyzed qualitatively using Kingdon’s model as a template. Results: The introduction of PBMA can be understood as the opening of a policy window. A problem stream – defined as lack of broad engagement and information sharing across service lines in past practice – converged with a known policy solution, PBMA, which addressed the identified problems and was perceived as easy to use and with an evidence-base from past applications across Canada and elsewhere. Conditions in the political realm allowed for this intervention to proceed, but also constrained its potential outcomes. Conclusion: Understanding in a theoretically-informed way how change occurs in healthcare management practices can provide useful lessons to researchers and decision-makers whose aim is to help health systems achieve the most effective use of available financial resources PMID:26673646

  1. Using maximum entropy to predict suitable habitat for the endangered dwarf wedgemussel in the Maryland Coastal Plain

    USGS Publications Warehouse

    Campbell, Cara; Hilderbrand, Robert H.

    2017-01-01

    Species distribution modelling can be useful for the conservation of rare and endangered species. Freshwater mussel declines have thinned species ranges producing spatially fragmented distributions across large areas. Spatial fragmentation in combination with a complex life history and heterogeneous environment makes predictive modelling difficult.A machine learning approach (maximum entropy) was used to model occurrences and suitable habitat for the federally endangered dwarf wedgemussel, Alasmidonta heterodon, in Maryland's Coastal Plain catchments. Landscape-scale predictors (e.g. land cover, land use, soil characteristics, geology, flow characteristics, and climate) were used to predict the suitability of individual stream segments for A. heterodon.The best model contained variables at three scales: minimum elevation (segment scale), percentage Tertiary deposits, low intensity development, and woody wetlands (sub-catchment), and percentage low intensity development, pasture/hay agriculture, and average depth to the water table (catchment). Despite a very small sample size owing to the rarity of A. heterodon, cross-validated prediction accuracy was 91%.Most predicted suitable segments occur in catchments not known to contain A. heterodon, which provides opportunities for new discoveries or population restoration. These model predictions can guide surveys toward the streams with the best chance of containing the species or, alternatively, away from those streams with little chance of containing A. heterodon.Developed reaches had low predicted suitability for A. heterodon in the Coastal Plain. Urban and exurban sprawl continues to modify stream ecosystems in the region, underscoring the need to preserve existing populations and to discover and protect new populations.

  2. Improved insect emergence trap for stream community population sampling

    Treesearch

    Eric. H. LaGasa; Stamford D. Smith

    1978-01-01

    A sealed-edge pyramidal trap to sample total insectemergence from a segment of a small stream has been designed and tested in northeastern Oregon. The trap is approximately 10 by 10 feet at the base, and is constructed of wood, clear plastic, and galvanized screening. It is efficient and readily used, and can yield significant data on seasonal population changes and on...

  3. Recreation use of upper Pemigewasset and Swift River Drainages, New Hampshire

    Treesearch

    Ronald J. Glass; Gerald S. Walton

    1995-01-01

    In-stream recreation use of the upper Pemigewasset and Swift River Drainages was estimated by a technique based on modified, stratified sampling. Results are reported by category of stream segment, season, day of week, time of day, and activity. "Weekend and holiday" use exceeded weekday use during spring and fall, but weekdays had the heaviest use during the...

  4. Evaluation of aquatic biota in relation to environmental characteristics measured at multiple scales in agricultural streams of the Midwest, 1993-2004

    USGS Publications Warehouse

    Hambrook Berkman, Julie A.; Scudder, Barbara C.; Lutz, Michelle A.; Harris, Mitchell A.

    2010-01-01

    This study evaluated the relations between algal, invertebrate, and fish assemblages and physical environmental characteristics of streams at the reach, segment, and watershed scale in agricultural settings in the Midwest. The 86 stream sites selected for study were in predominantly agricultural watersheds sampled as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Species abundance and over 130 biological metrics were used to determine which aspects of the assemblages were most sensitive to change at the three spatial scales. Digital orthophotograph-based riparian land use/land cover was used for analyses of riparian conditions at the reach and segment scales. The percentage area of different land-use/land-cover types was also determined for each watershed. Out of over 230 environmental characteristics examined, those that best explained variation in the biotic assemblages at each spatial scale include the following: 1) reach: bank vegetative cover, fine silty substrate, and open canopy angle; 2) segment: woody vegetation and cropland in the 250-m riparian buffer, and average length of undisturbed buffer; and 3) watershed: land use/land cover (both total forested and row crop), low-permeability soils, slope, drainage area, and latitude. All three biological assemblages, especially fish, correlated more with land use/land cover and other physical characteristics at the watershed scale than at the reach or segment scales. This study identifies biotic measures that can be used to evaluate potential improvements resulting from agricultural best-management practices and other conservation efforts, as well as evaluate potential impairment from urban development or other disturbances.

  5. Peristaltic pump noise: A nemesis conquered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, D.A.

    1994-12-31

    Continuous-flow analyzers (CFA), and especially Segmented Flow Analyzers (SFA), typically employ peristaltic pumps to generate a carrier stream and add reagents thereto. The resulting pump {open_quotes}noise{close_quotes} usually limits precision, and is generally deemed unavoidable. Although the problem is partially solved by hydraulic debubbling, most modern instruments employ bubble thru the flow-cell (BTTFC) technology and electronic debubbling. The authors have developed an algorithm that can significantly reduce this source of noise, even when the individual segments in the SFA stream are of varying volumes and/or concentrations. It does this, without any modifications to the pump, by examining each individual segment asmore » it passes thru the flowcell. The Alpkem model 304 multichannel pump, for example, can be set to produce 90 bubbles/minutes (and therefore 90 segments/minute), so one has 667 msec in which to gather sufficient information to identify a {open_quotes}bad{close_quotes} segment and modify its value. This hardware includes a Hewlett Packard model 8452A diode array spectrophotometer fitted with fiber optics leading to/from a flowcell (5 mm path length X 1mm ID). Each segment remains in the flowcell 300-500 msec. With a data sampling rate of 10/sec (100 msec integration time), the authors can acquire 3-5 intensity values for each segment and convert these to absorbance values. The software to perform all this was written in QuickBASIC 4.5 and incorporates a few routines from Hewlett Packard`s library. The program will be described in some detail so that analytical chemists who use BTTFC can obtain higher precision.« less

  6. Documentation of a daily mean stream temperature module—An enhancement to the Precipitation-Runoff Modeling System

    USGS Publications Warehouse

    Sanders, Michael J.; Markstrom, Steven L.; Regan, R. Steven; Atkinson, R. Dwight

    2017-09-15

    A module for simulation of daily mean water temperature in a network of stream segments has been developed as an enhancement to the U.S. Geological Survey Precipitation Runoff Modeling System (PRMS). This new module is based on the U.S. Fish and Wildlife Service Stream Network Temperature model, a mechanistic, one-dimensional heat transport model. The new module is integrated in PRMS. Stream-water temperature simulation is activated by selection of the appropriate input flags in the PRMS Control File and by providing the necessary additional inputs in standard PRMS input files.This report includes a comprehensive discussion of the methods relevant to the stream temperature calculations and detailed instructions for model input preparation.

  7. A Goal Bias in Action: The Boundaries Adults Perceive in Events Align with Sites of Actor Intent

    ERIC Educational Resources Information Center

    Levine, Dani; Hirsh-Pasek, Kathy; Pace, Amy; Michnick Golinkoff, Roberta

    2017-01-01

    We live in a dynamic world comprised of continuous events. Remembering our past and predicting future events, however, requires that we segment these ongoing streams of information in a consistent manner. How is this segmentation achieved? This research examines whether the boundaries adults perceive in events, such as the Olympic figure skating…

  8. Monitoring fish distributions along electrofishing segments

    USGS Publications Warehouse

    Miranda, Leandro E.

    2014-01-01

    Electrofishing is widely used to monitor fish species composition and relative abundance in streams and lakes. According to standard protocols, multiple segments are selected in a body of water to monitor population relative abundance as the ratio of total catch to total sampling effort. The standard protocol provides an assessment of fish distribution at a macrohabitat scale among segments, but not within segments. An ancillary protocol was developed for assessing fish distribution at a finer scale within electrofishing segments. The ancillary protocol was used to estimate spacing, dispersion, and association of two species along shore segments in two local reservoirs. The added information provided by the ancillary protocol may be useful for assessing fish distribution relative to fish of the same species, to fish of different species, and to environmental or habitat characteristics.

  9. A deeper look at the GD1 stream: density variations and wiggles

    NASA Astrophysics Data System (ADS)

    de Boer, T. J. L.; Belokurov, V.; Koposov, S. E.; Ferrarese, L.; Erkal, D.; Côté, P.; Navarro, J. F.

    2018-06-01

    Using deep photometric data from Canada-France-Hawaii Telescope/Megacam, we study the morphology and density of the GD-1 stream, one of the longest and coldest stellar streams in the Milky Way. Our deep data recovers the lower main sequence of the stream with unprecedented quality, clearly separating it from Milky Way foreground and background stars. An analysis of the distance to different parts of the stream shows that GD-1 lies at a heliocentric distance between 8 and 10 kpc, with only a shallow gradient across 45° on the sky. Matched filter maps of the stream density show clear density variations, such as deviations from a single orbital track and tentative evidence for stream fanning. We also detect a clear underdensity in the middle of the stream track at φ1 = -45° surrounded by overdense stream segments on either side. This location is a promising candidate for the elusive missing progenitor of the GD-1 stream. We conclude that the GD-1 stream has clearly been disturbed by interactions with the Milky Way disc or other subhaloes.

  10. Regional Modeling of Ecosystem Services Provided by Stream Fishes

    EPA Science Inventory

    Fish habitat and biodiversity for fish are valuable ecosystem services provided by rivers. Future land development and climate change will likely alter these services, and an understanding of these responses can guide management and restoration priorities. We used hierarchical mo...

  11. Design Automation for Streaming Systems

    DTIC Science & Technology

    2005-12-16

    which are FIFO buffered channels. We develop a process network model for streaming sys - tems (TDFPN) and a hardware description language with built in...and may include an automatic address generator. A complete synthesis sys - tem would provide separate segment operator implementations for every...Acoustics, Speech, and Signal Processing (ICASSP ’89), pages 988– 991, 1989. [Luk et al., 1997] Wayne Luk, Nabeel Shirazi, and Peter Y. K. Cheung

  12. Continuity in fire disturbance between riparian and adjacent sideslopes in the Douglas-fire forest series.

    Treesearch

    Richard L. Everett; Richard Schellhaas; Pete Ohlson

    2000-01-01

    Fire scar and stand cohort records were used to estimate the number and timing of fire disturbance events that impacted riparian and adjacent sideslope forests in the Douglas-fir series. Data were gathered from 49 stream segments on 24 separate streams on the east slope of the Washington Cascade Range. Upslope forests had more traceable disturbance events than riparian...

  13. A GIS tool to analyze forest road sediment production and stream impacts

    Treesearch

    Ajay Prasad; David G. Tarboton; Charles H. Luce; Thomas A. Black

    2005-01-01

    A set of GIS tools to analyze the impacts of forest roads on streams considering sediment production, mass wasting risk, and fish passage barriers, has been developed. Sediment production for each road segment is calculated from slope, length, road surface condition and road-side drain vegetation gathered by a GPS inventory and by overlaying the road path on a Digital...

  14. Subjective evaluation of H.265/HEVC based dynamic adaptive video streaming over HTTP (HEVC-DASH)

    NASA Astrophysics Data System (ADS)

    Irondi, Iheanyi; Wang, Qi; Grecos, Christos

    2015-02-01

    The Dynamic Adaptive Streaming over HTTP (DASH) standard is becoming increasingly popular for real-time adaptive HTTP streaming of internet video in response to unstable network conditions. Integration of DASH streaming techniques with the new H.265/HEVC video coding standard is a promising area of research. The performance of HEVC-DASH systems has been previously evaluated by a few researchers using objective metrics, however subjective evaluation would provide a better measure of the user's Quality of Experience (QoE) and overall performance of the system. This paper presents a subjective evaluation of an HEVC-DASH system implemented in a hardware testbed. Previous studies in this area have focused on using the current H.264/AVC (Advanced Video Coding) or H.264/SVC (Scalable Video Coding) codecs and moreover, there has been no established standard test procedure for the subjective evaluation of DASH adaptive streaming. In this paper, we define a test plan for HEVC-DASH with a carefully justified data set employing longer video sequences that would be sufficient to demonstrate the bitrate switching operations in response to various network condition patterns. We evaluate the end user's real-time QoE online by investigating the perceived impact of delay, different packet loss rates, fluctuating bandwidth, and the perceived quality of using different DASH video stream segment sizes on a video streaming session using different video sequences. The Mean Opinion Score (MOS) results give an insight into the performance of the system and expectation of the users. The results from this study show the impact of different network impairments and different video segments on users' QoE and further analysis and study may help in optimizing system performance.

  15. Channel unit use by Smallmouth Bass: Do land-use constraints or quantity of habitat matter?

    USGS Publications Warehouse

    Brewer, Shannon K.

    2013-01-01

    I examined how land use influenced the distribution of Smallmouth Bass Micropterus dolomieu in channel units (discrete morphological features—e.g., pools) of streams in the Midwestern USA. Stream segments (n = 36), from four clusters of different soil and runoff conditions, were identified that had the highest percent of forest (n = 12), pasture (n = 12), and urban land use (n = 12) within each cluster. Channel units within each stream were delineated and independently sampled once using multiple gears in summer 2006. Data were analyzed using a generalized linear mixed model procedure with a binomial distribution and odds ratio statistics. Land use and channel unit were strong predictors of age-0, age-1, and age->1 Smallmouth Bass presence. Each age-class was more likely to be present in streams within watersheds dominated by forest land use than in those with pasture or urban land uses. The interaction between land use and channel unit was not significant in any of the models, indicating channel unit use by Smallmouth Bass did not depend on watershed land use. Each of the three age-classes was more likely to use pools than other channel units. However, streams with high densities of Smallmouth Bass age >1 had lower proportions of pools suggesting a variety of channel units is important even though habitat needs exist at the channel-unit scale. Management may benefit from future research addressing the significance of channel-unit quality as a possible mechanism for how land use impacts Smallmouth Bass populations. Further, management efforts aimed at improving stream habitat would likely be more beneficial if focused at the stream segment or landscape scale, where a variety of quality habitats might be supported.

  16. The emergence of maternal health as a political priority in Madhya Pradesh, India: a qualitative study

    PubMed Central

    2013-01-01

    Background Politics plays a critical role in agenda setting in health affairs; therefore, understanding the priorities of the political agenda in health is very important. The political priority for safe motherhood has been investigated at the national level in different countries. The objective of this study was to explore why and how maternal health became a political priority at sub-national level in the state of Madhya Pradesh in India. Methods This study followed a qualitative design. Data were collected by carrying out interviews and review of documents. Semi-structured interviews were carried out with twenty respondents from four stakeholder groups: government officials, development partners, civil society and academics. Data analysis was performed using thematic analysis. The analysis was guided by Kingdon’s multiple streams model. Results The emergence of maternal health as a political priority in Madhya Pradesh was the result of convergence in the developments in different streams: the development of problem definition, policy generation and political change. The factors which influenced this process were: emerging evidence of the high magnitude of maternal mortality, civil society’s positioning of maternal mortality as a human rights violation, increasing media coverage, supportive policy environment and launch of the National Rural Health Mission (NRHM), the availability of effective policy solutions, India’s aspiration of global leadership, international influence, maternal mortality becoming a hot debate topic and political transition at the national and state levels. Most of these factors first became important at national level which then cascaded to the state level. Currently, there is a supportive policy environment in the state for maternal health backed by greater political will and increased resources. However, malnutrition and population stabilization are the competing priorities which may push maternal health off the agenda. Conclusions The influence of the events and factors evolving from international and national levels significantly contributed to the development of maternal health as a priority in Madhya Pradesh. This led to several opportunities in terms of policies, guidelines and programmes for improving maternal health. These efforts were successful to some extent in improving maternal health in the state but several implementation challenges still require special attention. PMID:24079699

  17. The emergence of maternal health as a political priority in Madhya Pradesh, India: a qualitative study.

    PubMed

    Jat, Tej Ram; Deo, Prakash Ramchandra; Goicolea, Isabel; Hurtig, Anna-Karin; San Sebastian, Miguel

    2013-09-30

    Politics plays a critical role in agenda setting in health affairs; therefore, understanding the priorities of the political agenda in health is very important. The political priority for safe motherhood has been investigated at the national level in different countries. The objective of this study was to explore why and how maternal health became a political priority at sub-national level in the state of Madhya Pradesh in India. This study followed a qualitative design. Data were collected by carrying out interviews and review of documents. Semi-structured interviews were carried out with twenty respondents from four stakeholder groups: government officials, development partners, civil society and academics. Data analysis was performed using thematic analysis. The analysis was guided by Kingdon's multiple streams model. The emergence of maternal health as a political priority in Madhya Pradesh was the result of convergence in the developments in different streams: the development of problem definition, policy generation and political change. The factors which influenced this process were: emerging evidence of the high magnitude of maternal mortality, civil society's positioning of maternal mortality as a human rights violation, increasing media coverage, supportive policy environment and launch of the National Rural Health Mission (NRHM), the availability of effective policy solutions, India's aspiration of global leadership, international influence, maternal mortality becoming a hot debate topic and political transition at the national and state levels. Most of these factors first became important at national level which then cascaded to the state level. Currently, there is a supportive policy environment in the state for maternal health backed by greater political will and increased resources. However, malnutrition and population stabilization are the competing priorities which may push maternal health off the agenda. The influence of the events and factors evolving from international and national levels significantly contributed to the development of maternal health as a priority in Madhya Pradesh. This led to several opportunities in terms of policies, guidelines and programmes for improving maternal health. These efforts were successful to some extent in improving maternal health in the state but several implementation challenges still require special attention.

  18. Watershed Regressions for Pesticides (WARP) models for predicting stream concentrations of multiple pesticides

    USGS Publications Warehouse

    Stone, Wesley W.; Crawford, Charles G.; Gilliom, Robert J.

    2013-01-01

    Watershed Regressions for Pesticides for multiple pesticides (WARP-MP) are statistical models developed to predict concentration statistics for a wide range of pesticides in unmonitored streams. The WARP-MP models use the national atrazine WARP models in conjunction with an adjustment factor for each additional pesticide. The WARP-MP models perform best for pesticides with application timing and methods similar to those used with atrazine. For other pesticides, WARP-MP models tend to overpredict concentration statistics for the model development sites. For WARP and WARP-MP, the less-than-ideal sampling frequency for the model development sites leads to underestimation of the shorter-duration concentration; hence, the WARP models tend to underpredict 4- and 21-d maximum moving-average concentrations, with median errors ranging from 9 to 38% As a result of this sampling bias, pesticides that performed well with the model development sites are expected to have predictions that are biased low for these shorter-duration concentration statistics. The overprediction by WARP-MP apparent for some of the pesticides is variably offset by underestimation of the model development concentration statistics. Of the 112 pesticides used in the WARP-MP application to stream segments nationwide, 25 were predicted to have concentration statistics with a 50% or greater probability of exceeding one or more aquatic life benchmarks in one or more stream segments. Geographically, many of the modeled streams in the Corn Belt Region were predicted to have one or more pesticides that exceeded an aquatic life benchmark during 2009, indicating the potential vulnerability of streams in this region.

  19. Priority-setting in public health research funding organisations: an exploratory qualitative study among five high-profile funders.

    PubMed

    Cartier, Yuri; Creatore, Maria I; Hoffman, Steven J; Potvin, Louise

    2018-06-22

    Priority-driven funding streams for population and public health are an important part of the health research landscape and contribute to orienting future scholarship in the field. While research priorities are often made public through targeted calls for research, less is known about how research funding organisations arrive at said priorities. Our objective was to explore how public health research funding organisations develop priorities for strategic extramural research funding programmes. Content analysis of published academic and grey literature and key informant interviews for five public and private funders of public health research in the United Kingdom, Australia, the United States and France were performed. We found important distinctions in how funding organisations processed potential research priorities through four non-sequential phases, namely idea generation, idea analysis, idea socialisation and idea selection. Funders generally involved the public health research community and public health decision-makers in idea generation and socialisation, but other groups of stakeholders (e.g. the public, advocacy organisations) were not as frequently included. Priority-setting for strategic funding programmes in public health research involves consultation mainly with researchers in the early phase of the process. There is an opportunity for greater breadth of participation and more transparency in priority-setting mechanisms for strategic funding programmes in population and public health research.

  20. Simulation of nutrient and sediment concentrations and loads in the Delaware inland bays watershed: Extension of the hydrologic and water-quality model to ungaged segments

    USGS Publications Warehouse

    Gutierrez-Magness, Angelica L.

    2006-01-01

    Rapid population increases, agriculture, and industrial practices have been identified as important sources of excessive nutrients and sediments in the Delaware Inland Bays watershed. The amount and effect of excessive nutrients and sediments in the Inland Bays watershed have been well documented by the Delaware Geological Survey, the Delaware Department of Natural Resources and Environmental Control, the U.S. Environmental Protection Agency's National Estuary Program, the Delaware Center for Inland Bays, the University of Delaware, and other agencies. This documentation and data previously were used to develop a hydrologic and water-quality model of the Delaware Inland Bays watershed to simulate nutrients and sediment concentrations and loads, and to calibrate the model by comparing concentrations and streamflow data at six stations in the watershed over a limited period of time (October 1998 through April 2000). Although the model predictions of nutrient and sediment concentrations for the calibrated segments were fairly accurate, the predictions for the 28 ungaged segments located near tidal areas, where stream data were not available, were above the range of values measured in the area. The cooperative study established in 2000 by the Delaware Department of Natural Resources and Environmental Control, the Delaware Geological Survey, and the U.S. Geological Survey was extended to evaluate the model predictions in ungaged segments and to ensure that the model, developed as a planning and management tool, could accurately predict nutrient and sediment concentrations within the measured range of values in the area. The evaluation of the predictions was limited to the period of calibration (1999) of the 2003 model. To develop estimates on ungaged watersheds, parameter values from calibrated segments are transferred to the ungaged segments; however, accurate predictions are unlikely where parameter transference is subject to error. The unexpected nutrient and sediment concentrations simulated with the 2003 model were likely the result of inappropriate criteria for the transference of parameter values. From a model-simulation perspective, it is a common practice to transfer parameter values based on the similarity of soils or the similarity of land-use proportions between segments. For the Inland Bays model, the similarity of soils between segments was used as the basis to transfer parameter values. An alternative approach, which is documented in this report, is based on the similarity of the spatial distribution of the land use between segments and the similarity of land-use proportions, as these can be important factors for the transference of parameter values in lumped models. Previous work determined that the difference in the variation of runoff due to various spatial distributions of land use within a watershed can cause substantialloss of accuracy in the model predictions. The incorporation of the spatial distribution of land use to transfer parameter values from calibrated to uncalibrated segments provided more consistent and rational predictions of flow, especially during the summer, and consequently, predictions of lower nutrient concentrations during the same period. For the segments where the similarity of spatial distribution of land use was not clearly established with a calibrated segment, the similarity of the location of the most impervious areas was also used as a criterion for the transference of parameter values. The model predictions from the 28 ungaged segments were verified through comparison with measured in-stream concentrations from local and nearby streams provided by the Delaware Department of Natural Resources and Environmental Control. Model results indicated that the predicted edge-of-stream total suspended solids loads in the Inland Bays watershed were low in comparison to loads reported for the Eastern Shore of Maryland from the Chesapeake Bay watershed model. The flatness of the ter

  1. Toward a VA Women's Health Research Agenda: setting evidence-based priorities to improve the health and health care of women veterans.

    PubMed

    Yano, Elizabeth M; Bastian, Lori A; Frayne, Susan M; Howell, Alexandra L; Lipson, Linda R; McGlynn, Geraldine; Schnurr, Paula P; Seaver, Margaret R; Spungen, Ann M; Fihn, Stephan D

    2006-03-01

    The expansion of women in the military is reshaping the veteran population, with women now constituting the fastest growing segment of eligible VA health care users. In recognition of the changing demographics and special health care needs of women, the VA Office of Research & Development recently sponsored the first national VA Women's Health Research Agenda-setting conference to map research priorities to the needs of women veterans and position VA as a national leader in Women's Health Research. This paper summarizes the process and outcomes of this effort, outlining VA's research priorities for biomedical, clinical, rehabilitation, and health services research.

  2. Toward a VA Women's Health Research Agenda: Setting Evidence-based Priorities to Improve the Health and Health Care of Women Veterans

    PubMed Central

    Yano, Elizabeth M; Bastian, Lori A; Frayne, Susan M; Howell, Alexandra L; Lipson, Linda R; McGlynn, Geraldine; Schnurr, Paula P; Seaver, Margaret R; Spungen, Ann M; Fihn, Stephan D

    2006-01-01

    The expansion of women in the military is reshaping the veteran population, with women now constituting the fastest growing segment of eligible VA health care users. In recognition of the changing demographics and special health care needs of women, the VA Office of Research & Development recently sponsored the first national VA Women's Health Research Agenda-setting conference to map research priorities to the needs of women veterans and position VA as a national leader in Women's Health Research. This paper summarizes the process and outcomes of this effort, outlining VA's research priorities for biomedical, clinical, rehabilitation, and health services research. PMID:16637953

  3. Revised Methods for Characterizing Stream Habitat in the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Waite, Ian R.; D'Arconte, Patricia J.; Meador, Michael R.; Maupin, Molly A.; Gurtz, Martin E.

    1998-01-01

    Stream habitat is characterized in the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. The goal of stream habitat characterization is to relate habitat to other physical, chemical, and biological factors that describe water-quality conditions. To accomplish this goal, environmental settings are described at sites selected for water-quality assessment. In addition, spatial and temporal patterns in habitat are examined at local, regional, and national scales. This habitat protocol contains updated methods for evaluating habitat in NAWQA Study Units. Revisions are based on lessons learned after 6 years of applying the original NAWQA habitat protocol to NAWQA Study Unit ecological surveys. Similar to the original protocol, these revised methods for evaluating stream habitat are based on a spatially hierarchical framework that incorporates habitat data at basin, segment, reach, and microhabitat scales. This framework provides a basis for national consistency in collection techniques while allowing flexibility in habitat assessment within individual Study Units. Procedures are described for collecting habitat data at basin and segment scales; these procedures include use of geographic information system data bases, topographic maps, and aerial photographs. Data collected at the reach scale include channel, bank, and riparian characteristics.

  4. INDUSTRIAL POLLUTION PREVENTION OPPORTUNITIES FOR THE 1990S

    EPA Science Inventory

    A set of criteria was developed for the purpose of subjectively prioritizing industry segments for their pollution prevention potential and their opportunity for improvement. Using this set of criteria, high priority industries were selected from a Standard Industry Classificatio...

  5. Adoption of Stream Fencing Among Dairy Farmers in Four New Zealand Catchments

    NASA Astrophysics Data System (ADS)

    Bewsell, Denise; Monaghan, Ross M.; Kaine, Geoff

    2007-08-01

    The effect of dairy farming on water quality in New Zealand streams has been identified as an important environmental issue. Stream fencing, to keep cattle out of streams, is seen as a way to improve water quality. Fencing ensures that cattle cannot defecate in the stream, prevents bank erosion, and protects the aquatic habitat. Stream fencing targets have been set by the dairy industry. In this paper the results of a study to identify the factors influencing dairy farmers’ decisions to adopt stream fencing are outlined. Qualitative methods were used to gather data from 30 dairy farmers in four New Zealand catchments. Results suggest that farm contextual factors influenced farmers’ decision making when considering stream fencing. Farmers were classified into four segments based on their reasons for investing in stream fencing. These reasons were fencing boundaries, fencing for stock control, fencing to protect animal health, and fencing because of pressure to conform to local government guidelines or industry codes of practice. This suggests that adoption may be slow in the absence of on-farm benefits, that promotion of stream fencing needs to be strongly linked to on-farm benefits, and that regulation could play a role in ensuring greater adoption of stream fencing.

  6. Figure-ground segregation modulates apparent motion.

    PubMed

    Ramachandran, V S; Anstis, S

    1986-01-01

    We explored the relationship between figure-ground segmentation and apparent motion. Results suggest that: static elements in the surround can eliminate apparent motion of a cluster of dots in the centre, but only if the cluster and surround have similar "grain" or texture; outlines that define occluding surfaces are taken into account by the motion mechanism; the brain uses a hierarchy of precedence rules in attributing motion to different segments of the visual scene. Being designated as "figure" confers a high rank in this scheme of priorities.

  7. Using Predictability for Lexical Segmentation.

    PubMed

    Çöltekin, Çağrı

    2017-09-01

    This study investigates a strategy based on predictability of consecutive sub-lexical units in learning to segment a continuous speech stream into lexical units using computational modeling and simulations. Lexical segmentation is one of the early challenges during language acquisition, and it has been studied extensively through psycholinguistic experiments as well as computational methods. However, despite strong empirical evidence, the explicit use of predictability of basic sub-lexical units in models of segmentation is underexplored. This paper presents an incremental computational model of lexical segmentation for exploring the usefulness of predictability for lexical segmentation. We show that the predictability cue is a strong cue for segmentation. Contrary to earlier reports in the literature, the strategy yields state-of-the-art segmentation performance with an incremental computational model that uses only this particular cue in a cognitively plausible setting. The paper also reports an in-depth analysis of the model, investigating the conditions affecting the usefulness of the strategy. Copyright © 2016 Cognitive Science Society, Inc.

  8. Intercultural Education. Fastback 142.

    ERIC Educational Resources Information Center

    Hoopes, David S.

    This document discusses current goals, problems, priorities, and curricular approaches to intercultural education. Traditionally, international education looked at the world in segments. It stressed gathering information about separate cultures and analysis of power relationships. Now, however, the concept of a global society is emerging. One…

  9. 78 FR 45871 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... components: Hydrogeologic study; Surface water sampling study; Stream biological study; Air quality survey... components: Biological survey; Biota survey; Surface water and sediment characterization; Groundwater... impacted groundwater in three water bearing zones at the Site; the unconsolidated materials zone, the upper...

  10. ESTIMATING THE SIZE OF HISTORICAL COASTAL OREGON SALMON RUNS

    EPA Science Inventory

    Increasing the abundance of salmon in Oregon's rivers and streams is a high priority public policy objective. Salmon runs have been reduced from pre-development conditions (typically defined as prior to the 1850s), but it is unclear by how much. Considerable public and private ...

  11. Identifying priority sites for low impact development (LID) in a mixed-use watershed

    EPA Science Inventory

    ABSTRACT: Low impact development (LID), a comprehensive land use planning and design approach with the goal of mitigating land development impacts to the environment, is increasingly being touted as an effective approach to lessen runoff and pollutant loadings to streams. Broad-s...

  12. Activity recognition using Video Event Segmentation with Text (VEST)

    NASA Astrophysics Data System (ADS)

    Holloway, Hillary; Jones, Eric K.; Kaluzniacki, Andrew; Blasch, Erik; Tierno, Jorge

    2014-06-01

    Multi-Intelligence (multi-INT) data includes video, text, and signals that require analysis by operators. Analysis methods include information fusion approaches such as filtering, correlation, and association. In this paper, we discuss the Video Event Segmentation with Text (VEST) method, which provides event boundaries of an activity to compile related message and video clips for future interest. VEST infers meaningful activities by clustering multiple streams of time-sequenced multi-INT intelligence data and derived fusion products. We discuss exemplar results that segment raw full-motion video (FMV) data by using extracted commentary message timestamps, FMV metadata, and user-defined queries.

  13. Rapid Assessment of Logging-Associated Sediment-Delivery Pathways in an Intensively-Managed Forested Watershed in the Southern Cascades, Northern California

    NASA Astrophysics Data System (ADS)

    Coe, D. B.; Wopat, M. A.; Lindsay, D.; Stanish, S.; Boone, M.; Beck, B.; Wyman, A.; Bull, J.

    2012-12-01

    The potential for water-quality impacts in intensively-managed forested watersheds depends partly upon the frequency of overland flow paths linking logging-related hillslope sediment sources to the channel network, as well as the volume of sediment delivered along these flow paths. In response to public concerns over perceived water-quality impacts from clearcut timber harvesting, the Battle Creek Task Force, composed of subject-matter experts from 4 different state agencies, performed a rapid assessment for visible evidence of sediment delivery pathways from multiple logging-associated features in the upper Battle Creek watershed - an area underlain predominantly by Holocene- and Late Pleistocene-aged volcanic rock types, with highly permeable soils, and relatively few streams. Logging-associated features were selected for assessment based on erosion potential and proximity to stream channels. Identified sediment-delivery pathways were then characterized by dominant erosion process and the relative magnitude of sediment delivery (i.e., low, moderate, and high) was estimated. Approximately 26 km of stream buffers adjacent to 55 clearcut harvest units were assessed, and the single detected instance of sediment delivery was found to be of low magnitude and the result of illegal encroachment by logging equipment into a 5-m wide stream-adjacent equipment-limitation zone. The proportion of sampled sites delivering sediment was found to be highest for tractor-stream crossings, followed by road-stream crossings, stream-adjacent road segments, stream-adjacent landings, and clearcut harvest units, respectively. All 5 tractor-stream crossings delivered sediment, but were generally delivering a low magnitude of sediment derived from sheetwash and rilling. Road-stream crossings (n=39) and stream-adjacent road segments (n=24) delivered observable sediment 69 and 67 percent of the time, respectively. The highest magnitudes of sediment delivery from roads were associated with substandard design or maintenance practices (e.g., poor road drainage) and/or poor location (e.g., roads less than 15 m from a stream), but the magnitude of sediment delivery was generally low or unobservable where Best Management Practices (BMPs) had been implemented. Conceptually, water-quality impacts are limited by the low density of streams in the watershed, relatively low hillslope gradients, relatively high permeability of the soils, and the implementation of BMPs. Assessment results suggest that direct water-quality impacts from overland flow paths in these types of watersheds are best minimized by disconnecting flow paths linking roads to streams, and by implementing BMPs.

  14. Ecological benefits of reduced hydrologic connectivity in intensively developed landscapes

    Treesearch

    C. Rhett Jackson; Catherine M. Pringle

    2010-01-01

    A broad perspective on hydrologic connectivity is necessary when managing stream ecosystems and establishing conservation priorities. Hydrologic connectivity refers to the water-mediated transport of matter, energy, or organisms within or between elements of the hydrologic cycle. The potential negative consequences of enhancing hydrologic connectivity warrant careful...

  15. Mapping spatial and temporal variation of stream water temperature in the upper Esopus Creek watershed

    NASA Astrophysics Data System (ADS)

    Chien, H.; McGlinn, L.

    2017-12-01

    The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.

  16. Fish habitat regression under water scarcity scenarios in the Douro River basin

    NASA Astrophysics Data System (ADS)

    Segurado, Pedro; Jauch, Eduardo; Neves, Ramiro; Ferreira, Teresa

    2015-04-01

    Climate change will predictably alter hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goals of this study are to identify the stream reaches that will undergo more pronounced flow reduction under different climate change scenarios and to assess which fish species will be more affected by the consequent regression of suitable habitats. The interplay between changes in flow and temperature and the presence of transversal artificial obstacles (dams and weirs) is analysed. The results will contribute to river management and impact mitigation actions under climate change. This study was carried out in the Tâmega catchment of the Douro basin. A set of 29 Hydrological, climatic, and hydrogeomorphological variables were modelled using a water modelling system (MOHID), based on meteorological data recorded monthly between 2008 and 2014. The same variables were modelled considering future climate change scenarios. The resulting variables were used in empirical habitat models of a set of key species (brown trout Salmo trutta fario, barbell Barbus bocagei, and nase Pseudochondrostoma duriense) using boosted regression trees. The stream segments between tributaries were used as spatial sampling units. Models were developed for the whole Douro basin using 401 fish sampling sites, although the modelled probabilities of species occurrence for each stream segment were predicted only for the Tâmega catchment. These probabilities of occurrence were used to classify stream segments into suitable and unsuitable habitat for each fish species, considering the future climate change scenario. The stream reaches that were predicted to undergo longer flow interruptions were identified and crossed with the resulting predictive maps of habitat suitability to compute the total area of habitat loss per species. Among the target species, the brown trout was predicted to be the most sensitive to habitat regression due to the interplay of flow reduction, increase of temperature and transversal barriers. This species is therefore a good indicator of climate change impacts in rivers and therefore we recommend using this species as a target of monitoring programs to be implemented in the context of climate change adaptation strategies.

  17. Using water-quality profiles to characterize seasonal water quality and loading in the upper Animas River basin, southwestern Colorado

    USGS Publications Warehouse

    Leib, Kenneth J.; Mast, M. Alisa; Wright, Winfield G.

    2003-01-01

    One of the important types of information needed to characterize water quality in streams affected by historical mining is the seasonal pattern of toxic trace-metal concentrations and loads. Seasonal patterns in water quality are estimated in this report using a technique called water-quality profiling. Water-quality profiling allows land managers and scientists to assess priority areas to be targeted for characterization and(or) remediation by quantifying the timing and magnitude of contaminant occurrence. Streamflow and water-quality data collected at 15 sites in the upper Animas River Basin during water years 1991?99 were used to develop water-quality profiles. Data collected at each sampling site were used to develop ordinary least-squares regression models for streamflow and constituent concentrations. Streamflow was estimated by correlating instantaneous streamflow measured at ungaged sites with continuous streamflow records from streamflow-gaging stations in the subbasin. Water-quality regression models were developed to estimate hardness and dissolved cadmium, copper, and zinc concentrations based on streamflow and seasonal terms. Results from the regression models were used to calculate water-quality profiles for streamflow, constituent concentrations, and loads. Quantification of cadmium, copper, and zinc loads in a stream segment in Mineral Creek (sites M27 to M34) was presented as an example application of water-quality profiling. The application used a method of mass accounting to quantify the portion of metal loading in the segment derived from uncharacterized sources during different seasonal periods. During May, uncharacterized sources contributed nearly 95 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 85 percent of the zinc load at M34. During September, uncharacterized sources contributed about 86 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 52 percent of the zinc load at M34. Characterized sources accounted for more of the loading gains estimated in the example reach during September, possibly indicating the presence of diffuse inputs during snowmelt runoff. The results indicate that metal sources in the upper Animas River Basin may change substantially with season, regardless of the source.

  18. Nitrate dynamics within a stream-lake network through time and space

    NASA Astrophysics Data System (ADS)

    Loken, L. C.; Crawford, J. T.; Childress, E. S.; Casson, N. J.; Stanley, E. H.

    2014-12-01

    Nitrate dynamics in streams are governed by biology, hydrology, and geomorphology, and the ability to parse these drivers apart has improved with the development of accurate high-frequency sensors. By combining a stationary Eulerian and a quasi-Lagrangian sensor platform, we investigated the timing of nitrate flushing and identified locations of elevated biogeochemical cycling along a stream-lake network in Northern Wisconsin, USA. Two years of continuous oxygen, carbon dioxide, and discharge measurements were used to compute gross primary production (GPP) and ecosystem respiration (ER) downstream of a wetland reach of Allequash Creek. Metabolic rates and flow patterns were compared with nitrate concentrations measured every 30 minutes using an optical sensor. Additionally, we floated a sensor array from the headwater spring ponds through a heterogeneous stream reach consisting of wetlands, beaver ponds, forested segments, and two lakes. Two distinct temporal patterns of stream nitrate concentrations were observed. During high flow events such as spring snowmelt and summer rain events, nitrate concentrations increased from ~5 μM (baseflow) to 12 μM, suggesting flushing from catchment sources. During baseflow conditions, nitrate followed a diel cycle with a 0.3-1.0 μM daytime draw down. Daily nitrate reduction was positively correlated with GPP calculated from oxygen and carbon dioxide records. Lastly, spatial analyses revealed lowest nitrate concentrations in the wetland reach, approximately 2-3 μM lower than the upstream spring ponds, and downstream lakes and forested reaches. This snapshot implies greater nitrate removal potential in the wetland reach likely driven by denitrification in organic rich sediments and macrophyte uptake in the open canopy stream segment. Taken together the temporal and spatial results show the dynamics of hydrology, geomorphology, and biology to influence nitrate delivery and variability in ecosystem processing through a stream-lake system. Future ecosystem studies could benefit by including multiple reference frameworks to better assess processes not captured by a single station approach.

  19. Influences of Geomorphic Complexity and Rehabilitation on Nutrient Uptake in an Urban Stream

    NASA Astrophysics Data System (ADS)

    Mueller, J. S.; Baker, D. W.; Bledsoe, B. P.

    2006-12-01

    Headwater streams, which are highly vulnerable to anthropogenic impacts associated with land use change, have large surface-to-volume ratios that favor retention and removal of nitrogen. We describe a study focused on how geomorphic complexity is related to nutrient retention in impacted and restored headwater streams along a gradient of human land use. A key element of the study is a detailed protocol for characterizing the spatial distribution of physical habitat units composed of relatively distinct combinations of flow hydraulics and textural facies. We are using the detailed physical characterization and nutrient injections in paired segments of a Colorado Front Range urban stream to examine associations among geomorphic complexity, nitrogen uptake, and the degree and style of channel rehabilitation. The results of the study have implications for the viability of stream rehabilitation as a tool for reducing N delivery to downstream aquatic systems that are vulnerable to eutrophication.

  20. The Stream-Catchment (StreamCat) and Lake-Catchment ...

    EPA Pesticide Factsheets

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate

  1. 45 CFR 1620.3 - Establishing priorities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... other efforts to solve particular problems in the area served; (10) Whether legal efforts will result in... recipient, including all significant segments of that population with special legal problems or special... particular legal problems to the individual clients of the recipient; (8) The susceptibility of particular...

  2. Exploring changes in the spatial distribution of stream baseflow generation during a seasonal recession

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2012-01-01

    Relating watershed structure to streamflow generation is a primary focus of hydrology. However, comparisons of longitudinal variability in stream discharge with adjacent valley structure have been rare, resulting in poor understanding of the distribution of the hydrologic mechanisms that cause variability in streamflow generation along valleys. This study explores detailed surveys of stream base flow across a gauged, 23 km2 mountain watershed. Research objectives were (1) to relate spatial variability in base flow to fundamental elements of watershed structure, primarily topographic contributing area, and (2) to assess temporal changes in the spatial patterns of those relationships during a seasonal base flow recession. We analyzed spatiotemporal variability in base flow using (1) summer hydrographs at the study watershed outlet and 5 subwatershed outlets and (2) longitudinal series of discharge measurements every ~100 m along the streams of the 3 largest subwatersheds (1200 to 2600 m in valley length), repeated 2 to 3 times during base flow recession. Reaches within valley segments of 300 to 1200 m in length tended to demonstrate similar streamflow generation characteristics. Locations of transitions between these segments were consistent throughout the recession, and tended to be collocated with abrupt longitudinal transitions in valley slope or hillslope-riparian characteristics. Both within and among subwatersheds, correlation between the spatial distributions of streamflow and topographic contributing area decreased during the recession, suggesting a general decrease in the influence of topography on stream base flow contributions. As topographic controls on base flow evidently decreased, multiple aspects of subsurface structure were likely to have gained influence.

  3. Simulating the impacts of groundwater pumping on stream aquifer dynamics in semiarid northwestern Oklahoma, USA

    NASA Astrophysics Data System (ADS)

    Zume, Joseph; Tarhule, Aondover

    2008-06-01

    Visual MODFLOW, a numerical groundwater flow model, was used to evaluate the impacts of groundwater exploitation on streamflow depletion in the Alluvium and Terrace aquifer of the Beaver-North Canadian River (BNCR) in northwestern Oklahoma, USA. Water demand in semi-arid northwestern Oklahoma is projected to increase by 53% during the next five decades, driven primarily by irrigation, public water supply, and agricultural demand. Using MODFLOW’s streamflow routing package, pumping-induced changes in baseflow and stream leakage were analyzed to estimate streamflow depletion in the BNCR system. Simulation results indicate groundwater pumping has reduced baseflow to streams by approximately 29% and has also increased stream leakage into the aquifer by 18% for a net streamflow loss of 47%. The magnitude and intensity of streamflow depletion, however, varies for different stream segments, ranging from 0 to 20,804 m3/d. The method provides a framework for isolating and quantifying impacts of aquifer pumping on stream function in semiarid alluvial environments.

  4. Morphotectonic Index Analysis as an Indicator of Neotectonic Segmentation of the Nicoya Peninsula, Costa Rica

    NASA Astrophysics Data System (ADS)

    Morrish, S.; Marshall, J. S.

    2013-12-01

    The Nicoya Peninsula lies within the Costa Rican forearc where the Cocos plate subducts under the Caribbean plate at ~8.5 cm/yr. Rapid plate convergence produces frequent large earthquakes (~50yr recurrence interval) and pronounced crustal deformation (0.1-2.0m/ky uplift). Seven uplifted segments have been identified in previous studies using broad geomorphic surfaces (Hare & Gardner 1984) and late Quaternary marine terraces (Marshall et al. 2010). These surfaces suggest long term net uplift and segmentation of the peninsula in response to contrasting domains of subducting seafloor (EPR, CNS-1, CNS-2). In this study, newer 10m contour digital topographic data (CENIGA- Terra Project) will be used to characterize and delineate this segmentation using morphotectonic analysis of drainage basins and correlation of fluvial terrace/ geomorphic surface elevations. The peninsula has six primary watersheds which drain into the Pacific Ocean; the Río Andamojo, Río Tabaco, Río Nosara, Río Ora, Río Bongo, and Río Ario which range in area from 200 km2 to 350 km2. The trunk rivers follow major lineaments that define morphotectonic segment boundaries and in turn their drainage basins are bisected by them. Morphometric analysis of the lower (1st and 2nd) order drainage basins will provide insight into segmented tectonic uplift and deformation by comparing values of drainage basin asymmetry, stream length gradient, and hypsometry with respect to margin segmentation and subducting seafloor domain. A general geomorphic analysis will be conducted alongside the morphometric analysis to map previously recognized (Morrish et al. 2010) but poorly characterized late Quaternary fluvial terraces. Stream capture and drainage divide migration are common processes throughout the peninsula in response to the ongoing deformation. Identification and characterization of basin piracy throughout the peninsula will provide insight into the history of landscape evolution in response to differential uplift. Conducting this morphotectonic analysis of the Nicoya Peninsula will provide further constraints on rates of segment uplift, location of segment boundaries, and advance the understanding of the long term deformation of the region in relation to subduction.

  5. Ground Water Atlas of the United States: Segment 7, Idaho, Oregon, Washington

    USGS Publications Warehouse

    Whitehead, R.L.

    1994-01-01

    The States of Idaho, Oregon, and Washington, which total 248,730 square miles, compose Segment 7 of this Atlas. The area is geologically and topographically diverse and contains a wealth of scenic beauty, natural resources, and ground and surface water that generally are suitable for all uses. Most of the area of Segment 7 is drained by the Columbia River, its tributaries, and other streams that discharge to the Pacific Ocean. Exceptions are those streams that flow to closed basins in southeastern Oregon and northern Nevada and to the Great Salt Lake in northern Utah. The Columbia River is one of the largest rivers in the Nation. The downstream reach of the Columbia River forms most of the border between Oregon and Washington. In 1990, Idaho, Oregon, and Washington had populations of 1.0 million, 2.8 million, and 4.9 million, respectively. The more densely populated parts are in lowland areas and stream valleys. Many of the mountains, the deserts, and the upland areas of Idaho, Oregon, and Washington lack major population centers. Large areas of Idaho and Oregon are uninhabited and are mostly public land (fig. 1) where extensive ground-water development is restricted. Surface water is abundant in Idaho, Oregon, and Washington, though not always available when and where needed. In some places, surface water provides much of the water used for public-supply, domestic and commercial, agricultural (primarily irrigation and livestock watering), and industrial purposes. In arid parts of Segment 7, however, surface water has long been fully appropriated, chiefly for irrigation. Ground water is used when and where surface-water supplies are lacking. Ground water is commonly available to shallow wells that are completed in unconsolidated-deposit aquifers that consist primarily of sand and gravel but contain variable quantities of clay and silt. Many large-yield public-supply and irrigation wells and thousands of domestic wells are completed in these types of aquifers, generally in areas of privately owned land (fig. 1). In many places, deeper wells produce water from underlying volcanic rocks, usually basalt. Most irrigation (fig. 2) is on lowlands next to streams and on adjacent terraces. Generally, lowlands within a few miles of a main stream are irrigated with surface water diverted by gravity flow from the main stream or a reservoir and distributed through a system of canals and ditches. In some areas, water is pumped to irrigate lands farther from the stream at a higher altitude. Along the Snake and Columbia Rivers, large pumping systems withdraw billions of gallons of water per day from the rivers to irrigate adjacent uplands that are more than 500 feet higher than the rivers. Elsewhere, irrigation water is obtained from large-capacity wells, where depth to water might exceed 500 feet below land surface. Aquifers in Idaho, Oregon, and Washington, as in most other States, differ considerably in thickness and permeability, and well yields differ accordingly. Ground-water levels in a few areas have declined as a result of withdrawals by wells. State governments have taken steps to alleviate declines in some areas by enacting programs that either limit the number of additional wells that can be completed in a particular aquifer (Ground-Water Management Area) or prevent further ground-water development (Critical Ground-Water Area). Segment 7 includes some of the driest parts of the Nation, as well as some of the wettest. Average annual precipitation (1951-80) ranges from less than 10 inches in arid parts of Idaho, Oregon, and Washington to more than 80 inches in the western parts of Oregon and Washington (fig. 3). Most storms generally move eastward through the area. The eastward-moving air absorbs the moisture that evaporates from the Pacific Ocean. As this air encounters the fronts of mountain ranges, it rises, cools, and condenses. Accordingly, the western sides of the mountain ranges receive the most precipitation. Much of the annual precipitation moves directly to streams as overland runoff. Some of the precipitation is returned to the atmosphere by evapotranspiration, which is the combination of evaporation from the surface and transpiration from the plants. A small part of the precipitation infiltrates the soil and percolates downward to recharge underlying aquifers. Average annual runoff ( 1951-80) in the segment varies considerably (fig. 4), and the distribution of the runoff generally parallels that of precipitation. In the arid and the semiarid parts of Segment 7, most precipitation replenishes soil moisture, evaporates, or is transpired by vegetation. Little is left to maintain streamflow or to recharge aquifers. In the wetter parts, much of the precipitation runs off the land surface to maintain streamflow, and because evaporation is usually less in wetter areas, more water is available to recharge aquifers. Precipitation that falls as snow generally does not become runoff until spring thaws begin. Reservoirs constructed on major streams to mitigate flooding and to store water for irrigation, hydroelectric-power generation, and recreation also affect the timing of runoff. The runoff is stored and subsequently released during drier periods to maintain downstream flow.

  6. METHODS OF ANALYSIS FOR WASTE LOAD ALLOCATION

    EPA Science Inventory

    This research has addressed several unresolved questions concerning the allocation of allowable waste loads among multiple wastewater dischargers within a water quality limited stream segment. First, the traditional assumptions about critical design conditions for waste load allo...

  7. Macroalgae in a spring stream in Shanxi Province: composition and relation to physical and chemical variables

    NASA Astrophysics Data System (ADS)

    Hu, Bianfang; Xie, Shulian

    2007-07-01

    Fourteen stream segments were investigated throughout the Xin’an Spring in Shanxi Province, China in 2004. The variation ranges in stream size, current velocity, discharge, dissolved oxygen, and specific conductance were large. Twenty-two macroalgae species were found in the stream. Major divisions in terms of species numbers were Chlorophyta (59.1%), Cyanophyta (22.8%), Xanthophyta (9.1%), Rhodophyta (4.5%) and Charophyta (4.5%). The most widespread species, Cladophora rivularis (50.0%), also Oedogonium sp. (42.9%) and Spirogyra sp. (42.9%) were well represented throughout the stream, whereas another 10 species were found in only one sampling site. Total percentage cover varied from <1% to 90%. Red algae Batrachospermum acuatum and the charophytes Chara vulgaris have the highest percentage cover. Among the parameters analyzed, the stream width, specific conductance and dissolved oxygen were the ones that more closely related to the species number and percentage cover of macroalgal communities. The species number of each site was negatively correlated with dissolved oxygen content. The total percentage cover of the macroalgae was negatively correlated with the stream width and the specific conductance.

  8. An Analysis of Stream Culvert Fish Passage on the Navy Railroad Line between Bremerton and Shelton, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Christopher W.; Miller, Martin C.; Southard, John A.

    2004-10-25

    The Navy railroad service line runs between Shelton, Bremerton, and Silverdale, and is used by the Navy to transfer freight to its facilities. It is also used by commercial clients to ship service items and bulk cargo for municipalities along portions of the route. Culverts of various size and construction convey streams and stormwater runoff under the railroad line. These allow transfer of water and, in some cases allow for passage of juvenile and adult salmon into waters upstream of the culverts. As part of this project, 21 culverts along a 34-mile reach (Shelton to Bremerton) of this railroad weremore » surveyed to evaluate their function and ability to allow salmon to utilize the streams. The culverts and attached watersheds were evaluated using criteria developed by the Washington Department of Fish and Wildlife to assign a Priority Index (PI) to barriers present on each fish-bearing stream. The PI is a relative numeric rating indicator, assigned using consistent criteria related to the degree of potential habitat gained by removing barriers and improving the function of the watershed. Of the 21 culverts evaluated, five were found to be complete fish-passage barriers and six were found to be partial barriers, primarily to juvenile salmon. Three of these culverts had PI ratings above 10 and five others had ratings between 7 and 10. Corrective action can be taken based on any PI rating, but the WDFW normally assigns lower priority to projects with PI scores lower than 15. Several of the stream and culverts had previously been evaluated for structural integrity and function and have been scheduled for repair. A narrative indicating the condition of the culvert has been prepared as well as a table indicating the PI scores and a summary of recommendations for action for each culvert.« less

  9. 77 FR 45968 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... (soil and groundwater) of the properties proposed for deletion. DATES: This direct final partial... site media, including soil and groundwater for the following properties: Properties owned by the Town... streams were finally directed to the WWTP. As a result of these discharges, overburden soil and bedrock...

  10. Funding Sources for Public Higher Education in South Africa: Institutional Responses

    ERIC Educational Resources Information Center

    Ntshoe, Isaac; de Villiers, Pierre

    2013-01-01

    Tuition fees and the use of student loans to complement government's allocations have become unavoidable because of increasing competing new priorities for funding. This article addresses the funding sources of public higher education through tuition and loans. We explore the effects of shifts from first-stream income (government appropriations)…

  11. Setting priorities for research on pollution reduction functions of agricultural buffers

    Treesearch

    Michael G. Dosskey

    2002-01-01

    The success of buffer installation initiatives and programs to reduce nonpoint source pollution of streams on agricultural lands will depend the ability of local planners to locate and design buffers for specific circumstances with substantial and predictable results. Current predictive capabilities are inadequate, and major sources of uncertainty remain. An...

  12. Characteristics of Perforated Diffusers at Free-Stream Mach Number 1.90

    DTIC Science & Technology

    1950-05-08

    deg) Subscripts: 0 free stream 1 inlet entrance 2 Inlet throat 3 pitot -static rake in simulated combustion chamber 4 outlet of simulated...consisted of a 40-tube pitot -static survey rake located 0.55 combust Ion-chamber diameter downstream of the outlet of the subsonic diffuser (fig. 8(b...The rake was so designed that eaoh pitot -static tube was located at the oentroid of one of the forty equal area segments Into which the combustion

  13. Robust and efficient fiducial tracking for augmented reality in HD-laparoscopic video streams

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Groch, A.; Baumhauer, M.; Maier-Hein, L.; Teber, D.; Rassweiler, J.; Meinzer, H.-P.; Wegner, In.

    2012-02-01

    Augmented Reality (AR) is a convenient way of porting information from medical images into the surgical field of view and can deliver valuable assistance to the surgeon, especially in laparoscopic procedures. In addition, high definition (HD) laparoscopic video devices are a great improvement over the previously used low resolution equipment. However, in AR applications that rely on real-time detection of fiducials from video streams, the demand for efficient image processing has increased due to the introduction of HD devices. We present an algorithm based on the well-known Conditional Density Propagation (CONDENSATION) algorithm which can satisfy these new demands. By incorporating a prediction around an already existing and robust segmentation algorithm, we can speed up the whole procedure while leaving the robustness of the fiducial segmentation untouched. For evaluation purposes we tested the algorithm on recordings from real interventions, allowing for a meaningful interpretation of the results. Our results show that we can accelerate the segmentation by a factor of 3.5 on average. Moreover, the prediction information can be used to compensate for fiducials that are temporarily occluded or out of scope, providing greater stability.

  14. A Scan Line Algorithm for Computer Generated Flight Visuals,

    DTIC Science & Technology

    1981-02-01

    8217--- P FIG. 3.4 POLYGON CLIPPING 13 f ace cnri ProtyPriority f ace index etrd Protyindex index 0 n -i FIG. 3.5 FACE - PRIORITY LINK 3.4 Perspecliite...along edges vr2 and 1a1.1, and then along the segment rs results in the point p being assigned colour !15 20 1 35cl +.-9C 2 + I- C3 + 3-C4 49 49 14 14...AR-002-259 0 DEPARTMENT OF DEFENCE 0DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 7- n AERONAUTICAL RESEARCH LABORATORIES TN4 MELBOURNE, VICTORIA 1 b

  15. Industrial wastes and public health: some historical notes, Part I, 1876-1932.

    PubMed Central

    Tarr, J A

    1985-01-01

    This article has focused on the relatively low priority accorded industrial wastes compared to human wastes by the public health community in the period from 1876 through 1932. The critical reason for this prioritization was the potential for acute health effects from human wastes as compared with the belief that industrial wastes had only indirect effects. State departments of health normally only responded to industrial wastes when they endangered the potable nature of water supplies or interfered with water and sewage treatment processes. Within the public health community, however, a relatively small group of interdisciplinary professionals argued for attention to the indirect health effects of industrial wastes and their impacts on the total stream environment. In conjunction with other groups interested in clean streams--such as sportsmen and manufacturers who required high quality process water--they pushed for a broader state legislative mandate in regard to pollution control. Some states created new bureaus or boards with responsibility for industrial wastes and the larger stream environment but the attack on industrial pollution remained limited in this period. The final significant development regarding industrial pollution and public health concerned the formulation by Streeter-Phelps of the Public Health Service of a theory of stream purification with a set of general quantitative indicators. This application was of particular importance in regard to the high-oxygen consuming nature of organic industrial wastes and the wide variety of effluents that existed. Industrial wastes constituted what Harvey Brooks, in his essay "Science Indicators and Science Priorities" calls a very "messy" research problem--one that does "not lend itself to elegant and widely applicable generalizations."(ABSTRACT TRUNCATED AT 250 WORDS) Images p1061-a p1061-b p1063-a p1065-a PMID:3895993

  16. Sampling the stream landscape: Improving the applicability of an ecoregion-level capture probability model for stream fishes

    USGS Publications Warehouse

    Mollenhauer, Robert; Mouser, Joshua B.; Brewer, Shannon K.

