40 CFR 35.2015 - State priority system and project priority list.
Code of Federal Regulations, 2010 CFR
2010-07-01
... achieve optimum water quality management consistent with the goals and requirements of the Act. All..., needs and priorities set forth in areawide water quality management plans, and any other factors... priority to projects in priority water quality areas. The priority system may also include the...
40 CFR 35.2024 - Combined sewer overflows.
Code of Federal Regulations, 2010 CFR
2010-07-01
... project priority list, it addresses impaired uses in priority water quality areas which are due to the... must demonstrate to the Administrator that the water quality goals of the Act will not be achieved... priority water quality areas in marine bays and estuaries due to the impacts of combined sewer overflows...
Water quality monitoring for high-priority water bodies in the Sonoran Desert network
Terry W. Sprouse; Robert M. Emanuel; Sara A. Strorrer
2005-01-01
This paper describes a network monitoring program for âhigh priorityâ water bodies in the Sonoran Desert Network of the National Park Service. Protocols were developed for monitoring selected waters for ten of the eleven parks in the Network. Park and network staff assisted in identifying potential locations of testing sites, local priorities, and how water quality...
Investigation of priorities in water quality management based on correlations and variations.
Boyacıoğlu, Hülya; Gündogdu, Vildan; Boyacıoğlu, Hayal
2013-04-15
The development of water quality assessment strategies investigating spatial and temporal changes caused by natural and anthropogenic phenomena is an important tool in management practices. This paper used cluster analysis, water quality index method, sensitivity analysis and canonical correlation analysis to investigate priorities in pollution control activities. Data sets representing 22 surface water quality parameters were subject to analysis. Results revealed that organic pollution was serious threat for overall water quality in the region. Besides, oil and grease, lead and mercury were the critical variables violating the standard. In contrast to inorganic variables, organic and physical-inorganic chemical parameters were influenced by variations in physical conditions (discharge, temperature). This study showed that information produced based on the variations and correlations in water quality data sets can be helpful to investigate priorities in water management activities. Moreover statistical techniques and index methods are useful tools in data - information transformation process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.38 Establishment of Numeric Criteria for priority toxic pollutants for the State... Concentration (CMC) equals the highest concentration of a pollutant to which aquatic life can be exposed for a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.38 Establishment of Numeric Criteria for priority toxic pollutants for the State... Concentration (CMC) equals the highest concentration of a pollutant to which aquatic life can be exposed for a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.38 Establishment of Numeric Criteria for priority toxic pollutants for the State... Concentration (CMC) equals the highest concentration of a pollutant to which aquatic life can be exposed for a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.38 Establishment of Numeric Criteria for priority toxic pollutants for the State... Concentration (CMC) equals the highest concentration of a pollutant to which aquatic life can be exposed for a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.38 Establishment of Numeric Criteria for priority toxic pollutants for the State... Concentration (CMC) equals the highest concentration of a pollutant to which aquatic life can be exposed for a...
40 CFR 35.915 - State priority system and project priorty list.
Code of Federal Regulations, 2010 CFR
2010-07-01
... State priority system and list must be designed to achieve optimum water quality management consistent... water quality management (WQM) plans. The State shall hold a public hearing before submission of the... also sets forth the administrative, management, and public participation procedures required to develop...
40 CFR 35.2024 - Combined sewer overflows.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2024 Combined sewer... project priority list, it addresses impaired uses in priority water quality areas which are due to the... must demonstrate to the Administrator that the water quality goals of the Act will not be achieved...
40 CFR 35.2024 - Combined sewer overflows.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2024 Combined sewer... project priority list, it addresses impaired uses in priority water quality areas which are due to the... must demonstrate to the Administrator that the water quality goals of the Act will not be achieved...
40 CFR 35.2024 - Combined sewer overflows.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2024 Combined sewer... project priority list, it addresses impaired uses in priority water quality areas which are due to the... must demonstrate to the Administrator that the water quality goals of the Act will not be achieved...
Mel'tser, A V; Erastova, N V; Kiselev, A V
2013-01-01
Providing population with quality drinking water--one of the priority tasks of the state policy aimed at maintaining the health of citizens. Hygienic rating of the drinking water quality envisages requirements to assurance its safety in the epidemiological and radiation relations, harmlessness of chemical composition and good organoleptic properties. There are numerous data proving the relationship between the chemical composition of drinking water and human health, and therefore the issue of taking a hygienically sound measures to improve the efficiency of water treatment has more and more priority. High water quality--the result of complex solution of tasks, including an integral approach to assessment of the quality of drinking water the use of hygienically sound decisions in the modernization of water treatment systems. The results of the integral assessment of drinking water on the properties of harmlessness have shown its actuality in the development and implementation of management decisions. The use of the spatial characteristics of integrated indices permits to visualize changes in the quality of drinking water in all stages of production and transportation from the position of health risks, evaluate the effectiveness of technological solutions and set priorities for investing.
7 CFR 1778.7 - Project priority.
Code of Federal Regulations, 2011 CFR
2011-01-01
... shortage. Grants made in accordance with § 1778.11(b) of this part to assist an established water system remedy an acute shortage of quality water or correct a significant decline in the quantity or quality of... 7 Agriculture 12 2011-01-01 2011-01-01 false Project priority. 1778.7 Section 1778.7 Agriculture...
40 CFR 35.915 - State priority system and project priorty list.
Code of Federal Regulations, 2013 CFR
2013-07-01
... OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.915 State priority system and project priorty list. Construction grants will be awarded... State priority system and list must be designed to achieve optimum water quality management consistent...
40 CFR 35.915 - State priority system and project priorty list.
Code of Federal Regulations, 2012 CFR
2012-07-01
... OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.915 State priority system and project priorty list. Construction grants will be awarded... State priority system and list must be designed to achieve optimum water quality management consistent...
40 CFR 35.915 - State priority system and project priorty list.
Code of Federal Regulations, 2011 CFR
2011-07-01
... OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.915 State priority system and project priorty list. Construction grants will be awarded... State priority system and list must be designed to achieve optimum water quality management consistent...
40 CFR 35.915 - State priority system and project priorty list.
Code of Federal Regulations, 2014 CFR
2014-07-01
... OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.915 State priority system and project priorty list. Construction grants will be awarded... State priority system and list must be designed to achieve optimum water quality management consistent...
The Clean Water Act (CWA) Action Plan Implementation Priorities describes the new approaches to revamp the National Pollutant Discharge Elimination System (NPDES) permitting, compliance and enforcement program.Issued May 11, 2011
FRAMEWORK FOR DEVELOPING AMBIENT WATER ...
Currently, Ambient Water Quality Criteria (AWQC) for aquatic life protection are derived according to the Guidelines for Derivation of Ambient Water Quality Criteria for the Protection of Aquatic Life and Their Uses, published in 1985. To ensure that AWQC are derived from the best available science, Office of Water assessed the need to update the Guidelines and identified issues that should be addressed in the revisions. In December 2002, EPA's Science Advisory Board concurred with EPA's assessment of the need to update the Guidelines as well as with the issues EPA identified to address. Updating the Guidelines is a Priority Strategic Action included in OST's Strategy for Water Quality Standards and Criteria (Next Priority Strategic Action #1). To revise existing methodology for deriving ambient water quality criteria for the protection of aquatic life.
7TH JAPAN - U.S. CONFERENCE ON DRINKING WATER QUALITY MANAGEMENT AND WASTEWATER CONTROL
Update on U.S. Drinking Water and Water Quality Research
The U.S. Environmental Protection Agency's (U.S. EPA) Office of Research and development continues to conduct drinking water and water quality related research to address high priority environmental problems. Curr...
Hazard-Specific Vulnerability Mapping for Water Security in a Shale Gas Context
NASA Astrophysics Data System (ADS)
Allen, D. M.; Holding, S.; McKoen, Z.
2015-12-01
Northeast British Columbia (NEBC) is estimated to hold large reserves of unconventional natural gas and has experienced rapid growth in shale gas development activities over recent decades. Shale gas development has the potential to impact the quality and quantity of surface and ground water. Robust policies and sound water management are required to protect water security in relation to the water-energy nexus surrounding shale gas development. In this study, hazard-specific vulnerability mapping was conducted across NEBC to identify areas most vulnerable to water quality and quantity deterioration due to shale gas development. Vulnerability represents the combination of a specific hazard threat and the susceptibility of the water system to that threat. Hazard threats (i.e. potential contamination sources and water abstraction) were mapped spatially across the region. The shallow aquifer susceptibility to contamination was characterised using the DRASTIC aquifer vulnerability approach, while the aquifer susceptibility to abstraction was mapped according to aquifer productivity. Surface water susceptibility to contamination was characterised on a watershed basis to describe the propensity for overland flow (i.e. contaminant transport), while watershed discharge estimates were used to assess surface water susceptibility to water abstractions. The spatial distribution of hazard threats and susceptibility were combined to form hazard-specific vulnerability maps for groundwater quality, groundwater quantity, surface water quality and surface water quantity. The vulnerability maps identify priority areas for further research, monitoring and policy development. Priority areas regarding water quality occur where hazard threat (contamination potential) coincide with high aquifer susceptibility or high overland flow potential. Priority areas regarding water quantity occur where demand is estimated to represent a significant proportion of estimated supply. The identification of priority areas allows for characterization of the vulnerability of water security in the region. This vulnerability mapping approach, using the hazard threat and susceptibility indicators, can be applied to other shale gas areas to assess vulnerability to shale gas activities and support water security.
,
2013-01-01
The California State Water Resources Control Board’s (SWRCB) GAMA Program is a comprehensive assessment of statewide groundwater quality in California. From 2004 to 2012, the GAMA Program’s Priority Basin Project focused on assessing groundwater resources used for public drinking-water supplies. More than 2,000 public-supply wells were sampled by U.S. Geological Survey (USGS) for this effort. Starting in 2012, the GAMA Priority Basin Project began an assessment of water resources in shallow aquifers in California. These shallow aquifers provide water for domestic and small community-supply wells, which are often drilled to shallower depths in the groundwater system than public-supply wells. Shallow aquifers are of interest because shallow groundwater may respond more quickly and be more susceptible to contamination from human activities at the land surface, than the deeper aquifers. The SWRCB’s GAMA Program was developed in response to the Groundwater Quality Monitoring Act of 2001 (Water Code sections 10780-10782.3): a public mandate to assess and monitor the quality of groundwater resources used for drinking-water supplies, and to increase the availability of information about groundwater quality to the public. The U.S. Geological Survey is the technical lead of the Priority Basin Project. Stewardship of California’s groundwater resources is a responsibility shared between well owners, communities, and the State. Participants and collaborators in the GAMA Program include Regional Water Quality Control Boards, Department of Water Resources, Department of Public Health, local and regional groundwater management entities, county and local water agencies, community groups, and private citizens. Well-owner participation in the GAMA Program is entirely voluntary.
7 CFR 634.14 - Review and approval of project applications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...
7 CFR 634.14 - Review and approval of project applications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...
7 CFR 634.14 - Review and approval of project applications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...
7 CFR 634.14 - Review and approval of project applications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...
7 CFR 634.14 - Review and approval of project applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...
Watershed Academy Webcast: USDA's National Water Quality Initiative
This page contains a description and documentation associated with the webcast on how USDA’s NWQI is working in priority watersheds to help farmers, ranchers and forest landowners improve water quality.
A ground-water-quality monitoring program for Nevada
Nowlin, Jon O.
1986-01-01
A program was designed for the systematic monitoring of ground-water quality in Nevada. Basic hydrologic and water-quality principles are discussed in the formulation of a rational approach to developing a statewide monitoring program. A review of ground-water monitoring efforts in Nevada through 1977 indicates that few requirements for an effective statewide program are being met. A suggested program has been developed that consists of five major elements: (1) A Background-Quality Network to assess the existing water quality in Nevada aquifers, (2) a Contamination Source Inventory of known or potential threats to ground-water quality, (3) Surveillance Networks to monitor ground-water quality in selected hydrographic areas, (4) Intensive Surveys of individual instances of known or potential ground-water contamination, and (5) Ground-Water Data File to manage data generated by the other monitoring elements. Two indices have been developed to help assign rational priorities for monitoring ground water in the 255 hydrographic areas of Nevada: (1) A Hydrographic-Area Priority Index for surveillance monitoring, and (2) A Development-Potential Index for background monitoring of areas with little or no current development. Requirements for efficient management of data from ground-water monitoring are discussed and the three major systems containing Nevada ground-water data are reviewed. More than 11,000 chemical analyses of ground water have been acquired from existing systems and incorporated into a prototype data base.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Great Lakes Water Quality Initiative Criteria Documents for the Protection of Aquatic Life in Ambient... water quality criteria to protect against acute effects in aquatic life and is the highest instream... any aquatic life or human health use classifications in the Water Quality Control Plans for the...
Land, Michael; Kulongoski, Justin T.; Belitz, Kenneth
2012-01-01
Groundwater quality in the approximately 460-square-mile San Fernando--San Gabriel (FG) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is in Los Angeles County and includes Tertiary-Quaternary sedimentary basins situated within the Transverse Ranges of southern California. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA FG study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers) throughout California. The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 35 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth interval of the wells listed in the CDPH database for the FG study unit. The quality of groundwater in primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the FG study unit, not the treated drinking water delivered to consumers by water purveyors.
NASA Astrophysics Data System (ADS)
Dong, Feifei; Liu, Yong; Wu, Zhen; Chen, Yihui; Guo, Huaicheng
2018-07-01
Targeting nonpoint source (NPS) pollution hot spots is of vital importance for placement of best management practices (BMPs). Although physically-based watershed models have been widely used to estimate nutrient emissions, connections between nutrient abatement and compliance of water quality standards have been rarely considered in NPS hotspot ranking, which may lead to ineffective decision-making. It's critical to develop a strategy to identify priority management areas (PMAs) based on water quality response to nutrient load mitigation. A water quality constrained PMA identification framework was thereby proposed in this study, based on the simulation-optimization approach with ideal load reduction (ILR-SO). It integrates the physically-based Soil and Water Assessment Tool (SWAT) model and an optimization model under constraints of site-specific water quality standards. To our knowledge, it was the first effort to identify PMAs with simulation-based optimization. The SWAT model was established to simulate temporal and spatial nutrient loading and evaluate effectiveness of pollution mitigation. A metamodel was trained to establish a quantitative relationship between sources and water quality. Ranking of priority areas is based on required nutrient load reduction in each sub-watershed targeting to satisfy water quality standards in waterbodies, which was calculated with genetic algorithm (GA). The proposed approach was used for identification of PMAs on the basis of diffuse total phosphorus (TP) in Lake Dianchi Watershed, one of the three most eutrophic large lakes in China. The modeling results demonstrated that 85% of diffuse TP came from 30% of the watershed area. Compared with the two conventional targeting strategies based on overland nutrient loss and instream nutrient loading, the ILR-SO model identified distinct PMAs and narrowed down the coverage of management areas. This study addressed the urgent need to incorporate water quality response into PMA identification and showed that the ILR-SO approach is effective to guide watershed management for aquatic ecosystem restoration.
7 CFR 1468.20 - Application for CFO program participation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... take into consideration the following factors: (1) Soil erosion; (2) Water quality; (3) Wildlife... water quality priority areas; (8) The environmental benefits per dollar expended; and (9) The degree to... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS CONSERVATION FARM OPTION...
Rowe, Gary L.; Belitz, Kenneth; Demas, Charlie R.; Essaid, Hedeff I.; Gilliom, Robert J.; Hamilton, Pixie A.; Hoos, Anne B.; Lee, Casey J.; Munn, Mark D.; Wolock, David W.
2013-01-01
This report presents a science strategy for the third decade of the National Water-Quality Assessment (NAWQA) Program, which since 1991, has been responsible for providing nationally consistent information on the quality of the Nation's streams and groundwater; how water quality is changing over time; and the major natural and human factors that affect current water quality conditions and trends. The strategy is based on an extensive evaluation of the accomplishments of NAWQA over its first two decades, the current status of water-quality monitoring activities by USGS and its partners, and an updated analysis of stakeholder priorities. The plan is designed to address priority issues and national needs identified by NAWQA stakeholders and the National Research Council (2012) irrespective of budget constraints. This plan describes four major goals for the third decade (Cycle 3), the approaches for monitoring, modeling, and scientific studies, key partnerships required to achieve these goals, and products and outcomes that will result from planned assessment activities. The science plan for 2013–2023 is a comprehensive approach to meet stakeholder priorities for: (1) rebuilding NAWQA monitoring networks for streams, rivers, and groundwater, and (2) upgrading models used to extrapolate and forecast changes in water-quality and stream ecosystem condition in response to changing climate and land use. The Cycle 3 plan continues approaches that have been central to the Program’s long-term success, but adjusts monitoring intensities and study designs to address critical information needs and identified data gaps. Restoration of diminished monitoring networks and new directions in modeling and interpretative studies address growing and evolving public and stakeholder needs for water-quality information and improved management, particularly in the face of increasing challenges related to population growth, increasing demands for water, and changing land use and climate. However, a combination of funding growth and extensive collaboration with other USGS programs and other Federal, State, and local agencies, public interest groups, professional and trade associations, academia, and private industry will be needed to fully realize the monitoring and modeling goals laid out in this plan (USGS Fact Sheet 2013-3008).
Zgheib, Sally; Moilleron, Régis; Saad, Mohamed; Chebbo, Ghassan
2011-01-01
This paper presents results about the occurrence, the concentrations of urban priority substances on both the dissolved and the particulate phases in stormwater. Samples were collected at the outlet of a dense urban catchment in Paris suburb (2.30 km(2)). 13 chemical groups were investigated including 88 individual substances. Results showed that stormwater discharges contained 45 substances among them some metals, organotins, PAHs, PCBs, alkylphenols, pesticides, phthalates, cholorophenols and one volatile organic compound, i.e. methylene chloride. With respect to the European Water Framework Directive, these substances included 47% of the priority hazardous substances (n = 8), 38% of the priority substances (n = 10). The remaining substances (n = 27) belong to a list of others specific urban substances not included in the Water Framework Directive but monitored during this work. Finally, stormwater quality was evaluated by comparing the substance concentrations to environmental quality standards (EQS) and the particulate content to Canadian sediment quality guidelines. This showed that stormwater was highly contaminated and should be treated before being discharged to receiving waters in order to avoid any adverse impact on the river quality. Copyright © 2010 Elsevier Ltd. All rights reserved.
Priorities for Water Quality Criteria and Standards Programs FY 2017-2018
This document recommends priorities for states and authorized tribes as they plan WQS actions and updates in the upcoming two fiscal years. The document addresses new regulatory requirements in 40 CFR part 131 issued in August 2015.
Assessment of shrimp farming impact on groundwater quality using analytical hierarchy process
NASA Astrophysics Data System (ADS)
Anggie, Bernadietta; Subiyanto, Arief, Ulfah Mediaty; Djuniadi
2018-03-01
Improved shrimp farming affects the groundwater quality conditions. Assessment of shrimp farming impact on groundwater quality conventionally has less accuracy. This paper presents the implementation of Analytical Hierarchy Process (AHP) method for assessing shrimp farming impact on groundwater quality. The data used is the impact data of shrimp farming in one of the regions in Indonesia from 2006-2016. Criteria used in this study were 8 criteria and divided into 49 sub-criteria. The weighting by AHP performed to determine the importance level of criteria and sub-criteria. Final priority class of shrimp farming impact were obtained from the calculation of criteria's and sub-criteria's weights. The validation was done by comparing priority class of shrimp farming impact and water quality conditions. The result show that 50% of the total area was moderate priority class, 37% was low priority class and 13% was high priority class. From the validation result impact assessment for shrimp farming has been high accuracy to the groundwater quality conditions. This study shows that assessment based on AHP has a higher accuracy to shrimp farming impact and can be used as the basic fisheries planning to deal with impacts that have been generated.
Recovery Potential Screening for Prioritizing Restoration in Maryland Watersheds
States’ responsibilities under the Clean Water Act include identifying impaired waters (those not achieving Water Quality Standards) and ultimately restoring them. The high numbers of impaired waters in most states calls for yearly priority-setting decisions on restoration fundin...
USDA-ARS?s Scientific Manuscript database
Diffuse nutrient pollution from agricultural landscapes is a priority water quality concern and the cause of mitigation activities worldwide. Climate change and climate variability impact hydrology, nutrient cycling, and ultimately water quality, which can complicate mitigation measures. Climate cha...
McDonald, G; Weston, N; Dorrington, B
2003-01-01
This paper reports on work in progress on the new Wet Tropics Regional Natural Resource Management Plan and its potential to deliver river management and water quality outcomes. The plan is being prepared in accordance with the guidelines of the Nation Action Plan for Salinity and Water Quality/Natural Heritage Trust (NAP/NHT2). In particular the paper discusses the technical basis for priorities, target setting and implementation and the most effective instruments for achieving river improvement and water quality outcomes in the region.
NASA Astrophysics Data System (ADS)
Pramaningsih, Vita; Suprayogi, Slamet; Purnama, Setyawan
2018-02-01
Water Pollution in Karang Mumus River caused society behavior along the river. Daily activity such as bath, washing and defecate at the river. Garbage, sediment, domestic waste and flood are river problems should be solved. Purpose this research is make strategy of water pollution control in the Karang Mumus River. Method used observation in the field, interview to the society, industry, public activity along the river and government of environment department. Further create data using tool of Analysis Hierarchy Process (AHP) to get the strategy to control water pollution in the river. Actors have contribute pollution control are government, industry and society. Criteria to pollution control are society participation, low, human resources and sustainable. Alternative of pollution control are unit garbage storage; license loyalty for industry and waste; communal waste water installation; monitoring of water quality. Result for actor priority are government (0.4); Industry (0.4); Society (0.2). Result for priority criteria are society participation (0.338), low (0.288), human resources (0.205) and sustainable (0.169). Result for priority alternative are unit garbage storage (0.433); license loyalty for industry and waste (0.238); communal waste water installation (0.169); monitoring of water quality (0.161).
7 CFR 634.22 - Application for assistance.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.22... priority for assistance among landowners and operators in developing water quality plans is to be...
7 CFR 634.22 - Application for assistance.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.22... priority for assistance among landowners and operators in developing water quality plans is to be...
7 CFR 634.22 - Application for assistance.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.22... priority for assistance among landowners and operators in developing water quality plans is to be...
7 CFR 634.22 - Application for assistance.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.22... priority for assistance among landowners and operators in developing water quality plans is to be...
7 CFR 634.22 - Application for assistance.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.22... priority for assistance among landowners and operators in developing water quality plans is to be...
Competing Air Quality and Water Conservation Co-benefits from Power Sector Decarbonization
NASA Astrophysics Data System (ADS)
Peng, W.; Wagner, F.; Mauzerall, D. L.; Ramana, M. V.; Zhai, H.; Small, M.; Zhang, X.; Dalin, C.
2016-12-01
Decarbonizing the power sector can reduce fossil-based generation and associated air pollution and water use. However, power sector configurations that prioritize air quality benefits can be different from those that maximize water conservation benefits. Despite extensive work to optimize the generation mix under an air pollution or water constraint, little research has examined electricity transmission networks and the choice of which fossil fuel units to displace in order to achieve both environmental objectives simultaneously. When air pollution and water stress occur in different regions, the optimal transmission and displacement decisions still depend on priorities placed on air quality and water conservation benefits even if low-carbon generation planning is fixed. Here we use China as a test case, and develop a new optimization framework to study transmission and displacement decisions and the resulting air quality and water use impacts for six power sector decarbonization scenarios in 2030 ( 50% of national generation is low carbon). We fix low-carbon generation in each scenario (e.g. type, location, quantity) and vary technology choices and deployment patterns across scenarios. The objective is to minimize the total physical costs (transmission costs and coal power generation costs) and the estimated environmental costs. Environmental costs are estimated by multiplying effective air pollutant emissions (EMeff, emissions weighted by population density) and effective water use (Weff, water use weighted by a local water stress index) by their unit economic values, Vem and Vw. We are hence able to examine the effect of varying policy priorities by imposing different combinations of Vem and Vw. In all six scenarios, we find that increasing the priority on air quality co-benefits (higher Vem) reduces air pollution impacts (lower EMeff) at the expense of lower water conservation (higher Weff); and vice versa. Such results can largely be explained by differences in optimal transmission decisions due to different locations of air pollution and water stress in China (severe in the east and north respectively). To achieve both co-benefits simultaneously, it is therefore critical to coordinate policies that reduce air pollution (pollution tax) and water use (water pricing) with power sector planning.
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
Priority organic pollutants in the urban water cycle (Toulouse, France).
Sablayrolles, C; Breton, A; Vialle, C; Vignoles, C; Montréjaud-Vignoles, M
2011-01-01
Application of the European Water Framework Directive requires Member States to have better understanding of the quality of surface waters in order to improve knowledge of priority pollutants. Xenobiotics in urban receiving waters are an emerging concern. This study proposes a screening campaign of nine molecular species of xenobiotics in a separated sewer system. Five sites were investigated over one year in Toulouse (France) using quantitative monitoring. For each sample, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, nonylphenols, diethelhexylphthalate, linear alkylbenzene sulphonates, methyl tert-butylether, total hydrocarbons, estradiol and ethinylestradiol were analysed. Ground, rain and roof collected water concentrations are similar to treated wastewater levels. Run-off water was the most polluted of the five types investigated, discharged into the aquatic environment. The wastewater treatment plant reduced xenobiotic concentrations by 66% before discharge into the environment. Regarding environmental quality standards, observed concentrations in waters were in compliance with standards. The results show that xenobiotic concentrations are variable over time and space in all urban water compartments.
USDA-ARS?s Scientific Manuscript database
Restoration of the Chesapeake Bay, a national treasure and the largest estuary in the United States, is a national priority, and documentation of progress of this restoration effort is needed. A study was conducted to examine water quality conditions in a tributary of the Chesapeake, the Choptank R...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-24
... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the Sola... Pollution Contingency Plan (NCP). The EPA and the State of California, through the Regional Water Quality...., Inc. Superfund Site without prior Notice of Intent to Delete because we view this as a...
Júnez-Ferreira, H E; Herrera, G S; González-Hita, L; Cardona, A; Mora-Rodríguez, J
2016-01-01
A new method for the optimal design of groundwater quality monitoring networks is introduced in this paper. Various indicator parameters were considered simultaneously and tested for the Irapuato-Valle aquifer in Mexico. The steps followed in the design were (1) establishment of the monitoring network objectives, (2) definition of a groundwater quality conceptual model for the study area, (3) selection of the parameters to be sampled, and (4) selection of a monitoring network by choosing the well positions that minimize the estimate error variance of the selected indicator parameters. Equal weight for each parameter was given to most of the aquifer positions and a higher weight to priority zones. The objective for the monitoring network in the specific application was to obtain a general reconnaissance of the water quality, including water types, water origin, and first indications of contamination. Water quality indicator parameters were chosen in accordance with this objective, and for the selection of the optimal monitoring sites, it was sought to obtain a low-uncertainty estimate of these parameters for the entire aquifer and with more certainty in priority zones. The optimal monitoring network was selected using a combination of geostatistical methods, a Kalman filter and a heuristic optimization method. Results show that when monitoring the 69 locations with higher priority order (the optimal monitoring network), the joint average standard error in the study area for all the groundwater quality parameters was approximately 90 % of the obtained with the 140 available sampling locations (the set of pilot wells). This demonstrates that an optimal design can help to reduce monitoring costs, by avoiding redundancy in data acquisition.
Groundwater quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California
Fram, Miranda S.; Jasper, Monica; Taylor, Kimberly A.
2017-09-27
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Yuba River and Bear River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking water supplies.
Fram, Miranda S.; Shelton, Jennifer L.
2018-03-23
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Mokelumne, Cosumnes, and American River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking-water supplies.
Water quality status and trends in the United States
Larsen, Matthew C.; Hamilton, Pixie A.; Werkheiser, William H.; Ahuja, Satinder
2013-01-01
Information about water quality is vital to ensure long-term availability and sustainability of water that is safe for drinking and recreation and suitable for industry, irrigation, fish, and wildlife. Protecting and enhancing water quality is a national priority, requiring information on water-quality status and trends, progress toward clean water standards, continuing problems, and emerging challenges. In this brief review, we discuss U.S. Geological Survey assessments of nutrient pollution, pesticides, mixtures of organic wastewater compounds (known as emerging contaminants), sediment-bound contaminants (like lead and DDT), and mercury, among other contaminants. Additionally, aspects of land use and current and emerging challenges associated with climate change are presented. Climate change must be considered, as water managers continue their efforts to maintain sufficient water of good quality for humans and for the ecosystem.
Galloway, Joel M.; Vecchia, Aldo V.; Vining, Kevin C.; Densmore, Brenda K.; Lundgren, Robert F.
2012-01-01
In response to the need to examine the large amount of historic water-quality data comprehensively across North Dakota and evaluate the efficiency of the State-wide sampling programs, a study was done by the U.S. Geological Survey in cooperation with the North Dakota State Water Commission and the North Dakota Department of Health to describe the water-quality data collected for the various programs and determine an efficient State-wide sampling design for monitoring future water-quality conditions. Although data collected for the North Dakota State Water Commission High-Low Sampling Program, the North Dakota Department of Health Ambient Water-Quality Network, and other projects and programs provide valuable information on the quality of water in streams in North Dakota, the objectives vary among the programs, some of the programs overlap spatially and temporally, and the various sampling designs may not be the most efficient or relevant to the objectives of the individual programs as they have changed through time. One objective of a State-wide sampling program was to evaluate ways to describe the spatial variability of water-quality conditions across the State in the most efficient manner. Weighted least-squares regression analysis was used to relate the average absolute difference between paired downstream and upstream concentrations, expressed as a percent of the average downstream concentration, to the average absolute difference in daily flow between the downstream and upstream pairs, expressed as a percent of the average downstream flow. The analysis showed that a reasonable spatial network would consist of including the most downstream sites in large basins first, followed by the next upstream site(s) that roughly bisect the downstream flows at the first sites, followed by the next upstream site(s) that roughly bisect flows for the second sites. Sampling sites to be included in a potential State-wide network were prioritized into 3 design levels: level 1 (highest priority), level 2 (second priority), and level 3 (third priority). Given the spatial distribution and priority designation (levels 1–3) of sites in the potential spatial network, the next consideration was to determine the appropriate temporal sampling frequency to use for monitoring future water-quality conditions. The time-series model used to detect concentration trends for this report also was used to evaluate sampling designs to monitor future water-quality trends. Sampling designs were evaluated with regard to their sensitivity to detect seasonal trends that occurred during three 4-month seasons—March through June, July through October, and November through February. For the 34 level-1 sites, samples would be collected for major ions, trace metals, nutrients, bacteria, and sediment eight times per year, with samples in January, April (2 samples),May, June, July, August, and October. For the 21 level-2 sites, samples would be collected for major ions, trace metals, and nutrients six times per year (January, April, May, June, August, and October), and for the 26 level-3 sites, samples would be collected for these constituents four times per year (April, June, August, and October).
Mason, Jon P.; Sebree, Sonja K.; Quinn, Thomas L.
2005-01-01
The Wind River Indian Reservation, located in parts of Fremont and Hot Springs Counties, Wyoming, has a total land area of more than 3,500 square miles. Ground water on the Wind River Indian Reservation is a valuable resource for Shoshone and Northern Arapahoe tribal members and others who live on the Reservation. There are many types of land uses on the Reservation that have the potential to affect the quality of ground-water resources. Urban areas, rural housing developments, agricultural lands, landfills, oil and natural gas fields, mining, and pipeline utility corridors all have the potential to affect ground-water quality. A cooperative study was developed between the U.S. Geological Survey and the Wind River Environmental Quality Commission to identify areas of the Reservation that have the highest potential for ground-water contamination and develop a comprehensive plan to monitor these areas. An arithmetic overlay model for the Wind River Indian Reservation was created using seven geographic information system data layers representing factors with varying potential to affect ground-water quality. The data layers used were: the National Land Cover Dataset, water well density, aquifer sensitivity, oil and natural gas fields and petroleum pipelines, sites with potential contaminant sources, sites that are known to have ground-water contamination, and National Pollutant Discharge Elimination System sites. A prioritization map for monitoring ground-water quality on the Reservation was created using the model. The prioritization map ranks the priority for monitoring ground-water quality in different areas of the Reservation as low, medium, or high. To help minimize bias in selecting sites for a monitoring well network, an automated stratified random site-selection approach was used to select 30 sites for ground-water quality monitoring within the high priority areas. In addition, the study also provided a sampling design for constituents to be monitored, sampling frequency, and a simple water-table level observation well network.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... components: Hydrogeologic study; Surface water sampling study; Stream biological study; Air quality survey... components: Biological survey; Biota survey; Surface water and sediment characterization; Groundwater... impacted groundwater in three water bearing zones at the Site; the unconsolidated materials zone, the upper...
Fitzpatrick, F.A.; Scudder, B.C.; Crawford, J.K.; Schmidt, A.R.; Sieverling, J.B.
1995-01-01
The distribution of 22 major and trace elements was examined in water, sediment, and biota in the upper Illinois River Basin in Illinois, Indiana, and Wisconsin as part of a pilot National Water-Quality Assessment project done by the U.S. Geological Survey from 1987 through 1990. The 22 elements are aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, phosphorus, selenium, silver, strontium, vanadium, and zinc. Concentrations of U.S. Environmental Protection Agency (USEPA) priority pollutants among the 22 elements were elevated in the Chicago area in all three aquatic components (water, sediment, and biota). Further, some of the priority pollutants also were found at elevated concentrations in biota in agricultural areas in the basin. Cadmium, chromium, copper, iron, lead, mercury, silver, and zinc concentrations in water exceeded USEPA acute or chronic water-quality criteria at several sites in the Chicago area. Correlations among concentra- tions of elements in water, sediment, and biota were found, but the correlation analysis was hindered by the large proportion of observations less than the minimum reporting level in water. Those sites where water-quality criteria were sometimes exceeded were not always the same sites where concentrations in biota were the largest. This relation indicates that accumulation of these pollutants in biota is confounded by complex geochemical and biological processes that differ throughout the upper Illinois River Basin.
Ivanova, L V; Artemova, T Z; Gipp, E K; Zagaĭnova, A V; Maksimkina, T N; Krasniak, A V; Korneĭchuk, S S; Shustova, S S
2013-01-01
For the purpose of harmonization of microbiological and parasitological indices and benchmarks there was performed the comparative analysis of the requirements for the quality of drinking water in respect of the epidemic safety on the basic regulations of Russia, the Directive Council of the European Union EU, WHO, the United States, Canada, Australia, Finland, Sweden, Brazil, France, Japan and China. As a result, there were revealed the priority bacteriological, virological and parasitological parameters: E. coli--indicator of recent fecal contamination, coliforms, heterotrophic bacteria colony count (Heterotrophic plate count), which is in the water legislation of the Russian Federation is characterized as total bacterial count (TBC), being an integral index of the quality of wastewater treatment technologies and hygienic condition of the water supply systems, coliphages as an indicator of viral contamination. In the Guidelines for drinking-water quality control, WHO and a set of countries there is recommended a more wide range of indicators: enterococci, Clostridium perfringens, Pseudomonas aeruginosa, enteroviruses, parasitological indices. With aim of harmonization of the requirements for the quality of drinking water in the Russian Federation with international approaches to the revision of the Sanitary Regulations and Norms (SanPin) 2.1.4.1074 into the project there are introduced priority indicator parameters of bacterial, viral and parasitic contamination of water, evidence-based guidelines.
Fram, Miranda S.; Shelton, Jennifer L.
2018-01-08
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking-water supply and increases public access to groundwater-quality information. Many households and small communities in the Madera– Chowchilla and Kings subbasins of the San Joaquin Valley rely on private domestic wells for their drinking-water supplies.
Effectiveness of barnyard best management practices in Wisconsin
Stuntebeck, Todd D.; Bannerman, Roger T.
1998-01-01
In 1978, the Wisconsin Legislature committed to protecting water quality by enacting the Nonpoint Source Water Pollution Abatement Program. Through this program, cost-share money is provided within priority watersheds to control sources of nonpoint pollution. Most of the cost-share dollars for rural watersheds have been used to implement barnyard Best Management Practices (BMPs) because barnyards are believed to be a major source of pollutants, most notably phosphorus. Reductions in phosphorus loads of as much as 95 percent have been predicted for the barnyard BMPs recommended for priority watersheds.
Gilbert, B.K.; Mann, William B.; Emery, P.A.
1987-01-01
The U.S. Geological Survey 's water resources programs are supported by direct annual appropriations from Congress, the Federal-State Cooperative Program (50:50 matching of funds), and by funds provided by other Federal agencies. For fiscal year 1987, total obligations exceeded $250 million for activities in every State, Puerto Rico, and several territories in cooperation with nearly 1,000 local, State, regional, and other Federal agencies. The quality of the ground and surface waters has been of concern to the Geological Survey from the time it was established. During the past few years, water resources contamination has received highest priority consideration and a variety of investigations and research are ongoing to obtain an improved understanding of the Nation 's water quality and the factors affecting it. This report presents information on program priorities and discusses the coordinated activities focusing on the effects of contaminants on water resources. The report also describes a number of investigations and research activities in progress during fiscal years of 1986 and 1987, and provides guidance on how to obtain additional details. (Author 's abstract)
Bentanzo, Elin A.; Choquette, Anne F.; Reckhow, Kenneth H.; Hayes, Laura; Hagan, Erik R; Argue, Denise M.; Cangelosi, A.A.
2015-01-01
Throughout its history, the United States has made major investments in assessing natural resources, such as soils, timber, oil and gas, and water. These investments allow policy makers, the private sector and the American public to make informed decisions about cultivating, harvesting or conserving these resources to maximize their value for public welfare, environmental conservation and the economy. As policy issues evolve, new priorities and challenges arise for natural resource assessment, and new approaches to monitoring are needed. For example, informed conservation and use of the nation’s finite fresh water resources in the context of increasingly intensive land development is a priority for today’s policy decisionmakers. There is a need to evaluate whether today’s water monitoring programs are generating the information needed to answer questions surrounding these new policy priorities. The Northeast-Midwest Institute (NEMWI), in cooperation with the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program, initiated this project to explore the types and amounts of water data needed to address water-quality related policy questions of critical concern to today’s policy makers. The collaborating entities identified two urgent water policy questions and conducted case studies in the Northeast-Midwest region to determine the water data needed, water data available, and the best ways to fill the data gaps relative to those questions. This report details the output from one case study and focuses on the Lake Erie drainage basin, a data-rich area expected to be a best-case scenario in terms of water data availability.
Approaches for Development of Nutrient Criteria in Oregon Estuaries
Development of nutrient criteria for all water body types of the US remains a top priority for EPA. Estuaries in the Pacific Northwest receive nutrients from both the watershed and the coastal ocean, and thus are particularly complex systems in which to establish water quality c...
Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.
Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram
2017-08-19
Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.
7 CFR 1410.12 - Emergency Forestry Program.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., may be considered for priority purposes. These include but are not limited to soil erosion prevention, water quality improvement, wildlife habitat restoration, and mitigation of economic loss. (h) In return...
7 CFR 1410.12 - Emergency Forestry Program.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., may be considered for priority purposes. These include but are not limited to soil erosion prevention, water quality improvement, wildlife habitat restoration, and mitigation of economic loss. (h) In return...
Major Threats to Environmental Quality in North America.
ERIC Educational Resources Information Center
Vogl, Robert; And Others
1986-01-01
Reports study findings of environmental educators' opinions on issues which pose threats to environmental quality in North America and the status of the availability of educational materials for the issues. Identified as priority items were hazardous wastes management, water contamination, and acid deposition. Compares responses of American and…
Reconnaissance of water quality at a US Department of Energy site, Pinellas County, Florida
Fernandez, Mario
1985-01-01
Sanitary and industrial wastes at the Pinellas Plant of the U.S. Department of Energy, prior to December 1982, were combined, treated, and disposed of by ponding and spray irrigation on a 10-acre tract within the plant site. Prior to 1972, the treated wastes were released to surface drainage features. An electromagnetic survey for ground conductivity was made to identify changes in the ground conductivity that may be due to the spray irrigation disposal operations. Water samples from four test wells drilled into the surficial aquifer and the two disposal ponds and bottom material from the ponds were analyzed for priority and nonpriority pollutants, total organic carbon, volatile organic carbon, herbicides, insecticides, trace metals, nutrients, and major constituents. Overall, concentrations of constituents in the water samples were (1) less than the detection limits, (2) within U.S. Environmental Protection Agency quality criteria for water, or (3) within the range of results for a designated background water-quality site. Concentrations of 12 priority pollutants were found to be considerably above detection limits. Concentrations of these compounds, mostly coal-tar derivatives, ranged from 220 to 5,500 micrograms per kilogram; the detection limit for these compounds is 10 micrograms per kilogram. Included in these compounds were anthracene, pyrenes, and chrysene. (USGS)
Reference Condition Approach for Numeric Nutrient Criteria for Oregon Estuaries
Development of nutrient criteria for all water body types of the US remains a top priority for EPA. Estuaries in the Pacific Northwest receive nutrients from both the watershed and the coastal ocean, and thus are particularly complex systems in which to establish water quality c...
Fu, Guo-Wei
2013-08-01
Suggestions on Carrying Out Strict Management Regulations of Water Resources were promulgated by the State Council in January, 2012. This is an important issue which has drawn public attention. I strongly support the principle and spirit of the regulations, as well as the request that governments above the county level bear the overall management responsibility. However, as to the technical route of and countermeasures for achieving strict management, several problems exist in reality. Relevant opinions and suggestions are given in this paper (the paper focuses exclusively on drinking water sources which are most in need of strict protection and management). Main opinions are as follows. (1) The sources of drinking water meeting the Class II standard in Surface Water Environment Quality Standards (GB 3838-2002) may not necessarily be unpolluted; (2) A necessary condition for protecting drinking water sources is that the effluents of enterprises' workshops discharged into the conservation zone should meet the regulation on the permitted maximum concentration of priority-I pollutants defined in the Integrated Wastewater Discharge Standard (GB 8978-1996); (3) There is a strong doubt about whether Class II standard in GB 3838-2002 for priority I pollutants reflects environmental background values in water.