    2018-01-01

    Temporal and spatial variability in streams result in heterogeneous gear capture probability (i.e., the proportion of available individuals identified) that confounds interpretation of data used to monitor fish abundance. We modeled tow-barge electrofishing capture probability at multiple spatial scales for nine Ozark Highland stream fishes. In addition to fish size, we identified seven reach-scale environmental characteristics associated with variable capture probability: stream discharge, water depth, conductivity, water clarity, emergent vegetation, wetted width–depth ratio, and proportion of riffle habitat. The magnitude of the relationship between capture probability and both discharge and depth varied among stream fishes. We also identified lithological characteristics among stream segments as a coarse-scale source of variable capture probability. The resulting capture probability model can be used to adjust catch data and derive reach-scale absolute abundance estimates across a wide range of sampling conditions with similar effort as used in more traditional fisheries surveys (i.e., catch per unit effort). Adjusting catch data based on variable capture probability improves the comparability of data sets, thus promoting both well-informed conservation and management decisions and advances in stream-fish ecology.

  17. Linking Stream Dissolved Oxygen with the Dynamic Environmental Drivers across the Pacific Coast of U.S.A.

    NASA Astrophysics Data System (ADS)

    Araya, F. Z.; Abdul-Aziz, O. I.

    2017-12-01

    This study utilized a systematic data analytics approach to determine the relative linkages of stream dissolved oxygen (DO) with the hydro-climatic and biogeochemical drivers across the U.S. Pacific Coast. Multivariate statistical techniques of Pearson correlation matrix, principal component analysis, and factor analysis were applied to a complex water quality dataset (1998-2015) at 35 water quality monitoring stations of USGS NWIS and EPA STORET. Power-law based partial least squares regression (PLSR) models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to reliably estimate the relative linkages by resolving multicollinearity (Nash-Sutcliffe Efficiency, NSE = 0.50-0.94). Based on the dominant drivers, four environmental regimes have been identified and adequately described the system-data variances. In Pacific North West and Southern California, water temperature was the most dominant driver of DO in majority of the streams. However, in Central and Northern California, stream DO was controlled by multiple drivers (i.e., water temperature, pH, stream flow, and total phosphorus), exhibiting a transitional environmental regime. Further, total phosphorus (TP) appeared to be the limiting nutrient for most streams. The estimated linkages and insights would be useful to identify management priorities to achieve healthy coastal stream ecosystems across the Pacific Coast of U.S.A. and similar regions around the world. Keywords: Data analytics, water quality, coastal streams, dissolved oxygen, environmental regimes, Pacific Coast, United States.

  18. Multiple stress response of lowland stream benthic macroinvertebrates depends on habitat type.

    PubMed

    Graeber, Daniel; Jensen, Tinna M; Rasmussen, Jes J; Riis, Tenna; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette

    2017-12-01

    Worldwide, lowland stream ecosystems are exposed to multiple anthropogenic stress due to the combination of water scarcity, eutrophication, and fine sedimentation. The understanding of the effects of such multiple stress on stream benthic macroinvertebrates has been growing in recent years. However, the interdependence of multiple stress and stream habitat characteristics has received little attention, although single stressor studies indicate that habitat characteristics may be decisive in shaping the macroinvertebrate response. We conducted an experiment in large outdoor flumes to assess the effects of low flow, fine sedimentation, and nutrient enrichment on the structure of the benthic macroinvertebrate community in riffle and run habitats of lowland streams. For most taxa, we found a negative effect of low flow on macroinvertebrate abundance in the riffle habitat, an effect which was mitigated by fine sedimentation for overall community composition and the dominant shredder species (Gammarus pulex) and by nutrient enrichment for the dominant grazer species (Baetis rhodani). In contrast, fine sediment in combination with low flow rapidly affected macroinvertebrate composition in the run habitat, with decreasing abundances of many species. We conclude that the effects of typical multiple stressor scenarios on lowland stream benthic macroinvertebrates are highly dependent on habitat conditions and that high habitat diversity needs to be given priority by stream managers to maximize the resilience of stream macroinvertebrate communities to multiple stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Audience Segmentation: An Approach to International Communications.

    ERIC Educational Resources Information Center

    Stevenson, Robert L.

    This paper summarizes a series of studies undertaken by the United States Information Agency Service between 1970 and 1972 in Bolivia, Great Britain, Argentina, and Lebanon. The purpose of the research was to develop new techniques for analyzing the audiences of USIA periodicals. Survey respondents--all members of USIA priority audience…

  20. Recent (2008-10) water quality in the Barton Springs segment of the Edwards aquifer and its contributing zone, central Texas, with emphasis on factors affecting nutrients and bacteria

    USGS Publications Warehouse

    Mahler, Barbara J.; Musgrove, MaryLynn; Sample, Thomas L.; Wong, Corinne I.

    2011-01-01

    The Barton Springs zone, which comprises the Barton Springs segment of the Edwards aquifer and the watersheds to the west that contribute to its recharge, is in south-central Texas, an area with rapid growth in population and increasing amounts of land area affected by development. During November 2008-March 2010, an investigation of factors affecting the fate and transport of nutrients and bacteria in the Barton Springs zone was conducted by the U.S. Geological Survey (USGS), in cooperation with the Texas Commission on Environmental Quality. The primary objectives of the study were to characterize occurrence of nutrients and bacteria in the Barton Springs zone under a range of flow conditions; to improve understanding of the interaction between surface-water quality and groundwater quality; and to evaluate how factors such as streamflow variability and dilution affect the fate and transport of nutrients and bacteria in the Barton Springs zone. The USGS collected and analyzed water samples from five streams (Barton, Williamson, Slaughter, Bear, and Onion Creeks), two groundwater wells (Marbridge and Buda), and the main orifice of Barton Springs in Austin, Texas. During the period of the study, during which the hydrologic conditions transitioned from exceptional drought to wetter than normal, water samples were collected routinely (every 3 to 4 weeks) from the streams, wells, and spring and, in response to storms, from the streams and spring. All samples were analyzed for major ions, nutrients, the bacterium Escherichia coli, and suspended sediment. During the dry period, the geochemistry of groundwater at the two wells and at Barton Springs was dominated by flow from the aquifer matrix and was relatively similar and unchanging at the three sites. At the onset of the wet period, when the streams began to flow, the geochemistry of groundwater samples from the Marbridge well and Barton Springs changed rapidly, and concentrations of most major ions and nutrients and densities of Escherichia coli became more similar to those of samples from the streams relative to concentrations and densities during the dry period. Geochemical modeling indicated that the proportion of Barton Springs discharge composed of stream recharge increased from about 0-8 percent during the dry period to about 80 percent during the wet period. The transition from exceptional drought to wetter-than-normal conditions resulted in a number of marked changes that highlight factors affecting the fate and transport of nutrients and bacteria and the strong influence of stream recharge on water quality in the Barton Springs segment of the Edwards aquifer and had a pronounced effect on the fate of nitrogen species. Organic nitrogen loaded to and stored in soils during the dry period was nitrified to nitrate when the soils were rewetted, resulting in elevated concentrations of nitrate plus nitrite in streams as these constituents were progressively leached during continued wet weather. Estimated mean monthly loads of organic nitrogen and nitrate plus nitrite in stream recharge and Barton Springs discharge, which were relatively low and constant during the dry period, increased during the wet period. Loads of organic nitrogen, on average, were about six times greater in stream recharge than in Barton Springs discharge, indicating that organic nitrogen likely was being converted to nitrate within the aquifer. Loads of total nitrogen (organic nitrogen plus ammonia and nitrate plus nitrite) in stream recharge (162 kilograms per day) and in Barton Springs discharge (157 kilograms per day) for the period of the investigation were not significantly different. Dilution was not an important factor affecting concentrations of nitrate plus nitrite in the streams or in Barton Springs during the period of this investigation: Concentrations of nitrate plus nitrite did not decrease in streams with increasing stream discharge, and nitrate plus nitrite concentrations measured at Barton

  1. Potential Stream Density in Mid-Atlantic U.S. Watersheds

    PubMed Central

    Elmore, Andrew J.; Julian, Jason P.; Guinn, Steven M.; Fitzpatrick, Matthew C.

    2013-01-01

    Stream network density exerts a strong influence on ecohydrologic processes in watersheds, yet existing stream maps fail to capture most headwater streams and therefore underestimate stream density. Furthermore, discrepancies between mapped and actual stream length vary between watersheds, confounding efforts to understand the impacts of land use on stream ecosystems. Here we report on research that predicts stream presence from coupled field observations of headwater stream channels and terrain variables that were calculated both locally and as an average across the watershed upstream of any location on the landscape. Our approach used maximum entropy modeling (MaxEnt), a robust method commonly implemented to model species distributions that requires information only on the presence of the entity of interest. In validation, the method correctly predicts the presence of 86% of all 10-m stream segments and errors are low (<1%) for catchments larger than 10 ha. We apply this model to the entire Potomac River watershed (37,800 km2) and several adjacent watersheds to map stream density and compare our results with the National Hydrography Dataset (NHD). We find that NHD underestimates stream density by up to 250%, with errors being greatest in the densely urbanized cities of Washington, DC and Baltimore, MD and in regions where the NHD has never been updated from its original, coarse-grain mapping. This work is the most ambitious attempt yet to map stream networks over a large region and will have lasting implications for modeling and conservation efforts. PMID:24023704

  2. Vegetation Structure and Function along Ephemeral Streams in the Sonoran Desert

    NASA Astrophysics Data System (ADS)

    Stromberg, J. C.; Katz, G.

    2011-12-01

    Despite being the most prevalent stream type in the American Southwest, far less is known about riparian ecosystems associated with ephemeral streams than with perennial streams. Patterns of plant composition and structure reflect complex environmental gradients, including water availability and flood intensity, which in turn are related to position in the stream network. A survey of washes in the Sonoran Desert near Tucson, Arizona showed species composition of small ephemeral washes to be comprised largely of upland species, including large seeded shrubs such as Acacia spp. and Larrea tridentata. Small seeded disturbance adapted xerophytic shrubs, such as Baccharis sarothroides, Hymenoclea monogyra and Isocoma tenuisecta, were common lower in the stream network on the larger streams that have greater scouring forces. Because ephemeral streams have multiple water sources, including deep (sometimes perched) water tables and seasonally variable rain and flood pulses, multiple plant functional types co-exist within a stream segment. Deep-rooted phreatophytes, including Tamarix and nitrogen-fixing Prosopis, are common on many washes. Such plants are able to access not only water, but also pools of nutrients, several meters below ground thereby affecting nutrient levels and soil moisture content in various soil strata. In addition to the perennial plants, many opportunistic and shallow-rooted annual species establish during the bimodal wet seasons. Collectively, wash vegetation serves to stabilize channel substrates and promote accumulation of fine sediments and organic matter. In addition to the many streams that are ephemeral over their length, ephemeral reaches also occupy extensive sections of interrupted perennial rivers. The differences in hydrologic conditions that occur over the length of interrupted perennial rivers influence plant species diversity and variability through time. In one study of three interrupted perennial rivers, patterns of herbaceous species richness varied with temporal scale of analysis, with richness being greater at perennial sites over the short-term but greater at non-perennial sites over the long-term (multiple seasons and years). This latter pattern arose owing to the abundance of light, space, and bare ground at the drier sites, combined with a diverse soil seed bank and periodic supply of seasonal soil moisture sufficient to stimulate establishment of cool-season as well as warm-season annuals. The reduced availability of perennial water sources limits the richness, cover, and competitive dominance of herbaceous perennial species, enabling pronounced diversity response to episodic water pulses in the drier river segments. Thus, non-perennial streams and reaches contribute importantly to river-wide and landscape scale desert riparian diversity, supporting high cumulative richness and distinct composition compared to perennial flow reaches.

  3. Words and possible words in early language acquisition.

    PubMed

    Marchetto, Erika; Bonatti, Luca L

    2013-11-01

    In order to acquire language, infants must extract its building blocks-words-and master the rules governing their legal combinations from speech. These two problems are not independent, however: words also have internal structure. Thus, infants must extract two kinds of information from the same speech input. They must find the actual words of their language. Furthermore, they must identify its possible words, that is, the sequences of sounds that, being morphologically well formed, could be words. Here, we show that infants' sensitivity to possible words appears to be more primitive and fundamental than their ability to find actual words. We expose 12- and 18-month-old infants to an artificial language containing a conflict between statistically coherent and structurally coherent items. We show that 18-month-olds can extract possible words when the familiarization stream contains marks of segmentation, but cannot do so when the stream is continuous. Yet, they can find actual words from a continuous stream by computing statistical relationships among syllables. By contrast, 12-month-olds can find possible words when familiarized with a segmented stream, but seem unable to extract statistically coherent items from a continuous stream that contains minimal conflicts between statistical and structural information. These results suggest that sensitivity to word structure is in place earlier than the ability to analyze distributional information. The ability to compute nontrivial statistical relationships becomes fully effective relatively late in development, when infants have already acquired a considerable amount of linguistic knowledge. Thus, mechanisms for structure extraction that do not rely on extensive sampling of the input are likely to have a much larger role in language acquisition than general-purpose statistical abilities. Copyright © 2013. Published by Elsevier Inc.

  4. Polycyclic aromatic hydrocarbons in bottom sediment and bioavailability in streams in the New River Gorge National River and Gauley River National Recreation Area, West Virginia, 2002

    USGS Publications Warehouse

    Messinger, Terrence

    2004-01-01

    Polycyclic aromatic hydrocarbons (PAHs), including some on the U.S. Environmental Protection Agency's priority pollutant list, were found in bottom sediment in streams in the coal-producing region of the Kanawha River Basin in 1996-1998, and in and near the New River Gorge National River in 2002, in concentrations exceeding those thought likely to cause adverse effects to wildlife. Very low concentrations of bioavailable PAHs were measured in streams in and near the New River Gorge National River by the use of semipermeable membrane devices. The apparent contradiction between the high concentrations of total PAHs and the low concentrations of bioavailable PAHs may result from the presence of a substantial amount of particulate coal in bottom sediment.

  5. Star Streams and the Assembly History of the Galaxy

    NASA Astrophysics Data System (ADS)

    Carlberg, Raymond G.

    2017-03-01

    Thin halo star streams originate from the evaporation of globular clusters and therefore provide information about the early epoch globular cluster population. The observed tidal tails from halo globular clusters in the Milky Way are much shorter than expected from a star cluster orbiting for 10 Gyr. The discrepancy is likely the result of the assumptions that nearly nonevolving clusters have been orbiting in a nonevolving galactic halo for a Hubble time. As a first step toward more realistic stream histories, a toy model that combines an idealized merger model with a simplified model of the internal collisional relaxation of individual star clusters is developed. On average, the resulting stream velocity dispersion increases with distance, causing the density of the stream to decline with distance. The accretion time sets an upper limit to the length of the readily visible stream, with the internal evolution of the cluster usually playing the dominant role in limiting the sky visibility of the older parts of streams. Nevertheless, the high surface density segment of the stellar streams created from the evaporation of the more massive globular clusters should all be visible in low-obscuration parts of the sky if closer than about 30 kpc. The Pan-STARRS1 halo volume is used to compare the numbers of halo streams and globular clusters.

  6. Large wood mobility processes in low-order Chilean river channels

    NASA Astrophysics Data System (ADS)

    Iroumé, Andrés; Mao, Luca; Andreoli, Andrea; Ulloa, Héctor; Ardiles, María Paz

    2015-01-01

    Large wood (LW) mobility was studied over several time periods in channel segments of four low-order mountain streams, southern Chile. All wood pieces found within the bankfull channels and on the streambanks extending into the channel with dimensions more than 10 cm in diameter and 1 m in length were measured and their position was referenced. Thirty six percent of measured wood pieces were tagged to investigate log mobility. All segments were first surveyed in summer and then after consecutive rainy winter periods. Annual LW mobility ranged between 0 and 28%. Eighty-four percent of the moved LW had diameters ≤ 40 cm and 92% had lengths ≤ 7 m. Large wood mobility was higher in periods when maximum water level (Hmax) exceeded channel bankfull depth (HBk) than in periods with flows less than HBk, but the difference was not statistically significant. Dimensions of moved LW showed no significant differences between periods with flows exceeding and with flows less than bankfull stage. Statistically significant relationships were found between annual LW mobility (%) and unit stream power (for Hmax) and Hmax/HBk. The mean diameter of transported wood pieces per period was significantly correlated with unit stream power for H15% and H50% (the level above which the flow remains for 15 and 50% of the time, respectively). These results contribute to an understanding of the complexity of LW mobilization processes in mountain streams and can be used to assess and prevent potential damage caused by LW mobilization during floods.

  7. Setting priorities for research on pollution reduction functions of agricultural buffers.

    PubMed

    Dosskey, Michael G

    2002-11-01

    The success of buffer installation initiatives and programs to reduce nonpoint source pollution of streams on agricultural lands will depend the ability of local planners to locate and design buffers for specific circumstances with substantial and predictable results. Current predictive capabilities are inadequate, and major sources of uncertainty remain. An assessment of these uncertainties cautions that there is greater risk of overestimating buffer impact than underestimating it. Priorities for future research are proposed that will lead more quickly to major advances in predictive capabilities. Highest priority is given for work on the surface runoff filtration function, which is almost universally important to the amount of pollution reduction expected from buffer installation and for which there remain major sources of uncertainty for predicting level of impact. Foremost uncertainties surround the extent and consequences of runoff flow concentration and pollutant accumulation. Other buffer functions, including filtration of groundwater nitrate and stabilization of channel erosion sources of sediments, may be important in some regions. However, uncertainty surrounds our ability to identify and quantify the extent of site conditions where buffer installation can substantially reduce stream pollution in these ways. Deficiencies in predictive models reflect gaps in experimental information as well as technology to account for spatial heterogeneity of pollutant sources, pathways, and buffer capabilities across watersheds. Since completion of a comprehensive watershed-scale buffer model is probably far off, immediate needs call for simpler techniques to gage the probable impacts of buffer installation at local scales.

  8. Biomonitoring of intermittent rivers and ephemeral streams in Europe: Current practice and priorities to enhance ecological status assessments.

    PubMed

    Stubbington, Rachel; Chadd, Richard; Cid, Núria; Csabai, Zoltán; Miliša, Marko; Morais, Manuela; Munné, Antoni; Pařil, Petr; Pešić, Vladimir; Tziortzis, Iakovos; Verdonschot, Ralf C M; Datry, Thibault

    2018-03-15

    Intermittent rivers and ephemeral streams (IRES) are common across Europe and dominate some Mediterranean river networks. In all climate zones, IRES support high biodiversity and provide ecosystem services. As dynamic ecosystems that transition between flowing, pool, and dry states, IRES are typically poorly represented in biomonitoring programmes implemented to characterize EU Water Framework Directive ecological status. We report the results of a survey completed by representatives from 20 European countries to identify current challenges to IRES status assessment, examples of best practice, and priorities for future research. We identify five major barriers to effective ecological status classification in IRES: 1. the exclusion of IRES from Water Framework Directive biomonitoring based on their small catchment size; 2. the lack of river typologies that distinguish between contrasting IRES; 3. difficulties in defining the 'reference conditions' that represent unimpacted dynamic ecosystems; 4. classification of IRES ecological status based on lotic communities sampled using methods developed for perennial rivers; and 5. a reliance on taxonomic characterization of local communities. Despite these challenges, we recognize examples of innovative practice that can inform modification of current biomonitoring activity to promote effective IRES status classification. Priorities for future research include reconceptualization of the reference condition approach to accommodate spatiotemporal fluctuations in community composition, and modification of indices of ecosystem health to recognize both taxon-specific sensitivities to intermittence and dispersal abilities, within a landscape context. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Gaia Launch Imminent: A Review of Practices (Good and Bad) in Building the Gaia Ground Segment

    NASA Astrophysics Data System (ADS)

    O'Mullane, W.

    2014-05-01

    As we approach launch the Gaia ground segment is ready to process a steady stream of complex data coming from Gaia at L2. This talk will focus on the software engineering aspects of the ground segment. Of course in a short paper it is difficult to cover everything but an attempt will be made to highlight some good things, like the Dictionary Tool and some things to be careful with like computer aided software engineering tools. The usefulness of some standards like ECSS will be touched upon. Testing is also certainly part of this story as are Challenges or Rehearsals so they will not go without mention.

  10. Width of riparian buffer and structure of adjacent plantations influence occupancy of conservation priority birds

    Treesearch

    Roger W. Perry; T. Bently Wigley; M. Anthony Melchiors; Ronald E. Thill; Philip A. Tappe; Darren A. Miller

    2011-01-01

    Conservation of biodiversity on forest landscapes dominated by plantations has become an increasingly important topic, and opportunities to maintain or enhance biodiversity within these forests need to be recognized and applied. Riparian buffers of mature forest retained along streams in managed forest landscapes offer an opportunity to enhance biodiversity across...

  11. High-Rank Stakeholders' Perspectives on High-Stakes University Entrance Examinations Reform: Priorities and Problems

    ERIC Educational Resources Information Center

    Kiany, Gholam Reza; Shayestefar, Parvaneh; Samar, Reza Ghafar; Akbari, Ramin

    2013-01-01

    A steady stream of studies on high-stakes tests such as University Entrance Examinations (UEEs) suggests that high-stakes tests reforms serve as the leverage for promoting quality of learning, standards of teaching, and credible forms of accountability. However, such remediation is often not as effective as hoped and success is not necessarily…

  12. Integrated approach for prioritizing watersheds for management: a study of lidder catchment of kashmir himalayas.

    PubMed

    Malik, Mohammad Imran; Bhat, M Sultan

    2014-12-01

    The Himalayan watersheds are susceptible to various forms of degradation due to their sensitive and fragile ecological disposition coupled with increasing anthropogenic disturbances. Owing to the paucity of appropriate technology and financial resources, the prioritization of watersheds has become an inevitable process for effective planning and management of natural resources. Lidder catchment constitutes a segment of the western Himalayas with an area of 1,159.38 km(2). The study is based on integrated analysis of remote sensing, geographic information system, field study, and socioeconomic data. Multicriteria evaluation of geophysical, land-use and land-cover (LULC) change, and socioeconomic indicators is carried out to prioritize watersheds for natural resource conservation and management. Knowledge-based weights and ranks are normalized, and weighted linear combination technique is adopted to determine final priority value. The watersheds are classified into four priority zones (very high priority, high priority, medium priority, and low priority) on the basis of quartiles of the priority value, thus indicating their ecological status in terms of degradation caused by anthropogenic disturbances. The correlation between priority ranks of individual indicators and integrated indicators is drawn. The results reveal that socioeconomic indicators are the most important drivers of LULC change and environmental degradation in the catchment. Moreover, the magnitude and intensity of anthropogenic impact is not uniform in different watersheds of Lidder catchment. Therefore, any conservation and management strategy must be formulated on the basis of watershed prioritization.

  13. Integrated Approach for Prioritizing Watersheds for Management: A Study of Lidder Catchment of Kashmir Himalayas

    NASA Astrophysics Data System (ADS)

    Malik, Mohammad Imran; Bhat, M. Sultan

    2014-12-01

    The Himalayan watersheds are susceptible to various forms of degradation due to their sensitive and fragile ecological disposition coupled with increasing anthropogenic disturbances. Owing to the paucity of appropriate technology and financial resources, the prioritization of watersheds has become an inevitable process for effective planning and management of natural resources. Lidder catchment constitutes a segment of the western Himalayas with an area of 1,159.38 km2. The study is based on integrated analysis of remote sensing, geographic information system, field study, and socioeconomic data. Multicriteria evaluation of geophysical, land-use and land-cover (LULC) change, and socioeconomic indicators is carried out to prioritize watersheds for natural resource conservation and management. Knowledge-based weights and ranks are normalized, and weighted linear combination technique is adopted to determine final priority value. The watersheds are classified into four priority zones (very high priority, high priority, medium priority, and low priority) on the basis of quartiles of the priority value, thus indicating their ecological status in terms of degradation caused by anthropogenic disturbances. The correlation between priority ranks of individual indicators and integrated indicators is drawn. The results reveal that socioeconomic indicators are the most important drivers of LULC change and environmental degradation in the catchment. Moreover, the magnitude and intensity of anthropogenic impact is not uniform in different watersheds of Lidder catchment. Therefore, any conservation and management strategy must be formulated on the basis of watershed prioritization.

  14. Relation Between Firing Statistics of Spiking Neuron with Delayed Fast Inhibitory Feedback and Without Feedback

    NASA Astrophysics Data System (ADS)

    Vidybida, Alexander; Shchur, Olha

    We consider a class of spiking neuronal models, defined by a set of conditions typical for basic threshold-type models, such as the leaky integrate-and-fire or the binding neuron model and also for some artificial neurons. A neuron is fed with a Poisson process. Each output impulse is applied to the neuron itself after a finite delay Δ. This impulse acts as being delivered through a fast Cl-type inhibitory synapse. We derive a general relation which allows calculating exactly the probability density function (pdf) p(t) of output interspike intervals of a neuron with feedback based on known pdf p0(t) for the same neuron without feedback and on the properties of the feedback line (the Δ value). Similar relations between corresponding moments are derived. Furthermore, we prove that the initial segment of pdf p0(t) for a neuron with a fixed threshold level is the same for any neuron satisfying the imposed conditions and is completely determined by the input stream. For the Poisson input stream, we calculate that initial segment exactly and, based on it, obtain exactly the initial segment of pdf p(t) for a neuron with feedback. That is the initial segment of p(t) is model-independent as well. The obtained expressions are checked by means of Monte Carlo simulation. The course of p(t) has a pronounced peculiarity, which makes it impossible to approximate p(t) by Poisson or another simple stochastic process.

  15. METALLICITY AND AGE OF THE STELLAR STREAM AROUND THE DISK GALAXY NGC 5907

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, Seppo; Grillmair, Carl J.; Capak, Peter

    2016-09-01

    Stellar streams have become central to studies of the interaction histories of nearby galaxies. To characterize the most prominent parts of the stellar stream around the well-known nearby ( d  = 17 Mpc) edge-on disk galaxy NGC 5907, we have obtained and analyzed new, deep gri Subaru/Suprime-Cam and 3.6 μ m Spitzer /Infrared Array Camera observations. Combining the near-infrared 3.6 μ m data with visible-light images allows us to use a long wavelength baseline to estimate the metallicity and age of the stellar population along an ∼60 kpc long segment of the stream. We have fitted the stellar spectral energy distributionmore » with a single-burst stellar population synthesis model and we use it to distinguish between the proposed satellite accretion and minor/major merger formation models of the stellar stream around this galaxy. We conclude that a massive minor merger (stellar mass ratio of at least 1:8) can best account for the metallicity of −0.3 inferred along the brightest parts of the stream.« less

  16. Segmented annular combustor

    DOEpatents

    Reider, Samuel B.

    1979-01-01

    An industrial gas turbine engine includes an inclined annular combustor made up of a plurality of support segments each including inner and outer walls of trapezoidally configured planar configuration extents and including side flanges thereon interconnected by means of air cooled connector bolt assemblies to form a continuous annular combustion chamber therebetween and wherein an air fuel mixing chamber is formed at one end of the support segments including means for directing and mixing fuel within a plenum and a perforated header plate for directing streams of air and fuel mixture into the combustion chamber; each of the outer and inner walls of each of the support segments having a ribbed lattice with tracks slidably supporting porous laminated replaceable panels and including pores therein for distributing combustion air into the combustion chamber while cooling the inner surface of each of the panels by transpiration cooling thereof.

  17. Integrated approach to multimodal media content analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Kuo, C.-C. Jay

    1999-12-01

    In this work, we present a system for the automatic segmentation, indexing and retrieval of audiovisual data based on the combination of audio, visual and textural content analysis. The video stream is demultiplexed into audio, image and caption components. Then, a semantic segmentation of the audio signal based on audio content analysis is conducted, and each segment is indexed as one of the basic audio types. The image sequence is segmented into shots based on visual information analysis, and keyframes are extracted from each shot. Meanwhile, keywords are detected from the closed caption. Index tables are designed for both linear and non-linear access to the video. It is shown by experiments that the proposed methods for multimodal media content analysis are effective. And that the integrated framework achieves satisfactory results for video information filtering and retrieval.

  18. Black strings, low viscosity fluids, and violation of cosmic censorship.

    PubMed

    Lehner, Luis; Pretorius, Frans

    2010-09-03

    We describe the behavior of 5-dimensional black strings, subject to the Gregory-Laflamme instability. Beyond the linear level, the evolving strings exhibit a rich dynamics, where at intermediate stages the horizon can be described as a sequence of 3-dimensional spherical black holes joined by black string segments. These segments are themselves subject to a Gregory-Laflamme instability, resulting in a self-similar cascade, where ever-smaller satellite black holes form connected by ever-thinner string segments. This behavior is akin to satellite formation in low-viscosity fluid streams subject to the Rayleigh-Plateau instability. The simulation results imply that the string segments will reach zero radius in finite asymptotic time, whence the classical space-time terminates in a naked singularity. Since no fine-tuning is required to excite the instability, this constitutes a generic violation of cosmic censorship.

  19. Water-quality assessment of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma- habitat data and characteristics at selected sites, 1993-95

    USGS Publications Warehouse

    Femmer, Suzanne R.

    1997-01-01

    The characterization of instream and riparian habitat is part of the multiple lines of evidence used by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program to assess the water quality of streams. In the NAWQA Program, integrated physical, chemical, and biological assessments are used to describe water-quality conditions. The instream and riparian habitat data are collected at sites selected for surface-water chemistry analyses and biological assessment. Instream and riparian habitat data are structured in a nested scheme?at sampling reach, segment, and basin scales. The habitat data were collected in the Ozark Plateaus study unit at 41 sites during 1993-95. Thirteen of these sites, representative of selected combinations of physiography, land use, and basin size, have longitudinal, transverse, and quarter point vegetation plot surveys in addition to the Level I survey measurements (reach length, depth, velocity, dominant substrate, embeddedness, and vegetation quarter points, for example) recommended by the NAWQA Program protocols. These habitat data were from onsite measurements, U.S. Geological Survey topographic maps, and a geographic information system. The analyses of the habitat data indicates substantial differences between sites of differing physiography and basin-scale land-use activities. The basins range from 46.4 to 4,318 square kilometers and have stream orders from 2 to 6. All streams studied are a riffle/pool type, and most have cobble that is less than 50 percent embedded as the dominant streambed substrate. Of the three physiographic sections studied, the Boston Mountains have the largest mean segment and sideslope gradients, basin relief, woody species diversity, and stream depths when compared with sites of similar size. Channel sinuosities, mean velocities, and canopy angles are largest at sites in the Springfield Plateau physiographic section. The sites in the Salem Plateau physiographic section have the largest woody vegetation densities and mean channel widths. Sites in basins with predominantly agricultural land use tend to have more open canopies, steeper segment gradients, and more sinuous stream channels than the forested sites. Sites in predominantly forested basins tend to have deeper and swifter flow, smaller channel widths, and more dense woody riparian vegetation (at small basins) than the agricultural sites.

  20. Cascaded recompression closed brayton cycle system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasch, James J.

    The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.

  1. Connected word recognition using a cascaded neuro-computational model

    NASA Astrophysics Data System (ADS)

    Hoya, Tetsuya; van Leeuwen, Cees

    2016-10-01

    We propose a novel framework for processing a continuous speech stream that contains a varying number of words, as well as non-speech periods. Speech samples are segmented into word-tokens and non-speech periods. An augmented version of an earlier-proposed, cascaded neuro-computational model is used for recognising individual words within the stream. Simulation studies using both a multi-speaker-dependent and speaker-independent digit string database show that the proposed method yields a recognition performance comparable to that obtained by a benchmark approach using hidden Markov models with embedded training.

  2. Cascaded recompression closed Brayton cycle system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasch, James Jay

    The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.

  3. Ambient occlusion effects for combined volumes and tubular geometry.

    PubMed

    Schott, Mathias; Martin, Tobias; Grosset, A V Pascal; Smith, Sean T; Hansen, Charles D

    2013-06-01

    This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed.

  4. Ambient Occlusion Effects for Combined Volumes and Tubular Geometry

    PubMed Central

    Schott, Mathias; Martin, Tobias; Grosset, A.V. Pascal; Smith, Sean T.; Hansen, Charles D.

    2013-01-01

    This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed. PMID:23559506

  5. Application of municipal biosolids to dry-land wheat fields - A monitoring program near Deer Trail, Colorado (USA). A presentation for an international conference: "The Future of Agriculture: Science, Stewardship, and Sustainability", August 7-9, 2006, Sacramento, CA

    USGS Publications Warehouse

    Crock, James G.; Smith, David B.; Yager, Tracy J.B.

    2006-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colorado, has applied Grade I, Class B biosolids to about 52,000 acres of non-irrigated farmland and rangeland near Deer Trail, Colorado. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring ground water at part of this site. In 1999, the USGS began a more comprehensive study of the entire site to address stakeholder concerns about the chemical effects of biosolids applications. This more comprehensive monitoring program has recently been extended through 2010. Monitoring components of the more comprehensive study included biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock ground water, and stream bed sediment. Streams at the site are dry most of the year, so samples of stream bed sediment deposited after rain were used to indicate surface-water effects. This presentation will only address biosolids, soil, and crops. More information about these and the other monitoring components are presented in the literature (e.g., Yager and others, 2004a, b, c, d) and at the USGS Web site for the Deer Trail area studies at http://co.water.usgs.gov/projects/CO406/CO406.html. Priority parameters identified by the stakeholders for all monitoring components, included the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross alpha and beta activity, regulated by Colorado for biosolids to be used as an agricultural soil amendment. Nitrogen and chromium also were priority parameters for ground water and sediment components. In general, the objective of each component of the study was to determine whether concentrations of priority parameters (1) were higher than regulatory limits, (2) were increasing with time, or (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied. Where sufficient samples could be collected, statistical methods were used to evaluate effects. Rigorous quality assurance was included in all aspects of the study. The roles of hydrology and geology also were considered in the design, data collection, and interpretation phases of the study. Study results indicate that the chemistry of the biosolids from the Denver plant was consistent during 1999-2005, and total concentrations of regulated trace elements were consistently lower than the regulatory limits. Plutonium isotopes were not detected in the biosolids. Leach tests using deionized water to simulate natural precipitation indicate arsenic, molybdenum, and nickel were the most soluble priority parameters in the biosolids. Study results show no significant difference in concentrations of priority parameters between biosolids-applied soils and unamended soils where no biosolids were applied. However, biosolids were applied only twice during 1999-2003. The next soil sampling is not scheduled until 2010. To date concentrations of most of the priority parameters were not much greater in the biosolids than in natural soil from the sites. Therefore, many more biosolids applications would need to occur before biosolids effects on the soil priority constituents can be quantified. Leach tests using deionized water to simulate precipitation indicate that molybdenum and selenium were the priority parameters that were most soluble in both biosolids-applied soil and natural or unamended soil. Study results do not indicate significant differences in concentrations of priority parameters between crops grown in biosolids-applied areas and crops grown where no biosolids were applied. However, crops were grown only twice during 1999-2003, so only two crop samples could be collected. The wheat-grain elemental data collected during 1999-2003 for both biosolids-applied areas and unamended areas are similar

  6. Recycled water for stream flow augmentation: benefits, challenges, and the presence of wastewater-derived organic compounds.

    PubMed

    Plumlee, Megan H; Gurr, Christopher J; Reinhard, Martin

    2012-11-01

    Stream flow augmentation with recycled water has the potential to improve stream habitat and increase potable water supply, but the practice is not yet well understood or documented. The objectives of this report are to present a short review illustrated by a case study, followed by recommendations for future stream flow augmentation projects. Despite the fact that wastewater discharge to streams is commonplace, a water agency pursuing stream flow augmentation with recycled water will face unique challenges. For example, recycled water typically contains trace amounts of organic wastewater-derived compounds (OWCs) for which the potential ecological risks must be balanced against the benefits of an augmentation project. Successful stream flow augmentation with recycled water requires that the lead agency clearly articulate a strong project rationale and identify key benefits. It must be assumed that the public will have some concerns about water quality. Public acceptance may be better if an augmentation project has co-benefits beyond maintaining stream ecosystems, such as improving water system supply and reliability (i.e. potable use offset). Regulatory or project-specific criteria (acceptable concentrations of priority OWCs) would enable assessment of ecosystem impacts and demonstration of practitioner compliance. Additional treatment (natural or engineered) of the recycled water may be considered. If it is not deemed necessary or feasible, existing recycled water quality may be adequate to achieve project goals depending on project rationale, site and water quality evaluation, and public acceptance.

  7. Recommending personally interested contents by text mining, filtering, and interfaces

    DOEpatents

    Xu, Songhua

    2015-10-27

    A personalized content recommendation system includes a client interface device configured to monitor a user's information data stream. A collaborative filter remote from the client interface device generates automated predictions about the interests of the user. A database server stores personal behavioral profiles and user's preferences based on a plurality of monitored past behaviors and an output of the collaborative user personal interest inference engine. A programmed personal content recommendation server filters items in an incoming information stream with the personal behavioral profile and identifies only those items of the incoming information stream that substantially matches the personal behavioral profile. The identified personally relevant content is then recommended to the user following some priority that may consider the similarity between the personal interest matches, the context of the user information consumption behaviors that may be shown by the user's content consumption mode.

  8. Using population segmentation to inform local obesity strategy in England.

    PubMed

    Wills, Jane; Crichton, Nicola; Lorenc, Ava; Kelly, Muireann

    2015-09-01

    Little is known about the views of obese people and how best to meet their needs. Amongst London boroughs Barking and Dagenham has the highest prevalence of adult obesity at 28.7%; the lowest level of healthy eating and of physical activity; and is the 22nd most deprived area of England. The study aimed to gain insight into the attitudes, motivations and priorities of people who are obese or overweight to inform the social marketing of an obesity strategy. Two hundred and ten obese or overweight adults were recruited through visual identification in public thoroughfares to attempt to recruit those seldom seen in primary care. One hundred and eighty-one street-intercept and 52 in-depth interviews were conducted. Thematic analysis was followed by psychographic segmentation. Eleven population segments were identified based on their readiness to change, the value accorded to tackling obesity, identified enabling factors and barriers to weight management and perceived self-efficacy. This population showed considerable variation in its readiness to change and perceived control over obesity but considerable similarity in the exchange value they attributed to tackling their obesity. Even within a relatively homogenous socio-demographic community, there needs to be a range of interventions and messages tailored for different population segments that vary in their readiness to change and confidence about tackling obesity. The dominant emphasis of policy and practice on the health consequences of obesity does not reflect the priorities of this obese population for whom the exchange value of addressing obesity was daily functioning especially in relation to family life. © The Author (2014). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. The neural correlates of statistical learning in a word segmentation task: An fMRI study

    PubMed Central

    Karuza, Elisabeth A.; Newport, Elissa L.; Aslin, Richard N.; Starling, Sarah J.; Tivarus, Madalina E.; Bavelier, Daphne

    2013-01-01

    Functional magnetic resonance imaging (fMRI) was used to assess neural activation as participants learned to segment continuous streams of speech containing syllable sequences varying in their transitional probabilities. Speech streams were presented in four runs, each followed by a behavioral test to measure the extent of learning over time. Behavioral performance indicated that participants could discriminate statistically coherent sequences (words) from less coherent sequences (partwords). Individual rates of learning, defined as the difference in ratings for words and partwords, were used as predictors of neural activation to ask which brain areas showed activity associated with these measures. Results showed significant activity in the pars opercularis and pars triangularis regions of the left inferior frontal gyrus (LIFG). The relationship between these findings and prior work on the neural basis of statistical learning is discussed, and parallels to the frontal/subcortical network involved in other forms of implicit sequence learning are considered. PMID:23312790

  10. Low-cost telepresence for collaborative virtual environments.

    PubMed

    Rhee, Seon-Min; Ziegler, Remo; Park, Jiyoung; Naef, Martin; Gross, Markus; Kim, Myoung-Hee

    2007-01-01

    We present a novel low-cost method for visual communication and telepresence in a CAVE -like environment, relying on 2D stereo-based video avatars. The system combines a selection of proven efficient algorithms and approximations in a unique way, resulting in a convincing stereoscopic real-time representation of a remote user acquired in a spatially immersive display. The system was designed to extend existing projection systems with acquisition capabilities requiring minimal hardware modifications and cost. The system uses infrared-based image segmentation to enable concurrent acquisition and projection in an immersive environment without a static background. The system consists of two color cameras and two additional b/w cameras used for segmentation in the near-IR spectrum. There is no need for special optics as the mask and color image are merged using image-warping based on a depth estimation. The resulting stereo image stream is compressed, streamed across a network, and displayed as a frame-sequential stereo texture on a billboard in the remote virtual environment.

  11. Force Health Protection: Nutrition and Exercise Resource Manual

    DTIC Science & Technology

    1999-09-01

    table sugar (sucrose), sugars in fruit ( fructose ), honey ( fructose and glucose), sugar in milk (lactose), maple syrup , and molasses. Some are added in...saunas, stream rooms, and whirlpools. High blood pressure. Irregular heart beats. Anemia. Premature labor. History of premature labor...Exercise Resource Manual.” Wellness and health promotion are high priority goals for the Navy. Maintaining personal fitness and sensible nutrition

  12. Early and School-Age Care in Santa Monica: Current System, Policy Options, and Recommendations

    ERIC Educational Resources Information Center

    Pierson, Ashley; Karoly, Lynn A.; Zellman, Gail L.; Beckett, Megan K.

    2014-01-01

    The landscape of early learning and out-of-school-time programs in the City of Santa Monica is complex, with numerous providers and funding streams. This complexity reflects its evolution in response to changes in federal, state, and local priorities and initiatives. Future shifts in funding levels, program auspices, and other features are likely.…

  13. Effects of streamflows on stream-channel morphology in the eastern Niobrara National Scenic River, Nebraska, 1988–2010

    USGS Publications Warehouse

    Schaepe, Nathaniel J.; Alexander, Jason S.; Folz-Donahue, Kiernan

    2016-03-09

    Changes in channel metrics generally corresponded to changes in streamflow conditions, but other than changes in incipient flood-plain area, these changes were small and were not measured in all three segments simultaneously. Increases in total channel width (except in segment 1) and incipient flood-plain area between 1993 and 1999 corresponded to increases in streamflow. Channel narrowing (except in segment 1) between 1999 and 2003 corresponded to lower summer streamflows and extended durations of very low summer streamflow. Although the pattern of low summer streamflow and extended durations of very low summer streamflow continued during the 2004–6 period and at the beginning of the 2007–10 period, no further narrowing was measured. Consistent tributary summer inflows help to explain the resistance of segments 2 and 3 to further narrowing. Because segment 1 is already much narrower than segments 2 and 3, its average current velocity is likely to be swifter and, therefore, competent to offset further effects of the processes that led to its narrowness.

  14. Denitrification mitigates N flux through the stream-floodplain complex of a desert city.

    PubMed

    Roach, W John; Grimm, Nancy B

    2011-10-01

    The Indian Bend Wash (IBW) flood-control project relies on a greenbelt to carry floods through Scottsdale, Arizona, USA. The greenbelt is characterized by a chain of shallow artificial lakes in a larger floodplain of irrigated turf, which has been protected from encroaching urban development. As such, this urban stream-floodplain complex can be divided into three subsystems: artificial lakes, channelized stream segments, and floodplain. We conducted experiments to evaluate which, if any, of these subsystems were important sites of denitrification, and to explore factors controlling denitrification rates. Denitrification enzyme activity (DEA) bioassays were conducted on sediments from eight lake and six stream segments as well as soil samples from eight floodplain transects. Mass-specific potential denitrification rates were significantly higher in lakes than in streams or floodplains. Nutrient limitation bioassays revealed that nitrate (NO3-) limited denitrification in lake sediments, a surprising finding given that NO3(-)-rich groundwater additions frequently raised lake NO3(-) concentration above 1 mg N/L. Experiments on intact lake cores suggested that denitrification was limited by the rate NO3(-) diffused into sediments, rather than its availability in overlying water. Floodplain denitrification was limited by water content, not NO3(-) or C, and irrigation of soils stimulated denitrification. We constructed a N budget for the IBW stream-floodplain complex based on our experimental results. We found that both lakes and floodplains removed large quantities of N, with denitrification removing 261 and 133 kg N ha(-1) yr(-1) from lake sediments and floodplain soils, respectively, indicating that lakes are hotspots for denitrification. Nevertheless, because floodplain area was >4.5 times that of lakes, floodplain soils removed nearly 2.5 times as much N as lake sediments. Given the desert's low annual precipitation, a finding that floodplain soils are active sites of denitrification might seem implausible; however, irrigation is common in urban landscapes, and it elevated annual denitrification in IBW. Based on our results, we conclude that construction of artificial lakes created hotspots while application of irrigation water created hot moments for denitrification in the stream-floodplain complex, demonstrating that management decisions can improve the ability of urban streams to provide critical ecosystem services like N retention.

  15. Quaternary Tectonic Tilting Governed by Rupture Segments Controls Surface Morphology and Drainage Evolution along the South-Central Coast of Chile

    NASA Astrophysics Data System (ADS)

    Echtler, H. P.; Bookhagen, B.; Melnick, D.; Strecker, M.

    2004-12-01

    The Chilean coast represents one of the most active convergent margins in the Pacific rim, where major earthquakes (M>8) have repeatedly ruptured the surface, involving vertical offsets of several meters. Deformation along this coast takes place in large-scale, semi-independent seismotectonic segments with partially overlapping transient boundaries. They are possibly related to reactivated inherited crustal anisotropies; internal seismogenic deformation may be accommodated by structures that have developed during accretionary wedge evolution. Seismotectonic segmentation and the identification of large-scale rupture zones, however, are based on limited seismologic und geodetic observations over short timespans. In order to better define the long-term behavior and deformation rates of these segments and to survey the tectonic impact on the landscape on various temporal and spatial scales, we investigated the south-central coast of Chile (37-38S). There, two highly active, competing seismotectonic compartments influence the coastal and fluvial morphology. A rigorous analysis of the geomorphic features is a key for an assessment of the tectonic evolution during the Quaternary and beyond. We studied the N-S oriented Santa María Island (SMI), 20 km off the coast and only ~70km off the trench, in the transition between the two major Valdivia (46-37S) and Concepción (38-35S) rupture segments. The SMI has been tectonically deformed throughout the Quaternary and comprises two tilt domains with two topographic highs in the north and south that are being tilted eastward. The low-lying and flat eastern part of the island is characterized by a set of emergent Holocene strandlines related to coseismic uplift. We measured detailed surface morphology of these strandlines and E-W traversing ephemeral stream channels with a laser-total station and used these data to calibrate and validate high-resolution, digital imagery. In addition, crucial geomorphic markers were dated by the radiocarbon and optical stimulation methods to better constrain deformation rates. In response to the ongoing deformation, formerly W flowing streams constituting small drainages (< 0.25km2) were inverted and formed closed basins. In contrast, larger streams were reversed or were able to maintain their channels, but formed distinct knickpoints along their longitudinal profiles. In order to reconstruct the Holocene tectonic tilting axis, we connected drainage boundaries of reversed channels and deformation-related knickpoints along more mature rivers. Interestingly, topography clearly indicates that the direction of Pleistocene tectonic tilting was different than that of recent conditions. The Holocene inversion of stream flow associated with continuous uplift may be related to the progressive migration of the tectonic tilting axis in the course of active folding (Melnick et al., this session). The classification of knickpoints and the overall tectonic development also the mainland coast on the Arauco peninsula, during the Quaternary clearly document the surface signature of tectonic segmentation and its spatial evolution through time. The migration of the tilting axes is discussed in relation with active basal accretion and active shortening in the South-Central Chilean forearc.

  16. Development of a spatially universal framework for classifying stream assemblages with application to conservation planning for Great Lakes lotic fish communities

    USGS Publications Warehouse

    McKenna, James E.; Schaeffer, Jeffrey S.; Stewart, Jana S.; Slattery, Michael T.

    2015-01-01

    Classifications are typically specific to particular issues or areas, leading to patchworks of subjectively defined spatial units. Stream conservation is hindered by the lack of a universal habitat classification system and would benefit from an independent hydrology-guided spatial framework of units encompassing all aquatic habitats at multiple spatial scales within large regions. We present a system that explicitly separates the spatial framework from any particular classification developed from the framework. The framework was constructed from landscape variables that are hydrologically and biologically relevant, covered all space within the study area, and was nested hierarchically and spatially related at scales ranging from the stream reach to the entire region; classifications may be developed from any subset of the 9 basins, 107 watersheds, 459 subwatersheds, or 10,000s of valley segments or stream reaches. To illustrate the advantages of this approach, we developed a fish-guided classification generated from a framework for the Great Lakes region that produced a mosaic of habitat units which, when aggregated, formed larger patches of more general conditions at progressively broader spatial scales. We identified greater than 1,200 distinct fish habitat types at the valley segment scale, most of which were rare. Comparisons of biodiversity and species assemblages are easily examined at any scale. This system can identify and quantify habitat types, evaluate habitat quality for conservation and/or restoration, and assist managers and policymakers with prioritization of protection and restoration efforts. Similar spatial frameworks and habitat classifications can be developed for any organism in any riverine ecosystem.

  17. Inferring action structure and causal relationships in continuous sequences of human action.

    PubMed

    Buchsbaum, Daphna; Griffiths, Thomas L; Plunkett, Dillon; Gopnik, Alison; Baldwin, Dare

    2015-02-01

    In the real world, causal variables do not come pre-identified or occur in isolation, but instead are embedded within a continuous temporal stream of events. A challenge faced by both human learners and machine learning algorithms is identifying subsequences that correspond to the appropriate variables for causal inference. A specific instance of this problem is action segmentation: dividing a sequence of observed behavior into meaningful actions, and determining which of those actions lead to effects in the world. Here we present a Bayesian analysis of how statistical and causal cues to segmentation should optimally be combined, as well as four experiments investigating human action segmentation and causal inference. We find that both people and our model are sensitive to statistical regularities and causal structure in continuous action, and are able to combine these sources of information in order to correctly infer both causal relationships and segmentation boundaries. Copyright © 2014. Published by Elsevier Inc.

  18. Geomorphic Evolution and Slip rate Measurements of the Noushki Segment , Chaman Fault Zone, Pakistan

    NASA Astrophysics Data System (ADS)

    Abubakar, Y.; Khan, S. D.; Owen, L. A.; Khan, A.

    2012-12-01

    The Nushki segment of the Chaman fault system is unique in its nature as it records both the imprints of oblique convergence along the western Indian Plate boundary as well as the deformation along the Makran subduction zone. The left-lateral Chaman transform zone has evolved from a subduction zone along the Arabian-Eurasian collision complex to a strike-slip fault system since the collision of the Indian Plate with the Eurasia. The geodetically and geologically constrained displacement rates along the Chaman fault varies from about 18 mm/yr to about 35 mm/yr respectively throughout its total length of ~ 860 km. Two major hypothesis has been proposed by workers for these variations; i) Variations in rates of elastic strain accumulation along the plate boundary and, ii) strain partitioning along the plate boundary. Morphotectonic analysis is a very useful tool in investigations of spatial variations in tectonic activities both regionally and locally. This work uses morphotectonic analysis to investigate the degree of variations in active tectonic deformation, which can be directly related to elastic strain accumulation and other kinematics in the western boundary of the plate margin. Geomorphic mapping was carried out using remotely sensed data. ASTER and RADAR data were used in establishing Quaternary stratigraphy and measurement of geomorphic indices such as stream length gradient index, valley floor width to height ratio and, river/stream longitudinal profile within the study area. High resolution satellite images (e.g., IKONOS imagery) and 30m ASTER DEMs were employed to measure displacement recorded by landforms along individual strands of the fault. Results from geomorphic analysis shows three distinct levels of tectonic deformation. Areas showing high levels of tectonic deformation are characterized by displaced fan surfaces, deflected streams and beheaded streams. Terrestrial Cosmogenic nuclide surface exposure dating of the displaced landforms is being carried out to calculate slip-rates. Slip-rates estimation along this segment of this plate boundary will help in understanding of tectonic evolution of this plate boundary and seismic activity in the region.

  19. Functional Process Zones Characterizing Aquatic Insect Communities in Streams of the Brazilian Cerrado.

    PubMed

    Godoy, B S; Simião-Ferreira, J; Lodi, S; Oliveira, L G

    2016-04-01

    Stream ecology studies see to understand ecological dynamics in lotic systems. The characterization of streams into Functional Process Zones (FPZ) has been currently debated in stream ecology because aquatic communities respond to functional processes of river segments. Therefore, we tested if different functional process zones have different number of genera and trophic structure using the aquatic insect community of Neotropical streams. We also assessed whether using physical and chemical variables may complement the approach of using FPZ to model communities of aquatic insects in Cerrado streams. This study was conducted in 101 streams or rivers from the central region of the state of Goiás, Brazil. We grouped the streams into six FPZ associated to size of the river system, presence of riparian forest, and riverbed heterogeneity. We used Bayesian models to compare number of genera and relative frequency of the feeding groups between FPZs. Streams classified in different FPZs had a different number of genera, and the largest and best preserved rivers had an average of four additional genera. Trophic structure exhibited low variability among FPZs, with little difference both in the number of genera and in abundance. Using functional process zones in Cerrado streams yielded good results for Ephemeroptera, Plecoptera, and Trichoptera communities. Thus, species distribution and community structure in the river basin account for functional processes and not necessarily for the position of the community along a longitudinal dimension of the lotic system.

  20. Comparing stream-specific to generalized temperature models to guide salmonid management in a changing climate

    USGS Publications Warehouse

    Andrew K. Carlson,; William W. Taylor,; Hartikainen, Kelsey M.; Dana M. Infante,; Beard, Douglas; Lynch, Abigail

    2017-01-01

    Global climate change is predicted to increase air and stream temperatures and alter thermal habitat suitability for growth and survival of coldwater fishes, including brook charr (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss). In a changing climate, accurate stream temperature modeling is increasingly important for sustainable salmonid management throughout the world. However, finite resource availability (e.g. funding, personnel) drives a tradeoff between thermal model accuracy and efficiency (i.e. cost-effective applicability at management-relevant spatial extents). Using different projected climate change scenarios, we compared the accuracy and efficiency of stream-specific and generalized (i.e. region-specific) temperature models for coldwater salmonids within and outside the State of Michigan, USA, a region with long-term stream temperature data and productive coldwater fisheries. Projected stream temperature warming between 2016 and 2056 ranged from 0.1 to 3.8 °C in groundwater-dominated streams and 0.2–6.8 °C in surface-runoff dominated systems in the State of Michigan. Despite their generally lower accuracy in predicting exact stream temperatures, generalized models accurately projected salmonid thermal habitat suitability in 82% of groundwater-dominated streams, including those with brook charr (80% accuracy), brown trout (89% accuracy), and rainbow trout (75% accuracy). In contrast, generalized models predicted thermal habitat suitability in runoff-dominated streams with much lower accuracy (54%). These results suggest that, amidst climate change and constraints in resource availability, generalized models are appropriate to forecast thermal conditions in groundwater-dominated streams within and outside Michigan and inform regional-level salmonid management strategies that are practical for coldwater fisheries managers, policy makers, and the public. We recommend fisheries professionals reserve resource-intensive stream-specific models for runoff-dominated systems containing high-priority fisheries resources (e.g. trophy individuals, endangered species) that will be directly impacted by projected stream warming.

  1. Memory for temporally dynamic scenes.

    PubMed

    Ferguson, Ryan; Homa, Donald; Ellis, Derek

    2017-07-01

    Recognition memory was investigated for individual frames extracted from temporally continuous, visually rich film segments of 5-15 min. Participants viewed a short clip from a film in either a coherent or a jumbled order, followed by a recognition test of studied frames. Foils came either from an earlier or a later part of the film (Experiment 1) or from deleted segments selected from random cuts of varying duration (0.5 to 30 s) within the film itself (Experiment 2). When the foils came from an earlier or later part of the film (Experiment 1), recognition was excellent, with the hit rate far exceeding the false-alarm rate (.78 vs. 18). In Experiment 2, recognition was far worse, with the hit rate (.76) exceeding the false-alarm rate only for foils drawn from the longest cuts (15 and 30 s) and matching the false-alarm rate for the 5 s segments. When the foils were drawn from the briefest cuts (0.5 and 1.0 s), the false-alarm rate exceeded the hit rate. Unexpectedly, jumbling had no effect on recognition in either experiment. These results are consistent with the view that memory for complex visually temporal events is excellent, with the integrity unperturbed by disruption of the global structure of the visual stream. Disruption of memory was observed only when foils were drawn from embedded segments of duration less than 5 s, an outcome consistent with the view that memory at these shortest durations are consolidated with expectations drawn from the previous stream.

  2. A goal bias in action: The boundaries adults perceive in events align with sites of actor intent.

    PubMed

    Levine, Dani; Hirsh-Pasek, Kathy; Pace, Amy; Michnick Golinkoff, Roberta

    2017-06-01

    We live in a dynamic world comprised of continuous events. Remembering our past and predicting future events, however, requires that we segment these ongoing streams of information in a consistent manner. How is this segmentation achieved? This research examines whether the boundaries adults perceive in events, such as the Olympic figure skating routine used in these studies, align with the beginnings (sources) and endings (goals) of human goal-directed actions. Study 1 showed that a group of experts, given an explicit task with unlimited time to rewatch the event, identified the same subevents as one another, but with greater agreement as to the timing of goals than sources. In Study 2, experts, novices familiarized with the figure skating sequence, and unfamiliarized novices performed an online event segmentation task, marking boundaries as the video progressed in real time. The online boundaries of all groups corresponded with the sources and goals offered by Study 1's experts, with greater alignment of goals than sources. Additionally, expertise, but not mere perceptual familiarity, boosted the alignment of sources and goals. Finally, Study 3, which presented novices with the video played in reverse, indicated, unexpectedly, that even when spatiotemporal cues were disrupted, viewers' perceived event boundaries still aligned with their perception of the actors' intended sources and goals. This research extends the goal bias to event segmentation, and suggests that our spontaneous sensitivity toward goals may allow us to transform even relatively complex and unfamiliar event streams into structured and meaningful representations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Identifying trout refuges in the Indian and Hudson Rivers in northern New York through airborne thermal infrared remote sensing

    USGS Publications Warehouse

    Ernst, Anne G.; Baldigo, Barry P.; Calef, Fred J.; Freehafer, Douglas A.; Kremens, Robert L.

    2015-10-09

    The locations and sizes of potential cold-water refuges for trout were examined in 2005 along a 27-kilometer segment of the Indian and Hudson Rivers in northern New York to evaluate the extent of refuges, the effects of routine flow releases from an impoundment, and how these refuges and releases might influence trout survival in reaches that otherwise would be thermally stressed. This river segment supports small populations of brook trout (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss) and also receives regular releases of reservoir-surface waters to support rafting during the summer, when water temperatures in both the reservoir and the river frequently exceed thermal thresholds for trout survival. Airborne thermal infrared imaging was supplemented with continuous, in-stream temperature loggers to identify potential refuges that may be associated with tributary inflows or groundwater seeps and to define the extent to which the release flows decrease the size of existing refuges. In general, the release flows overwhelmed the refuge areas and greatly decreased the size and number of the areas. Mean water temperatures were unaffected by the releases, but small-scale heterogeneity was diminished. At a larger scale, water temperatures in the upper and lower segments of the reach were consistently warmer than in the middle segment, even during passage of release waters. The inability of remote thermal infrared images to consistently distinguish land from water (in shaded areas) and to detect groundwater seeps (away from the shallow edges of the stream) limited data analysis and the ability to identify potential thermal refuge areas.

  4. Benthic algae of benchmark streams in agricultural areas of eastern Wisconsin

    USGS Publications Warehouse

    Scudder, Barbara C.; Stewart, Jana S.

    2001-01-01

    Multivariate analyses indicated multiple scales of environmental factors affect algae. Although two-way indicator species analysis (TWINSPAN), detrended correspondence analysis (DCA), and canonical correspondence analysis (CCA) generally separated sites according to RHU, only DCA ordination indicated a separation of sites according to ecoregion. Environmental variables con-elated with DCA axes 1 and 2 and therefore indicated as important explanatory factors for algal distribution and abundance were factors related to stream size, basin land use/cover, geomorphology, hydrogeology, and riparian disturbance. CCA analyses with a more limited set of environmental variables indicated that pH, average width of natural riparian vegetation (segment scale), basin land use/cover and Q/Q2 were the most important variables affecting the distribution and relative abundance of benthic algae at the 20 benchmark streams,

  5. Delineation and validation of river network spatial scales for water resources and fisheries management.

    PubMed

    Wang, Lizhu; Brenden, Travis; Cao, Yong; Seelbach, Paul

    2012-11-01

    Identifying appropriate spatial scales is critically important for assessing health, attributing data, and guiding management actions for rivers. We describe a process for identifying a three-level hierarchy of spatial scales for Michigan rivers. Additionally, we conduct a variance decomposition of fish occurrence, abundance, and assemblage metric data to evaluate how much observed variability can be explained by the three spatial scales as a gage of their utility for water resources and fisheries management. The process involved the development of geographic information system programs, statistical models, modification by experienced biologists, and simplification to meet the needs of policy makers. Altogether, 28,889 reaches, 6,198 multiple-reach segments, and 11 segment classes were identified from Michigan river networks. The segment scale explained the greatest amount of variation in fish abundance and occurrence, followed by segment class, and reach. Segment scale also explained the greatest amount of variation in 13 of the 19 analyzed fish assemblage metrics, with segment class explaining the greatest amount of variation in the other six fish metrics. Segments appear to be a useful spatial scale/unit for measuring and synthesizing information for managing rivers and streams. Additionally, segment classes provide a useful typology for summarizing the numerous segments into a few categories. Reaches are the foundation for the identification of segments and segment classes and thus are integral elements of the overall spatial scale hierarchy despite reaches not explaining significant variation in fish assemblage data.

  6. 40 CFR 464.31 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... discrete list of toxic organic pollutants for each process segment where it is regulated, as follows: (1... discrete wet scrubbing devices are employed in series in a single melting furnace exhaust gas stream. The ferrous melting furnace scrubber mass allowance shall be given to each discrete wet scrubbing device that...

  7. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Revised water quality standards. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2111 Revised water... stream segments which have not, at least once since December 29, 1981, had their water quality standards...

  8. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Revised water quality standards. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2111 Revised water... stream segments which have not, at least once since December 29, 1981, had their water quality standards...

  9. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Revised water quality standards. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2111 Revised water... stream segments which have not, at least once since December 29, 1981, had their water quality standards...

  10. The Neural Basis of Speech Parsing in Children and Adults

    ERIC Educational Resources Information Center

    McNealy, Kristin; Mazziotta, John C.; Dapretto, Mirella

    2010-01-01

    Word segmentation, detecting word boundaries in continuous speech, is a fundamental aspect of language learning that can occur solely by the computation of statistical and speech cues. Fifty-four children underwent functional magnetic resonance imaging (fMRI) while listening to three streams of concatenated syllables that contained either high…

  11. A technique to minimize uncertainties in load duration curves (LDCs) for water quality-impaired ungauged sites

    EPA Science Inventory

    For many water quality-impaired stream segments, streamflow and water quality monitoring sites are not available. Lack of available streamflow data at impaired ungauged sites leads to uncertainties in total maximum daily load (TMDL) estimation. We developed a technique to minimiz...

  12. Quantifying hyporheic exchange at high spatial resolution using natural temperature variations along a first-order stream

    NASA Astrophysics Data System (ADS)

    Westhoff, M. C.; Gooseff, M. N.; Bogaard, T. A.; Savenije, H. H. G.

    2011-10-01

    Hyporheic exchange is an important process that underpins stream ecosystem function, and there have been numerous ways to characterize and quantify exchange flow rates and hyporheic zone size. The most common approach, using conservative stream tracer experiments and 1-D solute transport modeling, results in oversimplified representations of the system. Here we present a new approach to quantify hyporheic exchange and the size of the hyporheic zone (HZ) using high-resolution temperature measurements and a coupled 1-D transient storage and energy balance model to simulate in-stream water temperatures. Distributed temperature sensing was used to observe in-stream water temperatures with a spatial and temporal resolution of 2 and 3 min, respectively. The hyporheic exchange coefficient (which describes the rate of exchange) and the volume of the HZ were determined to range between 0 and 2.7 × 10-3 s-1 and 0 and 0.032 m3 m-1, respectively, at a spatial resolution of 1-10 m, by simulating a time series of in-stream water temperatures along a 565 m long stretch of a small first-order stream in central Luxembourg. As opposed to conventional stream tracer tests, two advantages of this approach are that exchange parameters can be determined for any stream segment over which data have been collected and that the depth of the HZ can be estimated as well. Although the presented method was tested on a small stream, it has potential for any stream where rapid (in regard to time) temperature change of a few degrees can be obtained.

  13. Geomorphic floodplain with organic matter (biomass) estimates for Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2011-01-01

    Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff and shows characteristic flashy streamflow and poor water quality commonly associated with urban streams. This data set represents the geomorphic floodplain as derived from light detection and ranging (LiDAR) data and aerial photographic imagery. The floodplain represents current conditions including both anthropogenic alterations and natural historic floodplain features. The floodplain dataset is divided into 13 reach segments and attributed with corresponding organic material load estimates for each reach.

  14. New metrics for evaluating channel networks extracted in grid digital elevation models

    NASA Astrophysics Data System (ADS)

    Orlandini, S.; Moretti, G.

    2017-12-01

    Channel networks are critical components of drainage basins and delta regions. Despite the important role played by these systems in hydrology and geomorphology, there are at present no well-defined methods to evaluate numerically how two complex channel networks are geometrically far apart. The present study introduces new metrics for evaluating numerically channel networks extracted in grid digital elevation models with respect to a reference channel network (see the figure below). Streams of the evaluated network (EN) are delineated as in the Horton ordering system and examined through a priority climbing algorithm based on the triple index (ID1,ID2,ID3), where ID1 is a stream identifier that increases as the elevation of lower end of the stream increases, ID2 indicates the ID1 of the draining stream, and ID3 is the ID1 of the corresponding stream in the reference network (RN). Streams of the RN are identified by the double index (ID1,ID2). Streams of the EN are processed in the order of increasing ID1 (plots a-l in the figure below). For each processed stream of the EN, the closest stream of the RN is sought by considering all the streams of the RN sharing the same ID2. This ID2 in the RN is equal in the EN to the ID3 of the stream draining the processed stream, the one having ID1 equal to the ID2 of the processed stream. The mean stream planar distance (MSPD) and the mean stream elevation drop (MSED) are computed as the mean distance and drop, respectively, between corresponding streams. The MSPD is shown to be useful for evaluating slope direction methods and thresholds for channel initiation, whereas the MSED is shown to indicate the ability of grid coarsening strategies to retain the profiles of observed channels. The developed metrics fill a gap in the existing literature by allowing hydrologists and geomorphologists to compare descriptions of a fixed physical system obtained by using different terrain analysis methods, or different physical systems described by using the same methods.

  15. Design of Cycle 3 of the National Water-Quality Assessment Program, 2013-23: Part 2: Science plan for improved water-quality information and management

    USGS Publications Warehouse

    Rowe, Gary L.; Belitz, Kenneth; Demas, Charlie R.; Essaid, Hedeff I.; Gilliom, Robert J.; Hamilton, Pixie A.; Hoos, Anne B.; Lee, Casey J.; Munn, Mark D.; Wolock, David W.

    2013-01-01

    This report presents a science strategy for the third decade of the National Water-Quality Assessment (NAWQA) Program, which since 1991, has been responsible for providing nationally consistent information on the quality of the Nation's streams and groundwater; how water quality is changing over time; and the major natural and human factors that affect current water quality conditions and trends. The strategy is based on an extensive evaluation of the accomplishments of NAWQA over its first two decades, the current status of water-quality monitoring activities by USGS and its partners, and an updated analysis of stakeholder priorities. The plan is designed to address priority issues and national needs identified by NAWQA stakeholders and the National Research Council (2012) irrespective of budget constraints. This plan describes four major goals for the third decade (Cycle 3), the approaches for monitoring, modeling, and scientific studies, key partnerships required to achieve these goals, and products and outcomes that will result from planned assessment activities. The science plan for 2013–2023 is a comprehensive approach to meet stakeholder priorities for: (1) rebuilding NAWQA monitoring networks for streams, rivers, and groundwater, and (2) upgrading models used to extrapolate and forecast changes in water-quality and stream ecosystem condition in response to changing climate and land use. The Cycle 3 plan continues approaches that have been central to the Program’s long-term success, but adjusts monitoring intensities and study designs to address critical information needs and identified data gaps. Restoration of diminished monitoring networks and new directions in modeling and interpretative studies address growing and evolving public and stakeholder needs for water-quality information and improved management, particularly in the face of increasing challenges related to population growth, increasing demands for water, and changing land use and climate. However, a combination of funding growth and extensive collaboration with other USGS programs and other Federal, State, and local agencies, public interest groups, professional and trade associations, academia, and private industry will be needed to fully realize the monitoring and modeling goals laid out in this plan (USGS Fact Sheet 2013-3008).

  16. Stream Phosphorus Dynamics Along a Suburbanizing Gradient in Southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Duval, T. P.

    2017-12-01

    While it is well known that urban streams are subject to impaired water quality relative to natural analogues, far less research has been directed at stream water quality during the process of (sub-) urbanization. This study determines the role of housing construction activities in Brampton, Canada on the concentration and flux of phosphorus (P) of a headwater stream. Prior to development the stream was engineered with a riffle-pool sequence, riparian plantings, and a floodplain corridor that was lined with sediment fencing. Stream sites were sampled daily over a period of six months at locations representing varying stages of subdivision completion (upper site -active construction; middle site -finished construction and natural vegetation; lower site -finished construction and active construction). A nearby urban stream site developed ten years prior to this study was selected as a reference site. There were no differences in total phosphorus (TP) levels or flux between the suburbanizing and urban streams; however, the forms of P differed between sites. The urban stream TP load was dominated by particulate phosphorus (PP) while suburbanizing stream P was mainly in the dissolved organic phosphorus (DOP) form. The importance of DOP to TP flux increased with the onset of the growing season. TP levels in all stream segments frequently exceeded provincial water quality guidelines during storm events but were generally low during baseflow conditions. During storm events PP and total suspended solid levels in the suburbanizing stream reached levels of the urban stream due to sediment fence failure at several locations along the construction-hillslope interface. Along the suburbanizing gradient, the hydrological connection to a mid-reach zone of no-construction activity / fallow field and native forest resulted in significantly lower P levels than the upper suburbanizing stream site. This suggests that stream channel design features as well as timing of construction activities and the hydrological connection between the stream and construction projects all contribute to downstream export of nutrients and ultimately stream water quality.

  17. Threshold responses of Blackside Dace (Chrosomus cumberlandensis) and Kentucky Arrow Darter (Etheostoma spilotum) to stream conductivity

    USGS Publications Warehouse

    Hitt, Nathaniel P.; Floyd, Michael; Compton, Michael; McDonald, Kenneth

    2016-01-01

    Chrosomus cumberlandensis (Blackside Dace [BSD]) and Etheostoma spilotum (Kentucky Arrow Darter [KAD]) are fish species of conservation concern due to their fragmented distributions, their low population sizes, and threats from anthropogenic stressors in the southeastern United States. We evaluated the relationship between fish abundance and stream conductivity, an index of environmental quality and potential physiological stressor. We modeled occurrence and abundance of KAD in the upper Kentucky River basin (208 samples) and BSD in the upper Cumberland River basin (294 samples) for sites sampled between 2003 and 2013. Segmented regression indicated a conductivity change-point for BSD abundance at 343 μS/cm (95% CI: 123–563 μS/cm) and for KAD abundance at 261 μS/cm (95% CI: 151–370 μS/cm). In both cases, abundances were negligible above estimated conductivity change-points. Post-hoc randomizations accounted for variance in estimated change points due to unequal sample sizes across the conductivity gradients. Boosted regression-tree analysis indicated stronger effects of conductivity than other natural and anthropogenic factors known to influence stream fishes. Boosted regression trees further indicated threshold responses of BSD and KAD occurrence to conductivity gradients in support of segmented regression results. We suggest that the observed conductivity relationship may indicate energetic limitations for insectivorous fishes due to changes in benthic macroinvertebrate community composition.

  18. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice.

    PubMed

    François, Clément; Schön, Daniele

    2014-02-01

    There is increasing evidence that humans and other nonhuman mammals are sensitive to the statistical structure of auditory input. Indeed, neural sensitivity to statistical regularities seems to be a fundamental biological property underlying auditory learning. In the case of speech, statistical regularities play a crucial role in the acquisition of several linguistic features, from phonotactic to more complex rules such as morphosyntactic rules. Interestingly, a similar sensitivity has been shown with non-speech streams: sequences of sounds changing in frequency or timbre can be segmented on the sole basis of conditional probabilities between adjacent sounds. We recently ran a set of cross-sectional and longitudinal experiments showing that merging music and speech information in song facilitates stream segmentation and, further, that musical practice enhances sensitivity to statistical regularities in speech at both neural and behavioral levels. Based on recent findings showing the involvement of a fronto-temporal network in speech segmentation, we defend the idea that enhanced auditory learning observed in musicians originates via at least three distinct pathways: enhanced low-level auditory processing, enhanced phono-articulatory mapping via the left Inferior Frontal Gyrus and Pre-Motor cortex and increased functional connectivity within the audio-motor network. Finally, we discuss how these data predict a beneficial use of music for optimizing speech acquisition in both normal and impaired populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Interactive browsing of 3D environment over the Internet

    NASA Astrophysics Data System (ADS)

    Zhang, Cha; Li, Jin

    2000-12-01

    In this paper, we describe a system for wandering in a realistic environment over the Internet. The environment is captured by the concentric mosaic, compressed via the reference block coder (RBC), and accessed and delivered over the Internet through the virtual media (Vmedia) access protocol. Capturing the environment through the concentric mosaic is easy. We mount a camera at the end of a level beam, and shoot images as the beam rotates. The huge dataset of the concentric mosaic is then compressed through the RBC, which is specifically designed for both high compression efficiency and just-in-time (JIT) rendering. Through the JIT rendering function, only a portion of the RBC bitstream is accessed, decoded and rendered for each virtual view. A multimedia communication protocol -- the Vmedia protocol, is then proposed to deliver the compressed concentric mosaic data over the Internet. Only the bitstream segments corresponding to the current view are streamed over the Internet. Moreover, the delivered bitstream segments are managed by a local Vmedia cache so that frequently used bitstream segments need not be streamed over the Internet repeatedly, and the Vmedia is able to handle a RBC bitstream larger than its memory capacity. A Vmedia concentric mosaic interactive browser is developed where the user can freely wander in a realistic environment, e.g., rotate around, walk forward/backward and sidestep, even under a tight bandwidth of 33.6 kbps.

  20. Quantification of Gravel Rural Road Sediment Production

    NASA Astrophysics Data System (ADS)

    Silliman, B. A.; Myers Toman, E.

    2014-12-01

    Unbound rural roads are thought to be one of the largest anthropogenic sources of sediment reaching stream channels in small watersheds. This sediment deposition can reduce water quality in the streams negatively impacting aquatic habitat as well as impacting municipal drinking water sources. These roads are thought to see an increase in construction and use in southeast Ohio due to the expansion of shale gas development in the region. This study set out to quantify the amount of sediment these rural roads are able to produce. A controlled rain event of 12.7 millimeters of rain over a half hour period was used to drive sediment production over a 0.03 kilometer section of gravel rural road. These 8 segments varied in many characteristics and produced from 2.0 to 8.4 kilograms of sediment per 0.03 kilometers of road with the average production over the 8 segments being 5.5 kilograms of sediment. Sediment production was not strongly correlated with road segment slope but traffic was found to increase sediment production from 1.1 to 3.9 times as much sediment after traffic use. These results will help inform watershed scale sediment budgeting, and inform best management practices for road maintenance and construction. This study also adds to the understanding of the impacts of rural road use and construction associated with the changing land use from agricultural to natural gas extraction.

  1. Eta Sigma Gamma Members' Participation in Advocacy Activities and Opinions on Advocacy Priorities for the Organization

    ERIC Educational Resources Information Center

    Cox, Carol; Haidar, Salma; Brookins-Fisher, Jodi; Thompson, Amy; Deakins, Bethany; Bishop, Chaundra

    2014-01-01

    Advocacy for health policies and programs can impact large segments of the population with the goal of promoting and protecting the nation's health. Historically, advocacy has not been viewed as seriously as other components of health education, and involvement in public policy work has been moderate by health education practitioners and health…

  2. Automatic topics segmentation for TV news video

    NASA Astrophysics Data System (ADS)

    Hmayda, Mounira; Ejbali, Ridha; Zaied, Mourad

    2017-03-01

    Automatic identification of television programs in the TV stream is an important task for operating archives. This article proposes a new spatio-temporal approach to identify the programs in TV stream into two main steps: First, a reference catalogue for video features visual jingles built. We operate the features that characterize the instances of the same program type to identify the different types of programs in the flow of television. The role of video features is to represent the visual invariants for each visual jingle using appropriate automatic descriptors for each television program. On the other hand, programs in television streams are identified by examining the similarity of the video signal for visual grammars in the catalogue. The main idea of the identification process is to compare the visual similarity of the video signal features in the flow of television to the catalogue. After presenting the proposed approach, the paper overviews encouraging experimental results on several streams extracted from different channels and compounds of several programs.

  3. Response to Comment by H. Lough, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, on the Paper " Stream Depletion Predictions using Pumping Test Data from A Heterogeneous Stream-Aquifer System (A Case Study from the Gr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollet, S J; Zlotnik, V A

    2004-12-20

    We thank H. Lough for her interest in our data set and the attempt to re-analyze our results (Kollet and Zlotnik, 2003) using the recent model by Hunt (2003). We welcome others to share our unique data set of the pumping test from the Prairie Creek site, Nebraska, USA. Nevertheless we believe that this particular attempt failed, because H. Lough selected a wrong model of semi-confined aquifer conditions for the interpretation of the pumping test data, which was collected in an unconfined aquifer. H. Lough based her selection on the three distinct drawdown segments observed during the test. It ismore » well known that geologically distinct aquifers can yield a three-segment drawdown response under pumping conditions (e.g., Streltsova, 1988). Examples include unconfined aquifers (e.g., Neuman, 1972; Moench, 1997), aquifers with double porosity or fractures (e.g., Barenblatt et al., 1960; Boulton and Streltsova-Adams, 1978), and (semi-) confined aquifers in contact with aquitards (e.g. Cooley and Case, 1973; Moench, 1985). At the Prairie Creek site the aquifer is unconfined. The interpretation of the pumping test data collected at the site using type curves that are valid for an aquifer-aquitard system is a mistake. In fact, this approach illustrates a typical problem associated with inverse modeling: drastically different models can closely reproduce a system response and yield some parameter estimates, although the models do not represent the real system adequately. Here, the improper model yields some parameter estimates for an aquitard, although the aquitard does not exist at the Prairie Creek test site. We must also unequivocally state that the model by Hunt (2003) is clearly formulated and correct for stream-aquifer-aquitard systems within the stated limitations (pumping wells screened only in the lowest stratigraphic layer, etc.). However, the Hunt (1999) or BZT (Butler et al., 2001) models should be used for interpreting pumping tests near streams in non-leaky aquifers as outlined in our study (Kollet and Zlotnik, 2003). The purpose of the comment by H. Lough is to examine three drawdown segments and results from Kollet and Zlotnik (2003) using a newer analytical model of stream-aquifer interactions by Hunt (2003). We will address the key issues of this comment in this paper.« less

  4. Layer-based buffer aware rate adaptation design for SHVC video streaming

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; Hamza, Ahmed; Asbun, Eduardo; He, Yong; Ye, Yan

    2016-09-01

    This paper proposes a layer based buffer aware rate adaptation design which is able to avoid abrupt video quality fluctuation, reduce re-buffering latency and improve bandwidth utilization when compared to a conventional simulcast based adaptive streaming system. The proposed adaptation design schedules DASH segment requests based on the estimated bandwidth, dependencies among video layers and layer buffer fullness. Scalable HEVC video coding is the latest state-of-art video coding technique that can alleviate various issues caused by simulcast based adaptive video streaming. With scalable coded video streams, the video is encoded once into a number of layers representing different qualities and/or resolutions: a base layer (BL) and one or more enhancement layers (EL), each incrementally enhancing the quality of the lower layers. Such layer based coding structure allows fine granularity rate adaptation for the video streaming applications. Two video streaming use cases are presented in this paper. The first use case is to stream HD SHVC video over a wireless network where available bandwidth varies, and the performance comparison between proposed layer-based streaming approach and conventional simulcast streaming approach is provided. The second use case is to stream 4K/UHD SHVC video over a hybrid access network that consists of a 5G millimeter wave high-speed wireless link and a conventional wired or WiFi network. The simulation results verify that the proposed layer based rate adaptation approach is able to utilize the bandwidth more efficiently. As a result, a more consistent viewing experience with higher quality video content and minimal video quality fluctuations can be presented to the user.

  5. Late Pleistocene - Holocene ruptures of the Lima Reservoir fault, SW Montana

    NASA Astrophysics Data System (ADS)

    Anastasio, David J.; Majerowicz, Christina N.; Pazzaglia, Frank J.; Regalla, Christine A.

    2010-12-01

    Active tectonics within the northern Basin and Range province provide a natural laboratory for the study of normal fault growth, linkage, and interaction. Here, we present new geologic mapping and morphologic fault-scarp modeling within the Centennial Valley, Montana to characterize Pleistocene - Holocene ruptures of the young and active Lima Reservoir fault. Geologic relationships and rupture ages indicate Middle Pleistocene activity on the Henry Gulch (>50 ka and 23-10 ka), Trail Creek (>43 ka and ˜13 ka), and reservoir (˜23 ka) segments. Offset Quaternary deposits also record Holocene rupture of the reservoir segment (˜8 ka), but unfaulted modern streams show that no segments of the Lima Reservoir fault have experienced a large earthquake in at least several millennia. The clustered pattern of rupture ages on the Lima Reservoir fault segments suggests a seismogenic linkage though segment length and spacing make a physical connection at depth unlikely. Trail Creek and reservoir segment slip rates were non-steady and appear to be increasing. The fault helps accommodate differential horizontal surface velocity measured by GPS geodesy across the boundary between the northern Basin and Range province and the Snake River Plain.

  6. Efficient Generation of Dancing Animation Synchronizing with Music Based on Meta Motion Graphs

    NASA Astrophysics Data System (ADS)

    Xu, Jianfeng; Takagi, Koichi; Sakazawa, Shigeyuki

    This paper presents a system for automatic generation of dancing animation that is synchronized with a piece of music by re-using motion capture data. Basically, the dancing motion is synthesized according to the rhythm and intensity features of music. For this purpose, we propose a novel meta motion graph structure to embed the necessary features including both rhythm and intensity, which is constructed on the motion capture database beforehand. In this paper, we consider two scenarios for non-streaming music and streaming music, where global search and local search are required respectively. In the case of the former, once a piece of music is input, the efficient dynamic programming algorithm can be employed to globally search a best path in the meta motion graph, where an objective function is properly designed by measuring the quality of beat synchronization, intensity matching, and motion smoothness. In the case of the latter, the input music is stored in a buffer in a streaming mode, then an efficient search method is presented for a certain amount of music data (called a segment) in the buffer with the same objective function, resulting in a segment-based search approach. For streaming applications, we define an additional property in the above meta motion graph to deal with the unpredictable future music, which guarantees that there is some motion to match the unknown remaining music. A user study with totally 60 subjects demonstrates that our system outperforms the stat-of-the-art techniques in both scenarios. Furthermore, our system improves the synthesis speed greatly (maximal speedup is more than 500 times), which is essential for mobile applications. We have implemented our system on commercially available smart phones and confirmed that it works well on these mobile phones.

  7. Population-scale movement of coastal cutthroat trout in a naturally isolated stream network

    USGS Publications Warehouse

    Gresswell, R.E.; Hendricks, S.R.

    2007-01-01

    To identify population-scale patterns of movement, coastal cutthroat trout Oncorhynchus clarkii clarkii tagged and marked (35 radio-tagged, 749 passive integrated transponder [PIT]-tagged, and 3,025 fin-clipped) were monitored from June 1999 to August 2000. The study watershed, located in western Oregon, was above a natural barrier to upstream movement. Emigration out of the watershed was estimated with a rotating fish trap. Approximately 70% of recaptured coastal cutthroat trout with PIT tags and 86% of those with radio tags moved predominantly at the channel-unit scale (2-95 m); fewer tagged fish moved at the reach scale (66-734 m) and segment scale (229-3,479 m). In general, movement was greatest in April as spawning peaked and lowest in October, when discharge was at its lowest. Only 63 (<1% of tagged and marked fish) coastal cutthroat trout were captured in the fish trap. Trap efficiency was about 33%, and the expanded estimate of emigrants between February and June was 173 fish. These results suggest that unit-scale movement is common throughout the year and that reach- and segment-scale movements are important during the winter and spring. Although movement in headwater streams is most common at the channel-unit scale, restoration of individual channel units of stream may not benefit the population at the watershed scale unless these activities are undertaken in the context of the greater whole. Individual coastal cutthroat trout move great distances, even within the small watersheds in the Oregon Coast Range, and although these movements may be infrequent, they may contribute substantially to recolonization after stochastic extirpation events (e.g., landslides and debris flows). Management strategies that focus on maintaining and restoring connectivity in a watershed represent an important step toward protecting the evolutionary capacity of stream salmonids. ??

  8. Algorithm for protecting light-trees in survivable mesh wavelength-division-multiplexing networks

    NASA Astrophysics Data System (ADS)

    Luo, Hongbin; Li, Lemin; Yu, Hongfang

    2006-12-01

    Wavelength-division-multiplexing (WDM) technology is expected to facilitate bandwidth-intensive multicast applications such as high-definition television. A single fiber cut in a WDM mesh network, however, can disrupt the dissemination of information to several destinations on a light-tree based multicast session. Thus it is imperative to protect multicast sessions by reserving redundant resources. We propose a novel and efficient algorithm for protecting light-trees in survivable WDM mesh networks. The algorithm is called segment-based protection with sister node first (SSNF), whose basic idea is to protect a light-tree using a set of backup segments with a higher priority to protect the segments from a branch point to its children (sister nodes). The SSNF algorithm differs from the segment protection scheme proposed in the literature in how the segments are identified and protected. Our objective is to minimize the network resources used for protecting each primary light-tree such that the blocking probability can be minimized. To verify the effectiveness of the SSNF algorithm, we conduct extensive simulation experiments. The simulation results demonstrate that the SSNF algorithm outperforms existing algorithms for the same problem.

  9. Ground Water Atlas of the United States: Segment 8, Montana, North Dakota, South Dakota, Wyoming

    USGS Publications Warehouse

    Whitehead, R.L.

    1996-01-01

    The States of Montana, North Dakota, South Dakota, and Wyoming compose the 392,764-square-mile area of Segment 8, which is in the north-central part of the continental United States. The area varies topographically from the high rugged mountain ranges of the Rocky Mountains in western Montana and Wyoming to the gently undulating surface of the Central Lowland in eastern North Dakota and South Dakota (fig. 1). The Black Hills in southwestern South Dakota and northeastern Wyoming interrupt the uniformity of the intervening Great Plains. Segment 8 spans the Continental Divide, which is the drainage divide that separates streams that generally flow westward from those that generally flow eastward. The area of Segment 8 is drained by the following major rivers or river systems: the Green River drains southward to join the Colorado River, which ultimately discharges to the Gulf of California; the Clark Fork and the Kootenai Rivers drain generally westward by way of the Columbia River to discharge to the Pacific Ocean; the Missouri River system and the North Platte River drain eastward and southeastward to the Mississippi River, which discharges to the Gulf of Mexico; and the Red River of the North and the Souris River drain northward through Lake Winnipeg to ultimately discharge to Hudson Bay in Canada. These rivers and their tributaries are an important source of water for public-supply, domestic and commercial, agricultural, and industrial uses. Much of the surface water has long been appropriated for agricultural use, primarily irrigation, and for compliance with downstream water pacts. Reservoirs store some of the surface water for flood control, irrigation, power generation, and recreational purposes. Surface water is not always available when and where it is needed, and ground water is the only other source of supply. Ground water is obtained primarily from wells completed in unconsolidated-deposit aquifers that consist mostly of sand and gravel, and from wells completed in semi-consolidated- and consolidated-rock aquifers, chiefly sandstone and limestone. Some wells withdraw water from volcanic rocks, igneous and metamorphic rocks, or fractured fine-grained sedimentary rocks, such as shale; however, wells completed in these types of rocks generally yield only small volumes of water. Most wells in the four-State area of Segment 8 are on privately owned land (fig. 2). Agriculture, primarily irrigation, is one of the largest uses of ground water. The irrigation generally is on lowlands close to streams (fig. 3). Lowlands within a few miles of major streams usually are irrigated with surface water that is diverted by gravity flow from the main stream or a reservoir and transported through a canal system. Surface water also is pumped to irrigate land that gravity systems cannot supply. In addition, ground water is pumped from large-capacity wells to supplement surface water during times of drought or during seasons of the year when surface water is in short supply. Ground water is the only source of water for irrigation in much of the segment. The thickness and permeability of aquifers in the area of Segment 8 vary considerably, as do yields of wells completed in the aquifers. Ground-water levels and artesian pressures (hydraulic head) have declined significantly in some places as a result of excessive withdrawals by wells. State governments have taken steps to control the declines by enacting programs that either limit the number of additional wells that can be completed in a particular aquifer or prevent further ground-water development altogether. The demand for water is directly related to the distribution of people. In 1990, Montana had a population of 799,065; North Dakota, 638,800; South Dakota, 696,004; and Wyoming, 453,588. The more densely populated areas are on lowlands near major streams. Many of the mountain, desert, and upland areas lack major population centers, particularly in Montana and Wyoming, where use of much of the land is controlled by the Federal Government and withdrawal of ground water is restricted.Average annual precipitation (1951-80) in Segment 8 ranges from less than 8 inches in parts of Montana and Wyoming to more than 40 inches in some of the mountainous areas (fig. 4). Most storms move eastward through Segment 8 and are particularly common during the winter months. Moisture that evaporates from the Pacific Ocean is absorbed by eastward- moving air. As the moisture-laden air masses move eastward, they rise and cool as they encounter mountain ranges and lose some of their moisture to condensation. Consequently, the western sides of mountain ranges receive the most precipitation, much of it as snow during the winter months. In contrast, the eastern sides of some of the higher mountain ranges are in rain shadows and receive little precipitation. East of the Continental Divide, precipitation that falls during many summer storms results from northward-moving, moisture-laden air masses from the Gulf of Mexico. These air masses move northward when the polar front recedes; accordingly, a major part of the annual precipitation falls on the plains during the growing season. Average annual precipitation minus the total of average annual runoff plus evapotranspiration (the combination of evaporation and transpiration by plants) is the amount of water potentially available for recharge to the aquifers.Average annual runoff (1951-80) in the area of Segment 8 varies greatly, and the distribution of runoff (fig. 5) generally parallels that of precipitation. In arid and semiarid areas of the segment, most precipitation replenishes soil moisture, evaporates, or is transpired by vegetation, and only a small part of the precipitation is left to maintain streamflow or recharge aquifers. In wetter areas of the segment, much of the precipitation runs off the land surface directly to perennial streams. Because a smaller percentage of precipitation in wet areas usually is lost to evapotranspiration than in dry areas, more water is, therefore, available to recharge aquifers where more precipitation falls. Precipitation that falls as snow generally does not become runoff until spring thaws begin. Runoff is affected in some areas by reservoirs that have been constructed on major streams to mitigate flooding and to store water for irrigation, electrical power generation, and recreation. Water stored in reservoirs during times when runoff is great is subsequently released during drier periods to maintain downstream flow.

  10. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis.

    PubMed

    Zhao, Liya; Jia, Kebin

    2016-01-01

    Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs). Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness.

  11. SCOPES: steganography with compression using permutation search

    NASA Astrophysics Data System (ADS)

    Boorboor, Sahar; Zolfaghari, Behrouz; Mozafari, Saadat Pour

    2011-10-01

    LSB (Least Significant Bit) is a widely used method for image steganography, which hides the secret message as a bit stream in LSBs of pixel bytes in the cover image. This paper proposes a variant of LSB named SCOPES that encodes and compresses the secret message while being hidden through storing addresses instead of message bytes. Reducing the length of the stored message improves the storage capacity and makes the stego image visually less suspicious to the third party. The main idea behind the SCOPES approach is dividing the message into 3-character segments, seeking each segment in the cover image and storing the address of the position containing the segment instead of the segment itself. In this approach, every permutation of the 3 bytes (if found) can be stored along with some extra bits indicating the permutation. In some rare cases the segment may not be found in the image and this can cause the message to be expanded by some overhead bits2 instead of being compressed. But experimental results show that SCOPES performs overlay better than traditional LSB even in the worst cases.

  12. Ground Water Atlas of the United States: Segment 9, Iowa, Michigan, Minnesota, Wisconsin

    USGS Publications Warehouse

    Olcott, Perry G.

    1992-01-01

    Segment 9, which consists of Minnesota, Iowa, Wisconsin, and Michigan, abuts the Canadian border in the upper Midwest and lies adjacent to or surrounds four of the Great Lakes-Superior, Michigan, Huron, and Erie. Thousands of small to large lakes similar to the one shown in figure 1 dot the landscape, which is drained by numerous rivers and streams tributary primarily to the Mississippi River in the west and to the Great Lakes-St. Lawrence River system in the east. These abundant surface-water sources represent an ample supply of water to large users, such as the cities of Milwaukee, Wis., and Detroit, Mich. However, water stored in unconsolidated and consolidated sedimentary-rock aquifers that underlie the four States also is in abundant supply and is an economical source that can be used for nearly any purpose, usually with little or no treatment. In more than 95 percent of the four-State area, these aquifers supply water to a broad spectrum of consumers-from individual households to cities, such as St. Paul, Minn., Madison, Wis., and Lansing, Mich. These aquifers are the subject of this chapter. The geology and the hydrology of each of the principal aquifers are illustrated and discussed insofar as information was available from the literature. Hydrogeology, ground-water flow, availability and quality of water, and freshwater withdrawals from each of the aquifers are the principal subjects of discussion. Population in the four States is concentrated in the cities and is thinly dispersed in the broad agricultural areas of the States (fig. 2). Minneapolis-St. Paul, Minn., Des Moines, Iowa, Milwaukee and Madison, Wis., and Detroit and Lansing, Mich., are a few of the principal cities. Many of these cities and other large population centers represent areas of concentrated ground-water withdrawals. Precipitation is the source of all water in Segment 9. Average annual precipitation ranges from about 20 to 40 inches across the segment and generally increases from northwest to southeast (fig. 3). Precipitation is least in the northwestern part of the segment because of the orographic effect of the Rocky Mountains, which are hundreds of miles to the west. Annual precipitation in excess of 36 inches that falls south and east of Lakes Superior and Michigan (fig. 3) is a result of the prevailing westerly winds that evaporate moisture from the lakes; this moisture subsequently condenses and falls as precipitation over the land. Average annual runoff in rivers and streams (fig. 4) generally reflects average annual precipitation patterns (fig. 3). Runoff generally increases from less than 1 to more than 20 inches. Runoff also tends to be substantial downwind from Lakes Superior and Michigan. However, in no part of the segment does runoff exceed precipitation. Much of the water from precipitation is returned to the atmosphere by evapotranspiration-evaporation from the land and water surfaces, and transpiration by plants. Some of the water is stored in aquifers through ground-water recharge or is stored on the land surface in lakes, marshes, and reservoirs. Runoff represents water from precipitation that runs directly off the land surface to streams and water discharged to streams that was stored in lakes, marshes, reservoirs, or aquifers.

  13. Construction and Updating of Event Models in Auditory Event Processing

    ERIC Educational Resources Information Center

    Huff, Markus; Maurer, Annika E.; Brich, Irina; Pagenkopf, Anne; Wickelmaier, Florian; Papenmeier, Frank

    2018-01-01

    Humans segment the continuous stream of sensory information into distinct events at points of change. Between 2 events, humans perceive an event boundary. Present theories propose changes in the sensory information to trigger updating processes of the present event model. Increased encoding effort finally leads to a memory benefit at event…

  14. Sediment production from forest road surfaces.

    Treesearch

    Leslie Reid; T. Dunne

    2011-01-01

    Erosion on roads is an important source of fine-grained sediment in streams draining logged basins of the Pacific Northwest. Runoff rates and sediment concentrations from 10 road segments subject to a variety of traffic levels were monitored to produce sediment rating curves and unit hydrographs for different use levels and types of surfaces. These relationships are...

  15. Implicit Processing of Phonotactic Cues: Evidence from Electrophysiological and Vascular Responses

    ERIC Educational Resources Information Center

    Rossi, Sonja; Jurgenson, Ina B.; Hanulikova, Adriana; Telkemeyer, Silke; Wartenburger, Isabell; Obrig, Hellmuth

    2011-01-01

    Spoken word recognition is achieved via competition between activated lexical candidates that match the incoming speech input. The competition is modulated by prelexical cues that are important for segmenting the auditory speech stream into linguistic units. One such prelexical cue that listeners rely on in spoken word recognition is phonotactics.…

  16. Captions and Reduced Forms Instruction: The Impact on EFL Students' Listening Comprehension

    ERIC Educational Resources Information Center

    Yang, Jie Chi; Chang, Peichin

    2014-01-01

    For many EFL learners, listening poses a grave challenge. The difficulty in segmenting a stream of speech and limited capacity in short-term memory are common weaknesses for language learners. Specifically, reduced forms, which frequently appear in authentic informal conversations, compound the challenges in listening comprehension. Numerous…

  17. Contrasting patterns of groundwater evapotranspiration in grass and tree dominated riparian zones of a temperate agricultural catchment

    NASA Astrophysics Data System (ADS)

    Satchithanantham, Sanjayan; Wilson, Henry F.; Glenn, Aaron J.

    2017-06-01

    Consumptive use of shallow groundwater by phreatophytic vegetation is a significant part of the water budget in many regions, particularly in riparian areas. The influence of vegetation type on groundwater level fluctuations and evapotranspiration has rarely been quantified for contrasting plant communities concurrently although it has implications for downstream water yield and quality. Hourly groundwater evapotranspiration (ETG) rates were estimated for grass and tree riparian vegetation in southwestern Manitoba, Canada using two modified White methods. Groundwater table depth was monitored in four 21 m transects of five 3 m deep monitoring wells in the riparian zone of a stream reach including tree (Acer negundo; boxelder) and grass (Bromus inermis; smooth brome) dominated segments. The average depths to the groundwater table from the surface were 1.4 m and 1 m for the tree and grass segments, respectively, over the two-year study. During rain free periods of the growing season ETG was estimated for a total of 70 days in 2014 and 79 days in 2015 when diurnal fluctuations were present in groundwater level. Diurnal groundwater level fluctuations were observed during dry periods under both segments, however, ETG was significantly higher (p < 0.001) under trees compared to grass cover in 2014 (a wet year with 72% higher than normal growing season precipitation) and 2015 (a drier year with 15% higher than normal growing season precipitation). The two methods used to estimate ETG produced similar daily and seasonal values for the two segments. In 2014, total ETG was approximately 50% (148 mm) and 100% (282-285 mm) of reference evapotranspiration (ETref, 281 mm) for the grass and tree segments, respectively. In 2015, total ETG was approximately 40% (106-127 mm) and 120% (369-374 mm) of ETref (307 mm) for the grass and tree segments, respectively. Results from the study show the tree dominated portions of the stream reach consumed approximately 2.4 ML ha-1 yr-1 more groundwater than a common forage grass. These findings have land management implications for regional water budgets during wet periods when flood mitigation is desirable and dry years when water scarcity is a concern.

  18. Spatial Analysis of Large Woody Debris Arrangement in a Midwestern U.S. River System: Geomorphic Implications and Influences

    NASA Astrophysics Data System (ADS)

    Martin, D. J.

    2013-12-01

    Large woody debris (LWD) is universally recognized as a key component of the geomorphological and ecological function of fluvial systems and has been increasingly incorporated into stream restoration and watershed management projects. However, 'natural' processes of recruitment and the subsequent arrangement of LWD within the river network are poorly understood and are thus, rarely a management consideration. Additionally, LWD research tends to be regionally biased toward mountainous regions, and scale biased toward the micro-scale. In many locations, the lack of understanding has led to the failure of restoration/rehabilitation projects that involved the use of LWD. This research uses geographic information systems and spatial analysis techniques to investigate longitudinal arrangement patterns of LWD in a low-gradient, Midwestern river. A large-scale GPS inventory of LWD was performed on the Big River, located in the eastern Missouri Ozarks resulting in over 5,000 logged positions of LWD along seven river segments covering nearly 100 km of the 237 km river system. A time series analysis framework was used to statistically identify longitudinal spatial patterns of LWD arrangement along the main stem of the river, and correlation analyses were performed to help identify physical controls of those patterns. Results indicate that upstream segments have slightly lower densities than downstream segments, with the exception of the farthest upstream segment. Results also show lack of an overall longitudinal trend in LWD density; however, periodogram analysis revealed an inherent periodicity in LWD arrangement. Periodicities were most evident in the downstream segments with frequencies ranging from 3 km to 7 km. Additionally, Pearson correlation analysis, performed within the segment displaying the strongest periodic behavior, show that LWD densities are correlated with channel sinuosity (r=0.25). Ongoing research is investigating further relationships between arrangement patterns and geomorphic and riparian variables. Understanding these spatial patterns and relationships will provide valuable insight into the application of LWD-related stream and watershed management practices, and fill a necessary regional knowledge gap in our understanding of LWD's role in fluvial processes.

  19. Estimation of monthly water yields and flows for 1951-2012 for the United States portion of the Great Lakes Basin with AFINCH

    USGS Publications Warehouse

    Luukkonen, Carol L.; Holtschlag, David J.; Reeves, Howard W.; Hoard, Christopher J.; Fuller, Lori M.

    2015-01-01

    Monthly water yields from 105,829 catchments and corresponding flows in 107,691 stream segments were estimated for water years 1951–2012 in the Great Lakes Basin in the United States. Both sets of estimates were computed by using the Analysis of Flows In Networks of CHannels (AFINCH) application within the NHDPlus geospatial data framework. AFINCH provides an environment to develop constrained regression models to integrate monthly streamflow and water-use data with monthly climatic data and fixed basin characteristics data available within NHDPlus or supplied by the user. For this study, the U.S. Great Lakes Basin was partitioned into seven study areas by grouping selected hydrologic subregions and adjoining cataloguing units. This report documents the regression models and data used to estimate monthly water yields and flows in each study area. Estimates of monthly water yields and flows are presented in a Web-based mapper application. Monthly flow time series for individual stream segments can be retrieved from the Web application and used to approximate monthly flow-duration characteristics and to identify possible trends.

  20. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance; Grocery Stores (Revised) (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendron, B.

    2013-07-01

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders successfully plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited in these guides. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. Grocery stores were selected as one of the highest priority sectors, because they represent one of the most energy-intensive marketmore » segments.« less

  1. The potential environmental impact of waste from cellulosic ethanol production.

    PubMed

    Menetrez, Marc Y

    2010-02-01

    The increasing production of ethanol has been established as an important contributor to future energy independence. Although ethanol demand is increasing, a growing economic trend in decreased profitability and resource conflicts have called into question the future of grain-based ethanol production. Growing emphasis is being placed on utilizing cellulosic feedstocks to produce ethanol, and the need for renewable resources has made the development of cellulosic ethanol a national priority. Cellulosic ethanol production plants are being built in many areas of the United States to evaluate various feedstocks and processes. The waste streams from many varying processes that are being developed contain a variety of components. Differences in ethanol generation processes and feedstocks are producing waste streams unique to biofuel production, which could be potentially harmful to the environment if adequate care is not taken to manage those risks. Waste stream management and utilization of the cellulosic ethanol process are equally important components of the development of this industry.

  2. Riparian and Associated Habitat Characteristics Related to Nutrient Concentrations and Biological Responses of Small Streams in Selected Agricultural Areas, United States, 2003-04

    USGS Publications Warehouse

    Zelt, Ronald B.; Munn, Mark D.

    2009-01-01

    Physical factors, including both in-stream and riparian habitat characteristics that limit biomass or otherwise regulate aquatic biological condition, have been identified by previous studies. However, linking the ecological significance of nutrient enrichment to habitat or landscape factors that could allow for improved management of streams has proved to be a challenge in many regions, including agricultural landscapes, where many ecological stressors are strong and the variability among watersheds typically is large. Riparian and associated habitat characteristics were sampled once during 2003-04 for an intensive ecological and nutrients study of small perennial streams in five contrasting agricultural landscapes across the United States to determine how biological communities and ecosystem processes respond to varying levels of nutrient enrichment. Nutrient concentrations were determined in stream water at two different sampling times per site and biological samples were collected once per site near the time of habitat characterization. Data for 141 sampling sites were compiled, representing five study areas, located in parts of the Delmarva Peninsula (Delaware and Maryland), Georgia, Indiana, Ohio, Nebraska, and Washington. This report examines the available data for riparian and associated habitat characteristics to address questions related to study-unit contrasts, spatial scale-related differences, multivariate correlation structure, and bivariate relations between selected habitat characteristics and either stream nutrient conditions or biological responses. Riparian and associated habitat characteristics were summarized and categorized into 22 groups of habitat variables, with 11 groups representing land-use and land-cover characteristics and 11 groups representing other riparian or in-stream habitat characteristics. Principal components analysis was used to identify a reduced set of habitat variables that describe most of the variability among the sampled sites. The habitat characteristics sampled within the five study units were compared statistically. Bivariate correlations between riparian habitat variables and either nutrient-chemistry or biological-response variables were examined for all sites combined, and for sites within each study area. Nutrient concentrations were correlated with the extent of riparian cropland. For nitrogen species, these correlations were more frequently at the basin scale, whereas for phosphorus, they were about equally frequent at the segment and basin scales. Basin-level extents of riparian cropland and reach-level bank vegetative cover were correlated strongly with both total nitrogen and dissolved inorganic nitrogen (DIN) among multiple study areas, reflecting the importance of agricultural land-management and conservation practices for reducing nitrogen delivery from near-stream sources. When sites lacking segment-level wetlands were excluded, the negative correlation of riparian wetland extent with DIN among 49 sites was strong at the reach and segment levels. Riparian wetland vegetation thus may be removing dissolved nutrients from soil water and shallow groundwater passing through riparian zones. Other habitat variables that correlated strongly with nitrogen and phosphorus species included suspended sediment, light availability, and antecedent water temperature. Chlorophyll concentrations in seston were positively correlated with phosphorus concentrations for all sites combined. Benthic chlorophyll was correlated strongly with nutrient concentrations in only the Delmarva study area and only in fine-grained habitats. Current velocity or hydraulic scour could explain correlation patterns for benthic chlorophyll among Georgia sites, whereas chlorophyll in seston was correlated with antecedent water temperature among Washington and Delmarva sites. The lack of any consistent correlation pattern between habitat characteristics and organic material density (ash-free dry mass)

  3. Vesselness propagation: a fast interactive vessel segmentation method

    NASA Astrophysics Data System (ADS)

    Cai, Wenli; Dachille, Frank; Harris, Gordon J.; Yoshida, Hiroyuki

    2006-03-01

    With the rapid development of multi-detector computed tomography (MDCT), resulting in increasing temporal and spatial resolution of data sets, clinical use of computed tomographic angiography (CTA) is rapidly increasing. Analysis of vascular structures is much needed in CTA images; however, the basis of the analysis, vessel segmentation, can still be a challenging problem. In this paper, we present a fast interactive method for CTA vessel segmentation, called vesselness propagation. This method is a two-step procedure, with a pre-processing step and an interactive step. During the pre-processing step, a vesselness volume is computed by application of a CTA transfer function followed by a multi-scale Hessian filtering. At the interactive stage, the propagation is controlled interactively in terms of the priority of the vesselness. This method was used successfully in many CTA applications such as the carotid artery, coronary artery, and peripheral arteries. It takes less than one minute for a user to segment the entire vascular structure. Thus, the proposed method provides an effective way of obtaining an overview of vascular structures.

  4. Analytical Results for Municipal Biosolids Samples from a Monitoring Program Near Deer Trail, Colorado (U.S.A.), 2008

    USGS Publications Warehouse

    Crock, J.G.; Smith, D.B.; Yager, T.J.B.; Berry, C.J.; Adams, M.G.

    2009-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colo., has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colo. (U.S.A.). In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring groundwater at part of this site. In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program has recently been extended through 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream-bed sediment. Streams at the site are dry most of the year, so samples of stream-bed sediment deposited after rain were used to indicate surface-water effects. This report will present only analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed during 2008. Crock and others have presented earlier a compilation of analytical results for the biosolids samples collected and analyzed for 1999 thru 2006, and in a separate report, data for the 2007 biosolids are reported. More information about the other monitoring components is presented elsewhere in the literature. Priority parameters for biosolids identified by the stakeholders and also regulated by Colorado when used as an agricultural soil amendment include the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross alpha and beta activity. Nitrogen and chromium also were priority parameters for groundwater and sediment components.

  5. Rotenone persistence model for montane streams

    USGS Publications Warehouse

    Brown, Peter J.; Zale, Alexander V.

    2012-01-01

    The efficient and effective use of rotenone is hindered by its unknown persistence in streams. Environmental conditions degrade rotenone, but current label instructions suggest fortifying the chemical along a stream based on linear distance or travel time rather than environmental conditions. Our objective was to develop models that use measurements of environmental conditions to predict rotenone persistence in streams. Detailed measurements of ultraviolet radiation, water temperature, dissolved oxygen, total dissolved solids (TDS), conductivity, pH, oxidation–reduction potential (ORP), substrate composition, amount of organic matter, channel slope, and travel time were made along stream segments located between rotenone treatment stations and cages containing bioassay fish in six streams. The amount of fine organic matter, biofilm, sand, gravel, cobble, rubble, small boulders, slope, pH, TDS, ORP, light reaching the stream, energy dissipated, discharge, and cumulative travel time were each significantly correlated with fish death. By using logistic regression, measurements of environmental conditions were paired with the responses of bioassay fish to develop a model that predicted the persistence of rotenone toxicity in streams. This model was validated with data from two additional stream treatment reaches. Rotenone persistence was predicted by a model that used travel time, rubble, and ORP. When this model predicts a probability of less than 0.95, those who apply rotenone can expect incomplete eradication and should plan on fortifying rotenone concentrations. The significance of travel time has been previously identified and is currently used to predict rotenone persistence. However, rubble substrate, which may be associated with the degradation of rotenone by adsorption and volatilization in turbulent environments, was not previously considered.

  6. Coexistence of two freshwater turtle species along a Mediterranean stream: The role of spatial and temporal heterogeneity

    NASA Astrophysics Data System (ADS)

    Segurado, Pedro; Figueiredo, Diogo

    2007-09-01

    In the Iberian Peninsula the European pond turtle ( Emys orbicularis) and the Mediterranean pond turtle ( Mauremys leprosa) share many freshwater habitats, in particular Mediterranean streams. Whether and how these two species divide space within those habitats is poorly known in part due to the very low abundance of E. orbicularis at most syntopic sites. The spatial coexistence of these two species was studied along a 1.3 km reach of a typical Mediterranean stream based on data from trapping sessions and basking counts. The effect of the hydrological regime on differences in space use between species was also assessed. Spatial associations between species and between each species and microhabitat descriptors were estimated using a permutation procedure to account for spatial autocorrelation. Differences in the use of space were also estimated using a resample technique to account for the small sample sizes of E. orbicularis. Results indicate that E. orbicularis shows a preference for temporary, shallow, well vegetated and sandy reaches, while M. leprosa is less selective regarding microhabitat. Differences between E. orbicularis and juveniles of M. leprosa were less obvious. The high spatial heterogeneity of Mediterranean streams may be responsible for the persistence of viable populations of E. orbicularis as well as favouring the coexistence of the two turtle species. Therefore, stream habitat management and conservation plans for E. orbicularis should give priority to the maintenance of high levels of heterogeneity along Mediterranean streams.

  7. Prioritized LT Codes

    NASA Technical Reports Server (NTRS)

    Woo, Simon S.; Cheng, Michael K.

    2011-01-01

    The original Luby Transform (LT) coding scheme is extended to account for data transmissions where some information symbols in a message block are more important than others. Prioritized LT codes provide unequal error protection (UEP) of data on an erasure channel by modifying the original LT encoder. The prioritized algorithm improves high-priority data protection without penalizing low-priority data recovery. Moreover, low-latency decoding is also obtained for high-priority data due to fast encoding. Prioritized LT codes only require a slight change in the original encoding algorithm, and no changes at all at the decoder. Hence, with a small complexity increase in the LT encoder, an improved UEP and low-decoding latency performance for high-priority data can be achieved. LT encoding partitions a data stream into fixed-sized message blocks each with a constant number of information symbols. To generate a code symbol from the information symbols in a message, the Robust-Soliton probability distribution is first applied in order to determine the number of information symbols to be used to compute the code symbol. Then, the specific information symbols are chosen uniform randomly from the message block. Finally, the selected information symbols are XORed to form the code symbol. The Prioritized LT code construction includes an additional restriction that code symbols formed by a relatively small number of XORed information symbols select some of these information symbols from the pool of high-priority data. Once high-priority data are fully covered, encoding continues with the conventional LT approach where code symbols are generated by selecting information symbols from the entire message block including all different priorities. Therefore, if code symbols derived from high-priority data experience an unusual high number of erasures, Prioritized LT codes can still reliably recover both high- and low-priority data. This hybrid approach decides not only "how to encode" but also "what to encode" to achieve UEP. Another advantage of the priority encoding process is that the majority of high-priority data can be decoded sooner since only a small number of code symbols are required to reconstruct high-priority data. This approach increases the likelihood that high-priority data is decoded first over low-priority data. The Prioritized LT code scheme achieves an improvement in high-priority data decoding performance as well as overall information recovery without penalizing the decoding of low-priority data, assuming high-priority data is no more than half of a message block. The cost is in the additional complexity required in the encoder. If extra computation resource is available at the transmitter, image, voice, and video transmission quality in terrestrial and space communications can benefit from accurate use of redundancy in protecting data with varying priorities.

  8. Integration of fluvial erosion factors for predicting landslides along meandering rivers

    NASA Astrophysics Data System (ADS)

    Chen, Yi-chin; Chang, Kang-tsung; Ho, Jui-yi

    2015-04-01

    River incision and lateral erosion are important geomorphologic processes in mountainous areas of Taiwan. During a typhoon or storm event, the increase of water discharge, flow velocity, and sediment discharge enhances the power of river erosion on channel bank. After the materials on toe of hillslope were removed by river erosion, landslides were triggered at outer meander bends. Although it has been long expected that river erosion can trigger landslide, studies quantifying the effects of river erosion on landslide and the application of river erosion index in landslide prediction are still overlooked. In this study, we investigated the effect of river erosion on landslide in a particular meanders landscape of the Jhoukou River, southern Taiwan. We developed a semi-automatic model to separate meandering lines into several reach segments based on the inflection points and to calculate river erosion indexes, e.g. sinuosity of meander, stream power, and stream order, for each reach segment. This model, then, built the spatial relationship between the reaches and its corresponding hillslopes, of which the toe was eroded by the reach. Based on the spatial relationship, we quantified the correlations between these indexes and landslides triggered by Typhoon Morakot in 2009 to examine the effects of river erosion on landslide. The correlated indexes were then used as landslide predictors in logistic regression model. Results of the study showed that there is no significant correlation between landslide density and meander sinuosity. This may be a result of wider channel dispersing the erosion at a meandering reach. On the other hand, landslide density at concave bank is significantly higher than that at convex bank in the downstream (stream order > 3), but that is almost the same in the upstream (stream order < 3). This may imply that river sediment play different roles between down- and upstream segments. River sediment in the upstream is an erosion agent vertically scouring the river bed, resulting in a symmetrical effect on both concave and convex bank. In contrast, river sediment in the downstream is an erosion agent eroding the concave bank laterally, but also depositing on the concave side and protecting the bank from erosion. Finally, the results also showed that the integration of fluvial erosion factors can improve the performance in predicting landsliding along meandering rivers.

  9. A model for evaluating stream temperature response to climate change scenarios in Wisconsin

    USGS Publications Warehouse

    Westenbroek, Stephen M.; Stewart, Jana S.; Buchwald, Cheryl A.; Mitro, Matthew G.; Lyons, John D.; Greb, Steven

    2010-01-01

    Global climate change is expected to alter temperature and flow regimes for streams in Wisconsin over the coming decades. Stream temperature will be influenced not only by the predicted increases in average air temperature, but also by changes in baseflow due to changes in precipitation patterns and amounts. In order to evaluate future stream temperature and flow regimes in Wisconsin, we have integrated two existing models in order to generate a water temperature time series at a regional scale for thousands of stream reaches where site-specific temperature observations do not exist. The approach uses the US Geological Survey (USGS) Soil-Water-Balance (SWB) model, along with a recalibrated version of an existing artificial neural network (ANN) stream temperature model. The ANN model simulates stream temperatures on the basis of landscape variables such as land use and soil type, and also includes climate variables such as air temperature and precipitation amounts. The existing ANN model includes a landscape variable called DARCY designed to reflect the potential for groundwater recharge in the contributing area for a stream segment. SWB tracks soil-moisture and potential recharge at a daily time step, providing a way to link changing climate patterns and precipitation amounts over time to baseflow volumes, and presumably to stream temperatures. The recalibrated ANN incorporates SWB-derived estimates of potential recharge to supplement the static estimates of groundwater flow potential derived from a topographically based model (DARCY). SWB and the recalibrated ANN will be supplied with climate drivers from a suite of general circulation models and emissions scenarios, enabling resource managers to evaluate possible changes in stream temperature regimes for Wisconsin.

  10. Downstream Warming and Headwater Acidity May Diminish Coldwater Habitat in Southern Appalachian Mountain Streams.

    PubMed

    McDonnell, T C; Sloat, M R; Sullivan, T J; Dolloff, C A; Hessburg, P F; Povak, N A; Jackson, W A; Sams, C

    2015-01-01

    Stream-dwelling species in the U.S. southern Appalachian Mountains region are particularly vulnerable to climate change and acidification. The objectives of this study were to quantify the spatial extent of contemporary suitable habitat for acid- and thermally sensitive aquatic species and to forecast future habitat loss resulting from expected temperature increases on national forest lands in the southern Appalachian Mountain region. The goal of this study was to help watershed managers identify and assess stream reaches that are potentially vulnerable to warming, acidification, or both. To our knowledge, these results represent the first regional assessment of aquatic habitat suitability with respect to the combined effects of stream water temperature and acid-base status in the United States. Statistical models were developed to predict July mean daily maximum water temperatures and air-water temperature relations to determine potential changes in future stream water temperatures. The length of stream considered suitable habitat for acid- and thermally sensitive species, based on temperature and acid neutralizing capacity thresholds of 20°C and 50 μeq/L, was variable throughout the national forests considered. Stream length displaying temperature above 20°C was generally more than five times greater than the length predicted to have acid neutralizing capacity below 50 μeq/L. It was uncommon for these two stressors to occur within the same stream segment. Results suggested that species' distributional shifts to colder, higher elevation habitats under a warming climate can be constrained by acidification of headwater streams. The approach used in this study can be applied to evaluate climate change impacts to stream water resources in other regions.