Groundwater Quality Data in the Mojave Study Unit, 2008: Results from the California GAMA Program
Mathany, Timothy M.; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 1,500 square-mile Mojave (MOJO) study unit was investigated from February to April 2008, as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). MOJO was the 23rd of 37 study units to be sampled as part of the GAMA Priority Basin Project. The MOJO study was designed to provide a spatially unbiased assessment of the quality of untreated ground water used for public water supplies within MOJO, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 59 wells in San Bernardino and Los Angeles Counties. Fifty-two of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and seven were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, and pharmaceutical compounds], constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]) naturally occurring inorganic constituents (nutrients, dissolved organic carbon [DOC], major and minor ions, silica, total dissolved solids [TDS], and trace elements), and radioactive constituents (gross alpha and gross beta radioactivity, radium isotopes, and radon-222). Naturally occurring isotopes (stable isotopes of hydrogen, oxygen, and carbon, stable isotopes of nitrogen and oxygen in nitrate, and activities of tritium and carbon-14), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. In total, over 230 constituents and water-quality indicators (field parameters) were investigated. Three types of quality-control samples (blanks, replicates, and matrix spikes) each were collected at approximately 5-8 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a significant source of bias in the data for the groundwater samples. Differences between replicate samples generally were within acceptable ranges, indicating acceptable analytical reproducibility. Matrix spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to untreated ground water. However, to provide some context for the results, concentrations of constituents measured in the untreated ground water were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic and technical concerns by CDPH. Comparisons between data collected for this study and thresholds for drinking-water are for illustrative purposes only, and are not indicative of compliance or non-compliance with those thresholds. Most constituents that were detected in groundwater samples in the 59 wells in MOJO were found at concentrations below drinking-water thresholds. In MOJO's 52 grid wells, volatile organic compounds (VOCs) were detected in 40 percent of the wells, and pesticides and pesticide degradates were detected in 23 percent of the grid wel
17th Environmental Quality Index: Troubling Times with Toxics.
ERIC Educational Resources Information Center
National Wildlife, 1986
1986-01-01
Presents a subjective analysis of the status of United States' natural resources, reviewing 1985's key environmental events, problems, and successes. Reports current conditions and/or dilemmas concerning wildlife, air, water, energy, forests, and soils. Provides both a public rating of the quality of life and a priority ranking of environmental…
NASA Astrophysics Data System (ADS)
Soejarwo, P. A.; Fitriyanny, W. P.; Heriati, A.; Hakim, A. R.
2018-03-01
Due to their high-income contribution, seaweed and grouper aquacultures are important activities in Pulau Panjang community. Determining alternative strategies in developing sustainable aquaculture for seaweed and grouper and their priority factors from theses aquaculture activities are done using TOPSIS and AHP analysis. It was found that the development strategy that must be taken is the option to maintain aquaculture activities, while, environment factor is the highest priority to maintain seaweed and grouper aquaculture in Pulau Panjang. Then three priorities are obtained from environment factor. The first is to maintain the water quality by the growth requirements of seaweed and grouper by encouraging the formation of “Environmental Community Awareness” that involved the active participation of the community to maintain quality and carrying capacity of the environment. Second is to use of natural or artificial coastal protectors (soft structure). The third priority strategy is integration and real implementation of heavy metal pollution control between government, industry sector and society.
Development of nutrient criteria for all water body types of the US remains a top priority for EPA. Estuaries in the Pacific Northwest receive nutrients from both the watershed and the coastal ocean, and thus are particularly complex systems in which to establish water quality c...
Tadayon, Saeid
1995-01-01
Physical and chemical data were collected from four surface-water sites, six ground-water sites, and two bottom-sediment sites during 1992-93. Specific conductance, hardness, alkalinity, and dissolved- solids concentrations generally were higher in ground water than in surface water. The median concentrations of dissolved major ions, with the exception of potassium, were higher in ground water than in surface water. In surface water and ground water, calcium was the dominant cation, and bicarbonate was the dominant anion. Concentrations of dissolved nitrite and nitrite plus nitrate in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels of 1 and 10 milligrams per liter for drinking water, respectively. Ammonium plus organic nitrogen in bottom sediment was detected at the highest concentration of any nitrogen species. Median values for most of the dissolved trace elements in surface water and ground water were below the detection levels. Dissolved trace elements in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels for drinking water. Trace-element concentrations in bottom sediment were similar to trace-element concentrations reported for soils of the western conterminous United States. Several organochlorine pesticides and priority pollutants were detected in surface-water and bottom-sediment samples; however, they did not exceed water-quality standards. Pesticides or priority pollutants were not detected in ground-water samples.
Initial assessment of the ground-water resources in the Monterey Bay region, California
Muir, K.S.
1977-01-01
Because urban growth has placed an increasing demand on the ground-water resources of the Monterey Bay region, Calif., an assessment of the ground-water conditions was made to aid the development of local and regional plans. Ground water provides 80 percent of the water used in the region, which includes six ground-water subbasins. In several of the subbasins, pumpage exceeds safe yield. Existing water-quality degradation results from seawater intrusion, septic-tank effluent, and irrigation-return water. Potential sources of degradation include municipal sewage disposal, leachates from solid-waste disposal sites, and poor-quality connate water. High-priority items for future study include location of recharge areas, detection of seawater intrusion, and well-monitoring of landfill sites. (Woodard-USGS)
Watershed Academy Webcast: Understanding Nutrient Issues Affecting Ohio’s Inland Lakes
This page contains a description and documentation associated with the webcast on how USDA’s NWQI is working in priority watersheds to help farmers, ranchers and forest landowners improve water quality.
Groundwater quality in the Northern Sacramento Valley, California
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth
2011-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Northern Sacramento Valley is one of the study units being evaluated.
Groundwater quality in the Southern Sacramento Valley, California
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth
2011-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Southern Sacramento Valley is one of the study units being evaluated.
Groundwater quality in the Santa Barbara Coastal Plain, California
Davis, Tracy A.; Belitz, Kenneth
2016-10-03
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California established the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Santa Barbara Coastal Plain is one of the study units.
Groundwater quality in the Klamath Mountains, California
Bennett, George L.; Fram, Miranda S.
2014-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Klamath Mountains constitute one of the study units being evaluated.
Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul
2016-09-29
The generation of Everglades Depth Estimation Network (EDEN) daily water-level and water-depth maps is dependent on high quality real-time data from over 240 water-level stations. To increase the accuracy of the daily water-surface maps, the Automated Data Assurance and Management (ADAM) tool was created by the U.S. Geological Survey as part of Greater Everglades Priority Ecosystems Science. The ADAM tool is used to provide accurate quality-assurance review of the real-time data from the EDEN network and allows estimation or replacement of missing or erroneous data. This user’s manual describes how to install and operate the ADAM software. File structure and operation of the ADAM software is explained using examples.
Brown, Juliane B.
2008-01-01
Historical water-quality data in the National Park Service Southern Colorado Plateau Network have been collected irregularly and with little followup interpretation, restricting the value of the data. To help address these issues, to inform future water-quality monitoring planning efforts, and to address relevant National Park Service Inventory and Monitoring Program objectives, the U.S. Geological Survey, in cooperation with the National Park Service, compiled, reviewed, and summarized available historical water-quality data for 19 park units in the Southern Colorado Plateau Network. The data are described in terms of availability by major water-quality classes, park unit, site type, and selected identified water sources. The report also describes the geology, water resources, water-quality issues, data gaps, and water-quality standard exceedances identified in five of the park units determined to be of high priority. The five park units are Bandelier National Monument in New Mexico, Canyon de Chelly National Monument in Arizona, Chaco Culture National Historical Park in New Mexico, Glen Canyon National Recreation Area in Arizona and Utah, and Mesa Verde National Park in Colorado. Statistical summaries of water-quality characteristics are presented and considerations for future water-quality monitoring are provided for these five park units.
Curtis Smalling; Mary Elfner
2010-01-01
The forests of the east are under tremendous pressure from a variety of sources, including increasing development and fragmentation, declining air quality, declining water quality, and global climate change. Many priority bird species depend on these forested habitats, including a high percentage (75 percent) of neotropical migrant breeding species.
Willmitzer, H
2000-01-01
In face of widespread pollution of surface waters, strategies must be developed for the use of surface waters which protect the high quality standards of drinking water, starting with the catchment area via the reservoir to the consumer. As a rule, priority is given to the avoidance of contaminants directly at their point of origin. Water protection is always cheaper than expensive water-body restoration and water treatment. Complementary to the generally practised technical methods of raw water treatment with all their associated problems of energy input requirements, costs, and waste products, there is an increasing number of environmentally sound treatment technologies which use ecological principles as a basis to support the self-cleaning properties of flowing and dammed waters.
Mathany, Timothy M.; Kulongoski, Justin T.; Ray, Mary C.; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 653-square-mile South Coast Interior Basins (SCI) study unit was investigated from August to December 2008, as part of the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project was developed in response to Legislative mandates (Supplemental Report of the 1999 Budget Act 1999-00 Fiscal Year; and, the Groundwater-Quality Monitoring Act of 2001 [Sections 10780-10782.3 of the California Water Code, Assembly Bill 599]) to assess and monitor the quality of groundwater used as public supply for municipalities in California, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). SCI was the 27th study unit to be sampled as part of the GAMA Priority Basins Project. This study was designed to provide a spatially unbiased assessment of the quality of untreated groundwater used for public water supplies within SCI, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 54 wells within the three study areas [Livermore, Gilroy, and Cuyama] of SCI in Alameda, Santa Clara, San Benito, Santa Barbara, Ventura, and Kern Counties. Thirty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 19 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds], constituents of special interest [perchlorate and N-nitrosodimethylamine (NDMA)], naturally occurring inorganic constituents [trace elements, nutrients, major and minor ions, silica, total dissolved solids (TDS), and alkalinity], and radioactive constituents [gross alpha and gross beta radioactivity and radon-222]. Naturally occurring isotopes [stable isotopes of hydrogen, oxygen, and carbon, and activities of tritium and carbon-14] and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 288 constituents and water-quality indicators (field parameters) were investigated. Three types of quality-control samples (blanks, replicates, and matrix spikes) each were collected at approximately 4-11 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a significant source of bias in the data obtained from the groundwater samples. Differences between replicate samples generally were less than 10 percent relative standard deviation, indicating acceptable analytical reproducibility. Matrix spike recoveries were within the acceptable range (70 to 130 percent) for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, and/or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwater were compared with regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH), and to nonregulatory thresholds established for aesthetic and technical concerns by CDPH. Comparisons between data collected for this study and thresholds for drinking water are for illustrative purposes only, and are not indicative of complia
Research on relationships between dissolved nutrients and land use at the watershed scale is a high priority for protecting surface water quality. We measured dissolved nitrogen (DN) and ortho-phosphorus (P) along 130 km of the Calapooia River (Oregon, USA) and 44 of its sub-bas...
Groundwater quality in the Sierra Nevada, California
Fram, Miranda S.; Belitz, Kenneth
2014-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project (PBP) of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Sierra Nevada Regional study unit constitutes one of the study units being evaluated.
Groundwater quality in the Tahoe and Martis Basins, California
Fram, Miranda S.; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tahoe and Martis Basins and surrounding watersheds constitute one of the study units being evaluated.
Groundwater quality in the South Coast Interior Basins, California
Parsons, Mary C.; Belitz, Kenneth
2014-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The South Coast Interior Basins constitute one of the study units being evaluated.
Groundwater quality in the western San Joaquin Valley, California
Fram, Miranda S.
2017-06-09
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Western San Joaquin Valley is one of the study units being evaluated.
Davies, John-Mark; Mazumder, Asit
2003-07-01
Sustaining clean and safe drinking water sources is increasingly becoming a priority because of global pollution. The means of attaining and maintaining clean drinking water sources requires effective policies that identify, document, and reduce watershed risks. These risks are defined by their potential impact to human health. Health and risk are, therefore, indelibly linked because they are in part defined by each other. Understanding pathogen ecology and identifying watershed sources remains a priority because of the associated acute risks. Surface water quality changes resulting from inputs of human waste, nutrients and chemicals are associated with higher drinking water risks. Nutrient input can increase primary production and the resulting increase of organic matter results in greater disinfection by-product formation or requires greater treatment intensity. Many drinking water disease outbreaks have resulted from breaches in treatment facilities, therefore, even with greater treatment intensity poor source water quality intrinsically has greater associated health risks. Government and international agencies play a critical role in developing policy. The goal of maintaining water supplies whose availability is maximized and risks are minimized (i.e. sustainable) should be a vital part of such policy. Health risks are discussed in the context of a multi-barrier perspective and it is concluded that both passive (protection) and active (prescriptive management) management is necessary for sustainability. Canadian aboriginal water systems, British Columbian water policy and US EPA policies are given as examples. The basis for developing effective policies includes a strong reliance on sound science and effective instrumentation with careful consideration of stakeholders' interests. Only with such directed policies can the future availability of clean drinking water sources be ensured.
Ruhl, P.M.; Smith, K.E.
1996-01-01
The analysis of potential contaminants in biological tissues is an important part of many water-quality assessment programs, including the National Water-Quality Assessment (NAWQA) Program. Tissue analyses often are used to provide information about (1) direct threats to ecosystem integrity, and (2) the occurrence and distribution of potential contaminants in the environment. During 1992-93, trace elements in Asiatic clam (Corbicula fluminea) soft tissues and redbreast sunfish (Lepomis auritus) livers were analyzed to obtain information about the occurrence and distribution of trace element contaminants in the Albemarle-Pamlico Drainage Basin of North Carolina and Virginia. The investigation was conducted as part of the NAWQA Program. All but 3 of the 22 trace elements that were analyzed were detected. Although all 10 of the U.S. Environmental Protection Agency (U.S. EPA) priority pollutants were detected in the tissues sampled, they were present in relatively low concentrations. Concentrations of U.S. EPA priority pollutants in Asiatic clams collected in the Albemarle-Pamlico Drainage Basin are similar to concentrations observed in other NAWQA study units in the southeastern United States. Mercury (a U.S. EPA priority pollutant) was widely detected, being present in 29 of 30 tissue samples, but concentrations did not exceed the FDA action level for mercury of a risk-based screening value for the general public. Mercury concentrations in Asiatic clams were similar to concentrations in other NAWQA study areas in the Southeast.
Hinck, Jo Ellen; Ingersoll, Christopher G.; Wang, Ning; Augspurger, Tom; Barnhart, M. Christopher; McMurray, Stephen E.; Roberts, Andrew D.; Schrader, Lynn
2011-01-01
The Meramec River Basin in east-central Missouri is an important stronghold for native freshwater mussels (Order: Unionoida) in the United States. Whereas the basin supports more than 40 mussel species, previous studies indicate that the abundance and distribution of most species are declining. Therefore, resource managers have identified the need to prioritize threats to native mussel populations in the basin and to design a mussel monitoring program. The objective of this study was to identify threats of habitat and water-quality degradation to mussel diversity in the basin. Affected habitat parameters considered as the main threats to mussel conservation included excess sedimentation, altered stream geomorphology and flow, effects on riparian vegetation and condition, impoundments, and invasive non-native species. Evaluating water-quality parameters for conserving mussels was a main focus of this study. Mussel toxicity data for chemical contaminants were compared to national water quality criteria (NWQC) and Missouri water quality standards (MWQS). However, NWQC and MWQS have not been developed for many chemical contaminants and some MWQS may not be protective of native mussel populations. Toxicity data indicated that mussels are sensitive to ammonia, copper, temperature, certain pesticides, pharmaceuticals, and personal care products; these compounds were identified as the priority water-quality parameters for mussel conservation in the basin. Measures to conserve mussel diversity in the basin include expanding the species and life stages of mussels and the list of chemical contaminants that have been assessed, establishing a long term mussel monitoring program that measures physical and chemical parameters of high priority, conducting landscape scale modeling to predict mussel distributions, determining sublethal effects of primary contaminants of concern, deriving risk-based guidance values for mussel conservation, and assessing the effects of wastewater treatment plants and non-point source pollution on mussels. A critical next step to further prioritize these needs is to conduct a watershed risk assessment using local data (for example, land use, flow) when available.
The Mystic River Watershed Initiative Steering Committee Purpose and Structure
The Mystic River Watershed Initiative (MRWI) works to improve water quality and public access to open spaces in the Mystic River watershed. The MRWI Steering Committee meets regularly to discuss key issues and priority actions related to this initiative.
Groundwater quality in the San Francisco Bay groundwater basins, California
Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth
2013-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Selected groundwater basins of the San Francisco Bay area constitute one of the study units being evaluated.
Groundwater quality in the North San Francisco Bay shallow aquifer, California
Bennett, George L.; Fram, Miranda S.
2018-02-23
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The North San Francisco Bay Shallow Aquifer constitutes one of the study units being evaluated.
NASA Astrophysics Data System (ADS)
Foglia, L.; Rossetto, R.; Borsi, I.; Josef, S.; Boukalova, Z.; Triana, F.; Ghetta, M.; Sabbatini, T.; Bonari, E.; Cannata, M.; De Filippis, G.
2016-12-01
The EU H2020 FREEWAT project (FREE and open source software tools for WATer resource management) aims at simplifying the application of EU-water related Directives, by developing an open source and public domain, GIS-integrated platform for planning and management of ground- and surface-water resources. The FREEWAT platform is conceived as a canvas, where several distributed and physically-based simulation codes are virtually integrated. The choice of such codes was supported by the result of a survey performed by means of questionnaires distributed to 14 case study FREEWAT project partners and several stakeholders. This was performed in the first phase of the project within the WP 6 (Enhanced science and participatory approach evidence-based decision making), Task 6.1 (Definition of a "needs/tools" evaluation grid). About 30% among all the invited entities and institutions from several EU and non-EU Countries expressed their interest in contributing to the survey. Most of them were research institutions, government and geoenvironmental companies and river basin authorities.The result of the questionnaire provided a spectrum of needs and priorities of partners/stakeholders, which were addressed during the development phase of the FREEWAT platform. The main needs identified were related to ground- and surface-water quality, sustainable water management, interaction between groundwater/surface-water bodies, and design and management of Managed Aquifer Recharge schemes. Needs and priorities were then connected to the specific EU Directives and Regulations to be addressed.One of the main goals of the questionnaires was to collect information and suggestions regarding the use of existing commercial/open-source software tools to address needs and priorities, and regarding the needs to address specific water-related processes/problems.
Water Availability--The Connection Between Water Use and Quality
Hirsch, Robert M.; Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.
2008-01-01
Water availability has become a high priority in the United States, in large part because competition for water is becoming more intense across the Nation. Population growth in many areas competes with demands for water to support irrigation and power production. Cities, farms, and power plants compete for water needed by aquatic ecosystems to support their minimum flow requirements. At the same time, naturally occurring and human-related contaminants from chemical use, land use, and wastewater and industrial discharge are introduced into our waters and diminish its quality. The fact that degraded quality limits the availability and suitability of water for critical uses is a well-known reality in many communities. What may be less understood, but equally true, is that our everyday use of water can significantly affect water quality, and thus its availability. Landscape features (such as geology, soils, and vegetation) along with water-use practices (such as ground-water withdrawals and irrigation) govern water availability because, together, they affect the movement of chemical compounds over the land and in the subsurface. Understanding the interactions of human activities with natural sources and the landscape is critical to effectively managing water and sustaining water availability in the future.
Virological and bacteriological quality of drinking water in Ethiopia
NASA Astrophysics Data System (ADS)
Bedada, Tesfaye Legesse; Mezemir, Walelign Dessie; Dera, Firehiwot Abera; Sima, Waktole Gobena; Gebre, Samson Girma; Edicho, Redwan Muzeyin; Biegna, Almaz Gonfa; Teklu, Dejenie Shiferaw; Tullu, Kassu Desta
2018-05-01
Since unsafe water is responsible for many illness, deaths, and economic failure, water quality monitoring is essential. A cross-sectional study was conducted on 218 drinking waters samples collected between February and June 2016 to assess water quality using phages by the help of CB390 E. coli host, plaque assay; multiple tube fermentation for coliforms and pour plate for heterotrophic bacteria at Ethiopian Public Health Institute. Heterotrophic plate count greater than 100 cfu/ml was noted in 41 samples and detections of total and thermotolerant coliforms and E. coli in 38, 24, and 10 samples, respectively, and no phages detection in chlorinated waters. While heterotrophic plate count greater than 100 cfu/ml was observed in 100 samples and detections of total and thermotolerant coliforms, E. coli, and phages in 75, 60, 42, and 5 samples, respectively, for untreated waters. The majority of the waters contained indicators above standard limits. This indicates that the sources are contaminated and they are potential threats for health. Hence, regular water monitoring should be a priority agenda.
Merriman, Katherine R.
2015-11-19
The Great Lakes face a number of serious challenges that cause damage to water quality, habitat, ecology, and coastal health. Excess nutrients from point and nonpoint sources have a history of causing harmful algal blooms (HABs); since the late 1990s, a resurgence of HABs have forced beach closures and resulted in water quality impairments across the Great Lakes. Studies increasingly point to phosphorus (P) runoff from agricultural lands as the cause of these HABs. In 2010, the Great Lakes Restoration Initiative (GLRI) was launched to revitalize the Great Lakes. The GLRI aims to address the challenges facing the Great Lakes and provide a framework for restoration and protection. As part of this effort, the Priority Watersheds Work Group (PWWG), cochaired by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Agriculture-Natural Resources Conservation Service (USDA–NRCS), is targeting Priority Watersheds (PWs) to reduce the amount of P reaching the Great Lakes. Within the PWs, USDA–NRCS identifies small-scale subbasins with high concentrations of agriculture for coordinated nutrient reduction efforts and enhanced monitoring and modeling. The USDA–NRCS supplies financial and/or technical assistance to producers to install or implement best management practices (BMPs) to lessen the negative effects of agriculture to water quality; additional funding is provided by the GLRI through USDA–NRCS to saturate the small-scale subbasins with BMPs. The watershed modeling component, introduced in this fact sheet, assesses the effectiveness of USDA–NRCS funded BMPs, and nutrient reductions because of GLRI or other funding programs are differentiated. Modeling scenarios consider BMPs that have already been applied and those planned to be implemented across the small-scale subbasins.
Merriman, Katherine R.
2015-11-19
The Great Lakes face a number of serious challenges that cause damage to water quality, habitat, ecology, and coastal health. Excess nutrients from point and nonpoint sources have a history of causing harmful algal blooms (HABs); since the late 1990s, a resurgence of HABs have forced beach closures and resulted in water quality impairments across the Great Lakes. Studies increasingly point to phosphorus (P) runoff from agricultural lands as the cause of these HABs. In 2010, the Great Lakes Restoration Initiative (GLRI) was launched to revitalize the Great Lakes. The GLRI aims to address the challenges facing the Great Lakes and provide a framework for restoration and protection. As part of this effort, the Priority Watersheds Work Group (PWWG), cochaired by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Agriculture-Natural Resources Conservation Service (USDA–NRCS), is targeting Priority Watersheds (PWs) to reduce the amount of P reaching the Great Lakes. Within the PWs, USDA–NRCS identifies small-scale subbasins with high concentrations of agriculture for coordinated nutrient reduction efforts and enhanced monitoring and modeling. The USDA–NRCS supplies financial and/or technical assistance to producers to install or implement best management practices (BMPs) to lessen the negative effects of agriculture to water quality; additional funding is provided by the GLRI through USDA–NRCS to saturate the small-scale subbasins with BMPs. The watershed modeling component, introduced in this fact sheet, assesses the effectiveness of USDA–NRCS funded BMPs, and nutrient reductions because of GLRI or other funding programs are differentiated. Modeling scenarios consider BMPs that have already been applied and those planned to be implemented across the small-scale subbasins.
Merriman, Katherine R.
2015-11-19
The Great Lakes face a number of serious challenges that cause damage to water quality, habitat, ecology, and coastal health. Excess nutrients from point and nonpoint sources have a history of causing harmful algal blooms (HABs); since the late 1990s, a resurgence of HABs have forced beach closures and resulted in water quality impairments across the Great Lakes. Studies increasingly point to phosphorus (P) runoff from agricultural lands as the cause of these HABs. In 2010, the Great Lakes Restoration Initiative (GLRI) was launched to revitalize the Great Lakes. The GLRI aims to address the challenges facing the Great Lakes and provide a framework for restoration and protection. As part of this effort, the Priority Watersheds Work Group (PWWG), cochaired by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Agriculture-Natural Resources Conservation Service (USDA–NRCS), is targeting Priority Watersheds (PWs) to reduce the amount of P reaching the Great Lakes. Within the PWs, USDA–NRCS identifies small-scale subbasins with high concentrations of agriculture for coordinated nutrient reduction efforts and enhanced monitoring and modeling. The USDA–NRCS supplies financial and/or technical assistance to producers to install or implement best management practices (BMPs) to lessen the negative effects of agriculture to water quality; additional funding is provided by the GLRI through USDA–NRCS to saturate the small-scale subbasins with BMPs. The watershed modeling component, introduced in this fact sheet, assesses the effectiveness of USDA–NRCS funded BMPs, and nutrient reductions because of GLRI or other funding programs are differentiated. Modeling scenarios consider BMPs that have already been applied and those planned to be implemented across the small-scale subbasins.
Henrich, Natalie; Holmes, Bev; Prystajecky, Natalie
2015-01-01
In association with the development of new microbial tests for source water quality (SWQ), focus groups with members of the public were conducted to gain insight into their perceptions of SWQ, behaviours and contaminants they think pose the greatest threat to its quality, and what/how they want to know about SWQ. Discussions revealed a low concern about SWQ in general, and in particular about microbial contamination. Participants identified behaviours that threaten SWQ, barriers to changing behaviour and suggestions for inducing change. A strong desire was expressed for water quality information to be interpreted and communicated in terms of how SWQ may impact human health and how their actions should be altered in response to test results. The information can be used to inform communication strategies and possibly impact policies associated with water quality testing and implementation of new tests. More broadly, awareness of the public’s understanding and beliefs about source water can be used in working with the public to adopt water-friendly behaviours, influence the content and methods of communicating with the public about water issues and water quality, and could contribute to the direction of future research and investment into water technologies to align with the public’s priorities. PMID:26540561
Henrich, Natalie; Holmes, Bev; Prystajecky, Natalie
2015-01-01
In association with the development of new microbial tests for source water quality (SWQ), focus groups with members of the public were conducted to gain insight into their perceptions of SWQ, behaviours and contaminants they think pose the greatest threat to its quality, and what/how they want to know about SWQ. Discussions revealed a low concern about SWQ in general, and in particular about microbial contamination. Participants identified behaviours that threaten SWQ, barriers to changing behaviour and suggestions for inducing change. A strong desire was expressed for water quality information to be interpreted and communicated in terms of how SWQ may impact human health and how their actions should be altered in response to test results. The information can be used to inform communication strategies and possibly impact policies associated with water quality testing and implementation of new tests. More broadly, awareness of the public's understanding and beliefs about source water can be used in working with the public to adopt water-friendly behaviours, influence the content and methods of communicating with the public about water issues and water quality, and could contribute to the direction of future research and investment into water technologies to align with the public's priorities.
Groundwater quality in the Central Sierra Nevada, California
Fram, Miranda S.; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. Two small watersheds of the Fresno and San Joaquin Rivers in the Central Sierra Nevada constitute one of the study units being evaluated.
Groundwater quality in the Southern Sierra Nevada, California
Fram, Miranda S.; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tehachapi-Cummings Valley and Kern River Valley basins and surrounding watersheds in the Southern Sierra Nevada constitute one of the study units being evaluated.
Groundwater quality in the South Coast Range Coastal groundwater basins, California
Burton, Carmen A.; Belitz, Kenneth
2013-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project (PBP) of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The coastal basins in the Southern Coast Ranges constitute one of the study units being evaluated.
Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California
Mathany, Timothy; Burton, Carmen; Fram, Miranda S.
2017-06-20
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.
A proposed ground-water quality monitoring network for Idaho
Whitehead, R.L.; Parliman, D.J.
1979-01-01
A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)
El-Zein, Abbas; Nasrallah, Rola; Nuwayhid, Iman; Kai, Lea; Makhoul, Jihad
2006-04-01
Differences in environmental priorities within an urban neighborhood of Beirut are analyzed. The explanatory capabilities of five categories of contextual variables are compared: socioeconomic status, locality, health, behavior, and environmental beliefs. Semi-structured interviews with key individuals in the community and residents were first conducted. Four environmental issues of concern were identified. A survey was carried out to identify the relative priority accorded by respondents to these four issues, and to measure variables likely to explain differences of opinion. Bivariate and multivariate logistic regression analyses were conducted for each of the four problems. The 99% confidence interval (CI) of the odds ratio (OR) was used as a test of significance. Respondents suffering from a respiratory disease (OR = 6.94, 99%CI = 1.54-31.25), those living in less crowded houses (OR = 4.88, 99%CI = 1.38-17.24), and those not living close to the neighborhood's industrial street (OR=5.26, 99%CI = 1.01-27.78) are significantly more likely to rank poor air quality first. Significant associations are found between poor water quality as first priority and nonpresence of a smoker in the household (OR = 6.12, 99%CI = 1.84-20.32) and perception of water salinity as a problem (OR = 7.46, 99%CI = 1.50-37.03). Males (OR = 6.94, 99%CI = 1.02-47.62) and tenants versus owners (OR = 10.49, 99%CI = 1.36-80.61) are significantly more likely to rank the residential-industrial mix first. Socioeconomic variables retain their explanatory capability in the studied neighborhood, despite relatively small income disparities. Behavioral variables, such as smoking, may be causative factors of priorities. Analyzing relative priorities, rather than "concern" or lack of it, reveals more complex patterns of association. Identifying environmental-perception divide lines can help develop a more inclusive and effective participatory environmental management.
Integrating air quality, water and climate concerns into China's energy strategy
NASA Astrophysics Data System (ADS)
Peng, Wei
As the world's top carbon emitter, China also suffers from serious air pollution and increasingly severe water stress. My dissertation focuses on a variety of energy strategies in China and examines potential synergies and tradeoffs between air quality, water conservation and carbon mitigation objectives. It includes four analytical chapters. Chapter 2 and 3 examines the air quality and climate implications of a variety policy options in the near term and at the 2030 time horizon, respectively. Based on an integrated assessment using regional air pollution model and epidemiological evidence, I find that improving industrial energy efficiency is the most effective near-term strategy to curb air pollution and carbon emissions, while electrifying end-use sectors (e.g. vehicles and residential stoves) with decarbonized electricity will likely become the favorable co-control strategy in 2030. These two chapters hence provide a scientific basis for policymakers in China to coordinate air pollution and carbon mitigation strategies. Chapter 4 and 5 then examines the role of electricity transmission, as a critical element of the electrification strategy, in the nexus of air pollution, water stress and carbon emissions. Chapter 4 evaluates the potential air quality and climate benefits of long-distance electricity transmission in China in the near term. I find that transmitting a hybrid mix of renewable and coal power can be a cost-effective energy transfer strategy to curb air pollution impacts and carbon emissions, because it not only utilizes zero-carbon renewable resources in the west, but also displaces coal power generation and associated air pollution impacts in highly populated eastern regions. Chapter 5 studies the potential tradeoffs in the transmission system designs to achieve air quality or water conservation benefits from a decarbonized generation system. Since air pollution and water stress are severe in eastern and northern China respectively, I find that an increasing priority on air pollution control would favor a larger amount of electricity transmission into eastern population centers, while an increasing priority on water conservation would favor using locally produced renewable power or imported electricity to displace fossil generation in northern water-stressed regions.
Slowing the flow: Setting priorities and defining success in Lake Superior’s South Shore watersheds
For over 60 years, watershed conservation efforts to improve water quality have largely focused on restoring and protecting hydrology under the mantra “slow the flow”. This approach seeks to reduce peak flows with landscape scale watershed restoration approaches that ...
WATER QUALITY ANALYSIS IN AN ENVIRONMENTAL JUSTICE COMMUNITY IN DURHAM, NC
Environmental Justice Communities are usually minority communities of low socio-economic status with a concern of increased risk from point source pollution not present in other communities. A priority of the U.S. EPA is to empower these communities to advocate for themselves. ...
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth
2011-01-01
Groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study units are located in California's Central Valley and include parts of Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The three study units were designated to provide spatially-unbiased assessments of the quality of untreated groundwater in three parts of the Central Valley hydrogeologic province, as well as to provide a statistically consistent basis for comparing water quality regionally and statewide. Samples were collected in 2005 (Southern Sacramento Valley), 2006 (Middle Sacramento Valley), and 2007-08 (Northern Sacramento Valley). The GAMA studies in the Southern, Middle, and Northern Sacramento Valley were designed to provide statistically robust assessments of the quality of untreated groundwater in the primary aquifer systems that are used for drinking-water supply. The assessments are based on water-quality data collected by the USGS from 235 wells in the three study units in 2005-08, and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter, referred to as primary aquifers) assessed in this study are defined by the depth intervals of the wells in the CDPH database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. The status of the current quality of the groundwater resource was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the three Sacramento Valley study units, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration greater than 1.0 indicates a concentration greater than a benchmark. For organic (volatile organic compounds and pesticides) and special-interest (perchlorate) constituents, relative-concentrations were classified as high (greater than 1.0); moderate (equal to or less than 1.0 and greater than 0.1); or low (equal to or less than 0.1). For inorganic (major ion, trace element, nutrient, and radioactive) constituents, the boundary between low and moderate relative-concentrations was set at 0.5. Aquifer-scale proportions were used in the status assessment for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifers that have a relative-concentration greater than 1.0 for a particular constituent or class of constituents; percentage is based on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentage of the primary aquifers that have moderate and low relative-concentrations, respectively. Two statistical approaches-grid-based, which used one value per grid cell, and spatially-weighted, which used the full dataset-were used to calculate aquifer-scale proportions for individual constituents and classes of constituents. High and moderate aquifer-scale proportions were significantly greater for inorgani
Park, Mi-Hyun; Stenstrom, Michael; Pincetl, Stephanie
2009-03-01
This article evaluates the implementation of Proposition O, a stormwater cleanup measure, in Los Angeles, California. The measure was intended to create new funding to help the city comply with the Total Maximum Daily Load requirements under the federal Clean Water Act. Funding water quality objectives through a bond measure was necessary because the city had insufficient revenues to deploy new projects in its budget. The bond initiative required a supermajority vote (two-thirds of the voters), hence the public had to be convinced that such funding both was necessary and would be effective. The bond act language included project solicitation from the public, as well as multiple benefit objectives. Accordingly, nonprofit organizations mobilized to present projects that included creating new parks, using schoolyards for flood control and groundwater recharge, and replacing parking lots with permeable surfaces, among others. Yet few, if any, of these projects were retained for funding, as the city itself also had a list of priorities and higher technical expertise in justifying them as delivering water quality improvements. Our case study of the implementation of Proposition O points to the potentially different priorities for the renovation of urban infrastructure that are held by nonprofit organizations and city agencies and the importance of structuring public processes clearly so that there are no misimpressions about funding and implementation responsibilities that can lead to disillusionment with government, especially under conditions of fiscal constraints.
NASA Astrophysics Data System (ADS)
Park, Mi-Hyun; Stenstrom, Michael; Pincetl, Stephanie
2009-03-01
This article evaluates the implementation of Proposition O, a stormwater cleanup measure, in Los Angeles, California. The measure was intended to create new funding to help the city comply with the Total Maximum Daily Load requirements under the federal Clean Water Act. Funding water quality objectives through a bond measure was necessary because the city had insufficient revenues to deploy new projects in its budget. The bond initiative required a supermajority vote (two-thirds of the voters), hence the public had to be convinced that such funding both was necessary and would be effective. The bond act language included project solicitation from the public, as well as multiple benefit objectives. Accordingly, nonprofit organizations mobilized to present projects that included creating new parks, using schoolyards for flood control and groundwater recharge, and replacing parking lots with permeable surfaces, among others. Yet few, if any, of these projects were retained for funding, as the city itself also had a list of priorities and higher technical expertise in justifying them as delivering water quality improvements. Our case study of the implementation of Proposition O points to the potentially different priorities for the renovation of urban infrastructure that are held by nonprofit organizations and city agencies and the importance of structuring public processes clearly so that there are no misimpressions about funding and implementation responsibilities that can lead to disillusionment with government, especially under conditions of fiscal constraints.
Rowe, Barbara L.; Wilson, Stephen K.; Yager, Lisa; Wilson, Marcia H.
2013-01-01
The National Park Service (NPS) organized more than 270 parks with important natural resources into 32 ecoregional networks to conduct Inventory and Monitoring (I&M) activities for assessment of natural resources within park units. The Missouri National Recreational River (NRR) is among the 13 parks in the NPS Northern Great Plain Network (NGPN). Park managers and NGPN staff identified surface water resources as a high priority vital sign to monitor in park units. The objectives for the Missouri NRR water quality sampling design are to (1) assess the current status and long-term trends of select water quality parameters; and (2) document trends in streamflow at high-priority stream systems. Due to the large size of the Missouri River main stem, the NGPN water quality design for the Missouri NRR focuses on wadeable tributaries within the park unit. To correlate with the NGPN water quality protocols, monitoring of the Missouri NRR consists of measurement of field core parameters including dissolved oxygen, pH, specific conductance, and temperature; and streamflow. The purpose of this document is to discuss factors examined for selection of water quality monitoring on segments of the Missouri River tributaries within the Missouri NRR.Awareness of the complex history of the Missouri NRR aids in the current understanding and direction for designing a monitoring plan. Historical and current monitoring data from agencies and entities were examined to assess potential NGPN monitoring sites. In addition, the U.S. Environmental Protection Agency 303(d) list was examined for the impaired segments on tributaries to the Missouri River main stem. Because major tributaries integrate water quality effects from complex combinations of land use and environmental settings within contributing areas, a 20-mile buffer of the Missouri NRR was used to establish environmental settings that may impact the water quality of tributaries that feed the Missouri River main stem. For selection of monitoring sites, anthropogenic and natural influences to water quality were assessed for Missouri NRR tributaries. Factors that were examined include the size and contributions of tributaries within watersheds to the main stem; population density; and land use such as urban development and agricultural practices including concentrated animal feeding operations. Based on examination of these data in addition to the park’s legislation and management considerations, two sites were selected for monitoring water quality on Missouri NRR tributaries for the ice-free season (mid-May to mid-October) on a rotational basis every third year. Bow Creek at St. James was selected for water quality monitoring based on lack of long-term water quality monitoring, current recreational use, and proximity of the tributary to intense agricultural practices. In addition, land within the Bow Creek watershed is owned by the NPS. The Niobrara River at Verdel was selected for monitoring due to high use for public recreational activities, adjacent agricultural land use, and documented impairments for designated beneficial uses. Both sites will have access to real-time streamgages that will aid in a greater understanding of water quality.
Thomas A. Abrahamsen
1999-01-01
Bed-sediment and tissue samples were collected and analyzed for the presence of trace elements from 25 sites in the Santee River Basin and coastal drainages study area during 1995-97 as part of the U.S. Geological Survey's National Water-Quality Assessment Program, Sediment trace-element priority-pollutant concentrations were compared among streams draining water-...
Amendment of water quality standards in China: viewpoint on strategic considerations.
Zhao, Xiaoli; Wang, Hao; Tang, Zhi; Zhao, Tianhui; Qin, Ning; Li, Huixian; Wu, Fengchang; Giesy, John P
2018-02-01
Water quality standards (WQS) are the most important tool for protection of quality of aquatic environments in China and play a decisive role in the management of China's aquatic environments. Due to limited scientific information available previously, WQS were developed largely based on water quality criteria (WQC) or WQS recommended by developed countries, which may not be suitable for current circumstances in China. The Chinese government recently initiated the revision of Environmental Quality Standards for Surface Water (EQSSW) (GB3838-2002) to meet the challenge of environmental protection. This review analyzed how the WQS developed and applied in China differ from those of more developed countries and pointed out that the lack of strong scientific bases for China's WQC pose major limitations of current WQS. We focus on discussing the six aspects that require high attention on how to establish a national WQC system to support the revision of WQS (Table 1) such as development of methodology, refining water function zoning, establish priority pollutants list, improving protection drinking water sources, development of site-specific water quality criteria, and field toxicity test. It is essential that China and other developing countries established a relatively mature system for promulgating, applying, and enforcing WQC and to implement a dynamic system to incorporate most recent research results into periodically updated WQS.
Corsi, Steven R.; Horwatich, Judy A.; Rutter, Troy D.; Bannerman, Roger T.
2013-01-01
Hydrologic and water-quality data were collected at Bower Creek during the periods before best-management practices (BMPs), and after BMPs were installed for evaluation of water-quality improvements. The monitoring was done between 1990 and 2009 with the pre-BMP period ending in July 1994 and the post-BMP period beginning in October 2006. BMPs installed in this basin included streambank protection and fencing, stream crossings, grade stabilization, buffer strips, various barnyard-runoff controls, nutrient management, and a low degree of upland BMPs. Water-quality evaluations included base-flow concentrations and storm loads for total suspended solids, total phosphorus, and ammonia nitrogen. The only reductions detected between the base-flow samples of the pre- and post-BMP periods were in median concentrations of total phosphorus from base-flow samples, but not for total suspended solids or dissolved ammonia nitrogen. Differences in storm loads for the three water-quality constituents monitored were not observed during the study period.
Betanzo, Elin A.; Hagen, Erik R.; Wilson, John T.; Reckhow, Kenneth H.; Hayes, Laura; Argue, Denise M.; Cangelosi, Allegra A.