  11. Downstream Warming and Headwater Acidity May Diminish Coldwater Habitat in Southern Appalachian Mountain Streams

    PubMed Central

    Jackson, W. A; Sams, C.

    2015-01-01

    Stream-dwelling species in the U.S. southern Appalachian Mountains region are particularly vulnerable to climate change and acidification. The objectives of this study were to quantify the spatial extent of contemporary suitable habitat for acid- and thermally sensitive aquatic species and to forecast future habitat loss resulting from expected temperature increases on national forest lands in the southern Appalachian Mountain region. The goal of this study was to help watershed managers identify and assess stream reaches that are potentially vulnerable to warming, acidification, or both. To our knowledge, these results represent the first regional assessment of aquatic habitat suitability with respect to the combined effects of stream water temperature and acid-base status in the United States. Statistical models were developed to predict July mean daily maximum water temperatures and air-water temperature relations to determine potential changes in future stream water temperatures. The length of stream considered suitable habitat for acid- and thermally sensitive species, based on temperature and acid neutralizing capacity thresholds of 20°C and 50 μeq/L, was variable throughout the national forests considered. Stream length displaying temperature above 20°C was generally more than five times greater than the length predicted to have acid neutralizing capacity below 50 μeq/L. It was uncommon for these two stressors to occur within the same stream segment. Results suggested that species’ distributional shifts to colder, higher elevation habitats under a warming climate can be constrained by acidification of headwater streams. The approach used in this study can be applied to evaluate climate change impacts to stream water resources in other regions. PMID:26247361

  12. Climate and Anthropogenic Change in Aquatic Environments: A Cross Ecosystem Perspective

    DTIC Science & Technology

    2010-01-01

    1009.1004]. Kleypas, J. A., R. A. Feely, V. J. Fabry, C. Langdon, C. L. Sabine, and L. L. Robbins. 2006. Impacts of ocean acidification on coral reefs ...deep sea, coastal oceans , and rocky intertidal) researchers ranked climate-related impacts (i.e., temperature and ocean acidification ) as the highest...related impacts (i.e., temperature and ocean acidification ) as the highest priority threats whereas estuarine, marsh, wetland, stream, and lake

  13. Do Newly Formed Word Representations Encode Non-Criterial Information?

    ERIC Educational Resources Information Center

    Curtin, Suzanne

    2011-01-01

    Lexical stress is useful for a number of language learning tasks. In particular, it helps infants segment the speech stream and identify phonetic contrasts. Recent work has demonstrated that infants aged 1 ; 0 can learn two novel words differing only in their stress pattern. In the current study, we ask whether infants aged 1 ; 0 store stress…

  14. WEPP FuME Analysis for a North Idaho Site

    Treesearch

    William Elliot; Ina Sue Miller; David Hall

    2007-01-01

    A computer interface has been developed to assist with analyzing soil erosion rates associated with fuel management activities. This interface uses the Water Erosion Prediction Project (WEPP) model to predict sediment yields from hillslopes and road segments to the stream network. The simple interface has a large database of climates, vegetation files and forest soil...

  15. Woodcock Bog Research Natural Area: guidebook supplement 40

    Treesearch

    Reid Schuller; Susan J. Fritts; Mark Mousseaux

    2010-01-01

    This guidebook describes Woodcock Bog Research Natural Area (RNA), a 114-ha (281-ac) area located within the Klamath-Siskiyou ecoregion in southwestern Oregon. The RNA includes a hanging fen and stream segment on ultramafic rock and derived soils. Numerous plant species occur within the fens that are endemic to the Klamath-Siskiyou Mountains of southwestern Oregon and...

  16. The stream segment and stream network temperature models: A self-study course

    USGS Publications Warehouse

    Bartholow, John M.

    2000-01-01

    I am pleased to have had the opportunity to revise the first version of this set of course notes for the stream temperature models. In some ways, there have been many changes and in some ways the notes have stayed much the same. Generally, I was satisfied that the notes were both comprehensive and fairly easy to read. The exercises using SSTEMP have been upgraded to reflect advances in the software. Some additional material was added to better cover contemporary thremistors, and some, but not all, weak transitions and incomplete sentences have been corrected. A comprehensive index was added in an attempt to make these notes as useful as possible, and a few telling quotes have been added for spice. The goal has been to make this set of notes as stand-alone as possible and keep the file size down to something that is easily downloadable over the Internet today (March 2000).

  17. Learning Across Senses: Cross-Modal Effects in Multisensory Statistical Learning

    PubMed Central

    Mitchel, Aaron D.; Weiss, Daniel J.

    2014-01-01

    It is currently unknown whether statistical learning is supported by modality-general or modality-specific mechanisms. One issue within this debate concerns the independence of learning in one modality from learning in other modalities. In the present study, the authors examined the extent to which statistical learning across modalities is independent by simultaneously presenting learners with auditory and visual streams. After establishing baseline rates of learning for each stream independently, they systematically varied the amount of audiovisual correspondence across 3 experiments. They found that learners were able to segment both streams successfully only when the boundaries of the audio and visual triplets were in alignment. This pattern of results suggests that learners are able to extract multiple statistical regularities across modalities provided that there is some degree of cross-modal coherence. They discuss the implications of their results in light of recent claims that multisensory statistical learning is guided by modality-independent mechanisms. PMID:21574745

  18. Characterizing outcome preferences in patients with psychotic disorders: a discrete choice conjoint experiment.

    PubMed

    Zipursky, Robert B; Cunningham, Charles E; Stewart, Bailey; Rimas, Heather; Cole, Emily; Vaz, Stephanie McDermid

    2017-07-01

    The majority of individuals with schizophrenia will achieve a remission of psychotic symptoms, but few will meet criteria for recovery. Little is known about what outcomes are important to patients. We carried out a discrete choice experiment to characterize the outcome preferences of patients with psychotic disorders. Participants (N=300) were recruited from two clinics specializing in psychotic disorders. Twelve outcomes were each defined at three levels and incorporated into a computerized survey with 15 choice tasks. Utility values and importance scores were calculated for each outcome level. Latent class analysis was carried out to determine whether participants were distributed into segments with different preferences. Multinomial logistic regression was used to identify predictors of segment membership. Latent class analysis revealed three segments of respondents. The first segment (48%), which we labeled "Achievement-focused," preferred to have a full-time job, to live independently, to be in a long-term relationship, and to have no psychotic symptoms. The second segment (29%), labeled "Stability-focused," preferred to not have a job, to live independently, and to have some ongoing psychotic symptoms. The third segment (23%), labeled "Health-focused," preferred to not have a job, to live in supervised housing, and to have no psychotic symptoms. Segment membership was predicted by education, socioeconomic status, psychotic symptom severity, and work status. This study has revealed that patients with psychotic disorders are distributed between segments with different outcome preferences. New approaches to improve outcomes for patients with psychotic disorders should be informed by a greater understanding of patient preferences and priorities. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effects of penetrating traumatic brain injury on event segmentation and memory.

    PubMed

    Zacks, Jeffrey M; Kurby, Christopher A; Landazabal, Claudia S; Krueger, Frank; Grafman, Jordan

    2016-01-01

    Penetrating traumatic brain injury (pTBI) is associated with deficits in cognitive tasks including comprehension and memory, and also with impairments in tasks of daily living. In naturalistic settings, one important component of cognitive task performance is event segmentation, the ability to parse the ongoing stream of behavior into meaningful units. Event segmentation ability is associated with memory performance and with action control, but is not well assessed by standard neuropsychological assessments or laboratory tasks. Here, we measured event segmentation and memory in a sample of 123 male military veterans aged 59-81 who had suffered a traumatic brain injury as young men, and 34 demographically similar controls. Participants watched movies of everyday activities and segmented them to identify fine-grained or coarse-grained events, and then completed tests of recognition memory for pictures from the movies and of memory for the temporal order of actions in the movies. Lesion location and volume were assessed with computed tomography (CT) imaging. Patients with traumatic brain injury were impaired on event segmentation. Those with larger lesions had larger impairments for fine segmentation and also impairments for both memory measures. Further, the degree of memory impairment was statistically mediated by the degree of event segmentation impairment. There was some evidence that lesions to the ventromedial prefrontal cortex (vmPFC) selectively impaired coarse segmentation; however, lesions outside of a priori regions of interest also were associated with impaired segmentation. One possibility is that the effect of vmPFC damage reflects the role of prefrontal event knowledge representations in ongoing comprehension. These results suggest that assessment of naturalistic event comprehension can be a valuable component of cognitive assessment in cases of traumatic brain injury, and that interventions aimed at event segmentation could be clinically helpful. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Youth Attitude Tracking Study II, Fall 1983.

    DTIC Science & Technology

    1983-01-01

    one - group pretest - posttest design." In this, though a . "before" group of the same individuals is introduced...there is no control group that is not exposed to the event. S Both the one -shot case study and the one - group pretest - posttest design are subject to a...segmentation analysis -A identified five Recruiting Priority Groups on the basis of educational status and average grades earned in high school.

  1. A computational model of the human visual cortex

    NASA Astrophysics Data System (ADS)

    Albus, James S.

    2008-04-01

    The brain is first and foremost a control system that is capable of building an internal representation of the external world, and using this representation to make decisions, set goals and priorities, formulate plans, and control behavior with intent to achieve its goals. The computational model proposed here assumes that this internal representation resides in arrays of cortical columns. More specifically, it models each cortical hypercolumn together with its underlying thalamic nuclei as a Fundamental Computational Unit (FCU) consisting of a frame-like data structure (containing attributes and pointers) plus the computational processes and mechanisms required to maintain it. In sensory-processing areas of the brain, FCUs enable segmentation, grouping, and classification. Pointers stored in FCU frames link pixels and signals to objects and events in situations and episodes that are overlaid with meaning and emotional values. In behavior-generating areas of the brain, FCUs make decisions, set goals and priorities, generate plans, and control behavior. Pointers are used to define rules, grammars, procedures, plans, and behaviors. It is suggested that it may be possible to reverse engineer the human brain at the FCU level of fidelity using nextgeneration massively parallel computer hardware and software. Key Words: computational modeling, human cortex, brain modeling, reverse engineering the brain, image processing, perception, segmentation, knowledge representation

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoiber, Marcus H.; Brown, James B.

    This software implements the first base caller for nanopore data that calls bases directly from raw data. The basecRAWller algorithm has two major advantages over current nanopore base calling software: (1) streaming base calling and (2) base calling from information rich raw signal. The ability to perform truly streaming base calling as signal is received from the sequencer can be very powerful as this is one of the major advantages of this technology as compared to other sequencing technologies. As such enabling as much streaming potential as possible will be incredibly important as this technology continues to become more widelymore » applied in biosciences. All other base callers currently employ the Viterbi algorithm which requires the whole sequence to employ the complete base calling procedure and thus precludes a natural streaming base calling procedure. The other major advantage of the basecRAWller algorithm is the prediction of bases from raw signal which contains much richer information than the segmented chunks that current algorithms employ. This leads to the potential for much more accurate base calls which would make this technology much more valuable to all of the growing user base for this technology.« less

  3. Verification of roughness coefficients for selected natural and constructed stream channels in Arizona

    USGS Publications Warehouse

    Phillips, Jeff V.; Ingersoll, Todd L.

    1998-01-01

    Physical and hydraulic characteristics are presented for 14 river and canal reaches in Arizona for which 37 roughness coefficients have been determined. The verified roughness coefficients which ranged from 0.017 to 0.067, were computed from discharges, channel geometry, and water-surface profiles measured at each of the sites. The information given for each stream segment includes bed and bank descriptions, data tables showing hydraulic components, a plan view, cross-section plots, and color photographs that can be used as a comparison aid in determining roughness coefficients for similarly channeled streams. Relations derived from the data presented relate Manning's roughness coefficient (n) to various hydraulic components. For gravel-bed streams, verified roughness coefficients are related to median grain size of the bed material and hydraulic radius resulting in an equation that can be used to transfer results to similar dry-land channels. The equation developed for base values of n for gravel-bed channels in Arizona is significantly different from similarly derived equations for other regions of the United States and the world.

  4. Audio-video feature correlation: faces and speech

    NASA Astrophysics Data System (ADS)

    Durand, Gwenael; Montacie, Claude; Caraty, Marie-Jose; Faudemay, Pascal

    1999-08-01

    This paper presents a study of the correlation of features automatically extracted from the audio stream and the video stream of audiovisual documents. In particular, we were interested in finding out whether speech analysis tools could be combined with face detection methods, and to what extend they should be combined. A generic audio signal partitioning algorithm as first used to detect Silence/Noise/Music/Speech segments in a full length movie. A generic object detection method was applied to the keyframes extracted from the movie in order to detect the presence or absence of faces. The correlation between the presence of a face in the keyframes and of the corresponding voice in the audio stream was studied. A third stream, which is the script of the movie, is warped on the speech channel in order to automatically label faces appearing in the keyframes with the name of the corresponding character. We naturally found that extracted audio and video features were related in many cases, and that significant benefits can be obtained from the joint use of audio and video analysis methods.

  5. Inferring segmented dense motion layers using 5D tensor voting.

    PubMed

    Min, Changki; Medioni, Gérard

    2008-09-01

    We present a novel local spatiotemporal approach to produce motion segmentation and dense temporal trajectories from an image sequence. A common representation of image sequences is a 3D spatiotemporal volume, (x,y,t), and its corresponding mathematical formalism is the fiber bundle. However, directly enforcing the spatiotemporal smoothness constraint is difficult in the fiber bundle representation. Thus, we convert the representation into a new 5D space (x,y,t,vx,vy) with an additional velocity domain, where each moving object produces a separate 3D smooth layer. The smoothness constraint is now enforced by extracting 3D layers using the tensor voting framework in a single step that solves both correspondence and segmentation simultaneously. Motion segmentation is achieved by identifying those layers, and the dense temporal trajectories are obtained by converting the layers back into the fiber bundle representation. We proceed to address three applications (tracking, mosaic, and 3D reconstruction) that are hard to solve from the video stream directly because of the segmentation and dense matching steps, but become straightforward with our framework. The approach does not make restrictive assumptions about the observed scene or camera motion and is therefore generally applicable. We present results on a number of data sets.

  6. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface.

  7. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface. Copyright 2009 by the American Geophysical Union.

  8. Surficial geologic map of the greater Omaha area, Nebraska and Iowa

    USGS Publications Warehouse

    Shroba, R.R.; Brandt, T.R.; Blossom, J.C.

    2001-01-01

    Geologic mapping, in support of the USGS Omaha-Kansas City Geologic Mapping Project, shows the spatial distribution of artificial-fill, alluvial, eolian, and glacial deposits and bedrock in and near Omaha, Nebraska. Artificial fill deposits are mapped chiefly beneath commercial structures, segments of interstate highways and other major highways, railroad tracks, airport runways, and military facilities, and in landfills and earth fills. Alluvial deposits are mapped beneath flood plains, in stream terraces, and on hill slopes. They include flood-plain and stream-channel alluvium, sheetwash alluvium, and undivided sheetwash alluvium and stream alluvium. Wind-deposited loess forms sheets that mantle inter-stream areas and late Wisconsin terrace alluvium. Peoria Loess is younger of the two loess sheets and covers much of the inter-stream area in the map area. Loveland Loess is older and is exposed in a few small areas in the eastern part of the map area. Glacial deposits are chiefly heterogeneous, ice-deposited, clayey material (till) and minor interstratified stream-deposited sand and gravel. Except for small outcrops, glacial deposits are covered by eolian and alluvial deposits throughout most of the map area. Bedrock is locally exposed in natural exposures along the major streams and in quarries. It consists of Dakota Sandstone and chiefly limestone and shale of the Lansing and Kansas City Groups. Sand and gravel in flood plain and stream-channel alluvium in the Platte River valley are used mainly for concrete aggregate. Limestone of the Lansing and Kansas City Groups is used for road-surfacing material, rip rap, and fill material.

  9. Stream gradient Hotspot and Cluster Analysis (SL-HCA) for improving the longitudinal profiles metrics

    NASA Astrophysics Data System (ADS)

    Troiani, Francesco; Piacentini, Daniela; Seta Marta, Della

    2016-04-01

    Many researches successfully focused on stream longitudinal profiles analysis through Stream Length-gradient (SL) index for detecting, at different spatial scales, either tectonic structures or hillslope processes. The analysis and interpretation of spatial variability of SL values, both at a regional and local scale, is often complicated due to the concomitance of different factors generating SL anomalies, including the bedrock composition. The creation of lithologically-filtered SL maps is often problematic in areas where homogeneously surveyed geological maps, with a sufficient resolution are unavailable. Moreover, both the SL map classification and the unbiased anomaly detection are rather difficult. For instance, which is the best threshold to define the anomalous SL values? Further, is there a minimum along-channel extent of anomalous SL values for objectively defining over-steeped segments on long-profiles? This research investigates the relevance and potential of a new approach based on Hotspot and Cluster Analysis of SL values (SL-HCA) for detecting knickzones on long-profiles at a regional scale and for fine-tuning the interpretation of their geological-geomorphological meaning. We developed this procedure within a 2800 km2-wide area located in the mountainous sector of the Northern Apennines of Italy. The Getis-Ord Gi∗ statistic is applied for the SL-HCA approach. The value of SL, calculated starting from a 5x5 m Digital Elevation Model, is used as weighting factor and the Gi∗ index is calculated for each 50 m-long channel segment for the whole fluvial system. The outcomes indicate that high positive Gi∗ values imply the clustering of SL anomalies, thus the occurrence of knickzones on the stream long-profiles. Results show that high and very high Gi* values (i.e. values beyond two standard deviations from the mean) correlate well with the principal knickzones detected with existent lithologically-filtered SL maps. Field checks and remote sensing analysis conducted on 52 clusters of high and very high Gi* values indicate that mass movement of slope material represents the dominant process producing over-steeped long-profiles along connected streams, whereas the litho-structure accounts for the main anomalies along disconnected steams. Tectonic structures generally provide to the largest clusters. Our results demonstrate that SL-HCA maps have the same potential of lithologically-filtered SL maps for detecting knickzones due to hillslope processes and/or tectonic structures. The reduced-complexity model derived from SL-HCA approach highly improve the readability of the morphometric outcomes, thus the interpretation at a regional scale of the geological-geomorphological meaning of over-steeped segments on long-profiles. SL-HCA maps are useful to investigate and better interpret knickzones within regions poorly covered by geological data and where field surveys are difficult to be performed.

  10. The use of a Stream Visual Assessment Protocol to determine ecosystem integrity in an urban watershed in Puerto Rico

    NASA Astrophysics Data System (ADS)

    de Jesús-Crespo, Rebeca; Ramirez, Alonso

    The growing need to protect stream ecosystems in Puerto Rico requires the development of monitoring procedures that help determine management priorities. Physical habitat assessments have been used to make quick evaluations that are cost efficient and easy conduct, yet they need to be studied further to understand their accuracy at predicting stream health. This study evaluated the efficiency of the Hawaii Stream Visual Assessment Protocol (HSVAP) at determining integrity of streams within the highly urbanized Rio Piedras watershed in Puerto Rico. To validate the protocol we compared results from HSVAP assessments conducted at 16 reaches with water quality and macroinvertebrate data collected at the same sites. Results from linear regressions between the water quality measures and HSVAP scores showed that there was no significant relationships ( R2 = 0.48; p = 0.08). This implies that the protocol is not supported by the water quality data. However, results from regressions between macroinvertebrate diversity and the number of families per site showed a significant positive relation with HSVAP scores ( R2 = 0.30; p = 0.02; R2 = 0.24; p = 0.05). In addition, a significant negative relation was observed between HSVAP scores and the Family Biotic Index (FBI) ( R2 = 0.32; p = 0.02). Comparisons between ratings obtained from the FBI and HSVAP scores suggest that the HSVAP classified sites as having higher quality than the biological metric. Based on these results, it can be concluded that the HSVAP is a good tool for a general assessment of the physical characteristics of a stream, but it needs modifications to accurately assess ecological quality of streams in Puerto Rico.

  11. Structure, transport, and vertical coherence of the Gulf Stream from the Straits of Florida to the Southeast Newfoundland Ridge

    NASA Astrophysics Data System (ADS)

    Meinen, Christopher S.; Luther, Douglas S.

    2016-06-01

    Data from three independent and extensive field programs in the Straits of Florida, the Mid-Atlantic Bight, and near the Southeast Newfoundland Ridge are reanalyzed and compared with results from other historical studies to highlight the downstream evolution of several characteristics of the Gulf Stream's mean flow and variability. The three locations represent distinct dynamical regimes: a tightly confined jet in a channel; a freely meandering jet; and a topographically controlled jet on a boundary. Despite these differing dynamical regimes, the Gulf Stream in these areas exhibits many similarities. There are also anticipated and important differences, such as the loss of the warm core of the current by 42°N and the decrease in the cross-frontal gradient of potential vorticity as the current flows northward. As the Gulf Stream evolves it undergoes major changes in transport, both in magnitude and structure. The rate of inflow up to 60°W and outflow thereafter are generally uniform, but do exhibit some remarkable short-scale variations. As the Gulf Stream flows northward the vertical coherence of the flow changes, with the Florida Current and North Atlantic Current segments of the Gulf Stream exhibiting distinct upper and deep flows that are incoherent, while in the Mid-Atlantic Bight the Gulf Stream exhibits flows in three layers each of which tends to be incoherent with the other layers at most periods. These coherence characteristics are exhibited in both Eulerian and stream coordinates. The observed lack of vertical coherence indicates that great caution must be exercised in interpreting proxies for Gulf Stream structure and flow from vertically-limited or remote observations.

  12. Structure, transport, and vertical coherence of the Gulf Stream from the Straits of Florida to the Southeast Newfoundland Ridge

    NASA Astrophysics Data System (ADS)

    Meinen, Christopher S.; Luther, Douglas S.

    2016-05-01

    Data from three independent and extensive field programs in the Straits of Florida, the Mid-Atlantic Bight, and near the Southeast Newfoundland Ridge are reanalyzed and compared with results from other historical studies to highlight the downstream evolution of several characteristics of the Gulf Stream's mean flow and variability. The three locations represent distinct dynamical regimes: a tightly confined jet in a channel; a freely meandering jet; and a topographically controlled jet on a boundary. Despite these differing dynamical regimes, the Gulf Stream in these areas exhibits many similarities. There are also anticipated and important differences, such as the loss of the warm core of the current by 42°N and the decrease in the cross-frontal gradient of potential vorticity as the current flows northward. As the Gulf Stream evolves it undergoes major changes in transport, both in magnitude and structure. The rate of inflow up to 60°W and outflow thereafter are generally uniform, but do exhibit some remarkable short-scale variations. As the Gulf Stream flows northward the vertical coherence of the flow changes, with the Florida Current and North Atlantic Current segments of the Gulf Stream exhibiting distinct upper and deep flows that are incoherent, while in the Mid-Atlantic Bight the Gulf Stream exhibits flows in three layers each of which tends to be incoherent with the other layers at most periods. These coherence characteristics are exhibited in both Eulerian and stream coordinates. The observed lack of vertical coherence indicates that great caution must be exercised in interpreting proxies for Gulf Stream structure and flow from vertically-limited or remote observations.

  13. Conservation needs of amphibians in China: a review.

    PubMed

    Xie, Feng; Lau, Michael Wai Neng; Stuart, Simon N; Chanson, Janice S; Cox, Neil A; Fischman, Debra L

    2007-04-01

    The conservation status of all the amphibians in China is analyzed, and the country is shown to be a global priority for conservation in comparison to many other countries of the world. Three Chinese regions are particularly rich in amphibian diversity: Hengduan, Nanling, and Wuyi mountains. Salamanders are more threatened than frogs and toads. Several smaller families show a high propensity to become seriously threatened: Bombinatoridae, Cryptobranchidae, Hynobiidae and Salamandridae. Like other parts of the world, stream-breeding, high-elevation forest amphibians have a much higher likelihood of being seriously threatened. Habitat loss, pollution, and over-harvesting are the most serious threats to Chinese amphibians. Over-harvesting is a less pervasive threat than habitat loss, but it is more likely to drive a species into rapid decline. Five conservation challenges are mentioned with recommendations for the highest priority research and conservation actions.

  14. Predicting nutrient responses to mitigation at catchment to national scale: the UK research platform (Invited)

    NASA Astrophysics Data System (ADS)

    Johnes, P.

    2013-12-01

    Nutrient enrichment of waters from land-based and atmospheric sources presents a significant management challenge, requiring effective stakeholder engagement and policy development, properly underpinned by robust scientific evidence. The challenge is complex, raising significant questions about the specific sources, apportionment and pathways that determine nutrient enrichment and the key priorities for effective management and policy intervention. This paper presents outputs from 4 major UK research programmes: the Defra Demonstration Test Catchments programme (DTC), the Environment Agency's Catchment Sensitive Farming monitoring and evaluation programme (CSF), Natural Resources Wales Welsh Catchment Initiative (WCI) and the NERC Environmental Virtual Observatory programme (EVOp). Funded to meet this challenge, they are delivering new understanding of the rates and sources of pollutant fluxes from land to water, their impacts on ecosystem goods and services, and likely trends under future climate and land use change from field to national scale. DTC, a 12m investment by the UK Government, has set up long-term, high resolution research platforms equipped with novel telemetered sensor networks to monitor stream ecosystem responses to on-farm mitigation measures at a representative scale for catchment management. Ecosystem structural and functional responses and bulk hydrochemistry are also being monitored using standard protocols. CSF has set up long-term, enhanced monitoring in 8 priority catchments, with monthly monitoring in a further 72 English catchments and 6 Welsh priority catchments, to identify shifts in pollutant flux to waters resulting from mitigation measures in priority areas and farming sectors. CSF and WCI have contributed to >50 million of targeted farm improvements to date, representing a significant shift in farming practice. Each programme has generated detailed evidence on stream ecosystem responses to targeted mitigation. However, to provide effective underpinning for policy the major challenge has been to upscale this knowledge beyond these data-rich systems and identify the dominant contributing areas and priorities for management intervention to control nutrient flux and ecological impacts in data-poor systems which are located downstream from existing monitoring infrastructure or are in unmonitored catchments in remote locations. EVOp has directly addressed this challenge, developing a cloud computing enabled National Biogeochemical Modelling Framework to support ensemble modelling, knowledge capture and transfer from DTC, CSF, WCI and data-rich research catchments. This platform provides opportunities for further development of national biogeochemical modelling capability, allowing upscaled predictions from plot to catchment and national scale, enabling knowledge transfer from data-rich to data-poor areas. This paper presents initial findings from these research platforms, identifying the key priorities for action emerging from our national scale scenario analysis, and future research directions to further improve understanding, prediction and management capability in nutrient enriched waters and their catchments under changing climate and land use.

  15. Remobilization Rates and Cumulative Contributions of Floodplains and Legacy Sediments from Piedmont Tributaries

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Donovan, M.; Baker, M. E.; Gellis, A.

    2014-12-01

    The disparity between watershed erosion rates and downstream sediment delivery has been an important theme in geomorphology for many decades, with the role of floodplains in sediment storage as a frequent focus. In the Piedmont province of the eastern US, post-settlement upland deforestation and agricultural land use led to accumulation of thick packages of overbank sediment ("legacy deposits") in valley bottoms. Previous authors have argued that legacy sediment is a potentially important source of sediment being remobilized by lateral migration of channels. We seek to address 1) How rapidly sediment is remobilized from floodplains by channel migration and bank erosion, 2) the proportion of streambank sediment derived from legacy sediment, and 3) the potential contributions of net stream bank erosion and legacy sediments to downstream sediment yields within the Piedmont of Baltimore County, Maryland. We measured gross erosion and deposition rates over 45 years within the fluvial corridor along 30 valley segments from 18 watersheds with drainage areas between 0.18 and 155 km2 by comparing channel and floodplain morphology from LiDAR-based digital elevation data collected in 2005 with channel positions recorded on 1:2400-scale topographic maps from 1959-1961. Measured deposition within channel and point bars accounted for an average of 46% (28-75%) of gross erosion, with deposition increasingly important in larger drainages. Legacy sediments accounted for 6-90% of bank erosion at individual study segments, represented about 60% of bank height at most exposures, and accounted for 57% of the measured gross erosion. Extrapolating the results indicated that first- and second-order streams account for 62% of total stream bank erosion from northern Baltimore County. After accounting for estimated redeposition, extrapolated net stream bank sediment yields (72 Mg/km2/yr) are equivalent to 70% of average Piedmont watershed yield (104 Mg/km2/yr) cited in studies by previous authors. The results suggest stream bank sediments are a large source of sediment from Piedmont tributaries to the Chesapeake Bay. It is important to note that upland erosion rates have been reported with equivalent and greater magnitude for forested and cropland areas within the Maryland Piedmont (Gellis et al. 2009; Smith et al. 2011).

  16. Water temperature and baseflow discharge of streams throughout the range of Rio Grande cutthroat trout in Colorado and New Mexico—2010 and 2011

    USGS Publications Warehouse

    Zeigler, Matthew P.; Todd, Andrew S.; Caldwell, Colleen A.

    2013-01-01

    This study characterized the thermal regime in a number of Colorado and New Mexico streams that contain populations of Rio Grande cutthroat trout (Oncorhynchus clarkii virginalis) and had no previous record of continual temperature records. When compared to Colorado’s water temperature criteria (Cold Tier 1), a portion of these populations appeared to be at risk from elevated stream temperatures, as indicated by exceedance of both acute (17–22 percent) and chronic (2–9 percent) water quality metrics. Summer water temperature profiles recorded at sites within current Rio Grande cutthroat trout habitat indicated that although the majority of currently occupied conservation streams have temperatures that fall well below these biologically based acute and chronic thermal thresholds, several sites may be at or approaching water temperatures considered stressful to cutthroat trout. Further, water temperatures should be considered in decisions regarding the current and future thermal suitability of potential Rio Grande cutthroat trout restoration sites. Additionally, baseflow discharge sampling indicated that a majority of the sampled stream segments containing Rio Grande cutthroat trout have flows less than 1.0 cubic feet per second (cfs) in both 2010 (74 percent) and 2011 (77 percent). The relative drought sensitivity of these low baseflow streams containing Rio Grande cutthroat trout could be further evaluated to assess their probable sustainability under possible future drought conditions.

  17. Nonnative trout invasions combined with climate change threaten persistence of isolated cutthroat trout populations in the southern Rocky Mountains

    USGS Publications Warehouse

    Roberts, James J.; Kurt D. Fausch,; Hooten, Mevin B.; Peterson, Douglas P.

    2017-01-01

    reduce the number of stream fragments that are long enough to buffer CRCT populations against negative genetic consequences and stochastic disturbances by 48, a decrease of 38% compared to CC alone. High priorities are (1) research to estimate how CC and human factors alter the incidence and rate of BT invasions and (2) management to prevent new illegal introductions, repair inadequate barriers, and monitor and address new invasions.

  18. Community Hazard Vulnerability Assessments: How Technology Can Assist in Comprehension

    DTIC Science & Technology

    2013-09-01

    strongly preferred learning style improved the most from pretest to posttest ” (p. 105). In addition, he states, 9 “Overall, the results of this study...was one of your greatest challenges; thank you for your continued efforts. To Ronald Wagenmann, the Upper Merion Township Manager, and to my...streams. No community is blessed with unlimited resources to expend on all of the demands placed upon it; as such, priorities must be determined and

  19. Simulation of Surface Erosion on a Logging Road in the Jackson Demonstration State Forest

    Treesearch

    Teresa Ish; David Tomberlin

    2007-01-01

    In constructing management models for the control of sediment delivery to streams, we have used a simulation model of road surface erosion known as the Watershed Erosion Prediction Project (WEPP) model, developed by the USDA Forest Service. This model predicts discharge, erosion, and sediment delivery at the road segment level, based on a stochastic climate simulator...

  20. Restricted movement by mottled sculpin (Pisces: Cottidae) in a southern Appalachian stream.

    Treesearch

    J. Todd Petty; Gary D. Grossman

    2004-01-01

    1. We used direct observation and mark-recapture techniques to quantify movements by mottled sculpins (Cottus bairdi) in a 1 km segment of Shope Fork in western North Carolina. Our objectives were to: (i) quantify the overall rate of sculpin movement, (ii) assess variation in movement among years, individuals, and sculpin size classes, (iii) relate movement to...

  1. Charcterization of meadow ecosystems based on watershed and valley segment/reach scale characteristics [chapter 7

    Treesearch

    Wendy Trowbridge; Jeanne C. Chambers; Dru Germanoski; Mark L. Lord; Jerry R. Miller; David G. Jewett

    2011-01-01

    Great Basin riparian meadows are highly sensitive to both natural and anthropogenic disturbance. As detailed in earlier chapters, streams in the central Great Basin have a natural tendency to incise due to their geomorphic history (Miller and others 2001, 2004). Anthropogenic disturbances, including overgrazing by livestock, mining activities, and roads in the valley...

  2. A Bayesian Framework for Word Segmentation: Exploring the Effects of Context

    ERIC Educational Resources Information Center

    Goldwater, Sharon; Griffiths, Thomas L.; Johnson, Mark

    2009-01-01

    Since the experiments of Saffran et al. [Saffran, J., Aslin, R., & Newport, E. (1996). Statistical learning in 8-month-old infants. "Science," 274, 1926-1928], there has been a great deal of interest in the question of how statistical regularities in the speech stream might be used by infants to begin to identify individual words. In this work, we…

  3. The challenges in developing the WEPP cumulative effects model

    Treesearch

    William J. Elliot; Randy B. Foltz

    2003-01-01

    Many of the forests in the U.S. and elsewhere in the world are source areas for water. The quantity and quality of this water are major public concerns. In a forested watershed, any road segment, harvesting operation, or other management activity can adversely impact forest streams. These disturbances are distributed in both time and space. The disturbance in the first...

  4. Segmenting the Stream of Consciousness: The Psychological Correlates of Temporal Structures in the Time Series Data of a Continuous Performance Task

    ERIC Educational Resources Information Center

    Smallwood, Jonathan; McSpadden, Merrill; Luus, Bryan; Schooler, Joanthan

    2008-01-01

    Using principal component analysis, we examined whether structural properties in the time series of response time would identify different mental states during a continuous performance task. We examined whether it was possible to identify regular patterns which were present in blocks classified as lacking controlled processing, either…

  5. Benefits and Costs of Pulp and Paper Effluent Controls Under the Clean Water Act

    NASA Astrophysics Data System (ADS)

    Luken, Ralph A.; Johnson, F. Reed; Kibler, Virginia

    1992-03-01

    This study quantifies local improvements in environmental quality from controlling effluents in the pulp and paper industry. Although it is confined to a single industry, this study is the first effort to assess the actual net benefits of the Clean Water Act pollution control program. An assessment of water quality benefits requires linking regulatory policy, technical effects, and behavioral responses. Regulatory policies mandate specific controls that influence the quantity and nature of effluent discharges. We identify a subset of stream segments suitable for analysis, describe water quality simulations and control cost calculations under alternative regulatory scenarios, assign feasible water uses to each segment based on water quality, and determine probable upper bounds for the willingness of beneficiaries to pay. Because the act imposes uniform regulations that do not account for differences in compliance costs, existing stream quality, contributions of other effluent sources, and recreation potential, the relation between water quality benefits and costs varies widely across sites. This variation suggests that significant positive net benefits have probably been achieved in some cases, but we conclude that the costs of the Clean Water Act as a whole exceed likely benefits by a significant margin.

  6. Chemical quality of surface water in the Allegheny River basin, Pennsylvania and New York

    USGS Publications Warehouse

    McCarren, Edward F.

    1967-01-01

    The Allegheny River is the principal source of water to many industries and to communities in the upper Ohio River Valley. The river and its many tributaries pass through 19 counties in northwestern and western Pennsylvania. The population in these counties exceeds 3 million. A major user of the Allegheny River is the city of Pittsburgh, which has a population greater than The Allegheny River is as basic to the economy of the upper Ohio River Valley in western Pennsylvania as are the rich deposits of bituminous coal, gas, and oil that underlie the drainage basin. During the past 5 years many streams that flow into the Allegheny have been low flowing because of droughts affecting much of the eastern United States. Consequently, the concentration of solutes in some streams has been unusually high because of wastes from coal mines and oil wells. These and other water-quality problems in the Allegheny River drainage basin are affecting the economic future of some areas in western Pennsylvania. Because of environmental factors such as climate, geology, and land and water uses, surface-water quality varies considerably throughout the river basin. The natural quality of headwater streams, for example, is affected by saltwater wastes from petroleum production. One of the streams most affected is Kinzua Creek, which had 2,900 parts per million chloride in a sample taken at Westline on September 2, 1959. However, after such streams as the Conewango, Brokenstraw, Tionesta, Oil, and French Creeks merge with the Allegheny River, the dissolved-solids and chloride concentrations are reduced by dilution. Central segments of the main river receive water from the Clarion River, Redbank, Mahoning, and Crooked Creeks after they have crossed the coal fields of west-central Pennsylvania. At times, therefore, these streams carry coal-mine wastes that are acidic. The Kiskiminetas River, which crosses these coal fields, discharged sulfuric acid into the Allegheny at a rate of 299 tons a day during the 1962 water year (October 1, 1961, to September 30, 1962). Mine water affects the quality of the Allegheny River most noticeably in its lower part where large withdrawals are made by the Pittsburgh Water Company at Aspinwall and the Wilkinsburg-Penn Joint Water Authority at Nadine. At these places raw river water is chemically .treated in modern treatment plants to control such objectionable characteristics as acidity and excessive concentrations of iron and manganese. Dissolved-solids content in the river varies along its entire length. In its upper reaches the water of the Allegheny River is a sodium chloride type, and at low flow, the sodium chloride is more than half the dissolved solids. In its lower reaches the water is a calcium sulfate .type, and at low flow the calcium sulfate is more than half the dissolved solids. In middle segments of the river from Franklin to Kittanning, water is more dilute and of a mixed type. Many small and several larger streams in the upper basin--such as the Conewango, Brokenstraw, Kinzua, Tionesta, and French Creeks--support large populations of game-fish. Even in segments of the Clarion River, Mahoning, and Redbank Creeks, which are at times affected by coal-mine wastes, fish are present. Although different species withstand varying amounts of contaminants in water, the continued presence of the fish indicates that the water is relatively pure and suitable for recreation and many other uses.

  7. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    NASA Astrophysics Data System (ADS)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (< 1 hour). The high temporal sampling resolution of the sensors permits a more realistic estimate of flow duration in temporary streams, which field surveys may, otherwise, underestimate. Such continuous datasets on stream network length will allow researchers to more accurately assess the value of headwater reaches for contributions to environmental services such as aquatic habitat, hyporheic exchange, and mass fluxes of solutes.

  8. Expedient range enhanced 3-D robot colour vision

    NASA Astrophysics Data System (ADS)

    Jarvis, R. A.

    1983-01-01

    Computer vision has been chosen, in many cases, as offering the richest form of sensory information which can be utilized for guiding robotic manipulation. The present investigation is concerned with the problem of three-dimensional (3D) visual interpretation of colored objects in support of robotic manipulation of those objects with a minimum of semantic guidance. The scene 'interpretations' are aimed at providing basic parameters to guide robotic manipulation rather than to provide humans with a detailed description of what the scene 'means'. Attention is given to overall system configuration, hue transforms, a connectivity analysis, plan/elevation segmentations, range scanners, elevation/range segmentation, higher level structure, eye in hand research, and aspects of array and video stream processing.

  9. Chemical mixtures and environmental effects: a pilot study to assess ecological exposure and effects in streams

    USGS Publications Warehouse

    Buxton, Herbert T.; Reilly, Timothy J.; Kuivila, Kathryn; Kolpin, Dana W.; Bradley, Paul M.; Villeneuve, Daniel L.; Mills, Marc A.

    2015-01-01

    Assessment and management of the risks of exposure to complex chemical mixtures in streams are priorities for human and environmental health organizations around the world. The current lack of information on the composition and variability of environmental mixtures and a limited understanding of their combined effects are fundamental obstacles to timely identification and prevention of adverse human and ecological effects of exposure. This report describes the design of a field-based study of the composition and biological activity of chemical mixtures in U.S. stream waters affected by a wide range of human activities and contaminant sources. The study is a collaborative effort by the U.S. Geological Survey and the U.S. Environmental Protection Agency. Scientists sampled 38 streams spanning 24 States and Puerto Rico. Thirty-four of the sites were located in watersheds impacted by multiple contaminant sources, including industrial and municipal wastewater discharges, crop and animal agricultural runoff, urban runoff, and other point and nonpoint contaminant sources. The remaining four sites were minimally development reference watersheds. All samples underwent comprehensive chemical and biological characterization, including sensitive and specific direct analysis for over 700 dissolved organic and inorganic chemicals and field parameters, identification of unknown contaminants (environmental diagnostics), and a variety of bioassays to evaluate biological activity and toxicity.

  10. A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sutanay; Holder, Larry; Chin, George

    2015-02-02

    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving net- works spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with promi- nent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphsmore » in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a “Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named “Relative Selectivity" that is used to se- lect between different query processing strategies. Our experiments performed on real online news, network traffic stream and a syn- thetic social network benchmark demonstrate 10-100x speedups over selectivity agnostic approaches.« less

  11. A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sutanay; Holder, Larry; Chin, George

    2015-05-27

    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in amore » continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a ``Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named ``Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over non-incremental, selectivity agnostic approaches.« less

  12. High-efficient Extraction of Drainage Networks from Digital Elevation Model Data Constrained by Enhanced Flow Enforcement from Known River Map

    NASA Astrophysics Data System (ADS)

    Wu, T.; Li, T.; Li, J.; Wang, G.

    2017-12-01

    Improved drainage network extraction can be achieved by flow enforcement whereby information of known river maps is imposed to the flow-path modeling process. However, the common elevation-based stream burning method can sometimes cause unintended topological errors and misinterpret the overall drainage pattern. We presented an enhanced flow enforcement method to facilitate accurate and efficient process of drainage network extraction. Both the topology of the mapped hydrography and the initial landscape of the DEM are well preserved and fully utilized in the proposed method. An improved stream rasterization is achieved here, yielding continuous, unambiguous and stream-collision-free raster equivalent of stream vectors for flow enforcement. By imposing priority-based enforcement with a complementary flow direction enhancement procedure, the drainage patterns of the mapped hydrography are fully represented in the derived results. The proposed method was tested over the Rogue River Basin, using DEMs with various resolutions. As indicated by the visual and statistical analyses, the proposed method has three major advantages: (1) it significantly reduces the occurrences of topological errors, yielding very accurate watershed partition and channel delineation, (2) it ensures scale-consistent performance at DEMs of various resolutions, and (3) the entire extraction process is well-designed to achieve great computational efficiency.

  13. Analysis of streamflow-gaging network for monitoring stormwater in small streams in the Puget Sound Basin, Washington

    USGS Publications Warehouse

    Konrad, Christopher P.; Voss, Frank D.

    2012-01-01

    The streamflow-gaging network in the Puget Sound basin was analyzed for its capacity to monitor stormwater in small streams. The analysis consisted of an inventory of active and inactive gages and an evaluation of the coverage and resolution of the gaging network with an emphasis on lowland areas. The active gaging network covers much of the Puget Lowland largely by gages located at sites on larger streams and rivers. Assessments of stormwater impacts and management will likely require streamflow information with higher spatial resolution than provided by the current gaging network. Monitoring that emphasizes small streams in combination with approaches for estimating streamflow at ungaged sites provides an alternative to expanding the current gaging network that can improve the spatial resolution of streamflow information in the region. The highest priority gaps in the gaging network are low elevation basins close to the Puget Sound shoreline and sites that share less than 10 percent of the drainage area of an active gage. Although small, lowland sites with long records of streamflow are particularly valuable to maintain in the region, other criteria for prioritizing sites in the gaging network should be based on the specific questions that stormwater managers need to answer.

  14. Do priority effects outweigh environmental filtering in a guild of dominant freshwater macroinvertebrates?

    PubMed

    Little, Chelsea J; Altermatt, Florian

    2018-04-11

    Abiotic conditions have long been considered essential in structuring freshwater macroinvertebrate communities. Ecological drift, dispersal and biotic interactions also structure communities, and although these mechanisms are more difficult to detect, they may be of equal importance in natural communities. Here, we hypothesized that in 10 naturally replicated headwater streams in eastern Switzerland, locally dominant amphipod species would be associated with differences in environmental conditions. We conducted repeated surveys of amphipods and used a hierarchical joint species distribution model to assess the influence of different drivers on species co-occurrences. The species had unique environmental requirements, but a distinct spatial structure in their distributions was unrelated to habitat. Species co-occurred much less frequently than predicted by the model, which was surprising because laboratory and field evidence suggests they are capable of coexisting in equal densities. We suggest that niche preemption may limit their distribution and that a blocking effect related to the specific linear configuration of streams determines which species colonizes and dominates a given stream catchment, thus suggesting a new solution a long-standing conundrum in freshwater ecology. © 2018 The Author(s).

  15. Morphometric Analysis to Prioritize Sub-Watershed for Flood Risk Assessment in Central Karakoram National Park Using Gis/rs Approach

    NASA Astrophysics Data System (ADS)

    Syed, N. H.; Rehman, A. A.; Hussain, D.; Ishaq, S.; Khan, A. A.

    2017-11-01

    Morphometric analysis is vital for any watershed investigation and it is inevitable for flood risk assessment in sub-watershed basins. Present study undertaken to carry out critical evaluation and assessment of sub watershed morphological parameters for flood risk assessment of Central Karakorum National Park (CKNP), where Geographical information system and remote sensing (GIS & RS) approach used for quantifying the parameter and mapping of sub watershed units. ASTER DEM used as a geo-spatial data for watershed delineation and stream network. Morphometric analysis carried out using spatial analyst tool of ArcGIS 10.2. The parameters included were bifurcation ratio (Rb), Drainage Texture (Rt), Circulatory ratio (Rc), Elongated ratio (Re), Drainage density (Dd), Stream Length (Lu), Stream order (Su), Slope and Basin length (Lb) have calculated separately. The analysis revealed that the stream order varies from order 1 to 6 and the total numbers of stream segments of all orders were 52. Multi criteria analysis process used to calculate the risk factor. As an accomplished result, map of sub watershed prioritization developed using weighted standardized risk factor. These results helped to understand sensitivity of flush floods in different sub watersheds of the study area and leaded to better management of the mountainous regions in prospect of flush floods.

  16. Managed flood effects on beaver pond habitat in a desert riverine ecosystem, bill williams river, Arizona USA

    USGS Publications Warehouse

    Andersen, D.C.; Shafroth, P.B.; Pritekel, C.M.; O'Neill, M. W.

    2011-01-01

    The ecological effects of beaver in warm-desert streams are poorly documented, but potentially significant. For example, stream water and sediment budgets may be affected by increased evaporative losses and sediment retention in beaver ponds. We measured physical attributes of beaver pond and adjacent lotic habitats on a regulated Sonoran Desert stream, the Bill Williams River, after ???11 flood-free months in Spring 2007 and Spring 2008. Neither a predicted warming of surface water as it passed through a pond nor a reduction in dissolved oxygen in ponds was consistently observed, but bed sediment sorted to finest in ponds as expected. We observed a river segment-scale downstream rise in daily minimum stream temperature that may have been influenced by the series of ??100 beaver ponds present. Channel cross-sections surveyed before and after an experimental flood (peak flow 65 m3/s) showed net aggradation on nine of 13 cross-sections through ponds and three of seven through lotic reaches. Our results indicate that beaver affect riverine processes in warm deserts much as they do in other biomes. However, effects may be magnified in deserts through the potential for beaver to alter the stream thermal regime and water budget. ?? Society of Wetland Scientists 2011.

  17. Auditory Magnetoencephalographic Frequency-Tagged Responses Mirror the Ongoing Segmentation Processes Underlying Statistical Learning.

    PubMed

    Farthouat, Juliane; Franco, Ana; Mary, Alison; Delpouve, Julie; Wens, Vincent; Op de Beeck, Marc; De Tiège, Xavier; Peigneux, Philippe

    2017-03-01

    Humans are highly sensitive to statistical regularities in their environment. This phenomenon, usually referred as statistical learning, is most often assessed using post-learning behavioural measures that are limited by a lack of sensibility and do not monitor the temporal dynamics of learning. In the present study, we used magnetoencephalographic frequency-tagged responses to investigate the neural sources and temporal development of the ongoing brain activity that supports the detection of regularities embedded in auditory streams. Participants passively listened to statistical streams in which tones were grouped as triplets, and to random streams in which tones were randomly presented. Results show that during exposure to statistical (vs. random) streams, tritone frequency-related responses reflecting the learning of regularities embedded in the stream increased in the left supplementary motor area and left posterior superior temporal sulcus (pSTS), whereas tone frequency-related responses decreased in the right angular gyrus and right pSTS. Tritone frequency-related responses rapidly developed to reach significance after 3 min of exposure. These results suggest that the incidental extraction of novel regularities is subtended by a gradual shift from rhythmic activity reflecting individual tone succession toward rhythmic activity synchronised with triplet presentation, and that these rhythmic processes are subtended by distinct neural sources.

  18. Diagnostic quality driven physiological data collection for personal healthcare.

    PubMed

    Jea, David; Balani, Rahul; Hsu, Ju-Lan; Cho, Dae-Ki; Gerla, Mario; Srivastava, Mani B

    2008-01-01

    We believe that each individual is unique, and that it is necessary for diagnosis purpose to have a distinctive combination of signals and data features that fits the personal health status. It is essential to develop mechanisms for reducing the amount of data that needs to be transferred (to mitigate the troublesome periodically recharging of a device) while maintaining diagnostic accuracy. Thus, the system should not uniformly compress the collected physiological data, but compress data in a personalized fashion that preserves the 'important' signal features for each individual such that it is enough to make the diagnosis with a required high confidence level. We present a diagnostic quality driven mechanism for remote ECG monitoring, which enables a notation of priorities encoded into the wave segments. The priority is specified by the diagnosis engine or medical experts and is dynamic and individual dependent. The system pre-processes the collected physiological information according to the assigned priority before delivering to the backend server. We demonstrate that the proposed approach provides accurate inference results while effectively compressing the data.

  19. Protect and Restore Lolo Creek Watershed, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2004-06-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this project. Riparian enhancement through planning of riparian trees continues. Culvert inventory is on-going and will be completed in 2004 for the entiremore » Lolo Creek drainage. High priority culverts are being replaced and passage blocking log culverts are being removed. Tribal crews completed maintenance to the previously built fence.« less

  20. A QoS Aware Resource Allocation Strategy for 3D A/V Streaming in OFDMA Based Wireless Systems

    PubMed Central

    Chung, Young-uk; Choi, Yong-Hoon; Park, Suwon; Lee, Hyukjoon

    2014-01-01

    Three-dimensional (3D) video is expected to be a “killer app” for OFDMA-based broadband wireless systems. The main limitation of 3D video streaming over a wireless system is the shortage of radio resources due to the large size of the 3D traffic. This paper presents a novel resource allocation strategy to address this problem. In the paper, the video-plus-depth 3D traffic type is considered. The proposed resource allocation strategy focuses on the relationship between 2D video and the depth map, handling them with different priorities. It is formulated as an optimization problem and is solved using a suboptimal heuristic algorithm. Numerical results show that the proposed scheme provides a better quality of service compared to conventional schemes. PMID:25250377

  1. Fish species of greatest conservation need in wadeable Iowa streams: current status and effectiveness of Aquatic Gap Program distribution models

    USGS Publications Warehouse

    Sindt, Anthony R.; Pierce, Clay; Quist, Michael C.

    2012-01-01

    Effective conservation of fish species of greatest conservation need (SGCN) requires an understanding of species–habitat relationships and distributional trends. Thus, modeling the distribution of fish species across large spatial scales may be a valuable tool for conservation planning. Our goals were to evaluate the status of 10 fish SGCN in wadeable Iowa streams and to test the effectiveness of Iowa Aquatic Gap Analysis Project (IAGAP) species distribution models. We sampled fish assemblages from 86 wadeable stream segments in the Mississippi River drainage of Iowa during 2009 and 2010 to provide contemporary, independent fish species presence–absence data. The frequencies of occurrence in stream segments where species were historically documented varied from 0.0% for redfin shiner Lythrurus umbratilis to 100.0% for American brook lampreyLampetra appendix, with a mean of 53.0%, suggesting that the status of Iowa fish SGCN is highly variable. Cohen's kappa values and other model performance measures were calculated by comparing field-collected presence–absence data with IAGAP model–predicted presences and absences for 12 fish SGCN. Kappa values varied from 0.00 to 0.50, with a mean of 0.15. The models only predicted the occurrences of banded darterEtheostoma zonale, southern redbelly dace Phoxinus erythrogaster, and longnose daceRhinichthys cataractae more accurately than would be expected by chance. Overall, the accuracy of the twelve models was low, with a mean correct classification rate of 58.3%. Poor model performance probably reflects the difficulties associated with modeling the distribution of rare species and the inability of the large-scale habitat variables used in IAGAP models to explain the variation in fish species occurrences. Our results highlight the importance of quantifying the confidence in species distribution model predictions with an independent data set and the need for long-term monitoring to better understand the distributional trends and habitat associations of fish SGCN.

  2. The ‘Ventral Organs’ of Pycnogonida (Arthropoda) Are Neurogenic Niches of Late Embryonic and Post-Embryonic Nervous System Development

    PubMed Central

    Brenneis, Georg; Scholtz, Gerhard

    2014-01-01

    Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions – traditionally designated as ‘ventral organs’ – detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons – as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient posterior ganglia in the ventral nerve cord of Pseudopallene sp. and evaluate this finding in light of the often discussed reduction of a segmented ‘opisthosoma’ during pycnogonid evolution. PMID:24736377

  3. An evaluation of water-quality data obtained at four streamflow daily-record stations in Idaho

    USGS Publications Warehouse

    Dyer, Kenneth L.

    1973-01-01

    Chemical data for four stream-gaging stations in Idaho, each having 6 to 22 years of available records, were analyzed to determine functional relations between concentrations of the major inorganic constituents, specific conductance, and stream discharge. Three of the four stations had sufficient available record for assessing changes in constituent relations with time. The records for each long-term station were subdivided into segments of approximately 5 years each. Plots and regression equations were derived for each record segment to show the relations of each major constituent value to levels of specific conductance and stream discharge. At only one stations, Boise River at Notus, was there was an apparent significant change in chemical characteristics with time. Between 1940 and 1951, the percentages of chloride and sulfate in solution at this station declined appreciably and were largely replaced by bicarbonate. In general, there were highly significant correlations between the major inorganic ions and specific conductance, although those observed at Bear River at Border were distinctly poorer than those observed for the other stations. Corresponding correlations between the major ions and discharge were almost always less significant than those observed between the same ions and specific conductance. The common ion-discharge relations observed on the Snake River near Heise were more highly correlated before 1957 than thereafter--probably because of changes induced by the construction of Palisades Dam. A similar decline in correlation of common ion-discharge relations was observed at the Snake River at King Hill station after 1957, and this also might be attributable to changes in water regulation at various upstream impoundments.

  4. Multi-scale image segmentation method with visual saliency constraints and its application

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Yu, Jie; Sun, Kaimin

    2018-03-01

    Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works better for texture image segmentation than traditional multi-scale image segmentation methods, and can enable us to give priority control to the saliency objects of interest. This method has been used in image quality evaluation, scattered residential area extraction, sparse forest extraction and other applications to verify its validation. All applications showed good results.

  5. A unified framework for gesture recognition and spatiotemporal gesture segmentation.

    PubMed

    Alon, Jonathan; Athitsos, Vassilis; Yuan, Quan; Sclaroff, Stan

    2009-09-01

    Within the context of hand gesture recognition, spatiotemporal gesture segmentation is the task of determining, in a video sequence, where the gesturing hand is located and when the gesture starts and ends. Existing gesture recognition methods typically assume either known spatial segmentation or known temporal segmentation, or both. This paper introduces a unified framework for simultaneously performing spatial segmentation, temporal segmentation, and recognition. In the proposed framework, information flows both bottom-up and top-down. A gesture can be recognized even when the hand location is highly ambiguous and when information about when the gesture begins and ends is unavailable. Thus, the method can be applied to continuous image streams where gestures are performed in front of moving, cluttered backgrounds. The proposed method consists of three novel contributions: a spatiotemporal matching algorithm that can accommodate multiple candidate hand detections in every frame, a classifier-based pruning framework that enables accurate and early rejection of poor matches to gesture models, and a subgesture reasoning algorithm that learns which gesture models can falsely match parts of other longer gestures. The performance of the approach is evaluated on two challenging applications: recognition of hand-signed digits gestured by users wearing short-sleeved shirts, in front of a cluttered background, and retrieval of occurrences of signs of interest in a video database containing continuous, unsegmented signing in American Sign Language (ASL).

  6. Direct and indirect effects of multiple stressors on stream invertebrates across watershed, reach and site scales: A structural equation modelling better informing on hydromorphological impacts.

    PubMed

    Villeneuve, B; Piffady, J; Valette, L; Souchon, Y; Usseglio-Polatera, P

    2018-01-15

    The purpose of our approach was to take into account the nested spatial scales driving stream functioning in the description of pressures/ecological status links by analysing the results of a hierarchical model. The development of this model has allowed us to answer the following questions: Does the consideration of the indirect links between anthropogenic pressures and stream ecological status modify the hierarchy of pressure types impacting benthic invertebrates? Do the different nested scales play different roles in the anthropogenic pressures/ecological status relationship? Does this model lead to better understanding of the specific role of hydromorphology in the evaluation of stream ecological status? To achieve that goal, we used the Partial Least Square (PLS) path modelling method to develop a structural model linking variables describing (i) land use and hydromorphological alterations at the watershed scale, (ii) hydromorphological alterations at the reach scale, (iii) nutrients-organic matter contamination levels at the site scale, and (iv) substrate characteristics at the sampling site scale, to explain variation in values of a macroinvertebrate-based multimetric index: the French I 2 M 2 . We have highlighted the importance of land use effects exerted on both hydromorphological and chemical characteristics of streams observed at finer scales and their subsequent indirect impact on stream ecological status. Hydromorphological alterations have an effect on the substrate mosaic structure and on the concentrations of nutrients and organic matter at site scale. This result implies that stream hydromorphology can have a major indirect effect on macroinvertebrate assemblages and that the hierarchy of impacts of anthropogenic pressures on stream ecological status generally described in the literature - often determining strategic restoration priorities - has to be re-examined. Finally, the effects of nutrients and organic matter on macroinvertebrate assemblages are lower than expected when all the indirect effects of land use and hydromorphological alterations are taken into account. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Coupling GIS and multivariate approaches to reference site selection for wadeable stream monitoring.

    PubMed

    Collier, Kevin J; Haigh, Andy; Kelly, Johlene

    2007-04-01

    Geographic Information System (GIS) was used to identify potential reference sites for wadeable stream monitoring, and multivariate analyses were applied to test whether invertebrate communities reflected a priori spatial and stream type classifications. We identified potential reference sites in segments with unmodified vegetation cover adjacent to the stream and in >85% of the upstream catchment. We then used various landcover, amenity and environmental impact databases to eliminate sites that had potential anthropogenic influences upstream and that fell into a range of access classes. Each site identified by this process was coded by four dominant stream classes and seven zones, and 119 candidate sites were randomly selected for follow-up assessment. This process yielded 16 sites conforming to reference site criteria using a conditional-probabilistic design, and these were augmented by an additional 14 existing or special interest reference sites. Non-metric multidimensional scaling (NMS) analysis of percent abundance invertebrate data indicated significant differences in community composition among some of the zones and stream classes identified a priori providing qualified support for this framework in reference site selection. NMS analysis of a range standardised condition and diversity metrics derived from the invertebrate data indicated a core set of 26 closely related sites, and four outliers that were considered atypical of reference site conditions and subsequently dropped from the network. Use of GIS linked to stream typology, available spatial databases and aerial photography greatly enhanced the objectivity and efficiency of reference site selection. The multi-metric ordination approach reduced variability among stream types and bias associated with non-random site selection, and provided an effective way to identify representative reference sites.

  8. Long-term impacts of land cover changes on stream channel loss.

    PubMed

    Julian, Jason P; Wilgruber, Nicholas A; de Beurs, Kirsten M; Mayer, Paul M; Jawarneh, Rana N

    2015-12-15

    Land cover change and stream channel loss are two related global environmental changes that are expanding and intensifying. Here, we examine how different types and transitions of land cover change impact stream channel loss across a large urbanizing watershed. We present historical land cover in the 666-km(2) Lake Thunderbird watershed in central Oklahoma (USA) over a 137 year period and coinciding stream channel length changes for the most recent 70 years of this period. Combining these two datasets allowed us to assess the interaction of land cover changes with stream channel loss. Over this period, the upper third of the watershed shifted from predominantly native grassland to an agricultural landscape, followed by widespread urbanization. The lower two-thirds of the watershed changed from a forested landscape to a mosaic of agriculture, urban, forest, and open water. Most channel length lost in the watershed over time was replaced by agriculture. Urban development gradually increased channel loss and disconnection from 1942 to 2011, particularly in the headwaters. Intensities of channel loss for both agriculture and urban increased over time. The two longest connected segments of channel loss came from the creation of two large impoundments, resulting in 46 km and 25 km of lost stream channel, respectively. Overall, the results from this study demonstrate that multiple and various land-use changes over long time periods can lead to rapid losses of large channel lengths as well as gradual (but increasing) losses of small channel lengths across all stream sizes. When these stream channel losses are taken into account, the environmental impacts of anthropogenic land-use change are compounded. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Becoming business critical: Knowledge for Healthcare.

    PubMed

    Lacey Bryant, Sue; Stewart, David; Goswami, Louise; Grant, Maria J

    2016-09-01

    Significant progress has been made in implementing Knowledge for Healthcare. This editorial reports the central contribution of effective partnerships and the involvement of librarians and knowledge specialists in this work. There are compelling business priorities. Key elements of work-streams on demonstrating impact, workforce development and streamlining are indicated, along with areas of growing importance - knowledge management, embedded roles and health information for the public and patients. Knowledge, and the skills to help people to use it, are business critical. © 2016 Health Libraries Group.

  10. Endocrine disrupting compounds in streams in Israel and the Palestinian West Bank: Implications for transboundary basin management.

    PubMed

    Dotan, Pniela; Yeshayahu, Maayan; Odeh, Wa'd; Gordon-Kirsch, Nina; Groisman, Ludmila; Al-Khateeb, Nader; Abed Rabbo, Alfred; Tal, Alon; Arnon, Shai

    2017-12-15

    Endocrine disrupting compounds (EDCs) frequently enter surface waters via discharges from wastewater treatment plants (WWTPs), as well as from industrial and agricultural activities, creating environmental and health concerns. In this study, selected EDCs were measured in water and sediments along two transboundary streams flowing from the Palestinian Authority (PA) into Israel (the Zomar-Alexander and Hebron-Beer Sheva Streams). We assessed how the complicated conflict situation between Israel and the PA and the absence of a coordinated strategy and joint stream management commission influence effective EDC control. Both streams receive raw Palestinian wastewater in their headwaters, which flows through rural areas and is treated via sediment settling facilities after crossing the 1949 Armistice Agreement Line. Four sampling campaigns were conducted over two years, with concentrations of selected EDCs measured in both the water and the sediments. Results show asymmetrical pollution profiles due to socio-economic differences and contrasting treatment capacities. No in-stream attenuation was observed along the stream and in the sediments within the Palestinian region. After sediment settling in treatment facilities at the Israeli border, however, significant reductions in the EDC concentrations were measured both in the sediments and in the water. Differences in sedimentation technologies had a substantial effect on EDC removal at the treatment location, positively affecting the streams' ability to further remove EDCs downstream. The prevailing approach to addressing the Israeli-Palestinian transboundary wastewater contamination reveals a narrow perspective among water managers who on occasion only take local interests into consideration, with interventions focused solely on improving stream water quality in isolated segments. Application of the "proximity principle" through the establishment of WWTPs at contamination sources constitutes a preferable strategy for reducing contamination by EDCs and other pollutants to ensure minimization of public health risks due to the pollution of streams and underlying potable groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Linear perturbation theory for tidal streams and the small-scale CDM power spectrum

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Erkal, Denis; Sanders, Jason L.

    2017-04-01

    Tidal streams in the Milky Way are sensitive probes of the population of low-mass dark matter subhaloes predicted in cold dark matter (CDM) simulations. We present a new calculus for computing the effect of subhalo fly-bys on cold streams based on the action-angle representation of streams. The heart of this calculus is a line-of-parallel-angle approach that calculates the perturbed distribution function of a stream segment by undoing the effect of all relevant impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 105 M⊙, accounting for the stream's internal dispersion and overlapping impacts. We study the statistical properties of density and track fluctuations with large suites of simulations of the effect of subhalo fly-bys. The one-dimensional density and track power spectra along the stream trace the subhalo mass function, with higher mass subhaloes producing power only on large scales, while lower mass subhaloes cause structure on smaller scales. We also find significant density and track bispectra that are observationally accessible. We further demonstrate that different projections of the track all reflect the same pattern of perturbations, facilitating their observational measurement. We apply this formalism to data for the Pal 5 stream and make a first rigorous determination of 10^{+11}_{-6} dark matter subhaloes with masses between 106.5 and 109 M⊙ within 20 kpc from the Galactic centre [corresponding to 1.4^{+1.6}_{-0.9} times the number predicted by CDM-only simulations or to fsub(r < 20 kpc) ≈ 0.2 per cent] assuming that the Pal 5 stream is 5 Gyr old. Improved data will allow measurements of the subhalo mass function down to 105 M⊙, thus definitively testing whether dark matter is clumpy on the smallest scales relevant for galaxy formation.

  12. Possible origin and significance of extension-parallel drainages in Arizona's metamophic core complexes

    USGS Publications Warehouse

    Spencer, J.E.

    2000-01-01

    The corrugated form of the Harcuvar, South Mountains, and Catalina metamorphic core complexes in Arizona reflects the shape of the middle Tertiary extensional detachment fault that projects over each complex. Corrugation axes are approximately parallel to the fault-displacement direction and to the footwall mylonitic lineation. The core complexes are locally incised by enigmatic, linear drainages that parallel corrugation axes and the inferred extension direction and are especially conspicuous on the crests of antiformal corrugations. These drainages have been attributed to erosional incision on a freshly denuded, planar, inclined fault ramp followed by folding that elevated and preserved some drainages on the crests of rising antiforms. According to this hypothesis, corrugations were produced by folding after subacrial exposure of detachment-fault foot-walls. An alternative hypothesis, proposed here, is as follows. In a setting where preexisting drainages cross an active normal fault, each fault-slip event will cut each drainage into two segments separated by a freshly denuded fault ramp. The upper and lower drainage segments will remain hydraulically linked after each fault-slip event if the drainage in the hanging-wall block is incised, even if the stream is on the flank of an antiformal corrugation and there is a large component of strike-slip fault movement. Maintenance of hydraulic linkage during sequential fault-slip events will guide the lengthening stream down the fault ramp as the ramp is uncovered, and stream incision will form a progressively lengthening, extension-parallel, linear drainage segment. This mechanism for linear drainage genesis is compatible with corrugations as original irregularities of the detachment fault, and does not require folding after early to middle Miocene footwall exhumations. This is desirable because many drainages are incised into nonmylonitic crystalline footwall rocks that were probably not folded under low-temperature, surface conditions. An alternative hypothesis, that drainages were localized by small fault grooves as footwalls were uncovered, is not supported by analysis of a down-plunge fault projection for the southern Rincon Mountains that shows a linear drainage aligned with the crest of a small antiformal groove on the detachment fault, but this process could have been effective elsewhere. Lineation-parallel drainages now plunge gently southwestward on the southwest ends of antiformal corrugations in the South and Buckskin Mountains, but these drainages must have originally plunged northeastward if they formed by either of the two alternative processes proposed here. Footwall exhumation and incision by northeast-flowing streams was apparently followed by core-complex arching and drainage reversal.

  13. Evaluation of catchment delineation methods for the medium-resolution National Hydrography Dataset

    USGS Publications Warehouse

    Johnston, Craig M.; Dewald, Thomas G.; Bondelid, Timothy R.; Worstell, Bruce B.; McKay, Lucinda D.; Rea, Alan; Moore, Richard B.; Goodall, Jonathan L.

    2009-01-01

    Different methods for determining catchments (incremental drainage areas) for stream segments of the medium-resolution (1:100,000-scale) National Hydrography Dataset (NHD) were evaluated by the U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA). The NHD is a comprehensive set of digital spatial data that contains information about surface-water features (such as lakes, ponds, streams, and rivers) of the United States. The need for NHD catchments was driven primarily by the goal to estimate NHD streamflow and velocity to support water-quality modeling. The application of catchments for this purpose also demonstrates the broader value of NHD catchments for supporting landscape characterization and analysis. Five catchment delineation methods were evaluated. Four of the methods use topographic information for the delineation of the NHD catchments. These methods include the Raster Seeding Method; two variants of a method first used in a USGS New England study-one used the Watershed Boundary Dataset (WBD) and the other did not-termed the 'New England Methods'; and the Outlet Matching Method. For these topographically based methods, the elevation data source was the 30-meter (m) resolution National Elevation Dataset (NED), as this was the highest resolution available for the conterminous United States and Hawaii. The fifth method evaluated, the Thiessen Polygon Method, uses distance to the nearest NHD stream segments to determine catchment boundaries. Catchments were generated using each method for NHD stream segments within six hydrologically and geographically distinct Subbasins to evaluate the applicability of the method across the United States. The five methods were evaluated by comparing the resulting catchments with the boundaries and the computed area measurements available from several verification datasets that were developed independently using manual methods. The results of the evaluation indicated that the two New England Methods provided the most accurate catchment boundaries. The New England Method with the WBD provided the most accurate results. The time and cost to implement and apply these automated methods were also considered in ultimately selecting the methods used to produce NHD catchments for the conterminous United States and Hawaii. This study was conducted by a joint USGS-USEPA team during the 2-year period that ended in September 2004. During the following 2-year period ending in the fall of 2006, the New England Methods were used to produce NHD catchments as part of a multiagency effort to generate the NHD streamflow and velocity estimates for a suite of integrated geospatial products known as 'NHDPlus.'

  14. Geophysical logging and thermal imaging near the Hemphill Road TCE National Priorities List Superfund site near Gastonia, North Carolina

    USGS Publications Warehouse

    Antolino, Dominick J.; Chapman, Melinda J.

    2017-03-27

    Borehole geophysical logs and thermal imaging data were collected by the U.S. Geological Survey near the Hemphill Road TCE (trichloroethylene) National Priorities List Superfund site near Gastonia, North Carolina, during August 2014 through February 2015. In an effort to assist the U.S. Environmental Protection Agency in the development of a conceptual groundwater model for the assessment of current contaminant distribution and future migration of contaminants, surface geological mapping and borehole geophysical log and thermal imaging data collection, which included the delineation of more than 600 subsurface features (primarily fracture orientations), was completed in five open borehole wells and two private supply bedrock wells. In addition, areas of possible groundwater discharge within a nearby creek downgradient of the study site were determined based on temperature differences between the stream and bank seepage using thermal imagery.

  15. Identification and annotation of erotic film based on content analysis

    NASA Astrophysics Data System (ADS)

    Wang, Donghui; Zhu, Miaoliang; Yuan, Xin; Qian, Hui

    2005-02-01

    The paper brings forward a new method for identifying and annotating erotic films based on content analysis. First, the film is decomposed to video and audio stream. Then, the video stream is segmented into shots and key frames are extracted from each shot. We filter the shots that include potential erotic content by finding the nude human body in key frames. A Gaussian model in YCbCr color space for detecting skin region is presented. An external polygon that covered the skin regions is used for the approximation of the human body. Last, we give the degree of the nudity by calculating the ratio of skin area to whole body area with weighted parameters. The result of the experiment shows the effectiveness of our method.

  16. Multi-modal highlight generation for sports videos using an information-theoretic excitability measure

    NASA Astrophysics Data System (ADS)

    Hasan, Taufiq; Bořil, Hynek; Sangwan, Abhijeet; L Hansen, John H.

    2013-12-01

    The ability to detect and organize `hot spots' representing areas of excitement within video streams is a challenging research problem when techniques rely exclusively on video content. A generic method for sports video highlight selection is presented in this study which leverages both video/image structure as well as audio/speech properties. Processing begins where the video is partitioned into small segments and several multi-modal features are extracted from each segment. Excitability is computed based on the likelihood of the segmental features residing in certain regions of their joint probability density function space which are considered both exciting and rare. The proposed measure is used to rank order the partitioned segments to compress the overall video sequence and produce a contiguous set of highlights. Experiments are performed on baseball videos based on signal processing advancements for excitement assessment in the commentators' speech, audio energy, slow motion replay, scene cut density, and motion activity as features. Detailed analysis on correlation between user excitability and various speech production parameters is conducted and an effective scheme is designed to estimate the excitement level of commentator's speech from the sports videos. Subjective evaluation of excitability and ranking of video segments demonstrate a higher correlation with the proposed measure compared to well-established techniques indicating the effectiveness of the overall approach.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshetenko, T. V.; Bender, G.; Bethune, K.

    The overall current density that is measured in a proton exchange membrane fuel cell (PEMFC) represents the average of the local reaction rates. The overall and local PEMFC performances are determined by several primary loss mechanisms, namely activation, ohmic, and mass transfer. Spatial performance and loss variabilities are significant and depend on the cell design and operating conditions. A segmented cell system was used to quantify different loss distributions along the gas channel to understand the effects of gas humidification. A reduction in the reactant stream humidification decreased cell performance and resulted in non-uniform distributions of overpotentials and performance alongmore » the flow field. Activation and ohmic overpotentials increased with a relative humidity decrease due to insufficient membrane and catalyst layer hydration. The relative humidity of the cathode had a strong impact on the mass transfer overpotential due to a lower oxygen permeability through the dry Nafion film covering the catalyst surface. The mass transfer loss distribution was non-uniform, and the mass transfer overpotential increased for the outlet segments due to the oxygen consumption at the inlet segments, which reduced the oxygen concentration downstream, and a progressive water accumulation from upstream segments. Electrochemical impedance spectroscopy (EIS) and an equivalent electric circuit (EEC) facilitated the analysis and interpretation of the segmented cell data.« less

  18. Technical Note: Bed conduction impact on fiber optic DTS water temperature measurements

    NASA Astrophysics Data System (ADS)

    O'Donnell Meininger, T.; Selker, J. S.

    2014-07-01

    Error in Distributed Temperature Sensor (DTS) water temperature measurements may be introduced by contact of the fiber optic cable sensor with bed materials (e.g., seafloor, lakebed, stream bed). Heat conduction from the bed materials can affect cable temperature and the resulting DTS measurements. In the Middle Fork John Day River, apparent water temperature measurements were influenced by cable sensor contact with aquatic vegetation and fine sediment bed materials. Affected cable segments measured a diurnal temperature range reduced by 10% and lagged by 20-40 min relative to that of ambient stream temperature. The diurnal temperature range deeper within the vegetation-sediment bed material was reduced 70% and lagged 240 min relative to ambient stream temperature. These site-specific results illustrate the potential magnitude of bed-conduction impacts with buried DTS measurements. Researchers who deploy DTS for water temperature monitoring should understand the importance of the environment into which the cable is placed on the range and phase of temperature measurements.

  19. 78 FR 343 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Southwestern...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ...We, the U.S. Fish and Wildlife Service (Service), designate revised critical habitat for the southwestern willow flycatcher (Empidonax traillii extimus) (flycatcher) under the Endangered Species Act. In total, approximately 1,975 stream kilometers (1,227 stream miles) are being designated as critical habitat. These areas are designated as stream segments, with the lateral extent including the riparian areas and streams that occur within the 100-year floodplain or flood-prone areas encompassing a total area of approximately 84,569 hectares (208,973 acres). The critical habitat is located on a combination of Federal, State, tribal, and private lands in Inyo, Kern, Los Angeles, Riverside, Santa Barbara, San Bernardino, San Diego, and Ventura Counties in California; Clark, Lincoln, and Nye Counties in southern Nevada; Kane, San Juan, and Washington Counties in southern Utah; Alamosa, Conejos, Costilla, and La Plata Counties in southern Colorado; Apache, Cochise, Gila, Graham, Greenlee, La Paz, Maricopa, Mohave, Pima, Pinal, Santa Cruz, and Yavapai Counties in Arizona; and Catron, Grant, Hidalgo, Mora, Rio Arriba, Socorro, Taos, and Valencia Counties in New Mexico. The effect of this regulation is to conserve the flycatcher's habitat under the Endangered Species Act.

  20. A Clustering Algorithm for Ecological Stream Segment Identification from Spatially Extensive Digital Databases

    NASA Astrophysics Data System (ADS)

    Brenden, T. O.; Clark, R. D.; Wiley, M. J.; Seelbach, P. W.; Wang, L.

    2005-05-01

    Remote sensing and geographic information systems have made it possible to attribute variables for streams at increasingly detailed resolutions (e.g., individual river reaches). Nevertheless, management decisions still must be made at large scales because land and stream managers typically lack sufficient resources to manage on an individual reach basis. Managers thus require a method for identifying stream management units that are ecologically similar and that can be expected to respond similarly to management decisions. We have developed a spatially-constrained clustering algorithm that can merge neighboring river reaches with similar ecological characteristics into larger management units. The clustering algorithm is based on the Cluster Affinity Search Technique (CAST), which was developed for clustering gene expression data. Inputs to the clustering algorithm are the neighbor relationships of the reaches that comprise the digital river network, the ecological attributes of the reaches, and an affinity value, which identifies the minimum similarity for merging river reaches. In this presentation, we describe the clustering algorithm in greater detail and contrast its use with other methods (expert opinion, classification approach, regular clustering) for identifying management units using several Michigan watersheds as a backdrop.

  1. Demand and supply-based operating modes--a framework for analyzing health care service production.

    PubMed

    Lillrank, Paul; Groop, P Johan; Malmström, Tomi J

    2010-12-01

    The structure of organizations that provide services should reflect the possibilities of and constraints on production that arise from the market segments they serve. Organizational segmentation in health care is based on urgency and severity as well as disease type, bodily function, principal method, or population subgroup. The result is conflicting priorities, goals, and performance metrics. A managerial perspective is needed to identify activities with similar requirements for integration, coordination, and control. The arguments in this article apply new reasoning to the previous literature. The method used in this article to classify health care provision distinguishes different types of health problems that share generic constraints of production. The analysis leads to seven different demand-supply combinations, each with its own operational logic. These are labeled demand and supply-based operating modes (DSO modes), and constitute the managerial building blocks of health care organizations. The modes are Prevention, Emergency, One visit, Project, Elective, Cure, and Care. As analytical categories the DSO modes can be used to understand current problems. Several operating modes in one unit create managerial problems of conflicting priorities, goals, and performance metrics. The DSO modes are constructed as managerially homogeneous categories or care platforms responding to general types of demand, and supply constraints. The DSO modes bring methods of industrial management to bear on efforts to improve health care. © 2010 Milbank Memorial Fund. Published by Wiley Periodicals Inc.

  2. Demand and Supply–Based Operating Modes—A Framework for Analyzing Health Care Service Production

    PubMed Central

    Lillrank, Paul; Groop, P Johan; Malmström, Tomi J

    2010-01-01

    Context: The structure of organizations that provide services should reflect the possibilities of and constraints on production that arise from the market segments they serve. Organizational segmentation in health care is based on urgency and severity as well as disease type, bodily function, principal method, or population subgroup. The result is conflicting priorities, goals, and performance metrics. A managerial perspective is needed to identify activities with similar requirements for integration, coordination, and control. Methods: The arguments in this article apply new reasoning to the previous literature. Findings: The method used in this article to classify health care provision distinguishes different types of health problems that share generic constraints of production. Conclusions: The analysis leads to seven different demand-supply combinations, each with its own operational logic. These are labeled demand and supply–based operating modes (DSO modes), and constitute the managerial building blocks of health care organizations. The modes are Prevention, Emergency, One visit, Project, Elective, Cure, and Care. As analytical categories the DSO modes can be used to understand current problems. Several operating modes in one unit create managerial problems of conflicting priorities, goals, and performance metrics. The DSO modes are constructed as managerially homogeneous categories or care platforms responding to general types of demand, and supply constraints. The DSO modes bring methods of industrial management to bear on efforts to improve health care. PMID:21166870

  3. Contamination from historic metal mines and the need for non-invasive remediation techniques: a case study from Southwest England.

    PubMed

    Rieuwerts, J S; Austin, S; Harris, E A

    2009-01-01

    The UK is legally required by the EU Water Framework Directive (WFD) to improve the environmental quality of inland and coastal waters in the coming years. Historic metal mine sites are recognised as an important source of some of the elements on the WFD priority chemicals list. Despite their contamination potential, such sites are valued for their heritage and for other cultural and scientific reasons. Remediating historic mining areas to control the contamination of stream waters, whilst also preserving the integrity of the mine site, is a challenge but might be achieved by novel forms of remediation. In this study, we have carried out environmental monitoring at a historic, and culturally-sensitive, lead-silver mine site in southwest England and have undertaken a pilot experiment to investigate the potential for a novel, non-invasive remediation method at the site. Concentrations of Pb and Zn in mine spoil were clearly elevated with geometric mean concentrations of 6,888 and 710 microg g(-1), respectively. Mean concentrations of Pb in stream waters were between 21 and 54 microg l(-1), in exceedance of the WFD environmental quality standard (EQS) of 7.2 microg l(-1) (annual average). Mean Zn concentrations in water were between 30 and 97 microg l(-1), compared to the UK EQS of 66.5 microg l(-1) (average). Stream sediments within, and downstream from, the mining site were similarly elevated, indicating transport of mine waste particles into and within the stream. We undertook a simple trial to investigate the potential of hydroxyapatite, in the form of bonemeal, to passively remove the Pb and Zn, from the stream waters. After percolating through bonemeal in a leaching column, 96-99% of the dissolved Pb and Zn in stream water samples was removed.

  4. Analytical results for minicipal biosolids samples from a monitoring program near Deer Trail, Colorado (U.S.A.) 2010

    USGS Publications Warehouse

    Crock, J.G.; Smith, D.B.; Yager, T.J.B.; Berry, C.J.; Adams, M.G.

    2011-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colo., has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colo., U.S.A. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring groundwater at part of this site. In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program was recently extended through the end of 2010 and is now completed. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream-bed sediment. Streams at the site are dry most of the year, so samples of stream-bed sediment deposited after rain were used to indicate surface-water runoff effects. This report summarizes analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed for 2010. In general, the objective of each component of the study was to determine whether concentrations of nine trace elements ("priority analytes") (1) were higher than regulatory limits, (2) were increasing with time, or (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied (background). Previous analytical results indicate that the elemental composition of biosolids from the Denver plant was consistent during 1999-2009, and this consistency continues with the samples for 2010. Total concentrations of regulated trace elements remain consistently lower than the regulatory limits for the entire monitoring period. Concentrations of none of the priority analytes appear to have increased during the 12 years of this study.

  5. Analytical results for municipal biosolids samples from a monitoring program near Deer Trail, Colorado (U.S.A.), 2009

    USGS Publications Warehouse

    Crock, J.G.; Smith, D.B.; Yager, T.J.B.; Berry, C.J.; Adams, M.G.

    2010-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver, a large wastewater treatment plant in Denver, Colo., has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colo., U.S.A. In cooperation with the Metro District in 1993, the U.S. Geological Survey began monitoring groundwater at part of this site. In 1999, the Survey began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program has recently been extended through the end of 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream-bed sediment. Streams at the site are dry most of the year, so samples of stream-bed sediment deposited after rain were used to indicate surface-water effects. This report presents analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed for 2009. In general, the objective of each component of the study was to determine whether concentrations of nine trace elements ('priority analytes') (1) were higher than regulatory limits, (2) were increasing with time, or (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied. Previous analytical results indicate that the elemental composition of biosolids from the Denver plant was consistent during 1999-2008, and this consistency continues with the samples for 2009. Total concentrations of regulated trace elements remain consistently lower than the regulatory limits for the entire monitoring period. Concentrations of none of the priority analytes appear to have increased during the 11 years of this study.

  6. A model for evaluating stream temperature response to climate change in Wisconsin

    USGS Publications Warehouse

    Stewart, Jana S.; Westenbroek, Stephen M.; Mitro, Matthew G.; Lyons, John D.; Kammel, Leah E.; Buchwald, Cheryl A.

    2015-01-01

    Integrating the SWB Model with the ANN Model provided a mechanism by which downscaled global or regional climate model results could be used to estimate the potential effects of climate change on future stream temperature on a daily time step. To address future climate scenarios, statistically downscaled air temperature and precipitation projections from 10 GCMs and 2 time periods were used with the SWB-ANNv1 Model to project future stream temperature. Projections of future stream temperatures at mid- (2046–65) and late- (2081–2100) 21st century showed the July mean water temperature increasing for all stream segments with about 80 percent of stream kilometers increasing by 1 to 2 degrees Celsius (°C) by mid-century and about 99 percent increasing by 1 to 3 °C by late-century. Projected changes in stream temperatures also affected changes in thermal classes with a loss in the total amount of cold-water, cold-transition, and warm-transition thermal habitat and a gain in warm-water and very warm thermal habitat for both mid- and late-21st century time periods. The greatest losses occurred for cold-water streams and the greatest gains for warm-water streams, with a contraction of cold-water streams in the Driftless Area of western and southern Wisconsin and an expansion of warm-water streams across northern Wisconsin. Results of this study suggest that such changes will affect the composition of fish assemblages, with a loss of suitable habitat for cold-water fishes and gain in suitable habitat for warm-water fishes. In the end, these projected changes in thermal habitat attributable to climate may result in a net loss of fisheries, because many warm-water species may be unable to colonize habitats formerly occupied by cold-water species because of other habitat limitations (e.g., stream size, gradient). Although projected stream temperatures may vary greatly, depending on the emissions scenario and models used, the results presented in this report represent one possibility. The relative change in stream temperature can provide useful information for planning for potential climate impacts to aquatic ecosystems. Model results can be used to help identify vulnerabilities of streams to climate change, guide stream surveys and thermal classifications, prioritize the allocation of scarce financial resources, identify approaches to climate adaptation to best protect and enhance resiliency in stream thermal habitat, and provide information to make quantitative assessments of statewide stream resources.

  7. Identifying effective healthy weight and lifestyle advertisements: Focus groups with Australian adults.

    PubMed

    Dixon, Helen; Murphy, Michael; Scully, Maree; Rose, Mischa; Cotter, Trish

    2016-08-01

    This study explored adult's attitudes and reactions to a range of television advertisements (ads) promoting healthy weight, physical activity and healthy eating. Twenty-four focus groups (N = 179) were conducted in metropolitan and regional areas of the Australian states of Victoria, New South Wales (NSW) and Queensland, with participants segmented by sex, education (no tertiary, at least some tertiary) and life stage (young adults, parents). Each group was assigned to one of the three advertising streams - Weight, Activity, or Nutrition - where responses to five different ads were explored using semi-structured, moderator-led discussions. Discussion transcripts were qualitatively content analysed using a conventional approach. Four main themes were identified in participants' discussions about the ads' main messages - (i) Why is it a problem? (ii) Who is it a problem for? (iii) What should I do about it? (iv) How do I make the changes? Reactions varied by demographic factors and current weight and lifestyle status. Participants furthest from achieving public health recommendations for weight, diet and activity were motivated by 'what' and 'how' ads involving gentle persuasion and helpful hints. Participants who were closer to meeting these recommendations were motivated by 'why' ads featuring more graphic and emotive content and new information. Findings suggest a strategic approach is important for the development of public health ads promoting healthy weight and lifestyle, with consideration given to the specific communication goals and who the target audience is. This should help ensure an appropriate message is delivered to priority population subgroups in the most informative and motivating manner. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Geochemical investigations and interim recommendations for priority abandoned mine sites, BLM lands, upper Animas River watershed, San Juan County, Colorado

    USGS Publications Warehouse

    Nash, J. Thomas

    1999-01-01

    Field observations, sampling of mine dumps and mine drainage waters, and laboratory studies of dump materials have been made at mining areas deemed to be on public lands administered by the U. S. Bureau of Land Management (BLM) in the Upper Animas River watershed. Results of chemical analyses of dump materials, leachates of those materials, and surface waters draining mines or dumps provide indications of where acid is generated or consumed, and metal concentrations below mines or dumps. Information on sites previously identified as needing reclamation is reviewed and available geochemical information is used to rank 26 sites into four classes of priority for reclamation. Although there are more than a thousand mining sites (productive mines and prospects) on BLM lands in the Upper Animas River watershed study area, the majority are very small (less than about 70 cubic yards of dump material), are more than 2 miles from a major stream, or so inaccessible as to prohibit reclamation. In the summers of 1997 and 1998 approximately 200 sites were observed and more than 100 of these that appeared to have the potential to geochemically impact the watershed were examined more carefully and sampled. Building upon the prior work of the BLM and associated agencies, this work attempted to identify the most significant sources of mine-related contamination and to rank those sites as to priority for reclamation. These most significant mining areas have been examined within a geologic framework and were evaluated by multiple criteria, including tendency to generate acid and release toxic metals, observed damage to vegetation, potential to release metals based on leach tests, and likelihood of transport into streams of the watershed. No single measurable parameter, such as metal concentration, can be used to rank the sites. Rather, subjective estimates are required to evaluate combinations or interactions among several parameters. The most subjective estimate, while ranking feasibility of reclamation, is the relative amounts of naturally occurring metals and acidity and mine-related contamination at each mining area. Mitigation of natural contributions at mines or unmined areas is beyond the scope of my studies, but should be considered when planning reclamation. Available information for the 26 priority sites is adequate for ranking, but at some sites additional information on groundwater conditions is needed for a more complete site evaluation.

  9. A River Runs Under It: Modeling the Distribution of Streams and Stream Burial in Large River Basins

    NASA Astrophysics Data System (ADS)

    Elmore, A. J.; Julian, J.; Guinn, S.; Weitzell, R.; Fitzpatrick, M.

    2011-12-01

    Stream network density exerts a strong control on hydrologic processes in watersheds. Over land and through soil and bedrock substrate, water moves slowly and is subject to chemical transformations unique to conditions of continuous contact with geologic materials. In contrast, once water enters stream channels it is efficiently transported out of watersheds, reducing the amount of time for biological uptake and stream nutrient processing. Therefore, stream network density dictates both the relative importance of terrestrial and aquatic influences to stream chemistry and the residence time of water in watersheds, and is critical to modeling and empirical studies aimed at understanding the impact of land use on stream water quantity and quality. Stream network density is largely a function of the number and length of the smallest streams. Methods for mapping and measuring these headwater streams range from simple measurement of stream length from existing maps, to detailed field mapping efforts, which are difficult to implement over large areas. Confounding the simplest approaches, many headwater stream reaches are not included in hydrographical maps, such as the U.S. National Hydrography Dataset (NHD), either because they were buried during the course of urban development or because they were seen as smaller than the minimum mapping size at the time of map generation. These "missing streams" severely limit the effective analyses of stream network density based on the NHD, constituting a major problem for many efforts to understand land-use impacts on streams. Here we report on research that predicts stream presence and absence by coupling field observations of headwater stream channels with maximum entropy models (MaxEnt) commonly implemented in biogeographical studies to model species distributions. The model utilizes terrain variables that are continuously accumulated along hydrologic flowpaths derived from a 10-m digital elevation model. In validation, the model correctly predicts the presence of 91% of all 10-m stream segments, and rarely miscalculates tributary numbers. We apply this model to the entire Potomac River Basin (37,800 km2) and several adjacent basins to map stream channel density and compare our results with NHD flowline data. We find that NHD underestimates stream channel density by a factor of two in most sub watersheds and this effect is strongest in the densely urbanized cities of Washington, DC and Baltimore, MD. We then apply a second predictive model based on impervious surface area data to map the extent of stream burial. Results demonstrate that the extent of stream burial increases with decreasing stream catchment area. When applied at four time steps (1975, 1990, 2001, and 2006), we find that although stream burial rates have slowed in the recent decade, streams that are not mapped in NHD flowline data continue to be buried during development. This work is the most ambitious attempt yet to map stream network density over a large region and will have lasting implications for modeling and conservation efforts.

  10. Protect and Restore Lolo Creek Watershed, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2005-12-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this project. Riparian enhancement through planting of riparian trees and streambank bioengineering was completed. Culvert inventory was completed in 2004 on US Forestmore » Service and Potlatch Corporation lands in the Lolo Creek drainage. Two high priority culverts were replaced, and are now accessible for fish species. Four miles of road was decommissioned. Tribal crews completed maintenance to the previously built fence.« less

  11. Fish movement ecology in high gradient headwater streams: Its relevance to fish passage restoration through stream culvert barriers

    USGS Publications Warehouse

    Hoffman, Robert L.; Dunham, Jason B.

    2007-01-01

    Restoration of fish passage through culvert barriers has emerged as a major issue in the Pacific Northwest and nationwide, in part, because of their potential influence on fish movement. Movement is an essential mechanism by which mobile animals acquire the resources necessary for the successful completion of their life-cycles. In this report, we provide a brief review of some essential characteristics of animal movement and examples from a focal group of fishes in Washington State: salmon, trout, and char. We begin by outlining some basic characteristics of animal movement and then apply that foundation to the case of salmonid fishes. Next we consider the consequences of disrupting fish movement with human-constructed barriers, such as culverts. Finally, this body of evidence is summarized, and we propose a short list of what we view as high priority information needs to support more effective restoration of fish passage through culverts.

  12. Methods used to characterize the chemical composition and biological activity of environmental waters throughout the United States, 2012-14

    USGS Publications Warehouse

    Romanok, Kristin M.; Reilly, Timothy J.; Barber, Larry B.; Boone, J. Scott; Buxton, Herbert T.; Foreman, William T.; Furlong, Edward T.; Hladik, Michelle; Iwanowicz, Luke R.; Journey, Celeste A.; Kolpin, Dana W.; Kuivila, Kathryn; Loftin, Keith A.; Mills, Marc A.; Meyer, Michael T.; Orlando, James L.; Smalling, Kelly L.; Villeneuve, Daniel L.; Bradley, Paul M.

    2017-03-22

    A vast array of chemical compounds are in wide commercial use in the United States, and the potential ecological and human-health effect of exposure to chemical mixtures has been identified as a high priority in environment health science. Awareness of the potential effects of low-level chemical exposures is rising. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted a study in which samples were collected from 38 streams in 25 States to provide an overview of contaminants found in stream water across the Nation. Additionally, biological screening assays were used to help determine any potential ecological and human-health effects of these chemical mixtures and to prioritize target chemicals for future toxicological studies. This report describes the site locations and the sampling and analytical methods and quality-assurance procedures used in the study.

  13. All words are not created equal: Expectations about word length guide infant statistical learning

    PubMed Central

    Lew-Williams, Casey; Saffran, Jenny R.

    2011-01-01

    Infants have been described as ‘statistical learners’ capable of extracting structure (such as words) from patterned input (such as language). Here, we investigated whether prior knowledge influences how infants track transitional probabilities in word segmentation tasks. Are infants biased by prior experience when engaging in sequential statistical learning? In a laboratory simulation of learning across time, we exposed 9- and 10-month-old infants to a list of either bisyllabic or trisyllabic nonsense words, followed by a pause-free speech stream composed of a different set of bisyllabic or trisyllabic nonsense words. Listening times revealed successful segmentation of words from fluent speech only when words were uniformly bisyllabic or trisyllabic throughout both phases of the experiment. Hearing trisyllabic words during the pre-exposure phase derailed infants’ abilities to segment speech into bisyllabic words, and vice versa. We conclude that prior knowledge about word length equips infants with perceptual expectations that facilitate efficient processing of subsequent language input. PMID:22088408

  14. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams.

    PubMed

    Bell, Robin E; Studinger, Michael; Shuman, Christopher A; Fahnestock, Mark A; Joughin, Ian

    2007-02-22

    Water plays a crucial role in ice-sheet stability and the onset of ice streams. Subglacial lake water moves between lakes and rapidly drains, causing catastrophic floods. The exact mechanisms by which subglacial lakes influence ice-sheet dynamics are unknown, however, and large subglacial lakes have not been closely associated with rapidly flowing ice streams. Here we use satellite imagery and ice-surface elevations to identify a region of subglacial lakes, similar in total area to Lake Vostok, at the onset region of the Recovery Glacier ice stream in East Antarctica and predicted by ice-sheet models. We define four lakes through extensive, flat, featureless regions of ice surface bounded by upstream troughs and downstream ridges. Using ice velocities determined using interferometric synthetic aperture radar (InSAR), we find the onset of rapid flow (moving at 20 to 30 m yr(-1)) of the tributaries to the Recovery Glacier ice stream in a 280-km-wide segment at the downslope margins of these four subglacial lakes. We conclude that the subglacial lakes initiate and maintain rapid ice flow through either active modification of the basal thermal regime of the ice sheet by lake accretion or through scouring bedrock channels in periodic drainage events. We suggest that the role of subglacial lakes needs to be considered in ice-sheet mass balance assessments.

  15. The burial of headwater streams in drainage pipes reduces in-stream nitrate retention: results from two US metropolitan areas

    NASA Astrophysics Data System (ADS)

    Beaulieu, J. J.; Mayer, P. M.; Kaushal, S.; Pennino, M. J.; Arango, C. P.; Balz, D. A.; Fritz, K. M.; Golden, H. E.; Knightes, C. D.

    2012-12-01

    Nitrogen (N) retention in stream networks is an important ecosystem service that may be affected by the widespread burial of headwater streams in urban watersheds. Stream burial occurs when segments of a channel are encased in drainage pipe and buried beneath the land surface to facilitate above ground development or stormwater runoff. We predicted that burial suppresses the capacity of streams to retain and transform nitrate, the dominate form of bioavailable N in urban streams, by eliminating primary production, reducing respiration rates, and decreasing water residence time. We tested these predictions by measuring whole-stream nitrate (NO3-) removal rates using 15NO3- isotope tracer releases in reaches that were buried and open to the sunlight in three streams in Cincinnati, Ohio and three streams in Baltimore, Maryland during four seasons. Nitrate uptake lengths in buried reaches (range: 560 - 43,650 m) were 2-98 times greater than open reaches exposed to daylight (range: 85 - 7195 m), indicating that buried reaches were substantially less effective at retaining NO3- than open reaches. Nitrate retention in buried reaches was suppressed by a combination of hydrological and biological processes. High water velocities in buried reaches (buried= 5.8 m/s, open=1.48 m/s) rapidly exported NO3- from the channel, reducing the potential for in-stream NO3- retention. Uptake lengths in the buried reaches were lengthened further by low in-stream biological NO3- demand, as indicated by NO3- uptake velocities 16-fold lower than that of the open reaches. Similarly, buried reaches had lower ecosystem respiration rates than open reaches (buried=1.5g O2/m2/hr, open=4.5g O2/m2/hr), likely due to lower organic matter standing stocks (buried=12 gAFMD/m2, open=48 gAFDM/m2). Biological activity in the buried reaches was further suppressed by the absence of light which precluded photosynthetic activity and the associated assimilative N demand. Overall, our results demonstrate that the combined effects of elevated water velocity and reduced biological activity as a result of stream burial inhibits NO3- retention, exacerbating the export of excess N to downstream water bodies. Future work will scale these results to a river network to assess the cumulative effect of stream burial on watershed NO3- export.

  16. Vegetation management in sensitive areas of the Lake Tahoe Basin: A workshop to evaluate risks and advance existing strategies and practices [Independent review panel report

    Treesearch

    William Elliot; Wally Miller; Bruce Hartsough; Scott Stephens

    2009-01-01

    Elected officials, agency representatives and stakeholders representing many segments of the Lake Tahoe Basin community have all raised concerns over the limited progress in reducing excess vegetation biomass in Stream Environment Zones (SEZ) and on steep slopes (collectively referred to as sensitive areas) in the Lake Tahoe Basin. Limited access, the potential for...

  17. Effects of Forecasted Climate Change on Stream Temperatures in the Nooksack River Basin

    NASA Astrophysics Data System (ADS)

    Truitt, S. E.; Mitchell, R. J.; Yearsley, J. R.; Grah, O. J.

    2017-12-01

    The Nooksack River in northwest Washington State provides valuable habitat for endangered salmon species, as such it is critical to understand how stream temperatures will be affected by forecasted climate change. The Middle and North Forks basins of the Nooksack are high-relief and glaciated, whereas the South Fork is a lower relief rain and snow dominated basin. Due to a moderate Pacific maritime climate, snowpack in the basins is sensitive to temperature increases. Previous modeling studies in the upper Nooksack basins indicate a reduction in snowpack and spring runoff, and a recession of glaciers into the 21st century. How stream temperatures will respond to these changes is unknown. We use the Distributed Hydrology Soil Vegetation Model (DHSVM) coupled with a glacier dynamics model and the River Basin Model (RBM) to simulate hydrology and stream temperature from present to the year 2100. We calibrate the DHSVM and RBM to the three forks in the upper 1550 km2 of the Nooksack basin, which contain an estimated 3400 hectares of glacial ice. We employ observed stream-temperature data collected over the past decade and hydrologic data from the four USGS streamflow monitoring sites within the basin and observed gridded climate data developed by Linveh et al. (2013). Field work was conducted in the summer of 2016 to determine stream morphology, discharge, and stream temperatures at a number of stream segments for the RBM calibration. We simulate forecast climate change impacts, using gridded daily downscaled data from global climate models of the CMIP5 with RCP4.5 and RCP8.5 forcing scenarios developed using the multivariate adaptive constructed analogs method (MACA; Abatzoglou and Brown, 2011). Simulation results project a trending increase in stream temperature as a result of lower snowmelt and higher air temperatures into the 21st century, especially in the lower relief, unglaciated South Fork basin.

  18. Habitat selection by juvenile Swainson’s thrushes (Catharus ustulatus) in headwater riparian areas, northwestern Oregon, USA

    USGS Publications Warehouse

    Jenkins, Stephanie R.; Betts, Matthew G.; Huso, Manuela M.; Hagar, Joan C.

    2013-01-01

    Lower order, non-fish-bearing streams, often termed “headwater streams”, have received minimal research effort and protection priority, especially in mesic forests where distinction between riparian and upland vegetation can be subtle. Though it is generally thought that breeding bird abundance is higher in riparian zones, little is known about species distributions when birds are in their juvenile stage – a critical period in terms of population viability. Using radio telemetry, we examined factors affecting habitat selection by juvenile Swainson’s thrushes during the post-breeding period in headwater basins in the Coast Range of Oregon, USA. We tested models containing variables expected to influence the amount of food and cover (i.e., deciduous cover, coarse wood volume, and proximity to stream) as well as models containing variables that are frequently measured and manipulated in forest management (i.e., deciduous and coniferous trees separated into size classes). Juvenile Swainson’s thrushes were more likely to select locations with at least 25% cover of deciduous, mid-story vegetation and more than 2.0 m3/ha of coarse wood within 40 m of headwater streams. We conclude that despite their small and intermittent nature, headwater streams and adjacent riparian areas are selected over upland areas by Swainson’s thrush during the postfledging period in the Oregon Coast Range.

  19. Coal-tar based pavement sealant toxicity to freshwater macroinvertebrates.

    PubMed

    Bryer, Pamela J; Scoggins, Mateo; McClintock, Nancy L

    2010-05-01

    Non-point-source pollution is a major source of ecological impairment in urban stream systems. Recent work suggests that coal-tar pavement sealants, used extensively to protect parking areas, may be contributing a large portion of the polycyclic aromatic hydrocarbon (PAH) loading seen in urban stream sediments. The hypothesis that dried coal-tar pavement sealant flake could alter the macroinvertebrate communities native to streams in Austin, TX was tested using a controlled outdoor laboratory type approach. The treatment groups were: control, low, medium, and high with total PAH concentrations (TPAH = sum of 16 EPA priority pollutant PAHs) of 0.1, 7.5, 18.4, & 300 mg/kg respectively. The low, medium, and high treatments were created via the addition of dried coal-tar pavement sealant to a sterile soil. At the start of the 24-day exposure, sediment from a minimally impacted local reference site containing a community of live sediment-dwelling benthic macroinvertebrates was added to each replicate. An exposure-dependent response was found for several stream health measures and for several individual taxa. There were community differences in abundance (P = 0.0004) and richness (P < 0.0001) between treatments in addition to specific taxa responses, displaying a clear negative relationship with the amount of coal-tar sealant flake. These results support the hypothesis that coal-tar pavement sealants contain bioavailable PAHs that may harm aquatic environments. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Occurrence and distribution of fecal indicator bacteria, and physical and chemical indicators of water quality in streams receiving discharge from Dallas/Fort Worth International Airport and vicinity, North-Central Texas, 2008

    USGS Publications Warehouse

    Harwell, Glenn R.; Mobley, Craig A.

    2009-01-01

    This report, done by the U.S. Geological Survey in cooperation with Dallas/Fort Worth International (DFW) Airport in 2008, describes the occurrence and distribution of fecal indicator bacteria (fecal coliform and Escherichia [E.] coli), and the physical and chemical indicators of water quality (relative to Texas Surface Water Quality Standards), in streams receiving discharge from DFW Airport and vicinity. At sampling sites in the lower West Fork Trinity River watershed during low-flow conditions, geometric mean E. coli counts for five of the eight West Fork Trinity River watershed sampling sites exceeded the Texas Commission on Environmental Quality E. coli criterion, thus not fully supporting contact recreation. Two of the five sites with geometric means that exceeded the contact recreation criterion are airport discharge sites, which here means that the major fraction of discharge at those sites is from DFW Airport. At sampling sites in the Elm Fork Trinity River watershed during low-flow conditions, geometric mean E. coli counts exceeded the geometric mean contact recreation criterion for seven (four airport, three non-airport) of 13 sampling sites. Under low-flow conditions in the lower West Fork Trinity River watershed, E. coli counts for airport discharge sites were significantly different from (lower than) E. coli counts for non-airport sites. Under low-flow conditions in the Elm Fork Trinity River watershed, there was no significant difference between E. coli counts for airport sites and non-airport sites. During stormflow conditions, fecal indicator bacteria counts at the most downstream (integrator) sites in each watershed were considerably higher than counts at those two sites during low-flow conditions. When stormflow sample counts are included with low-flow sample counts to compute a geometric mean for each site, classification changes from fully supporting to not fully supporting contact recreation on the basis of the geometric mean contact recreation criterion. All water temperature measurements at sampling sites in the lower West Fork Trinity River watershed were less than the maximum criterion for water temperature for the lower West Fork Trinity segment. Of the measurements at sampling sites in the Elm Fork Trinity River watershed, 95 percent were less than the maximum criterion for water temperature for the Elm Fork Trinity River segment. All dissolved oxygen concentrations were greater than the minimum criterion for stream segments classified as exceptional aquatic life use. Nearly all pH measurements were within the pH criterion range for the classified segments in both watersheds, except for those at one airport site. For sampling sites in the lower West Fork Trinity River watershed, all annual average dissolved solids concentrations were less than the maximum criterion for the lower West Fork Trinity segment. For sampling sites in the Elm Fork Trinity River, nine of the 13 sites (six airport, three non-airport) had annual averages that exceeded the maximum criterion for that segment. For ammonia, 23 samples from 12 different sites had concentrations that exceeded the screening level for ammonia. Of these 12 sites, only one non-airport site had more than the required number of exceedances to indicate a screening level concern. Stormflow total suspended solids concentrations were significantly higher than low-flow concentrations at the two integrator sites. For sampling sites in the lower West Fork Trinity River watershed, all annual average chloride concentrations were less than the maximum annual average chloride concentration criterion for that segment. For the 13 sampling sites in the Elm Fork Trinity River watershed, one non-airport site had an annual average concentration that exceeded the maximum annual average chloride concentration criterion for that segment.

  1. Real-time visual communication to aid disaster recovery in a multi-segment hybrid wireless networking system

    NASA Astrophysics Data System (ADS)

    Al Hadhrami, Tawfik; Wang, Qi; Grecos, Christos

    2012-06-01

    When natural disasters or other large-scale incidents occur, obtaining accurate and timely information on the developing situation is vital to effective disaster recovery operations. High-quality video streams and high-resolution images, if available in real time, would provide an invaluable source of current situation reports to the incident management team. Meanwhile, a disaster often causes significant damage to the communications infrastructure. Therefore, another essential requirement for disaster management is the ability to rapidly deploy a flexible incident area communication network. Such a network would facilitate the transmission of real-time video streams and still images from the disrupted area to remote command and control locations. In this paper, a comprehensive end-to-end video/image transmission system between an incident area and a remote control centre is proposed and implemented, and its performance is experimentally investigated. In this study a hybrid multi-segment communication network is designed that seamlessly integrates terrestrial wireless mesh networks (WMNs), distributed wireless visual sensor networks, an airborne platform with video camera balloons, and a Digital Video Broadcasting- Satellite (DVB-S) system. By carefully integrating all of these rapidly deployable, interworking and collaborative networking technologies, we can fully exploit the joint benefits provided by WMNs, WSNs, balloon camera networks and DVB-S for real-time video streaming and image delivery in emergency situations among the disaster hit area, the remote control centre and the rescue teams in the field. The whole proposed system is implemented in a proven simulator. Through extensive simulations, the real-time visual communication performance of this integrated system has been numerically evaluated, towards a more in-depth understanding in supporting high-quality visual communications in such a demanding context.

  2. Use of graph algorithms in the processing and analysis of images with focus on the biomedical data.

    PubMed

    Zdimalova, M; Roznovjak, R; Weismann, P; El Falougy, H; Kubikova, E

    2017-01-01

    Image segmentation is a known problem in the field of image processing. A great number of methods based on different approaches to this issue was created. One of these approaches utilizes the findings of the graph theory. Our work focuses on segmentation using shortest paths in a graph. Specifically, we deal with methods of "Intelligent Scissors," which use Dijkstra's algorithm to find the shortest paths. We created a new software in Microsoft Visual Studio 2013 integrated development environment Visual C++ in the language C++/CLI. We created a format application with a graphical users development environment for system Windows, with using the platform .Net (version 4.5). The program was used for handling and processing the original medical data. The major disadvantage of the method of "Intelligent Scissors" is the computational time length of Dijkstra's algorithm. However, after the implementation of a more efficient priority queue, this problem could be alleviated. The main advantage of this method we see in training that enables to adapt to a particular kind of edge, which we need to segment. The user involvement has a significant influence on the process of segmentation, which enormously aids to achieve high-quality results (Fig. 7, Ref. 13).

  3. The magnitude of lost ecosystem structure and function in urban streams and the effectiveness of watershed-based management (Invited)

    NASA Astrophysics Data System (ADS)

    Smucker, N. J.; Detenbeck, N. E.; Kuhn, A.

    2013-12-01

    Watershed development is a leading cause of stream impairment and increasingly threatens the availability, quality, and sustainability of freshwater resources. In a recent global meta-analysis, we found that measures of desirable ecological structure (e.g., algal, macroinvertebrate, and fish communities) and functions (e.g., metabolism, nutrient uptake, and denitrification) in streams with developed watersheds were only 23% and 34%, respectively, of those in minimally disturbed reference streams. As humans continue to alter watersheds in response to growing and migrating populations, characterizing ecological responses to watershed development and management practices is urgently needed to inform future development practices, decisions, and policy. In a study of streams in New England, we found that measures of macroinvertebrate and algal communities had threshold responses between 1-10% and 1-5% impervious cover, respectively. Macroinvertebrate communities had decreases in sensitive taxa and predators occurring from 1-3.5% and transitions in trophic and habitat guilds from 4-9% impervious cover. Sensitive algal taxa declined at 1%, followed by increases in tolerant taxa at 3%. Substantially altered algal communities persisted above 5% impervious cover and were dominated by motile taxa (sediment resistant) and those with high nutrient demands. Boosted regression tree analysis showed that sites with >65% and ideally >80% forest and wetland cover in near-stream buffers were associated with a 13-34% decrease in the effects of watershed impervious cover on algal communities. While this reduction is substantial, additional out-of-stream management efforts are needed to protect and restore stream ecosystems (e.g., created wetlands and stormwater ponds), but understanding their effectiveness is greatly limited by sparse ecological monitoring. Our meta-analysis found that restoration improved ecological structure and functions in streams by 48% and 14%, respectively, when compared to streams with developed watersheds and no management practices in place. However, ecosystem measures at restored sites were still only 53% of those in minimally disturbed reference streams. Some of our ongoing work further examines how watershed development and riparian condition affect stream ecosystem functions by altering the sources and delivery of nutrients and carbon. Our results can help inform management priorities and expectations, and they emphasize the importance of implementing mindful development and protective actions in a watershed context, especially in watersheds near impervious cover thresholds. Continued research on linked terrestrial-aquatic systems, improved BMP tracking, and ongoing monitoring will be essential to conserving and restoring the mechanisms that sustain valued ecological attributes and ecosystem services of streams.

  4. Application of Energy Integration Techniques to the Design of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Finn, Cory

    2000-01-01

    Exchanging heat between hot and cold streams within an advanced life support system can save energy. This savings will reduce the equivalent system mass (ESM) of the system. Different system configurations are examined under steady-state conditions for various percentages of food growth and waste treatment. The scenarios investigated represent possible design options for a Mars reference mission. Reference mission definitions are drawn from the ALSS Modeling and Analysis Reference Missions Document, which includes definitions for space station evolution, Mars landers, and a Mars base. For each scenario, streams requiring heating or cooling are identified and characterized by mass flow, supply and target temperatures and heat capacities. The Pinch Technique is applied to identify good matches for energy exchange between the hot and cold streams and to calculate the minimum external heating and cooling requirements for the system. For each pair of hot and cold streams that are matched, there will be a reduction in the amount of external heating and cooling required, and the original heating and cooling equipment will be replaced with a heat exchanger. The net cost savings can be either positive or negative for each stream pairing, and the priority for implementing each pairing can be ranked according to its potential cost savings. Using the Pinch technique, a complete system heat exchange network is developed and heat exchangers are sized to allow for calculation of ESM. The energy-integrated design typically has a lower total ESM than the original design with no energy integration. A comparison of ESM savings in each of the scenarios is made to direct future Pinch Analysis efforts.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klipstein, David H.; Robinson, Sharon

    The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).

  6. An Assessment of Champus Expenditures for Cardiovascular Health Care Services in the Fort Leonard Wood Catchment Area

    DTIC Science & Technology

    1992-12-01

    segmented, target marketing can occur and priorities can be established ( Kotler & Clarke, 1987). Any successful re-capturing of CHAMPUS workload or...introduction, one of the new challenges confronting MTF commanders is the need to engage in target marketing . Kotler and Clarke (1987) pointed out...cardiovascu’ar claims paid during CY 1991 (n=57) and all CHAMPUS tc’dae:et cardi :vascular claims -aid rim;- Se-,t.... E... 19,9 L** onal, an" market area

  7. Water-quality and ancillary data collected from the Arroyo Colorado near Rio Hondo, Texas, 2006

    USGS Publications Warehouse

    Roussel, Meghan C.; Canova, Michael G.; Asquith, William H.; Kiesling, Richard L.

    2007-01-01

    The Arroyo Colorado is in the lower Rio Grande Valley of southern Texas and extends from near Mission, Texas, eastward to the Laguna Madre estuarine and coastal marine system, which separates Padre Island from the Texas mainland. Streamflow in the Arroyo Colorado primarily is sustained by effluent from municipal wastewater-treatment plants along the stream banks. Since 1986, the tidal segment of the Arroyo Colorado from the port of Harlingen to the Laguna Madre has been designated by the State of Texas as an impaired water body because of low dissolved oxygen concentrations. Efforts to develop predictive water-quality models for the tidal segment of the Arroyo Colorado have been hampered by a lack of physical, biological, and biochemical data. Specifically, data on primary algal productivity, nutrient cycling, sediment deposition rates, and the relations between these processes and dissolved oxygen dynamics in the stream have been inadequate to support water-quality modeling efforts. The U.S. Geological Survey, in cooperation with the Texas Commission on Environmental Quality, did a study in 2006 to collect data associated with primary algal productivity, nutrient cycling, and dissolved oxygen dynamics in the tidal segment (2201) of the Arroyo Colorado near Rio Hondo. Specific objectives of the study were to (1) characterize water quality by measuring basic properties; (2) characterize the concentrations of carbon and nutrients, biochemical oxygen demand, total organic carbon, total suspended solids, and volatile suspended solids; (3) measure the seasonal differences of nutrient-dependent algal growth and algal production in the water column; (4) measure oxygen respiration or production rates; and (5) measure rates of sediment deposition.

  8. Estimation of stream depletion using values of capacitance

    NASA Astrophysics Data System (ADS)

    Baldenkov, Mikhail; Filimonova, Elena

    2014-05-01

    Compensation pumping is used to alleviate deficiencies in streamflow discharge during dry seasons. Short-term groundwater pumping can use aquifer storage instead of catchment-zone water until the drawdown reaches the edge of the stream. Stream-aquifer interactions are the key component of the hydrologic budgets and estimation of stream depletion has top-priority when evaluating the effectiveness of application of seasonal compensation pumping. Numerous analytical equations have been developed to assess the influence of groundwater pumping on nearby streams (C.V. Theis, R.E. Glover, C.G. Balmer, M.S. Hantush, C.T. Jenkins, B. Hunt, J. Bredehoeft, V.A. Zlotnik, E.L. Minkin, N.N. Lapshin, F.M. Bochever and other researchers). R.B. Wallace and Y. Darama obtained solution for cyclic conditions groundwater pumping. Numerical model approaches used in difficult hydrogeological conditions. It is offered to estimate stream depletion by seasonal pumping using values of capacitance (complex, dimensionless parameter of an aquifer system that defines the delayed effect on steamflow when there is groundwater pumping). Capacitance (C) is determined by the following equation: ( ) L* C = f( °---) , TS-Δt where S and T are the aquifer specific yield (or storage coefficient for a confined aquifer) and transmissivity, respectively; Δt is the pumping time inside one cycle, L* is the summarizing distance between the compensation well and stream edge; in some cases it can involve a function of the stream leakance and vertical leakance of the impermeable layer. Three typical hydraulic cases of compensation pumping were classified depending on their capacitance structure (i.e. the relationship between surface water and groundwater): (a) perfect hydraulic connection between the stream and aquifer; (b) imperfect hydraulic connection between the stream and aquifer; and (c) essentially imperfect hydraulic connection between the stream and the underlying confined aquifer. The form of capacitance was obtained for all three cases and is a function of aquifer hydraulic characteristics, pumping time and distance between the well and stream edge. The distance in the first and the second cases is the sum of the shortest distance between stream edge and the well and the stream leakance; in case; and in the third case, it is the sum of real distance, stream leakance and vertical leakance through the impermeable layer. A regression test between unit stream depletion (i.e. the ratio of stream reduction to pumping rate stream depletion and capacitance was performed, and power dependences were obtained in the form of Y = a + bC-0.5 The drained storage cannot be absolutely recovered by natural processes that cause 'residual' stream depletion (RSD) even in condition of perfect hydraulic connection between the stream and aquifer. The impact of various hydraulic characteristics and engineering factors on RSD was examined by numerical modeling. It was realized lack of correlation between capacitance and RSD, but exponential dependences between capacitance and the annual amplitudes of stream depletion (A) were obtained in the form of: A = 0.95 exp(- 0.776C ) Although this approach cannot assess stream-aquifer interactions to the same degree of accuracy as analytical equations of detail as a numerical model, it can provide forecast estimation with the level of primary available data.