2016-01-01
Throughout its history, the United States has made major investments in assessing natural resources, such as soils, timber, oil and gas, and water. These investments allow policy makers, the private sector and the American public to make informed decisions about cultivating, harvesting or conserving these resources to maximize their value for public welfare, environmental conservation and the economy. As policy issues evolve, new priorities and challenges arise for natural resource assessment, and new approaches to monitoring are needed. For example, new technologies for oil and gas development or alternative energy sources may present new risks for water resources both above and below ground. There is a need to evaluate whether today’s water monitoring programs are generating the information needed to answer questions surrounding these new policy priorities. The Northeast-Midwest Institute (NEMWI), in cooperation with the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program, initiated this project to explore the types and amounts of water data needed to address water-quality related policy questions of critical concern to today’s policy makers and whether those data are currently available. The collaborating entities identified two urgent water policy questions and conducted case studies in the Northeast-Midwest region to determine the water data needed, water data available, and the best ways to fill the data gaps relative to those questions. This report details the output from one case study and focuses on the Susquehanna River Basin, a data-rich area expected to be a best-case scenario in terms of water data availability.
Ferrari, Matthew J.; Fram, Miranda S.; Belitz, Kenneth
2008-01-01
Ground-water quality in the approximately 950 square kilometer (370 square mile) Central Sierra study unit (CENSIE) was investigated in May 2006 as part of the Priority Basin Assessment project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). This study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for drinking-water supplies within CENSIE, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from thirty wells in Madera County. Twenty-seven of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and three were selected to aid in evaluation of specific water-quality issues (understanding wells). Ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates), constituents of special interest (N-nitrosodimethylamine, perchlorate, and 1,2,3-trichloropropane), naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon], and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. In total, over 250 constituents and water-quality indicators were investigated. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected at approximately one-sixth of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Results from field blanks indicated contamination was not a noticeable source of bias in the data for ground-water samples. Differences between replicate samples were within acceptable ranges, indicating acceptably low variability. Matrix spike recoveries were within acceptable ranges for most constituents. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH), and thresholds established for aesthetic concerns (Secondary Maximum Contaminant Levels, SMCL-CA) by CDPH. Therefore, any comparisons of the results of this study to drinking-water standards only is for illustrative purposes and is not indicative of compliance or non-compliance to those standards. Most constituents that were detected in ground-water samples were found at concentrations below drinking-water standards or thresholds. Six constituents? fluoride, arsenic, molybdenum, uranium, gross-alpha radioactivity, and radon-222?were detected at concentrations higher than thresholds set for health-based regulatory purposes. Three additional constituents?pH, iron and manganese?were detected at concentrations above thresholds set for aesthetic concerns. Volatile organic compounds (VOCs) and pesticides, were detected in less than one-third of the samples and generally at less than one one-hundredth of a health-based threshold.
HABITAT AND WATER QUALITY PROTECTION THROUGH GULLY RESTORATION MX974885
Weeks Bay is a sub-estuary of Mobile Bay, a Gulf of Mexico Program priority area. Fish River is the main tributary of Weeks Bay and in this watershed gullies have formed due to a combination of soil types, heavy rain events and agricultural practices. This project was completed...
Progress toward a National Water Census
Jones, Sonya A.
2015-01-01
By evaluating large-scale effects of changes in land use and land cover, water use, and climate on occurrence and distribution of water, water quality, and human and aquatic-ecosystem health, the NWC will also help to inform a broader initiative by the Department of the Interior, WaterSMART (Sustain and Manage America's Resources for Tomorrow), which provides multiagency funding to pursue a sustainable water supply for the Nation as directed under the SECURE Water Act. Through the NWC, the USGS actively engages Federal, regional, and local stakeholders to identify research priorities and leverages current studies and program activities to provide information that is relevant at both the national and regional scales.
Watershed monitoring and modelling and USA regulatory compliance.
Turner, B G; Boner, M C
2004-01-01
The aim of the Columbus program was to implement a comprehensive watershed monitoring-network including water chemistry, aquatic biology and alternative sensors to establish water environment health and methods for determining future restoration progress and early warning for protection of drinking water supplies. The program was implemented to comply with USA regulatory requirements including Total Maximum Daily Load (TMDL) rules of the Clean Water Act (CWA) and Source Water Assessment and Protection (SWAP) rules under the Safe Drinking Water Act (SDWA). The USEPA Office of Research and Development and the Water Environment Research Foundation provided quality assurance oversight. The results obtained demonstrated that significant wet weather data is necessary to establish relationships between land use, water chemistry, aquatic biology and sensor data. These measurements and relationships formed the basis for calibrating the US EPA BASINS Model, prioritizing watershed health and determination of compliance with water quality standards. Conclusions specify priorities of cost-effective drainage system controls that attenuate stormwater flows and capture flushed pollutants. A network of permanent long-term real-time monitoring using combination of continuous sensor measurements, water column sampling and aquatic biology surveys and a regional organization is prescribed to protect drinking water supplies and measure progress towards water quality targets.
Parsons, Mary C.; Belitz, Kenneth
2014-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. Selected groundwater basins in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts constitute one of the study units being evaluated.
Burton, Carmen
2018-05-30
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the groundwater basins around Monterey Bay, the Salinas Valley, and the highlands adjacent to the Salinas Valley constitute one of the study units.
Mathany, Timothy M.; Belitz, Kenneth
2015-01-01
Chloroform, simazine, and perchlorate were observed in the Interior Basins and Coastal Basins study areas, predominantly at shallow sites with top-of-perforation depths ≤70 feet below land surface, with modern water (post-1950s), and with oxic groundwater conditions.
NASA Technical Reports Server (NTRS)
Mason, Ted
2011-01-01
The NASA Applied Science & Technology Project Office at Stennis Space Center(SSC) used satellites, in-situ measurements and computational modeling to study relationships between water quality in St. Louis Bay, Mississippi and the watershed characteristics of the Jourdan and Wolf rivers from 2000-2010.
NASA Technical Reports Server (NTRS)
Liang, T.; Mcnair, A. J.; Philipson, W. R.
1977-01-01
Aircraft and satellite remote sensing technology were applied in the following areas: (1) evaluation of proposed fly ash disposal sites; (2) development of priorities for drainage improvements; (3) state park analysis for rehabilitation and development; (4) watershed study for water quality planning; and (5) assistance project-landfill site selection. Results are briefly summarized. Other projects conducted include: (1) assessment of vineyard-related problems; (2) LANDSAT analysis for pheasant range management; (3) photo-historic evaluation of Revolutionary War sites; and (4) thermal analysis of building insulation. The objectives, expected benefits and actions, and status of these projects are described.
Illinois ground-water observation network; a preliminary planning document for network design
Frost, L.R.; O'Hearn, Michael; Gibb, J.P.; Sherrill, M.G.
1984-01-01
Water-level and water-quality networks in Illinois were evaluated to determine the adequacy and completeness of available data bases. Ground-water data in present data bases are inadequate to provide information on ground-water quality and water levels in large areas of Illinois and in the major geohydrologic units underlying Illinois and surrounding areas. Data-management needs indicate that a new data base is desirable and could be developed by use of carefully selected available data and new data. Types of data needed to define ground-water quality and water levels in selected geohydrologic units were tentatively identified. They include data on concentrations of organic chemicals related to activities of man, and concentrations of inorganic chemicals which relate either to man 's activities or to the chemical composition of the source aquifer. Water-level data are needed which can be used to describe short- and long-term stresses on the ground-water resources of Illinois. Establishment of priorities for data collection has been deferred until existing hydrologic data files can be stored for usable data and until input from other local, State, and Federal agencies can be solicited and compiled. (USGS)
Mathany, Timothy M.; Burton, Carmen A.; Land, Michael; Belitz, Kenneth
2010-01-01
Groundwater quality in the approximately 766-square-mile South Coast Range-Coastal (SCRC) study unit was investigated from May to December 2008, as part of the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project was developed in response to legislative mandates (Supplemental Report of the 1999 Budget Act 1999-00 Fiscal Year; and, the Groundwater Quality Monitoring Act of 2001 [Sections 10780-10782.3 of the California Water Code, Assembly Bill 599]) to assess and monitor the quality of groundwater in California, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The SCRC study unit was the 25th study unit to be sampled as part of the GAMA Priority Basins Project. The SCRC study unit was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems and to facilitate statistically consistent comparisons of untreated groundwater quality throughout California. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the SCRC study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to surficial contamination. In the SCRC study unit, groundwater samples were collected from 70 wells in two study areas (Basins and Uplands) in Santa Barbara and San Luis Obispo Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 15 wells were selected to aid in evaluation of specific water-quality issues (understanding wells). In addition to the 70 wells sampled, 3 surface-water samples were collected in streams near 2 of the sampled wells in order to better comprehend the interaction between groundwater and surface water in the area. The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-TCP), naturally occurring inorganic constituents (trace elements, nutrients, dissolved organic carbon [DOC], major and minor ions, silica, total dissolved solids [TDS], and alkalinity), and radioactive constituents (gross alpha and gross beta radioactivity). Naturally occurring isotopes (stable isotopes of hydrogen and oxygen in water, stable isotopes of nitrogen and oxygen in dissolved nitrate, stable isotopes of sulfur in dissolved sulfate, stable isotopes of carbon in dissolved inorganic carbon, activities of tritium, and carbon-14 abundance), and dissolved gases (including noble gases) also were measured to help identify the sources and ages of the sampled groundwater. In total, 298 constituents and field water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and matrix-spikes) were collected at approximately 3 to 12 percent of the wells in the SCRC study unit, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination from sample collection procedures was not a significant source of bias in the data for the groundwater samples. Differences between replicate samples generally were less than 10 percent relative and/or standard deviation, indicating acceptable analytical reproducibility. Matrix-spike recoveries were within the acceptable range (70 to 130 percent) for approximately 84
Tom A. Gerow; David G. Jones; Wenwu Tang
2016-01-01
Forests are recognized as a priority source of relatively high quality and reliable water, be it for human use or ecological function. The High Rock Lake watershed straddles the piedmont and foothill regions of North Carolina, and a Total Maximum Daily Load (TMDL) restoration plan is being developed for the reservoir. The findings of the study should add to the body of...
Bennett, George L.
2017-07-20
Groundwater quality in the North San Francisco Bay Shallow Aquifer study unit (NSF-SA) was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is in Marin, Mendocino, Napa, Solano, and Sonoma Counties and included two physiographic study areas: the Valleys and Plains area and the surrounding Highlands area. The NSF-SA focused on groundwater resources used for domestic drinking water supply, which generally correspond to shallower parts of aquifer systems than that of groundwater resources used for public drinking water supply in the same area. The assessments characterized the quality of untreated groundwater, not the quality of drinking water.This study included three components: (1) a status assessment, which characterized the status of the quality of the groundwater resources used for domestic supply for 2012; (2) an understanding assessment, which evaluated the natural and human factors potentially affecting water quality in those resources; and (3) a comparison between the groundwater resources used for domestic supply and those used for public supply.The status assessment was based on data collected from 71 sites sampled by the U.S. Geological Survey for the GAMA Priority Basin Project in 2012. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and California State Water Resources Control Board Division of Drinking Water regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a grid-based method to estimate the proportion of the groundwater resources that has concentrations of water-quality constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale and permits comparisons to other GAMA Priority Basin Project study areas.In the NSF-SA study unit as a whole, inorganic constituents with human-health benchmarks were detected at high relative concentrations (RCs) in 27 percent of the shallow aquifer system, and inorganic constituents with secondary maximum contaminant levels (SMCL) were detected at high RCs in 24 percent of the system. The inorganic constituents detected at high RCs were arsenic, boron, fluoride, manganese, nitrate, iron, sulfate, and total dissolved solids (TDS). Organic constituents with human-health benchmarks were detected at high RCs in 1 percent of the shallow aquifer system. Of the 148 organic constituents analyzed, 30 constituents were detected, although only 1, chloroform, had a detection frequency greater than 10 percent.Natural and anthropogenic factors that could affect the groundwater quality were evaluated by using results from statistical testing of associations between constituent concentrations and values of potential explanatory factors. Groundwater age class (modern, mixed, or pre-modern), redox class (oxic or anoxic), aquifer lithology class (metamorphic, sedimentary, or volcanic), and dissolved oxygen concentrations were the explanatory factors that explained distribution patterns of most of the inorganic constituents best. Groundwater classified primarily as pre-modern or mixed in age was associated with higher concentrations of arsenic and fluoride than waters classified as modern. Anoxic or mixed redox conditions were associated with higher concentrations of boron, fluoride, and manganese. Similar patterns of association with explanatory variables were seen for inorganic constituents with aesthetic-based benchmarks detected at high concentrations. Nitrate and perchlorate had higher concentrations in oxic than in the anoxic redox class and were positively correlated with urban land use.The NSF-SA water-quality results were compared to those of the GAMA North San Francisco Bay Public-Supply Aquifer study unit (NSF-PA). The NSF-PA was sampled in 2004 and covers much of the same area as the NSF-SA, but focused on the deeper public-supply aquifer system. The comparison of the NSF-PA to the NSF-SA showed that there were more differences between the Valleys and Plains study areas of the two study units than between the Highlands study areas of the two study units. As expected from the shallower depth of wells, the NSF-SA Valleys and Plains study area had a lesser proportion of pre-modern age groundwater and greater proportion of modern age groundwater than the NSF-PA Valleys and Plains study area. In contrast, well depths and groundwater ages were not significantly different between the two Highlands study areas. Arsenic, manganese, and nitrate were present at high RCs, and perchlorate was detected in greater proportions of the NSF-SA Valleys and Plains study area than the NSF-PA Valleys and Plains study area.
Workshop 5 (synthesis): water pollution abatement as related to ecosystem protection.
Hagebro, C
2004-01-01
Water pollution exerts major stress on water systems and the challenge is to ensure security in river basins for both water-dependent activities and for the aquatic ecosystems. The workshop focused on protection of good ecological status, quality criteria, priorities for action, and on achievement of sustainable improvements. The three keynote speakers presented the concept applied in the EU Water Framework Directive, the need for a multi-stakeholder collaboration in order to reach a good ecological status of waters and a concrete example of interactive planning of water protection measures in a transboundary lake. The additional paper presentations addressed specific pollution problems in catchments, the effect of environmental user fees and ecosystem indicators.
Tracking and forecasting the Nation’s water quality - Priorities and strategies for 2013-2023
Rowe, Gary L.; Gilliom, Robert J.; Woodside, Michael D.
2013-01-01
Water-quality issues facing the Nation are growing in number and complexity, and solutions are becoming more challenging and costly. Key factors that affect the quality of our drinking water supplies and ecosystem health include contaminants of human and natural origin in streams and groundwater; excess nutrients and sediment; alteration of natural streamflow; eutrophication of lakes, reservoirs, and coastal estuaries; and changes in surface and groundwater quality associated with changes in climate, land and water use, and management practices. Tracking and forecasting the Nation's water quality in the face of these and other pressing water-quality issues are important goals for 2013-2023, the third decade of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. In consultation with stakeholders and the National Research Council, a new strategic Science Plan has been developed that describes a strategy for building upon and enhancing assessment of the Nation's freshwater quality and aquatic ecosystems. The plan continues strategies that have been central to the NAWQA program's long-term success, but it also makes adjustments to the monitoring and modeling approaches NAWQA will use to address critical data and science information needs identified by stakeholders. This fact sheet describes surface-water and groundwater monitoring and modeling activities that will start in fiscal year 2013. It also provides examples of the types of data and information products planned for the next decade, including (1) restored monitoring for reliable and timely status and trend assessments, (2) maps and models that show the distribution of selected contaminants (such as atrazine, nitrate, and arsenic) in streams and aquifers, and (3) Web-based modeling tools that allow managers to evaluate how water quality may change in response to different scenarios of population growth, climate change, or land-use management.
Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth
2009-01-01
Ground-water quality in the approximately 820 square-mile Coachella Valley Study Unit (COA) was investigated during February and March 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of raw ground water used for public-water supplies within the Coachella Valley, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from 35 wells in Riverside County. Nineteen of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Sixteen additional wells were sampled to evaluate changes in water chemistry along selected ground-water flow paths, examine land use effects on ground-water quality, and to collect water-quality data in areas where little exists. These wells were referred to as 'understanding wells'. The ground-water samples were analyzed for a large number of organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (uranium, tritium, carbon-14, and stable isotopes of hydrogen, oxygen, and boron), and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory) also were measured to help identify the source and age of the sampled ground water. A quality-control sample (blank, replicate, or matrix spike) was collected at approximately one quarter of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control information resulted in V-coding less than 0.1 percent of the data collected. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is supplied to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) and thresholds established for aesthetic purposes (secondary maximum contaminant levels, SMCL-CA) by CDPH. Most constituents detected in ground-water samples were at concentrations below drinking-water thresholds. Volatile organic compounds, pesticides, and pesticide degradates were detected in less than one-third of the grid well samples collected. All VOC and pesticide concentrations measured were below health-based thresholds. Potential waste-water indicators were detected in less than half of the wells sampled, and no detections were above health-based thresholds. Perchlorate was detected in seven grid wells; concentrations from two wells were above the CDPH maximum contaminant level (MCL-CA). Most detections of trace elements in samples collected from COA Study Unit wells were below water-quality thresholds. Exceptions include five samples of arsenic that were above the USEPA maximum contaminant level (MCL-US), two detections of boron above the CDPH notification level (NL-CA), and two detections of mol
Beyond Flint: National Trends in Drinking Water Quality Violations
NASA Astrophysics Data System (ADS)
Allaire, M.; Wu, H.; Lall, U.
2016-12-01
Ensuring safe water supply for communities across the U.S. represents an emerging challenge. Aging infrastructure, impaired source water, and strained community finances may increase vulnerability of water systems to quality violations. In the aftermath of Flint, there is a great need to assess the current state of U.S. drinking water quality. How widespread are violations? What are the spatial and temporal patterns in water quality? Which types of communities and systems are most vulnerable? This is the first national assessment of trends in drinking water quality violations across several decades. In 2015, 9% of community water systems violated health-related water quality standards. These non-compliant systems served nearly 23 million people. Thus, the challenge of providing safe drinking water extends beyond Flint and represents a nationwide concern. We use a panel dataset that includes every community water system in the United States from 1981 to 2010 to identify factors that lead to regulatory noncompliance. This study focuses on health-related violations of the Safe Drinking Water Act. Lasso regression informed selection of appropriate covariates, while logistic regressions modeled the probability of noncompliance. We find that compliance is positively associated with private ownership, purchased water supply, and greater household income. Yet, greater concentration of utility ownership and violations in prior years are associated with a higher likelihood of violation. The results suggest that purchased water contracts, which are growing among small utilities, could serve as a way to improve regulatory compliance in the future. However, persistence of violations and ownership concentration deserve attention from policymakers. Already, the EPA has begun to prioritize enforcement of persistent violators. Overall, as the revitalization of U.S. water infrastructure becomes a growing priority area, results of this study are intended to inform investment and policy.
Connecting Humans and Water: The Case for Coordinated Data Collection
NASA Astrophysics Data System (ADS)
Braden, J. B.; Brown, D. G.; Jolejole-Foreman, C.; Maidment, D. R.; Marquart-Pyatt, S. T.; Schneider, D. W.
2012-12-01
"Water problems" are fundamentally human problems -- aligning water quality and quantity with human aspirations. In the U.S., however, the few ongoing efforts to repeatedly observe humans in relation to water at large scale are disjointed both with each other and with observing systems for water quality and quantity. This presentation argues for the systematic, coordinated, and on-going collection of primary data on humans, spanning beliefs, perceptions, behaviors, and institutions, alongside the water environments in which they are embedded. Such an enterprise would advance not only water science and related policy and management decisions, but also generate basic insights into human cognition, decision making, and institutional development as they relate to the science of sustainability. In support of this argument, two types of original analyses are presented. First, two case studies using existing data sets illustrate methodological issues involved in integrating natural system data with social data at large scale: one concerns the influence of water quality conditions on personal efforts to conserve water and contribute financially to environmental protection; the other explores relationships between recreation behavior and water quality. Both case studies show how methodological differences between data programs seriously undercut the potential to draw inference about human responses to water quality while also illustrating the scientific potential that could be realized from linking human and scientific surveys of the water environment. Second, the results of a survey of water scientists concerning important scientific and policy questions around humans and water provide insight into data collection priorities for a coordinated program of observation.
Trends in municipal-well installations and aquifer utilization in southeastern Minnesota, 1880-1980
Woodward, D.G.
1985-01-01
Water appropriation in Minnesota is regulated through a permit system based on five water-use priorities. Domestic water supply, excluding industrial and commercial uses of a municipal water supply, is the highest priority (Minnesota Statutes, Chapter 105.41). Under the regulations, uses of a lower priority are not permitted to adversely affect uses of a higher priority. Identification of the aquifer(s) used for municipal supplies is also necessary to safeguard these supplies from adverse effects of competing water users and contamination, and to evaluate the consequences of each.
Montrella, Joseph; Belitz, Kenneth
2009-01-01
Ground-water quality in the approximately 460-square-mile Santa Clara River Valley study unit (SCRV) was investigated from April to June 2007 as part of the statewide Priority Basin project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for public water supplies within SCRV, and to facilitate a statistically consistent basis for comparing water quality throughout California. Fifty-seven ground-water samples were collected from 53 wells in Ventura and Los Angeles Counties. Forty-two wells were selected using a randomized grid-based method to provide statistical representation of the study area (grid wells). Eleven wells (understanding wells) were selected to further evaluate water chemistry in particular parts of the study area, and four depth-dependent ground-water samples were collected from one of the eleven understanding wells to help understand the relation between water chemistry and depth. The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, potential wastewater-indicator compounds, and pharmaceutical compounds), a constituent of special interest (perchlorate), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, carbon-13, carbon-14 [abundance], stable isotopes of hydrogen and oxygen in water, stable isotopes of nitrogen and oxygen in nitrate, chlorine-37, and bromine-81), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks or replicates, or samples for matrix spikes) were collected from approximately 26 percent of the wells, and the analyses of these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control results showed that the quality of the environmental data was good, with low bias and low variability, and as a result, less than 0.1 percent of the analytes detected in ground-water samples were censored. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is delivered (or, supplied) to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and non-regulatory thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. Most constituents that were detected in ground-water samples were reported at concentrations below their established health-based thresholds. VOCs, pesticides and pesticide degradates, and potential wastewater-indicator compounds were detected in about 33 percent or less of the 42 SCRV grid wells. Concentrations of all detected organic constituents were below established health-based thresholds. Perchlorate was detected in approximately 12 percent of the SCRV grid wells; all concentrations reported were below the NL-CA threshold. Additional constituents, including major ions, trace elements, and nutrients were collected at 26 wells (16 grid wells and 10 understanding wells) of the 53 wells sampled f
Saline sewage treatment and source separation of urine for more sustainable urban water management.
Ekama, G A; Wilsenach, J A; Chen, G H
2011-01-01
While energy consumption and its associated carbon emission should be minimized in wastewater treatment, it has a much lower priority than human and environmental health, which are both closely related to efficient water quality management. So conservation of surface water quality and quantity are more important for sustainable development than green house gas (GHG) emissions per se. In this paper, two urban water management strategies to conserve fresh water quality and quantity are considered: (1) source separation of urine for improved water quality and (2) saline (e.g. sea) water toilet flushing for reduced fresh water consumption in coastal and mining cities. The former holds promise for simpler and shorter sludge age activated sludge wastewater treatment plants (no nitrification and denitrification), nutrient (Mg, K, P) recovery and improved effluent quality (reduced endocrine disruptor and environmental oestrogen concentrations) and the latter for significantly reduced fresh water consumption, sludge production and oxygen demand (through using anaerobic bioprocesses) and hence energy consumption. Combining source separation of urine and saline water toilet flushing can reduce sewer crown corrosion and reduce effluent P concentrations. To realize the advantages of these two approaches will require significant urban water management changes in that both need dual (fresh and saline) water distribution and (yellow and grey/brown) wastewater collection systems. While considerable work is still required to evaluate these new approaches and quantify their advantages and disadvantages, it would appear that the investment for dual water distribution and wastewater collection systems may be worth making to unlock their benefits for more sustainable urban development.
Bennett, Peter A.; Bennett, George L.; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 1,180-square-mile Northern Sacramento Valley study unit (REDSAC) was investigated in October 2007 through January 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within REDSAC and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 66 wells in Shasta and Tehama Counties. Forty-three of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 23 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of nitrogen and oxygen in nitrate, stable isotopes of hydrogen and oxygen of water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. In total, over 275 constituents and field water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and sampmatrix spikes) were collected at approximately 8 to 11 percent of the wells, and the results for these samples were used to evaluate the quality of the data obtained from the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a noticeable source of bias in the data for the groundwater samples. Differences between replicate samples were within acceptable ranges for nearly all compounds, indicating acceptably low variability. Matrix-spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw groundwater typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and with aesthetic and technical thresholds established by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and do not indicate compliance or noncompliance with those thresholds. The concentrations of most constituents detected in groundwater samples from REDSAC were below drinking-water thresholds. Volatile organic compounds (VOC) and pesticides were detected in less than one-quarter of the samples and were generally less than a hundredth of any health-based thresholds. NDMA was detected in one grid well above the NL-CA. Concentrations of all nutrients and trace elements in samples from REDSAC wells were below the health-based thresholds except those of arsenic in three samples, which were above the USEPA maximum contaminant level (MCL-US). However
Schmitt, Stephen J.; Milby Dawson, Barbara J.; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 1,600 square-mile Antelope Valley study unit (ANT) was investigated from January to April 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within ANT, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 57 wells in Kern, Los Angeles, and San Bernardino Counties. Fifty-six of the wells were selected using a spatially distributed, randomized, grid-based method to provide statistical representation of the study area (grid wells), and one additional well was selected to aid in evaluation of specific water-quality issues (understanding well). The groundwater samples were analyzed for a large number of organic constituents (volatile organic compounds [VOCs], gasoline additives and degradates, pesticides and pesticide degradates, fumigants, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents (gross alpha and gross beta radioactivity, radium isotopes, and radon-222). Naturally occurring isotopes (strontium, tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 239 constituents and water-quality indicators (field parameters) were investigated. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected at 12 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a noticeable source of bias in the data for the groundwater samples. Differences between replicate samples generally were within acceptable ranges, indicating acceptably low variability. Matrix spike recoveries were within acceptable ranges for most compoundsThis study did not evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only, and are not indicative of compliance or non-compliance with drinking water standards. Most constituents that were detected in groundwater samples were found at concentrations below drinking-water thresholds. Volatile organic compounds (VOCs) were detected in about one-half of the samples and pesticides detected in about one-third of the samples; all detections of these constituents were below health-based thresholds. Most detections of trace elements and nutrients in samples from ANT wells were below health-based thresholds. Exceptions include: one detection of nitrite plus nitr
Fram, Miranda S.
2017-01-18
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the Tulare, Kaweah, and Tule groundwater basins and adjacent highlands areas of the southern San Joaquin Valley constitute one of the study units being evaluated.
Lindgren, R.J.
1996-01-01
Water collected from wells completed in the unconfined aquifer in residential and recreational land-use areas had concentrations of arsenic, cadmium, chromium, copper, lead, mercury, and cyanide equal to or less than 6 micrograms per liter. Concentrations of organic-acid herbicides in water from three wells screened in the unconfined aquifer in managed-forest land-use areas were all below detection levels. Concentrations of U.S. Environmental Protection Agency priority pollutants in water from three wells screened in the unconfined aquifer and from one well screened in the uppermost confined aquifer were also all below detection levels.
NASA Astrophysics Data System (ADS)
Bridge, J. W.; Oliver, D.; Heathwaite, A.; Banwart, S.; Going Underground: Human Pathogens in The Soil-Water Environment Working Group
2010-12-01
We present the findings and recommendations of a recent UK working group convened to identify research priorities in environmental science and epidemiology of waterborne pathogens. Robust waterborne disease surveillance in the developed world remains a critical need, despite broad success of regulation and water treatment. Recent estimates suggest waterborne pathogens result in between 12 million and 19.5 million cases of illness per year in the US alone. Across the developed world, the value of preventing acute waterborne disease in 150 million people using small community or single-user supplies is estimated at above US$ 4,671 million. The lack of a high quality, reliable environmental knowledge base for waterborne pathogens is a key obstacle. Substantial improvements in understanding of pathogen survival and transport in soils, sediments and water are required both to aid identification of environmental aetiologies for organisms isolated in disease cases and to support novel mitigation responses directed towards specific exposure risks. However, the focus in monitoring and regulation on non-pathogenic faecal indicator organisms (easier and cheaper to detect in water samples) creates a lack of motivation to conduct detailed environmental studies of the actual pathogens likely to be encountered in disease surveillance. Robust disease surveillance may be regarded as an essential objective in epidemiology; but it constitutes a significant shift in perspective for the water industry. The health sector can play a vital role in changing attitudes by explicitly placing value on environmental water research which looks beyond compliance with water quality standards towards informing disease surveillance and influencing health outcomes. The summary of critical research priorities we outline provides a focus for developing and strengthening dialogue between health and water sectors to achieve a common goal - sophisticated management of waterborne diseases through sophisticated understanding of their environmental sources and dynamics.
Hydrologic and water-quality rehabilitation of environments for suitable fish habitat
NASA Astrophysics Data System (ADS)
Zhao, C. S.; Yang, S. T.; Xiang, H.; Liu, C. M.; Zhang, H. T.; Yang, Z. L.; Zhang, Y.; Sun, Y.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.
2015-11-01
Aquatic ecological rehabilitation is attracting increasing public and research attention, but without knowledge of the responses of aquatic species to their habitats the success of habitat restoration is uncertain. Thus efficient study of species response to habitat, through which to prioritize the habitat factors influencing aquatic ecosystems, is highly important. However many current models have too high requirement for assemblage information and have great bias in results due to consideration of only the species' attribute of presence/absence, abundance or biomass, thus hindering the wider utility of these models. This paper, using fish as a case, presents a framework for identification of high-priority habitat factors based on the responses of aquatic species to their habitats, using presence/absence, abundance and biomass data. This framework consists of four newly developed sub-models aiming to determine weightings for the evaluation of species' contributions to their communities, to quantitatively calculate an integrated habitat suitability index for multi-species based on habitat factors, to assess the suitable probability of habitat factors and to assess the rehabilitation priority of habitat factors. The framework closely links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. Breakpoint identification techniques based on curvature in cumulated dominance along with a newly developed weighting calculation model based on theory of mass systems were used to help identify the dominant fish, based on which the presence and abundance of multiple fish were normalized to estimate the integrated habitat suitability index along gradients of various factors, based on their variation with principal habitat factors. Then, the appropriate probability of every principal habitat factor was estimated and graded, and the priority of habitat factors for rehabilitation was determined. Application of the model to Jinan City, a pilot city for the construction of a civilized and ecological city in China, proved effective, revealing that carbonate is the poorest habitat factor and has the highest priority for ecological rehabilitation. This was tested using two methods: alternative priority models and a dataset of all habitat factors in place of only the principal habitat factors. We also found that hydrological factors have higher priority than the water quality factors at the levels of both the whole city and its subordinate eco-regions and therefore that hydrological factors deserve special attention in the future ecosystem rehabilitation. Further, the current habitat state makes nearly half of the habitats in Jinan City undesirable for fish communities, largely due to long-term agricultural practices. Spatially, rivers in the mountainous region south of Jinan city and adjacent to the urban area and rivers in the agricultural region north of the city should be emphasized in future habitat rehabilitation. All of these findings have substantial ramifications for the rehabilitation of aquatic ecosystems in Jinan City as a reference for river ecological remediation in rivers with scarce ecological data worldwide.
Marine and freshwater microplastic research in South Africa.
Verster, Carina; Minnaar, Karin; Bouwman, Hindrik
2017-05-01
South Africa has a vibrant plastics manufacturing industry, but recycling is limited and insufficient with a notable proportion of the unmanaged waste entering the environment. South Africa is a developing country with microplastics research in its inception. Very little is known about freshwater microplastics, and studies on South African marine microplastics are limited but actively being pursued. In a water-scarce country, protection of freshwater resources remains a priority, but in the face of other socioeconomic issues (poverty, unemployment, and HIV/AIDS), it receives insufficiently effective attention. The full impact and risks of microplastics pollution in water is yet to be discovered. The risks may be enhanced in a developing country where many communities remain largely dependent on the land and natural waters. With South Africa being a water-scarce country, the quality of its aquatic resources is at an even greater risk with an assumed increasing background of microplastics, emphasizing the need for further research. A South African Water Research Commission-funded project is being undertaken to derive research priorities, but there is an immediate need for improved recycling and waste management. Integr Environ Assess Manag 2017;13:533-535. © 2017 SETAC. © 2017 SETAC.
Fram, Miranda S.; Munday, Cathy; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 460-square-mile Tahoe-Martis study unit was investigated in June through September 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within the Tahoe-Martis study unit (Tahoe-Martis) and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 52 wells in El Dorado, Placer, and Nevada Counties. Forty-one of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 11 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, strontium isotope ratio, and stable isotopes of hydrogen and oxygen of water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 240 constituents and water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and samples for matrix spikes) each were collected at 12 percent of the wells, and the results obtained from these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that data for the groundwater samples were not compromised by possible contamination during sample collection, handling or analysis. Differences between replicate samples were within acceptable ranges. Matrix spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw water typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH), and with aesthetic and technical thresholds established by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and do not indicate of compliance or noncompliance with regulatory thresholds. The concentrations of most constituents detected in groundwater samples from the Tahoe-Martis wells were below drinking-water thresholds. Organic compounds (VOCs and pesticides) were detected in about 40 percent of the samples from grid wells, and most concentrations were less than 1/100th of regulatory and nonregulatory health-based thresholds, although the conentration of perchloroethene in one sample was above the USEPA maximum contaminant level (MCL-US). Concentrations of all trace elements and nutrients in samples from grid wells were below regulatory and nonregulatory health-based thresholds, with five exceptions. Concentra
[Safe drinking water supply to the Vologda Region's population using risk assessment methodology].
Kuznetsova, I A; Figurina, T Ia; Shadrina, S Iu
2011-01-01
To supply the population with qualitative potable water is a priority problem in the provision of sanitary-and-epidemiologic well-being and in the prevention of disease in the Vologda Region. The monitoring of the results of laboratory control over the quality of drinking-water and the assessment of health risk enabled a package of measures to be proposed to optimize the conditions of drinking water supply in the Vologda Region. The risk assessment technology used by a state agency for sanitary-and-epidemiological surveillance makes it possible to substantiate a system of actions to organize household water use and to include scientifically grounded proposals into the developed regional and local programs.
Densmore, Jill N.; Fram, Miranda S.; Belitz, Kenneth
2009-01-01
Ground-water quality in the approximately 1,630 square-mile Owens and Indian Wells Valleys study unit (OWENS) was investigated in September-December 2006 as part of the Priority Basin Project of Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board (SWRCB). The Owens and Indian Wells Valleys study was designed to provide a spatially unbiased assessment of raw ground-water quality within OWENS study unit, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 74 wells in Inyo, Kern, Mono, and San Bernardino Counties. Fifty-three of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 21 wells were selected to evaluate changes in water chemistry in areas of interest (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater- indicator compounds], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3- trichloropropane (1,2,3-TCP)], naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water], and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. This study evaluated the quality of raw ground water in the aquifer in the OWENS study unit and did not attempt to evaluate the quality of treated water delivered to consumers. Water supplied to consumers typically is treated after withdrawal from the ground, disinfected, and blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and non-regulatory thresholds established for aesthetic concerns (secondary maximum contamination levels, SMCL-CA) by CDPH. VOCs and pesticides were detected in samples from less than one-third of the grid wells; all detections were below health-based thresholds, and most were less than one-one hundredth of threshold values. All detections of perchlorate and nutrients in samples from OWENS were below health-based thresholds. Most detections of trace elements in ground-water samples from OWENS wells were below health-based thresholds. In samples from the 53 grid wells, three constituents were detected at concentrations above USEPA maximum contaminant levels: arsenic in 5 samples, uranium in 4 samples, and fluoride in 1 sample. Two constituents were detected at concentrations above CDPH notification levels (boron in 9 samples and vanadium in 1 sample), and two were above USEPA lifetime health advisory levels (molybdenum in 3 samples and strontium in 1 sample). Most of the samples from OWENS wells had concentrations of major elements, TDS, and trace elements below the non-enforceable standards set for aesthetic concerns. Samples from nine grid wells had concentrations of manganese, iron, or TDS above the SMCL-CAs.
Ray, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth
2009-01-01
Ground-water quality in the approximately 620-square-mile San Francisco Bay study unit (SFBAY) was investigated from April through June 2007 as part of the Priority Basin project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of raw ground-water quality, as well as a statistically consistent basis for comparing water quality throughout California. Samples in SFBAY were collected from 79 wells in San Francisco, San Mateo, Santa Clara, Alameda, and Contra Costa Counties. Forty-three of the wells sampled were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Thirty-six wells were sampled to aid in evaluation of specific water-quality issues (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, trace elements, chloride and bromide isotopes, and uranium and strontium isotopes), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14 isotopes, and stable isotopes of hydrogen, oxygen, nitrogen, boron, and carbon), and dissolved noble gases (noble gases were analyzed in collaboration with Lawrence Livermore National Laboratory) also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blank samples, replicate samples, matrix spike samples) were collected for approximately one-third of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control information from the field blanks resulted in applying 'V' codes to approximately 0.1 percent of the data collected for ground-water samples (meaning a constituent was detected in blanks as well as the corresponding environmental data). See the Appendix section 'Quality-Control-Sample Results'. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is delivered to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. VOCs were detected in about one-half of the grid wells, while pesticides were detected in about one-fifth of the grid wells. Concentrations of all VOCs and pesticides detected in samples from all SFBAY wells were below health-based thresholds. No pharmaceutical compounds were detected in any SFBAY well. One potential wastewater-indicator compound, caffeine, was detected in one grid well in SFBAY. Concentrations of most trace elements and nutrients detected in samples from all SFBAY wells were below health-based thresholds. Exceptions include nitrate, detected above the USEPA maximum contaminant level (MCL-US) in 3samples; arsenic, above the USEPA maximum contaminant level (MCL-US) in 3 samples; c
NASA Technical Reports Server (NTRS)
1977-01-01
An outline is given of the mission objectives and requirements, system elements, system concepts, technology requirements and forecasting, and priority analysis for LANDSAT D. User requirements and mission analysis and technological forecasting are emphasized. Mission areas considered include agriculture, range management, forestry, geology, land use, water resources, environmental quality, and disaster assessment.
Identification of Priority Forests in the Upper Mississippi River System: A Summary
Jason Rohweder; Theresa Heyer; Samuel Osinde; Darrell Zastrow; Steve Westin; Al Todd
2007-01-01
The goal of the Upper Mississippi Forest Partnership is to improve water quality and migratory bird habitat by restoring and enhancing forests in the six-state watershed. This document summarizes the results of a GIS analysis that identified forests where allocation of resources would make the most difference. Also included in this document are case studies that...
Bercaru, Ofelia; Gawlik, Bernd Manfred; Ulberth, Franz; Vandecasteele, Carlo
2003-08-01
During recent years, the awareness of quality assurance and quality control in environmental analyses has constantly increased, especially due to the implementation of new guidelines and regulations at both the national and international level. Achieving comparable results by using certified reference materials is one of the primary concerns of the scientific community. As a result, there is a growing demand for certified reference materials to cover different matrices and pollutants. Moreover, these CRMs should be in close relationship to the determinants and target concentrations required by environmental bodies and European Directives as well. Supplementary information to this paper presents an inventory of reference materials available on the market from different suppliers against the priority pollutants listed in the Water Framework Directive. These CRMs cover matrices such as water, sediment and biota. The use of CRMs in relationship to appropriate analytical methods and relevant determinants is discussed and the need for matrix-CRMs, particularly for organic pollutants is emphasised. The use of proficiency testing schemes as an alternative for the lack of appropriate CRMs and future trends in the production of CRMs within the BCR framework are also discussed.
Wierl, J.A.; Rappold, K.F.; Amerson, F.U.
1996-01-01
In 1992, the Wisconsin Department of Natural Resources (WDNR) in cooperation with the U.S. Geological Survey initiated a land-use inventory to identify sources of pollutants and track the land-management changes for eight evaluation monitoring watersheds established as part of the WDNR's Nonpoint Source Program. Each evaluation monitoring watershed is within a WDNR priority watershed. The U.S. Geological Survey is responsible for collection of water-quality data in the evaluation monitoring watersheds. An initial inventory was completed for each of the WDNR priority watersheds before nonpoint-source plans were developed for the control of nonpoint pollution. The land-use inventory described in this report expands upon the initial inventory by including nonpoint pollution sources that were not identified and also by updating changes in landuse and land-management practices. New sources of nonpoint pollution, not identified in the initial inventory, could prove to be important when monitored and modeled data are analyzed. This effort to inventory the evaluation monitoring watersheds will help with the interpretation of future land-use and water-quality data. This report describes landuse inventory methods, presents results of the inventory, and lists proposed future activities.
Álvarez-Romero, Jorge G; Pressey, Robert L; Ban, Natalie C; Brodie, Jon
2015-01-01
Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our study demonstrates a practical approach to integrating models of catchments, land-use change, and river plumes with conservation planning software to inform prioritisation of catchment management.
Álvarez-Romero, Jorge G.; Pressey, Robert L.; Ban, Natalie C.; Brodie, Jon
2015-01-01
Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our study demonstrates a practical approach to integrating models of catchments, land-use change, and river plumes with conservation planning software to inform prioritisation of catchment management. PMID:26714166
Munn, Mark D.; Hamilton, Pixie A.