  9. Superfund Explanation of Significant Difference for the Record of Decision (EPA Region 8): Silver Bow Creek/Butte Area, Silver Bow and Deer Lodge, MT, August 31, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1998-12-01

    This document presents an Explanation of Significant Differences from the Record of Decision (ROD) for one Streamside Tailings Operable Unit (SSTOU) of the Silver Bow Creek/Butte Area National Priorities List (NPL) Site. The significant differences discussed in this ESD are: An increase in the volume of tailings/impacted soil in the operable unit; Modifications to the alignment of Silver Bow Creek and the channel profile (i.e., elevation profile); Use of a temporary stream diversion during and after construction to facilitate dewatering and excavation of near-stream tailings and to enhance floodplain and streambank revegetation efforts; Changes in the criteria for in-stream sedimentmore » removal as a result of other design changes; Modifications to the mine waste relocation repository (MWRR) design; The inclusion of sediment basins to contain contaminated overland flow run-on from off-site mine waste sources; Elimination of treatment wetlands as the end land use in Subarea 1; Changes in the estimated schedule to implement the SSTOU remedy; and An increase in the estimated cost of the SSTOU remedy.« less

  10. Role of Geologic Framework, Paleotopography, Sediment Supply, and Human Modification in the Evolutionary Development of the Northeastern North Carolina Barrier Island System

    NASA Astrophysics Data System (ADS)

    Riggs, S. R.; Thieler, E. R.; Mallinson, D. A.; Culver, S. J.; Corbett, D. R.; Hoffman, C. W.

    2002-12-01

    The NE North Carolina coastal system contains an exceptionally thick and well preserved Quaternary stratigraphic record that is the focus of a five-year Cooperative Coastal Geology Program between the USGS, several academic institutions, and state agencies. The major goal is to map this Quaternary section on the inner continental shelf, Outer Banks barrier islands, Albemarle-Pamlico estuarine system, and adjacent land areas. The program objectives are to define the geologic framework, develop the detailed evolutionary history, and understand the ongoing process dynamics driving this large, complex, and rapidly changing, high-energy coastal system. Preliminary data synthesis demonstrates that the major controls dictating the present health and future evolution of this coastal system include the following. 1) The regional late Pleistocene morphology constitutes the underlying geologic framework that the Holocene system has inherited. 2) The controlling paleotopography is a series of lowstand drainage basins consisting of trunk and tributary streams and associated interstream divides that are being drowned. 3) Three major sediment sources dictate the highly variable sand resources available to specific barrier segments and include riverine channel and deltaic deposits associated with lowstand trunk streams, the large cross-shelf cape shoal sand deposits, and sand-rich units occurring within the adjacent shoreface and inner-self strata. 4) Wherever large sand supplies have historically been available, the barrier segments occur as complex islands with large sand volumes producing high and wide barriers, whereas barrier segments without adequate sand supplies are sediment starved and occur as simple overwash barriers. 5) Human modification of the barrier islands over the past seven decades represents a major force that has significantly changed the barrier island dynamics and evolution. 6) The Albemarle Embayment appears to have a slightly higher rate of sea-level rise than adjacent regions due to a slow rate of regional subsidence. Consequently, if the ongoing pattern of storm activity and sea-level rise either continues or increases during the next few decades to centuries, several simple overwash barrier segments on the Outer Banks, that are currently disintegrating, will ultimately collapse into Pamlico Sound. These barrier segments will likely back-step across the open marine Pamlico Embayment and reform on the landward side. A few sand-rich complex barrier segments will persist as isolated, but perched and eroding islands for some longer period of time. In contrast, simple overwash barrier segments that have received minimal human modification and are associated with narrow and shallow back-barrier sounds, appear to be maintaining themselves in their upward and landward migration in response to ongoing storms and sea-level rise.

  11. Movements by adult cutthroat trout in a lotic system: Implications for watershed-scale management

    USGS Publications Warehouse

    Sanderson, T.B.; Hubert, W.A.

    2009-01-01

    Movements by adult cutthroat trout, Oncorhynchus clarkii (Richardson), were assessed from autumn to summer in the Salt River watershed, Wyoming-Idaho, USA by radio telemetry. Adult cutthroat trout were captured during September and October 2005 in the main stem of the Salt River, surgically implanted with radio transmitters, and tracked through to August 2006. Adult cutthroat trout were relatively sedentary and resided primarily in pools from October to March, but their movement rates increased during April. Higher movement rates were observed among tagged fish during May and early June. Among 43 fish residing in the Salt River during April 2006, 44% remained in the river, 37% moved into mountain tributaries and 19% moved into spring streams during the spawning season. Fish did not use segments of mountain tributaries or the upstream Salt River where fish passage was blocked by anthropogenic barriers or the channel was dewatered during summer. Almost all the fish that moved into spring streams used spring streams where pools and gravel-cobble riffles had been constructed by landowners. The results suggest that adult Snake River cutthroat move widely during May and early June to use spawning habitat in mountain tributaries and improved spring streams. Maintaining the ability of adult fish to move into mountain streams with spawning habitat, preserving spawning habitat in accessible mountain tributaries and removing barriers to upstream movements, and re-establishing summer stream flows in mountain tributaries affected by dams appear to be habitat management alternatives to preserve the Snake River cutthroat trout fishery in the Salt River. ?? 2009 Blackwell Publishing Ltd.

  12. Environmental Assessment for the Construction and Operation of a Battalion Headquarters for the U.S. Army Priority Air Transport at Joint Base Andrews-Naval Air Facility Washington, Prince George’s County, Maryland

    DTIC Science & Technology

    2012-12-01

    counts for gate accessible off-base roadways..........................3-10 Table 3-9 Labor force and unemployment ...association with steep stream banks . JBA sits on a plateau between the Anacostia River and the Patuxent River. Surface elevations at JBA range from...storm sewer lines cause isolated ponding during low-intensity rainfalls (URS 2012). The base operates under two general NPDES permits: (1) Multi- Sector

  13. GREAT II Upper Mississippi River (Guttenberg, Iowa to Saverton, Missouri) Water Quality Work Group Appendix.

    DTIC Science & Technology

    1980-12-01

    DO trends in area. this segment of the river. Statistical tests, however, showed the differences in average A concentration of at least 5 mg/i DO is...as ponds and streams immediately below milling mercury concentration against body length * sites had accumulations of lead up to 178 and is shown in...65 1 Relative Proportions of Major Ions in Mississippi (1976) 83 2 Mean Nutrient Concentrations - Mississippi River

  14. National Hydrography Dataset Plus (NHDPlus)

    EPA Pesticide Factsheets

    The NHDPlus Version 1.0 is an integrated suite of application-ready geospatial data sets that incorporate many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,000-scale NHD), improved networking, naming, and value-added attributes (VAA's). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainageenforcement technique first broadly applied in New England, and thus dubbed The New-England Method. This technique involves burning-in the 1:100,000-scale NHD and when available building walls using the national WatershedBoundary Dataset (WBD). The resulting modified digital elevation model(HydroDEM) is used to produce hydrologic derivatives that agree with the NHDand WBD. An interdisciplinary team from the U. S. Geological Survey (USGS), U.S. Environmental Protection Agency (USEPA), and contractors, over the lasttwo years has found this method to produce the best quality NHD catchments using an automated process.The VAAs include greatly enhanced capabilities for upstream and downstream navigation, analysis and modeling. Examples include: retrieve all flowlines (predominantly confluence-to-confluence stream segments) and catchments upstream of a given flowline using queries rather than by slower flowline-by flowline navigation; retrieve flowlines by stream order; subset a stream level path sorted in hydrologic order for st

  15. Ictalurids in Iowa’s streams and rivers: Status, distribution, and relationships with biotic integrity

    USGS Publications Warehouse

    Sindt, Anthony R.; Fischer, Jesse R.; Quist, Michael C.; Pierce, Clay

    2011-01-01

    Anthropogenic alterations to Iowa’s landscape have greatly altered lotic systems with consequent effects on the biodiversity of freshwater fauna. Ictalurids are a diverse group of fishes and play an important ecological role in aquatic ecosystems. However, little is known about their distribution and status in lotic systems throughout Iowa. The purpose of this study was to describe the distribution of ictalurids in Iowa and examine their relationship with ecological integrity of streams and rivers. Historical data (i.e., 1884–2002) compiled for the Iowa Aquatic Gap Analysis Project (IAGAP) were used to detect declines in the distribution of ictalurids in Iowa streams and rivers at stream segment and watershed scales. Eight variables characterizing ictalurid assemblages were used to evaluate relationships with index of biotic integrity (IBI) ratings. Comparisons of recent and historic data from the IAGAP database indicated that 9 of Iowa’s 10 ictalurid species experienced distribution declines at one or more spatial scales. Analysis of variance indicated that ictalurid assemblages differed among samples with different IBI ratings. Specifically, total ictalurid, sensitive ictalurid, and Noturus spp. richness increased as IBI ratings increased. Results indicate declining ictalurid species distributions and biotic integrity are related, and management strategies aimed to improve habitat and increase biotic integrity will benefit ictalurid species.

  16. Delayed effects of flood control on a flood-dependent riparian forest

    USGS Publications Warehouse

    Katz, Gabrielle L.; Friedman, Jonathan M.; Beatty, Susan W.

    2005-01-01

    The downstream effects of dams on riparian forests are strongly mediated by the character and magnitude of adjustment of the fluvial–geomorphic system. To examine the effects of flow regulation on sand-bed streams in eastern Colorado, we studied the riparian forest on three river segments, the dam-regulated South Fork Republican River downstream of Bonny Dam, the unregulated South Fork Republican River upstream of Bonny Dam, and the unregulated Arikaree River. Although Bonny Dam significantly reduced peak and mean discharge downstream since 1951, there was little difference in forest structure between the regulated and unregulated segments. On all river segments, the riparian forest was dominated by the native pioneer tree, Populus deltoides, which became established during a period of channel narrowing beginning after the 1935 flood of record and ending by 1965. The nonnative Elaeagnus angustifolia was present on all river segments, with recruitment ongoing. The lack of contrast in forest structure between regulated and unregulated reaches resulted primarily from the fact that no large floods occurred on any of the study segments since dam construction. Most of the riparian forest in the study area was located on the broad narrowing terrace, which was rarely inundated on the unregulated segments, resulting in little contrast with the regulated segment. A minor dam effect occurred on the small modern floodplain, which was actively disturbed on the unregulated segments, but not on the regulated segments. Although Bonny Dam had the potential to significantly influence downstream riparian ecosystems, this influence had not been expressed, and may never be if a large flood does not occur within the lifetime of the dam. Minor dam effects to riparian systems can be expected downstream of large dams in some settings, including the present example in which there was insufficient time for the dam effects to by fully expressed.

  17. Quality of surface-water runoff in selected streams in the San Antonio segment of the Edwards aquifer recharge zone, Bexar County, Texas, 1997-2012

    USGS Publications Warehouse

    Opsahl, Stephen P.

    2012-01-01

    During 1997–2012, the U.S. Geological Survey, in cooperation with the San Antonio Water System, collected and analyzed water-quality constituents in surface-water runoff from five ephemeral stream sites near San Antonio in northern Bexar County, Texas. The data were collected to assess the quality of surface water that recharges the Edwards aquifer. Samples were collected from four stream basins that had small amounts of developed land at the onset of the study but were predicted to undergo substantial development over a period of several decades. Water-quality samples also were collected from a fifth stream basin located on land protected from development to provide reference data by representing undeveloped land cover. Water-quality data included pH, specific conductance, chemical oxygen demand, dissolved solids (filtered residue on evaporation in milligrams per liter, dried at 180 degrees Celsius), suspended solids, major ions, nutrients, trace metals, and pesticides. Trace metal concentration data were compared to the Texas Commission on Environmental Quality established surface water quality standards for human health protection (water and fish). Among all constituents in all samples for which criteria were available for comparison, only one sample had one constituent which exceeded the surface water criteria on one occasion. A single lead concentration (2.76 micrograms per liter) measured in a filtered water sample exceeded the surface water criteria of 1.15 micrograms per liter. The average number of pesticide detections per sample in stream basins undergoing development ranged from 1.8 to 6.0. In contrast, the average number of pesticide detections per sample in the reference stream basin was 0.6. Among all constituents examined in this study, pesticides, dissolved orthophosphate phosphorus, and dissolved total phosphorus demonstrated the largest differences between the four stream basins undergoing development and the reference stream basin with undeveloped land cover.

  18. Riparian landscape management in the midstream of Ciliwung River as supporting Water Sensitive Cities program with priority of productive landscape

    NASA Astrophysics Data System (ADS)

    Noviandi, T. U. Z.; Kaswanto, R. L.; Arifin, H. S.

    2017-10-01

    Nowadays, Ciliwung River is facing problem of the settlement occupation in its riparian zones. This phenomenon caused ecological damage in riparian, so it can aggravate the disaster of annual flooding in Jakarta. As an effort to control this catastrophe, riparian landscape management of Ciliwung River is needed. Based on its topography, Ciliwung River is divided into three segments, there are the upstream, the midstream, and the downstream. Data shows that riparian in the midstream is the largest area, it covers more than 60% of the total riparian area. This segment is very important to be managed in order to reduce runoff towards the downstream. The method used was comparing many standards to get the ideal riparian width in the midstream, which is 50 m for urban areas and 100 m for outside the urban areas. Next method was analyzing spatially to get riparian landscape characteristic of Ciliwung River. The result showed that 37.11% of riparian zones in the midstream had occupied by settlement. Analysis of riparian function and utilization had held by using Analytical Hierarchy Process. Priority of riparian function in the midstream of Ciliwung River is production. This can be realized with the plan of community garden or inland fisheries. Riparian landscape management in the midstream aims to support the food consumption diversification, and maximize the function of water catchment and water retention in order to support the program of Water Sensitive Cities.

  19. Shaping the Health Policy Agenda: The Case of Safe Motherhood Policy in Vietnam

    PubMed Central

    Ha, Bui Thi Thu; Mirzoev, Tolib; Mukhopadhyay, Maitrayee

    2015-01-01

    Background: Maternal health remains a central policy concern in Vietnam. With a commitment to achieving the Millennium Development Goal (MDG) 5 target of maternal mortality rate (MMR) of 70/100 000 by 2015, the Ministry of Health (MoH) issued the National Plan for Safe Motherhood (NPSM) 2003-2010. In 2008, reproductive health, including safe motherhood (SM) became a national health target program with annual government funding. Methods: A case study of how SM emerged as a political priority in Vietnam over the period 2001-2008, drawing on Kingdon’s theory of agenda-setting was conducted. A mixed method was adopted for this study of the NPSM. Results: Three related streams contributed to SM priority in Vietnam: (1) the problem of high MMR was officially recognized from high-quality research, (2) the strong roles of policy champion from MoH in advocating for the needs to reducing MMR as well as support from government and donors, and (3) the national and international events, providing favorable context for this issue to emerge on policy agenda. Conclusion: This paper draws on the theory of agenda-setting to analyze the Vietnam experience and to develop guidance for SM a political priority in other high maternal mortality communities. PMID:26673334

  20. Hydrologic Modeling of Relatively Recent Martian Streams and Lake

    NASA Image and Video Library

    2016-09-15

    This map of an area within the Arabia Terra region on Mars shows where hydrologic modeling predicts locations of depressions that would have been lakes (black), overlaid with a map of the preserved valleys (blue lines, with width exaggerated for recognition) that would have been streams. The area today holds numerous features called "fresh shallow valleys." Research findings in 2016 interpret the fresh shallow valleys as evidence for flows of liquid water that occurred several hundred million years -- up to about a billion years -- after the ancient lakes and streams previously documented on Mars. Most of the fresh shallow valleys in this northern portion of Arabia Terra terminate at the margins of model-predicted submerged basins, consistent with an interpretation of flows into lakes and out of lakes. Some valley segments connect to form longer systems, consistent with connections forged by flowing water between interspersed lakes. In the area mapped here, for example, valleys connect basin "A" to basin "B," and basin B to "Heart Lake," each lower in elevation in that chain. http://photojournal.jpl.nasa.gov/catalog/PIA20839

  1. Fuzzy Similarity and Fuzzy Inclusion Measures in Polyline Matching: A Case Study of Potential Streams Identification for Archaeological Modelling in GIS

    NASA Astrophysics Data System (ADS)

    Ďuračiová, Renata; Rášová, Alexandra; Lieskovský, Tibor

    2017-12-01

    When combining spatial data from various sources, it is often important to determine similarity or identity of spatial objects. Besides the differences in geometry, representations of spatial objects are inevitably more or less uncertain. Fuzzy set theory can be used to address both modelling of the spatial objects uncertainty and determining the identity, similarity, and inclusion of two sets as fuzzy identity, fuzzy similarity, and fuzzy inclusion. In this paper, we propose to use fuzzy measures to determine the similarity or identity of two uncertain spatial object representations in geographic information systems. Labelling the spatial objects by the degree of their similarity or inclusion measure makes the process of their identification more efficient. It reduces the need for a manual control. This leads to a more simple process of spatial datasets update from external data sources. We use this approach to get an accurate and correct representation of historical streams, which is derived from contemporary digital elevation model, i.e. we identify the segments that are similar to the streams depicted on historical maps.

  2. Reconnaissance of the upper Au Sable River a cold-water river in the North-Central part of Michigan's southern peninsula

    USGS Publications Warehouse

    Hendrickson, G.E.; Doonan, C.J.

    1974-01-01

    The Au Sable River is one of Michigan’s most popular trout streams and canoe trails. Its riverside campgrounds are enjoyed by thousands of campers each year, and many cabins and homes have been built on its banks. At present, interests of the different recreationists – fishermen, canoers, campers, and riverside property owners – conflict. The conflict results from the face that the recreational potential is limited by the hydrologic characteristics of the river – its streamflow, quality of water, and character of stream channel, bed, and banks. The purpose of this report is to describe these characteristics and to show how they relate to the recreational potential of the stream.From its headwaters near Frederic the Au Sable flows southward to Grayling, then generally eastward to Lake Huron at Oscoda. Recreational use of the river is concentrated in the segment starting at Grayling and extending downstream to Wakeley Bridge, about 15 river miles. This report is concerned mainly with this part of the river.

  3. Unity of consciousness.

    PubMed

    Hill, Christopher S

    2018-05-29

    Although there is much talk in various literatures of streams of consciousness, and most of us have an intuitive understanding of such talk, we are far from having a full grasp of what it is that unifies streams of consciousness, binding together the individual experiences that serve as their constituents. In recent years, discussion of this topic has been principally concerned with synchronic unity of consciousness-the form of unity that is exhibited by momentary states of consciousness, or in other words, by time slices or temporal segments of streams. There are two main questions about synchronic unity. First, what is its scope? Are the simultaneous experiences of a single subject necessarily unified? Generally but not necessarily unified? Sometimes unified? And second, what is the nature of synchronic unity? Is it a fundamental phenomenon, and if not, what are the more basic phenomena that constitute it? This essay reviews recent work on these questions, and provides reasons for preferring some answers to others. This article is categorized under: Philosophy > Consciousness Philosophy > Foundations of Cognitive Science Philosophy > Metaphysics. © 2018 Wiley Periodicals, Inc.

  4. Audience segmentation to promote lifestyle for cancer prevention in the Korean community.

    PubMed

    Jo, Heui-Sug; Jung, Su-Mi

    2011-01-01

    This study was designed to segment the audience group of '10 lifestyle for cancer prevention' based on demographic characteristics and the level of knowledge about each guideline for cancer prevention among the community in South Korea. Participants were chosen through stratified random sampling according to the age and gender distribution of Gangwon province in South Korea. A telephone survey was conducted from 6 to 15 calls among 2,025 persons on October 2008. A total of 1,687 persons completed the survey (response rate: 83.3%). Survey items were composed of socio-demographic characteristics such as age, gender, income, education, and residence area and the knowledge level of '10 guidelines for cancer prevention', developed by 'Korean Ministry of Health and Welfare' and covering smoking cessation, appropriate drinking, condom use, and regular physical activity and so on. We selected the priority needed to promote awareness and segmented the audience group based on the demographic characteristics, homogeneous with respect to the knowledge level using Answer Tree 3.0 with CHAID as a data mining algorithm. The results of analysis showed that each guideline of ' 10 lifestyle for cancer prevention' had its own segmented subgroup characterized by each demographic. Especially, residence area, city or county, and ages were the first split on the perceived level of knowledge and these findings suggested that segmentation of audiences for targeting is needed to deliver more effective education of patients and community people. In developing the strategy for effective education, the method of social marketing using the decision tree analysis could be a useful and appropriate tool. The study findings demonstrate the potential value of using more sophisticated strategies of designing and providing health information based on audience segmentation.

  5. Riparian Ficus Tree Communities: The Distribution and Abundance of Riparian Fig Trees in Northern Thailand

    PubMed Central

    Pothasin, Pornwiwan; Compton, Stephen G.; Wangpakapattanawong, Prasit

    2014-01-01

    Fig trees (Ficus) are often ecologically significant keystone species because they sustain populations of the many seed-dispersing animals that feed on their fruits. They are prominent components of riparian zones where they may also contribute to bank stability as well as supporting associated animals. The diversity and distributions of riparian fig trees in deciduous and evergreen forests in Chiang Mai Province, Northern Thailand were investigated in 2010–2012. To record the diversity and abundance of riparian fig trees, we (1) calculated stem density, species richness, and diversity indices in 20×50 m randomly selected quadrats along four streams and (2) measured the distances of individual trees from four streams to determine if species exhibit distinct distribution patterns within riparian zones. A total of 1169 individuals (from c. 4 ha) were recorded in the quadrats, representing 33 Ficus species (13 monoecious and 20 dioecious) from six sub-genera and about 70% of all the species recorded from northern Thailand. All 33 species had at least some stems in close proximity to the streams, but they varied in their typical proximity, with F. squamosa Roxb. and F. ischnopoda Miq the most strictly stream-side species. The riparian forests in Northern Thailand support a rich diversity and high density of Ficus species and our results emphasise the importance of fig tree within the broader priorities of riparian area conservation. Plans to maintain or restore properly functioning riparian forests need to take into account their significance. PMID:25310189

  6. Estimation of average annual streamflows and power potentials for Alaska and Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdin, Kristine L.

    2004-05-01

    This paper describes the work done to develop average annual streamflow estimates and power potential for the states of Alaska and Hawaii. The Elevation Derivatives for National Applications (EDNA) database was used, along with climatic datasets, to develop flow and power estimates for every stream reach in the EDNA database. Estimates of average annual streamflows were derived using state-specific regression equations, which were functions of average annual precipitation, precipitation intensity, drainage area, and other elevation-derived parameters. Power potential was calculated through the use of the average annual streamflow and the hydraulic head of each reach, which is calculated from themore » EDNA digital elevation model. In all, estimates of streamflow and power potential were calculated for over 170,000 stream segments in the Alaskan and Hawaiian datasets.« less

  7. Three studies using Ceriodaphnia to detect nonpoint sources of metals from mine drainage

    USGS Publications Warehouse

    Nimmo, Del Wayne R.; Dodson, Max H.; Davies, Patrick H.; Greene, Joseph C.; Kerr, Mark A.

    1990-01-01

    Since its introduction, Ceriodaphnia dubia, a small planktonic daphnid, has been widely used for biomonitoring point source discharges. This species was also used to determine nonpoint sources of metals and related contaminants in three trout streams in the west where mining activities have been widespread. Along Chalk Creek, Colo., specific tailings (and impacted tributaries) were sources of metals toxic to fish using the water in a hatchery. At stations below extensive mine tailings in the upper Clark Fork River, Mont., drainage was acutely and chronically toxic to daphnids and paralleled reduced or nonexistent populations of trout. In Whitewood Creek, S. Dak., reduced toxicity below a gold mine portended that fish could live in the stream segment previously impaired by the mine. Toxicity downstream revealed a previously unknown nonpoint source of chromium.

  8. Local impact of humidification on degradation in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Sanchez, Daniel G.; Ruiu, Tiziana; Biswas, Indro; Schulze, Mathias; Helmly, Stefan; Friedrich, K. Andreas

    2017-06-01

    The water level in a polymer electrolyte membrane fuel cell (PEMFC) affects the durability as is seen from the degradation processes during operation a PEMFC with fully- and nonhumidified gas streams as analyzed using an in-situ segmented cell for local current density measurements during a 300 h test operating under constant conditions and using ex situ SEM/EDX and XPS post-test analysis of specific regions. The impact of the RH on spatial distribution of the degradation process results from different water distribution giving different chemical environments. Under nonhumidified gas streams, the cathode inlet region exhibits increased degradation, whereas with fully humidified gases the bottom of the cell had the higher performance losses. The degradation and the degree of reversibility produced by Pt dissolution, PTFE defluorination, and contaminants such as silicon (Si) and nickel (Ni) were locally evaluated.

  9. Optimal frame-by-frame result combination strategy for OCR in video stream

    NASA Astrophysics Data System (ADS)

    Bulatov, Konstantin; Lynchenko, Aleksander; Krivtsov, Valeriy

    2018-04-01

    This paper describes the problem of combining classification results of multiple observations of one object. This task can be regarded as a particular case of a decision-making using a combination of experts votes with calculated weights. The accuracy of various methods of combining the classification results depending on different models of input data is investigated on the example of frame-by-frame character recognition in a video stream. Experimentally it is shown that the strategy of choosing a single most competent expert in case of input data without irrelevant observations has an advantage (in this case irrelevant means with character localization and segmentation errors). At the same time this work demonstrates the advantage of combining several most competent experts according to multiplication rule or voting if irrelevant samples are present in the input data.

  10. Flood-plain delineation for Accotink Creek Basin, Fairfax County, Virginia

    USGS Publications Warehouse

    Soule, Pat L.

    1977-01-01

    Water-surface profiles of the 25-year and 100-year floods maps on which the 25-, 50-, and 100-year flood limits are delineated for streams in the Accotink Creek basin are presented in this report. Excluded are segments of Accotink Creek within the Fort Belvoir Military Reservation. The techniques used in the computation of the flood profiles and delineation of flood limits are presented, and specific hydraulic problems encountered within the study area are also included.

  11. Geomorphic evidence for post-10 Ma uplift of the western flank of the central Andes 18°30'-22°S

    NASA Astrophysics Data System (ADS)

    Hoke, Gregory D.; Isacks, Bryan L.; Jordan, Teresa E.; Blanco, NicoláS.; Tomlinson, Andrew J.; Ramezani, Jahandar

    2007-10-01

    The western Andean mountain front forms the western edge of the central Andean Plateau. Between 18.5° and 22°S latitude, the mountain front has ˜3000 m of relief over ˜50 km horizontal distance that has developed in the absence of major local Neogene deformation. Models of the evolution of the plateau, as well as paleoaltimetry estimates, all call for continued large-magnitude uplift of the plateau surface into the late Miocene (i.e., younger than 10 Ma). Longitudinal river profiles from 20 catchments that drain the western Andean mountain front contain several streams with knickpoint-bounded segments that we use to reconstruct the history of post-10 Ma surface uplift of the western flank of the central Andean Plateau. The generation of knickpoints is attributed to tectonic processes and is not a consequence of base level change related to Pacific Ocean capture, eustatic change, or climate change as causes for creating the knickpoint-bounded stream segments observed. Minor valley-filling alluvial gravels intercalated with the 5.4 Ma Carcote ignimbrite suggest uplift related river incision was well under way by 5.4 Ma. The maximum age of river incision is provided by the regionally extensive, approximately 10 Ma El Diablo-Altos de Pica paleosurface. The river profiles reveal that relative surface uplift of at least1 km occurred after 10 Ma.

  12. Geomorphic responses of Duluth-area streams to the June 2012 flood, Minnesota

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Ellison, Christopher A.; Czuba, Christiana R.; Young, Benjamin M.; McCool, Molly M.; Groten, Joel T.

    2016-09-01

    In 2013, the U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency, completed a geomorphic assessment of 51 Duluth-area stream sites in 20 basins to describe and document the stream geomorphic changes associated with the June 2012 flood. Heavy rainfall caused flood peaks with annual exceedance probabilities of less than 0.002 (flood recurrence interval of greater than 500 years) on large and small streams in and surrounding the Duluth area. A geomorphic segment-scale classification previously developed in 2003–4 by the U.S. Geological Survey for Duluth-area streams was used as a framework to characterize the observed flood-related responses along a longitudinal continuum from headwaters to rivermouths at Lake Superior related to drainage network position, slope, geologic setting, and valley type. Field assessments in 2013 followed and expanded on techniques used in 2003–4 at intensive and rapid sites. A third level of assessment was added in 2013 to increase the amount of quantitative data at a subset of 2003–4 rapid sites. Characteristics of channel morphology, channel bed substrate, exposed bars and soft sediment deposition, large wood, pools, and bank erosion were measured; and repeat photographs were taken. Additional measurements in 2013 included identification of Rosgen Level II stream types. The comparative analyses of field data collected in 2003–4 and again in 2013 indicated notable geomorphic changes, some of them expected and others not. As expected, in headwaters with gently sloping wetland segments, geomorphic changes were negligible (little measured or observed change). Downstream, middle main stems generally had bank and bluff erosion and bar formation as expected. Steep bedrock sites along middle and lower main stems had localized bank and bluff erosion in short sections with intermittent bedrock. Lower main stem and alluvial sites had bank erosion, widening, gravel bar deposition, and aggradation. Bar formation and accumulation of gravel was more widespread than expected among all main stems, especially for sites upstream and downstream from channel constrictions from road crossings, or even steep sites with localized, more gently sloping sections. Decreases in large wood and pools also were observed throughout the longitudinal continuum of main-stem sites, with immediate implications for fish and benthic invertebrate aquatic habitat. Whether or not the geomorphic conditions will return to their preflood condition depends on the location along the longitudinal continuum. The amount of large wood and pools may return after more moderate floods, whereas bars with coarse material may remain in place, locally altering flow direction and causing continued bank erosion. Results from this study can be used by local managers in postflood reconstruction efforts and provide baseline information for continued monitoring of geomorphic responses to the June 2012 flood.

  13. Application of failure mode and effect analysis in managing catheter-related blood stream infection in intensive care unit

    PubMed Central

    Li, Xixi; He, Mei; Wang, Haiyan

    2017-01-01

    Abstract In this study, failure mode and effect analysis (FMEA), a proactive tool, was applied to reduce errors associated with the process which begins with assessment of patient and ends with treatment of complications. The aim of this study is to assess whether FMEA implementation will significantly reduce the incidence of catheter-related bloodstream infections (CRBSIs) in intensive care unit. The FMEA team was constructed. A team of 15 medical staff from different departments were recruited and trained. Their main responsibility was to analyze and score all possible processes of central venous catheterization failures. Failure modes with risk priority number (RPN) ≥100 (top 10 RPN scores) were deemed as high-priority-risks, meaning that they needed immediate corrective action. After modifications were put, the resulting RPN was compared with the previous one. A centralized nursing care system was designed. A total of 25 failure modes were identified. High-priority risks were “Unqualified medical device sterilization” (RPN, 337), “leukopenia, very low immunity” (RPN, 222), and “Poor hand hygiene Basic diseases” (RPN, 160). The corrective measures that we took allowed a decrease in the RPNs, especially for the high-priority risks. The maximum reduction was approximately 80%, as observed for the failure mode “Not creating the maximal barrier for patient.” The averaged incidence of CRBSIs was reduced from 5.19% to 1.45%, with 3 months of 0 infection rate. The FMEA can effectively reduce incidence of CRBSIs, improve the security of central venous catheterization technology, decrease overall medical expenses, and improve nursing quality. PMID:29390515

  14. Exploring 3D Human Action Recognition: from Offline to Online.

    PubMed

    Liu, Zhenyu; Li, Rui; Tan, Jianrong

    2018-02-20

    With the introduction of cost-effective depth sensors, a tremendous amount of research has been devoted to studying human action recognition using 3D motion data. However, most existing methods work in an offline fashion, i.e., they operate on a segmented sequence. There are a few methods specifically designed for online action recognition, which continually predicts action labels as a stream sequence proceeds. In view of this fact, we propose a question: can we draw inspirations and borrow techniques or descriptors from existing offline methods, and then apply these to online action recognition? Note that extending offline techniques or descriptors to online applications is not straightforward, since at least two problems-including real-time performance and sequence segmentation-are usually not considered in offline action recognition. In this paper, we give a positive answer to the question. To develop applicable online action recognition methods, we carefully explore feature extraction, sequence segmentation, computational costs, and classifier selection. The effectiveness of the developed methods is validated on the MSR 3D Online Action dataset and the MSR Daily Activity 3D dataset.

  15. Predicting the biological condition of streams: Use of geospatial indicators of natural and anthropogenic characteristics of watersheds

    USGS Publications Warehouse

    Carlisle, D.M.; Falcone, J.; Meador, M.R.

    2009-01-01

    We developed and evaluated empirical models to predict biological condition of wadeable streams in a large portion of the eastern USA, with the ultimate goal of prediction for unsampled basins. Previous work had classified (i.e., altered vs. unaltered) the biological condition of 920 streams based on a biological assessment of macroinvertebrate assemblages. Predictor variables were limited to widely available geospatial data, which included land cover, topography, climate, soils, societal infrastructure, and potential hydrologic modification. We compared the accuracy of predictions of biological condition class based on models with continuous and binary responses. We also evaluated the relative importance of specific groups and individual predictor variables, as well as the relationships between the most important predictors and biological condition. Prediction accuracy and the relative importance of predictor variables were different for two subregions for which models were created. Predictive accuracy in the highlands region improved by including predictors that represented both natural and human activities. Riparian land cover and road-stream intersections were the most important predictors. In contrast, predictive accuracy in the lowlands region was best for models limited to predictors representing natural factors, including basin topography and soil properties. Partial dependence plots revealed complex and nonlinear relationships between specific predictors and the probability of biological alteration. We demonstrate a potential application of the model by predicting biological condition in 552 unsampled basins across an ecoregion in southeastern Wisconsin (USA). Estimates of the likelihood of biological condition of unsampled streams could be a valuable tool for screening large numbers of basins to focus targeted monitoring of potentially unaltered or altered stream segments. ?? Springer Science+Business Media B.V. 2008.

  16. A method to quantify and value floodplain sediment and nutrient retention ecosystem services

    USGS Publications Warehouse

    Hopkins, Kristina G.; Noe, Gregory; Franco, Fabiano; Pindilli, Emily J.; Gordon, Stephanie; Metes, Marina J.; Claggett, Peter; Gellis, Allen; Hupp, Cliff R.; Hogan, Dianna

    2018-01-01

    Floodplains provide critical ecosystem services to local and downstream communities by retaining floodwaters, sediments, and nutrients. The dynamic nature of floodplains is such that these areas can both accumulate sediment and nutrients through deposition, and export material downstream through erosion. Therefore, estimating floodplain sediment and nutrient retention should consider the net flux of both depositional and erosive processes. An ecosystem services framework was used to quantify and value the sediment and nutrient ecosystem service provided by floodplains in the Difficult Run watershed, a small (151 km2) suburban watershed located in the Piedmont of Virginia (USA). A sediment balance was developed for Difficult Run and two nested watersheds. The balance included upland sediment delivery to streams, stream bank flux, floodplain flux, and stream load. Upland sediment delivery was estimated using geospatial datasets and a modified Revised Universal Soil Loss Equation. Predictive models were developed to extrapolate field measurements of the flux of sediment, sediment-bound nitrogen (N), and sediment-bound phosphorus (P) from stream banks and floodplains to 3232 delineated stream segments in the study area. A replacement cost approach was used to estimate the economic value of the sediment and nutrient retention ecosystem service based on estimated net stream bank and floodplain flux of sediment-bound N for all streams in the study area. Results indicated the net fluvial fluxes of sediment, sediment-bound N, and sediment-bound P were −10,439 Mg yr−1 (net export), 57,300 kg-N yr−1(net trapping), and 98 kg-P yr−1(net trapping), respectively. For sediment, floodplain retention was offset by substantial losses from stream bank erosion, particularly in headwater catchments, resulting in a net export of sediment. Nutrient retention in the floodplain exceeded that lost through stream bank erosion resulting in net retention of nutrients (TN and TP). Using a conservative cost estimate of $12.69 (USD) per kilogram of nitrogen, derived from wastewater treatment costs, the estimated annual value for sediment and nutrient retention on Difficult Run floodplains was $727,226 ± 194,220 USD/yr. Values and differences in floodplain nitrogen retention among stream reaches can be used to target areas for floodplain conservation and stream restoration. The methods presented are scalable and transferable to other areas if appropriate datasets are available for validation.

  17. Backcasting the decline of a vulnerable Great Plains reproductive ecotype: identifying threats and conservation priorities

    USGS Publications Warehouse

    Worthington, Thomas A.; Brewer, Shannon K.; Grabowski, Timothy B.; Mueller, Julia

    2014-01-01

    Conservation efforts for threatened or endangered species are challenging because the multi-scale factors that relate to their decline or inhibit their recovery are often unknown. To further exacerbate matters, the perceptions associated with the mechanisms of species decline are often viewed myopically rather than across the entire species range. We used over 80 years of fish presence data collected from the Great Plains and associated ecoregions of the United States, to investigate the relative influence of changing environmental factors on the historic and current truncated distributions of the Arkansas River shiner Notropis girardi. Arkansas River shiner represent a threatened reproductive ecotype considered especially well adapted to the harsh environmental extremes of the Great Plains. Historic (n = 163 records) and current (n = 47 records) species distribution models were constructed using a vector-based approach in MaxEnt by splitting the available data at a time when Arkansas River shiner dramatically declined. Discharge and stream order were significant predictors in both models; however, the shape of the relationship between the predictors and species presence varied between time periods. Drift distance (river fragment length available for ichthyoplankton downstream drift before meeting a barrier) was a more important predictor in the current model and indicated river segments 375–780 km had the highest probability of species presence. Performance for the historic and current models was high (area under the curve; AUC > 0.95); however, forecasting and backcasting to alternative time periods suggested less predictive power. Our results identify fragments that could be considered refuges for endemic plains fish species and we highlight significant environmental factors (e.g., discharge) that could be manipulated to aid recovery.

  18. Cottonwood Management Plan / Draft Programmatic Environmental Assessment. Proposed Implementation of a Cottonwood Management Plan Along Six Priority Segments of the Missouri River

    DTIC Science & Technology

    2010-02-01

    floodplain ridges, levees, and road embankments), concave-up areas ( depressions , such as river channels, floodplain swales, and drainage ditches), and areas... depressions in dry, open, sandy areas with less than 30 percent vegetative cover and plant heights less than 1 foot (from USFWS 1990b; USFWS, 1990c as...U.S. Department of the Interior, NPS and the U.S. Army Corps of Engineers. National Park Service (NPS). 2007. First Annual Centennial Strategy for

  19. Building bridges between cellular and molecular structural biology.

    PubMed

    Patwardhan, Ardan; Brandt, Robert; Butcher, Sarah J; Collinson, Lucy; Gault, David; Grünewald, Kay; Hecksel, Corey; Huiskonen, Juha T; Iudin, Andrii; Jones, Martin L; Korir, Paul K; Koster, Abraham J; Lagerstedt, Ingvar; Lawson, Catherine L; Mastronarde, David; McCormick, Matthew; Parkinson, Helen; Rosenthal, Peter B; Saalfeld, Stephan; Saibil, Helen R; Sarntivijai, Sirarat; Solanes Valero, Irene; Subramaniam, Sriram; Swedlow, Jason R; Tudose, Ilinca; Winn, Martyn; Kleywegt, Gerard J

    2017-07-06

    The integration of cellular and molecular structural data is key to understanding the function of macromolecular assemblies and complexes in their in vivo context. Here we report on the outcomes of a workshop that discussed how to integrate structural data from a range of public archives. The workshop identified two main priorities: the development of tools and file formats to support segmentation (that is, the decomposition of a three-dimensional volume into regions that can be associated with defined objects), and the development of tools to support the annotation of biological structures.

  20. Enhancing the resiliency of small hydropower projects: environmental function, modularity, and stakeholder elicitation as design priorities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witt, Adam M; Smith, Brennan T

    Small hydropower plants supply reliable renewable energy to the grid, though few new plants have been developed in the Unites States over the past few decades due to complex environmental challenges and poor project economics. This paper describes the current landscape of small hydropower development, and introduces a new approach to facility design that co-optimizes the extraction of hydroelectric power from a stream with other important environmental functions such as fish, sediment, and recreational passage. The approach considers hydropower facilities as an integrated system of standardized interlocking modules, designed to sustain stream functions, generate power, and interface with the streambed.more » It is hypothesized that this modular eco-design approach, when guided by input from the broader small hydropower stakeholder community, can lead to cost savings across the facility, reduced licensing and approval timelines, and ultimately, to enhanced resiliency through improved environmental performance over the lifetime of the project.« less

  1. Waste minimization/pollution prevention study of high-priority waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogle, R.B.

    1994-03-01

    Although waste minimization has been practiced by the Metals and Ceramics (M&C) Division in the past, the effort has not been uniform or formalized. To establish the groundwork for continuous improvement, the Division Director initiated a more formalized waste minimization and pollution prevention program. Formalization of the division`s pollution prevention efforts in fiscal year (FY) 1993 was initiated by a more concerted effort to determine the status of waste generation from division activities. The goal for this effort was to reduce or minimize the wastes identified as having the greatest impact on human health, the environment, and costs. Two broadmore » categories of division wastes were identified as solid/liquid wastes and those relating to energy use (primarily electricity and steam). This report presents information on the nonradioactive solid and liquid wastes generated by division activities. More specifically, the information presented was generated by teams of M&C staff members empowered by the Division Director to study specific waste streams.« less

  2. Lessons from the West Africa Ebola Epidemic: A Systematic Review of Epidemiological and Social and Behavioral Science Research Priorities.

    PubMed

    Abramowitz, Sharon A; Hipgrave, David B; Witchard, Alison; Heymann, David L

    2018-06-23

    This systematic literature review compared the epidemiological (EPI) research and the qualitative social and behavioral science (SBS) research published during the West Africa Ebola virus disease (EVD) epidemic. Beginning with an initial capture of over 2,000 articles, we extracted 236 EPI and 171 SBS studies to examine how disciplinary priorities affected research conducted during the EVD response, with implications for epidemic response effectiveness. Building on this research, we set forth a roadmap for the closer integration of EPI and SBS research in all aspects of epidemic preparedness and response that incorporates the lessons of the West Africa EVD outbreak. Key priorities include: (1) developing the capacity to systematically quantify qualitative sociocultural variables, (2) establishing interdisciplinary collaborations to improve "risk segmentation" practices, (3) creating and pre-positioning qualitative indicators and composite sociocultural indexes for rapid deployment in outbreaks; (4) integrating novel systems with community resources; (5) developing new techniques for modeling social mobilization and community engagement; (6) prioritizing good data and complex analyses early in emergencies, and (7) learning from past experiences. Our findings support a program of action that situates data collection and analysis in real-time, recursive, integrated efforts to move community attitudes, behaviors, and responses into epidemiological research.

  3. The role of community context in planning and implementing community-based health promotion projects.

    PubMed

    Kegler, Michelle C; Rigler, Jessica; Honeycutt, Sally

    2011-08-01

    The current study examines how community context affected collaborative planning and implementation in eight sites participating in a healthy cities and communities initiative in California. Data are from 23 focus groups conducted with coalition members, and 76 semi-structured interviews with local coordinators and community leaders. Multiple case study methods were used to identify major themes related to how five contextual domains influenced collaborative planning and implementation. Results showed that history of collaboration can influence resources and interpersonal and organizational connections available for planning and implementation, as well as priorities selected for action. Community politics and history can affect which segments of the community participate in a planning process and what issues are prioritized, as well as the pool of partners willing to aid in implementation. Some community norms and values bring people together and others appear to limit involvement from certain groups. Community demographics and economic conditions may shape outreach strategies for planning and implementation, and may also shape priorities. Geography can play a role in assessment methods, priority selection, partners available to aid in implementation, and participation in activities and events. Results suggest that community context plays a substantive role in shaping how community-based health promotion projects unfold. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  5. Estimating natural monthly streamflows in California and the likelihood of anthropogenic modification

    USGS Publications Warehouse

    Carlisle, Daren M.; Wolock, David M.; Howard, Jeannette K.; Grantham, Theodore E.; Fesenmyer, Kurt; Wieczorek, Michael

    2016-12-12

    Because natural patterns of streamflow are a fundamental property of the health of streams, there is a critical need to quantify the degree to which human activities have modified natural streamflows. A requirement for assessing streamflow modification in a given stream is a reliable estimate of flows expected in the absence of human influences. Although there are many techniques to predict streamflows in specific river basins, there is a lack of approaches for making predictions of natural conditions across large regions and over many decades. In this study conducted by the U.S. Geological Survey, in cooperation with The Nature Conservancy and Trout Unlimited, the primary objective was to develop empirical models that predict natural (that is, unaffected by land use or water management) monthly streamflows from 1950 to 2012 for all stream segments in California. Models were developed using measured streamflow data from the existing network of streams where daily flow monitoring occurs, but where the drainage basins have minimal human influences. Widely available data on monthly weather conditions and the physical attributes of river basins were used as predictor variables. Performance of regional-scale models was comparable to that of published mechanistic models for specific river basins, indicating the models can be reliably used to estimate natural monthly flows in most California streams. A second objective was to develop a model that predicts the likelihood that streams experience modified hydrology. New models were developed to predict modified streamflows at 558 streamflow monitoring sites in California where human activities affect the hydrology, using basin-scale geospatial indicators of land use and water management. Performance of these models was less reliable than that for the natural-flow models, but results indicate the models could be used to provide a simple screening tool for identifying, across the State of California, which streams may be experiencing anthropogenic flow modification.

  6. Brook trout distributional response to unconventional oil and gas development: Landscape context matters

    USGS Publications Warehouse

    Merriam, Eric R.; Petty, J. Todd; Maloney, Kelly O.; Young, John A.; Faulkner, Stephen; Slonecker, Terry; Milheim, Lesley E.; Hailegiorgis, Atesmachew; Niles, Jonathan M.

    2018-01-01

    We conducted a large-scale assessment of unconventional oil and gas (UOG) development effects on brook trout (Salvelinus fontinalis) distribution. We compiled 2231 brook trout collection records from the Upper Susquehanna River Watershed, USA. We used boosted regression tree (BRT) analysis to predict occurrence probability at the 1:24,000 stream-segment scale as a function of natural and anthropogenic landscape and climatic attributes. We then evaluated the importance of landscape context (i.e., pre-existing natural habitat quality and anthropogenic degradation) in modulating the effects of UOG on brook trout distribution under UOG development scenarios. BRT made use of 5 anthropogenic (28% relative influence) and 7 natural (72% relative influence) variables to model occurrence with a high degree of accuracy [Area Under the Receiver Operating Curve (AUC) = 0.85 and cross-validated AUC = 0.81]. UOG development impacted 11% (n = 2784) of streams and resulted in a loss of predicted occurrence in 126 (4%). Most streams impacted by UOG had unsuitable underlying natural habitat quality (n = 1220; 44%). Brook trout were predicted to be absent from an additional 26% (n = 733) of streams due to pre-existing non-UOG land uses (i.e., agriculture, residential and commercial development, or historic mining). Streams with a predicted and observed (via existing pre- and post-disturbance fish sampling records) loss of occurrence due to UOG tended to have intermediate natural habitat quality and/or intermediate levels of non-UOG stress. Simulated development of permitted but undeveloped UOG wells (n = 943) resulted in a loss of predicted occurrence in 27 additional streams. Loss of occurrence was strongly dependent upon landscape context, suggesting effects of current and future UOG development are likely most relevant in streams near the probability threshold due to pre-existing habitat degradation.

  7. Baseline assessment of fish communities, benthic macroinvertebrate communities, and stream habitat and land use, Big Thicket National Preserve, Texas, 1999-2001

    USGS Publications Warehouse

    Moring, J. Bruce

    2003-01-01

    The Big Thicket National Preserve comprises 39,300 hectares in the form of nine preserve units connected by four stream corridor units (with two more corridor units proposed) distributed over the lower Neches and Trinity River Basins of southeastern Texas. Fish and benthic macroinvertebrate data were collected at 15 stream sites (reaches) in the preserve during 1999–2001 for a baseline assessment and a comparison of communities among stream reaches. The fish communities in the preserve were dominated by minnows (family Cyprinidae) and sunfishes (family Centrarchidae). Reaches with smaller channel sizes generally had higher fish species richness than the larger reaches in the Neches River and Pine Island Bayou units of the preserve. Fish communities in geographically adjacent reaches were most similar in overall community structure. The blue sucker, listed by the State as a threatened species, was collected in only one reach—a Neches River reach a few miles downstream from the Steinhagen Lake Dam. Riffle beetles (family Elmidae) and midges (family Chironomidae) dominated the aquatic insect communities at the 14 reaches sampled for aquatic insects in the preserve. The Ephemeroptera, Plecoptera and Trichoptera (EPT) Index, an index sensitive to water-quality degradation, was smallest at the Little Pine Island Bayou near Beaumont reach that is in a State 303(d)-listed stream segment on Little Pine Island Bayou. Trophic structure of the aquatic insect communities is consistent with the river continuum concept with shredder and scraper insect taxa more abundant in reaches with smaller stream channels and filter feeders more abundant in reaches with larger channels. Aquatic insect community metrics were not significantly correlated to any of the stream-habitat or land-use explanatory variables. The percentage of 1990s urban land use in the drainage areas upstream from 12 bioassessment reaches were negatively correlated to the reach structure index, which indicates less stable habitat for aquatic biota.

  8. Network Structure as a Modulator of Disturbance Impacts in Streams

    NASA Astrophysics Data System (ADS)

    Warner, S.; Tullos, D. D.

    2017-12-01

    This study examines how river network structure affects the propagation of geomorphic and anthropogenic disturbances through streams. Geomorphic processes such as debris flows can alter channel morphology and modify habitat for aquatic biota. Anthropogenic disturbances such as road construction can interact with the geomorphology and hydrology of forested watersheds to change sediment and water inputs to streams. It was hypothesized that the network structure of streams within forested watersheds would influence the location and magnitude of the impacts of debris flows and road construction on sediment size and channel width. Longitudinal surveys were conducted every 50 meters for 11 kilometers of third-to-fifth order streams in the H.J. Andrews Experimental Forest in the Western Cascade Range of Oregon. Particle counts and channel geometry measurements were collected to characterize the geomorphic impacts of road crossings and debris flows as disturbances. Sediment size distributions and width measurements were plotted against the distance of survey locations through the network to identify variations in longitudinal trends of channel characteristics. Thresholds for the background variation in sediment size and channel width, based on the standard deviations of sample points, were developed for sampled stream segments characterized by location as well as geomorphic and land use history. Survey locations were classified as "disturbed" when they deviated beyond the reference thresholds in expected sediment sizes and channel widths, as well as flow-connected proximity to debris flows and road crossings. River network structure was quantified by drainage density and centrality of nodes upstream of survey locations. Drainage density and node centrality were compared between survey locations with similar channel characteristic classifications. Cluster analysis was used to assess the significance of survey location, proximity of survey location to debris flows and road crossings, drainage density and node centrality in predicting sediment size and channel width classifications for locations within the watershed. Results contribute to the understanding of susceptibility and responses of streams supporting critical habitat for aquatic species to debris flows and forest road disturbances.

  9. Simple and flexible SAS and SPSS programs for analyzing lag-sequential categorical data.

    PubMed

    O'Connor, B P

    1999-11-01

    This paper describes simple and flexible programs for analyzing lag-sequential categorical data, using SAS and SPSS. The programs read a stream of codes and produce a variety of lag-sequential statistics, including transitional frequencies, expected transitional frequencies, transitional probabilities, adjusted residuals, z values, Yule's Q values, likelihood ratio tests of stationarity across time and homogeneity across groups or segments, transformed kappas for unidirectional dependence, bidirectional dependence, parallel and nonparallel dominance, and significance levels based on both parametric and randomization tests.

  10. Automated Music Video Generation Using Multi-level Feature-based Segmentation

    NASA Astrophysics Data System (ADS)

    Yoon, Jong-Chul; Lee, In-Kwon; Byun, Siwoo

    The expansion of the home video market has created a requirement for video editing tools to allow ordinary people to assemble videos from short clips. However, professional skills are still necessary to create a music video, which requires a stream to be synchronized with pre-composed music. Because the music and the video are pre-generated in separate environments, even a professional producer usually requires a number of trials to obtain a satisfactory synchronization, which is something that most amateurs are unable to achieve.

  11. Falcon: A Temporal Visual Analysis System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A.

    2016-09-05

    Flexible visible exploration of long, high-resolution time series from multiple sensor streams is a challenge in several domains. Falcon is a visual analytics approach that helps researchers acquire a deep understanding of patterns in log and imagery data. Falcon allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations with multiple levels of detail. These capabilities are applicable to the analysis of any quantitative time series.

  12. Spawning and rearing behavior of bull trout in a headwaterlake ecosystem

    USGS Publications Warehouse

    Lora B. Tennant,; Gresswell, Bob; Guy, Christopher S.; Michael H. Meeuwig,

    2015-01-01

    Numerous life histories have been documented for bull trout Salvelinus confluentus. Lacustrine-adfluvial bull trout populations that occupy small, headwater lake ecosystems and migrate short distances to natal tributaries to spawn are likely common; however, much of the research on potamodromous bull trout has focused on describing the spawning and rearing characteristics of bull trout populations that occupy large rivers and lakes and make long distance spawning migrations to natal headwater streams. This study describes the spawning and rearing characteristics of lacustrine-adfluvial bull trout in the Quartz Lake drainage, Glacier National Park, USA, a small headwater lake ecosystem. Many spawning and rearing characteristics of bull trout in the Quartz Lake drainage are similar to potamodromous bull trout that migrate long distances. For example, subadult bull trout distribution was positively associated with slow-water habitat unit types and maximum wetted width, and negatively associated with increased stream gradient. Bull trout spawning also occurred when water temperatures were between 5 and 9 °C, and redds were generally located in stream segments with low stream gradient and abundant gravel and cobble substrates. However, this study also elucidated characteristics of bull trout biology that are not well documented in the literature, but may be relatively widespread and have important implications regarding general characteristics of bull trout ecology, use of available habitat by bull trout, and persistence of lacustrine-adfluvial bull trout in small headwater lake ecosystems.

  13. Tracking tracer breakthrough in the hyporheic zone using time‐lapse DC resistivity, Crabby Creek, Pennsylvania

    USGS Publications Warehouse

    Nyquist, Jonathan E.; Toran, Laura; Fang, Allison C.; Ryan, Robert J.; Rosenberry, Donald O.

    2010-01-01

    Characterization of the hyporheic zone is of critical importance for understanding stream ecology, contaminant transport, and groundwater‐surface water interaction. A salt water tracer test was used to probe the hyporheic zone of a recently re‐engineered portion of Crabby Creek, a stream located near Philadelphia, PA. The tracer solution was tracked through a 13.5 meter segment of the stream using both a network of 25 wells sampled every 5–15 minutes and time‐lapse electrical resistivity tomographs collected every 11 minutes for six hours, with additional tomographs collected every 100 minutes for an additional 16 hours. The comparison of tracer monitoring methods is of keen interest because tracer tests are one of the few techniques available for characterizing this dynamic zone, and logistically it is far easier to collect resistivity tomographs than to install and monitor a dense network of wells. Our results show that resistivity monitoring captured the essential shape of the breakthrough curve and may indicate portions of the stream where the tracer lingered in the hyporheic zone. Time‐lapse resistivity measurements, however, represent time averages over the period required to collect a tomographic data set, and spatial averages over a volume larger than captured by a well sample. Smoothing by the resistivity data inversion algorithm further blurs the resulting tomograph; consequently resistivity monitoring underestimates the degree of fine‐scale heterogeneity in the hyporheic zone.

  14. White matter anisotropy in the ventral language pathway predicts sound-to-word learning success

    PubMed Central

    Wong, Francis C. K.; Chandrasekaran, Bharath; Garibaldi, Kyla; Wong, Patrick C. M.

    2011-01-01

    According to the dual stream model of auditory language processing, the dorsal stream is responsible for mapping sound to articulation while the ventral stream plays the role of mapping sound to meaning. Most researchers agree that the arcuate fasciculus (AF) is the neuroanatomical correlate of the dorsal steam, however, less is known about what constitutes the ventral one. Nevertheless two hypotheses exist, one suggests that the segment of the AF that terminates in middle temporal gyrus corresponds to the ventral stream and the other suggests that it is the extreme capsule that underlies this sound to meaning pathway. The goal of this study is to evaluate these two competing hypotheses. We trained participants with a sound-to-word learning paradigm in which they learned to use a foreign phonetic contrast for signaling word meaning. Using diffusion tensor imaging (DTI), a brain imaging tool to investigate white matter connectivity in humans, we found that fractional anisotropy in the left parietal-temporal region positively correlated with the performance in sound-to-word learning. In addition, fiber tracking revealed a ventral pathway, composed of the extreme capsule and the inferior longitudinal fasciculus, that mediated auditory comprehension. Our findings provide converging evidence supporting the importance of the ventral steam, an extreme capsule system, in the frontal-temporal language network. Implications for current models of speech processing will also be discussed. PMID:21677162

  15. Pattern detection in stream networks: Quantifying spatialvariability in fish distribution

    USGS Publications Warehouse

    Torgersen, Christian E.; Gresswell, Robert E.; Bateman, Douglas S.

    2004-01-01

    Biological and physical properties of rivers and streams are inherently difficult to sample and visualize at the resolution and extent necessary to detect fine-scale distributional patterns over large areas. Satellite imagery and broad-scale fish survey methods are effective for quantifying spatial variability in biological and physical variables over a range of scales in marine environments but are often too coarse in resolution to address conservation needs in inland fisheries management. We present methods for sampling and analyzing multiscale, spatially continuous patterns of stream fishes and physical habitat in small- to medium-size watersheds (500–1000 hectares). Geospatial tools, including geographic information system (GIS) software such as ArcInfo dynamic segmentation and ArcScene 3D analyst modules, were used to display complex biological and physical datasets. These tools also provided spatial referencing information (e.g. Cartesian and route-measure coordinates) necessary for conducting geostatistical analyses of spatial patterns (empirical semivariograms and wavelet analysis) in linear stream networks. Graphical depiction of fish distribution along a one-dimensional longitudinal profile and throughout the stream network (superimposed on a 10-metre digital elevation model) provided the spatial context necessary for describing and interpreting the relationship between landscape pattern and the distribution of coastal cutthroat trout (Oncorhynchus clarki clarki) in western Oregon, U.S.A. The distribution of coastal cutthroat trout was highly autocorrelated and exhibited a spherical semivariogram with a defined nugget, sill, and range. Wavelet analysis of the main-stem longitudinal profile revealed periodicity in trout distribution at three nested spatial scales corresponding ostensibly to landscape disturbances and the spacing of tributary junctions.

  16. Groundwater/surface-water interaction in central Sevier County, Tennessee, October 2015–2016

    USGS Publications Warehouse

    Carmichael, John K.; Johnson, Gregory C.

    2017-12-14

    The U.S. Geological Survey evaluated the interaction of groundwater and surface water in the central part of Sevier County, Tennessee, from October 2015 through October 2016. Stream base flow was surveyed in December 2015 and in July and October 2016 to evaluate losing and gaining stream reaches along three streams in the area. During a July 2016 synoptic survey, groundwater levels were measured in wells screened in the Cambrian-Ordovician aquifer to define the potentiometric surface in the area. The middle and lower reaches of the Little Pigeon River and the middle reaches of Middle Creek and the West Prong Little Pigeon River were gaining streams at base-flow conditions. The lower segments of the West Prong Little Pigeon River and Middle Creek were losing reaches under base-flow conditions, with substantial flow losses in the West Prong Little Pigeon River and complete subsurface diversion of flow in Middle Creek through a series of sinkholes that developed in the streambed and adjacent flood plain beginning in 2010. The potentiometric surface of the Cambrian-Ordovician aquifer showed depressed water levels in the area where loss of flow occurred in the lower reaches of West Prong Little Pigeon River and Middle Creek. Continuous dewatering activities at a rock quarry located in this area appear to have lowered groundwater levels by as much as 180 feet, which likely is the cause of flow losses observed in the two streams, and a contributing factor to the development of sinkholes at Middle Creek near Collier Drive.

  17. Uranium in Surface Waters and Sediments Affected by Historical Mining in the Denver West 1:100,000 Quadrangle, Colorado

    USGS Publications Warehouse

    Zielinski, Robert A.; Otton, James K.; Schumann, R. Randall; Wirt, Laurie

    2008-01-01

    Geochemical sampling of 82 stream waters and 87 stream sediments within mountainous areas immediately west of Denver, Colorado, was conducted by the U.S. Geological Survey in October 1994. The primary purpose was to evaluate regionally the effects of geology and past mining on the concentration and distribution of uranium. The study area contains uranium- and thorium-rich bedrock, numerous noneconomic occurrences of uranium minerals, and several uranium deposits of variable size and production history. During the sampling period, local streams had low discharge and were more susceptible to uranium-bearing acid drainage originating from historical mines of base- and precious-metal sulfides. Results indicated that the spatial distribution of Precambrian granites and metamorphic rocks strongly influences the concentration of uranium in stream sediments. Within-stream transport increases the dispersion of uranium- and thorium rich mineral grains derived primarily from granitic source rocks. Dissolved uranium occurs predominantly as uranyl carbonate complexes, and concentrations ranged from less than 1 to 65 micrograms per liter. Most values were less than 5 micrograms per liter, which is less than the current drinking water standard of 30 micrograms per liter and much less than locally applied aquatic-life toxicity standards of several hundred micrograms per liter. In local streams that are affected by uranium-bearing acid mine drainage, dissolved uranium is moderated by dilution and sorptive uptake by stream sediments. Sorbents include mineral alteration products and chemical precipitates of iron- and aluminum-oxyhydroxides, which form where acid drainage enters streams and is neutralized. Suspended uranium is relatively abundant in some stream segments affected by nearby acid drainage, which likely represents mobilization of these chemical precipitates. The 234U/238U activity ratio of acid drainage (0.95-1.0) is distinct from that of local surface waters (more than 1.05), and this distinctive isotopic composition may be preserved in iron-oxyhydroxide precipitates of acid drainage origin. The study area includes a particularly large vein-type uranium deposit (Schwartzwalder mine) with past uranium production. Stream water and sediment collected downstream from the mine's surface operations have locally anomalous concentrations of uranium. Fine-grained sediments downstream from the mine contain rare minute particles (10-20 micrometers) of uraninite, which is unstable in a stream environment and thus probably of recent origin related to mining. Additional rare particles of very fine grained (less than 5 micrometer) barite likely entered the stream as discharge from settling ponds in which barite precipitation was formerly used to scavenge dissolved radium from mine effluent.

  18. 2011 Los Alamos National Laboratory Riparian Inventory Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, Elizabeth J.; Hansen, Leslie A.; Hathcock, Charles D.

    A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed butmore » no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.« less

  19. QoS mapping algorithm for ETE QoS provisioning

    NASA Astrophysics Data System (ADS)

    Wu, Jian J.; Foster, Gerry

    2002-08-01

    End-to-End (ETE) Quality of Service (QoS) is critical for next generation wireless multimedia communication systems. To meet the ETE QoS requirements, Universal Mobile Telecommunication System (UMTS) requires not only meeting the 3GPP QoS requirements [1-2] but also mapping external network QoS classes to UMTS QoS classes. There are four Quality of Services (QoS) classes in UMTS; they are Conversational, Streaming, Interactive and Background. There are eight QoS classes for LAN in IEEE 802.1 (one reserved). ATM has four QoS categories. They are Constant Bit Rate (CBR) - highest priority, short queue for strict Cell Delay Variation (CDV), Variable Bit Rate (VBR) - second highest priority, short queues for real time, longer queues for non-real time, Guaranteed Frame Rate (GFR)/ Unspecified Bit Rate (UBR) with Minimum Desired Cell Rate (MDCR) - intermediate priority, dependent on service provider UBR/ Available Bit Rate (ABR) - lowest priority, long queues, large delay variation. DiffServ (DS) has six-bit DS codepoint (DSCP) available to determine the datagram's priority relative to other datagrams and therefore, up to 64 QoS classes are available from the IPv4 and IPv6 DSCP. Different organisations have tried to solve the QoS issues from their own perspective. However, none of them has a full picture for end-to-end QoS classes and how to map them among all QoS classes. Therefore, a universal QoS needs to be created and a new set of QoS classes to enable end-to-end (ETE) QoS provisioning is required. In this paper, a new set of ETE QoS classes is proposed and a mappings algorithm for different QoS classes that are proposed by different organisations is given. With our proposal, ETE QoS mapping and control can be implemented.

  20. Behaviour Recognition from Sensory Streams in Smart Environments

    NASA Astrophysics Data System (ADS)

    Chua, Sook-Ling; Marsland, Stephen; Guesgen, Hans W.

    One application of smart homes is to take sensor activations from a variety of sensors around the house and use them to recognise the particular behaviours of the inhabitants. This can be useful for monitoring of the elderly or cognitively impaired, amongst other applications. Since the behaviours themselves are not directly observed, only the observations by sensors, it is common to build a probabilistic model of how behaviours arise from these observations, for example in the form of a Hidden Markov Model (HMM). In this paper we present a method of selecting which of a set of trained HMMs best matches the current observations, together with experiments showing that it can reliably detect and segment the sensor stream into behaviours. We demonstrate our algorithm on real sensor data obtained from the MIT PlaceLab. The results show a significant improvement in the recognition accuracy over other approaches.

  1. National Hydrography Dataset (NHD)

    USGS Publications Warehouse

    ,

    2001-01-01

    The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000 scale and exists at that scale for the whole country. High resolution NHD adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Like the 1:100,000-scale NHD, high resolution NHD contains reach codes for networked features and isolated lakes, flow direction, names, stream level, and centerline representations for areal water bodies. Reaches are also defined to represent waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria set out by the Federal Geographic Data Committee.

  2. Context-Aware Fusion of RGB and Thermal Imagery for Traffic Monitoring

    PubMed Central

    Alldieck, Thiemo; Bahnsen, Chris H.; Moeslund, Thomas B.

    2016-01-01

    In order to enable a robust 24-h monitoring of traffic under changing environmental conditions, it is beneficial to observe the traffic scene using several sensors, preferably from different modalities. To fully benefit from multi-modal sensor output, however, one must fuse the data. This paper introduces a new approach for fusing color RGB and thermal video streams by using not only the information from the videos themselves, but also the available contextual information of a scene. The contextual information is used to judge the quality of a particular modality and guides the fusion of two parallel segmentation pipelines of the RGB and thermal video streams. The potential of the proposed context-aware fusion is demonstrated by extensive tests of quantitative and qualitative characteristics on existing and novel video datasets and benchmarked against competing approaches to multi-modal fusion. PMID:27869730

  3. Characterization of instream hydraulic and riparian habitat conditions and stream temperatures of the Upper White River Basin, Washington, using multispectral imaging systems

    USGS Publications Warehouse

    Black, Robert W.; Haggland, Alan; Crosby, Greg

    2003-01-01

    Instream hydraulic and riparian habitat conditions and stream temperatures were characterized for selected stream segments in the Upper White River Basin, Washington. An aerial multispectral imaging system used digital cameras to photograph the stream segments across multiple wavelengths to characterize fish habitat and temperature conditions. All imageries were georeferenced. Fish habitat features were photographed at a resolution of 0.5 meter and temperature imageries were photographed at a 1.0-meter resolution. The digital multispectral imageries were classified using commercially available software. Aerial photographs were taken on September 21, 1999. Field habitat data were collected from August 23 to October 12, 1999, to evaluate the measurement accuracy and effectiveness of the multispectral imaging in determining the extent of the instream habitat variables. Fish habitat types assessed by this method were the abundance of instream hydraulic features such as pool and riffle habitats, turbulent and non-turbulent habitats, riparian composition, the abundance of large woody debris in the stream and riparian zone, and stream temperatures. Factors such as the abundance of instream woody debris, the location and frequency of pools, and stream temperatures generally are known to have a significant impact on salmon. Instream woody debris creates the habitat complexity necessary to maintain a diverse and healthy salmon population. The abundance of pools is indicative of a stream's ability to support fish and other aquatic organisms. Changes in water temperature can affect aquatic organisms by altering metabolic rates and oxygen requirements, altering their sensitivity to toxic materials and affecting their ability to avoid predators. The specific objectives of this project were to evaluate the use of an aerial multispectral imaging system to accurately identify instream hydraulic features and surface-water temperatures in the Upper White River Basin, to use the multispectral system to help establish baseline instream/riparian habitat conditions in the study area, and to qualitatively assess the imaging system for possible use in other Puget Sound rivers. For the most part, all multispectral imagery-based estimates of total instream riffle and pool area were less than field measurements. The imagery-based estimates for riffle habitat area ranged from 35.5 to 83.3 percent less than field measurements. Pool habitat estimates ranged from 139.3 percent greater than field measurements to 94.0 percent less than field measurements. Multispectral imagery-based estimates of turbulent habitat conditions ranged from 9.3 percent greater than field measurements to 81.6 percent less than field measurements. Multispectral imagery-based estimates of non-turbulent habitat conditions ranged from 27.7 to 74.1 percent less than field measurements. The absolute average percentage of difference between field and imagery-based habitat type areas was less for the turbulent and non-turbulent habitat type categories than for pools and riffles. The estimate of woody debris by multispectral imaging was substantially different than field measurements; percentage of differences ranged from +373.1 to -100 percent. Although the total area of riffles, pools, and turbulent and non-turbulent habitat types measured in the field were all substantially higher than those estimated from the multispectral imagery, the percentage of composition of each habitat type was not substantially different between the imagery-based estimates and field measurements.

  4. Patterns and sources of fecal coliform bacteria in three streams in Virginia, 1999-2000

    USGS Publications Warehouse

    Hyer, Kenneth; Moyer, Douglas

    2003-01-01

    Surface-water impairment by fecal coliform bacteria is a water-quality issue of national scope and importance. In Virginia, more than 175 stream segments are on the Commonwealth's 1998 303(d) list of impaired waters because of elevated concentrations of fecal coliform bacteria. These fecal coliform-impaired stream segments require the development of total maximum daily load (TMDL) and associated implementation plans, but accurate information on the sources contributing these bacteria usually is lacking. The development of defendable fecal coliform TMDLs and management plans can benefit from reliable information on the bacteria sources that are responsible for the impairment. Bacterial source tracking (BST) recently has emerged as a powerful tool for identifying the sources of fecal coliform bacteria that impair surface waters. In a demonstration of BST technology, three watersheds on Virginia's 1998 303(d) list with diverse land-use practices (and potentially diverse bacteria sources) were studied. Accotink Creek is dominated by urban land uses, Christians Creek by agricultural land uses, and Blacks Run is affected by both urban and agricultural land uses. During the 20-month field study (March 1999?October 2000), water samples were collected from each stream during a range of flow conditions and seasons. For each sample, specific conductance, dissolved oxygen concentration, pH, turbidity, flow, and water temperature were measured. Fecal coliform concentrations of each water sample were determined using the membrane filtration technique. Next, Escherichia coli (E. coli) were isolated from the fecal coliform bacteria and their sources were identified using ribotyping (a method of 'genetic fingerprinting'). Study results provide enhanced understanding of the concentrations and sources of fecal coliform bacteria in these three watersheds. Continuum sampling (sampling along the length of the streams) indicated that elevated concentrations of fecal coliform bacteria (maximum observed concentration of 290,000 colonies/100 milliliters (col/100mL) could occur along the entire length of each stream, and that the samples collected at the downstream monitoring station of each stream were generally representative of the entire upstream reach. Seasonal patterns were observed in the base-flow fecal coliform concentrations of all streams; concentrations were typically highest in the summer and lowest in the winter. Fecal coliform concentrations were lowest during periods of base flow (typically 200?2,000 col/100mL) and increased by 3?4 orders of magnitude during storm events (as high as 700,000 col/100mL). Multiple linear regression models were developed to predict fecal coliform concentrations as a function of streamflow and other water-quality parameters. The source tracking technique provided identification of bacteria contributions from diverse sources that included (but were not limited to) humans, cattle, poultry, horses, dogs, cats, geese, ducks, raccoons, and deer. Seasonal patterns were observed in the contributions of cattle and poultry sources. There were relations between the identified sources of fecal coliform bacteria and the land-use practices within each watershed. There were only minor differences in the distribution of bacteria sources between low-flow periods and high-flow periods. A coupled approach that utilized both a large available source library and a smaller, location-specific source library provided the most success in identifying the unknown E. coli isolates. BST data should provide valuable support and guidance for producing more defendable and scientifically rigorous watershed models. Incorporation of these bacteria-source data into watershed management strategies also should result in the selection of more efficient source-reduction scenarios for improving water quality.

  5. Northern Great Plains Network water quality monitoring design for tributaries to the Missouri National Recreational River

    USGS Publications Warehouse

    Rowe, Barbara L.; Wilson, Stephen K.; Yager, Lisa; Wilson, Marcia H.

    2013-01-01

    The National Park Service (NPS) organized more than 270 parks with important natural resources into 32 ecoregional networks to conduct Inventory and Monitoring (I&M) activities for assessment of natural resources within park units. The Missouri National Recreational River (NRR) is among the 13 parks in the NPS Northern Great Plain Network (NGPN). Park managers and NGPN staff identified surface water resources as a high priority vital sign to monitor in park units. The objectives for the Missouri NRR water quality sampling design are to (1) assess the current status and long-term trends of select water quality parameters; and (2) document trends in streamflow at high-priority stream systems. Due to the large size of the Missouri River main stem, the NGPN water quality design for the Missouri NRR focuses on wadeable tributaries within the park unit. To correlate with the NGPN water quality protocols, monitoring of the Missouri NRR consists of measurement of field core parameters including dissolved oxygen, pH, specific conductance, and temperature; and streamflow. The purpose of this document is to discuss factors examined for selection of water quality monitoring on segments of the Missouri River tributaries within the Missouri NRR.Awareness of the complex history of the Missouri NRR aids in the current understanding and direction for designing a monitoring plan. Historical and current monitoring data from agencies and entities were examined to assess potential NGPN monitoring sites. In addition, the U.S. Environmental Protection Agency 303(d) list was examined for the impaired segments on tributaries to the Missouri River main stem. Because major tributaries integrate water quality effects from complex combinations of land use and environmental settings within contributing areas, a 20-mile buffer of the Missouri NRR was used to establish environmental settings that may impact the water quality of tributaries that feed the Missouri River main stem. For selection of monitoring sites, anthropogenic and natural influences to water quality were assessed for Missouri NRR tributaries. Factors that were examined include the size and contributions of tributaries within watersheds to the main stem; population density; and land use such as urban development and agricultural practices including concentrated animal feeding operations. Based on examination of these data in addition to the park’s legislation and management considerations, two sites were selected for monitoring water quality on Missouri NRR tributaries for the ice-free season (mid-May to mid-October) on a rotational basis every third year. Bow Creek at St. James was selected for water quality monitoring based on lack of long-term water quality monitoring, current recreational use, and proximity of the tributary to intense agricultural practices. In addition, land within the Bow Creek watershed is owned by the NPS. The Niobrara River at Verdel was selected for monitoring due to high use for public recreational activities, adjacent agricultural land use, and documented impairments for designated beneficial uses. Both sites will have access to real-time streamgages that will aid in a greater understanding of water quality.

  6. A New Streamflow-Routing (SFR1) Package to Simulate Stream-Aquifer Interaction with MODFLOW-2000

    USGS Publications Warehouse

    Prudic, David E.; Konikow, Leonard F.; Banta, Edward R.

    2004-01-01

    The increasing concern for water and its quality require improved methods to evaluate the interaction between streams and aquifers and the strong influence that streams can have on the flow and transport of contaminants through many aquifers. For this reason, a new Streamflow-Routing (SFR1) Package was written for use with the U.S. Geological Survey's MODFLOW-2000 ground-water flow model. The SFR1 Package is linked to the Lake (LAK3) Package, and both have been integrated with the Ground-Water Transport (GWT) Process of MODFLOW-2000 (MODFLOW-GWT). SFR1 replaces the previous Stream (STR1) Package, with the most important difference being that stream depth is computed at the midpoint of each reach instead of at the beginning of each reach, as was done in the original Stream Package. This approach allows for the addition and subtraction of water from runoff, precipitation, and evapotranspiration within each reach. Because the SFR1 Package computes stream depth differently than that for the original package, a different name was used to distinguish it from the original Stream (STR1) Package. The SFR1 Package has five options for simulating stream depth and four options for computing diversions from a stream. The options for computing stream depth are: a specified value; Manning's equation (using a wide rectangular channel or an eight-point cross section); a power equation; or a table of values that relate flow to depth and width. Each stream segment can have a different option. Outflow from lakes can be computed using the same options. Because the wetted perimeter is computed for the eight-point cross section and width is computed for the power equation and table of values, the streambed conductance term no longer needs to be calculated externally whenever the area of streambed changes as a function of flow. The concentration of solute is computed in a stream network when MODFLOW-GWT is used in conjunction with the SFR1 Package. The concentration of a solute in a stream reach is based on a mass-balance approach and accounts for exchanges with (inputs from or losses to) ground-water systems. Two test examples are used to illustrate some of the capabilities of the SFR1 Package. The first test simulation was designed to illustrate how pumping of ground water from an aquifer connected to streams can affect streamflow, depth, width, and streambed conductance using the different options. The second test simulation was designed to illustrate solute transport through interconnected lakes, streams, and aquifers. Because of the need to examine time series results from the model simulations, the Gage Package first described in the LAK3 documentation was revised to include time series results of selected variables (streamflows, stream depth and width, streambed conductance, solute concentrations, and solute loads) for specified stream reaches. The mass-balance or continuity approach for routing flow and solutes through a stream network may not be applicable for all interactions between streams and aquifers. The SFR1 Package is best suited for modeling long-term changes (months to hundreds of years) in ground-water flow and solute concentrations using averaged flows in streams. The Package is not recommended for modeling the transient exchange of water between streams and aquifers when the objective is to examine short-term (minutes to days) effects caused by rapidly changing streamflows.

  7. Detection and Mapping of the Geomorphic Effects of Flooding Using UAV Photogrammetry

    NASA Astrophysics Data System (ADS)

    Langhammer, Jakub; Vacková, Tereza

    2018-04-01

    In this paper, we present a novel technique for the objective detection of the geomorphological effects of flooding in riverbeds and floodplains using imagery acquired by unmanned aerial vehicles (UAVs, also known as drones) equipped with an panchromatic camera. The proposed method is based on the fusion of the two key data products of UAV photogrammetry, the digital elevation model (DEM), and the orthoimage, as well as derived qualitative information, which together serve as the basis for object-based segmentation and the supervised classification of fluvial forms. The orthoimage is used to calculate textural features, enabling detection of the structural properties of the image area and supporting the differentiation of features with similar spectral responses but different surface structures. The DEM is used to derive a flood depth model and the terrain ruggedness index, supporting the detection of bank erosion. All the newly derived information layers are merged with the orthoimage to form a multi-band data set, which is used for object-based segmentation and the supervised classification of key fluvial forms resulting from flooding, i.e., fresh and old gravel accumulations, sand accumulations, and bank erosion. The method was tested on the effects of a snowmelt flood that occurred in December 2015 in a montane stream in the Sumava Mountains, Czech Republic, Central Europe. A multi-rotor UAV was used to collect images of a 1-km-long and 200-m-wide stretch of meandering stream with fresh traces of fluvial activity. The performed segmentation and classification proved that the fusion of 2D and 3D data with the derived qualitative layers significantly enhanced the reliability of the fluvial form detection process. The assessment accuracy for all of the detected classes exceeded 90%. The proposed technique proved its potential for application in rapid mapping and detection of the geomorphological effects of flooding.

  8. Activity Recognition on Streaming Sensor Data.

    PubMed

    Krishnan, Narayanan C; Cook, Diane J

    2014-02-01

    Many real-world applications that focus on addressing needs of a human, require information about the activities being performed by the human in real-time. While advances in pervasive computing have lead to the development of wireless and non-intrusive sensors that can capture the necessary activity information, current activity recognition approaches have so far experimented on either a scripted or pre-segmented sequence of sensor events related to activities. In this paper we propose and evaluate a sliding window based approach to perform activity recognition in an on line or streaming fashion; recognizing activities as and when new sensor events are recorded. To account for the fact that different activities can be best characterized by different window lengths of sensor events, we incorporate the time decay and mutual information based weighting of sensor events within a window. Additional contextual information in the form of the previous activity and the activity of the previous window is also appended to the feature describing a sensor window. The experiments conducted to evaluate these techniques on real-world smart home datasets suggests that combining mutual information based weighting of sensor events and adding past contextual information into the feature leads to best performance for streaming activity recognition.

  9. Stream and floodplain restoration in a riparian ecosystem disturbed by placer mining

    USGS Publications Warehouse

    Karle, Kenneth F.; Densmore, Roseann V.

    1994-01-01

    Techniques for the hydrologic restoration of placer-mined streams and floodplains were developed in Denali National Park and Preserve Alaska, USA. The hydrologic study focused on a design of stream and floodplain geometry using hydraulic capacity and shear stress equations. Slope and sinuosity values were based on regional relationships. Design requirements include a channel capacity for a 1.5-year (bankfull) discharge and a floodplain capacity for a 1.5- to 100-year discharge. Concern for potential damage to the project from annual flooding before natural revegetation occurs led to development of alder (Alnus crispa) brush bars to dissipate floodwater energy and encourage sediment deposition. The brush bars, constructed of alder bundles tied together and anchored laterally adjacent to the channel, were installed on the floodplain in several configurations to test their effectiveness. A moderate flood near the end of the two-year construction phase of the project provided data on channel design, stability, floodplain erosion, and brush bar effectiveness. The brush bars provided substantial protection, but unconsolidated bank material and a lack of bed armour for a new channel segment led to some bank erosion, slope changes and an increase in sinuosity in several reaches of the study area.

  10. Novel dynamic caching for hierarchically distributed video-on-demand systems

    NASA Astrophysics Data System (ADS)

    Ogo, Kenta; Matsuda, Chikashi; Nishimura, Kazutoshi

    1998-02-01

    It is difficult to simultaneously serve the millions of video streams that will be needed in the age of 'Mega-Media' networks by using only one high-performance server. To distribute the service load, caching servers should be location near users. However, in previously proposed caching mechanisms, the grade of service depends on whether the data is already cached at a caching server. To make the caching servers transparent to the users, the ability to randomly access the large volume of data stored in the central server should be supported, and the operational functions of the provided service should not be narrowly restricted. We propose a mechanism for constructing a video-stream-caching server that is transparent to the users and that will always support all special playback functions for all available programs to all the contents with a latency of only 1 or 2 seconds. This mechanism uses Variable-sized-quantum-segment- caching technique derived from an analysis of the historical usage log data generated by a line-on-demand-type service experiment and based on the basic techniques used by a time- slot-based multiple-stream video-on-demand server.

  11. A modeling assessment of the thermal regime for an urban sport fishery

    USGS Publications Warehouse

    Bartholow, John M.

    1991-01-01

    Water temperature is almost certainly a limiting factor in the maintenance of a self-sustaining rainbow trout (Oncorhynchus mykiss, formerly Salmo gairdneri) and brown trout (Salmo trutta) fishery in the lower reaches of the Cache la Poudre River near Fort Collins, Colorado, USA. Irrigation diversions dewater portions of the river, but cold reservoir releases moderate water temperatures during some periods. The US Fish and Wildlife Service’s Stream Network Temperature Model (SNTEMP) was applied to a 31-km segment of the river using readily available stream geometry and hydrological and meteorological data. The calibrated model produced satisfactory water temperature predictions (R2=0.88,P3/sec would be needed to maintain suitable summer temperatures throughout most of the study area. Such flows would be especially beneficial during weekends when current irrigation patterns reduce flows. The model indicated that increasing the riparian shade would result in little improvement in water temperatures but that decreasing the stream width would result in significant temperature reductions. Introduction of a more thermally tolerant redband trout (Oncorhynchus sp.), or smallmouth bass (Micropterus dolomieui) might prove beneficial to the fishery. Construction of deep pools for thermal refugia might also be helpful.

  12. Spatial heterogeneity of stream environmental conditions and macroinvertebrates community in an agriculture dominated watershed and management implications for a large river (the Liao River, China) basin.

    PubMed

    Gao, Xin; Niu, Cuijuan; Chen, Yushun; Yin, Xuwang

    2014-04-01

    Understanding the effects of watershed land uses (e.g., agriculture, urban industry) on stream ecological conditions is important for the management of large river basins. A total of 41 and 56 stream sites (from first to fourth order) that were under a gradient of watershed land uses were monitored in 2009 and 2010, respectively, in the Liao River Basin, Northeast China. The monitoring results showed that a total of 192 taxa belonging to four phyla, seven classes, 21 orders and 91 families were identified. The composition of macroinvertebrate community in the Liao River Basin was dominated by aquatic insect taxa (Ephemeroptera and Diptera), Oligochaeta and Molluscs. The functional feeding group GC (Gatherer/Collector) was dominant in the whole basin. Statistical results showed that sites with less watershed impacts (lower order sites) were characterized by higher current velocity and habitat score, more sensitive taxa (e.g., Ephemeroptera), and the substrate was dominated by high percentage of cobble and pebble. The sites with more impacts from agriculture and urban industry (higher order sites) were characterized by higher biochemical (BOD5) and chemical oxygen demand (COD), more tolerant taxa (e.g., Chironominae), and the substrate was dominated by silt and sand. Agriculture and urban-industry activities have reduced habitat condition, increased organic pollutants, reduced macroinvertebrate abundance, diversity, and sensitive taxa in streams of the lower Liao River Basin. Restoration of degraded habitat condition and control of watershed organic pollutants could be potential management priorities for the Basin.

  13. The importance of a Biosphere Reserve of Atlantic Forest for the conservation of stream fauna.

    PubMed

    Yoshida, C E; Uieda, V S

    2014-05-01

    Preservation of terrestrial fauna and flora has been the main reason for the settlement of most protected areas in the past 30 years, but although those areas may include water bodies, this does not necessarily mean that the biodiversity of freshwater environments are also protected. In the present study, the fauna inventory of eight streams (1st, 2nd, 4th and 5th orders) of three microbasins of Japi Mountain, a Biosphere Reserve of Atlantic Forest recognised by UNESCO since 1994, located in São Paulo state, southeast of Brazil, was conducted. The hypothesis of this study is that the conservation of this area is important for the maintenance of the aquatic biodiversity of this biome, and so, this world hotspot deserves priority conservation actions. From 2005 to 2007, benthic macroinvertebrates, fishes and, eventually, anuran amphibians were sampled in these streams. The results showed that Japi Mountain contributes to the conservation of 138 taxonomic units of the aquatic biota and covers a rich and representative biodiversity of freshwater fauna of the world (0.2%), Neotropical region (0.9%), Brazil (2.4%) and São Paulo state (17.9%). The studied streams in the Environmental Protection Area help protect endangered taxa like the fishes Neoplecostomus paranensis and Pareiorhina cf rudolphi, and shelter freshwater invertebrates and fishes whose distribution is restricted to the Brazilian territory. Japi Mountain is also an important haven of species that was missing there like the frog species Vitreorana eurygnatha. Thus, this species inventory emphasises the importance of conservation actions of the freshwater environments of this Biosphere Reserve of Atlantic Forest.

  14. Partial migration in introduced wild chinook salmon (Oncorhynchus tshawytscha) of southern Chile

    NASA Astrophysics Data System (ADS)

    Araya, Miguel; Niklitschek, Edwin J.; Secor, Dave H.; Piccoli, Philip M.

    2014-08-01

    Partial migration, the incidence of opposing migration behaviors within the same population, has been a key factor in the invasive ecology of Pacific salmon within South America. Here, we examined such life-cycle variation in of an introduced chinook salmon population in the Aysén watershed, one of the largest fjord systems in NW Patagonia. The chinook salmon is the most successful invasive salmonid species in Patagonia and has recently colonized numerous Patagonian watersheds of the Pacific and Atlantic Oceans. Using analyses of fish scales and otolith strontium:calcium ratios, our results suggest the presence of two distinct ecotypes in the chinook population, an ocean type and a stream type, in a 3:2 ratio. The distribution of back-calculated length at the time of emigration from river to marine habitats showed a mode of 14 cm for the ocean ecotype and 30 cm for the stream ecotype. River residence time for the ocean ecotype ranged from 1 to 10 months, while that of the stream ecotype varied between 14 and 20 months. Returning adults reproduced in riverine habitats between August and March, but reproduction by the stream ecotype was limited to the period between October and February. Our results show that exotic chinook salmon populations established in NW Patagonia present a diversity of life-history strategies, which seems to be as large as the ones exhibited by the species in its native distribution range and in other invaded ecosystems. Chinook salmon have successfully invaded most major rivers in Patagonia, placing priority on science and conservation related to their ecological impact.

  15. Quantitative Analysis Of User Interfaces For Large Electronic Home Appliances And Mobile Devices Based On Lifestyle Categorization Of Older Users.

    PubMed

    Shin, Wonkyoung; Park, Minyong

    2017-01-01

    Background/Study Context: The increasing longevity and health of older users as well as aging populations has created the need to develop senior-oriented product interfaces. This study aims to find user interface (UI) priorities according to older user groups based on their lifestyle and develop quality of UI (QUI) models for large electronic home appliances and mobile products. A segmentation table designed to show how older users can be categorized was created through a review of the literature to survey 252 subjects with a questionnaire. Factor analysis was performed to extract six preliminary lifestyle factors, which were then used for subsequent cluster analysis. The analysis resulted in four groups. Cross-analysis was carried out to investigate which characteristics were included in the groups. Analysis of variance was then applied to investigate the differences in the UI priorities among the user groups for various electronic devices. Finally, QUI models were developed and applied to those electronic devices. Differences in UI priorities were found according to the four lifestyles ("money-oriented," "innovation-oriented," "stability- and simplicity-oriented," and "innovation- and intellectual-oriented"). Twelve QUI models were developed for four different lifestyle groups associated with different products. Three washers and three smartphones were used as an example for testing the QUI models. The UI differences of the older user groups by the segmentation in this study using several key (i.e., demographic, socioeconomic, and physical-cognitive) variables are distinct from earlier studies made by a single variable. The differences in responses clearly indicate the benefits of integrating various factors of older users, rather than single variable, in order to design and develop more innovative and better consumer products in the future. The results of this study showed that older users with a potentially high buying power in the future are likely to have higher satisfaction when selecting products customized for their lifestyle. Designers could also use the results of UI evaluation for older users based on their lifestyle before developing products through QUI modeling. This approach would save time and costs.

  16. Groundwater and surface-water interaction and potential for underground water storage in the Buena Vista-Salida Basin, Chaffee County, Colorado, 2011

    USGS Publications Warehouse

    Watts, Kenneth R.; Ivahnenko, Tamara I.; Stogner, Sr., Robert W.; Bruce, James F.

    2014-01-01

    By 2030, the population of the Arkansas Headwaters Region, which includes all of Chaffee and Lake Counties and parts of Custer, Fremont, and Park Counties, Colorado, is forecast to increase about 73 percent. As the region’s population increases, it is anticipated that groundwater will be used to meet much of the increased demand. In September 2009, the U.S. Geological Survey, in cooperation with the Upper Arkansas Water Conservancy District and with support from the Colorado Water Conservation Board; Chaffee, Custer, and Fremont Counties; Buena Vista, Cañon City, Poncha Springs, and Salida; and Round Mountain Water and Sanitation District, began a 3-year study of groundwater and surface-water conditions in the Buena Vista-Salida Basin. This report presents results from the study of the Buena Vista-Salida Basin including synoptic gain-loss measurements and water budgets of Cottonwood, Chalk, and Browns Creeks, changes in groundwater storage, estimates of specific yield, transmissivity and hydraulic conductivity from aquifer tests and slug tests, an evaluation of areas with potential for underground water storage, and estimates of stream-accretion response-time factors for hypothetical recharge and selected streams in the basin. The four synoptic measurements of flow of Cottonwood, Chalk, and Browns Creeks, suggest quantifiable groundwater gains and losses in selected segments in all three perennial streams. The synoptic measurements of flow of Cottonwood and Browns Creeks suggest a seasonal variability, where positive later-irrigation season values in these creeks suggest groundwater discharge, possibly as infiltrated irrigation water. The overall sum of gains and losses on Chalk Creek does not indicate a seasonal variability but indicates a gaining stream in April and August/September. Gains and losses in the measured upper segments of Chalk Creek likely are affected by the Chalk Cliffs Rearing Unit (fish hatchery). Monthly water budgets were estimated for selected segments of five perennial streams (Cottonwood, North Cottonwood, Chalk, and Browns Creeks, and South Arkansas River) in the Buena Vista-Salida Basin for calendar year 2011. Differences between reported diversions and estimated crop irrigation requirements were used to estimate groundwater recharge in the areas irrigated by water supplied from the diversions. The amount of groundwater recharge in all the basins varied monthly; however, the greatest amount of recharge was during June and July for Cottonwood, North Cottonwood, and Chalk Creeks and South Arkansas River. The greatest amount of recharge in 2011 in Browns Creek occurred in July and August. The large seasonal fluctuations of groundwater near irrigated areas in the Buena Vista-Salida Basin indicate that the increased groundwater storage resulting from infiltration of surface-water diversions has dissipated by the following spring. Areas within the Buena Vista-Salida Basin with the potential for underground storage were identified using geographic information system data, including topographic, geologic, and hydrologic data, excluding the mountainous areas that border the Buena Vista-Salida Basin and igneous and metamorphic rock outcrop areas. The areas that met the selection criteria for underground water storage are located on terrace deposits near the Arkansas River and adjacent to its major tributaries. The selected areas also contain much of the irrigated land within the basin; consequently, irrigation ditches and canals could provide a means of conveying water to potential recharge sites.

  17. Rapid Statistical Learning Supporting Word Extraction From Continuous Speech.

    PubMed

    Batterink, Laura J

    2017-07-01

    The identification of words in continuous speech, known as speech segmentation, is a critical early step in language acquisition. This process is partially supported by statistical learning, the ability to extract patterns from the environment. Given that speech segmentation represents a potential bottleneck for language acquisition, patterns in speech may be extracted very rapidly, without extensive exposure. This hypothesis was examined by exposing participants to continuous speech streams composed of novel repeating nonsense words. Learning was measured on-line using a reaction time task. After merely one exposure to an embedded novel word, learners demonstrated significant learning effects, as revealed by faster responses to predictable than to unpredictable syllables. These results demonstrate that learners gained sensitivity to the statistical structure of unfamiliar speech on a very rapid timescale. This ability may play an essential role in early stages of language acquisition, allowing learners to rapidly identify word candidates and "break in" to an unfamiliar language.

  18. Application of failure mode and effect analysis in managing catheter-related blood stream infection in intensive care unit.

    PubMed

    Li, Xixi; He, Mei; Wang, Haiyan

    2017-12-01

    In this study, failure mode and effect analysis (FMEA), a proactive tool, was applied to reduce errors associated with the process which begins with assessment of patient and ends with treatment of complications. The aim of this study is to assess whether FMEA implementation will significantly reduce the incidence of catheter-related bloodstream infections (CRBSIs) in intensive care unit.The FMEA team was constructed. A team of 15 medical staff from different departments were recruited and trained. Their main responsibility was to analyze and score all possible processes of central venous catheterization failures. Failure modes with risk priority number (RPN) ≥100 (top 10 RPN scores) were deemed as high-priority-risks, meaning that they needed immediate corrective action. After modifications were put, the resulting RPN was compared with the previous one. A centralized nursing care system was designed.A total of 25 failure modes were identified. High-priority risks were "Unqualified medical device sterilization" (RPN, 337), "leukopenia, very low immunity" (RPN, 222), and "Poor hand hygiene Basic diseases" (RPN, 160). The corrective measures that we took allowed a decrease in the RPNs, especially for the high-priority risks. The maximum reduction was approximately 80%, as observed for the failure mode "Not creating the maximal barrier for patient." The averaged incidence of CRBSIs was reduced from 5.19% to 1.45%, with 3 months of 0 infection rate.The FMEA can effectively reduce incidence of CRBSIs, improve the security of central venous catheterization technology, decrease overall medical expenses, and improve nursing quality. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  19. Statistical learning of movement.

    PubMed

    Ongchoco, Joan Danielle Khonghun; Uddenberg, Stefan; Chun, Marvin M

    2016-12-01

    The environment is dynamic, but objects move in predictable and characteristic ways, whether they are a dancer in motion, or a bee buzzing around in flight. Sequences of movement are comprised of simpler motion trajectory elements chained together. But how do we know where one trajectory element ends and another begins, much like we parse words from continuous streams of speech? As a novel test of statistical learning, we explored the ability to parse continuous movement sequences into simpler element trajectories. Across four experiments, we showed that people can robustly parse such sequences from a continuous stream of trajectories under increasingly stringent tests of segmentation ability and statistical learning. Observers viewed a single dot as it moved along simple sequences of paths, and were later able to discriminate these sequences from novel and partial ones shown at test. Observers demonstrated this ability when there were potentially helpful trajectory-segmentation cues such as a common origin for all movements (Experiment 1); when the dot's motions were entirely continuous and unconstrained (Experiment 2); when sequences were tested against partial sequences as a more stringent test of statistical learning (Experiment 3); and finally, even when the element trajectories were in fact pairs of trajectories, so that abrupt directional changes in the dot's motion could no longer signal inter-trajectory boundaries (Experiment 4). These results suggest that observers can automatically extract regularities in movement - an ability that may underpin our capacity to learn more complex biological motions, as in sport or dance.

  20. Variance partitioning of stream diatom, fish, and invertebrate indicators of biological condition

    USGS Publications Warehouse

    Zuellig, Robert E.; Carlisle, Daren M.; Meador, Michael R.; Potapova, Marina

    2012-01-01

    Stream indicators used to make assessments of biological condition are influenced by many possible sources of variability. To examine this issue, we used multiple-year and multiple-reach diatom, fish, and invertebrate data collected from 20 least-disturbed and 46 developed stream segments between 1993 and 2004 as part of the US Geological Survey National Water Quality Assessment Program. We used a variance-component model to summarize the relative and absolute magnitude of 4 variance components (among-site, among-year, site × year interaction, and residual) in indicator values (observed/expected ratio [O/E] and regional multimetric indices [MMI]) among assemblages and between basin types (least-disturbed and developed). We used multiple-reach samples to evaluate discordance in site assessments of biological condition caused by sampling variability. Overall, patterns in variance partitioning were similar among assemblages and basin types with one exception. Among-site variance dominated the relative contribution to the total variance (64–80% of total variance), residual variance (sampling variance) accounted for more variability (8–26%) than interaction variance (5–12%), and among-year variance was always negligible (0–0.2%). The exception to this general pattern was for invertebrates at least-disturbed sites where variability in O/E indicators was partitioned between among-site and residual (sampling) variance (among-site  =  36%, residual  =  64%). This pattern was not observed for fish and diatom indicators (O/E and regional MMI). We suspect that unexplained sampling variability is what largely remained after the invertebrate indicators (O/E predictive models) had accounted for environmental differences among least-disturbed sites. The influence of sampling variability on discordance of within-site assessments was assemblage or basin-type specific. Discordance among assessments was nearly 2× greater in developed basins (29–31%) than in least-disturbed sites (15–16%) for invertebrates and diatoms, whereas discordance among assessments based on fish did not differ between basin types (least-disturbed  =  16%, developed  =  17%). Assessments made using invertebrate and diatom indicators from a single reach disagreed with other samples collected within the same stream segment nearly ⅓ of the time in developed basins, compared to ⅙ for all other cases.

  1. Engineering Specification for Large-aperture UVO Space Telescopes Derived from Science Requirements

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc; Smith, W. Scott

    2013-01-01

    The Advance Mirror Technology Development (AMTD) project is a three year effort initiated in FY12 to mature by at least a half TRL step six critical technologies required to enable 4 to 8 meter UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. A key accomplishment is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints.

  2. Automatic attention-based prioritization of unconstrained video for compression

    NASA Astrophysics Data System (ADS)

    Itti, Laurent

    2004-06-01

    We apply a biologically-motivated algorithm that selects visually-salient regions of interest in video streams to multiply-foveated video compression. Regions of high encoding priority are selected based on nonlinear integration of low-level visual cues, mimicking processing in primate occipital and posterior parietal cortex. A dynamic foveation filter then blurs (foveates) every frame, increasingly with distance from high-priority regions. Two variants of the model (one with continuously-variable blur proportional to saliency at every pixel, and the other with blur proportional to distance from three independent foveation centers) are validated against eye fixations from 4-6 human observers on 50 video clips (synthetic stimuli, video games, outdoors day and night home video, television newscast, sports, talk-shows, etc). Significant overlap is found between human and algorithmic foveations on every clip with one variant, and on 48 out of 50 clips with the other. Substantial compressed file size reductions by a factor 0.5 on average are obtained for foveated compared to unfoveated clips. These results suggest a general-purpose usefulness of the algorithm in improving compression ratios of unconstrained video.

  3. Word-level recognition of multifont Arabic text using a feature vector matching approach

    NASA Astrophysics Data System (ADS)

    Erlandson, Erik J.; Trenkle, John M.; Vogt, Robert C., III

    1996-03-01

    Many text recognition systems recognize text imagery at the character level and assemble words from the recognized characters. An alternative approach is to recognize text imagery at the word level, without analyzing individual characters. This approach avoids the problem of individual character segmentation, and can overcome local errors in character recognition. A word-level recognition system for machine-printed Arabic text has been implemented. Arabic is a script language, and is therefore difficult to segment at the character level. Character segmentation has been avoided by recognizing text imagery of complete words. The Arabic recognition system computes a vector of image-morphological features on a query word image. This vector is matched against a precomputed database of vectors from a lexicon of Arabic words. Vectors from the database with the highest match score are returned as hypotheses for the unknown image. Several feature vectors may be stored for each word in the database. Database feature vectors generated using multiple fonts and noise models allow the system to be tuned to its input stream. Used in conjunction with database pruning techniques, this Arabic recognition system has obtained promising word recognition rates on low-quality multifont text imagery.

  4. Legacy effects of colonial millponds on floodplain sedimentation, bank erosion, and channel morphology, MID-Atlantic, USA

    USGS Publications Warehouse

    Schenk, E.R.; Hupp, C.R.

    2009-01-01

    Many rivers and streams of the Mid-Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004-2007 at five sites along a 28-km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28-km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (-5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28-km reach produced a net mean sediment loss of 5,634 Mg/year for 2004-2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment. ?? 2009 American Water Resources Association.

  5. Regional Curves of Bankfull Channel Geometry for Non-Urban Streams in the Piedmont Physiographic Province, Virginia

    USGS Publications Warehouse

    Lotspeich, R. Russell

    2009-01-01

    Natural-channel design involves constructing a stream channel with the dimensions, slope, and plan-view pattern that would be expected to transport water and sediment and yet maintain habitat and aesthetics consistent with unimpaired stream segments, or reaches. Regression relations for bankfull stream characteristics based on drainage area, referred to as 'regional curves,' are used in natural stream channel design to verify field determinations of bankfull discharge and stream channel characteristics. One-variable, ordinary least-squares regressions relating bankfull discharge, bankfull cross-sectional area, bankfull width, bankfull mean depth, and bankfull slope to drainage area were developed on the basis of data collected at 17 streamflow-gaging stations in rural areas with less than 20 percent urban land cover within the basin area (non-urban areas) of the Piedmont Physiographic Province in Virginia. These regional curves can be used to estimate the bankfull discharge and bankfull channel geometry when the drainage area of a watershed is known. Data collected included bankfull cross-sectional geometry, flood-plain geometry, and longitudinal profile data. In addition, particle-size distributions of streambed material were determined, and data on basin characteristics were compiled for each reach. Field data were analyzed to determine bankfull cross-sectional area, bankfull width, bankfull mean depth, bankfull discharge, bankfull channel slope, and D50 and D84 particle sizes at each site. The bankfull geometry from the 17 sites surveyed during this study represents the average of two riffle cross sections for each site. Regional curves developed for the 17 sites had coefficient of determination (R2) values of 0.950 for bankfull cross-sectional area, 0.913 for bankfull width, 0.915 for bankfull mean depth, 0.949 for bankfull discharge, and 0.497 for bankfull channel slope. The regional curves represent conditions for streams with defined channels and bankfull features in the Piedmont Physiographic Province in Virginia with drainage areas ranging from 0.29 to 111 square miles. All sites included in the development of the regional curves were located on streams with current or historical U.S. Geological Survey streamflow-gaging stations. These curves can be used to verify bankfull features identified in the field and bankfull stage for ungaged streams in non-urban areas.

  6. Generation of kth-order random toposequences

    NASA Astrophysics Data System (ADS)

    Odgers, Nathan P.; McBratney, Alex. B.; Minasny, Budiman

    2008-05-01

    The model presented in this paper derives toposequences from a digital elevation model (DEM). It is written in ArcInfo Macro Language (AML). The toposequences are called kth-order random toposequences, because they take a random path uphill to the top of a hill and downhill to a stream or valley bottom from a randomly selected seed point, and they are located in a streamshed of order k according to a particular stream-ordering system. We define a kth-order streamshed as the area of land that drains directly to a stream segment of stream order k. The model attempts to optimise the spatial configuration of a set of derived toposequences iteratively by using simulated annealing to maximise the total sum of distances between each toposequence hilltop in the set. The user is able to select the order, k, of the derived toposequences. Toposequences are useful for determining soil sampling locations for use in collecting soil data for digital soil mapping applications. Sampling locations can be allocated according to equal elevation or equal-distance intervals along the length of the toposequence, for example. We demonstrate the use of this model for a study area in the Hunter Valley of New South Wales, Australia. Of the 64 toposequences derived, 32 were first-order random toposequences according to Strahler's stream-ordering system, and 32 were second-order random toposequences. The model that we present in this paper is an efficient method for sampling soil along soil toposequences. The soils along a toposequence are related to each other by the topography they are found in, so soil data collected by this method is useful for establishing soil-landscape rules for the preparation of digital soil maps.

  7. Radionuclides deposition and fine sediment transport in a forested watershed, central Japan

    NASA Astrophysics Data System (ADS)

    Nam, S.; Gomi, T.; Kato, H.; Tesfaye, T.; Onda, Y.

    2011-12-01

    We investigated radionuclides deposition and fine sediment transport in a 13 ha headwater watershed, Tochigi prefecture, located in 98.94 km north of Tokyo. The study site was within Karasawa experimental forest, Tokyo University of Agriculture and Technology. We conducted fingerprinting approach, based on the activities of fallout radionuclides, including caesium-134 (Cs-134) caesium-137 (Cs-137) and excess lead-210 (Pb-210ex). For indentifying specific sources of fine sediment, we sampled tree, soil on forested floor, soil on logging road surface, stream bed and stream banks. We investigated the radionuclides (i.e., as Cs-134, Cs-137 and Pb-210ex) deposition on tree after accident of nuclear power plants on March 11, 2011. We sampled fruits, leaves, branches, stems, barks on Japanese cedar (Sugi) and Japanese cypress (Hinoki). To analyze the samples, gammaray spectrometry was performed at a laboratory at the University of Tsukuba (Tsukuba City, Japan) using n-type coaxial low-energy HPGe gamma detectors (EGC-200-R and EGC25-195-R of EURYSIS Co., Lingolsheim, France) coupled with a multichannel analyzer. We also collected soil samples under the forest canopy in various soil depths from 2, 5, 10, 20, 30 cm along transect of hillslopes. Samples at forest road were collected road segments crossing on the middle section of monitoring watersheds. Fine sediment transport in the streams were collected at the outlet of 13 ha watersheds using integrated suspended sediment samplers. This study indicates the some portion of radio nuclide potentially remained on the tree surface. Part of the deposited radionuclides attached to soil particles and transported to the streams. Most of the fine sediment can be transported on road surface and/or near stream side (riparian zones).

  8. SSWR 3.01B.1: National maps of watershed integrity and ...

    EPA Pesticide Factsheets

    This presentation reports on two separate studies conducted under SSWR 3.01B as part of an FY16 Annual Performance Reporting (APR) product for the Office of Management and Budget. Three separate but related studies were conducted. The first study used EPA’s StreamCat dataset to quantify the IWI, and mapped this for the conterminous US. The authors also developed a related ICI, which was developed based on local stream segments (i.e., upstream areas were excluded). Regression analyses were used to evaluate the ability of the IWI and ICI to predict site-level indicators derived from EPA’s National Rivers and Streams Assessment. Results from this study show high integrity in the western US, intermediate integrity in the southern and northeastern US, and the lowest integrity in the upper midwest and lower Mississippi Valley. Although related to the IWI, the ICI could be useful for local applications where information on a mainstem river and its upstream catchments is not required. The IWI was able to account for a quarter of the national variation in a water quality metric that was derived using data from EPA’s National Rivers and Streams Assessment. While the IWI in its present form could be useful for management efforts, limitations concerning the absence of data for certain stressors needs to be taken into account. The second study used random forest models to predict the probability of good condition for the macroinvertebrate multi-metric index (M

  9. Combined Quarterly Technical Report Number 16. SATNET Development and Operation, Pluribus Satellite IMP Development, Remote Site Maintenance, Internet Development, Mobile Access Terminal Network.

    DTIC Science & Technology

    1980-02-01

    Reserch Projects Agency I t&* ISO~p~A d m* ab~b ~I 41 b~bmso 544,A UNCLASSIFIED S@MYT SLAMIICAIGH OF TNNI PAOE tpvm Gamb.______________ RI...Wi do m,.we a#& N m WUNP SMei r -- This Quarterly Technical Report describes work on the development of and experimentation with packet broadcast by...interval by either segmenting or aggregating the stream packets such that they match the system interval. Since this approach is simple with respect

  10. Assessment of conservation practices in the Fort Cobb Reservoir watershed, southwestern Oklahoma

    USGS Publications Warehouse

    Becker, Carol J.

    2011-01-01

    The Fort Cobb Reservoir watershed encompasses about 813 square kilometers of rural farm land in Caddo, Custer, and Washita Counties in southwestern Oklahoma. The Fort Cobb Reservoir and six stream segments were identified on the Oklahoma 1998 303(d) list as not supporting designated beneficial uses because of impairment by nutrients, suspended solids, sedimentation, pesticides, and unknown toxicity. As a result, State and Federal agencies, in collaboration with conservation districts and landowners, started conservation efforts in 2001 to decrease erosion and transport of sediments and nutrients to the reservoir and improve water quality in tributaries. The U.S. Department of Agriculture selected the Fort Cobb Reservoir watershed in 2003 as 1 of 14 benchmark watersheds under the Conservation Effectiveness Assessment Project with the objective of quantifying the environmental benefits derived from agricultural conservation programs in reducing inflows of sediments and phosphorus to the reservoir. In November 2004, the Biologic, Geographic, Geologic, and Water Disciplines of the U.S. Geological Survey, in collaboration with the Agricultural Research Service, Grazinglands Research Laboratory in El Reno, Oklahoma, began an interdisciplinary investigation to produce an integrated publication to complement this program. This publication is a compilation of 10 report chapters describing land uses, soils, geology, climate, and water quality in streams and the reservoir through results of field and remote sensing investigations from 2004 to 2007. The investigations indicated that targeting best-management practices to small intermittent streams draining to the reservoir and to the Cobb Creek subwatershed may effectively augment efforts to improve eutrophic to hypereutrophic conditions that continue to affect the reservoir. The three major streams flowing into the reservoir contribute nutrients causing eutrophication, but minor streams draining cultivated fields near the reservoir appeared to be disproportionate contributors of nutrients. Increasing conservation practices on small streams may have a greater effect in mitigating eutrophication in the reservoir than additional installation of such measures on the larger creeks.

  11. Effects of multi-scale environmental characteristics on agricultural stream biota in eastern Wisconsin

    USGS Publications Warehouse

    Fitzpatrick, F.A.; Scudder, B.C.; Lenz, B.N.; Sullivan, D.J.

    2001-01-01

    The U.S. Geological Survey examined 25 agricultural streams in eastern Wisconsin to determine relations between fish, invertebrate, and algal metrics and multiple spatial scales of land cover, geologic setting, hydrologic, aquatic habitat, and water chemistry data. Spearman correlation and redundancy analyses were used to examine relations among biotic metrics and environmental characteristics. Riparian vegetation, geologic, and hydrologic conditions affected the response of biotic metrics to watershed agricultural land cover but the relations were aquatic assemblage dependent. It was difficult to separate the interrelated effects of geologic setting, watershed and buffer land cover, and base flow. Watershed and buffer land cover, geologic setting, reach riparian vegetation width, and stream size affected the fish IBI, invertebrate diversity, diatom IBI, and number of algal taxa; however, the invertebrate FBI, percentage of EPT, and the diatom pollution index were more influenced by nutrient concentrations and flow variability. Fish IBI scores seemed most sensitive to land cover in the entire stream network buffer, more so than watershed-scale land cover and segment or reach riparian vegetation width. All but one stream with more than approximately 10 percent buffer agriculture had fish IBI scores of fair or poor. In general, the invertebrate and algal metrics used in this study were not as sensitive to land cover effects as fish metrics. Some of the reach-scale characteristics, such as width/depth ratios, velocity, and bank stability, could be related to watershed influences of both land cover and geologic setting. The Wisconsin habitat index was related to watershed geologic setting, watershed and buffer land cover, riparian vegetation width, and base flow, and appeared to be a good indicator of stream quality. Results from this study emphasize the value of using more than one or two biotic metrics to assess water quality and the importance of environmental characteristics at multiple scales.

  12. Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient.

    PubMed

    Corsi, Steven R; Klaper, Rebecca D; Weber, Daniel N; Bannerman, Roger T

    2011-10-15

    Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1mg/L and 15 streams experienced DO less than 4.8mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and sediment-quality degrade in relation to urban influence. Published by Elsevier B.V.

  13. Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient

    USGS Publications Warehouse

    Corsi, S.R.; Klaper, R.D.; Weber, D.N.; Bannerman, R.T.

    2011-01-01

    Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1. mg/L and 15 streams experienced DO less than 4.8. mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and sediment-quality degrade in relation to urban influence. ?? 2011.

  14. Analytical Results for Municipal Biosolids Samples from a Monitoring Program Near Deer Trail, Colorado (USA), 1999 through 2006

    USGS Publications Warehouse

    Crock, J.G.; Smith, D.B.; Yager, T.J.B.; Brown, Z.A.; Adams, M.G.

    2008-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colorado, has applied Grade I, Class B biosolids to about 52,000 acres of non-irrigated farmland and rangeland near Deer Trail, Colorado. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring ground water at part of this site (Yager and Arnold, 2003). In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications. This more comprehensive monitoring program has recently been extended through 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock ground water, and stream bed sediment. Streams at the site are dry most of the year, so samples of stream bed sediment deposited after rain were used to indicate surface-water effects. This report will present only analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed during 1999 through 2006. More information about the other monitoring components is presented elsewhere in the literature (e.g., Yager and others, 2004a, 2004b, 2004c, 2004d). Priority parameters for biosolids identified by the stakeholders and also regulated by Colorado when used as an agricultural soil amendment include the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross alpha and beta activity. Nitrogen and chromium also were priority parameters for ground water and sediment components. In general, the objective of each component of the study was to determine whether concentrations of priority parameters (1) were higher than regulatory limits, (2) were increasing with time, or (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied. Analytical results indicate that the elemental composition of the biosolids from the Denver plant was consistent during 1999-2006, and total concentrations of regulated trace elements were consistently lower than the regulatory limits. Plutonium isotopes were not detected in any of the biosolids samples for the entire sampling period. Analytical results for gross and were highly imprecise and erratic. As a result of the cancelation of regulation requiring their monitoring in biosolids, the determination of both was discontinued mid-study. Data from this study were used to compile an inorganic-chemical biosolids signature that can be contrasted with the geochemical signature for this site. The biosolids signature and an understanding of the geology and hydrology of the site can be used to separate biosolids effects from natural geochemical effects. Elements of particular interest for a biosolids signature include bismuth, copper, silver, mercury, and phosphorus.

  15. 75 FR 54707 - Endangered and Threatened Wildlife and Plants; Revised 12-Month Finding to List the Upper...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ...We, the U.S. Fish and Wildlife Service (Service/USFWS), announce a revised 12-month finding on a petition to list the upper Missouri River Distinct Population Segment (Missouri River DPS) of Arctic grayling (Thymallus arcticus) as endangered or threatened under the Endangered Species Act of 1973, as amended. After review of all available scientific and commercial information, we find that listing the upper Missouri River DPS of Arctic grayling as endangered or threatened is warranted. However, listing the upper Missouri River DPS of Arctic grayling is currently precluded by higher priority actions to amend the Lists of Endangered and Threatened Wildlife and Plants. Upon publication of this 12-month finding, we will add the upper Missouri River DPS of Arctic grayling to our candidate species list. We will develop a proposed rule to list this DPS as our priorities allow. We will make any determination on critical habitat during development of the proposed listing rule. In the interim, we will address the status of this DPS through our annual Candidate Notice of Review (CNOR).

  16. Concentrations, loads, and yields of total nitrogen and total phosphorus in the Barnegat Bay-Little Egg Harbor watershed, New Jersey, 1989-2011, at multiple spatial scales

    USGS Publications Warehouse

    Baker, Ronald J.; Wieben, Christine M.; Lathrop, Richard G.; Nicholson, Robert S.