2003-01-01
In 2001, the U.S. Geological Survey’s National Water-Quality Assessment (NAWQA) Program began an intensive study of nutrient enrichment elevated concentrations of nitrogen and phosphorus in streams in five agricultural basins across the Nation (see map, p. 2). This study is providing nationally consistent and comparable data and analyses of nutrient conditions, including how these conditions vary as a result of natural and human-related factors, and how nutrient conditions affect algae and other biological communities. This information will benefit stakeholders, including the U.S. Environmental Protection Agency (USEPA) and its partners, who are developing nutrient criteria to protect the aquatic health of streams in different geographic regions.Nutrient enrichment is one of five national priority topics addressed by NAWQA in its second decade of studies, which began in 2001. During its first round of assessments in 51 major river basins (referred to as “Study Units”), NAWQA scientists collected data on water chemistry, stream hydrology and habitat, and biological communities; currently, NAWQA is revisiting selected basins and focusing on (1) trends, (2) factors that affect water quality and aquatic health, and (3) national priority water issues related to, for example, the development of nutrient criteria, source-water protection strategies, and stream restoration plans.The nutrient enrichment study has four major objectives that address nutrient conditions, dissolved oxygen, aquatic communities, and geographic and landscape features in agricultural basins (see inset). The focus on agricultural streams is a starting point. As the study progresses, streams draining other land uses, such as those in residential and urban areas, will likely be added.
An application of MC-SDSS for water supply management during a drought crisis.
Jeihouni, Mehrdad; Toomanian, Ara; Alavipanah, Seyed Kazem; Shahabi, Mahmoud; Bazdar, Saba
2015-07-01
Climate change influences many countries' rainfall patterns and temperatures. In Iran, population growth has increased water demands. Tabriz is the capital of East Azerbaijan province, in northwestern Iran. A large proportion of the water required for this city is supplied from dams; thus, it is important to find alternatives to supply water for this city, which is the largest industrial city in northwestern Iran. In this paper, the groundwater quality was assessed using 70 wells in Tabriz Township. This work seeks to define the spatial distribution of groundwater quality parameters such as chloride, electrical conductivity (EC), pH, hardness, and sulfate using Geographic Information Systems (GIS) and geostatistics; map groundwater quality for drinking purposes employing multiple-criteria decision-making (MCDM), such as the Analytical Hierarchy Process (AHP) and fuzzy logic, in the study area; and develop an Spatial Decision Support System (SDSS) for managing a water crisis in the region. The map produced by the AHP is more accurate than the map produced using fuzzy logic because in the AHP, priorities were assigned to each parameter based on the weights given by water quality experts. The final map indicates that the groundwater quality increases from the north to the south and from the west to the east within the study area. During critical conditions, the groundwater quality maps and the presented SDSS core can be utilized by East Azerbaijan Regional Water Company to develop an SDSS to drill new wells or to select existing wells to supply drinking water to Tabriz City.
,
1995-01-01
The Intergovernmental Task Force on Monitoring Water Quality (ITFM) prepared this report in collaboration with representatives of all levels of government and the private sector. The report recommends a strategy for nationwide water-quality monitoring and technical monitoring improvements to support sound water-quality decisionmaking. The strategy is intended to achieve a better return on public and private investments in monitoring, environmental protection, and natural resources management. It is also designed to expand the base of information useful to a variety of users at multiple geographic scales. Institutional and technical changes are needed to improve water-quality monitoring and to meet the full range of monitoring requirements. Monitoring must be incorporated as a critical element of program planning, implementation, and evaluation. The strategy includes recommendations in many key elements, such as the development of goal-oriented monitoring and indicators, institutional collaboration, and methods comparability. Initial actions have been taken to implement the strategy. Several Federal agencies have jointly purchased and shared remotely sensed land-cover information needed for water assessment. Major agency data systems are using common data-element names and reference tables that will ensure easy sharing of data. A number of States have held meetings with collectors of water information to initiate statewide monitoring strategies. New monitoring guidance has been developed for Federal water-quality grants to States. Many State offices have changed monitoring programs to place emphasis on priority watersheds and to improve assessment of water quality. As the competition increases for adequate supplies of clean water, concerns about public health and the environment escalate, and more demands are placed on the water information infrastructure. To meet these demands, the collaborative approach has already produced benefits, which will continue to grow as the recommendations are implemented
Land, Michael; Belitz, Kenneth
2008-01-01
Ground-water quality in the approximately 460 square mile San Fernando-San Gabriel study unit (SFSG) was investigated between May and July 2005 as part of the Priority Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The San Fernando-San Gabriel study was designed to provide a spatially unbiased assessment of raw ground-water quality within SFSG, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 52 wells in Los Angeles County. Thirty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and seventeen wells were selected to aid in the evaluation of specific water-quality issues or changes in water chemistry along a historic ground-water flow path (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), 1,2,3-trichloropropane (1,2,3-TCP), and 1,4-dioxane], naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected at approximately one-fifth (11 of 52) of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control results showed that the data had very little bias or variability and resulted in censoring of less than 0.7 percent (32 of 4,484 measurements) of the data collected for ground-water samples. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. VOCs were detected in more than 90 percent (33 of 35) of grid wells. For all wells sampled for SFSG, nearly all VOC detections were below health-based thresholds, and most were less than one-tenth of the threshold values. Samples from seven wells had at least one detection of PCE, TCE, tetrachloromethane, NDMA, or 1,2,3-TCP at or above a health-based threshold. Pesticides were detected in about 90 percent (31 of 35) grid wells and all detections in samples from SFSG wells were below health-based thresholds. Major ions, trace elements, and nutrients in samples from 17 SFSG wells were all below health-based thresholds, with the exception of one detection of nitrate that was above the USEPA maximum contaminant level (MCL-US). With the exception of 14 samples having radon-222 above the proposed MCL-US, radioactive constituents were below health-based thresholds for 16 of the SFSG wells sampled. Total dissolved solids in 6 of the 24 SFSG wells that were sampled ha
Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth
2010-01-01
Groundwater quality in the 188-square-mile Colorado River Study unit (COLOR) was investigated October through December 2007 as part of the Priority Basin Project of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and the U.S. Geological Survey (USGS) is the technical project lead. The Colorado River study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within COLOR, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 28 wells in three study areas in San Bernardino, Riverside, and Imperial Counties. Twenty wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the Study unit; these wells are termed 'grid wells'. Eight additional wells were selected to evaluate specific water-quality issues in the study area; these wells are termed `understanding wells.' The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOC], gasoline oxygenates and degradates, pesticides and pesticide degradates, pharmaceutical compounds), constituents of special interest (perchlorate, 1,4-dioxane, and 1,2,3-trichlorpropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents. Concentrations of naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen and oxygen in water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, approximately 220 constituents and water-quality indicators were investigated. Quality-control samples (blanks, replicates, and matrix spikes) were collected at approximately 30 percent of the wells, and the results were used to evaluate the quality of the data obtained from the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a significant source of bias in the data. Differences between replicate samples were within acceptable ranges and matrix-spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw groundwater typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared to regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) and to thresholds established for aesthetic concerns by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and do not indicate compliance or noncompliance with those thresholds. The concentrations of most constituents detected in groundwater samples were below drinking-water thresholds. Volatile organic compounds (VOC) were detected in approximately 35 percent of grid well samples; all concentrations were below health-based thresholds. Pesticides and pesticide degradates were detected in about 20 percent of all samples; detections were below health-based thresholds. No concentrations of constituents of special interest or nutrients were detected above health-based thresholds. Most of the major and minor ion constituents sampled do not have health-based thresholds; the exception is chloride. Concentrations of chloride, sulfate, and total dis
Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 860-square-mile Madera-Chowchilla study unit (MADCHOW) was investigated in April and May 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within MADCHOW, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 35 wells in Madera, Merced, and Fresno Counties. Thirty of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and five more were selected to provide additional sampling density to aid in understanding processes affecting groundwater quality (flow-path wells). Detection summaries in the text and tables are given for grid wells only, to avoid over-representation of the water quality in areas adjacent to flow-path wells. Groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], low-level 1,2-dibromo-3-chloropropane [DBCP] and 1,2-dibromoethane [EDB], pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds), constituents of special interest (N-nitrosodimethylamine [NDMA], perchlorate, and low-level 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents (uranium isotopes, and gross alpha and gross beta particle activities). Naturally occurring isotopes and geochemical tracers (stable isotopes of hydrogen, oxygen, and carbon, and activities of tritium and carbon-14), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, approximately 300 constituents and field water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and samples for matrix spikes) each were collected at approximately 11 percent of the wells sampled for each analysis, and the results obtained from these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that data for the groundwater samples were not compromised by possible contamination during sample collection, handling or analysis. Differences between replicate samples were within acceptable ranges. Matrix spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw groundwater typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH), and with aesthetic and technical thresholds established by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only, and are not indicative of compliance or non-compliance with regulatory thresholds. The concentrations of most constituents detected in groundwater samples from MADCHOW wells were below drinking-water thresholds. Organic compounds (VOCs and pesticides
Jiang, Yong
2009-08-01
China has been facing increasingly severe water scarcity, especially in the northern part of the country. China's water scarcity is characterized by insufficient local water resources as well as reduced water quality due to increasing pollution, both of which have caused serious impacts on society and the environment. Three factors contribute to China's water scarcity: uneven spatial distribution of water resources; rapid economic development and urbanization with a large and growing population; and poor water resource management. While it is nearly impossible to adjust the first two factors, improving water resource management represents a cost-effective option that can alleviate China's vulnerability to the issue. Improving water resource management is a long-term task requiring a holistic approach with constant effort. Water right institutions, market-based approaches, and capacity building should be the government's top priority to address the water scarcity issue.
Amenu, Kebede; Markemann, André; Valle Zárate, Anne
2013-11-01
The study aimed to assess the quality and health aspects of water intended for human and livestock consumption in two rural districts of the Rift Valley of Ethiopia. The study involved two parts: the first consisted of a questionnaire survey and farmers' group discussions, complemented by secondary health data, and the second part determined the chemical (total dissolved solids, pH, manganese, hexa-valent chromium, fluoride) and microbiological quality of different water sources during dry and wet seasons. The result showed a lack of sustainable access to safe water in the communities. Industrial pollution and mismanagement of water sources by human and livestock was found to be a source of potential health risk. Potentially linked human health problems like malaria, diarrhoea and gastrointestinal parasites were common in the districts. Overall, 76% of the assessed water sources (n = 25) failed to comply with World Health Organization guidelines for human drinking water, for at least one assessed parameter, mostly irrespective of the season. The non-compliance was mainly attributed to Escherichia coli contamination and/or high fluoride concentration. At least 20% of the water samples were also found to be unfit for livestock consumption based on assessed chemical parameters in both dry and wet seasons. To minimize the health risk associated with mismanagement and poor quality of water sources in the area, targeted action in the protection of surface water sources should be given priority.
HEALTH, JUSTICE, AND THE ENVIRONMENT
Roman, Gerard
2014-01-01
In this article, we argue that the scope of bioethical debate concerning justice in health should expand beyond the topic of access to health care and cover such issues as occupational hazards, safe housing, air pollution, water quality, food and drug safety, pest control, public health, childhood nutrition, disaster preparedness, literacy, and many other environmental factors that can cause differences in health. Since society does not have sufficient resources to address all of these environmental factors at one time, it is important to set priorities for bioethical theorizing and policy formation. Two considerations should be used to set these priorities: (1) the impact of the environmental factor on health inequality, and (2) the practicality of addressing the factor. PMID:17845481
Irrigation, risk aversion, and water right priority under water supply uncertainty.
Li, Man; Xu, Wenchao; Rosegrant, Mark W
2017-09-01
This paper explores the impacts of a water right's allocative priority-as an indicator of farmers' risk-bearing ability-on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right-truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to $141.4 acre -1 or $55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority-based water sharing mechanism.
Exploring end of life priorities in Saudi males: usefulness of Q-methodology.
Hammami, Muhammad M; Al Gaai, Eman; Hammami, Safa; Attala, Sahar
2015-11-26
Quality end-of-life care depends on understanding patients' end-of-life choices. Individuals and cultures may hold end-of-life priorities at different hierarchy. Forced ranking rather than independent rating, and by-person factor analysis rather than averaging may reveal otherwise masked typologies. We explored Saudi males' forced-ranked, end-of-life priorities and dis-priorities. Respondents (n = 120) rank-ordered 47 opinion statements on end-of-life care following a 9-category symmetrical distribution. Statements' scores were analyzed by averaging analysis and factor analysis (Q-methodology). Respondents' mean age was 32.1 years (range, 18-65); 52% reported average religiosity, 88 and 83% ≥ very good health and life-quality, respectively, and 100% ≥ high school education. Averaging analysis revealed that the extreme five end-of-life priorities were to, be at peace with God, be able to say the statement of faith, maintain dignity, resolve conflicts, and have religious death rituals respected, respectively. The extreme five dis-priorities were to, die in the hospital, not receive intensive care if in coma, die at peak of life, be informed about impending death by family/friends rather than doctor, and keep medical status confidential from family/friends, respectively. Q-methodology classified 67% of respondents into five highly transcendent opinion types. Type-I (rituals-averse, family-caring, monitoring-coping, life-quality-concerned) and Type-V (rituals-apt, family-centered, neutral-coping, life-quantity-concerned) reported the lowest and highest religiosity, respectively. Type-II (rituals-apt, family-dependent, monitoring-coping, life-quantity-concerned) and Type-III (rituals-silent, self/family-neutral, avoidance-coping, life-quality & quantity-concerned) reported the best and worst life-quality, respectively. Type-I respondents were the oldest with the lowest general health, in contrast to Type-IV (rituals-apt, self-centered, monitoring-coping, life-quality/quantity-neutral). Of the extreme 14 priorities/dis-priorities for the five types, 29, 14, 14, 50, and 36%, respectively, were not among the extreme 20 priorities/dis-priorities identified by averaging analysis for the entire cohort. 1) Transcendence was the extreme end-of-life priority, and dying in the hospital was the extreme dis-priority. 2) Quality of life was conceptualized differently with less emphasize on its physiological aspects. 3) Disclosure of terminal illness to family/close friends was preferred as long it is through the patient. 4) Q-methodology identified five types of constellations of end-of-life priorities and dis-priorities that may be related to respondents' demographics and are partially masked by averaging analysis.
Wu, Haibing
2018-01-01
Watershed prioritization with the objective of identifying critical areas to undertake soil and water conservation measures was conducted in the upper Han River basin, the water source area of approximately 95,000 km 2 for the middle route of China's South-to-North Water Transfer Project. Based on the estimated soil erosion intensity in uplands and clustering analysis of measured nutrient concentrations in rivers, the basin was grouped into very-high-, high-, moderate-, and low-priority regions for water and soil conservation, respectively. The results indicated that soil erosion was primarily controlled by topography, and nutrients in rivers were associated with land use and land cover in uplands. Also, there was large spatial disparity between soil erosion intensity in the uplands and nutrient concentrations in the rivers across the basin. Analysis was then performed to prioritize the basin by the integration of the soil erosion intensity and water quality on a GIS platform in order to identify critical areas for water and soil conservation in the basin. The identified high-priority regions which occupy 5.74% of the drainage areas need immediate attention for soil and water conservation treatments, of which 5.28% is critical for soil erosion prevention and 0.46% for water conservation. Understandings of the basin environment and pollutant loading with spatial explicit are critical to the soil and water resource conservation for the interbasin water transfer project.
Schaffranek, Raymond W.; Riscassi, Ami L.
2005-01-01
Flow-velocity, water-temperature, and conductivity data were collected at five locations in Shark River Slough, Everglades National Park (ENP), Florida, from 1999 to 2003. The data were collected as part of the U.S. Geological Survey Priority Ecosystems Science Initiative in support of the Comprehensive Everglades Restoration Plan. This report contains digital files and graphical plots of the processed, quality-checked, and edited data. Information pertinent to the locations and monitoring strategy also is presented.
Shelton, Jennifer L.; Pimentel, Isabel; Fram, Miranda S.; Belitz, Kenneth
2008-01-01
Ground-water quality in the approximately 3,000 square-mile Kern County Subbasin study unit (KERN) was investigated from January to March, 2006, as part of the Priority Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The Kern County Subbasin study was designed to provide a spatially unbiased assessment of raw (untreated) ground-water quality within KERN, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 50 wells within the San Joaquin Valley portion of Kern County. Forty-seven of the wells were selected using a randomized grid-based method to provide a statistical representation of the ground-water resources within the study unit. Three additional wells were sampled to aid in the evaluation of changes in water chemistry along regional ground-water flow paths. The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides, and pesticide degradates), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon) and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, and laboratory matrix spikes) were collected and analyzed at approximately 10 percent of the wells, and the results for these samples were used to evaluate the quality of the data from the ground-water samples. Assessment of the quality-control information resulted in censoring of less than 0.4 percent of the data collected for ground-water samples. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw ground water typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply, not to the raw ground water, but to treated water that is served to the consumer. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH), and as well as with thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. VOCs and pesticides each were detected in approximately 60 percent of the grid wells, and detections of all compounds but one were below health-based thresholds. The fumigant, 1,2-dibromo-3-chloropropane (DBCP), was detected above the USEPA maximum contaminant level (MCL-US) in one sample. Detections of most inorganic constituents were also below health-based thresholds. Constituents detected above health-based thresholds include: nitrate, (MCL-US, 2 samples), arsenic (MCL-US, 2 samples), and vanadium (California notification level, NL-CA, 1 sample). All detections of radioactive constituents were below health-based thresholds, although nine samples had activities of radon-222 above the lower proposed MCL-US. Most of the samples from KERN wells had concentrations of major elements, total dissolved solids, and trace elements below the non-enforceable thresholds set for aesthetic concerns.
Evenson, Eric J.; Orndorff, Randall C.; Blome, Charles D.; Böhlke, John Karl; Hershberger, Paul K.; Langenheim, V.E.; McCabe, Gregory J.; Morlock, Scott E.; Reeves, Howard W.; Verdin, James P.; Weyers, Holly S.; Wood, Tamara M.
2013-01-01
This report expands the Water Science Strategy that began with the USGS Science Strategy, “Facing Tomorrow’s Challenges—U.S. Geological Survey Science in the Decade 2007–2017” (U.S. Geological Survey, 2007). This report looks at the relevant issues facing society and develops a strategy built around observing, understanding, predicting, and delivering water science for the next 5 to 10 years by building new capabilities, tools, and delivery systems to meet the Nation’s water-resource needs. This report begins by presenting the vision of water science for the USGS and the societal issues that are influenced by, and in turn influence, the water resources of our Nation. The essence of the Water Science Strategy is built on the concept of “water availability,” defined as spatial and temporal distribution of water quantity and quality, as related to human and ecosystem needs, as affected by human and natural influences. The report also describes the core capabilities of the USGS in water science—the strengths, partnerships, and science integrity that the USGS has built over its 134-year history. Nine priority actions are presented in the report, which combine and elevate the numerous specific strategic actions listed throughout the report. Priority actions were developed as a means of providing the audience of this report with a list for focused attention, even if resources and time limit the ability of managers to address all of the strategic actions in the report.
Aeyels, Daan; Seys, Deborah; Sinnaeve, Peter R; Claeys, Marc J; Gevaert, Sofie; Schoors, Danny; Sermeus, Walter; Panella, Massimiliano; Bruyneel, Luk; Vanhaecht, Kris
2018-02-01
A focus on specific priorities increases the success rate of quality improvement efforts for broad and complex-care processes. Importance-performance analysis presents a possible approach to set priorities around which to design and implement effective quality improvement initiatives. Persistent variation in hospital performance makes ST-elevation myocardial infarction care relevant to consider for importance-performance analysis. The purpose of this study was to identify quality improvement priorities in ST-elevation myocardial infarction care. Importance and performance levels of ST-elevation myocardial infarction key interventions were combined in an importance-performance analysis. Content validity indexes on 23 ST-elevation myocardial infarction key interventions of a multidisciplinary RAND Delphi Survey defined importance levels. Structured review of 300 patient records in 15 acute hospitals determined performance levels. The significance of between-hospital variation was determined by a Kruskal-Wallis test. A performance heat-map allowed for hospital-specific priority setting. Seven key interventions were each rated as an overall improvement priority. Priority key interventions related to risk assessment, timely reperfusion by percutaneous coronary intervention and secondary prevention. Between-hospital performance varied significantly for the majority of key interventions. The type and number of priorities varied strongly across hospitals. Guideline adherence in ST-elevation myocardial infarction care is low and improvement priorities vary between hospitals. Importance-performance analysis helps clinicians and management in demarcation of the nature, number and order of improvement priorities. By offering a tailored improvement focus, this methodology makes improvement efforts more specific and achievable.
Berenbrock, Charles
1987-01-01
Ground water is the sole source of water in Indian Wells Valley. Since 1966, annual ground-water pumpage has exceeded estimates of mean annual recharge, and continued and increased stresses on the aquifer system of the valley are expected. In 1981 the U.S. Geological Survey began a 10-year program to develop a data base that could be used in evaluating future water-management alternatives for the valley. This report tabulates existing water-level and water-quality data in order to provide a basis for the design of a ground-water monitoring network for Indian Wells Valley. Water-levels were measured in 131 wells during 1977-84. About 62 percent of the wells that have water-level measurements spanning at least 3 years during the period 1977-84 show a net water-level decline; the decline in 23 percent of the wells is greater than 5 feet. Water-quality samples from 85 wells were analyzed for major dissolved constituents. At selected wells water samples were also analyzed for nutrients and trace metals. Seventy-nine of the wells sampled contained water with concentrations of one or more dissolved constituents that equaled or exceeded U.S. Environmental Protection Agency primary or secondary maximum contaminant levels for drinking water. Dissolved-solids concentrations, which ranged from 190 to 67,000 milligrams per liter, equaled or exceeded 500 milligrams per liter (the Environmental Protection Agency secondary maximum contaminant level) in 85 percent of the sampled wells and 1,000 milligrams per liter in 59 percent. Water samples collected in 1984 from eight wells near the industrial-waste ponds of the China Lake Naval Weapons Center were analyzed for the presence of organic compounds designated 'priority pollutants' by the U.S. Environmental Protection Agency. Priority pollutants were detected in three wells. Trichloroethylene, methylene chloride, vinyl chloride, and chloroform were identified; concentrations were less than 10 micrograms per liter except for trichloroethylene and chloroform, at 94 and 12 micrograms per liter, respectively. Trichloroethylene in one sample and vinyl chloride in another exceeded Environmental Protection Agency proposed maximum contaminant levels.
Foliar sorption of emerging and priority contaminants under controlled conditions.
Calderón-Preciado, Diana; Matamoros, Víctor; Biel, Carmen; Save, Robert; Bayona, Josep M
2013-09-15
Agricultural irrigation water contains a variety of contaminants that can be introduced into the food chain through intake by irrigated crops. This paper describes an experiment under controlled conditions designed to simulate sprinkle irrigation with polluted water at two different relative humidities (40 and 90%). Specifically, shed lettuce-heart leaves were spiked with an aqueous solution containing organic microcontaminants, including pharmaceuticals (ibuprofen, diclofenac, clofibric acid, and carbamazepine), fragrances (tonalide), biocides (triclosan), insecticides (lindane), herbicides (atrazine), phenolic estrogen (bisphenol A), and polycyclic aromatic hydrocarbons (phenanthrene and pyrene). Following an incubation period (48 h), the treated leaves were rinsed with water, and both the solution used to rinse them and the leaves themselves were independently analyzed to investigate the foliar sorption and uptake of the spiked organic contaminants through cuticle. The results showed that the foliar sorption of emerging and priority microcontaminants in leaves wetted by irrigation practices is related to their polarity (logD(ow)) and volatility (logk(H)), regardless of their compound class and the relative humidity. The results thus underscore the need to improve the quality of reclaimed water in crop irrigation, particularly when sprinkle irrigation is used. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jenkins, M.
2012-12-01
Over the course of 9 years, an international multidisciplinary team of US and Kenyan scientists under the Sustainable Management of Rural Watersheds (SUMAWA) Project, based at Egerton University in Kenya, worked with Kenyan public agencies to apply a variety of participatory methods and outreach activities combined with land use mapping, hydrologic and water system modeling, and other scientific tools and evaluations to investigate and identify solutions to declining water quantity and quality problems affecting communities and environmental and productive sectors in the River Njoro Watershed in Kenya. Traditional participatory rural appraisal techniques were modified to engage low income, informal, and tribal communities in identification of local services, benefits, and groups linked to water and riparian resources and collect their perceptions of water-related problems, priorities, and solution options throughout the watershed. Building on this foundation of insights, information, and engagement on water issues with local communities and other stakeholders, the project designed a research agenda aimed at creating shared scientific understanding of the causes of identified problems and developing and testing promising interventions to address community and stakeholder priority concerns. This presentation will share lessons from the SUMAWA experience of using a problem-driven, solution-oriented, community-based watershed approach to address water resource problems at local scale in a semi-arid African developing country setting.
Lake trout spawning habitat in the Great Lakes - a review of current knowledge
Marsden, J. Ellen; Casselman, John M.; Edsall, Thomas A.; Elliott, Robert F.; Fitzsimons, John D.; Horns, William H.; Manny, Bruce A.; McAughey, Scott C.; Sly, Peter G.; Swanson, Bruce L.
1995-01-01
We review existing information on lake trout spawning habitat, which might indicate whether habitat is now a limiting factor in lake trout reproductive success. Lake trout spawning habitat quality is defined by the presence or absence of olfactory cues for homing, reef location with respect to the shoreline, water depth, proximity to nursery areas, reef size, contour, substrate size and shape, depth of interstitial spaces, water temperature at spawning time, water quality in interstitial spaces, and the presence of egg and fry predators. Data on factors which attracted native spawners to spawning reefs are lacking, due to the absence of historic data on egg deposition. No direct evidence of egg deposition has been collected from sites deeper than 18 m. Interstitial space and, therefore, substrate size and shape, appear to be critical for both site selection by adults and protection of eggs and fry. Water quality is clearly important for egg incubation, but the critical parameters which define water quality have not yet been well determined in the field. Exposure to wave energy, dictated in part by reef location, may maintain high water quality but may also damage or dislodge eggs. The importance of olfactory cues, water temperature, and proximity to nursery habitat to spawning trout is unclear. Limited data suggest that egg and fry predators, particularly exotic species, may critically affect fry production and survival. Although availability of physical spawning habitat is probably not limiting lake trout reproduction, changes in water quality and species composition may negatively affect early life stages. This review of habitat factors that affect early life stages of lake trout suggests several priorities for research and management.
Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth
2014-01-01
Groundwater quality in the approximately 653-square-mile (1,691-square-kilometer) South Coast Interior Basins (SCI) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The South Coast Interior Basins study unit contains eight priority groundwater basins grouped into three study areas, Livermore, Gilroy, and Cuyama, in the Southern Coast Ranges hydrogeologic province. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA South Coast Interior Basins study was designed to provide a spatially unbiased assessment of untreated (raw) groundwater quality within the primary aquifer system, as well as a statistically consistent basis for comparing water quality between basins. The assessment was based on water-quality and ancillary data collected by the USGS from 50 wells in 2008 and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH database for the SCI study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as trace elements and minor ions. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifer system of the SCI study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration greater than 1.0 indicates a concentration greater than a benchmark, and a relative-concentration less than or equal to 1.0 indicates a concentration equal to or less than a benchmark. Relative-concentrations of organic constituents and special-interest constituents were classified as “high” (relative-concentration greater than 1.0), “moderate” (relative-concentration greater than 0.1 and less than or equal to 1.0), or “low” (relative-concentration less than or equal to 0.1). Relative-concentrations of inorganic constituents were classified as “high” (relative-concentration greater than 1.0), “moderate” (relative-concentration greater than 0.5 and less than or equal to 1.0), or “low” (relative-concentration less than or equal to 0.5). Aquifer-scale proportion was used as the primary metric in the status assessment for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifer system with a relative-concentration greater than 1.0 for a particular constituent or class of constituents; percentage is based on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the areal percentage of the primary aquifer system with moderate and low relative-concentrations, respectively. Two statistical approaches—grid-based and spatially weighted—were used to evaluate aquifer-scale proportions for individual constituents and classes of constituents. Grid-based and spatially weighted estimates were comparable in the SCI study unit (within 90-percent confidence intervals). Inorganic constituents (one or more) with health-based benchmarks were detected at high relative-concentrations in 29 percent of the primary aquifer system, at moderate relative-concentrations in 37 percent, and at low relative-concentrations in 34 percent. High aquifer-scale proportions of inorganic constituents primarily reflected high aquifer-scale proportions of nitrate (14 percent), boron (8.6 percent), molybdenum (8.6 percent), and arsenic (5.7 percent). In contrast, the relative-concentrations of organic constituents (one or more) were high in 1.6 percent, moderate in 2.0 percent, and low or not detected in 96 percent of the primary aquifer system. Of the 207 organic and special-interest constituents analyzed for, 15 constituents were detected. Perchlorate was found at moderate relative-concentrations in 34 percent of the aquifer. Two organic constituents were frequently detected (in greater than 10 percent of samples): the trihalomethane chloroform and the herbicide simazine. The second component of this study, the understanding assessment, identified natural and human factors that may have affected groundwater quality by evaluating land use, physical characteristics of the wells, and geochemical conditions of the aquifer. This evaluation was done by using statistical tests of correlations between these potential explanatory factors and water-quality data. Concentrations of arsenic, molybdenum, and manganese were generally greater in anoxic and pre-modern groundwater than other groundwater. In contrast, concentrations of nitrate and perchlorate were significantly higher in oxic and modern groundwater. Concentrations of simazine were greater in modern than pre-modern groundwater. Chloroform detections were positively correlated with greater urban land use. Boron concentrations and chloroform detections were higher in the Livermore study area than in the other study areas of the SCI; total dissolved solids and sulfate concentrations were greater in the Cuyama study area.
Shelton, Jennifer L.; Fram, Miranda S.; Munday, Cathy M.; Belitz, Kenneth
2010-01-01
Groundwater quality in the approximately 25,500-square-mile Sierra Nevada study unit was investigated in June through October 2008, as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Sierra Nevada study was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems in the study unit, and to facilitate statistically consistent comparisons of groundwater quality throughout California. The primary aquifer systems (hereinafter, primary aquifers) are defined by the depth of the screened or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for public and community drinking-water supplies. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. In the Sierra Nevada study unit, groundwater samples were collected from 84 wells (and springs) in Lassen, Plumas, Butte, Sierra, Yuba, Nevada, Placer, El Dorado, Amador, Alpine, Calaveras, Tuolumne, Madera, Mariposa, Fresno, Inyo, Tulare, and Kern Counties. The wells were selected on two overlapping networks by using a spatially-distributed, randomized, grid-based approach. The primary grid-well network consisted of 30 wells, one well per grid cell in the study unit, and was designed to provide statistical representation of groundwater quality throughout the entire study unit. The lithologic grid-well network is a secondary grid that consisted of the wells in the primary grid-well network plus 53 additional wells and was designed to provide statistical representation of groundwater quality in each of the four major lithologic units in the Sierra Nevada study unit: granitic, metamorphic, sedimentary, and volcanic rocks. One natural spring that is not used for drinking water was sampled for comparison with a nearby primary grid well in the same cell. Groundwater samples were analyzed for organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (N-nitrosodimethylamine [NDMA] and perchlorate), naturally occurring inorganic constituents (nutrients, major ions, total dissolved solids, and trace elements), and radioactive constituents (radium isotopes, radon-222, gross alpha and gross beta particle activities, and uranium isotopes). Naturally occurring isotopes and geochemical tracers (stable isotopes of hydrogen and oxygen in water, stable isotopes of carbon, carbon-14, strontium isotopes, and tritium), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. Three types of quality-control samples (blanks, replicates, and samples for matrix spikes) each were collected at approximately 10 percent of the wells sampled for each analysis, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination from sample collection, handling, and analytical procedures was not a significant source of bias in the data for the groundwater samples. Differences between replicate samples were within acceptable ranges, with few exceptions. Matrix-spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, groundwater typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory benchmarks apply to finished drinking water that is served to the consumer, not to untre
NASA Astrophysics Data System (ADS)
Zhao, W.; Zhu, X.
2015-12-01
Water contamination in rivers embedded in urbanizing areas is increasingly affected by anthropogenic factors. The impacts may vary with location, time and water variables particularly in rapidly growing areas with clear urbanization gradients. Therefore, characterizing the temporal trend and identifying responsible divers to water quality changes in areas with different urbanization intensity could greatly improve our knowledge about human-water interactions. We employed geographically weighted regression (GWR) to interpret the determinants of river water quality changes in four urban development zones, i.e. central urban, suburban, central county and rural areas. Monitoring data of 8 variables- permanganate (CODMn), biochemical oxygen demand (BOD), ammonium (NH3-N), petroleum (oil), volatile phenol (VP), phosphorus (TP), mercury (Hg) and lead (Pb) from 33 stations were collected from 2004, 2008 and 2010. Five determinants were identified: urban land use intensity, environmental policies, industrial zone expansion, land use composition, and gross domestic product (GDP). Relationships between these identified determinants and water quality changes showed great variations due to their different nature and sensitivity. Typically, for zones with higher urbanization intensity located in central cities and central counties, urban land use had positive impacts on river water quality improvement. However, in less urbanized areas, rapid urban expansion indicated rapid river water degradation. Environmental policies had distinct influences on river pollution control in highly-urbanized areas, but led to unexpected negative impacts in areas beyond the management priorities. Industrial activities were the major contributor to heavy metal pollution in suburban areas while boosted N, P decrease in central cities. Our study highlighted the importance of "local" management instead of one-size-fits-all system in mitigating undesirable impacts of urbanization on water environment.
Kent, Robert; Belitz, Kenneth
2009-01-01
Ground-water quality in the approximately 1,000-square-mile Upper Santa Ana Watershed study unit (USAW) was investigated from November 2006 through March 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Upper Santa Ana Watershed study was designed to provide a spatially unbiased assessment of raw ground-water quality within USAW, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 99 wells in Riverside and San Bernardino Counties. Ninety of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Nine wells were selected to provide additional understanding of specific water-quality issues identified within the basin (understanding wells). The ground-water samples were analyzed for a large number of organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], 1,4-dioxane, and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen and oxygen in water) and dissolved noble gases also were measured to help identify sources and ages of the sampled ground water. Dissolved gases, and isotopes of nitrogen gas and of dissolved nitrate also were measured in order to investigate the sources and occurrence of nitrate in the study unit. In total, nearly 400 constituents and water-quality indicators were investigated for this study. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. Volatile organic compounds (VOCs) were detected in more than 80 percent of USAW grid wells. Most VOCs detected were at concentrations far less than thresholds established for drinking water to protect human health; however, six wells had VOC concentrations above health-based thresholds. Twenty-four of the 85 VOCs investigated were detected in the study unit;11 were detected in more than 10 percent of the wells. The VOCs detected above health-based thresholds in at least one well were dibromochloropropane (DBCP), tetrachloroethene (PCE), trichloroethene (TCE), carbon tetrachloride, and 1,1-dichoroethene. Pesticide compounds were detected in more than 75 percent of the grid wells. However, of the 134 different pesticide compounds investigated, 13 were detected at concentrations greater than their respective long-term method detection limits, and only 7 compounds (all herbicides or herbicide degradates) were detected in more than 10 percent of the wells. No pesticide compound was detected above its health-based threshold, although thresholds exist for fewer than half of the pesticide compounds investigat
Status and understanding of groundwater quality in the northern San Joaquin Basin, 2005
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.
2010-01-01
Groundwater quality in the 2,079 square mile Northern San Joaquin Basin (Northern San Joaquin) study unit was investigated from December 2004 through February 2005 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 that was passed by the State of California and is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The Northern San Joaquin study unit was the third study unit to be designed and sampled as part of the Priority Basin Project. Results of the study provide a spatially unbiased assessment of the quality of raw (untreated) groundwater, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 61 wells in parts of Alameda, Amador, Calaveras, Contra Costa, San Joaquin, and Stanislaus Counties; 51 of the wells were selected using a spatially distributed, randomized grid-based approach to provide statistical representation of the study area (grid wells), and 10 of the wells were sampled to increase spatial density and provide additional information for the evaluation of water chemistry in the study unit (understanding/flowpath wells). The primary aquifer systems (hereinafter, primary aquifers) assessed in this study are defined by the depth intervals of the wells in the California Department of Public Health database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource; and (2) understanding, identification of the natural and human factors affecting groundwater quality. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. Benchmarks used in this study were either health-based (regulatory and non-regulatory) or aesthetic based (non-regulatory). For inorganic constituents, relative-concentrations were classified as high (equal to or greater than 1.0), indicating relative-concentrations greater than benchmarks; moderate (equal to or greater than 0.5, and less than 1.0); or, low (less than 0.5). For organic and special- interest constituents [1,2,3-trichloropropane (1,2,3-TCP), N-nitrosodimethylamine (NDMA), and perchlorate], relative- concentrations were classified as high (equal to or greater than 1.0); moderate (equal to or greater than 0.1 and less than 1.0); or, low (less than 0.1). Aquifer-scale proportion was used as the primary metric in the status assessment for groundwater quality. High aquifer- scale proportion is defined as the percentage of the primary aquifer with relative-concentrations greater than 1.0; moderate and low aquifer-scale proportions are defined as the percentage of the primary aquifer with moderate and low relative- concentrations, respectively. The methods used to calculate aquifer-scale proportions are based on an equal-area grid; thus, the proportions are areal rather than volumetric. Two statistical approaches - grid-based, which used one value per grid cell, and spatially weighted, which used the full dataset - were used to calculate aquifer-scale proportions for individual constituents and classes of constituents. The spatially weighted estimates of high aquifer-scale proportions were within the 90-percent confidence intervals of the grid-based estimates in all cases. The understanding assessment used statistical correlations between constituent relative-concentrations and
Hubbard, Gill; Taylor, Claire; Beeken, Becca; Campbell, Anna; Gracey, Jackie; Grimmett, Chloe; Fisher, Abi; Ozakinci, Gozde; Slater, Sarah; Gorely, Trish
2017-12-01
There is a recognized need to include patients in setting research priorities. Research priorities identified by people with a stoma are rarely elicited. To improve the quality of life of people with a stoma through use of evidence-based practice based on research priorities set by patients. Online pilot survey publicized in 2016 via United Kingdom stoma charities. People ranked nine stoma-related quality of life topics in order of research priority. People 16 years of age and over who currently have or have had a stoma for treatment for any medical condition. Distributions of the priority scores for each of the nine research topics were examined. Group differences were explored using either the Mann-Whitney U-test or the Kruskal-Wallis test depending on the number of groups. In total, 225 people completed the survey. The most important research priority was pouch leak problems and stoma bag/appliance problems followed by hernia risk. There were statistically significant differences in ranking research priorities between males and females, age, underlying disease that led to a stoma, stoma type and length of time with a stoma. People with a stoma are willing to engage in and set research priorities. The results should contribute towards future research about setting the research agenda for the study of stoma-related concerns that impact quality of life. © 2017 The Authors Health Expectations Published by John Wiley & Sons Ltd.
Álvarez-Romero, Jorge G; Wilkinson, Scott N; Pressey, Robert L; Ban, Natalie C; Kool, Johnathan; Brodie, Jon
2014-12-15
Human-induced changes in flows of water, nutrients, and sediments have impacts on marine ecosystems. Quantifying these changes to systematically allocate management actions is a priority for many areas worldwide. Modeling nutrient and sediment loads and contributions from subcatchments can inform prioritization of management interventions to mitigate the impacts of land-based pollution on marine ecosystems. Among the catchment models appropriate for large-scale applications, N-SPECT and SedNet have been used to prioritize areas for management of water quality in coastal-marine ecosystems. However, an assessment of their relative performance, parameterization, and utility for regional-scale planning is needed. We examined how these considerations can influence the choice between the two models and the areas identified as priorities for management actions. We assessed their application in selected catchments of the Gulf of California, where managing land-based threats to marine ecosystems is a priority. We found important differences in performance between models. SedNet consistently estimated spatial variations in runoff with higher accuracy than N-SPECT and modeled suspended sediment (TSS) loads mostly within the range of variation in observed loads. N-SPECT overestimated TSS loads by orders of magnitude when using the spatially-distributed sediment delivery ratio (SDR), but outperformed SedNet when using a calibrated SDR. Differences in subcatchments' contribution to pollutant loads were principally due to explicit representation of sediment sinks and particulate nutrients by SedNet. Improving the floodplain extent model, and constraining erosion estimates by local data including gully erosion in SedNet, would improve results of this model and help identify effective management responses. Differences between models in the patterns of modeled pollutant supply were modest, but significantly influenced the prioritization of subcatchments for management. Copyright © 2014 Elsevier Ltd. All rights reserved.
Krasovskiy, G N; Rakhmanin, Yu; Egorova, N
2015-01-01
The present study is devoted to theoretical questions of optimization of integrated assessment of the composition and properties of drinking water with the use of the Water Quality Index (WQI) and considering in it all 4 criteria for its hygienic quality-sanitary-toxicological, microbiological, radiation and organoleptic. There is presented a sequence of the analysis of benchmark data of the laboratory study of drinking water, including the selection of priority indices, their distribution into 4 groups according to hygienic criteria, calculations the ratios of real values (C) of indices to their hygiene MPC and the final calculation of the WQI. There is emphasized the importance of classes of hazard of substances, and the need for the special attention to the substances-carcinogens in the integrated assessment of water quality. To overcome the non-equivalence of contributions to the assessment of water quality factors, measured in different units, often disparated in their effect on human health, there are used the principles of combined action at levels below the MCL:C/MPC indices of performance of the unidirectional action are summed (e.g. carcinogenic substances), from indices of the independent action there are selected the most significant ones with the highest values of C/MPC, besides that there are also used counterbalancing factors K determined accordingly to Delphi method, with a maximum values of 5 for carcinogens and the minimum value of 1 for the substances affecting the organoleptic properties ofwater. There is presented the scheme of the final calculation of the value of WQI.
Plumlee, Megan H; Gurr, Christopher J; Reinhard, Martin
2012-11-01
Stream flow augmentation with recycled water has the potential to improve stream habitat and increase potable water supply, but the practice is not yet well understood or documented. The objectives of this report are to present a short review illustrated by a case study, followed by recommendations for future stream flow augmentation projects. Despite the fact that wastewater discharge to streams is commonplace, a water agency pursuing stream flow augmentation with recycled water will face unique challenges. For example, recycled water typically contains trace amounts of organic wastewater-derived compounds (OWCs) for which the potential ecological risks must be balanced against the benefits of an augmentation project. Successful stream flow augmentation with recycled water requires that the lead agency clearly articulate a strong project rationale and identify key benefits. It must be assumed that the public will have some concerns about water quality. Public acceptance may be better if an augmentation project has co-benefits beyond maintaining stream ecosystems, such as improving water system supply and reliability (i.e. potable use offset). Regulatory or project-specific criteria (acceptable concentrations of priority OWCs) would enable assessment of ecosystem impacts and demonstration of practitioner compliance. Additional treatment (natural or engineered) of the recycled water may be considered. If it is not deemed necessary or feasible, existing recycled water quality may be adequate to achieve project goals depending on project rationale, site and water quality evaluation, and public acceptance.
Katner, Adrienne; Lackovic, Michelle; Streva, Kate; Paul, Vanessa; Trachtman, William Clay
2015-01-01
The objective of this assessment was to identify and evaluate data sets for use in the surveillance of arsenic hazards and private well drinking water use in Louisiana. Features, strengths, and limitations of the data sets are described, and prioritization criteria are applied to identify areas in need of further monitoring or outreach. Recent efforts have been made by the Environmental Public Health Tracking Network to evaluate the quality of private well water data for the purpose of supporting state and national surveillance activities. Like most states, Louisiana does not collect or mandate reporting of private well water quality data. Therefore, responding to public concerns about private well water quality requires an identification and evaluation of existing data. Data evaluated include measures of arsenic in groundwater and soil, private well water use, and biomonitoring results. The Environmental Protection Agency's Safe Drinking Water Information System and the US Geological Survey's Water Use data set were the most informative, nationally available data sets for conducting private well water arsenic surveillance. Three priority parishes were identified on the basis of a selection criteria, although all parishes require more private well sampling data. While the data reviewed enabled preliminary identification of parishes in need of monitoring and outreach, data limitations (particularly, a lack of statewide well water quality data) prevent a comprehensive evaluation of well water arsenic hazards and private well water use. A large number of unregistered wells further impede risk determination. Reliance on existing data sources is necessary, but development of metadata documentation is essential to prevent data misinterpretation. Increased outreach and policies to promote or mandate private well testing and reporting are needed to enable a comprehensive private well water tracking system.
Structural marsh management research priorities
Cahoon, Donald R.; Groat, Charles G.
1989-01-01
The paper presents a prioritized list of research issues related to structural marsh management developed by a multidisciplinary panel of regulatory agency representatives, landowners, and scientists. More than 75 issues were identified concerning landscape changes, influence on ecological processes (i.e., hydrologic, biologic, and edaphic factors), habitat quality, cumulative impacts, and management approach. These issues were prioritized and organized around six basic questions regulatory personnel must try to answer for each marsh management plan application. The six questions deal with the influence of marsh management on, in order of most immediate need, marsh loss and health, fisheries, wildlife, habitat change, water quality, and cumulative effects.
NASA Astrophysics Data System (ADS)
Hogue, T. S.; Rust, A.
2016-12-01
Fire frequency is increasing across mid-elevation forests, especially in the Northern Rockies, Sierra Nevada, southern Cascades, as well as the coastal ranges in California and southern Oregon. Numerous studies have noted increased discharge, floods and debris flows after wildfire. More recent work also shows increased water yield during dry seasons for up to ten years post-fire. However, few studies have evaluated long-term water quality response in fire-impacted watersheds. The current presentation will overview recent development of an extensive database on post-fire water quality response across the western U.S. A range of water quality parameters were gathered from 271 burned watersheds through local, state and federal agencies. Short and long-term response was evaluated for watersheds with at least 5 years of pre-fire data. Over 30 watersheds showed significant increases in NO3-, NO2-, NH3, and total nitrogen loading in the initial five years after fire and remained elevated ten years after fire. The burn severity influenced the degree of nitrogen response, where more severely burned watersheds showed higher nitrogen loading than less severely burned watersheds. Dissolved and total phosphorous showed significant increases in 32 watersheds for the first five years after fire. Dissolved ions such as calcium, magnesium, and chloride were also exported from over 32 watersheds, primarily during the first five years after fire, with the majority of impacted watersheds returning to pre-fire water quality conditions after ten years. Ongoing work includes evaluating key determinants that drive short and long-term response and developing predictive models for post-fire water quality. Watersheds impacted by wildfire are known to pose significant risks for downstream communities. Understanding short and long-term water quality change that can impact regional water supplies is critical for establishing potential treatment priorities and alternative source planning.
Kent, Robert; Landon, Matthew K.
2016-01-01
From 2004 to 2011, the U.S. Geological Survey collected samples from 1686 wells across the State of California as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project (PBP). From 2007 to 2013, 224 of these wells were resampled to assess temporal trends in water quality. The samples were analyzed for 216 water-quality constituents, including inorganic and organic compounds as well as isotopic tracers. The resampled wells were grouped into five hydrogeologic zones. A nonparametric hypothesis test was used to test the differences between initial sampling and resampling results to evaluate possible step trends in water-quality, statewide, and within each hydrogeologic zone. The hypothesis tests were performed on the 79 constituents that were detected in more than 5 % of the samples collected during either sampling period in at least one hydrogeologic zone. Step trends were detected for 17 constituents. Increasing trends were detected for alkalinity, aluminum, beryllium, boron, lithium, orthophosphate, perchlorate, sodium, and specific conductance. Decreasing trends were detected for atrazine, cobalt, dissolved oxygen, lead, nickel, pH, simazine, and tritium. Tritium was expected to decrease due to decreasing values in precipitation, and the detection of decreases indicates that the method is capable of resolving temporal trends.
Improving Water Management Decision Support Tools Using NASA Satellite and Modeling Data
NASA Astrophysics Data System (ADS)
Toll, D. L.; Arsenault, K.; Nigro, J.; Pinheiro, A.; Engman, E. T.; Triggs, J.; Cosgrove, B.; Alonge, C.; Boyle, D.; Allen, R.; Townsend, P.; Ni-Meister, W.
2006-05-01
One of twelve Applications of National priority within NASA's Applied Science Program, the Water Management Program Element addresses concerns and decision making related to water availability, water forecast and water quality. The goal of the Water Management Program Element is to encourage water management organizations to use NASA Earth science data, models products, technology and other capabilities in their decision support tools for problem solving. The Water Management Program Element partners with Federal agencies, academia, private firms, and may include international organizations. This paper further describes the Water Management Program with the objective of informing the applications community of the potential opportunities for using NASA science products for problem solving. We will illustrate some ongoing and application Water Management projects evaluating and benchmarking NASA data with partnering federal agencies and their decision support tools: 1) Environmental Protection Agency for water quality; 2) Bureau of Reclamation for water supply, demand and forecast; and 3) NOAA National Weather Service for improved weather prediction. Examples of the types of NASA contributions to the these agency decision support tools include: 1) satellite observations within models assist to estimate water storage, i.e., snow water equivalent, soil moisture, aquifer volumes, or reservoir storages; 2) model derived products, i.e., evapotranspiration, precipitation, runoff, ground water recharge, and other 4-dimensional data assimilation products; 3) improve water quality, assessments by using improved inputs from NASA models (precipitation, evaporation) and satellite observations (e.g., temperature, turbidity, land cover) to nonpoint source models; and 4) water (i.e., precipitation) and temperature predictions from days to decades over local, regional and global scales.
Leib, Kenneth J.; Mast, M. Alisa; Wright, Winfield G.
2003-01-01
One of the important types of information needed to characterize water quality in streams affected by historical mining is the seasonal pattern of toxic trace-metal concentrations and loads. Seasonal patterns in water quality are estimated in this report using a technique called water-quality profiling. Water-quality profiling allows land managers and scientists to assess priority areas to be targeted for characterization and(or) remediation by quantifying the timing and magnitude of contaminant occurrence. Streamflow and water-quality data collected at 15 sites in the upper Animas River Basin during water years 1991?99 were used to develop water-quality profiles. Data collected at each sampling site were used to develop ordinary least-squares regression models for streamflow and constituent concentrations. Streamflow was estimated by correlating instantaneous streamflow measured at ungaged sites with continuous streamflow records from streamflow-gaging stations in the subbasin. Water-quality regression models were developed to estimate hardness and dissolved cadmium, copper, and zinc concentrations based on streamflow and seasonal terms. Results from the regression models were used to calculate water-quality profiles for streamflow, constituent concentrations, and loads. Quantification of cadmium, copper, and zinc loads in a stream segment in Mineral Creek (sites M27 to M34) was presented as an example application of water-quality profiling. The application used a method of mass accounting to quantify the portion of metal loading in the segment derived from uncharacterized sources during different seasonal periods. During May, uncharacterized sources contributed nearly 95 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 85 percent of the zinc load at M34. During September, uncharacterized sources contributed about 86 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 52 percent of the zinc load at M34. Characterized sources accounted for more of the loading gains estimated in the example reach during September, possibly indicating the presence of diffuse inputs during snowmelt runoff. The results indicate that metal sources in the upper Animas River Basin may change substantially with season, regardless of the source.
Framework for characterization. (Revised final report March 1992). Technical pub
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsay, M.; Boynton, W.; Clark, P.
1992-03-01
The Tampa Bay National Estuary Program (TBNEP) was established in 1990 to develop a comprehensive conservation and management plan, a program to restore and protect Tampa Bay and its resources. The process of identifying the problems of the bay and linking problems to causes is prerequisite to developing the CCMP and is known as characterization. Characterization workshops were held in June and July 1991 to (1) guide the characterization process toward areas of greatest information needs; (2) contribute to the development of a preliminary bay characterization report; and (3) develop a depiction of bay ecosystem components and interrelationships. The workshopsmore » focused on two categories of priority problems: living resources and water quality deterioration. Priority information needs include estuarine seagrasses, low-salinity habitats, and benthic habitats. Refinement of a nitrogen input budget and establishment of cause-effect relationships among nutrient loading dissolved oxygen concentrations and the distribution of seagrass and benthic communities were also identified as priority information needs.« less
McKenzie, Emily; Potestio, Melissa L; Boyd, Jamie M; Niven, Daniel J; Brundin-Mather, Rebecca; Bagshaw, Sean M; Stelfox, Henry T
2017-12-01
Providers have traditionally established priorities for quality improvement; however, patients and their family members have recently become involved in priority setting. Little is known about how to reconcile priorities of different stakeholder groups into a single prioritized list that is actionable for organizations. To describe the decision-making process for establishing consensus used by a diverse panel of stakeholders to reconcile two sets of quality improvement priorities (provider/decision maker priorities n=9; patient/family priorities n=19) into a single prioritized list. We employed a modified Delphi process with a diverse group of panellists to reconcile priorities for improving care of critically ill patients in the intensive care unit (ICU). Proceedings were audio-recorded, transcribed and analysed using qualitative content analysis to explore the decision-making process for establishing consensus. Nine panellists including three providers, three decision makers and three family members of previously critically ill patients. Panellists rated and revised 28 priorities over three rounds of review and reached consensus on the "Top 5" priorities for quality improvement: transition of patient care from ICU to hospital ward; family presence and effective communication; delirium screening and management; early mobilization; and transition of patient care between ICU providers. Four themes were identified as important for establishing consensus: storytelling (sharing personal experiences), amalgamating priorities (negotiating priority scope), considering evaluation criteria and having a priority champion. Our study demonstrates the feasibility of incorporating families of patients into a multistakeholder prioritization exercise. The approach described can be used to guide consensus building and reconcile priorities of diverse stakeholder groups. © 2017 The Authors Health Expectations Published by John Wiley & Sons Ltd.
Richter, Janine; Fettig, Ina; Philipp, Rosemarie; Jakubowski, Norbert
2015-07-01
Tributyltin is listed as one of the priority substances in the European Water Framework Directive (WFD). Despite its decreasing input in the environment, it is still present and has to be monitored. In the European Metrology Research Programme project ENV08, a sensitive and reliable analytical method according to the WFD was developed to quantify this environmental pollutant at a very low limit of quantification. With the development of such a primary reference method for tributyltin, the project helped to improve the quality and comparability of monitoring data. An overview of project aims and potential analytical tools is given.
Zhang, Changbo; Yan, Cong; Xue, Zhenjie; Yu, Wei; Xie, Yinde; Wang, Tie
2016-10-01
Copper sulfides (Cu 2-x S), are a novel kind of photothermal material exhibiting significant photothermal conversion efficiency, making them very attractive in various energy conversion related devices. Preparing high quality uniform Cu 2-x S nanocrystals (NCs) is a top priority for further energy-and sustainability relevant nanodevices. Here, a shape-controlled high quality Cu 7 S 4 NCs synthesis strategy is reported using sulfur in 1-octadecene as precursor by varying the heating temperature, as well as its forming mechanism. The performance of the Cu 7 S 4 NCs is further explored for light-driven water evaporation without the need of heating the bulk liquid to the boiling point, and the results suggest that as-synthesized highly monodisperse NCs perform higher evaporation rate than polydisperse NCs under the identical morphology. Furthermore, disk-like NCs exhibit higher water evaporation rate than spherical NCs. The water evaporation rate can be further enhanced by assembling the organic phase Cu 7 S 4 NCs into a dense film on the aqueous solution surface. The maximum photothermal conversion efficiency is as high as 77.1%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Environmental indicators for sustainable production of algal biofuels
Efroymson, Rebecca A.; Dale, Virginia H.
2014-10-01
For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as themore » growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of the stakeholders, and financial constraints. Ultimately, use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.« less
Reexamining competitive priorities: Empirical study in service sector
NASA Astrophysics Data System (ADS)
Idris, Fazli; Mohammad, Jihad
2015-02-01
The general objective of this study is to validate the multi-level concept of competitive priorities using reflective-formative model at a higher order for service industries. An empirical study of 228 firms from 9 different service industries is conducted to answer the objective of this study. Partial least square analysis with SmartPLS 2.0 was used to perform the analysis. Finding revealed six priorities: cost, flexibility, delivery, quality talent management, quality tangibility, and innovativeness. It emerges that quality are expanded into two types; one is related to managing talent for process improvement and the second one is the physical appearance and tangibility of the service quality. This study has confirmed competitive priorities as formative second-order hierarchical latent construct by using rigorous empirical evidence. Implications, limitation and suggestion for future research are accordingly discussed in this paper.
The U.S. Geological Survey Federal-State cooperative water-resources program
Gilbert, Bruce K.; Buchanan, Thomas J.
1981-01-01
The U.S. Geological Survey Federal-State Cooperative Water Resources Program is a partnership between the Geological Survey and State and local agencies for the collection of the hydrologic information needed for the continuing determination and evaluation of the quantity, quality, and use of the Nation 's water resources. The Cooperative Program has served the Nation for more than 80 years, and in 1981 more than 800 State and local agencies have cooperative programs with the Geological Survey with total funding over $80 million. The process of project selection in the Cooperative Water Resources Program is a mutual effort in which Geological Survey represents national interests, including the needs of other Federal agencies, and the cooperator represents State and local interests. The result is a balanced program that involves careful evaluation of needs, priorities, and resources. The cost sharing ratio of 50-50 is examined and determined to be the best ratio to effectively assess the Nation 's water resources. The Cooperative Program is and has been relevant to the problems of the day. Much of the current technology in ground-water management, ground-water quality, and flood-plain management--to name a few--was developed as part of the Cooperative Program. (USGS)
Irrigation, risk aversion, and water right priority under water supply uncertainty
NASA Astrophysics Data System (ADS)
Li, Man; Xu, Wenchao; Rosegrant, Mark W.
2017-09-01
This paper explores the impacts of a water right's allocative priority—as an indicator of farmers' risk-bearing ability—on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right-truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to 141.4 acre-1 or 55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority-based water sharing mechanism.
Crock, James G.; Smith, David B.; Yager, Tracy J.B.
2006-01-01
Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colorado, has applied Grade I, Class B biosolids to about 52,000 acres of non-irrigated farmland and rangeland near Deer Trail, Colorado. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring ground water at part of this site. In 1999, the USGS began a more comprehensive study of the entire site to address stakeholder concerns about the chemical effects of biosolids applications. This more comprehensive monitoring program has recently been extended through 2010. Monitoring components of the more comprehensive study included biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock ground water, and stream bed sediment. Streams at the site are dry most of the year, so samples of stream bed sediment deposited after rain were used to indicate surface-water effects. This presentation will only address biosolids, soil, and crops. More information about these and the other monitoring components are presented in the literature (e.g., Yager and others, 2004a, b, c, d) and at the USGS Web site for the Deer Trail area studies at http://co.water.usgs.gov/projects/CO406/CO406.html. Priority parameters identified by the stakeholders for all monitoring components, included the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross alpha and beta activity, regulated by Colorado for biosolids to be used as an agricultural soil amendment. Nitrogen and chromium also were priority parameters for ground water and sediment components. In general, the objective of each component of the study was to determine whether concentrations of priority parameters (1) were higher than regulatory limits, (2) were increasing with time, or (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied. Where sufficient samples could be collected, statistical methods were used to evaluate effects. Rigorous quality assurance was included in all aspects of the study. The roles of hydrology and geology also were considered in the design, data collection, and interpretation phases of the study. Study results indicate that the chemistry of the biosolids from the Denver plant was consistent during 1999-2005, and total concentrations of regulated trace elements were consistently lower than the regulatory limits. Plutonium isotopes were not detected in the biosolids. Leach tests using deionized water to simulate natural precipitation indicate arsenic, molybdenum, and nickel were the most soluble priority parameters in the biosolids. Study results show no significant difference in concentrations of priority parameters between biosolids-applied soils and unamended soils where no biosolids were applied. However, biosolids were applied only twice during 1999-2003. The next soil sampling is not scheduled until 2010. To date concentrations of most of the priority parameters were not much greater in the biosolids than in natural soil from the sites. Therefore, many more biosolids applications would need to occur before biosolids effects on the soil priority constituents can be quantified. Leach tests using deionized water to simulate precipitation indicate that molybdenum and selenium were the priority parameters that were most soluble in both biosolids-applied soil and natural or unamended soil. Study results do not indicate significant differences in concentrations of priority parameters between crops grown in biosolids-applied areas and crops grown where no biosolids were applied. However, crops were grown only twice during 1999-2003, so only two crop samples could be collected. The wheat-grain elemental data collected during 1999-2003 for both biosolids-applied areas and unamended areas are similar
Agriculture — A river runs through it — The connections between agriculture and water quality
Capel, Paul D.; McCarthy, Kathleen A.; Coupe, Richard H.; Grey, Katia M.; Amenumey, Sheila E.; Baker, Nancy T.; Johnson, Richard L.
2018-06-06
Sustaining the quality of the Nation’s water resources and the health of our diverse ecosystems depends on the availability of sound water-resources data and information to develop effective, science-based policies. Effective management of water resources also brings more certainty and efficiency to important economic sectors. Taken together, these actions lead to immediate and longterm economic, social, and environmental benefits that make a difference to the lives of the almost 400 million people projected to live in the United States by 2050.In 1991, Congress established the U.S. Geological Survey National Water-Quality Assessment (NAWQA) to address where, when, why, and how the Nation’s water quality has changed, or is likely to change in the future, in response to human activities and natural factors. Since then, NAWQA has been a leading source of scientific data and knowledge used by national, regional, state, and local agencies to develop science-based policies and management strategies to improve and protect water resources used for drinking water, recreation, irrigation, energy development, and ecosystem needs. Plans for the third decade of NAWQA (2013–23) address priority water-quality issues and science needs identified by NAWQA stakeholders, such as the Advisory Committee on Water Information and the National Research Council, and are designed to meet increasing challenges related to population growth, increasing needs for clean water, and changing land-use and weather patterns.This report is one of a series of publications, The Quality of Our Nation’s Waters, which describes major findings of the NAWQA Project on water-quality issues of regional and national concern and provides science-based information for assessing and managing the quality of our groundwater resources. Other reports in this series focus on occurrence and distribution of nutrients, pesticides, and volatile organic compounds in streams and groundwater, the effects of contaminants and stream-flow alteration on the condition of aquatic communities in streams, and on the quality of groundwater from private domestic and public supply wells. Each reports builds toward a more comprehensive understanding of the quality of regional and national water resources. All NAWQA reports are available online (https://water.usgs.gov/nawqa/bib/).We hope this publication will provide you with insights and information to meet your water-resource needs and will foster increased citizen awareness and involvement in the protection and restoration of our Nation’s waters. The information in this report is intended primarily for those interested or involved in resource management and protection, conservation, regulation, and policymaking at the regional and national levels.
USGS California Water Science Center water programs in California
Shulters, Michael V.
2005-01-01
California is threatened by many natural hazards—fire, floods, landslides, earthquakes. The State is also threatened by longer-term problems, such as hydrologic effects of climate change, and human-induced problems, such as overuse of ground water and degradation of water quality. The threats and problems are intensified by increases in population, which has risen to nearly 36.8 million. For the USGS California Water Science Center, providing scientific information to help address hazards, threats, and hydrologic issues is a top priority. To meet the demands of a growing California, USGS scientific investigations are helping State and local governments improve emergency management, optimize resources, collect contaminant-source and -mobility information, and improve surface- and ground-water quality. USGS hydrologic studies and data collection throughout the State give water managers quantifiable and detailed scientific information that can be used to plan for development and to protect and more efficiently manage resources. The USGS, in cooperation with state, local, and tribal agencies, operates more than 500 instrument stations, which monitor streamflow, ground-water levels, and surface- and ground-water constituents to help protect water supplies and predict the threats of natural hazards. The following are some of the programs implemented by the USGS, in cooperation with other agencies, to obtain and analyze information needed to preserve California's environment and resources.
Li, Lei; Wang, Tie-yu; Wang, Xiaojun; Xiao, Rong-bo; Li, Qi-feng; Peng, Chi; Han, Cun-liang
2016-04-15
Based on comprehensive consideration of soil environmental quality, pollution status of river, environmental vulnerability and the stress of pollution sources, a technical method was established for classification of priority area of soil environmental protection around the river-style water sources. Shunde channel as an important drinking water sources of Foshan City, Guangdong province, was studied as a case, of which the classification evaluation system was set up. In detail, several evaluation factors were selected according to the local conditions of nature, society and economy, including the pollution degree of heavy metals in soil and sediment, soil characteristics, groundwater sensitivity, vegetation coverage, the type and location of pollution sources. Data information was mainly obtained by means of field survey, sampling analysis, and remote sensing interpretation. Afterwards, Analytical Hierarchy Process (AHP) was adopted to decide the weight of each factor. The basic spatial data layers were set up respectively and overlaid based on the weighted summation assessment model in Geographical Information System (GIS), resulting in a classification map of soil environmental protection level in priority area of Shunde channel. Accordingly, the area was classified to three levels named as polluted zone, risky zone and safe zone, which respectively accounted for 6.37%, 60.90% and 32.73% of the whole study area. Polluted zone and risky zone were mainly distributed in Lecong, Longjiang and Leliu towns, with pollutants mainly resulted from the long-term development of aquaculture and the industries containing furniture, plastic constructional materials and textile and clothing. In accordance with the main pollution sources of soil, targeted and differentiated strategies were put forward. The newly established evaluation method could be referenced for the protection and sustainable utilization of soil environment around the water sources.
NASA Astrophysics Data System (ADS)
Rounds, S. A.; Buccola, N. L.
2014-12-01
The two-dimensional (longitudinal, vertical) water-quality model CE-QUAL-W2, version 3.7, was enhanced with new features to help dam operators and managers efficiently explore and optimize potential solutions for temperature management downstream of thermally stratified reservoirs. Such temperature management often is accomplished by blending releases from multiple dam outlets that access water of different temperatures at different depths in the reservoir. The original blending algorithm in this version of the model was limited to mixing releases from two outlets at a time, and few constraints could be imposed. The new enhanced blending algorithm allows the user to (1) specify a time-series of target release temperatures, (2) designate from 2 to 10 floating or fixed-elevation outlets for blending, (3) impose maximum head constraints as well as minimum and maximum flow constraints for any blended outlet, and (4) set a priority designation for each outlet that allows the model to choose which outlets to use and how to balance releases among them. The modified model was tested against a previously calibrated model of Detroit Lake on the North Santiam River in northwestern Oregon, and the results compared well. The enhanced model code is being used to evaluate operational and structural scenarios at multiple dam/reservoir systems in the Willamette River basin in Oregon, where downstream temperature management for endangered fish is a high priority for resource managers and dam operators. These updates to the CE-QUAL-W2 blending algorithm allow scenarios involving complicated dam operations and/or hypothetical outlet structures to be evaluated more efficiently with the model, with decreased need for multiple/iterative model runs or preprocessing of model inputs to fully characterize the operational constraints.
Alley, William M.
2013-01-01
Transboundary aquifers are an essential, and in many cases, singular source of water for United States – Mexico border communities, particularly in arid regions. Declining water levels, deteriorating water quality, and increasing use of groundwater resources by municipal, industrial, and agricultural water users on both sides of the international border have raised concerns about the long-term availability of this supply. Water quantity and quality are determining and limiting factors that ultimately control agriculture, future economic development, population growth, human health, and ecological conditions along the border. Knowledge about the extent, depletion rates, and quality of transboundary aquifers, however, is limited and, in some areas, completely absent. The U.S. – Mexico Transboundary Aquifer Assessment Act (Public Law 109-448), referred to in this report as “the Act,” was signed into law by the President of the United States on December 22, 2006, to conduct binational scientific research to systematically assess priority transboundary aquifers and to address water information needs of border communities. The Act authorizes the Secretary of the Interior, through the U.S. Geological Survey (USGS), to collaborate with the States of Arizona, New Mexico, and Texas through their Water Resources Research Institutes (WRRIs) and with the International Boundary and Water Commission (IBWC), stakeholders, and Mexican counterparts to provide new information and a scientific foundation for State and local officials to address pressing water-resource challenges along the U.S. – Mexico border.
Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming
2017-01-01
Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr6+ in groundwater was detected to further study chromium contamination. Cr6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion. PMID:28703781
Li, Fei; Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming
2017-07-13
Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr 6+ in groundwater was detected to further study chromium contamination. Cr 6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr 6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr 6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion.
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth
2014-01-01
Groundwater quality in the Klamath Mountains (KLAM) study unit was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in Del Norte, Humboldt, Shasta, Siskiyou, Tehama, and Trinity Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA Priority Basin Project was designed to provide a spatially unbiased, statistically robust assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality data and explanatory factors for groundwater samples collected in 2010 by the USGS from 39 sites and on water-quality data from the California Department of Public Health (CDPH) water-quality database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH water-quality database for the KLAM study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study included two types of assessments: (1) a status assessment, which characterized the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds, pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the KLAM study unit, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations divided by the health- or aesthetic-based benchmark concentrations) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration greater than (>) 1.0 indicates a concentration greater than a benchmark, and a relative-concentration less than or equal to (≤) 1.0 indicates a concentration less than or equal to a benchmark. Relative-concentrations of organic constituents were classified as “high” (relative-concentration > 1.0), “moderate” (0.1 Aquifer-scale proportion was used in the status assessment as the primary metric for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifer system with a relative-concentration greater than 1.0 for a particular constituent or class of constituents; percentage is based on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentages of the primary aquifer system with moderate and low relative-concentrations, respectively. The KLAM study unit includes more than 8,800 square miles (mi2), but only those areas near the sampling sites, about 920 mi2, are included in the areal assessment of the study unit. Two statistical approaches—grid-based and spatially weighted—were used to evaluate aquifer-scale proportions for individual constituents and classes of constituents. To confirm this methodology, 90 percent confidence intervals were calculated for the grid-based high aquifer-scale proportions and were compared to the spatially weighted results, which were found to be within these confidence intervals in all cases. Grid-based results were selected for use in the status assessment unless, as was observed in a few cases, a grid-based result was zero and the spatially weighted result was not zero, in which case, the spatially weighted result was used. The status assessment showed that inorganic constituents with human-health benchmarks were detected at high relative-concentrations in 2.6 percent of the primary aquifer system and at moderate relative-concentrations in 10 percent of the system. The high aquifer-scale proportion for inorganic constituents mainly reflected the high aquifer-scale proportions of boron. Inorganic constituents with secondary maximum contaminant levels were detected at high relative-concentrations in 13 percent of the primary aquifer system and at moderate relative-concentrations in 10 percent of the system. The constituents present at high relative-concentrations included iron and manganese. Organic constituents with human-health benchmarks were not detected at high relative-concentrations, but were detected at moderate relative-concentrations in 1.9 percent of the primary aquifer system. The 1.9 percent reflected a spatially weighted moderate aquifer-scale proportion for the gasoline additive methyl tert-butyl ether. Of the 148 organic constituents analyzed, 14 constituents were detected. Only one organic constituent had a detection frequency of greater than 10 percent—the trihalomethane, chloroform. The second component of this study, the understanding assessment, identified the natural and human factors that may have affected the groundwater quality in the KLAM study unit by evaluating statistical correlations between water-quality constituents and potential explanatory factors. The potential explanatory factors evaluated were aquifer lithology, land use, hydrologic conditions, depth, groundwater age, and geochemical conditions. Results of the statistical evaluations were used to explain the occurrence and distribution of constituents in the KLAM study unit. Groundwater age distribution (modern, mixed, or pre-modern), redox class (oxic, mixed, or anoxic), and dissolved oxygen concentration were the explanatory factors that best explained occurrence patterns of the inorganic constituents. High concentrations of boron were found to be associated with groundwater classified as mixed or pre-modern with respect to groundwater age. Boron was also negatively correlated to dissolved oxygen and positively correlated to specific conductance. Iron and manganese concentrations were strongly associated with low dissolved oxygen concentrations, anoxic and mixed redox classifications, and pre-modern groundwater. Specific conductance concentrations were found to be related to pre-modern groundwater, low dissolved oxygen concentrations, and high pH. Chloroform was selected for additional evaluation in the understanding assessment because it was detected in more than 10 percent of wells sampled in the KLAM study unit. Septic tank density was the only explanatory factor that was found to relate to chloroform concentrations.
40 CFR 146.9 - Criteria for establishing permitting priorities.
Code of Federal Regulations, 2010 CFR
2010-07-01
....9 Criteria for establishing permitting priorities. In determining priorities for setting times for... priorities. 146.9 Section 146.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... (a), (c), (g) or § 144.22(f), the Director shall base these priorities upon consideration of the...
Decision support for water quality management of contaminants of emerging concern.
Fischer, Astrid; Ter Laak, Thomas; Bronders, Jan; Desmet, Nele; Christoffels, Ekkehard; van Wezel, Annemarie; van der Hoek, Jan Peter
2017-05-15
Water authorities and drinking water companies are challenged with the question if, where and how to abate contaminants of emerging concern in the urban water cycle. The most effective strategy under given conditions is often unclear to these stakeholders as it requires insight into several aspects of the contaminants such as sources, properties, and mitigation options. Furthermore the various parties in the urban water cycle are not always aware of each other's requirements and priorities. Processes to set priorities and come to agreements are lacking, hampering the articulation and implementation of possible solutions. To support decision makers with this task, a decision support system was developed to serve as a point of departure for getting the relevant stakeholders together and finding common ground. The decision support system was iteratively developed in stages. Stakeholders were interviewed and a decision support system prototype developed. Subsequently, this prototype was evaluated by the stakeholders and adjusted accordingly. The iterative process lead to a final system focused on the management of contaminants of emerging concern within the urban water cycle, from wastewater, surface water and groundwater to drinking water, that suggests mitigation methods beyond technical solutions. Possible wastewater and drinking water treatment techniques in combination with decentralised and non-technical methods were taken into account in an integrated way. The system contains background information on contaminants of emerging concern such as physical/chemical characteristics, toxicity and legislative frameworks, water cycle entrance pathways and a database with associated possible mitigation methods. Monitoring data can be uploaded to assess environmental and human health risks in a specific water system. The developed system was received with great interest by potential users, and implemented in an international water cycle network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quality improvement and emerging global health priorities
Mensah Abrampah, Nana; Syed, Shamsuzzoha Babar; Hirschhorn, Lisa R; Nambiar, Bejoy; Iqbal, Usman; Garcia-Elorrio, Ezequiel; Chattu, Vijay Kumar; Devnani, Mahesh; Kelley, Edward
2018-01-01
Abstract Quality improvement approaches can strengthen action on a range of global health priorities. Quality improvement efforts are uniquely placed to reorient care delivery systems towards integrated people-centred health services and strengthen health systems to achieve Universal Health Coverage (UHC). This article makes the case for addressing shortfalls of previous agendas by articulating the critical role of quality improvement in the Sustainable Development Goal era. Quality improvement can stimulate convergence between health security and health systems; address global health security priorities through participatory quality improvement approaches; and improve health outcomes at all levels of the health system. Entry points for action include the linkage with antimicrobial resistance and the contentious issue of the health of migrants. The work required includes focussed attention on the continuum of national quality policy formulation, implementation and learning; alongside strengthening the measurement-improvement linkage. Quality improvement plays a key role in strengthening health systems to achieve UHC. PMID:29873793
Burns, A.W.
1988-01-01
This report describes an interactive-accounting model used to simulate streamflow, chemical-constituent concentrations and loads, and water-supply operations in a river basin. The model uses regression equations to compute flow from incremental (internode) drainage areas. Conservative chemical constituents (typically dissolved solids) also are computed from regression equations. Both flow and water quality loads are accumulated downstream. Optionally, the model simulates the water use and the simplified groundwater systems of a basin. Water users include agricultural, municipal, industrial, and in-stream users , and reservoir operators. Water users list their potential water sources, including direct diversions, groundwater pumpage, interbasin imports, or reservoir releases, in the order in which they will be used. Direct diversions conform to basinwide water law priorities. The model is interactive, and although the input data exist in files, the user can modify them interactively. A major feature of the model is its color-graphic-output options. This report includes a description of the model, organizational charts of subroutines, and examples of the graphics. Detailed format instructions for the input data, example files of input data, definitions of program variables, and listing of the FORTRAN source code are Attachments to the report. (USGS)
Rounds, Stewart A.; Buccola, Norman L.
2015-01-01
Water-quality models allow water resource professionals to examine conditions under an almost unlimited variety of potential future scenarios. The two-dimensional (longitudinal, vertical) water-quality model CE-QUAL-W2, version 3.7, was enhanced and augmented with new features to help dam operators and managers explore and optimize potential solutions for temperature management downstream of thermally stratified reservoirs. Such temperature management often is accomplished by blending releases from multiple dam outlets that access water of different temperatures at different depths. The modified blending algorithm in version 3.7 of CE-QUAL-W2 allows the user to specify a time-series of target release temperatures, designate from 2 to 10 floating or fixed-elevation outlets for blending, impose minimum and maximum head and flow constraints for any blended outlet, and set priority designations for each outlet that allow the model to choose which outlets to use and how to balance releases among them. The modified model was tested with a variety of examples and against a previously calibrated model of Detroit Lake on the North Santiam River in northwestern Oregon, and the results compared well. These updates to the blending algorithms will allow more complicated dam-operation scenarios to be evaluated somewhat automatically with the model, with decreased need for multiple model runs or preprocessing of model inputs to fully characterize the operational constraints.
Alasonati, Enrica; Fettig, Ina; Richter, Janine; Philipp, Rosemarie; Milačič, Radmila; Sčančar, Janez; Zuliani, Tea; Tunç, Murat; Bilsel, Mine; Gören, Ahmet Ceyhan; Fisicaro, Paola
2016-11-01
The European Union (EU) has included tributyltin (TBT) and its compounds in the list of priority water pollutants. Quality standards demanded by the EU Water Framework Directive (WFD) require determination of TBT at so low concentration level that chemical analysis is still difficult and further research is needed to improve the sensitivity, the accuracy and the precision of existing methodologies. Within the frame of a joint research project "Traceable measurements for monitoring critical pollutants under the European Water Framework Directive" in the European Metrology Research Programme (EMRP), four metrological and designated institutes have developed a primary method to quantify TBT in natural water using liquid-liquid extraction (LLE) and species-specific isotope dilution mass spectrometry (SSIDMS). The procedure has been validated at the Environmental Quality Standard (EQS) level (0.2ngL(-1) as cation) and at the WFD-required limit of quantification (LOQ) (0.06ngL(-1) as cation). The LOQ of the methodology was 0.06ngL(-1) and the average measurement uncertainty at the LOQ was 36%, which agreed with WFD requirements. The analytical difficulties of the method, namely the presence of TBT in blanks and the sources of measurement uncertainties, as well as the interlaboratory comparison results are discussed in detail. Copyright © 2016 Elsevier B.V. All rights reserved.
Fagnan, Lyle J; Michaels, LeAnn; Ramsey, Katrina; Shearer, Stefan; Droppers, Oliver; Gallia, Charles
2015-01-01
Responding to quality metrics is an accepted and expected component of the current health care environment. Little is known about which measures physicians identify as a priority when reporting the quality of care to their patients, especially the care of children in rural settings. The objective of this study is for physicians caring for children in rural communities to identify which of the initial core sets of 24 child health quality measures are useful and are a priority for reporting and improving care. A survey was sent to rural Oregon physicians who provide care to children. Of 955 eligible physicians, 172 (18%) completed the survey. The majority of respondents were family physicians (84%), and most respondents (58%) were in private practice. The child health measures stratified into 3 priority tiers: high, medium, and low priority. The top-tier priority measures included childhood immunization status, well-child visits, adolescent immunization status, body mass index assessment, and developmental screening. Dental treatment services, adequate prenatal care, and lower-birth-weight infants were among the lower-tier measures. The priority measures identified by rural family physicians reflect the relevance of the selected measures to their daily practice responsibilities, with missed opportunities to improve community health. © Copyright 2015 by the American Board of Family Medicine.
Preskitt, Julie; Fifolt, Matthew; Ginter, Peter M; Rucks, Andrew; Wingate, Martha S
2016-01-01
The purpose of this article was to describe a methodology to identify continuous quality improvement (CQI) priorities for one state's Maternal, Infant, and Early Childhood Home Visiting program from among the 40 required constructs associated with 6 program benchmarks. The authors discuss how the methodology provided consensus on system CQI quality measure priorities and describe variation among the 3 service delivery models used within the state. Q-sort methodology was used by home visiting (HV) service delivery providers (home visitors) to prioritize HV quality measures for the overall state HV system as well as their service delivery model. There was general consensus overall and among the service delivery models on CQI quality measure priorities, although some variation was observed. Measures associated with Maternal, Infant, and Early Childhood Home Visiting benchmark 1, Improved Maternal and Newborn Health, and benchmark 3, Improvement in School Readiness and Achievement, were the highest ranked. The Q-sort exercise allowed home visitors an opportunity to examine priorities within their service delivery model as well as for the overall First Teacher HV system. Participants engaged in meaningful discussions regarding how and why they selected specific quality measures and developed a greater awareness and understanding of a systems approach to HV within the state. The Q-sort methodology presented in this article can easily be replicated by other states to identify CQI priorities at the local and state levels and can be used effectively in states that use a single HV service delivery model or those that implement multiple evidence-based models for HV service delivery.
Whitall, D.; Hively, W.D.; Leight, A.K.; Hapeman, C.J.; McConnell, L.L.; Fisher, T.; Rice, C.P.; Codling, E.; McCarty, G.W.; Sadeghi, A.M.; Gustafson, A.; Bialek, K.
2010-01-01
Restoration of the Chesapeake Bay, the largest estuary in the United States, is a national priority. Documentation of progress of this restoration effort is needed. A study was conducted to examine water quality in the Choptank River estuary, a tributary of the Chesapeake Bay that since 1998 has been classified as impaired waters under the Federal Clean Water Act. Multiple water quality parameters (salinity, temperature, dissolved oxygen, chlorophyll a) and analyte concentrations (nutrients, herbicide and herbicide degradation products, arsenic, and copper) were measured at seven sampling stations in the Choptank River estuary. Samples were collected under base flow conditions in the basin on thirteen dates between March 2005 and April 2008. As commonly observed, results indicate that agriculture is a primary source of nitrate in the estuary and that both agriculture and wastewater treatment plants are important sources of phosphorus. Concentrations of copper in the lower estuary consistently exceeded both chronic and acute water quality criteria, possibly due to use of copper in antifouling boat paint. Concentrations of copper in the upstream watersheds were low, indicating that agriculture is not a significant source of copper loading to the estuary. Concentrations of herbicides (atrazine, simazine, and metolachlor) peaked during early-summer, indicating a rapid surface-transport delivery pathway from agricultural areas, while their degradation products (CIAT, CEAT, MESA, and MOA) appeared to be delivered via groundwater transport. Some in-river processing of CEAT occurred, whereas MESA was conservative. Observed concentrations of herbicide residues did not approach established levels of concern for aquatic organisms. Results of this study highlight the importance of continued implementation of best management practices to improve water quality in the estuary. This work provides a baseline against which to compare future changes in water quality and may be used to design future monitoring programs needed to assess restoration strategy efficacy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klise, Katherine A.; Hart, David; Moriarty, Dylan Michael
Drinking water systems face multiple challenges, including aging infrastructure, water quality concerns, uncertainty in supply and demand, natural disasters, environmental emergencies, and cyber and terrorist attacks. All of these have the potential to disrupt a large portion of a water system causing damage to infrastructure and outages to customers. Increasing resilience to these types of hazards is essential to improving water security. As one of the United States (US) sixteen critical infrastructure sectors, drinking water is a national priority. The National Infrastructure Advisory Council defined infrastructure resilience as “the ability to reduce the magnitude and/or duration of disruptive events. Themore » effectiveness of a resilient infrastructure or enterprise depends upon its ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially disruptive event”. Being able to predict how drinking water systems will perform during disruptive incidents and understanding how to best absorb, recover from, and more successfully adapt to such incidents can help enhance resilience.« less
Riscassi, Ami L.; Schaffranek, Raymond W.