    2014-01-01

    Concentrations, loads, and yields of nutrients (total nitrogen and total phosphorus) were calculated for the Barnegat Bay-Little Egg Harbor (BB-LEH) watershed for 1989–2011 at annual and seasonal (growing and nongrowing) time scales. Concentrations, loads, and yields were calculated at three spatial scales: for each of the 81 subbasins specified by 14-digit hydrologic unit codes (HUC-14s); for each of the three BB-LEH watershed segments, which coincide with segmentation of the BB-LEH estuary; and for the entire BB-LEH watershed. Base-flow and runoff values were calculated separately and were combined to provide total values. Available surface-water-quality data for all streams in the BB-LEH watershed for 1980–2011 were compiled from existing datasets and quality assured. Precipitation and streamflow data were used to distinguish between water-quality samples that were collected during base-flow conditions and those that were collected during runoff conditions. Base-flow separation of hydrographs of six streams in the BB-LEH watershed indicated that base flow accounts for about 72 to 94 percent of total flow in streams in the watershed. Base-flow mean concentrations (BMCs) of total nitrogen (TN) and total phosphorus (TP) for each HUC-14 subbasin were calculated from relations between land use and measured base-flow concentrations. These relations were developed from multiple linear regression models determined from water-quality data collected at sampling stations in the BB-LEH watershed under base-flow conditions and land-use percentages in the contributing drainage basins. The total watershed base-flow volume was estimated for each year and season from continuous streamflow records for 1989–2011 and relations between precipitation and streamflow during base-flow conditions. For each year and season, the base-flow load and yield were then calculated for each HUC-14 subbasin from the BMCs, total base-flow volume, and drainage area. The watershed-loading application PLOAD was used to calculate runoff concentrations, loads, and yields of TN and TP at the HUC-14 scale. Flow-weighted event-mean concentrations (EMCs) for runoff were developed for each major land-use type in the watershed using storm sampling data from four streams in the BB-LEH watershed and three streams outside the watershed. The EMCs were developed separately for the growing and nongrowing seasons, and were typically greater during the growing season. The EMCs, along with annual and seasonal precipitation amounts and percent imperviousness associated with land-use types, were used as inputs to PLOAD to calculate annual and seasonal runoff concentrations, loads, and yields at the HUC-14 scale. Over the period of study (1989–2011), total surface-water loads (base flow plus runoff) for the entire BB-LEH watershed for TN ranged from about 455,000 kilograms (kg) as N (1995) to 857,000 kg as N (2010). For TP, total loads for the watershed ranged from about 17,000 (1995) to 32,000 kg as P (2010). On average, the north segment accounted for about 66 percent of the annual TN load and 63 percent of the annual TP load, and the central and south segments each accounted for less than 20 percent of the nutrient loads. Loads and yields were strongly associated with precipitation patterns, ensuing hydrologic conditions, and land use. HUC-14 subbasins with the highest yields of nutrients are concentrated in the northern part of the watershed, and have the highest percentages of urban or agricultural land use. Subbasins with the lowest TN and TP yields are dominated by forest cover. Percentages of turf (lawn) cover and nonturf cover were estimated for the watershed. Of the developed land in the watershed, nearly one quarter (24.9 percent) was mapped as turf cover. Because there is a strong relation between percent turf and percent developed land, percent turf in the watershed typically increases with percent development, and the amount of development can be considered a reasonable predictor of the amount of turf cover in the watershed. In the BB-LEH watershed, calculated concentrations of TN and TP were greater for developed–turf areas than for developed–nonturf areas, which, in turn, were greater than those for undeveloped areas.

  17. Evaluation of ERTS-1 imagery for mapping Quaternary deposits and landforms in the Great Plains and Midwest. [Illinois, Nebraska, Iowa, Missouri, and Kansas

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (Principal Investigator); Hallberg, G. R.

    1973-01-01

    The author has identified the following significant results. Maps at 1:1 million scale exemplifying the first phase of the investigation (which consists of the identification and mapping of landform and land use characteristics and surficial geologic materials directly from the ERTS-1 images without use of additional data) were prepared. For areas that have not been mapped at 1:500,000 or larger scales, maps will provide the first moderately detailed information on landform features and surficial materials. Much of the information mapped is significant for exploration and development of ground (and, locally, petroleum) and for applications in engineering and environmental geology, including land use planning. Analysis of drainage patterns, stream-divide relations and land use patterns has revealed several possible moraine-controlled divices of middle and early Pleistocene age. One is an extension of the Cedar Bluffs moraine of southeastern Nebraska. Another of these divides may correspond to the terminus of Nebraska drift in the Kansas City study area. The trends of parts of various ancient filled valleys also have been identified by analysis of charges in width of the present stream valleys. The alinements of certain segments of stream valleys in Kansas and Missouri appear to be controlled by regional faults or other structural features.

  18. The importance of dynamic stall in aerodynamic modeling of the Darrieus rotor

    NASA Astrophysics Data System (ADS)

    Fraunie, P.; Beguier, C.; Paraschivoiu, I.

    The CAARDEX program is defined for analyzing the behavior of Darrieus wind turbines in terms of the Reynolds number, the geometrical characteristics of the wind turbine and the spreading of the stream tubes traversing the rotor volume. It is demonstrated that the maximum power conversion efficiency of the Darrieus rotor is 0.4, with the energy capture being divided at a 4:1 ratio upstream to downstream rotor. The model shows that the velocity induced on the rotor is a function of the specific velocity and solidity, and that previous stream tube theories are valid only at low values of these parameters. CARDAAX treats the rotor disk in terms of horizontal slices of stream tubes modeled separately for the upstream and downstream segments. Account is taken of the velocity profile in the atmospheric boundary layer, which can vary significantly in the case of large wind turbines, i.e., several hundred feet high. When applied to predicting the performance of a 1 kW, 2.6 m diam prototype Darrieus wind turbine in a 10 mps flow, fair agreement is obtained for power capture/wind velocity and cyclic aerodynamic forces. Additional flow visualization data is provided to illustrate the production of turbulence in the form of vortices shed between the blades.

  19. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  20. Bed conduction impact on fiber optic distributed temperature sensing water temperature measurements

    NASA Astrophysics Data System (ADS)

    O'Donnell Meininger, T.; Selker, J. S.

    2015-02-01

    Error in distributed temperature sensing (DTS) water temperature measurements may be introduced by contact of the fiber optic cable sensor with bed materials (e.g., seafloor, lakebed, streambed). Heat conduction from the bed materials can affect cable temperature and the resulting DTS measurements. In the Middle Fork John Day River, apparent water temperature measurements were influenced by cable sensor contact with aquatic vegetation and fine sediment bed materials. Affected cable segments measured a diurnal temperature range reduced by 10% and lagged by 20-40 min relative to that of ambient stream temperature. The diurnal temperature range deeper within the vegetation-sediment bed material was reduced 70% and lagged 240 min relative to ambient stream temperature. These site-specific results illustrate the potential magnitude of bed-conduction impacts with buried DTS measurements. Researchers who deploy DTS for water temperature monitoring should understand the importance of the environment into which the cable is placed on the range and phase of temperature measurements.

  1. Aquatic Trophic Productivity model: A decision support model for river restoration planning in the Methow River, Washington

    USGS Publications Warehouse

    Benjamin, Joseph R.; Bellmore, J. Ryan

    2016-05-19

    In this report, we outline the structure of a stream food-web model constructed to explore how alternative river restoration strategies may affect stream fish populations. We have termed this model the “Aquatic Trophic Productivity model” (ATP). We present the model structure, followed by three case study applications of the model to segments of the Methow River watershed in northern Washington. For two case studies (middle Methow River and lower Twisp River floodplain), we ran a series of simulations to explore how food-web dynamics respond to four distinctly different, but applied, strategies in the Methow River watershed: (1) reconnection of floodplain aquatic habitats, (2) riparian vegetation planting, (3) nutrient augmentation (that is, salmon carcass addition), and (4) enhancement of habitat suitability for fish. For the third case study, we conducted simulations to explore the potential fish and food-web response to habitat improvements conducted in 2012 at the Whitefish Island Side Channel, located in the middle Methow River.

  2. Movement patterns of Brook Trout in a restored coastal stream system in southern Massachusetts

    USGS Publications Warehouse

    Snook, Erin L.; Letcher, Benjamin H.; Dubreuil, Todd L.; Zydlewski, Joseph D.; O'Donnell, Matthew J.; Whiteley, Andrew R.; Hurley, Stephen T.; Danylchuk, Andy J.

    2016-01-01

    Coastal Brook Trout (Salvelinus fontinalis) populations are found from northern Canada to New England. The extent of anadromy generally decreases with latitude, but the ecology and movements of more southern populations are poorly understood. We conducted a 33-month acoustic telemetry study of Brook Trout in Red Brook, MA, and adjacent Buttermilk Bay (marine system) using 16 fixed acoustic receivers and surgically implanting acoustic transmitters in 84 individuals. Tagged Brook Trout used the stream, estuary (50% of individuals) and bay (10% of individuals). Movements into full sea water were brief when occurring. GAMM models revealed that transitions between habitat areas occurred most often in spring and fall. Environmental data suggest that use of the saline environment is limited by summer temperatures in the bay. Movements may also be related to moon phase. Compared to more northern coastal populations of Brook Trout, the Red Brook population appears to be less anadromous overall, yet the estuarine segment of the system may have considerable ecological importance as a food resource.

  3. Assessing the suitability of stream water for five different uses and its aquatic environment.

    PubMed

    Fulazzaky, Mohamad Ali

    2013-01-01

    Surface water is one of the essential resources for supporting sustainable development. The suitability of such water for a given use depends both on the available quantity and tolerable quality. Temporary status for a surface water quality has been identified extensively. Still the suitability of the water for different purposes needs to be verified. This study proposes a water quality evaluation system to assess the aptitude of the Selangor River water for aquatic biota, drinking water production, leisure and aquatic sport, irrigation use, livestock watering, and aquaculture use. Aptitude of the water has been classified in many parts of the river segment as unsuitable for aquatic biota, drinking water production, leisure and aquatic sport as well as aquaculture use. The water quality aptitude classes of the stream water for nine locations along the river are evaluated to contribute to decision support system. The suitability of the water for five different uses and its aquatic ecosystem are verified.

  4. On-going collaborative priority-setting for research activity: a method of capacity building to reduce the research-practice translational gap.

    PubMed

    Cooke, Jo; Ariss, Steven; Smith, Christine; Read, Jennifer

    2015-05-07

    International policy suggests that collaborative priority setting (CPS) between researchers and end users of research should shape the research agenda, and can increase capacity to address the research-practice translational gap. There is limited research evidence to guide how this should be done to meet the needs of dynamic healthcare systems. One-off priority setting events and time-lag between decision and action prove problematic. This study illustrates the use of CPS in a UK research collaboration called Collaboration and Leadership in Applied Health Research and Care (CLAHRC). Data were collected from a north of England CLAHRC through semi-structured interviews with 28 interviewees and a workshop of key stakeholders (n = 21) including academics, NHS clinicians, and managers. Documentary analysis of internal reports and CLAHRC annual reports for the first two and half years was also undertaken. These data were thematically coded. Methods of CPS linked to the developmental phase of the CLAHRC. Early methods included pre-existing historical partnerships with on-going dialogue. Later, new platforms for on-going discussions were formed. Consensus techniques with staged project development were also used. All methods demonstrated actual or potential change in practice and services. Impact was enabled through the flexibility of research and implementation work streams; 'matched' funding arrangements to support alignment of priorities in partner organisations; the size of the collaboration offering a resource to meet project needs; and the length of the programme providing stability and long term relationships. Difficulties included tensions between being responsive to priorities and the possibility of 'drift' within project work, between academics and practice, and between service providers and commissioners in the health services. Providing protected 'matched' time proved difficult for some NHS managers, which put increasing work pressure on them. CPS is more time consuming than traditional approaches to project development. CPS can produce needs-led projects that are bedded in services using a variety of methods. Contributing factors for effective CPS include flexibility in use and type of available resources, flexible work plans, and responsive leadership. The CLAHRC model provides a translational infrastructure that enables CPS that can impact on healthcare systems.

  5. An aerial-photographic assessment of reenacted handcart treks on a section of the Mormon Pioneer National Historic Trail, Fremont County, Wyoming

    USGS Publications Warehouse

    McDougal, Robert R.; Waltermire, Robert G.; Aldridge, Cameron L.; Germaine, Stephen S.; Nielsen, Scott E.; Nielsen, Charlene C.; Hanson, Leanne; Bowen, Zachary H.

    2008-01-01

    Based on these results, there are identifiable management considerations. Toilet and rest sites need to be carefully located relative to where sensitive vegetation or soils occur. The analyses presented here indicate that limiting motorized vehicle use needs to be a priority over that of adjusting the number of trekkers. Additionally, monitoring of the Trail from Sixth Crossing to Rock Creek Hollow segment needs to consider explicit management targets, such as minimum acceptable levels of bare ground or trail width, and the establishment of permanent monitoring plots to evaluate targets and measure responses to altered management activities.

  6. Learning and recognition of tactile temporal sequences by mice and humans

    PubMed Central

    Bale, Michael R; Bitzidou, Malamati; Pitas, Anna; Brebner, Leonie S; Khazim, Lina; Anagnou, Stavros T; Stevenson, Caitlin D; Maravall, Miguel

    2017-01-01

    The world around us is replete with stimuli that unfold over time. When we hear an auditory stream like music or speech or scan a texture with our fingertip, physical features in the stimulus are concatenated in a particular order. This temporal patterning is critical to interpreting the stimulus. To explore the capacity of mice and humans to learn tactile sequences, we developed a task in which subjects had to recognise a continuous modulated noise sequence delivered to whiskers or fingertips, defined by its temporal patterning over hundreds of milliseconds. GO and NO-GO sequences differed only in that the order of their constituent noise modulation segments was temporally scrambled. Both mice and humans efficiently learned tactile sequences. Mouse sequence recognition depended on detecting transitions in noise amplitude; animals could base their decision on the earliest information available. Humans appeared to use additional cues, including the duration of noise modulation segments. DOI: http://dx.doi.org/10.7554/eLife.27333.001 PMID:28812976

  7. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor

    PubMed Central

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-01-01

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714

  8. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.

    PubMed

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-12-15

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.

  9. Statistical learning of action: the role of conditional probability.

    PubMed

    Meyer, Meredith; Baldwin, Dare

    2011-12-01

    Identification of distinct units within a continuous flow of human action is fundamental to action processing. Such segmentation may rest in part on statistical learning. In a series of four experiments, we examined what types of statistics people can use to segment a continuous stream involving many brief, goal-directed action elements. The results of Experiment 1 showed no evidence for sensitivity to conditional probability, whereas Experiment 2 displayed learning based on joint probability. In Experiment 3, we demonstrated that additional exposure to the input failed to engender sensitivity to conditional probability. However, the results of Experiment 4 showed that a subset of adults-namely, those more successful at identifying actions that had been seen more frequently than comparison sequences-were also successful at learning conditional-probability statistics. These experiments help to clarify the mechanisms subserving processing of intentional action, and they highlight important differences from, as well as similarities to, prior studies of statistical learning in other domains, including language.

  10. Timing Actions to Avoid Refractoriness: A Simple Solution for Streaming Sensory Signals

    PubMed Central

    Nogueira, Javier; Caputi, Ángel Ariel

    2011-01-01

    Segmenting self- from allo-generated signals is crucial for active sensory processing. We report a dynamic filter used by South American pulse electric fish to distinguish active electro-sensory signals carried by their own electric discharges from other concomitant electrical stimuli (i.e. communication signals). The filter has a sensory component, consisting of an onset type central electro-sensory neuron, and a motor component, consisting of a change in the fish's discharge rate when allo-generated electrical events occur in temporal proximity to the fish's own discharge. We investigated the sensory component of the filter by in vitro mimicking synaptic inputs occurring during behavioral responses to allo-generated interfering signals. We found that active control of the discharge enhances self-generated over allo-generated responses by forcing allo-generated signals into a central refractory period. This hypothesis was confirmed by field potential recordings in freely discharging fish. Similar sensory-motor mechanisms may also contribute to signal segmentation in other sensory systems. PMID:21789228

  11. Study of application of space telescope science operations software for SIRTF use

    NASA Technical Reports Server (NTRS)

    Dignam, F.; Stetson, E.; Allendoerfer, W.

    1985-01-01

    The design and development of the Space Telescope Science Operations Ground System (ST SOGS) was evaluated to compile a history of lessons learned that would benefit NASA's Space Infrared Telescope Facility (SIRTF). Forty-nine specific recommendations resulted and were categorized as follows: (1) requirements: a discussion of the content, timeliness and proper allocation of the system and segment requirements and the resulting impact on SOGS development; (2) science instruments: a consideration of the impact of the Science Instrument design and data streams on SOGS software; and (3) contract phasing: an analysis of the impact of beginning the various ST program segments at different times. Approximately half of the software design and source code might be useable for SIRTF. Transportability of this software requires, at minimum, a compatible DEC VAX-based architecture and VMS operating system, system support software similar to that developed for SOGS, and continued evolution of the SIRTF operations concept and requirements such that they remain compatible with ST SOGS operation.

  12. Flathead River Focus Watershed Coordinator, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn

    2004-06-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerrmore » dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.« less

  13. Flathead River Focus Watershed Coordinator, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn

    2003-04-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NPPC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerrmore » dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.« less

  14. Flathead River Focus Watershed Coordinator, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn

    2006-06-26

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerrmore » dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.« less

  15. Flathead River Focus Watershed Coordinator, 2005-2006 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn

    2006-05-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerrmore » dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.« less

  16. Separation of Lift-Generated Vortex Wakes Into Two Diverging Parts

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Brown, Anthony P.

    2010-01-01

    As part of an ongoing study of the spreading rate of lift-generated vortex wakes, the present investigation considers possible reasons as to why segments of lift-generated wakes sometimes depart from the main part of the wake to move rapidly in either an upward or downward direction. It is assumed that deficiencies or enhancements of the lift carry over across the fuselage-shrouded wing are the driving mechanism for departures of wake-segments. The computations presented first indicate that upwardly departing wake segments that were observed and photographed could have been produced by a deficiency in lift carryover across the fuselage-shrouded part of the wing. Computations made of idealized vortex wakes indicate that upward departure of a wake segment requires a centerline reduction in the span loading of 70% or more, whether the engines are at idle or robust thrust. Similarly, it was found that downward departure of wake segments is produced when the lift over the center part of the wing is enhanced. However, it was also found that downward departures do not occur without the presence of robust engine-exhaust streams (i.e., engines must NOT be at idle). In those cases, downward departures of a wake segment occurs when the centerline value of the loading is enhanced by any amount between about 10% to 100%. Observations of condensation trails indicate that downward departure of wake segments is rare. Upward departures of wake segments appears to be more common but still rare. A study to determine the part of the aircraft that causes wake departures has not been carried out. However, even though departures of wake segments rarely occur, some aircraft do regularly shed these wake structures. If aircraft safety is to be assured to a high degree of reliability, and a solution for eliminating them is not implemented, existing guidelines for the avoidance of vortex wakes [1,3] may need to be broadened to include possible increases in wake sizes caused by vertical departures of wake segments. Further study may indicate that it is not possible to modify existing aircraft enough to prevent wake departures. Wake-avoidance guidelines must then be adjusted to provide the desired degree of safety. It appears that steps to avoid upwardly moving wake segments have already been incorporated into the avoidance procedures used for aircraft on approach to runways at the Frankfurt Airport [6,7]. The uncertainty in the prospects for compromises in flight safety caused by rapidly upwardly or downwardly moving wake segments suggest that it be specified that aircraft do not fly above or below each other during operations in the airport vicinity where aircraft are likely to be closely spaced [20].

  17. A binary link tracker for the BaBar level 1 trigger system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berenyi, A.; Chen, H.K.; Dao, K.

    1999-08-01

    The BaBar detector at PEP-II will operate in a high-luminosity e{sup +}e{sup {minus}} collider environment near the {Upsilon}(4S) resonance with the primary goal of studying CP violation in the B meson system. In this environment, typical physics events of interest involve multiple charged particles. These events are identified by counting these tracks in a fast first level (Level 1) trigger system, by reconstructing the tracks in real time. For this purpose, a Binary Link Tracker Module (BLTM) was designed and fabricated for the BaBar Level 1 Drift Chamber trigger system. The BLTM is responsible for linking track segments, constructed bymore » the Track Segment Finder Modules (TSFM), into complete tracks. A single BLTM module processes a 360 MBytes/s stream of segment hit data, corresponding to information from the entire Drift Chamber, and implements a fast and robust algorithm that tolerates high hit occupancies as well as local inefficiencies of the Drift Chamber. The algorithms and the necessary control logic of the BLTM were implemented in Field Programmable Gate Arrays (FPGAs), using the VHDL hardware description language. The finished 9U x 400 mm Euro-format board contains roughly 75,000 gates of programmable logic or about 10,000 lines of VHDL code synthesized into five FPGAs.« less

  18. Response of benthic macroinvertebrate communities to highway construction in an Appalachian watershed

    USGS Publications Warehouse

    Hedrick, Lara B.; Welsh, S.A.; Anderson, James T.; Lin, L.-S.; Chen, Y.; Wei, X.

    2010-01-01

    Highway construction in mountainous areas can result in sedimentation of streams, negatively impacting stream habitat, water quality, and biotic communities. We assessed the impacts of construction of a segment of Corridor H, a four-lane highway, in the Lost River watershed, West Virginia, by monitoring benthic macroinvertebrate communities and water quality, before, during, and after highway construction and prior to highway use at upstream and downstream sites from 1997 through 2007. Data analysis of temporal impacts of highway construction followed a Before-After-Control-Impact (BACI) study design. Highway construction impacts included an increase in stream sedimentation during the construction phase. This was indicated by an increase in turbidity and total suspended solids. Benthic macroinvertebrate metrics indicated a community more tolerant during and after construction than in the period before construction. The percent of Chironomidae and the Hilsenhoff Biotic Index (HBI) increased, while percent of Ephemeroptera, Plecoptera, and Trichoptera (EPT) decreased. Our 10-year study addressed short-term impacts of highway construction and found that impacts were relatively minimal. A recovery of the number of EPT taxa collected after construction indicated that the benthic macroinvertebrate community may be recovering from impacts of highway construction. However, this study only addressed a period of 3 years before, 3 years during, and 4 years post construction. Inferences cannot be made concerning the long-term impacts of the highway, highway traffic, runoff, and other factors associated with highway use. Continual monitoring of the watershed is necessary to determine if the highway has a continual impact on stream habitat, water quality, and biotic integrity. ?? 2010 Springer Science+Business Media B.V.

  19. Ice processes affect habitat use and movements of adult cutthroat trout and brook trout in a Wyoming foothills stream

    USGS Publications Warehouse

    Lindstrom, J.W.; Hubert, W.A.

    2004-01-01

    Habitat use and movements of 25 adult cutthroat trout Oncorhynchus clarkii and 25 adult brook trout Salvelinus fontinalis from fall through winter 2002-2003 were assessed by means of radiotelemetry in a 7-km reach of a Rocky Mountains foothills stream. Temporal dynamics of winter habitat conditions were evaluated by regularly measuring the features of 30 pools and 5 beaver Castor canadensis ponds in the study reach. Groundwater inputs at three locations raised mean daily water temperatures in the stream channel during winter to 0.2-0.6??C and kept at least 250 m of the downstream channel free of ice, but the lack of surface ice further downstream led to the occurrence of frazil ice and anchor ice in pools and unstable habitat conditions for trout. Pools in segments that were not affected by groundwater inputs and beaver ponds tended to be stable and snow accumulated on the surface ice. Pools throughout the study reach tended to become more stable as snow accumulated. Both cutthroat trout and brook trout selected beaver ponds as winter progressed but tended to use lateral scour pools in proportion to their availability. Tagged fish not in beaver ponds selected lateral scour pools that were deeper than average and stable during winter. Movement frequencies by tagged fish decreased from fall through winter, but some individuals of both species moved during winter. Ice processes affected both the habitat use and movement patterns of cutthroat trout and brook trout in this foothills stream.

  20. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Silver Creek, Clark and Floyd counties, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Crawford, Charles G.; Peters, James G.

    1979-01-01

    The Indiana State Board of Health is developing a State water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Silver Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Effluents from the Sellersburg and Clarksville-North wastewater-treatment facilities are the only point-source waste loads that significantly affect the water quality in the modeled segment of Silver Creek. Model simulations indicate that nitrification is the most significant factor affecting the dissolved-oxygen concentration in Silver Creek during summer and winter low flows. Natural streamflow in Silver Creek during the summer and annual 7-day, 10-year low flow is zero, so no benefit from dilution is provided. Present ammonia-nitrogen and dissolved-oxygen concentrations of effluent from the Sellersburg and Clarksville-North wastewater-treatment facilities will violate current Indiana water-quality standards for ammonia toxicity and dissolved oxygen during summer and winter low flows. The current biochemical-oxygen demand limits for the Sellersburg and Clarksville-North wastewater-treatment facilities are not sufficient to maintain an average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams. Calculations of the stream 's assimilative capacity indicate that Silver Creek cannot assimilate additional waste loadings and meet current Indiana water-quality standards. (Kosco-USGS)

  1. Modeling the effects of climate and land use change on instream temperature in the Upper Tar River, North Carolina

    NASA Astrophysics Data System (ADS)

    Daraio, J. A.; Bales, J. D.

    2011-12-01

    Freshwater mussels are among the most imperiled groups of organisms in the world. Declines in abundance and diversity in North America have been attributed to a wide range of human activities, and many species occur in habitats close to their upper thermal tolerance. We are modeling instream temperature (T) as part of an effort to understand the response of imperiled freshwater mussels to anthropogenically induced changes in water T, habitat, and flow. We used the Precipitation-Runoff Modeling System (PRMS) to model projected changes in stream discharge, and the Stream Network Temperature Model (SNTEMP) to model changes in instream T due to climate and land-use change in the Upper Tar River, North Carolina, which has a drainage area of 2200 mi^2. Down-scaled gridded 12km Global Circulation Models were used for precipitation and T inputs to PRMS simulations from the present through 2060. Land-use change through 2060 in the Upper Tar basin was estimated from SLEUTH, a model that estimates land-use change using the probability of urbanization, (results available from NC State University) and incorporated into PRMS for long term simulations. Stream segment discharge and lateral and groundwater flow into each stream segment from PRMS were used as input for SNTEMP. Groundwater T was assumed equal to the average annual air T for the basin. Lateral inflow T was estimated from physical characteristics of the basin (e.g. impervious area, cover density, cover type, solar radiation, air T) when possible, or from a regression with air T based on empirical field data at 20 sites throughout the basin. In addition to T, data on mussel and fish populations (e.g., density and species composition?) and microhabitat have been collected at these sites. The SNTEMP model was calibrated using the mean daily T at each site. Nash-Sutcliffe efficiency values ranged from 0.86 to 0.94 for mean daily T, and from 0.80 to 0.93 for maximum daily T. Ensemble simulations were run for a range of climate change and land use scenarios to estimate the potential for increased instream T at each of the 20 sites. The results of these simulations will be used in conjunction with field and laboratory data on the thermal tolerances of mussels to assess the potential for elevated temperatures to adversely affect rare and common mussel populations.

  2. Dealing With Uncertainty When Assessing Fish Passage Through Culvert Road Crossings

    NASA Astrophysics Data System (ADS)

    Anderson, Gregory B.; Freeman, Mary C.; Freeman, Byron J.; Straight, Carrie A.; Hagler, Megan M.; Peterson, James T.

    2012-09-01

    Assessing the passage of aquatic organisms through culvert road crossings has become increasingly common in efforts to restore stream habitat. Several federal and state agencies and local stakeholders have adopted assessment approaches based on literature-derived criteria for culvert impassability. However, criteria differ and are typically specific to larger-bodied fishes. In an analysis to prioritize culverts for remediation to benefit imperiled, small-bodied fishes in the Upper Coosa River system in the southeastern United States, we assessed the sensitivity of prioritization to the use of differing but plausible criteria for culvert impassability. Using measurements at 256 road crossings, we assessed culvert impassability using four alternative criteria sets represented in Bayesian belief networks. Two criteria sets scored culverts as either passable or impassable based on alternative thresholds of culvert characteristics (outlet elevation, baseflow water velocity). Two additional criteria sets incorporated uncertainty concerning ability of small-bodied fishes to pass through culverts and estimated a probability of culvert impassability. To prioritize culverts for remediation, we combined estimated culvert impassability with culvert position in the stream network relative to other barriers to compute prospective gain in connected stream habitat for the target fish species. Although four culverts ranked highly for remediation regardless of which criteria were used to assess impassability, other culverts differed widely in priority depending on criteria. Our results emphasize the value of explicitly incorporating uncertainty into criteria underlying remediation decisions. Comparing outcomes among alternative, plausible criteria may also help to identify research most needed to narrow management uncertainty.

  3. Dealing with uncertainty when assessing fish passage through culvert road crossings.

    PubMed

    Anderson, Gregory B; Freeman, Mary C; Freeman, Byron J; Straight, Carrie A; Hagler, Megan M; Peterson, James T

    2012-09-01

    Assessing the passage of aquatic organisms through culvert road crossings has become increasingly common in efforts to restore stream habitat. Several federal and state agencies and local stakeholders have adopted assessment approaches based on literature-derived criteria for culvert impassability. However, criteria differ and are typically specific to larger-bodied fishes. In an analysis to prioritize culverts for remediation to benefit imperiled, small-bodied fishes in the Upper Coosa River system in the southeastern United States, we assessed the sensitivity of prioritization to the use of differing but plausible criteria for culvert impassability. Using measurements at 256 road crossings, we assessed culvert impassability using four alternative criteria sets represented in Bayesian belief networks. Two criteria sets scored culverts as either passable or impassable based on alternative thresholds of culvert characteristics (outlet elevation, baseflow water velocity). Two additional criteria sets incorporated uncertainty concerning ability of small-bodied fishes to pass through culverts and estimated a probability of culvert impassability. To prioritize culverts for remediation, we combined estimated culvert impassability with culvert position in the stream network relative to other barriers to compute prospective gain in connected stream habitat for the target fish species. Although four culverts ranked highly for remediation regardless of which criteria were used to assess impassability, other culverts differed widely in priority depending on criteria. Our results emphasize the value of explicitly incorporating uncertainty into criteria underlying remediation decisions. Comparing outcomes among alternative, plausible criteria may also help to identify research most needed to narrow management uncertainty.

  4. Dealing with uncertainty when assessing fish passage through culvert road crossings

    USGS Publications Warehouse

    Anderson, Gregory B.; Freeman, Mary C.; Freeman, Byron J.; Straight, Carrie A.; Hagler, Megan M.; Peterson, James T.

    2012-01-01

    Assessing the passage of aquatic organisms through culvert road crossings has become increasingly common in efforts to restore stream habitat. Several federal and state agencies and local stakeholders have adopted assessment approaches based on literature-derived criteria for culvert impassability. However, criteria differ and are typically specific to larger-bodied fishes. In an analysis to prioritize culverts for remediation to benefit imperiled, small-bodied fishes in the Upper Coosa River system in the southeastern United States, we assessed the sensitivity of prioritization to the use of differing but plausible criteria for culvert impassability. Using measurements at 256 road crossings, we assessed culvert impassability using four alternative criteria sets represented in Bayesian belief networks. Two criteria sets scored culverts as either passable or impassable based on alternative thresholds of culvert characteristics (outlet elevation, baseflow water velocity). Two additional criteria sets incorporated uncertainty concerning ability of small-bodied fishes to pass through culverts and estimated a probability of culvert impassability. To prioritize culverts for remediation, we combined estimated culvert impassability with culvert position in the stream network relative to other barriers to compute prospective gain in connected stream habitat for the target fish species. Although four culverts ranked highly for remediation regardless of which criteria were used to assess impassability, other culverts differed widely in priority depending on criteria. Our results emphasize the value of explicitly incorporating uncertainty into criteria underlying remediation decisions. Comparing outcomes among alternative, plausible criteria may also help to identify research most needed to narrow management uncertainty.

  5. Improving Acoustic Models by Watching Television

    NASA Technical Reports Server (NTRS)

    Witbrock, Michael J.; Hauptmann, Alexander G.

    1998-01-01

    Obtaining sufficient labelled training data is a persistent difficulty for speech recognition research. Although well transcribed data is expensive to produce, there is a constant stream of challenging speech data and poor transcription broadcast as closed-captioned television. We describe a reliable unsupervised method for identifying accurately transcribed sections of these broadcasts, and show how these segments can be used to train a recognition system. Starting from acoustic models trained on the Wall Street Journal database, a single iteration of our training method reduced the word error rate on an independent broadcast television news test set from 62.2% to 59.5%.

  6. Sediment contributions from floodplains and legacy sediments to Piedmont streams of Baltimore County, Maryland

    NASA Astrophysics Data System (ADS)

    Donovan, Mitchell; Miller, Andrew; Baker, Matthew; Gellis, Allen

    2015-04-01

    Disparity between watershed erosion rates and downstream sediment delivery has remained an important theme in geomorphology for many decades, with the role of floodplains in sediment storage as a common focus. In the Piedmont Province of the eastern USA, upland deforestation and agricultural land use following European settlement led to accumulation of thick packages of overbank sediment in valley bottoms, commonly referred to as legacy deposits. Previous authors have argued that legacy deposits represent a potentially important source of modern sediment loads following remobilization by lateral migration and progressive channel widening. This paper seeks to quantify (1) rates of sediment remobilization from Baltimore County floodplains by channel migration and bank erosion, (2) proportions of streambank sediment derived from legacy deposits, and (3) potential contribution of net streambank erosion and legacy sediments to downstream sediment yield within the Mid-Atlantic Piedmont. We calculated measurable gross erosion and deposition rates within the fluvial corridor along 40 valley segments from 18 watersheds with drainage areas between 0.18 and 155 km2 in Baltimore County, Maryland. We compared stream channel and floodplain morphology from lidar-based digital elevation data collected in 2005 with channel positions recorded on 1:2400 scale topographic maps from 1959-1961 in order to quantify 44-46 years of channel change. Sediment bulk density and particle size distributions were characterized from streambank and channel deposit samples and used for volume to mass conversions and for comparison with other sediment sources. Average annual lateral migration rates ranged from 0.04 to 0.19 m/y, which represented an annual migration of 2.5% (0.9-4.4%) channel width across all study segments, suggesting that channel dimensions may be used as reasonable predictors of bank erosion rates. Gross bank erosion rates varied from 43 to 310 Mg/km/y (median = 114) and were positively correlated with drainage area. Measured deposition within channels accounted for an average of 46% (28-75%) of gross erosion, with deposition increasingly important in larger drainages. Legacy sediments accounted for 6-90% of bank erosion at individual study segments, represented about 60% of bank height at most exposures, and accounted for 57% (± 16%) of the measured gross erosion. Extrapolated results indicated that first- and second-order streams accounted for 62% (± 38%) of total streambank erosion from 1005 km2 of northern Baltimore County. After accounting for estimated redeposition, extrapolated net streambank sediment yields (72 Mg/km2/y) constituted 70% of estimated average Piedmont watershed yields (104 Mg/km2/y). The results suggest that streambank sediments are a relatively large source of sediment from Piedmont tributaries to the Chesapeake Bay.

  7. Sediment contributions from floodplains and legacy sediments to Piedmont streams of Baltimore County, Maryland

    USGS Publications Warehouse

    Donovan, Mitchell; Miller, Andrew; Baker, Matthew; Gellis, Allen C.

    2015-01-01

    Disparity between watershed erosion rates and downstream sediment delivery has remained an important theme in geomorphology for many decades, with the role of floodplains in sediment storage as a common focus. In the Piedmont Province of the eastern USA, upland deforestation and agricultural land use following European settlement led to accumulation of thick packages of overbank sediment in valley bottoms, commonly referred to as legacy deposits. Previous authors have argued that legacy deposits represent a potentially important source of modern sediment loads following remobilization by lateral migration and progressive channel widening. This paper seeks to quantify (1) rates of sediment remobilization from Baltimore County floodplains by channel migration and bank erosion, (2) proportions of streambank sediment derived from legacy deposits, and (3) potential contribution of net streambank erosion and legacy sediments to downstream sediment yield within the Mid-Atlantic Piedmont.We calculated measurable gross erosion and deposition rates within the fluvial corridor along 40 valley segments from 18 watersheds with drainage areas between 0.18 and 155 km2 in Baltimore County, Maryland. We compared stream channel and floodplain morphology from lidar-based digital elevation data collected in 2005 with channel positions recorded on 1:2400 scale topographic maps from 1959–1961 in order to quantify 44–46 years of channel change. Sediment bulk density and particle size distributions were characterized from streambank and channel deposit samples and used for volume to mass conversions and for comparison with other sediment sources.Average annual lateral migration rates ranged from 0.04 to 0.19 m/y, which represented an annual migration of 2.5% (0.9–4.4%) channel width across all study segments, suggesting that channel dimensions may be used as reasonable predictors of bank erosion rates. Gross bank erosion rates varied from 43 to 310 Mg/km/y (median = 114) and were positively correlated with drainage area. Measured deposition within channels accounted for an average of 46% (28–75%) of gross erosion, with deposition increasingly important in larger drainages. Legacy sediments accounted for 6–90% of bank erosion at individual study segments, represented about 60% of bank height at most exposures, and accounted for 57% (± 16%) of the measured gross erosion. Extrapolated results indicated that first- and second-order streams accounted for 62% (± 38%) of total streambank erosion from 1005 km2 of northern Baltimore County. After accounting for estimated redeposition, extrapolated net streambank sediment yields (72 Mg/km2/y) constituted 70% of estimated average Piedmont watershed yields (104 Mg/km2/y). The results suggest that streambank sediments are a relatively large source of sediment from Piedmont tributaries to the Chesapeake Bay.

  8. Spaceflight-relevant stem education and outreach: Social goals and priorities

    NASA Astrophysics Data System (ADS)

    Caldwell, Barrett S.

    2015-07-01

    This paper is based on a presentation and conference proceedings paper given at the 65th International Astronautical Congress. The paper addresses concerns in education and public outreach (EPO) in science, technology, engineering and mathematics (STEM). The author serves as a Director of a US statewide NASA-funded Space Grant Consortium, with responsibilities to coordinate funding for undergraduate scholarships, graduate fellowships, and program awards. Space Grant is a national NASA network of STEM EPO programs including over 1000 higher education, outreach center, science museum, local government, and corporate partners. As a Space Grant Director, the author interacts with a variety of levels of STEM literacy and sophistication among members of the public. A number of interactions highlight the need for STEM EPO leaders to speak directly to a variety of social goals and priorities. Spaceflight is largely seen as an appealing and potentially desirable STEM application. However, members of the public are often unclear and ill-informed regarding relative expense, relative benefit, and relative breadth of domains of expertise that are relevant to the spaceflight enterprise. In response (and resulting in further disconnects between STEM specialists and the public), focused STEM professionals frequently over-emphasize their own technical specialty and its priority in general because of its importance to that professional. These potential divides in the attempt to share and connect STEM related goals and priorities are discussed as an elaboration of invitations to discuss spacefaring in "futures forum" contexts. Spaceflight can be seen as addressing a combination of "actualization" and "aspirational" goals at social and societal levels. Maslow's hierarchy of needs distinguishes between "basic needs" and "actualization" as a higher-order need. Another aspect of spaceflight is aspirational-it speaks to hopes and desires for levels of flexibility and capability at the societal level. One analogy is the marketing of premium brand luxury items, at lower cost and larger volumes, to larger segments of the population. STEM EPO activities should not be directed solely at the "rocket science" applications of technology and engineering capabilities. Additional effort is needed to connect spaceflight experiences and examples to broader STEM needs, social priorities, and local contexts.

  9. FluReF, an automated flu virus reassortment finder based on phylogenetic trees.

    PubMed

    Yurovsky, Alisa; Moret, Bernard M E

    2011-01-01

    Reassortments are events in the evolution of the genome of influenza (flu), whereby segments of the genome are exchanged between different strains. As reassortments have been implicated in major human pandemics of the last century, their identification has become a health priority. While such identification can be done "by hand" on a small dataset, researchers and health authorities are building up enormous databases of genomic sequences for every flu strain, so that it is imperative to develop automated identification methods. However, current methods are limited to pairwise segment comparisons. We present FluReF, a fully automated flu virus reassortment finder. FluReF is inspired by the visual approach to reassortment identification and uses the reconstructed phylogenetic trees of the individual segments and of the full genome. We also present a simple flu evolution simulator, based on the current, source-sink, hypothesis for flu cycles. On synthetic datasets produced by our simulator, FluReF, tuned for a 0% false positive rate, yielded false negative rates of less than 10%. FluReF corroborated two new reassortments identified by visual analysis of 75 Human H3N2 New York flu strains from 2005-2008 and gave partial verification of reassortments found using another bioinformatics method. FluReF finds reassortments by a bottom-up search of the full-genome and segment-based phylogenetic trees for candidate clades--groups of one or more sampled viruses that are separated from the other variants from the same season. Candidate clades in each tree are tested to guarantee confidence values, using the lengths of key edges as well as other tree parameters; clades with reassortments must have validated incongruencies among segment trees. FluReF demonstrates robustness of prediction for geographically and temporally expanded datasets, and is not limited to finding reassortments with previously collected sequences. The complete source code is available from http://lcbb.epfl.ch/software.html.

  10. Backcasting the decline of a vulnerable Great Plains reproductive ecotype: identifying threats and conservation priorities.

    PubMed

    Worthington, Thomas A; Brewer, Shannon K; Grabowski, Timothy B; Mueller, Julia

    2014-01-01

    Conservation efforts for threatened or endangered species are challenging because the multi-scale factors that relate to their decline or inhibit their recovery are often unknown. To further exacerbate matters, the perceptions associated with the mechanisms of species decline are often viewed myopically rather than across the entire species range. We used over 80 years of fish presence data collected from the Great Plains and associated ecoregions of the United States, to investigate the relative influence of changing environmental factors on the historic and current truncated distributions of the Arkansas River shiner Notropis girardi. Arkansas River shiner represent a threatened reproductive ecotype considered especially well adapted to the harsh environmental extremes of the Great Plains. Historic (n = 163 records) and current (n = 47 records) species distribution models were constructed using a vector-based approach in MaxEnt by splitting the available data at a time when Arkansas River shiner dramatically declined. Discharge and stream order were significant predictors in both models; however, the shape of the relationship between the predictors and species presence varied between time periods. Drift distance (river fragment length available for ichthyoplankton downstream drift before meeting a barrier) was a more important predictor in the current model and indicated river segments 375-780 km had the highest probability of species presence. Performance for the historic and current models was high (area under the curve; AUC > 0.95); however, forecasting and backcasting to alternative time periods suggested less predictive power. Our results identify fragments that could be considered refuges for endemic plains fish species and we highlight significant environmental factors (e.g., discharge) that could be manipulated to aid recovery. Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  11. Decision support methodology to establish priorities on the inspection of structures

    NASA Astrophysics Data System (ADS)

    Cortes, V. Juliette; Sterlacchini, Simone; Bogaard, Thom; Frigerio, Simone; Schenato, Luca; Pasuto, Alessandro

    2014-05-01

    For hydro-meteorological hazards in mountain areas, the regular inspection of check dams and bridges is important due to the effect of their functional status on water-sediment processes. Moreover, the inspection of these structures is time consuming for organizations due to their extensive number in many regions. However, trained citizen-volunteers can support civil protection and technical services in the frequency, timeliness and coverage of monitoring the functional status of hydraulic structures. Technicians should evaluate and validate these reports to get an index for the status of the structure. Thus, preventive actions could initiate such as the cleaning of obstructions or to pre-screen potential problems for a second level inspection. This study proposes a decision support methodology that technicians can use to assess an index for three parameters representing the functional status of the structure: a) condition of the structure at the opening of the stream flow, b) level of obstruction at the structure and c) the level of erosion in the stream bank. The calculation of the index for each parameter is based upon fuzzy logic theory to handle ranges in precision of the reports and to convert the linguistic rating scales into numbers representing the structure's status. A weighting method and multi-criteria method (Analytic Hierarchy Process- AHP and TOPSIS), can be used by technicians to combine the different ratings according to the component elements of the structure and the completeness of the reports. Finally, technicians can set decision rules based on the worst rating and a threshold for the functional indexes. The methodology was implemented as a prototype web-based tool to be tested with technicians of the Civil Protection in the Fella basin, Northern Italy. Results at this stage comprise the design and implementation of the web-based tool with GIS interaction to evaluate available reports and to set priorities on the inspection of structures. Keywords Decision-making, Multi-criteria methods, Torrent control structures, Web-based tools.

  12. FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis.

    PubMed

    Wan, Yong; Otsuna, Hideo; Holman, Holly A; Bagley, Brig; Ito, Masayoshi; Lewis, A Kelsey; Colasanto, Mary; Kardon, Gabrielle; Ito, Kei; Hansen, Charles

    2017-05-26

    Image segmentation and registration techniques have enabled biologists to place large amounts of volume data from fluorescence microscopy, morphed three-dimensionally, onto a common spatial frame. Existing tools built on volume visualization pipelines for single channel or red-green-blue (RGB) channels have become inadequate for the new challenges of fluorescence microscopy. For a three-dimensional atlas of the insect nervous system, hundreds of volume channels are rendered simultaneously, whereas fluorescence intensity values from each channel need to be preserved for versatile adjustment and analysis. Although several existing tools have incorporated support of multichannel data using various strategies, the lack of a flexible design has made true many-channel visualization and analysis unavailable. The most common practice for many-channel volume data presentation is still converting and rendering pseudosurfaces, which are inaccurate for both qualitative and quantitative evaluations. Here, we present an alternative design strategy that accommodates the visualization and analysis of about 100 volume channels, each of which can be interactively adjusted, selected, and segmented using freehand tools. Our multichannel visualization includes a multilevel streaming pipeline plus a triple-buffer compositing technique. Our method also preserves original fluorescence intensity values on graphics hardware, a crucial feature that allows graphics-processing-unit (GPU)-based processing for interactive data analysis, such as freehand segmentation. We have implemented the design strategies as a thorough restructuring of our original tool, FluoRender. The redesign of FluoRender not only maintains the existing multichannel capabilities for a greatly extended number of volume channels, but also enables new analysis functions for many-channel data from emerging biomedical-imaging techniques.

  13. Trophic overlap between native and invasive stream crayfish

    USGS Publications Warehouse

    Magoulick, Daniel D.; Piercey, Glenn L.

    2016-01-01

    We examined trophic dynamics of a stream food web where invasive Orconectes neglectus appear to be displacing native O. eupunctus in the Spring River drainage of the Ozark Highlands, Missouri and Arkansas, USA. We collected crayfish species and possible food sources seasonally from a site of sympatry on the South Fork Spring River. We determined diet overlap and potential for competition between O. eupunctus and O. neglectus, and investigated seasonal variation using carbon and nitrogen stable isotope analyses and gut content analyses. Gut content analysis showed both species of crayfish consumed mainly detritus during summer and spring, with other prey categories varying by species and season. Stable isotope analysis showed that O. eupunctus and O. neglectus relied on invertebrates as a major energy and nutrient source throughout summer, autumn, and spring, and the two species showed differences in their stable isotope signatures during spring and summer, but not autumn. Given the trophic overlap between O. eupunctus and O. neglectus, there is a potential for the two species to compete for food and to be ecologically redundant. Ecological redundancy can lead to reduced effects on ecosystem function post-invasion, and therefore examining ecological redundancy of potential invaders should be a conservation priority.

  14. Joint estimation of habitat dynamics and species interactions: Disturbance reduces co-occurrence of non-native predators with an endangered toad

    USGS Publications Warehouse

    Miller, David A.W.; Brehme, Cheryl S.; Hines, James E.; Nichols, James D.; Fisher, Robert N.

    2012-01-01

    1. Ecologists have long been interested in the processes that determine patterns of species occurrence and co-occurrence. Potential short-comings of many existing empirical approaches that address these questions include a reliance on patterns of occurrence at a single time point, failure to account properly for imperfect detection and treating the environment as a static variable.2. We fit detection and non-detection data collected from repeat visits using a dynamic site occupancy model that simultaneously accounts for the temporal dynamics of a focal prey species, its predators and its habitat. Our objective was to determine how disturbance and species interactions affect the co-occurrence probabilities of an endangered toad and recently introduced non-native predators in stream breeding habitats. For this, we determined statistical support for alternative processes that could affect co-occurrence frequency in the system.3. We collected occurrence data at stream segments in two watersheds where streams were largely ephemeral and one watershed dominated by perennial streams. Co-occurrence probabilities of toads with non-native predators were related to disturbance frequency, with low co-occurrence in the ephemeral watershed and high co-occurrence in the perennial watershed. This occurred because once predators were established at a site, they were rarely lost from the site except in cases when the site dried out. Once dry sites became suitable again, toads colonized them much more rapidly than predators, creating a period of predator-free space.4. We attribute the dynamics to a storage effect, where toads persisting outside the stream environment during periods of drought rapidly colonized sites when they become suitable again. Our results support that even in highly connected stream networks, temporal disturbance can structure frequencies with which breeding amphibians encounter non-native predators.5. Dynamic multi-state occupancy models are a powerful tool for rigorously examining hypotheses about inter-species and species–habitat interactions. In contrast to previous methods that infer dynamic processes based on static patterns in occupancy, the approach we took allows the dynamic processes that determine species–species and species–habitat interactions to be directly estimated.

  15. Two Blades-Up Runs Using the JetStream Navitus Atherectomy Device Achieve Optimal Tissue Debulking of Nonocclusive In-Stent Restenosis: Observations From a Porcine Stent/Balloon Injury Model.

    PubMed

    Shammas, Nicolas W; Aasen, Nicole; Bailey, Lynn; Budrewicz, Jay; Farago, Trent; Jarvis, Gary

    2015-08-01

    To determine the number of runs with blades up (BU) using the JetStream Navitus to achieving optimal debulking in a porcine model of femoropopliteal artery in-stent restenosis (ISR). In this porcine model, 8 limbs were implanted with overlapping nitinol self-expanding stents. ISR was treated initially with 2 blades-down (BD) runs followed by 4 BU runs (BU1 to BU4). Quantitative vascular angiography (QVA) was performed at baseline, after 2 BD runs, and after each BU run. Plaque surface area and percent stenosis within the treated stented segment were measured. Intravascular ultrasound (IVUS) was used to measure minimum lumen area (MLA) and determine IVUS-derived plaque surface area. QVA showed that plaque surface area was significantly reduced between baseline (83.9%±14.8%) and 2 BD (67.7%±17.0%, p=0.005) and BU1 (55.4%±9.0%, p=0.005) runs, and between BU1 and BU2 runs (50.7%±9.7%, p<0.05). Percent stenosis behaved similarly with no further reduction after BU2. There were no further reductions in plaque surface area or percent stenosis with BU 3 and 4 runs (p=0.10). Similarly, IVUS (24 lesions) confirmed optimal results with BU2 runs and no additional gain in MLA or reduction in plaque surface area with BU3 and 4. IVUS confirmed no orbital cutting with JetStream Navitus. There were no stent strut discontinuities on high-resolution radiographs following atherectomy. JetStream Navitus achieved optimal tissue debulking after 2 BD and 2 BU runs with no further statistical gain in debulking after the BU2 run. Operators treating ISR with JetStream Navitus may be advised to limit their debulking to 2 BD and 2 BU runs to achieve optimal debulking. © The Author(s) 2015.

  16. Trail Creek II: Modeling Flow and E. Coli Concentrations in a Small Urban Stream using SWAT

    NASA Astrophysics Data System (ADS)

    Radcliffe, D. E.; Saintil, T.

    2017-12-01

    Pathogens are one of the leading causes of stream and river impairment in the State of Georgia. The common presence of fecal bacteria is driven by several factors including rapid population growth stressing pre-existing and ageing infrastructure, urbanization and poor planning, increase percent imperviousness, urban runoff, municipal discharges, sewage, pet/wildlife waste and leaky septic tanks. The Trail Creek watershed, located in Athens-Clarke County, Georgia covers about 33 km2. Stream segments within Trail Creek violate the GA standard due to high levels of fecal coliform bacteria. In this study, the Soil and Water Assessment Tool (SWAT) modeling software was used to predict E. coli bacteria concentrations during baseflow and stormflow. Census data from the county was used for human and animal population estimates and the Fecal Indicator Tool to generate the number of colony forming units of E. Coli for each source. The model was calibrated at a daily time step with one year of monitored streamflow and E. coli bacteria data using SWAT-CUP and the SUFI2 algorithm. To simulate leaking sewer lines, we added point sources in the five subbasins in the SWAT model with the greatest length of sewer line within 50 m of the stream. The flow in the point sources were set to 5% of the stream flow and the bacteria count set to that of raw sewage (30,000 cfu/100 mL). The calibrated model showed that the average load during 2003-2013 at the watershed outlet was 13 million cfu per month. Using the calibrated model, we simulated scenarios that assumed leaking sewers were repaired in one of the five subbasins with point sources. The reduction ranged from 10 to 46%, with the largest reduction in subbasin in the downtown area. Future modeling work will focus on the use of green infrastructure to address sources of bacteria.

  17. Detection of water quality trends at high, median, and low flow in a Catskill Mountain stream, New York, through a new statistical method

    USGS Publications Warehouse

    Murdoch, Peter S.; Shanley, James B.

    2006-01-01

    The effects of changes in acid deposition rates resulting from the Clean Air Act Amendments of 1990 should first appear in stream waters during rainstorms and snowmelt, when the surface of the watershed is most hydrologically connected to the stream. Early detection of improved stream water quality is possible if trends at high flow could be separately determined. Trends in concentrations of sulfate (SO42−), nitrate (NO3−), calcium plus magnesium (Ca2++Mg2+), and acid‐neutralizing capacity (ANC) in Biscuit Brook, Catskill Mountains, New York, were assessed through segmented regression analysis (SRA). The method uses annual concentration‐to‐discharge relations to predict concentrations for specific discharges, then compares those annual values to determine trends at specific discharge levels. Median‐flow trends using SRA were comparable to those predicted by the seasonal Kendall tau test and a multiple regression residual analysis. All of these methods show that stream water SO42− concentrations have decreased significantly since 1983; Ca2++Mg2+ concentrations have decreased at a steady but slower rate than SO42−; and ANC shows no trend. The new SRA method, however, reveals trends that differ at specified flow levels. ANC has increased, and NO3−concentrations have decreased at high flows, but neither has changed as significantly at low flows. The general downward trend in SO42− flattened at median flow and reversed at high flow between 1997 and 2002. The reversal of the high‐flow SO42− trend is consistent with increases in SO42− concentrations in both precipitation and soil solutions at Biscuit Brook. Separate calculation of high‐flow trends provides resource managers with an early detection system for assessing changes in water quality resulting from changes in acidic deposition.

  18. BAM: Bayesian AMHG-Manning Inference of Discharge Using Remotely Sensed Stream Width, Slope, and Height

    NASA Astrophysics Data System (ADS)

    Hagemann, M. W.; Gleason, C. J.; Durand, M. T.

    2017-11-01

    The forthcoming Surface Water and Ocean Topography (SWOT) NASA satellite mission will measure water surface width, height, and slope of major rivers worldwide. The resulting data could provide an unprecedented account of river discharge at continental scales, but reliable methods need to be identified prior to launch. Here we present a novel algorithm for discharge estimation from only remotely sensed stream width, slope, and height at multiple locations along a mass-conserved river segment. The algorithm, termed the Bayesian AMHG-Manning (BAM) algorithm, implements a Bayesian formulation of streamflow uncertainty using a combination of Manning's equation and at-many-stations hydraulic geometry (AMHG). Bayesian methods provide a statistically defensible approach to generating discharge estimates in a physically underconstrained system but rely on prior distributions that quantify the a priori uncertainty of unknown quantities including discharge and hydraulic equation parameters. These were obtained from literature-reported values and from a USGS data set of acoustic Doppler current profiler (ADCP) measurements at USGS stream gauges. A data set of simulated widths, slopes, and heights from 19 rivers was used to evaluate the algorithms using a set of performance metrics. Results across the 19 rivers indicate an improvement in performance of BAM over previously tested methods and highlight a path forward in solving discharge estimation using solely satellite remote sensing.

  19. Theta band oscillations reflect more than entrainment: behavioral and neural evidence demonstrates an active chunking process.

    PubMed

    Teng, Xiangbin; Tian, Xing; Doelling, Keith; Poeppel, David

    2017-10-17

    Parsing continuous acoustic streams into perceptual units is fundamental to auditory perception. Previous studies have uncovered a cortical entrainment mechanism in the delta and theta bands (~1-8 Hz) that correlates with formation of perceptual units in speech, music, and other quasi-rhythmic stimuli. Whether cortical oscillations in the delta-theta bands are passively entrained by regular acoustic patterns or play an active role in parsing the acoustic stream is debated. Here, we investigate cortical oscillations using novel stimuli with 1/f modulation spectra. These 1/f signals have no rhythmic structure but contain information over many timescales because of their broadband modulation characteristics. We chose 1/f modulation spectra with varying exponents of f, which simulate the dynamics of environmental noise, speech, vocalizations, and music. While undergoing magnetoencephalography (MEG) recording, participants listened to 1/f stimuli and detected embedded target tones. Tone detection performance varied across stimuli of different exponents and can be explained by local signal-to-noise ratio computed using a temporal window around 200 ms. Furthermore, theta band oscillations, surprisingly, were observed for all stimuli, but robust phase coherence was preferentially displayed by stimuli with exponents 1 and 1.5. We constructed an auditory processing model to quantify acoustic information on various timescales and correlated the model outputs with the neural results. We show that cortical oscillations reflect a chunking of segments, > 200 ms. These results suggest an active auditory segmentation mechanism, complementary to entrainment, operating on a timescale of ~200 ms to organize acoustic information. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Real-time skin feature identification in a time-sequential video stream

    NASA Astrophysics Data System (ADS)

    Kramberger, Iztok

    2005-04-01

    Skin color can be an important feature when tracking skin-colored objects. Particularly this is the case for computer-vision-based human-computer interfaces (HCI). Humans have a highly developed feeling of space and, therefore, it is reasonable to support this within intelligent HCI, where the importance of augmented reality can be foreseen. Joining human-like interaction techniques within multimodal HCI could, or will, gain a feature for modern mobile telecommunication devices. On the other hand, real-time processing plays an important role in achieving more natural and physically intuitive ways of human-machine interaction. The main scope of this work is the development of a stereoscopic computer-vision hardware-accelerated framework for real-time skin feature identification in the sense of a single-pass image segmentation process. The hardware-accelerated preprocessing stage is presented with the purpose of color and spatial filtering, where the skin color model within the hue-saturation-value (HSV) color space is given with a polyhedron of threshold values representing the basis of the filter model. An adaptive filter management unit is suggested to achieve better segmentation results. This enables the adoption of filter parameters to the current scene conditions in an adaptive way. Implementation of the suggested hardware structure is given at the level of filed programmable system level integrated circuit (FPSLIC) devices using an embedded microcontroller as their main feature. A stereoscopic clue is achieved using a time-sequential video stream, but this shows no difference for real-time processing requirements in terms of hardware complexity. The experimental results for the hardware-accelerated preprocessing stage are given by efficiency estimation of the presented hardware structure using a simple motion-detection algorithm based on a binary function.

Top