2004-01-01
The data described in this report were collected in the U. S. Geological Survey (USGS) Priority Ecosystems Science project investigating Forcing Effects on Flow Structure in Vegetated Wetlands of the Everglades. Data collected at five locations in Shark River Slough, Everglades National Park, during the 2002-2003 wet season are documented in the report. Methods used to process the data are described. Daily mean flow velocities, water temperatures, and specific conductance values are presented in the appendices. The quality-checked and edited data have been compiled and stored on the USGS South Florida Information Access (SOFIA) website http://sofia.usgs.gov.
Evaluating barnyard Best Management Practices in Wisconsin using upstream-downstream monitoring
Stuntebeck, Todd D.
1995-01-01
The Nonpoint Source Water Pollution Abatement Program was created in 1978 by the Wisconsin Legislature. The goal of the program is to improve and protect the water quality of lakes, streams, wetlands, and ground water within selected priority watersheds by controlling sources of nonpoint pollution. For each selected watershed, the Wisconsin Department of Natural Resources drafts a management plan that guides the implementation of pollution-control strategies known as Best Management Practices (BMP's). This plan summarizes resource and land-use inventories, describes the results of pollution-source modeling, and suggests pollution reduction goals. The U.S. Geological Survey, through a cooperative effort with the Wisconsin Department of Natural Resources, is monitoring water-quality improvements that result from the implementation of BMP's. The data collected are then compared to the watershed plans to assess progress and determine whether goals are being realized. This fact sheet describes the data-collection efforts, preliminary results, and planned data-analysis techniques of monitoring projects for pre-BMP conditions at two barnyards, one each on Otter Creek and Halfway Prairie Creek.
Identifying priorities for quality improvement at an emergency Department in Ghana.
DeWulf, Annelies; Otchi, Elom H; Soghoian, Sari
2017-08-30
Healthcare quality improvement (QI) is a global priority, and understanding the perspectives of frontline healthcare workers can help guide sustainable and meaningful change. We report a qualitative investigation of emergency department (ED) staff priorities for QI at a tertiary care hospital in Ghana. The aims of the study were to educate staff about the World Health Organization's (WHO) definition of quality in healthcare, and to identify an initial focus for building a departmental QI program. Semi-structured interviews were conducted with ED staff using open-ended questions to probe their understanding and valuation of the six dimensions of quality defined by the WHO. Participants were then asked to rank the dimensions in order of importance for QI. Qualitative responses were thematically analyzed, and ordinal rank-order was determined for quantitative data regarding QI priorities. Twenty (20) members of staff of different cadres participated, including ED physicians, nurses, orderlies, a security officer, and an accountant. A majority of participants (61%) ranked access to emergency healthcare as high priority for QI. Two recurrent themes - financial accessibility and hospital bed availability - accounted for the majority of discussions, each linked to all the dimensions of healthcare quality. ED staff related all of the WHO quality dimensions to their work, and prioritized access to emergency care as the most important area for improvement. Participants expressed a high degree of motivation to improve healthcare quality, and the study helped with the development of a departmental QI program focused on the broad topic of access to ED services.
Recent practices on wastewater reuse in Turkey.
Tanik, A; Ekdal, A; Germirli Babuna, F; Orhon, D
2005-01-01
Reuse of wastewater for irrigational purposes in agriculture has been a widely applied practice all around the world compared to such applications in industries. In most of the developing countries, high costs of wastewater treatment stimulate the direct reuse of raw or partly treated effluent in irrigation despite the socio-cultural objections in some countries regarding religious rituals towards consuming wastewater. In Turkey, reuse applications in agriculture have been in use by indirect application by means of withdrawing water from the downstream end of treatment plants. Such practices affected the deterioration of surface water resources due to the lack of water quality monitoring and control. However, more conscious and planned reuse activities in agriculture have recently started by the operation of urban wastewater treatment plants. Turkey does not face any severe water scarcity problems for the time being, but as the water resources show the signs of water quality deterioration it seems to be one of the priority issues in the near future. The industrial reuse activities are only at the research stage especially in industries consuming high amounts of water. In-plant control implementation is the preferred effort of minimizing water consumption in such industries. The current reuse activities are outlined in the article forming an example from a developing country.
Household water treatment and the millennium development goals: keeping the focus on health.
Clasen, Thomas F
2010-10-01
Waterborne diseases such as diarrhea are a major killer in low-income settings, particularly of young children. For those without access to safe drinking water, household water treatment, such as boiling, chlorinating, and filtering water in the home, when combined with safe storage (HWTS) can significantly improve water quality and prevent disease, thereby contributing to the child survival and other health priorities encompassed within the Millennium Development Goals (MDGs). There is uncertainly, however, about whether HWTS should count toward the MDG water target, which promotes "sustainable access to safe drinking water". This paper reviews the relevant research and concludes that it should not. Although HWTS can significantly improve water quality, it does not improve water quantity and access-key aspects of the MDG water target that are essential for optimal improvements in health and development. A policy that excludes HWTS from the MDG water target will discourage governments from diverting scarce public resources from comprehensive and long-term improvements in water supplies. At the same time, the health-oriented MDGs provide a sufficient case for scaling up effective and appropriate HWTS among target populations. Moreover, a health-based strategy for HWTS will help ensure that promotion of the intervention is driven by measurable improvements in outcomes rather than inputs, thus encouraging advances in both hardware and programmatic delivery that will make HWTS more effective, appropriate, and accessible to vulnerable populations.
Watering the forest for the trees: An emerging priority for managing water in forest landscapes
Grant, Gordon E.; Tague, Christina L.; Allen, Craig D.
2013-01-01
Widespread threats to forests resulting from drought stress are prompting a re-evaluation of priorities for water management on forest lands. In contrast to the widely held view that forest management should emphasize providing water for downstream uses, we argue that maintaining forest health in the context of a changing climate may require focusing on the forests themselves and on strategies to reduce their vulnerability to increasing water stress. Management strategies would need to be tailored to specific landscapes but could include thinning, planting and selecting for drought-tolerant species, irrigating, and making more water available to plants for transpiration. Hydrologic modeling reveals that specific management actions could reduce tree mortality due to drought stress. Adopting water conservation for vegetation as a priority for managing water on forested lands would represent a fundamental change in perspective and potentially involve trade-offs with other downstream uses of water.
Olsen, Lisa D.; Valder, Joshua F.; Carter, Janet M.; Zogorski, John S.
2013-01-01
A total of 2,541 constituents were evaluated and prioritized for national- and regional-scale ambient monitoring of water and sediment in the United States. This prioritization was done by the U.S. Geological Survey (USGS) in preparation for the upcoming third decade (Cycle 3; 2013–23) of the National Water-Quality Assessment (NAWQA) Program. This report provides the methods used to prioritize the constituents and the results of that prioritization. Constituents were prioritized by the NAWQA National Target Analyte Strategy (NTAS) work group on the basis of available information on physical and chemical properties, observed or predicted environmental occurrence and fate, and observed or anticipated adverse effects on human health or aquatic life. Constituents were evaluated within constituent groups that were determined on the basis of physical or chemical properties or on uses or sources. Some constituents were evaluated within more than one constituent group. Although comparable objectives were used in the prioritization of constituents within the different constituent groups, differences in the availability of information accessed for each constituent group led to the development of separate prioritization approaches adapted to each constituent group to make best use of available resources. Constituents were assigned to one of three prioritization tiers: Tier 1, those having the highest priority for inclusion in ambient monitoring of water or sediment on a national or regional scale (including NAWQA Cycle 3 monitoring) on the basis of their likelihood of environmental occurrence in ambient water or sediment, or likelihood of effects on human health or aquatic life; Tier 2, those having intermediate priority for monitoring on the basis of their lower likelihood of environmental occurrence or lower likelihood of effects on human health or aquatic life; and Tier 3, those having low or no priority for monitoring on the basis of evidence of nonoccurrence or lack of effects on human health or aquatic life, or of having insufficient evidence of potential occurrence or effects to justify placement into Tier 2. Of the 1,081 constituents determined to be of highest priority for ambient monitoring (Tier 1), 602 were identified for water and 686 were identified for sediment (note that some constituents were evaluated for both water and sediment). These constituents included various types of organic compounds, trace elements and other inorganic constituents, and radionuclides. Some of these constituents are difficult to analyze, whereas others are mixtures, isomers, congeners, salts, and acids of other constituents; therefore, modifications to the list of high-priority constituents for ambient monitoring could be made on the basis of the availability of suitable methods for preparation, extraction, or analysis. An additional 1,460 constituents were placed into Tiers 2 or 3 for water or sediment, including some constituents that had been placed into Tier 1 for a different matrix; 436 constituents were placed into Tier 2 for water and 246 constituents into Tier 2 for sediment; 979 constituents were placed into Tier 3 for water and 779 constituents into Tier 3 for sediment.
Davis, Tracy A.; Kulongoski, Justin T.
2016-10-03
Groundwater quality in the 48-square-mile Santa Barbara study unit was investigated in 2011 as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The study unit is mostly in Santa Barbara County and is in the Transverse and Selected Peninsular Ranges hydrogeologic province. The GAMA Priority Basin Project is carried out by the U.S. Geological Survey in collaboration with the California State Water Resources Control Board and Lawrence Livermore National Laboratory.The GAMA Priority Basin Project was designed to provide a statistically unbiased, spatially distributed assessment of the quality of untreated groundwater in the primary aquifer system of California. The primary aquifer system is defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health database for the Santa Barbara study unit. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the Santa Barbara study unit, not the treated drinking water delivered to consumers by water purveyors.The status assessment for the Santa Barbara study unit was based on water-quality and ancillary data collected in 2011 by the U.S. Geological Survey from 23 sites and on water-quality data from the California Department of Public Health database for January 24, 2008–January 23, 2011. The data used for the assessment included volatile organic compounds; pesticides; pharmaceutical compounds; two constituents of special interest, perchlorate and N-nitrosodimethylamine (NDMA); and naturally present inorganic constituents, such as major ions and trace elements. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used to evaluate groundwater quality for those constituents that have federal or California regulatory and non-regulatory benchmarks for drinking-water quality. For inorganic, organic, and special-interest constituents, a relative-concentration greater than 1.0 indicates a concentration greater than the benchmark and is classified as high. Inorganic constituents are classified as moderate if relative-concentrations are greater than 0.5 and less than or equal to 1.0 and are classified as low if relative-concentrations are less than or equal to 0.5. For organic and special-interest constituents, the boundary between moderate and low relative-concentrations was set at 0.1.Aquifer-scale proportion was used as the primary metric for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the areal percentage of the primary aquifer system with a relative-concentration greater than 1.0 for a particular constituent or class of constituents. Moderate and low aquifer-scale proportions were defined as the areal percentage of the primary aquifer system that had moderate and low relative-concentrations, respectively. Two statistical approaches—grid based and spatially weighted—were used to calculate aquifer-scale proportions for individual constituents and constituent classes. Grid-based and spatially weighted estimates were comparable in this the study (within 90-percent confidence intervals). Grid-based results were selected for use in the status assessment unless, as was observed in a few cases, a grid-based result was zero and the spatially weighted result was not zero, in which case, the spatially weighted result was used.Inorganic constituents that have human-health benchmarks were present at high relative-concentrations in 5.3 percent of the primary aquifer system and at moderate concentrations in 32 percent. High aquifer-scale proportions of inorganic constituents primarily were a result of high aquifer-scale proportions of boron (5.3 percent) and fluoride (5.3 percent). Inorganic constituents that have aesthetic-based benchmarks, referred to as secondary maximum contaminant levels, were present at high relative-concentrations in 58 percent of the primary aquifer system and at moderate concentrations in 37 percent. Iron, manganese, sulfate, and total dissolved solids were the inorganic constituents with secondary maximum contaminant levels present at high relative-concentrations.In contrast, organic and special-interest constituents that have health-based benchmarks were not detected at high relative-concentrations in the primary aquifer system. Of the 218 organic constituents analyzed, 10 were detected—9 that had human-health benchmarks. Organic constituents were present at moderate relative-concentrations in 11 percent of the primary aquifer system. The moderate aquifer-scale proportions were a result of moderate relative-concentrations of the volatile organic compounds methyl tert-butyl ether (MTBE, 11 percent) and 1,2-dichloroethane (5.6 percent). The volatile organic compounds 1,1,1-trichloroethane, 1,1-dichloroethane, bromodichloromethane, chloroform, MTBE, and perchloroethene (PCE); the pesticide simazine; and the special-interest constituent perchlorate were detected at more than 10 percent of the sites in the Santa Barbara study unit. Perchlorate was present at moderate relative-concentrations in 50 percent of the primary aquifer system. Pharmaceutical compounds and NDMA were not detected in the Santa Barbara study unit.
Involving patients in setting priorities for healthcare improvement: a cluster randomized trial.
Boivin, Antoine; Lehoux, Pascale; Lacombe, Réal; Burgers, Jako; Grol, Richard
2014-02-20
Patients are increasingly seen as active partners in healthcare. While patient involvement in individual clinical decisions has been extensively studied, no trial has assessed how patients can effectively be involved in collective healthcare decisions affecting the population. The goal of this study was to test the impact of involving patients in setting healthcare improvement priorities for chronic care at the community level. Cluster randomized controlled trial. Local communities were randomized in intervention (priority setting with patient involvement) and control sites (no patient involvement). Communities in a canadian region were required to set priorities for improving chronic disease management in primary care, from a list of 37 validated quality indicators. Patients were consulted in writing, before participating in face-to-face deliberation with professionals. Professionals established priorities among themselves, without patient involvement. A total of 172 individuals from six communities participated in the study, including 83 chronic disease patients, and 89 health professionals. The primary outcome was the level of agreement between patients' and professionals' priorities. Secondary outcomes included professionals' intention to use the selected quality indicators, and the costs of patient involvement. Priorities established with patients were more aligned with core generic components of the Medical Home and Chronic Care Model, including: access to primary care, self-care support, patient participation in clinical decisions, and partnership with community organizations (p < 0.01). Priorities established by professionals alone placed more emphasis on the technical quality of single disease management. The involvement intervention fostered mutual influence between patients and professionals, which resulted in a 41% increase in agreement on common priorities (95%CI: +12% to +58%, p < 0.01). Professionals' intention to use the selected quality indicators was similar in intervention and control sites. Patient involvement increased the costs of the prioritization process by 17%, and required 10% more time to reach consensus on common priorities. Patient involvement can change priorities driving healthcare improvement at the population level. Future research should test the generalizability of these findings to other contexts, and assess its impact on patient care. The Netherlands National Trial Register #NTR2496.
Involving patients in setting priorities for healthcare improvement: a cluster randomized trial
2014-01-01
Background Patients are increasingly seen as active partners in healthcare. While patient involvement in individual clinical decisions has been extensively studied, no trial has assessed how patients can effectively be involved in collective healthcare decisions affecting the population. The goal of this study was to test the impact of involving patients in setting healthcare improvement priorities for chronic care at the community level. Methods Design: Cluster randomized controlled trial. Local communities were randomized in intervention (priority setting with patient involvement) and control sites (no patient involvement). Setting: Communities in a canadian region were required to set priorities for improving chronic disease management in primary care, from a list of 37 validated quality indicators. Intervention: Patients were consulted in writing, before participating in face-to-face deliberation with professionals. Control: Professionals established priorities among themselves, without patient involvement. Participants: A total of 172 individuals from six communities participated in the study, including 83 chronic disease patients, and 89 health professionals. Outcomes: The primary outcome was the level of agreement between patients’ and professionals’ priorities. Secondary outcomes included professionals’ intention to use the selected quality indicators, and the costs of patient involvement. Results Priorities established with patients were more aligned with core generic components of the Medical Home and Chronic Care Model, including: access to primary care, self-care support, patient participation in clinical decisions, and partnership with community organizations (p < 0.01). Priorities established by professionals alone placed more emphasis on the technical quality of single disease management. The involvement intervention fostered mutual influence between patients and professionals, which resulted in a 41% increase in agreement on common priorities (95%CI: +12% to +58%, p < 0.01). Professionals’ intention to use the selected quality indicators was similar in intervention and control sites. Patient involvement increased the costs of the prioritization process by 17%, and required 10% more time to reach consensus on common priorities. Conclusions Patient involvement can change priorities driving healthcare improvement at the population level. Future research should test the generalizability of these findings to other contexts, and assess its impact on patient care. Trial registration The Netherlands National Trial Register #NTR2496. PMID:24555508
Human interactions with ground-water
Zaporozec, A.
1983-01-01
Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily modifies the natural conditions and the total natural system must be successfully blended with the unnatural stresses placed upon it. This can be accomplished by introducing new methods (such as ground-water zoning) in and by developing alternative strategies for ground-water management and protection. ?? 1983 D. Reidel Publishing Company.
Typology of end-of-life priorities in Saudi females: averaging analysis and Q-methodology.
Hammami, Muhammad M; Hammami, Safa; Amer, Hala A; Khodr, Nesrine A
2016-01-01
Understanding culture-and sex-related end-of-life preferences is essential to provide quality end-of-life care. We have previously explored end-of-life choices in Saudi males and found important culture-related differences and that Q-methodology is useful in identifying intraculture, opinion-based groups. Here, we explore Saudi females' end-of-life choices. A volunteer sample of 68 females rank-ordered 47 opinion statements on end-of-life issues into a nine-category symmetrical distribution. The ranking scores of the statements were analyzed by averaging analysis and Q-methodology. The mean age of the females in the sample was 30.3 years (range, 19-55 years). Among them, 51% reported average religiosity, 78% reported very good health, 79% reported very good life quality, and 100% reported high-school education or more. The extreme five overall priorities were to be able to say the statement of faith, be at peace with God, die without having the body exposed, maintain dignity, and resolve all conflicts. The extreme five overall dis-priorities were to die in the hospital, die well dressed, be informed about impending death by family/friends rather than doctor, die at peak of life, and not know if one has a fatal illness. Q-methodology identified five opinion-based groups with qualitatively different characteristics: "physical and emotional privacy concerned, family caring" (younger, lower religiosity), "whole person" (higher religiosity), "pain and informational privacy concerned" (lower life quality), "decisional privacy concerned" (older, higher life quality), and "life quantity concerned, family dependent" (high life quality, low life satisfaction). Out of the extreme 14 priorities/dis-priorities for each group, 21%-50% were not represented among the extreme 20 priorities/dis-priorities for the entire sample. Consistent with the previously reported findings in Saudi males, transcendence and dying in the hospital were the extreme end-of-life priority and dis-priority, respectively, in Saudi females. Body modesty was a major overall concern; however, concerns about pain, various types of privacy, and life quantity were variably emphasized by the five opinion-based groups but masked by averaging analysis.
Typology of end-of-life priorities in Saudi females: averaging analysis and Q-methodology
Hammami, Muhammad M; Hammami, Safa; Amer, Hala A; Khodr, Nesrine A
2016-01-01
Background Understanding culture-and sex-related end-of-life preferences is essential to provide quality end-of-life care. We have previously explored end-of-life choices in Saudi males and found important culture-related differences and that Q-methodology is useful in identifying intraculture, opinion-based groups. Here, we explore Saudi females’ end-of-life choices. Methods A volunteer sample of 68 females rank-ordered 47 opinion statements on end-of-life issues into a nine-category symmetrical distribution. The ranking scores of the statements were analyzed by averaging analysis and Q-methodology. Results The mean age of the females in the sample was 30.3 years (range, 19–55 years). Among them, 51% reported average religiosity, 78% reported very good health, 79% reported very good life quality, and 100% reported high-school education or more. The extreme five overall priorities were to be able to say the statement of faith, be at peace with God, die without having the body exposed, maintain dignity, and resolve all conflicts. The extreme five overall dis-priorities were to die in the hospital, die well dressed, be informed about impending death by family/friends rather than doctor, die at peak of life, and not know if one has a fatal illness. Q-methodology identified five opinion-based groups with qualitatively different characteristics: “physical and emotional privacy concerned, family caring” (younger, lower religiosity), “whole person” (higher religiosity), “pain and informational privacy concerned” (lower life quality), “decisional privacy concerned” (older, higher life quality), and “life quantity concerned, family dependent” (high life quality, low life satisfaction). Out of the extreme 14 priorities/dis-priorities for each group, 21%–50% were not represented among the extreme 20 priorities/dis-priorities for the entire sample. Conclusion Consistent with the previously reported findings in Saudi males, transcendence and dying in the hospital were the extreme end-of-life priority and dis-priority, respectively, in Saudi females. Body modesty was a major overall concern; however, concerns about pain, various types of privacy, and life quantity were variably emphasized by the five opinion-based groups but masked by averaging analysis. PMID:27274205
7 CFR 1778.7 - Project priority.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false Project priority. 1778.7 Section 1778.7 Agriculture... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.7 Project priority. Paragraph (d... to determine the proposed project's priority for available funds. (b) State Office review. All...
7 CFR 1778.7 - Project priority.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 12 2014-01-01 2013-01-01 true Project priority. 1778.7 Section 1778.7 Agriculture... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.7 Project priority. Paragraph (d... to determine the proposed project's priority for available funds. (b) State Office review. All...
7 CFR 1778.7 - Project priority.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 12 2012-01-01 2012-01-01 false Project priority. 1778.7 Section 1778.7 Agriculture... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.7 Project priority. Paragraph (d... to determine the proposed project's priority for available funds. (b) State Office review. All...
NASA Astrophysics Data System (ADS)
Araya, F. Z.; Abdul-Aziz, O. I.
2017-12-01
This study utilized a systematic data analytics approach to determine the relative linkages of stream dissolved oxygen (DO) with the hydro-climatic and biogeochemical drivers across the U.S. Pacific Coast. Multivariate statistical techniques of Pearson correlation matrix, principal component analysis, and factor analysis were applied to a complex water quality dataset (1998-2015) at 35 water quality monitoring stations of USGS NWIS and EPA STORET. Power-law based partial least squares regression (PLSR) models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to reliably estimate the relative linkages by resolving multicollinearity (Nash-Sutcliffe Efficiency, NSE = 0.50-0.94). Based on the dominant drivers, four environmental regimes have been identified and adequately described the system-data variances. In Pacific North West and Southern California, water temperature was the most dominant driver of DO in majority of the streams. However, in Central and Northern California, stream DO was controlled by multiple drivers (i.e., water temperature, pH, stream flow, and total phosphorus), exhibiting a transitional environmental regime. Further, total phosphorus (TP) appeared to be the limiting nutrient for most streams. The estimated linkages and insights would be useful to identify management priorities to achieve healthy coastal stream ecosystems across the Pacific Coast of U.S.A. and similar regions around the world. Keywords: Data analytics, water quality, coastal streams, dissolved oxygen, environmental regimes, Pacific Coast, United States.
The U.S. Geological Survey Federal-State cooperative water- resources program; fiscal year 1987
Gilbert, B.K.; Mann, William B.
1988-01-01
The U.S. Geological Survey 's Federal-State Cooperative Water Resources Program (50-50 matching of funds) started in Kansas in 1895. During fiscal year (FY) 1987, hydrologic data collection, investigations, and research are being conducted in every state, Puerto Rico, and several territories in cooperation with 940 state, regional and local agencies. Federal funding of $55.3 million was matched by cooperating agencies; cooperators also provided $4.6 million unmatched, for a program total of about $115 million. The Cooperative Program accounted for almost 45% of the FY 1987 obligations of the Geological Survey 's Water Resources Division. The principal areas of emphasis during the year included groundwater contamination, stream quality, water supply and demand, and hydrologic hazards. Information is presented on program functions and priorities. Data collection activities are also described as is work related to water resources contamination. Several examples of current (1987) investigations are provided. (Author 's abstract)
40 CFR 35.915-1 - Reserves related to the project priority list.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-Clean Water Act § 35.915-1 Reserves related to the project priority list. In developing the fundable... § 35.908(b)(1)) for construction projects which use innovative or alternative waste water treatment...
40 CFR 35.915-1 - Reserves related to the project priority list.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-Clean Water Act § 35.915-1 Reserves related to the project priority list. In developing the fundable... § 35.908(b)(1)) for construction projects which use innovative or alternative waste water treatment...
40 CFR 35.915-1 - Reserves related to the project priority list.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-Clean Water Act § 35.915-1 Reserves related to the project priority list. In developing the fundable... § 35.908(b)(1)) for construction projects which use innovative or alternative waste water treatment...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-13
... and Hazardous Substances Pollution Contingency Plan National Priorities List AGENCY: Environmental... protection, Air pollution control, Chemicals, Hazardous Waste, Hazardous substances, Intergovernmental relations, Penalties, Reporting and recordkeeping requirements, Superfund, Water pollution control, Water...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-18
... protection, Air pollution control, Chemicals, Hazardous Waste, Hazardous substances, Intergovernmental relations, Penalties, Reporting and recordkeeping requirements, Superfund, Water pollution control, Water... and Hazardous Substances Pollution Contingency Plan; National Priorities List AGENCY: Environmental...
Varekar, Vikas; Karmakar, Subhankar; Jha, Ramakar
2016-02-01
The design of surface water quality sampling location is a crucial decision-making process for rationalization of monitoring network. The quantity, quality, and types of available dataset (watershed characteristics and water quality data) may affect the selection of appropriate design methodology. The modified Sanders approach and multivariate statistical techniques [particularly factor analysis (FA)/principal component analysis (PCA)] are well-accepted and widely used techniques for design of sampling locations. However, their performance may vary significantly with quantity, quality, and types of available dataset. In this paper, an attempt has been made to evaluate performance of these techniques by accounting the effect of seasonal variation, under a situation of limited water quality data but extensive watershed characteristics information, as continuous and consistent river water quality data is usually difficult to obtain, whereas watershed information may be made available through application of geospatial techniques. A case study of Kali River, Western Uttar Pradesh, India, is selected for the analysis. The monitoring was carried out at 16 sampling locations. The discrete and diffuse pollution loads at different sampling sites were estimated and accounted using modified Sanders approach, whereas the monitored physical and chemical water quality parameters were utilized as inputs for FA/PCA. The designed optimum number of sampling locations for monsoon and non-monsoon seasons by modified Sanders approach are eight and seven while that for FA/PCA are eleven and nine, respectively. Less variation in the number and locations of designed sampling sites were obtained by both techniques, which shows stability of results. A geospatial analysis has also been carried out to check the significance of designed sampling location with respect to river basin characteristics and land use of the study area. Both methods are equally efficient; however, modified Sanders approach outperforms FA/PCA when limited water quality and extensive watershed information is available. The available water quality dataset is limited and FA/PCA-based approach fails to identify monitoring locations with higher variation, as these multivariate statistical approaches are data-driven. The priority/hierarchy and number of sampling sites designed by modified Sanders approach are well justified by the land use practices and observed river basin characteristics of the study area.
Analysis of Critical Earth Observation Priorities for Societal Benefit
NASA Astrophysics Data System (ADS)
Zell, E. R.; Huff, A. K.; Carpenter, A. T.; Friedl, L.
2011-12-01
To ensure that appropriate near real-time (NRT) and historical Earth observation data are available to benefit society and meet end-user needs, the Group on Earth Observations (GEO) sponsored a multi-disciplinary study to identify a set of critical and common Earth observations associated with 9 Societal Benefit Areas (SBAs): Agriculture, Biodiversity, Climate, Disasters, Ecosystems, Energy, Health, Water, and Weather. GEO is an intergovernmental organization working to improve the availability, access, and use of Earth observations to benefit society through a Global Earth Observation System of Systems (GEOSS). The study, overseen by the GEO User Interface Committee, focused on the "demand" side of Earth observation needs: which users need what types of data, and when? The methodology for the study was a meta-analysis of over 1,700 publicly available documents addressing Earth observation user priorities, under the guidance of expert advisors from around the world. The result was a ranking of 146 Earth observation parameters that are critical and common to multiple SBAs, based on an ensemble of 4 statistically robust methods. Within the results, key details emerged on NRT observations needed to serve a broad community of users. The NRT observation priorities include meteorological parameters, vegetation indices, land cover and soil property observations, water body and snow cover properties, and atmospheric composition. The results of the study and examples of NRT applications will be presented. The applications are as diverse as the list of priority parameters. For example, NRT meteorological and soil moisture information can support monitoring and forecasting for more than 25 infectious diseases, including epidemic diseases, such as malaria, and diseases of major concern in the U.S., such as Lyme disease. Quickly evolving events that impact forests, such as fires and insect outbreaks, can be monitored and forecasted with a combination of vegetation indices, fuel moisture content, burn scars, and meteorological parameters. Impacts to public health and livelihoods due to food insecurity, algal blooms, and air pollution can be addressed through NRT monitoring of specific events utilizing land cover, atmospheric composition, water quality, and meteorological observations. More broadly, the assessment of water availability for drinking and agriculture and the development of floods and storms rely on continuous feeds of NRT meteorological and atmospheric composition observations. Overall, this multi-disciplinary study of user needs for NRT data and products can inform the design and operation of NRT data systems. Follow-on work for this study will also be presented, focusing on the availability of current and future satellite measurements (including NRT) of the 30 most critical Earth observation priorities, as well as a detailed analysis of users' needs for precipitation data. The results of this study summarize the priorities for critical Earth observations utilized globally for societal benefit.
Kulongoski, Justin T.; Belitz, Kenneth; Landon, Matthew K.; Farrar, Christopher
2010-01-01
Groundwater quality in the approximately 1,000-square-mile (2,590-square-kilometer) North San Francisco Bay study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in northern California in Marin, Napa, and Sonoma Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA North San Francisco Bay study was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems. The assessment is based on water-quality and ancillary data collected by the USGS from 89 wells in 2004 and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined by the depth interval of the wells listed in the CDPH database for the North San Francisco Bay study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the North San Francisco Bay study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California benchmarks. A relative-concentration greater than (>) 1.0 indicates a concentration above a benchmark, and less than or equal to (=) 1.0 indicates a concentration equal to or below a benchmark. Relative-concentrations of organic and special interest constituents were classified as ?high? (relative-concentration > 1.0), ?moderate? (0.1 1.0), ?moderate? (0.5 < relative-concentration = 1.0), or ?low? (relative-concentration = 0.5). Aquifer-scale proportion was used as a metric for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the primary aquifers that have a relative-concentration greater than 1.0; proportion is calculated on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentage of the primary aquifers that have moderate and low relative-concentrations, respectively. Two statistical approaches-grid-based and spatially-weighted-were used to evaluate aquifer-scale proportion for individual constituents and classes of constituents. Grid-based and spatially-weighted estimates were comparable in the North San Francisco Bay study unit (90-percent confidence intervals). For inorganic constituents with human-health benchmarks, relative-concentrations were high in 14.0 percent of the primary aquifers, moderate in 35.8 percent, and low in 50.2 percent. The high aquifer-scale proportion of inorganic constituents primarily reflected high aquifer-scale proportions of arsenic (10.0 percent), boron (4.1 percent), and lead (1.6 percent). In contrast, relative-concentrations of organic constituents (one or more) were high in 1.4 percent, moderate in 4.9 percent, and low in 93.7 percent (not detected in 64.8 percent) of the primary aquifers. The high aquifer-scale proport
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-13
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Priority Setting for the Children's Health Insurance Program Reauthorization Act (CHIPRA) Pediatric Quality Measures Program--Notice of Correction On pages 75469 and 75470, Volume 75, Number 232, Federal Register...
Characterization of groundwater resources in the Trinity and Woodbine aquifers in Texas.
Chaudhuri, Sriroop; Ale, Srinivasulu
2013-05-01
A vast region in north-central Texas, centering on Dallas-Fort Worth metroplex, suffers from intense groundwater drawdown and water quality degradation, which led to inclusion of 18 counties of this region into Priority Groundwater Management Areas. We combined aquifer-based and county-based hydrologic analyses to (1) assess spatio-temporal changes in groundwater level and quality between 1960 and 2010 in the Trinity and Woodbine aquifers underlying the study region, (2) delve into major hydrochemical facies with reference to aquifer hydrostratigraphy, and (3) identify county-based spatial zones to aid in future groundwater management initiatives. Water-level and quality data was obtained from the Texas Water Development Board (TWDB) and analyzed on a decadal scale. Progressive water-level decline was the major concern in the Trinity aquifer with >50% of observations occurring at depths >100 m since the 1980s, an observation becoming apparent only in the 2000s in the Woodbine aquifer. Water quality degradation was the major issue in the Woodbine aquifer with substantially higher percentage of observations exceeding the secondary maximum contaminant levels (SMCL; a non-enforceable threshold set by the United State Environmental Protection Agency (USEPA)) and/or maximum contaminant level (MCL, a legally enforceable drinking water standard set by the USEPA) for sulfate (SO4(2-)), chloride (Cl(-)), and fluoride (F(-)) in each decade. In both aquifers, however, >70% of observations exceeded the SMCL for total dissolved solids indicating high groundwater salinization. Water-level changes in Trinity aquifer also had significant negative impact on water quality. Hydrochemical facies in this region sequentially evolved from Ca-Mg-HCO3 and Ca-HCO3 in the fluvial sediments of the west to Na-SO4-Cl in the deltaic sediments to the east. Sequentially evolving hydrogeochemical facies and increasing salinization closely resembled regional groundwater flow pattern. Distinct spatial zones based on homogenous hydrologic characteristics have become increasingly apparent over time indicating necessity of zone-specific groundwater management strategies. Copyright © 2013 Elsevier B.V. All rights reserved.
[Drinking water supply in the Russian Federation: problems and ways of their solution].
Onishchenko, G G
2007-01-01
Russia having a fifth of the worldwide drinking water resources is faced with considerable difficulties in solving the problems associated with the safe and rational attitude towards water resources, in improving the technologies of drinking water purification and conditioning, in introducing new universal forms of supplying the population with high-quality portable water. Particular emphasis has been recently placed on the setting-up of an effective legal and normative base for the sanitary protection of water sources and the upgrading of the quality of drinking water. Regional (republican, territorial) drinking water supply programs have been worked out up to the period 2010 in 47 subjects of the Russian Federation, with the participation of sanitary-and-epidemiological surveillance systems and approved in accordance with the established procedures. The majority of administrative areas have district and town programs to implement high-priority measures for improving the water supple system. Safe drinking water supply is one of the major components of Russia's national security. Under the established conditions, even in case of the favorable financial position, this cannot be achieved by only engineering decisions (construction and modernization of water-supply networks, use of new equipment and breakthrough technologies). Water service as a type of water consumption is based on the general principles of natural resource management. Its safety should be combined with the strategic objective of water resources utilization and conservation in the catchment basins in the country as a whole.
Goldrath, Dara; Fram, Miranda S.; Land, Michael; Belitz, Kenneth
2012-01-01
Groundwater quality in the approximately 860-square-mile (2,227-square-kilometer) Coastal Los Angeles Basin study unit (CLAB) was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is located in southern California in Los Angeles and Orange Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA CLAB study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2006 by the USGS from 69 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined by the depth interval of the wells listed in the CDPH database for the CLAB study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the CLAB study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration greater than (>) 1.0 indicates a concentration greater than a benchmark, and a relative-concentration less than or equal to (≤) 1.0 indicates a concentration equal to or less than a benchmark. Relative-concentrations of organic and special-interest constituents [perchlorate, N-nitrosodimethylamine (NDMA), 1,2,3-trichloropropane (1,2,3-TCP), and 1,4-dioxane] were classified as "high" (relative-concentration>1.0), "moderate" (0.5status assessment for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifer system with a relative-concentration greater than 1.0 for a particular constituent or class of constituents; percentage is based on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentage of the primary aquifer system with moderate and low relative-concentrations, respectively. Two statistical approaches-grid-based and spatially weighted-were used to evaluate aquifer-scale proportions for individual constituents and classes of constituents. Grid-based and spatially weighted estimates were comparable in the CLAB study unit (within 90-percent confidence intervals). Inorganic constituents with human-health benchmarks were detected at high relative-concentrations in 5.6 percent of the primary aquifer system and moderate in 26 percent. High aquifer-scale proportion of inorganic constituents primarily reflected high aquifer-scale proportions of arsenic (1.9 percent), nitrate (1.9 percent), and uranium (1.2 percent). Inorganic constituents with secondary maximum contaminant levels (SMCL) were detected at high relative-concentrations in 18 percent of the primary aquifer system and moderate in 47 percent. The constituents present at high relative-concentrations included total dissolved solids (1.9 percent), manganese (15 percent), and iron (9.4 percent). Relative-concentrations of organic constituents (one or more) were high in 3.7 percent, and moderate in 13 percent, of the primary aquifer system. The high aquifer-scale proportion of organic constituents primarily reflected high aquifer-scale proportions of solvents, including trichloroethene (TCE; 1.7 percent), perchloroethene (PCE; 1.1 percent), and carbon tetrachloride (1.0 percent). Of the 204 organic constituents analyzed, 44 constituents were detected. Eleven organic constituents had detection frequencies of greater than 10 percent: the trihalomethanes chloroform and bromodichloromethane, the solvents TCE, PCE, cis-1,2-dichloroethene, and 1,1-dichloroethene, the herbicides atrazine, simazine, prometon, and tebuthiuron, and the gasoline additive methyl tert-butyl ether (MTBE). Most detections were at low relative-concentrations. The special-interest constituent perchlorate was detected at high relative-concentrations in 0.5 percent of the primary aquifer system, and at moderate relative-concentrations in 35 percent. The special-interest constituent 1,4-dioxane was detected at high relative-concentrations, but an insufficient number of samples was analyzed to provide a representative estimate of aquifer-scale proportion.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-13
... and Hazardous Substances Pollution Contingency Plan National Priorities List AGENCY: Environmental... pollution control, Chemicals, Hazardous Waste, Hazardous substances, Intergovernmental relations, Penalties, Reporting and recordkeeping requirements, Superfund, Water pollution control, Water supply. Authority: 33 U...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... requirements, Superfund, Water pollution control, Water supply. Dated: July 3, 2013. A. Stanley Meiburg, Acting...] National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the... National Oil and [[Page 56612
Toole, Michael J; Claridge, Frances; Anderson, David A; Zhuang, Hui; Morgan, Christopher; Otto, Brad; Stewart, Tony
2006-02-01
In April-May 2001, a study was conducted to determine the prevalence of antibodies against hepatitis E virus (HEV) among 426 persons 8-49 years of age randomly selected from two groups of rural villages in central Tibet. Group 1 villages were assessed in 1998 as having poor quality water sources; new water systems were then constructed prior to this study. Group 2 villages had higher quality water and were not designated as priority villages for new systems prior to the study. No participants tested positive for IgM; only IgG was detected in the analyzed samples. Overall, 31% of the participants had ever been infected with HEV (95% confidence interval [CI] = 26.7-35.7%). The rate was higher in men (36.6%) than women (26.3%) and highest in those 30-39 years of age (49.1%). The rate of past infection was higher in group 1; the risk ratio was 2.77 (95% CI = 1.98-3.88). This difference is most likely the result of the poor quality of the original water sources in these villages. In resource-poor countries, HEV may be a useful health indicator reflecting the degree of contamination in village water sources. This may be especially important in rural areas (such as Tibet) where maternal mortality ratios are high because HEV may be an important cause of deaths during pregnancy in disease-endemic areas.
Watersheds and Water Policy Funding From USDA-CSREES: Vision, Outlook, and Priorities
NASA Astrophysics Data System (ADS)
Cavallaro, N.
2006-05-01
The Cooperative State Research, Education and Extension Service (CSREES) of the United States Department of Agriculture funds research, extension, and education grants in all aspects of agriculture, the environment, human health and well-being, and communities. Water is key natural resource for all of these areas and there are several types of funding opportunities available. The primary sources for watersheds and water management funding within CSREES are the Water and Watersheds program of the National Research Initiative, and the National Integrated Research, Education and Extension Program in Water Quality. These two programs have substantially reduced their focus in the last three years in order to meet the federal budget office demands for measurable outcomes. This paper will discuss the current and priorities and likely trends in funding in these areas. In addition, to the above two programs, agricultural water security is a prominent issue related to water management and policy. A recent listening session on agricultural water security and policy resulted in white paper available on the CSREES website. This paper will also describe a recommended strategy for CSREES efforts and current and projected needs and opportunities. Briefly, six themes for research, education, and extension activities were identified: Irrigation Efficiency and Management; Drought Risk Assessment and Preparedness; General Water Conservation and Management; Rural/Urban Water Reuse; Water Marketing, Distribution and Allocation; and Biotechnology. Of these six themes, it was recommended that CSREES should focus on the three: 1.Exploring new technologies and systems for the use of recycled/reuse water in agricultural, rural, and urbanizing watersheds, 2.Probing the human, social, and economic dimensions of agricultural water security (including water markets) with a focus on adoption-outreach and behavioral change, and 3.Discovering biotechnological improvements in water use efficiency of crop and horticultural plants to achieve greater "crop per drop."
Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth
2013-01-01
Groundwater quality in the approximately 620-square-mile (1,600-square-kilometer) San Francisco Bay study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in the Southern Coast Ranges of California, in San Francisco, San Mateo, Santa Clara, Alameda, and Contra Costa Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA San Francisco Bay study was designed to provide a spatially unbiased assessment of the quality of untreated groundwater within the primary aquifer system, as well as a statistically consistent basis for comparing water quality throughout the State. The assessment is based on water-quality and ancillary data collected by the USGS from 79 wells in 2007 and is supplemented with water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system is defined by the depth interval of the wells listed in the CDPH database for the San Francisco Bay study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifer system; shallower groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. Water- quality data from the CDPH database also were incorporated for this assessment. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifer system of the San Francisco Bay study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California benchmarks. A relative-concentration greater than (>) 1.0 indicates a concentration greater than a benchmark, and a relative-concentration less than or equal to (≤) 1.0 indicates a concentration equal to or less than a benchmark. Relative-concentrations of organic and special-interest constituents were classified as low (relative- concentration ≤ 0.1), moderate (0.1 1.0). Inorganic constituent relative- concentrations were classified as low (relative-concentration ≤ 0.5), moderate (0.5 1.0). A lower threshold value of relative-concentration was used to distinguish between low and moderate values of organic constituents because organic constituents are generally less prevalent and have smaller relative-concentrations than naturally occurring inorganic constituents. Aquifer-scale proportion was used as the metric for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the primary aquifer system that has relative-concentration greater than 1.0 for a particular constituent or class of constituents; proportion is based on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentages of the primary aquifer system that have moderate and low relative-concentrations, respectively. Two statistical approaches—grid-based and spatially weighted—were used to evaluate aquifer-scale proportion for individual constituents and classes of constituents. Grid-based and spatially weighted estimates were comparable in the San Francisco Bay study unit (90-percent confidence intervals). Inorganic constituents with health-based benchmarks were present at high relative-concentrations in 5.1 percent of the primary aquifer system, and at moderate relative-concentrations in 25 percent. The high aquifer-scale proportion of inorganic constituents primarily reflected high aquifer-scale proportions of barium (3.0 percent) and nitrate (2.1 percent). Inorganic constituents with secondary maximum contaminant levels were present at high relative-concentrations in 14 percent of the primary aquifer system and at moderate relative-concentrations in 33 percent. The constituents present at high relative-concentrations included total dissolved solids (7.0 percent), chloride (6.1 percent), manganese (12 percent), and iron (3.0 percent). Organic constituents with health-based benchmarks were present at high relative-concentrations in 0.6 percent and at moderate relative-concentrations in 12 percent of the primary aquifer system. Of the 202 organic constituents analyzed for, 32 were detected. Three organic constituents were frequently detected (in 10 percent or more of samples): the trihalomethane chloroform, the solvent 1,1,1-trichloroethane and the refrigerant 1,1,2-trichlorotrifluoroethane. One special-interest constituent, perchlorate, was detected at moderate relative-concentrations in 42 percent of the primary aquifer system. The second component of this work, the understanding assessment, identified some of the primary natural and human factors that may affect groundwater quality by evaluating land use, physical characteristics of the wells, and geochemical conditions of the aquifer. Results from these evaluations were used to explain the occurrence and distribution of constituents in the study unit.
MTBE and priority contaminant treatment with high energy electron beam injection
NASA Astrophysics Data System (ADS)
Cooper, William J.; Nickelsen, Michael G.; Mezyk, Stephen P.; Leslie, Greg; Tornatore, Paul M.; Hardison, Wayne; Hajali, Paris A.
2002-11-01
A study was conducted to examine the removal of methyl tert-butyl ether (MTBE) and 15 other organic compounds, as well as perchlorate ion, in waters of different quality. The 15 organic compounds consisted of halogenated solvents (chlorination), disinfection by-products, pesticides, and nitrosodimethylamine (NDMA). These studies were conducted using a pilot scale 20 kW mobile electron beam system at Water Factory 21, Orange County, CA where wastewater is treated and re-injected into the ground as a barrier to salt water intrusion. Future applications for this treated water include water reuse. Ground water and treated wastewater, after having gone through a reverse osmosis-polishing step (RO permeate), were used to prepare mixtures of the compounds. Using fundamental radiation chemistry, it was possible to examine the factors effecting removal efficiency of all the compounds as well as MTBE destruction and reaction by-product formation and removal. All of the organic compounds were destroyed in the studies and we also observed the destruction of perchlorate ion in one of the waters.
Gulf of Mexico Integrated Science - Tampa Bay Study - Characterization of Tidal Wetlands
McIvor, Carole
2005-01-01
Tidal wetlands in Tampa Bay, Florida, consist of mangrove forests and salt marshes. Wetlands buffer storm surges, provide fish and wildlife habitat, and enhance water quality through the removal of water-borne nutrients and contaminants. Substantial areas of both mangroves and salt marshes have been lost to agricultural, residential, and industrial development in this urban estuary. Wetlands researchers are characterizing the biological components of tidal wetlands and examining the physical factors such as salinity, tidal flushing, and sediment deposition that control the composition of tidal wetland habitats. Wetlands restoration is a priority of resource managers in Tampa Bay. Baseline studies such as these are needed for successful restoration planning and evaluation.
Regional Analysis of the Effects of Oil and Gas Development on Groundwater Resources in California
NASA Astrophysics Data System (ADS)
Landon, M. K.; McMahon, P. B.; Kulongoski, J. T.; Ball, L. B.; Gillespie, J. M.; Shimabukuro, D.; Taylor, K. A.
2016-12-01
The California State Water Resources Control Board is collaborating with the U.S. Geological Survey to implement a Regional Monitoring Program (RMP) to assess potential interactions between oil/gas stimulation treatment and groundwater resources. The effects of stimulation on groundwater resources will be difficult to distinguish from the effects of other past or present components of oil and gas development. As a result, the RMP is designed to provide an overall assessment of the effects of oil and gas development on groundwater quality. During 2016-17, the study is focused on selected priority oilfields in the eastern and western portions of the San Joaquin Valley in Kern County to: (1) produce three-dimensional (3D) salinity maps, (2) characterize the chemical composition of groundwater and produced water, and (3) identify the extent to which fluids from oil and gas development may be moving into protected (total dissolved solids less than 10,000 milligrams per liter) groundwater at regional scales. Analysis of available salinity data near oil/gas fields indicates there are regional patterns to salinity depth profiles; however, data gaps between the depths of water and oil/gas wells are common. These results provide a foundation for more detailed oilfield-scale salinity mapping, which includes geophysical methods (borehole, surface, and airborne) to fill data gaps. The RMP sampling-well networks are designed to evaluate groundwater quality along transects from oil/gas fields into adjacent aquifers and consist of existing wells supplemented by monitoring-well installation in priority locations identified by using 3D visualization of hydrogeologic data. The analytes include constituents with different transport characteristics such as dissolved gases, inorganic components (brines), and petroleum compounds. Analytes were selected because of their potential usefulness for understanding processes and pathways by which fluids from oilfield sources reach groundwater.
Systematic adaptation of data delivery
Bakken, David Edward
2016-02-02
This disclosure describes, in part, a system management component for use in a power grid data network to systematically adjust the quality of service of data published by publishers and subscribed to by subscribers within the network. In one implementation, subscribers may identify a desired data rate, a minimum acceptable data rate, desired latency, minimum acceptable latency and a priority for each subscription and the system management component may adjust the data rates in real-time to ensure that the power grid data network does not become overloaded and/or fail. In one example, subscriptions with lower priorities may have their quality of service adjusted before subscriptions with higher priorities. In each instance, the quality of service may be maintained, even if reduced, to meet or exceed the minimum acceptable quality of service for the subscription.
Aschonitis, V G; Gavioli, A; Lanzoni, M; Fano, E A; Feld, C; Castaldelli, G
2018-03-15
The freshwater populations of native fish species (Ns) have reached critical levels in many parts of the world due to combined habitat deterioration by human interventions and exotic fish species (Es) invasions. These alarming conditions require combined and well-designed interventions for restoring environmental quality and restricting Es invasion. The aim of the study is to propose a method to design spatially explicit priorities of intervention for the recovery of Ns populations in highly impacted freshwater systems by exotic multi-species invasion and water quality (WQ) degradation. WQ and Es are used as Ns descriptors, which require intervention. The method uses gradient analysis (ordination method of Canonical Correspondence Analysis) for assessing the weights of Ns descriptors' effects, which are further used to develop weighted severity indices; the severity index of WQ (Swq) and Es invasion (Se), respectively. Swq and Se are further merged to one combined total severity index St. The proposed method provides a) a ranking of the sites, based on the values of S t , which denotes the priority for combined intervention in space and can be visualized in maps, b) a ranking of the most important Ns descriptors for each site to perform site-specific interventions, and c) Es rankings based on their potential threat on Ns for species-specific interventions. WQ, Es and Ns data from 208 sampling sites located in the Emilia-Romagna Region (Northern Italy) were used as a case study for the presentation of the proposed method. The application of the method showed that the north and northwestern lowland areas of Emilia-Romagna region presented the higher priority for intervention since the Ns of these areas are the most impacted from combined Es invasions and WQ degradation. Specific Es belonging to cyprinids, which are mostly responsible for the decline of aquatic vegetation and the increase of water turbidity, and a top Es predator (Wels catfish) were mostly present in these areas. Additionally, the most important WQ stressors of Ns were found to be COD, BOD and temperature that are all connected to oxygen depletion. The aforementioned conditions in the areas described by high priority for intervention can be used as a basis for the development of specific Ns conservation practices targeting the containment of the most harmful Es, the restoration of aquatic vegetation and the improvement of oxygen conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Corsi, Steven R; Klaper, Rebecca D; Weber, Daniel N; Bannerman, Roger T
2011-10-15
Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1mg/L and 15 streams experienced DO less than 4.8mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and sediment-quality degrade in relation to urban influence. Published by Elsevier B.V.
Corsi, S.R.; Klaper, R.D.; Weber, D.N.; Bannerman, R.T.
2011-01-01
Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1. mg/L and 15 streams experienced DO less than 4.8. mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and sediment-quality degrade in relation to urban influence. ?? 2011.
At this meeting, grantees from Centers for Water Research on National Priorities Related to a Systems View of Nutrient Management and Sustainable Chesapeake: A Community-Based Approach to Stormwater Management Using Green Infrastructure
NASA Astrophysics Data System (ADS)
Alameddine, Ibrahim; Karmakar, Subhankar; Qian, Song S.; Paerl, Hans W.; Reckhow, Kenneth H.
2013-10-01
The total maximum daily load program aims to monitor more than 40,000 standard violations in around 20,000 impaired water bodies across the United States. Given resource limitations, future monitoring efforts have to be hedged against the uncertainties in the monitored system, while taking into account existing knowledge. In that respect, we have developed a hierarchical spatiotemporal Bayesian model that can be used to optimize an existing monitoring network by retaining stations that provide the maximum amount of information, while identifying locations that would benefit from the addition of new stations. The model assumes the water quality parameters are adequately described by a joint matrix normal distribution. The adopted approach allows for a reduction in redundancies, while emphasizing information richness rather than data richness. The developed approach incorporates the concept of entropy to account for the associated uncertainties. Three different entropy-based criteria are adopted: total system entropy, chlorophyll-a standard violation entropy, and dissolved oxygen standard violation entropy. A multiple attribute decision making framework is adopted to integrate the competing design criteria and to generate a single optimal design. The approach is implemented on the water quality monitoring system of the Neuse River Estuary in North Carolina, USA. The model results indicate that the high priority monitoring areas identified by the total system entropy and the dissolved oxygen violation entropy criteria are largely coincident. The monitoring design based on the chlorophyll-a standard violation entropy proved to be less informative, given the low probabilities of violating the water quality standard in the estuary.
Integrated watershed planning across jurisdictional boundaries
NASA Astrophysics Data System (ADS)
Watts, A. W.; Roseen, R.; Stacey, P.; Bourdeau, R.
2014-12-01
We will present the foundation for an Coastal Watershed Integrated Plan for three communities in southern New Hampshire. Small communities are often challenged by complex regulatory requirements and limited resources, but are wary of perceived risks in engaging in collaborative projects with other communities. Potential concerns include loss of control, lack of resources to engage in collaboration, technical complexity, and unclear benefits. This project explores a multi-town subwatershed application of integrated planning across jurisdictional boundaries that addresses some of today's highest priority water quality issues: wastewater treatment plant upgrades for nutrient removal; green infrastructure stormwater management for developing and re-developing areas; and regional monitoring of ecosystem indicators in support of adaptive management to achieve nutrient reduction and other water quality goals in local and downstream waters. The project outcome is a collaboratively-developed inter-municipal integrated plan, and a monitoring framework to support cross jurisdictional planning and assess attainment of water quality management goals. This research project has several primary components: 1) assessment of initial conditions, including both the pollutant load inputs and the political, economic and regulatory status within each community, 2) a pollutant load model for point and non-point sources, 3) multi-criteria evaluation of load reduction alternatives 4) a watershed management plan optimized for each community, and for Subwatersheds combining multiple communities. The final plan will quantify the financial and other benefits/drawbacks to each community for both inter municipal and individual pollution control approaches. We will discuss both the technical and collaborative aspects of the work, with lessons learned regarding science to action, incorporation of social, economic and water quality assessment parameters, and stakeholder/researcher interaction.
Fuerhacker, Maria
2009-08-01
Water is a renewable resource and acceptable quality is important for human health, ecological and economic reasons, but human activity can cause great damage to the natural aquatic environment. Managing the water cycle in a sustainable way is the key to protect natural resources and human health. On a global level, the microbiological contamination of water sources is a major problem in connection with poverty and the United Nations Millennium Development Declaration is an important initiative to handle this problem. In terms of environmental health, persistent organic pollutants (POPs) circulate globally; as they travel long distances, they are found in remote areas far from their original source of application and can cause damage wherever they move to. On a global scale, United Nations Environmental Programme (UNEP) issued the Stockholm Convention to reduce POPs; in the European Union (EU), one intention of the Water Framework Directive (WFD) is to reach the good chemical status of waters; beside these regulations, there are other directives in support of these goals. The aim of this paper is to discuss whether the Stockholm Convention and the WFD allows meeting the targets of protection of human and environmental health, which are established in the different directives and how could we approach the targets. The aims and scopes of different directives are compiled and compared with the actual quality of water, different approaches of standard settings are compared and potential treatment options are discussed. Under the Stockholm Convention on POPs, which came into force in May 2004, governments are required to develop a National Implementation Plan (NIP) setting out how they will address their obligations under the convention and how they will take measures to eliminate or reduce the release of POPs into the environment by the use of best available techniques (BAT) and application of best environmental practices (BEP). On a European level, the WFD has been in place as the main European legislation to protect our water resources and the water environment of Europe since 2000. It requires managing river basins so that the quality and quantity of water does not affect the ecological services of any specific water body. Nevertheless, the goals of other directives as for drinking water, bathing water and urban wastewater treatment are not yet harmonised mainly concerning microbiological, priority substances and priority hazardous substances (PS/PHS) contamination. Following the detection of substances, a risk assessment with sound effect data needs to be performed also for regulatory decisions and priorisation of measures to remove emerging contaminants. Beside personal care products and industrial contaminants, faecal pollution of recreational waters is one of the major hazards facing users, although microbial contamination from other sources as well as chemical and physical aspects also affects the suitability of water for recreation. As in arid and semiarid areas, wastewater is considered for irrigation with regulatory needs of hygienic and chemical parameters-health-based targets-to avoid the contamination of crops and food. In surface waters, currently, the relationships between physical and chemical properties and the biological state of surface waters were quite well-understood to enable the management of catchments and rivers to achieve ecological quality. Nevertheless, more work is needed to find out the actual impact of the regulations for single chemicals and complex mixtures, in terms of environmental quality standards to achieve a 'good chemical status', on the good biological status. In a next step after the adoption of the list of PS/PHS substances, which also includes the POPs, the Urban Wastewater Treatment Directive (UWWTD) needs to be adjusted and existing or new treatment options (BATs) should comply with the new requirements of the different directives. Relevant substances threaten human health and the environment by new effects such as CMR, endocrine-disrupting effects or neurotoxicity which are not yet considered in an adequate way by assessment methods and regulatory standards and the application of abatement technologies. The Registration, Evaluation, Authorisation and Restriction of Chemicals helps to control the sources, but WFD, the Stockholm Convention and UWWTD need to be harmonised and a rolling revision process should react on new developments. Finally, to answer the question if the Stockholm Convention and the WFD (2000/60/EC) could reach the target-I would state that they provide a very valuable frame to approach the targets, but there is still way to go to reach them on an EU level and on a global scale, also under the aspects of the Stockholm Convention and the Millennium Development Goals. The compilation of the goals of different regulations and combined actions will save a lot of administrative efforts and money.
Selected stormwater priority pollutants: a European perspective.
Eriksson, E; Baun, A; Scholes, L; Ledin, A; Ahlman, S; Revitt, M; Noutsopoulos, C; Mikkelsen, P S
2007-09-20
The chemical characteristics of stormwater are dependent on the nature of surfaces (roads, roofs etc.) with which it comes into contact during the runoff process as well as natural processes and anthropogenic activities in the catchments. The different types of pollutants may cause problems during utilisation, detention or discharge of stormwater to the environment and may pose specific demands to decentralised treatment. This paper proposes a scientifically justifiable list of selected stormwater priority pollutants (SSPP) to be used, e.g., for evaluation of the chemical risks occurring in different handling strategies. The SSPP-list consists of 25 pollutant parameters including eight of the priority pollutants currently identified in the European Water Framework Directive. It contains general water quality parameters (organic and suspended matter, nutrients and pH); metals (Cd, Cr, Cu, Ni, Pb, Pt and Zn); PAH (naphthalene, pyrene and benzo[a]pyrene); herbicides (pendimethalin, phenmedipham, glyphosate and terbutylazine); and other representative industrially derived compounds (nonylphenol ethoxylates, pentachlorophenol, di(2-ethylhexyl)phthalate, PCB-28 and methyl tert-butyl ether). Tools for flux modelling, enabling calculation of predicted environmental concentrations (PECs), and for ranking the susceptibility of a pollutant to removal within a range of structural stormwater treatment systems or best management practices (BMPs) have been developed, but further work is required to allow all SSPPs to be addressed in the development of future stormwater pollution control measures. In addition, the identified SSPPs should be considered for inclusion in stormwater related monitoring campaigns.
Stakeholder Engagement to Identify Priorities for Improving the Quality and Value of Critical Care.
Stelfox, Henry T; Niven, Daniel J; Clement, Fiona M; Bagshaw, Sean M; Cook, Deborah J; McKenzie, Emily; Potestio, Melissa L; Doig, Christopher J; O'Neill, Barbara; Zygun, David
2015-01-01
Large amounts of scientific evidence are generated, but not implemented into patient care (the 'knowledge-to-care' gap). We identified and prioritized knowledge-to-care gaps in critical care as opportunities to improve the quality and value of healthcare. We used a multi-method community-based participatory research approach to engage a Network of all adult (n = 14) and pediatric (n = 2) medical-surgical intensive care units (ICUs) in a fully integrated geographically defined healthcare system serving 4 million residents. Participants included Network oversight committee members (n = 38) and frontline providers (n = 1,790). Network committee members used a modified RAND/University of California Appropriateness Methodology, to serially propose, rate (validated 9 point scale) and revise potential knowledge-to-care gaps as priorities for improvement. The priorities were sent to frontline providers for evaluation. Results were relayed back to all frontline providers for feedback. Initially, 68 knowledge-to-care gaps were proposed, rated and revised by the committee (n = 32 participants) over 3 rounds of review and resulted in 13 proposed priorities for improvement. Then, 1,103 providers (62% response rate) evaluated the priorities, and rated 9 as 'necessary' (median score 7-9). Several factors were associated with rating priorities as necessary in multivariable logistic regression, related to the provider (experience, teaching status of ICU) and topic (strength of supporting evidence, potential to benefit the patient, potential to improve patient/family experience, potential to decrease costs). A community-based participatory research approach engaged a diverse group of stakeholders to identify 9 priorities for improving the quality and value of critical care. The approach was time and cost efficient and could serve as a model to prioritize areas for research quality improvement across other settings.
Treatment priorities in oncology: do we want to live longer or better?
Marta, Guilherme Nader; Del Nero, Luís G; Marta, Gustavo Nader; Mangabeira, Andrea; Critchi, Gabriela; Kovács, Maria J; da Silva, João Luis Fernandes; Saad, Everardo D
2014-01-01
OBJECTIVES: Despite the progress achieved in the fight against cancer over the past several years, assessing the needs, goals and preferences of patients with cancer is of the utmost importance for the delivery of health care. We sought to assess priorities regarding quantity versus quality of life among Brazilian patients, comparing them with individuals without cancer. METHODS: Using a questionnaire presenting four hypothetical cancer cases, we interviewed cancer patients, oncology health-care professionals and laypersons, most of whom had administrative functions in our hospital. RESULTS: A total of 214 individuals participated: 101 patients, 44 health-care professionals and 69 laypersons. The mean ages in the three groups were 56, 34 and 31 years old, respectively (p<0.001). The patients had gastrointestinal (25%), breast (22%), hematologic (10%), lung (8%) or other tumors (36%) and the tumor-node- metastasis (TNM) stage was I, II, III or IV in 22%, 13%, 34% and 31% of cases, respectively. Treatment priorities differed significantly among the three groups (p = 0.005), with survival time being a higher priority for patients than for the other two groups and with opposite trends regarding quality of life. In multivariate analysis, the age and sex distributions were not associated with the choice to maximize quality of life. In this limited sample of cancer patients, there were no associations between treatment priorities and disease stages. CONCLUSIONS: Both survival time and quality of life appeared to be important to cancer patients, oncology health-care professionals and laypersons, but survival time seemed to have higher priority for people diagnosed with cancer than for healthy people. Additionally, survival seemed to be more important than quality of life for all three groups assessed. PMID:25141108
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
... relations, Penalties, Reporting and recordkeeping requirements, Superfund, Water pollution control, Water... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the..., as amended, is an appendix of the National Oil and Hazardous Substances Pollution Contingency Plan...
Zhang, Yinan; Chu, Chunli; Li, Tong; Xu, Shengguo; Liu, Lei; Ju, Meiting
2017-12-01
Severe water pollution and resource scarcity is a major problem in China, where it is necessary to establish water quality-oriented monitoring and intelligent watershed management. In this study, an effective watershed management method is explored, in which water quality is first assessed using the heavy metal pollution index and the human health risk index, and then by classifying the pollution and management grade based on cluster analysis and GIS visualization. Three marine reserves in Tianjin were selected and analyzed, namely the Tianjin Ancient Coastal Wetland National Nature Reserve (Qilihai Natural Reserve), the Tianjin DaShentang Oyster Reef National Marine Special Reserve (DaShentang Reserve), and the Tianjin Coastal Wetland National Marine Special Reserve (BinHai Wetland Reserve) which is under construction. The water quality and potential human health risks of 5 heavy metals (Pb, As, Cd, Hg, Cr) in the three reserves were assessed using the Nemerow index and USEPA methods. Moreover, ArcGIS10.2 software was used to visualize the heavy metal index and display their spatial distribution. Cluster analysis enabled classification of the heavy metals into 4 categories, which allowed for identification of the heavy metals whose pollution index and health risks were highest, and, thus, whose control in the reserve is a priority. Results indicate that heavy metal pollution exists in the Qilihai Natural Reserve and in the north and east of the DaShentang Reserve; furthermore, human health risks exist in the Qilihai Natural Reserve and in the BinHai Wetland Reserve. In each reserve, the main factor influencing the pollution and health risk were high concentrations of As and Pb that exceed the corresponding standards. Measures must be adopted to control and remediate the pollutants. Furthermore, to protect the marine reserves, management policies must be implemented to improve water quality, which is an urgent task for both local and national governments. Copyright © 2017 Elsevier B.V. All rights reserved.
This report presents the development of a preliminary priority ranking of potential pollution sources with respect to groundwater quality and the associated pollutants for oil shale operations such as proposed for Federal Prototype Leases U-a and U-b in Eastern Utah. The methodol...
34 CFR 222.189 - What funding priority does the Secretary give to applications?
Code of Federal Regulations, 2012 CFR
2012-07-01
... OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION IMPACT AID PROGRAMS Impact Aid..., priority is given to applications based on a rank order of the application quality factors referenced in... application quality factors referenced in § 222.190, including the severity of the emergency. (3) Third...
34 CFR 222.189 - What funding priority does the Secretary give to applications?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION IMPACT AID PROGRAMS Impact Aid..., priority is given to applications based on a rank order of the application quality factors referenced in... application quality factors referenced in § 222.190, including the severity of the emergency. (3) Third...
34 CFR 222.189 - What funding priority does the Secretary give to applications?
Code of Federal Regulations, 2014 CFR
2014-07-01
... OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION IMPACT AID PROGRAMS Impact Aid..., priority is given to applications based on a rank order of the application quality factors referenced in... application quality factors referenced in § 222.190, including the severity of the emergency. (3) Third...
Innovative Problems of Improving the Quality of Life of the Welfare State
ERIC Educational Resources Information Center
Panachev, Valery D.
2016-01-01
Improvement of the population quality of life should be based on promoting healthy lifestyle, active physical exercises and sports activities as one of its main priorities. In order to facilitate the achievement of this priority, the author proposes management technique of complicated coordination movements in space in the development of…
Maupin, Molly A.
1991-01-01
The vulnerability of ground water to contamination in Idaho is being assessed by the ISHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Protection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability of ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantham, Idaho Department of Health and Welfare, written commun., 1989). Digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a soils data set developed by the SCS (Soul Conservation Service) and the IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) has developed digital depth-to-water values for eleven 1:100,00-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.
Maupin, Molly A.
1992-01-01
The vulnerability of ground water to contamination in Idaho is being assessed by the IDHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Orotection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability or ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantha,, Idaho Department of Health and Welfare, written commun., 1989). A digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a sols data set developed by the SCS (Soil Conservation Service) and IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (Idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) developed digital depth-to-water values for eleven 1:100,000-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.
Islam, Md Atikul; Romić, Davor; Akber, Md Ali; Romić, Marija
2018-02-01
Trace metals accumulation in soil irrigated with polluted water and human health risk from vegetable consumption was assessed based on the data available in the literature on metals pollution of water, soil, sediment and vegetables from the cites of Bangladesh. The quantitative data on metal concentrations, their contamination levels and their pollution sources have not been systematically gathered and studied so far. The data on metal concentrations, sources, contamination levels, sample collection and analytical tools used were collected, compared and discussed. The USEPA-recommended method for health risk assessment was used to estimate human risk from vegetable consumption. Concentrations of metals in water were highly variable, and the mean concentrations of Cd, Cr, Cu and As in water were found to be higher than the FAO irrigation water quality standard. In most cases, mean concentrations of metals in soil were higher than the Bangladesh background value. Based on geoaccumulation index (I geo ) values, soils of Dhaka city are considered as highly contaminated. The I geo shows Cd, As, Cu, Ni, Pb and Cr contamination of agricultural soils and sediments of the cities all over the Bangladesh. Polluted water irrigation and agrochemicals are identified as dominant sources of metals in agricultural soils. Vegetable contamination by metals poses both non-carcinogenic and carcinogenic risks to the public. Based on the results of the pollution and health risk assessments, Cd, As, Cr, Cu, Pb and Ni are identified as the priority control metals and the Dhaka city is recommended as the priority control city. This study provides quantitative evidence demonstrating the critical need for strengthened wastewater discharge regulations in order to protect residents from heavy metal discharges into the environment.
Chung, Eun-Sung; Lee, Kil Seong
2009-03-01
The objective of this study is to develop an alternative evaluation index (AEI) in order to determine the priorities of a range of alternatives using both the hydrological simulation program in FORTRAN (HSPF) and multicriteria decision making (MCDM) techniques. In order to formulate the HSPF model, sensitivity analyses of water quantity (peak discharge and total volume) and quality (BOD peak concentrations and total loads) are conducted and a number of critical parameters were selected. To achieve a more precise simulation, the study watershed is divided into four regions for calibration and verification according to landuse, location, slope, and climate data. All evaluation criteria were selected using the Driver-Pressure-State-Impact-Response (DPSIR) model, a sustainability evaluation concept. The Analytic Hierarchy Process is used to estimate the weights of the criteria and the effects of water quantity and quality were quantified by HSPF simulation. In addition, AEIs that reflected residents' preferences for management objectives are proposed in order to induce the stakeholder to participate in the decision making process.
Ecological restoration and effect investigation of a river wetland in a semi-arid region, China
NASA Astrophysics Data System (ADS)
Xu, S.; Jiang, X.; Liu, Y.; Fu, Y.; Zhao, Q.
2015-05-01
River wetlands are heavily impacted by human intervention. The degradation and loss of river wetlands has made the restoration of river ecosystems a top priority. How to rehabilitate rivers and their services has been a research focus. The main goal of it is to restore the river wetland ecosystems with ecological methods. The Gudong River was selected as a study site in Chaoyang city in this study. Based on the analysis of interference factors in the river wetland degradation, a set of restoration techniques were proposed and designed for regional water level control, including submerged dikes, ecological embankments, revegetation and dredging. The restoration engineering has produced good results in water quality, eco-environment, and landscape. Monthly reports of the Daling River show that the water quality of Gudong River was better than Grade III in April 2013 compared with Grade V in May 2012. The economic benefit after restoration construction is 1.71 million RMB per year, about 1.89 times that before. The ratio of economic value, social value and eco-environmental value is 1:4:23.
Water resources planning for a river basin with recurrent wildfires.
Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V; Pacheco, F A L
2015-09-01
Situated in the north of Portugal, the Beça River basin is subject to recurrent wildfires, which produce serious consequences on soil erosion and nutrient exports, namely by deteriorating the water quality in the basin. In the present study, the ECO Lab tool embedded in the Mike Hydro Basin software was used for the evaluation of river water quality, in particular the dissolved concentration of phosphorus in the period 1990-2013. The phosphorus concentrations are influenced by the burned area and the river flow discharge, but the hydrologic conditions prevail: in a wet year (2000, 16.3 km(2) of burned area) with an average flow of 16.4 m(3)·s(-1) the maximum phosphorus concentration was as low as 0.02 mg·L(-1), while in a dry year (2005, 24.4 km(2) of burned area) with an average flow of 2 m(3)·s(-1) the maximum concentration was as high as 0.57 mg·L(-1). Phosphorus concentrations in the water bodies exceeded the bounds of good ecological status in 2005 and between 2009 and 2012, water for human consumption in 2009 and water for multiple uses in 2010. The River Covas, a right margin tributary of Beça River, is the most appropriate stream as regards the use of water for human consumption, because it presents the biggest water potential with the best water quality. Since wildfires in the basin result essentially from natural causes and climate change forecasts indicate an increase in their frequency and intensity in the near future, forestry measures are proposed to include as a priority the conversion of stands of maritime pine in mixed stands of conifer and hardwood species. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Acosta, R.; Rodriguez, J. P.
2016-12-01
Water resources availability is a global concern due to increasing demands, decreasing quality and uncertain spatio-temporal variability (United Nations, 2009). In urban contexts research on efficient water use is a priority to cope with the future vulnerability of water supplies as a result of the impacts of climate change (Bates et al, 2008). Following the proposed methodologies of He and Kua (2013) for implementing programs to promote sustainable energy consumption, we focused on the use of educational strategies to promote a voluntary rationalization of residential water demand. We collaborated with three schools in Soacha (Colombia) where students ranging from 12 to 15 years participated in the project as promoters of educational campaigns inside their families, covering 120 low and middle-low income households. Three intervention or treatment strategies (i.e. e-learning, in-person active learning activities and graphical learning tools) were carried out over a period of 5 months. We analyzed the effects of the treatments strategies in reducing water consumption rates and the dependence of this variable on socio-demographic, economic, environmental, and life quality factors by using personal interviews and self reported water saving technics. The results showed that educational campaigns have a positive effect on reducing consumption in the households. Graphical learning tools accounted for the highest reduction in water consumption. Moreover, the results of the study suggests that socio-economic factors such as type of house, social level, income, and life quality variables significantly affect the variability in water consumption, which is an important fact to consider in similar cases where communities face difficult socio-economic conditions, displacement or high rates of urban growth.
Mouri, Goro; Oki, Taikan
2010-01-01
Understanding of solids deposition, erosion, and transport processes in sewer systems has improved considerably in the past decade. This has provided guidance for controlling sewer solids and associated acute pollutants to protect the environment and improve the operation of wastewater systems. Although measures to decrease combined sewer overflow (CSO) events have reduced the amount of discharged pollution, overflows continue to occur during rainy weather in combined sewer systems. The solution lies in the amount of water allotted to various processes in an effluent treatment system, in impact evaluation of water quality and prediction technology, and in stressing the importance of developing a control technology. Extremely contaminated inflow has been a serious research subject, especially in connection with the influence of rainy weather on nitrogen and organic matter removal efficiency in wastewater treatment plants (WWTP). An intensive investigation of an extremely polluted inflow load to WWTP during rainy weather was conducted in the city of Matsuyama, the region used for the present research on total suspended solid (TSS) concentration. Since the inflow during rainy weather can be as much as 400 times that in dry weather, almost all sewers are unsettled and overflowing when a rain event is more than moderate. Another concern is the energy consumed by wastewater treatment; this problem has become important from the viewpoint of reducing CO(2) emissions and overall costs. Therefore, while establishing a prediction technology for the inflow water quality characteristics of a sewage disposal plant is an important priority, the development of a management/control method for an effluent treatment system that minimises energy consumption and CO(2) emissions due to water disposal is also a pressing research topic with regards to the quality of treated water. The procedure to improve water quality must make use of not only water quality and biotic criteria, but also modelling systems to enable the user to link the effect of changes in urban sewage systems with specific quality, energy consumption, CO(2) emission, and ecological improvements of the receiving water.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
..., Reporting and recordkeeping requirements, Superfund, Water pollution control, Water supply. Authority: 33 U... and Hazardous Substance Pollution Contingency Plan National Priorities List: Deletion of the Pasley..., as amended, is an Appendix of the National Oil and Hazardous Substances Pollution Contingency Plan...
7 CFR 623.9 - Easement priority.
Code of Federal Regulations, 2011 CFR
2011-01-01
... restored, (e) Wetland function or values, (f) Likelihood of successful restoration of wetland values, (g... AGRICULTURE WATER RESOURCES EMERGENCY WETLANDS RESERVE PROGRAM § 623.9 Easement priority. The State... government expenditure on restoration and easement purchase. The factors for determining the priority for...
Sustainability issues in rural water supply in Asia.
1998-03-01
This article identifies some sustainability issues in management of water supplies in rural Asia. The International Drinking Water Supply and Sanitation Decade was 1981-90. At present, less than 50% of the rural population in several Asian countries have access to safe water, and even less have access to adequate sanitation. Access does not ensure quality of services or supplies. Data on coverage is inadequate and does not take into account water quality, hours of service, reliability of supplies, distance to the source, and community use patterns. It is difficult to improve access to the poor. There is no single uniform strategy that works for all parts of a country. Countries need to promote community management that has strategic vision and appropriate priorities. Local management is constrained by centralized authority, the orientation of sector agencies, and staff with weak managerial, financial, technical, and communications skills. Many countries lack resources to maintain water delivery infrastructures and to prevent deterioration of services. There is a need to develop low cost appropriate technologies, management requirements, health education, community participation, mobilization of women, and synergistic, nonsequential development. Demand for water and sanitation is driven by survival and privacy issues. Rural water supply programs should view water as an economic and social good. Water management is effective when decisions are made locally. Local governments need to be strengthened in order to be able to perform demand management, select institutional options, and to take care of the unserviced.
Bramesfeld, A; Stegbauer, C
2016-10-01
The World Health Organisation has defined health service responsiveness as one of the key-objectives of health systems. Health service responsiveness relates to the ability to respond to service users' legitimate expectations on non-medical issues when coming into contact with the services of a healthcare system. It is defined by the areas showing respect for persons and patient orientation. Health service responsiveness is particularly relevant to mental health services, due to the specific vulnerability of mental health patients but also because it matches what mental health patients consider as good quality of care as well as their priorities when seeking healthcare. As (mental) health service responsiveness applies equally to all concerned services it would be suitable as a universal indicator for the quality of services' performance. However, performance monitoring programs in mental healthcare rarely assess health service performance with respect to meeting patient priorities. This is in part due of patient priorities as an outcome being underrepresented in studies that evaluate service provision. The lack of studies using patient priorities as outcomes transmits into evidence based guidelines and subsequently, into underrepresentation of patient priorities in performance monitoring. Possible ways out of this situation include more intervention studies using patient priorities as outcome, considering evidence from qualitative studies in guideline development and developing performance monitoring programs along the patient pathway and on key-points of relevance for service quality from a patient perspective.
Fram, Miranda S.
2017-06-09
Water quality in groundwater resources used for public drinking-water supply in the Western San Joaquin Valley (WSJV) was investigated by the USGS in cooperation with the California State Water Resources Control Board (SWRCB) as part of its Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The WSJV includes two study areas: the Delta–Mendota and Westside subbasins of the San Joaquin Valley groundwater basin. Study objectives for the WSJV study unit included two assessment types: (1) a status assessment yielding quantitative estimates of the current (2010) status of groundwater quality in the groundwater resources used for public drinking water, and (2) an evaluation of natural and anthropogenic factors that could be affecting the groundwater quality. The assessments characterized the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.The status assessment was based on data collected from 43 wells sampled by the U.S. Geological Survey for the GAMA Priority Basin Project (USGS-GAMA) in 2010 and data compiled in the SWRCB Division of Drinking Water (SWRCB-DDW) database for 74 additional public-supply wells sampled for regulatory compliance purposes between 2007 and 2010. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and SWRCB-DDW regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a spatially weighted, grid-based method to estimate the proportion of the groundwater resources used for public drinking water that has concentrations for particular constituents or class of constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale within the WSJV study unit, and permits comparison of the two study areas to other areas assessed by the GAMA Priority Basin Project statewide.Groundwater resources used for public drinking water in the WSJV study unit are among the most saline and most affected by high concentrations of inorganic constituents of all groundwater resources used for public drinking water that have been assessed by the GAMA Priority Basin Project statewide. Among the 82 GAMA Priority Basin Project study areas statewide, the Delta–Mendota study area ranked above the 90th percentile for aquifer-scale proportions of groundwater resources having concentrations of total dissolved solids (TDS), sulfate, chloride, manganese, boron, chromium(VI), selenium, and strontium above benchmarks, and the Westside study area ranked above the 90th percentile for TDS, sulfate, manganese, and boron.In the WSJV study unit as a whole, one or more inorganic constituents with regulatory or non-regulatory, health-based benchmarks were present at concentrations above benchmarks in about 53 percent of the groundwater resources used for public drinking water, and one or more organic constituents with regulatory health-based benchmarks were detected at concentrations above benchmarks in about 3 percent of the resource. Individual constituents present at concentrations greater than health-based benchmarks in greater than 2 percent of groundwater resources used for public drinking water included: boron (51 percent, SWRCB-DDW notification level), chromium(VI) (25 percent, SWRCB-DDW maximum contaminant level (MCL)), arsenic (10 percent, EPA MCL), strontium (5.1 percent, EPA Lifetime health advisory level (HAL)), nitrate (3.9 percent, EPA MCL), molybdenum (3.8 percent, EPA HAL), selenium (2.6 percent, EPA MCL), and benzene (2.6 percent, SWRCB-DDW MCL). In addition, 50 percent of the resource had TDS concentrations greater than non-regulatory, aesthetic-based SWRCB-DDW upper secondary maximum contaminant level (SMCL), and 44 percent had manganese concentrations greater than the SWRCB-DDW SMCL.Natural and anthropogenic factors that could affect the groundwater quality were evaluated by using results from statistical testing of associations between constituent concentrations and values of potential explanatory factors, inferences from geochemical and age-dating tracer results, and by considering the water-quality results in the context of the hydrogeologic setting of the WSJV study unit.Natural factors, particularly the lithologies of the source areas for groundwater recharge and of the aquifers, were the dominant factors affecting groundwater quality in most of the WSJV study unit. However, where groundwater resources used for public supply included groundwater recharged in the modern era, mobilization of constituents by recharge of water used for irrigation also affected groundwater quality. Public-supply wells in the Westside study area had a median depth of 305 m and primarily tapped groundwater recharged hundreds to thousands of years ago, whereas public-supply wells in the Delta–Mendota study area had a median depth of 85 m and primarily tapped either groundwater recharged within the last 60 years or groundwater consisting of mixtures of this modern recharge and older recharge.Public-supply wells in the WSJV study unit are screened in the Tulare Formation and zones above and below the Corcoran Clay Member are used. The Tulare Formation primarily consists of alluvial sediments derived from the Coast Ranges to the west, except along the valley trough at the eastern margin of the WSJV study unit where the Tulare Formation consists of fluvial sands derived from the Sierra Nevada to the east. Groundwater from wells screened in the Sierra Nevada sands had manganese-reducing or manganese- and iron-reducing oxidation-reduction (redox) conditions. These redox conditions commonly were associated with elevated arsenic or molybdenum concentrations, and the dominance of arsenic(III) in the dissolved arsenic supports reductive dissolution of iron and manganese oxyhydroxides as the mechanism. In addition, groundwater from many wells screened in Sierra Nevada sands contained low concentrations of nitrite or ammonium, indicating reduction of nitrate by denitrification or dissimilatory processes, respectively.Geology of the Coast Ranges westward of the study unit strongly affects groundwater quality in the WSJV. Elevated concentrations of TDS, sulfate, boron, selenium and strontium in groundwater were primarily associated with aquifer sediments and recharge derived from areas of the Coast Ranges dominated by Cretaceous-to-Miocene age, organic-rich, reduced marine shales, known as the source of selenium in WSJV soils, surface water, and groundwater. Low sulfur-isotopic values (δ34S) of dissolved sulfate indicate that the sulfate was largely derived from oxidation of biogenic pyrite from the shales, and correlations with trace element concentrations, geologic setting, and groundwater geochemical modeling indicated that distributions of sulfate, strontium, and selenium in groundwater were controlled by dissolution of secondary sulfate minerals in soils and sediments.Elevated concentrations of chromium(VI) were primarily associated with aquifer sediments and recharge derived from areas of the Coast Ranges dominated by the Franciscan Complex and ultramafic rocks. The Franciscan Complex also has boron-rich, sodium-chloride dominated hydrothermal fluids that contribute to elevated concentrations of boron and TDS.Groundwater from wells screened in Coast Ranges alluvium was primarily oxic and relatively alkaline (median pH value of 7.55) in the Delta–Mendota study area, and primarily nitrate-reducing or suboxic and alkaline (median pH value of 8.4) in the Westside study area. Many groundwater samples from those wells have elevated concentrations of arsenic(V), molybdenum, selenium, or chromium(VI), consistent with desorption of metal oxyanions from mineral surfaces under those geochemical conditions.High concentrations of benzene were associated with deep wells located in the vicinity of petroleum deposits at the southern end of the Westside study area. Groundwater from these wells had premodern age and anoxic geochemical conditions, and the ratios among concentrations of hydrocarbon constituents were different from ratios found in fuels and combustion products, which is consistent with a geogenic source for the benzene rather than contamination from anthropogenic sources.Water stable-isotope compositions, groundwater recharge temperatures, and groundwater ages were used to infer four types of groundwater: (1) groundwater derived from natural recharge of water from major rivers draining the Sierra Nevada; (2) groundwater primarily derived from natural recharge of water from Coast Ranges runoff; (3) groundwater derived from recharge of pumped groundwater applied to the land surface for irrigation; and (4) groundwater derived from recharge during a period of much cooler paleoclimate. Water previously used for irrigation was found both above and below the Corcoran Clay, supporting earlier inferences that this clay member is no longer a robust confining unit.Recharge of water used for irrigation has direct and indirect effects on groundwater quality. Elevated nitrate concentrations and detections of herbicides and fumigants in the Delta–Mendota study area generally were associated with greater agricultural land use near the well and with water recharged during the last 60 years. However, the extent of the groundwater resource affected by agricultural sources of nitrate was limited by groundwater redox conditions sufficient to reduce nitrate. The detection frequency of perchlorate in Delta–Mendota groundwater was greater than expected for natural conditions. Perchlorate, nitrate, selenium, and strontium concentrations were correlated with one another and were greater in groundwater inferred to be recharge of previously pumped groundwater used for irrigation. The source of the perchlorate, selenium, and strontium appears to be salts deposited in the soils and sediments of the arid WSJV that are dissolved and flushed into groundwater by the increased amount of recharge caused by irrigation. In the Delta–Mendota study area, the groundwater with elevated concentrations of selenium was found deeper in the aquifer system than it was reported by a previous study 25 years earlier, suggesting that this transient front of groundwater with elevated concentrations of constituents derived from dissolution of soil salts by irrigation recharge is moving down through the aquifer system and is now reaching the depth zone used for public drinking water supply.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
... and Hazardous Substances Pollution Contingency Plan; National Priorities List AGENCY: Environmental...: List of Subjects in 40 CFR Part 300 Environmental protection, Air pollution control, Chemicals... requirements, Superfund, Water pollution control, Water supply. Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. 9601...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
..., Superfund, Water pollution control, Water supply. Dated: September 26, 2013. Judith A. Enck, Regional...] National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the... Pollution Contingency Plan (NCP). The EPA and the State of New York, through the Department of Environmental...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-30
... recordkeeping requirements, Superfund, Water pollution control, Water supply. Authority: 33 U.S.C. 1321(c)(2... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Intent To Delete the... Act (CERCLA) of 1980, is an Appendix of the National Oil and Hazardous Substances Pollution...
Global CLEWs model - A novel application of OSeMOSYS
NASA Astrophysics Data System (ADS)
Avgerinopoulos, Georgios; Pereira Ramos, Eunice; Howells, Mark
2017-04-01
Over the past years, studies that analyse Nexus issues from a holistic point of view and not energy, land or water separately have been gaining momentum. This project aims at giving insights into global issues through the application and the analysis of a global scale OSeMOSYS model. The latter -which is based on a fully open and amendable code- has been used successfully in the latest years as it has been the producing fully accessible energy models suitable for capacity building and policy making suggestions. This study develops a CLEWs (climate, land, energy and water) model with the objective of interrogating global challenges (e.g. increasing food demand) and international trade features, with policy priorities on food security, resource efficiency, low-carbon energy and climate change mitigation, water availability and vulnerability to water stress and floods, water quality, biodiversity and ecosystem services. It will for instance assess (i) the impact of water constraints on food security and human development (clean water for human use; industrial and energy water demands), as well as (ii) the impact of climate change on aggravating or relieving water problems.
Chinnaiyan, Prakash; Thampi, Santosh G; Kumar, Mathava; Mini, K M
2018-04-17
Pharmaceuticals and personal care products (PPCPs) are contaminants of emerging concern and have been detected worldwide in water bodies in trace concentrations. Most of these emerging contaminants are not regulated in water quality standards except a few in the developed countries. In the case of developing countries, research in this direction is at a nascent stage. For the effective management of Pharmaceutical contaminants (PC) in developing countries, the relevance of PCs as an emerging contaminant has to be analyzed followed by regular monitoring of the environment. Considering the resource constraints, this could be accomplished by identifying the priority compounds which is again region specific and dependent on consumption behavior and pattern. In this work, relevance of pharmaceutical compound as emerging contaminant in water for a developing country like India is examined by considering the data pertaining to pharmaceutical consumption data. To identify the critical Pharmaceutical Contaminants to be monitored in the Indian environment, priority compounds from selected prioritization methods were screened with the compounds listed in National List of Essential Medicine (NLEM), India. Further, information on the number of publications on the compound as an emerging contaminant, data on monitoring studies in India and the number of brands marketing the compound in India were also analyzed. It is found that out of 195 compounds from different prioritization techniques, only 77 compounds were found relevant to India based on NLEM sorting.
Identification of phosphorus emission hotspots in agricultural catchments
Kovacs, Adam; Honti, Mark; Zessner, Matthias; Eder, Alexander; Clement, Adrienne; Blöschl, Günter
2012-01-01
An enhanced transport-based management approach is presented, which is able to support cost-effective water quality management with respect to diffuse phosphorus pollution. Suspended solids and particulate phosphorus emissions and their transport were modeled in two hilly agricultural watersheds (Wulka River in Austria and Zala River in Hungary) with an improved version of the catchment-scale PhosFate model. Source and transmission areas were ranked by an optimization method in order to provide a priority list of the areas of economically efficient (optimal) management alternatives. The model was calibrated and validated at different gauges and for various years. The spatial distribution of the emissions shows that approximately one third of the catchment area is responsible for the majority of the emissions. However, only a few percent of the source areas can transport fluxes to the catchment outlet. These effective source areas, together with the main transmission areas are potential candidates for improved management practices. In accordance with the critical area concept, it was shown that intervention with better management practices on a properly selected small proportion of the total area (1–3%) is sufficient to reach a remarkable improvement in water quality. If soil nutrient management is also considered in addition to water quality, intervention on 4–12% of the catchment areas can fulfill both aspects. PMID:22771465
Chesapeake Bay recovery and factors affecting trends: Long-termmonitoring, indicators, and insights
Tango, Peter J.; Batiuk, Richard A.
2016-01-01
Monitoring the outcome of restoration efforts is the only way to identify the status of a recovery and the most effective management strategies. In this paper, we discuss Chesapeake Bay and watershed recovery and factors influencing water quality trends. For over 30 years, the Chesapeake Bay Program Partnership’s long-term tidal and watershed water quality monitoring networks have measured physical, chemical and biological parameters throughout the bay and its surrounding watershed underpinning an adaptive management process to drive ecosystem recovery. There are many natural and anthropogenic factors operating and interacting to affect the watershed and bay water quality recovery responses to management actions. Across habitats and indicators, the bay and its watershed continue to express a diverse spatial and temporal fabric of multiscale conditions, stressors and trends that show a range of health conditions and impairments, as well as evidence of progress and degradation. Recurrent independent reviews of the monitoring program have driven a culture of continued adaptation of the monitoring networks to reflect ever evolving management information needs. The adherence to bay and watershed-wide consistent monitoring protocols provides monitoring data supporting analyses and development of scientific syntheses that underpin indicator and model development, regulatory assessments, targeting of management actions, evaluation of management effectiveness, and directing of priorities and policies.
Muldoon, Maureen A; Borchardt, Mark A.; Spencer, Susan K.; Hunt, Randall J.; Owens, David
2018-01-01
The fractured Silurian dolomite aquifer is an important, but vulnerable, source of drinking water in northeast Wisconsin (Sherrill in Geology and ground water in Door County, Wisconsin, with emphasis on contamination potential in the Silurian dolomite, 1978; Bradbury and Muldoon in Hydrogeology and groundwater monitoring of fractured dolomite in the Upper Door Priority Watershed, Door County, Wisconsin, 1992; Muldoon and Bradbury in Assessing seasonal variations in recharge and water quality in the Silurian aquifer in areas with thicker soil cover. p 45, 2010). Areas underlain by the Silurian dolomite aquifer are extremely vulnerable to groundwater contamination from various land-use activities, especially the disposal of human wastewater and dairy manure. Currently there is no consensus as to which source of wastewater generates the greater impact to the aquifer.
Interdependencies and Risks at the Nexus of Energy, Water, and Land Systems
NASA Astrophysics Data System (ADS)
Geernaert, G. L.
2016-12-01
During recent years, the federal agencies have rallied around efforts to understand and predict the interdependencies involving various combinations of energy infrastructure and supply, water supply and quality, and land use that combines agriculture and food production. The US Department of Energy has, in particular, focused on the energy-water nexus, with specific goals to understand the degree of interdependence that leads to multi-sector risk and, in the worst case, the precursors that can lead to cascading failure. Determining thresholds for system interdependence, evaluating the impact of drought on systems, and planning for robust mitigation options to avert future risks, are among DOE's highest research priorities. In this presentation, the DOE program plan and its rationale will be described; and the DOE plan will be placed in context of broader efforts across the federal government.
Irrigation, risk aversion, and water right priority under water supply uncertainty
Xu, Wenchao; Rosegrant, Mark W.
2017-01-01
Abstract This paper explores the impacts of a water right's allocative priority—as an indicator of farmers' risk‐bearing ability—on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right‐truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to $141.4 acre−1 or $55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority‐based water sharing mechanism. PMID:29200529
Locations of Sampling Stations for Water Quality Monitoring in Water Distribution Networks.
Rathi, Shweta; Gupta, Rajesh
2014-04-01
Water quality is required to be monitored in the water distribution networks (WDNs) at salient locations to assure the safe quality of water supplied to the consumers. Such monitoring stations (MSs) provide warning against any accidental contaminations. Various objectives like demand coverage, time for detection, volume of water contaminated before detection, extent of contamination, expected population affected prior to detection, detection likelihood and others, have been independently or jointly considered in determining optimal number and location of MSs in WDNs. "Demand coverage" defined as the percentage of network demand monitored by a particular monitoring station is a simple measure to locate MSs. Several methods based on formulation of coverage matrix using pre-specified coverage criteria and optimization have been suggested. Coverage criteria is defined as some minimum percentage of total flow received at the monitoring stations that passed through any upstream node included then as covered node of the monitoring station. Number of monitoring stations increases with the increase in the value of coverage criteria. Thus, the design of monitoring station becomes subjective. A simple methodology is proposed herein which priority wise iteratively selects MSs to achieve targeted demand coverage. The proposed methodology provided the same number and location of MSs for illustrative network as an optimization method did. Further, the proposed method is simple and avoids subjectivity that could arise from the consideration of coverage criteria. The application of methodology is also shown on a WDN of Dharampeth zone (Nagpur city WDN in Maharashtra, India) having 285 nodes and 367 pipes.
2012-01-01
Background Patients’ experiences have become central to assessing the performance of healthcare systems worldwide and are increasingly being used to inform quality improvement processes. This paper explores the relative value of surveys and detailed patient narratives in identifying priorities for improving breast cancer services as part of a quality improvement process. Methods One dataset was collected using a narrative interview approach, (n = 13) and the other using a postal survey (n = 82). Datasets were analyzed separately and then compared to determine whether similar priorities for improving patient experiences were identified. Results There were both similarities and differences in the improvement priorities arising from each approach. Day surgery was specifically identified as a priority in the narrative dataset but included in the survey recommendations only as part of a broader priority around improving inpatient experience. Both datasets identified appointment systems, patients spending enough time with staff, information about treatment and side effects and more information at the end of treatment as priorities. The specific priorities identified by the narrative interviews commonly related to ‘relational’ aspects of patient experience. Those identified by the survey typically related to more ‘functional’ aspects and were not always sufficiently detailed to identify specific improvement actions. Conclusions Our analysis suggests that whilst local survey data may act as a screening tool to identify potential problems within the breast cancer service, they do not always provide sufficient detail of what to do to improve that service. These findings may have wider applicability in other services. We recommend using an initial preliminary survey, with better use of survey open comments, followed by an in-depth qualitative analysis to help deliver improvements to relational and functional aspects of patient experience. PMID:22913525
Prioritizing pesticide compounds for analytical methods development
Norman, Julia E.; Kuivila, Kathryn; Nowell, Lisa H.
2012-01-01
The U.S. Geological Survey (USGS) has a periodic need to re-evaluate pesticide compounds in terms of priorities for inclusion in monitoring and studies and, thus, must also assess the current analytical capabilities for pesticide detection. To meet this need, a strategy has been developed to prioritize pesticides and degradates for analytical methods development. Screening procedures were developed to separately prioritize pesticide compounds in water and sediment. The procedures evaluate pesticide compounds in existing USGS analytical methods for water and sediment and compounds for which recent agricultural-use information was available. Measured occurrence (detection frequency and concentrations) in water and sediment, predicted concentrations in water and predicted likelihood of occurrence in sediment, potential toxicity to aquatic life or humans, and priorities of other agencies or organizations, regulatory or otherwise, were considered. Several existing strategies for prioritizing chemicals for various purposes were reviewed, including those that identify and prioritize persistent, bioaccumulative, and toxic compounds, and those that determine candidates for future regulation of drinking-water contaminants. The systematic procedures developed and used in this study rely on concepts common to many previously established strategies. The evaluation of pesticide compounds resulted in the classification of compounds into three groups: Tier 1 for high priority compounds, Tier 2 for moderate priority compounds, and Tier 3 for low priority compounds. For water, a total of 247 pesticide compounds were classified as Tier 1 and, thus, are high priority for inclusion in analytical methods for monitoring and studies. Of these, about three-quarters are included in some USGS analytical method; however, many of these compounds are included on research methods that are expensive and for which there are few data on environmental samples. The remaining quarter of Tier 1 compounds are high priority as new analytes. The objective for analytical methods development is to design an integrated analytical strategy that includes as many of the Tier 1 pesticide compounds as possible in a relatively few, cost-effective methods. More than 60 percent of the Tier 1 compounds are high priority because they are anticipated to be present at concentrations approaching levels that could be of concern to human health or aquatic life in surface water or groundwater. An additional 17 percent of Tier 1 compounds were frequently detected in monitoring studies, but either were not measured at levels potentially relevant to humans or aquatic organisms, or do not have benchmarks available with which to compare concentrations. The remaining 21 percent are pesticide degradates that were included because their parent pesticides were in Tier 1. Tier 1 pesticide compounds for water span all major pesticide use groups and a diverse range of chemical classes, with herbicides and their degradates composing half of compounds. Many of the high priority pesticide compounds also are in several national regulatory programs for water, including those that are regulated in drinking water by the U.S. Environmental Protection Agency under the Safe Drinking Water Act and those that are on the latest Contaminant Candidate List. For sediment, a total of 175 pesticide compounds were classified as Tier 1 and, thus, are high priority for inclusion in analytical methods available for monitoring and studies. More than 60 percent of these compounds are included in some USGS analytical method; however, some are spread across several research methods that are expensive to perform, and monitoring data are not extensive for many compounds. The remaining Tier 1 compounds for sediment are high priority as new analytes. The objective for analytical methods development for sediment is to enhance an existing analytical method that currently includes nearly half of the pesticide compounds in Tier 1 by adding as many additional Tier 1 compounds as are analytically compatible. About 35 percent of the Tier 1 compounds for sediment are high priority on the basis of measured occurrence. A total of 74 compounds, or 42 percent, are high priority on the basis of predicted likelihood of occurrence according to physical-chemical properties, and either have potential toxicity to aquatic life, high pesticide useage, or both. The remaining 22 percent of Tier 1 pesticide compounds were either degradates of Tier 1 parent compounds or included for other reasons. As with water, the Tier 1 pesticide compounds for sediment are distributed across the major pesticide-use groups; insecticides and their degradates are the largest fraction, making up 45 percent of Tier 1. In contrast to water, organochlorines, at 17 percent, are the largest chemical class for Tier 1 in sediment, which is to be expected because there is continued widespread detection in sediments of persistent organochlorine pesticides and their degradates at concentrations high enough for potential effects on aquatic life. Compared to water, there are fewer available benchmarks with which to compare contaminant concentrations in sediment, but a total of 19 Tier 1 compounds have at least one sediment benchmark or screening value for aquatic organisms. Of the 175 compounds in Tier 1, 77 percent have high aquatic-life toxicity, as defined for this process. This evaluation of pesticides and degradates resulted in two lists of compounds that are priorities for USGS analytical methods development, one for water and one for sediment. These lists will be used as the basis for redesigning and enhancing USGS analytical capabilities for pesticides in order to capture as many high-priority pesticide compounds as possible using an economically feasible approach.
Drought Water Right Curtailment
NASA Astrophysics Data System (ADS)
Walker, W.; Tweet, A.; Magnuson-Skeels, B.; Whittington, C.; Arnold, B.; Lund, J. R.
2016-12-01
California's water rights system allocates water based on priority, where lower priority, "junior" rights are curtailed first in a drought. The Drought Water Rights Allocation Tool (DWRAT) was developed to integrate water right allocation models with legal objectives to suggest water rights curtailments during drought. DWRAT incorporates water right use and priorities with a flow-forecasting model to mathematically represent water law and hydrology and suggest water allocations among water rights holders. DWRAT is compiled within an Excel workbook, with an interface and an open-source solver. By implementing California water rights law as an algorithm, DWRAT provides a precise and transparent framework for the complicated and often controversial technical aspects of curtailing water rights use during drought. DWRAT models have been developed for use in the Eel, Russian, and Sacramento river basins. In this study, an initial DWRAT model has been developed for the San Joaquin watershed, which incorporates all water rights holders in the basin and reference gage flows for major tributaries. The San Joaquin DWRAT can assess water allocation reliability by determining probability of rights holders' curtailment for a range of hydrologic conditions. Forecasted flow values can be input to the model to provide decision makers with the ability to make curtailment and water supply strategy decisions. Environmental flow allocations will be further integrated into the model to protect and improve ecosystem water reliability.
Estimation of Missing Water-Level Data for the Everglades Depth Estimation Network (EDEN)
Conrads, Paul; Petkewich, Matthew D.
2009-01-01
The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level gaging stations, ground-elevation models, and water-surface elevation models designed to provide scientists, engineers, and water-resource managers with current (2000-2009) water-depth information for the entire freshwater portion of the greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for EDEN and their goal of providing quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. To increase the accuracy of the daily water-surface elevation model, water-level estimation equations were developed to fill missing data. To minimize the occurrences of no estimation of data due to missing data for an input station, a minimum of three linear regression equations were developed for each station using different input stations. Of the 726 water-level estimation equations developed to fill missing data at 239 stations, more than 60 percent of the equations have coefficients of determination greater than 0.90, and 92 percent have an coefficient of determination greater than 0.70.
Sales, Anne; O'Rourke, Hannah M.; Draper, Kellie; Teare, Gary F.; Maxwell, Colleen
2011-01-01
Purpose: To elicit priority rankings of indicators of quality of care among providers and decision-makers in continuing care in Alberta, Canada. Methods: We used modified nominal group technique to elicit priorities and criteria for prioritization among the quality indicators and resident/client assessment protocols developed by the interRAI consortium for use in long-term care and home care. Results: The top-ranked items from the long-term care assessment data were pressure ulcers, pain and incontinence. The top-ranked items from the home care data were pain, falls and proportion of clients at high risk for residential placement. Participants considered a variety of issues in deciding how to rank the indicators. Implications: This work reflects the beginning of a process to better understand how providers and policy makers can work together to assess priorities for quality improvement within continuing care. PMID:22294992
An importance-performance analysis of hospital information system attributes: A nurses' perspective.
Cohen, Jason F; Coleman, Emma; Kangethe, Matheri J
2016-02-01
Health workers have numerous concerns about hospital IS (HIS) usage. Addressing these concerns requires understanding the system attributes most important to their satisfaction and productivity. Following a recent HIS implementation, our objective was to identify priorities for managerial intervention based on user evaluations of the performance of the HIS attributes as well as the relative importance of these attributes to user satisfaction and productivity outcomes. We collected data along a set of attributes representing system quality, data quality, information quality, and service quality from 154 nurse users. Their quantitative responses were analysed using the partial least squares approach followed by an importance-performance analysis. Qualitative responses were analysed using thematic analysis to triangulate and supplement the quantitative findings. Two system quality attributes (responsiveness and ease of learning), one information quality attribute (detail), one service quality attribute (sufficient support), and three data quality attributes (records complete, accurate and never missing) were identified as high priorities for intervention. Our application of importance-performance analysis is unique in HIS evaluation and we have illustrated its utility for identifying those system attributes for which underperformance is not acceptable to users and therefore should be high priorities for intervention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Patterns of domestic water use in rural areas of Zimbabwe, gender roles and realities
NASA Astrophysics Data System (ADS)
Makoni, Fungai S.; Manase, Gift; Ndamba, Jerry
This paper presents practical experiences into the pattern of domestic water use, benefits and the gender realities. The study was undertaken in two districts of Zimbabwe, Mt Darwin and Bikita covering a total of 16 villages. The study aimed to assess the patterns of domestic water use, benefits derived from its use among the gender groups. Methodology for participatory assessment (MPA) was used for data collection and was done in a participatory manner. Traditionally most people in Zimbabwe are subsistence farmers who rely on rain fed agriculture. Where primary water sources are available such as shallow wells, family wells, deep wells and boreholes households use the water for household water and sanitation, irrigate small family gardens as well as their livestock. The survey established that women and men usually rank uses of water differently. In the two districts it was evident that women are playing more roles in water use and it is apparent that women are most often the users, managers and guardians of household water and hygiene. Women also demonstrated their involvement in commercial use of water, using water for livestock watering (20%) as well as brick moulding (21%). These involvement in commercial use were influenced by survival economics as well as the excess and reliability of the supply. The different roles and incentives in water use of women and men was demonstrated in how they ranked the benefits of water and sanitation. Men ranked clean drinking water among others as a top priority while women ranked improved health and hygiene and reduced distance as top priority. Overall the benefits highlighted by the communities and especially women were meeting the practical needs such as better access to water and reducing their work load. The assessment demonstrated the active role of women in water sources management highlighting quality, reliability and restrictions to their use. Though the communities gave the impression that decision making in the sitting and construction of water points was equally among the gender groups, however it was evident that men have a greater role than women in public decision making.
40 CFR 35.915-1 - Reserves related to the project priority list.
Code of Federal Regulations, 2011 CFR
2011-07-01
... § 35.908(b)(1)) for construction projects which use innovative or alternative waste water treatment... AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.915-1 Reserves related to the project priority list. In developing the fundable...
40 CFR 35.915-1 - Reserves related to the project priority list.
Code of Federal Regulations, 2010 CFR
2010-07-01
... § 35.908(b)(1)) for construction projects which use innovative or alternative waste water treatment... AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.915-1 Reserves related to the project priority list. In developing the fundable...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
... and Hazardous Substances Pollution Contingency Plan National Priorities List AGENCY: Environmental... INFORMATION: List of Subjects in 40 CFR Part 300 Environmental protection, Air pollution control, Chemicals... requirements, Superfund, Water pollution control, Water supply. Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. 9601...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
... and Hazardous Substances Pollution Contingency Plan; National Priorities List AGENCY: Environmental... INFORMATION: List of Subjects in 40 CFR Part 300 Environmental protection, Air pollution control, Chemicals... requirements, Superfund, Water pollution control, Water supply. Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. 9601...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
... and Hazardous Substances Pollution Contingency Plan; National Priorities List AGENCY: Environmental... INFORMATION: List of Subjects in 40 CFR Part 300 Environmental protection, Air pollution control, Chemicals... requirements, Superfund, Water pollution control, Water supply. Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. 9601...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-10
... requirements, Superfund, Water pollution control, Water supply. Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. 9601... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the... Substances Pollution Contingency Plan (NCP). The EPA and the State of Utah, through the Utah Department of...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
... requirements, Superfund, Water pollution control, Water supply. Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. 9601... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Intent to Delete the..., as amended, is an appendix of the National Oil and Hazardous Substances Pollution Contingency Plan...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
... requirements, Superfund, Water pollution control, Water Supply. Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. 9601... and Hazardous Substances Pollution Contingency Plan National Priorities List: Deletion of the Martin... appendix of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). EPA, with the...
NASA Astrophysics Data System (ADS)
Panos, C.; Hogue, T. S.; McCray, J. E.
2016-12-01
Few urban studies have evaluated the hydrologic impacts of redevelopment - for example, a rapid conversion from single to multi-family homes - known as infill, or re-urbanization. Redevelopment provides unique stormwater challenges as private property owners in many cities are not mandated to undertake stormwater retrofits leading to an overall increase in stormwater quantity and decrease in quality. This research utilizes a version of the EPA's Storm Water Management Model (SWMM), InfoSWMM Sustain, to model and analyze the impacts of impervious cover change due to redevelopment on stormwater quantity and quality in Denver, Colorado, with a focus on the Berkeley Neighborhood, where the percent imperviousness is expected to increase significantly from a current value of 53% by 2025. We utilize flow data from multiple pressure transducers installed directly within the storm sewer network as well as water quality data from storm and low flow sampling to initially calibrate InfoSWMM Sustain using September 2015 through September 2016 storm data. Model scenarios include current land cover conditions as well as future imperviousness predictions from redevelopment. The Urban Drainage and Flood Control District's Colorado Urban Hydrograph Procedure (CUHP) model is also implemented and used for calibration and comparison to the InfoSWMM stormwater model. Model simulations predicting an average annual stormwater runoff for the basin will be used to inform stormwater capture for the Berkeley Neighborhood on the downstream Willis Case Golf Course, where treatment trains are being designed to provide irrigation water (a 250 ac-ft per year demand) and improved water quality for discharge to the nearby receiving waters of Clear Creek. Ultimately, study results will better inform regional stormwater capture requirements when transitioning from single to multi-family units by providing a quantitative basis for treatment and regulation priorities.
NASA Astrophysics Data System (ADS)
Johnson, J. A.; Perry, C. T.; Smithers, S. G.; Morgan, K. M.; Santodomingo, N.; Johnson, K. G.
2017-09-01
Understanding past coral community development and reef growth is crucial for placing contemporary ecological and environmental change within appropriate reef-building timescales. On Australia's Great Barrier Reef (GBR), coral reefs situated within coastal inner-shelf zones are a particular priority. This is due to their close proximity to river point sources, and therefore susceptibility to reduced water quality discharged from coastal catchments, many of which have been modified following European settlement (ca. 1850 AD). However, the extent of water-quality decline and its impacts on the GBR's inner-shelf reefs remain contentious. In this study, palaeoecological coral assemblage records were developed for five proximal coral reefs situated within a nearshore turbid-zone reef complex on the central GBR. A total of 29 genera of Scleractinia were identified from the palaeoecological inventory of the reef complex, with key contributions to reef-building made by Acropora, Montipora, and Turbinaria. Discrete intervals pre- and post-dating European settlement, but associated with equivalent water depths, were identified using Bayesian age-depth modelling, enabling investigation of competing ideas of the main drivers of nearshore coral assemblage change. Specifically, we tested the hypotheses that changes in the composition of nearshore coral assemblages are: (1) intrinsically driven and linked to vertical reef development towards sea level, and (2) the result of changes in water quality associated with coastal river catchment modification. Our records found no discernible evidence of change in the generic composition of coral assemblages relative to European settlement. Instead, two distinctive depth-stratified assemblages were identified. This study demonstrates the robust nature of nearshore coral communities under reported water-quality decline and provides a useful context for the monitoring and assessment of ecological change on reefs located within the most nearshore turbid-zone environments of the central GBR.
Gibney, Katherine B; O'Toole, Joanne; Sinclair, Martha; Leder, Karin
2017-06-01
AbstractUniversal access to safe drinking water is a global priority. To estimate the annual disease burden of campylobacteriosis, nontyphoidal salmonellosis, cryptosporidiosis, giardiasis, and norovirus attributable to waterborne transmission in Australia, we multiplied regional World Health Organization (WHO) estimates of the proportion of cases attributable to waterborne transmission by estimates of all-source disease burden for each study pathogen. Norovirus was attributed as causing the most waterborne disease cases (479,632; 95% uncertainty interval [UI]: 0-1,111,874) followed by giardiasis and campylobacteriosis. The estimated waterborne disability-adjusted life year (DALY) burden for campylobacteriosis (2,004; 95% UI: 0-5,831) was 7-fold greater than other study pathogens and exceeded the WHO guidelines for drinking water quality (1 × 10 -6 DALY per person per year) by 90-fold. However, these estimates include disease transmitted via either drinking or recreational water exposure. More precise country-specific and drinking water-specific attribution estimates would better define the health burden from drinking water and inform changes to treatment requirements.
Sahu, Paulami; Michael, Holly A.; Voss, Clifford I.; Sikdar, Pradip K.
2013-01-01
Water supply to the world's megacities is a problem of quantity and quality that will be a priority in the coming decades. Heavy pumping of groundwater beneath these urban centres, particularly in regions with low natural topographic gradients, such as deltas and floodplains, can fundamentally alter the hydrological system. These changes affect recharge area locations, which may shift closer to the city centre than before development, thereby increasing the potential for contamination. Hydrogeological simulation analysis allows evaluation of the impact on past, present and future pumping for the region of Kolkata, India, on recharge area locations in an aquifer that supplies water to over 13 million people. Relocated recharge areas are compared with known surface contamination sources, with a focus on sustainable management of this urban groundwater resource. The study highlights the impacts of pumping on water sources for long-term development of stressed city aquifers and for future water supply in deltaic and floodplain regions of the world.
Murray, L.C.; Keoughan, K.M.
1990-01-01
Unlined hazardous-waste disposal sites at the U.S. Marine Corps Air Station, Cherry Point, North Carolina, are located near drinking-water supply wells that tap the Castle Hayne aquifer. Hydrogeologic and water-quality data were collected near 2 of these sites from 12 monitoring wells installed in May through June 1987. Near the northernmost landfill site, differences in hydraulic head between the surficial, intermediate Yorktown, and Castle Hayne aquifers indicate a potential for migration of contaminants downward into the intermediate Yorktown and Castle Hayne aquifers. Movement would be impeded, however, by two confining units of silty sand to sandy clay that separate these aquifers. Geophysical and lithologic data show the upper confining unit to be approximately 26 feet thick near this landfill. Near the southernmost landfill, these confining units are thin and discontinuous in an area that coincides with the location of a buried paleochannel. Static water-level data collected in this area indicate that both the Castle Hayne and Yorktown aquifers discharge into the surficial aquifer, minimizing the potential for downward contaminant movement. Ground water in the surficial aquifer at both landfills moves laterally away from nearby drinking-water supply wells and toward Slocum Creek, a tributary of the Neuse River. Concentrations of organic compounds and trace inorganic constituents included on the U.S. Environmental Protection Agency?s list of priority pollutants were determined for water samples from the surficial and Yorktown aquifers. High concentrations of two purgeable organic compounds, trichloroethylene and 1,2-dichloroethene (4,600 and 4,800 micrograms per liter, respectively), were detected in water samples collected from the surficial aquifer near the southernmost landfill; much smaller concentrations of trichloroethylene and 1,2-dichloroethene were detected in samples from wells in the Yorktown aquifer (up to 16 and 12 micrograms per liter, respectively). These compounds may have migrated into the Yorktown aquifer from the surficial aquifer during periods of pumping from nearby drinking-water supply wells if the pumping were sufficient to reverse the hydraulic head between these aquifers. Only trace amounts of organic compounds were detected in the surficial and Yorktown aquifers near the northernmost landfill. Trace metals were detected in most of the wells sampled near both landfills, but none exceeded U.S. Environmental Protection Agency drinking-water standards except for iron and manganese. Highest concentrations of priority pollutant metals detected were for zinc (60 micrograms per liter) and chromium (36 micrograms per liter).
Determination of tributyltin in whole water matrices under the European Water Framework Directive.
Richter, Janine; Fettig, Ina; Philipp, Rosemarie; Jakubowski, Norbert; Panne, Ulrich; Fisicaro, Paola; Alasonati, Enrica
2016-08-12
Monitoring of water quality is important to control water pollution. Contamination of the aquatic system has a large effect on human health and the environment. Under the European Water Framework Directive (WFD) 2000/60/EC and the related directive on environmental quality standards (EQS) in the field of water policy 2008/105/EC, the need for sensitive reference methods was highlighted. Since tributyltin (TBT) is one of the WFD listed priority substances a method was developed which is capable to qualify and quantify the pollutant at the required low WFD EQS of 0.2ngL(-1) in whole water bodies, i.e. in non-filtered water samples with dissolved organic carbon and suspended particulate matter. Therefore special attention was paid on the interaction of TBT with the suspended particulate matter and humic substances to obtain a complete representation of the pollution in surface waters. Different water samples were investigated varying the content of organic dissolved and suspended matter. Quantification was performed using species-specific isotope dilution (SSID) and gas chromatography with inductively coupled plasma mass spectrometry (GC-ICP-MS). Different sample treatment strategies were evaluated and compared. The process of internal standard addition was investigated and optimized, hence the equilibrium between internal standards and matrix is of primary importance to perform accurate SSID. Samples spiked at EQS level were analyzed with a recovery between 95 and 105 %. Additionally real surface water samples were investigated and the TBT concentration for the whole water body was determined and compared with conventional routine analysis method. Copyright © 2016 Elsevier B.V. All rights reserved.
Monk, Johanna M; Rowley, Kevin G; Anderson, Ian Ps
2009-11-20
Priority setting is about making decisions. Key issues faced during priority setting processes include identifying who makes these decisions, who sets the criteria, and who benefits. The paper reviews the literature and history around priority setting in research, particularly in Aboriginal health research. We explore these issues through a case study of the Cooperative Research Centre for Aboriginal Health (CRCAH)'s experience in setting and meeting priorities.Historically, researchers have made decisions about what research gets done. Pressures of growing competition for research funds and an increased public interest in research have led to demands that appropriate consultation with stakeholders is conducted and that research is of benefit to the wider society. Within Australian Aboriginal communities, these demands extend to Aboriginal control of research to ensure that Aboriginal priorities are met.In response to these demands, research priorities are usually agreed in consultation with stakeholders at an institutional level and researchers are asked to develop relevant proposals at a project level. The CRCAH's experience in funding rounds was that scientific merit was given more weight than stakeholders' priorities and did not necessarily result in research that met these priorities. After reviewing these processes in 2004, the CRCAH identified a new facilitated development approach. In this revised approach, the setting of institutional priorities is integrated with the development of projects in a way that ensures the research reflects stakeholder priorities.This process puts emphasis on identifying projects that reflect priorities prior to developing the quality of the research, rather than assessing the relevance to priorities and quality concurrently. Part of the CRCAH approach is the employment of Program Managers who ensure that stakeholder priorities are met in the development of research projects. This has enabled researchers and stakeholders to come together to collaboratively develop priority-driven research. Involvement by both groups in project development has been found to be essential in making decisions that will lead to robust and useful research.
Alonso, Álvaro; Figueroa, Ricardo; Castro-Díez, Pilar
2017-05-01
The water demand for human activities is rapidly increasing in developing countries. Under these circumstances, preserving aquatic ecosystems should be a priority which requires the development of quality criteria. In this study we perform a preliminary prioritization of the risky substances based on reported ecotoxicological studies and guidelines for the Biobío watershed (Central Chile). Our specific aims are (1) reviewing the scientific information on the aquatic pollution of this watershed, (2) determining the presence and concentration of potential toxic substances in water, sediment and effluents, (3) searching for quality criteria developed by other countries for the selected substances and (4) prioritizing the most risky substances by means of deterministic ecotoxicological risk assessment. We found that paper and mill industries were the main sources of point pollution, while forestry and agriculture were mostly responsible for non-point pollution. The most risky organic substances in the water column were pentachlorophenol and heptachlor, while the most relevant inorganic ones were aluminum, copper, unionized ammonia and mercury. The most risky organic and inorganic substances in the sediment were phenanthrene and mercury, respectively. Our review highlights that an important effort has been done to monitor pollution in the Biobío watershed. However there are emerging pollutants and banned compounds-especially in sediments-that require to be monitored. We suggest that site-specific water quality criteria and sediment quality criteria should be developed for the Biobío watershed, considering the toxicity of mixtures of chemicals to endemic species, and the high natural background level of aluminum in the Biobío.
NASA Astrophysics Data System (ADS)
Alonso, Álvaro; Figueroa, Ricardo; Castro-Díez, Pilar
2017-05-01
The water demand for human activities is rapidly increasing in developing countries. Under these circumstances, preserving aquatic ecosystems should be a priority which requires the development of quality criteria. In this study we perform a preliminary prioritization of the risky substances based on reported ecotoxicological studies and guidelines for the Biobío watershed (Central Chile). Our specific aims are (1) reviewing the scientific information on the aquatic pollution of this watershed, (2) determining the presence and concentration of potential toxic substances in water, sediment and effluents, (3) searching for quality criteria developed by other countries for the selected substances and (4) prioritizing the most risky substances by means of deterministic ecotoxicological risk assessment. We found that paper and mill industries were the main sources of point pollution, while forestry and agriculture were mostly responsible for non-point pollution. The most risky organic substances in the water column were pentachlorophenol and heptachlor, while the most relevant inorganic ones were aluminum, copper, unionized ammonia and mercury. The most risky organic and inorganic substances in the sediment were phenanthrene and mercury, respectively. Our review highlights that an important effort has been done to monitor pollution in the Biobío watershed. However there are emerging pollutants and banned compounds—especially in sediments—that require to be monitored. We suggest that site-specific water quality criteria and sediment quality criteria should be developed for the Biobío watershed, considering the toxicity of mixtures of chemicals to endemic species, and the high natural background level of aluminum in the Biobío.
42 CFR 494.110 - Condition: Quality assessment and performance improvement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... time. (c) Standard: Prioritizing improvement activities. The dialysis facility must set priorities for performance improvement, considering prevalence and severity of identified problems and giving priority to...
2014-08-14
The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Assistive Technology Alternative Financing Program administered by the Rehabilitation Services Administration (RSA). The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. This priority is designed to ensure that the Department funds high-quality assistive technology (AT) alternative financing programs (AFPs) that meet rigorous standards in order to enable individuals with disabilities to access and acquire assistive technology devices and services necessary to achieve education, community living, and employment goals.
Establishing priorities for advocacy in South African Health.
Mametja, D; Jinabhai, C C; Ngwane, N; Dolan, C; Twala, J; Mackenzie, A; Gear, J; Russo, R; Tollman, S; Pugh, A
1993-01-01
To develop an appropriate health policy agenda, the National Progressive Primary Health Care Network (NPPHC) and the South African Health and Social Services Organization (SAHSSO) conducted situational analyses in 4 areas: an informal peri-urban area within the Durban functional region in Natal, a rural area in the Mhala-Mapulaneng district in the North Eastern Transvaal, the informal settlement of Botshabelo in the Orange Free State, and a dense township dwelling in Soweto. The analyses were based on interviews with health workers and community leaders, a national survey, and a questionnaire for health service administrators. All 4 areas were characterized by poverty, unemployment, low educational levels, lack of a clean water supply or refuse removal system, housing shortages or overcrowding, and political violence. Preventable diseases, such as water-borne diarrhea and malnutrition, cause substantial morbidity, yet health services tend to be inaccessible, distributed inequitably, of poor quality, and with unclear administrative structures. Community members interviewed indicated that clinic fees were too high, especially given the low quality of care, and there was a general mistrust of the competency of doctors and nurses. There was a lack of consensus on the meaning of community participation; some viewed it as a vehicle for empowerment, while others felt the strategy would be exploited as a means to deny government assistance. Overall, respondents were supportive of a greater role for community health workers and more involvement on the part of nongovernmental organizations. A priority, at present, is attention to the many socioeconomic factors that are compromising the health of black South Africans and overshadowing the rationalization of health services.
Jozi, S A; Majd, N Moradi
2014-10-01
This research was carried out with the aim of presenting an environmental management plan for steel production complex (SPC) in central Iran. Following precise identification of the plant activities as well as the study area, possible sources of environmental pollution and adverse impacts on the air quality, water, soil, biological environment, socioeconomic and cultural environment, and health and safety of the employees were determined considering the work processes of the steel complex. Afterwards, noise, wastewater, and air pollution sources were measured. Subsequently, factors polluting the steel complex were identified by TOPSIS and then prioritized using Excel Software. Based on the obtained results, the operation of the furnaces in hot rolling process with the score 1, effluent derived from hot rolling process with the score 0.565, nonprincipal disposal and dumping of waste at the plant enclosure with the score 0.335, walking beam process with the score 1.483 respectively allocated themselves the highest priority in terms of air, water, soil and noise pollution. In terms of habitats, land cover and socioeconomic and cultural environment, closeness to the forest area and the existence of four groups of wildlife with the score 1.106 and proximity of villages and residential areas to the plant with the score 3.771 respectively enjoyed the highest priorities while impressibility and occupational accidents with the score 2.725 and cutting and welding operations with score 2.134 had the highest priority among health and safety criteria. Finally, strategies for the control of pollution sources were identified and Training, Monitoring and environmental management plan of the SPC was prepared.
Freeman, Michael L.; Naftz, David L.; Snyder, Terry; Johnson, Greg
2008-01-01
During July and August of 2006, 117 solid-phase samples were collected from abandoned uranium waste dumps, geologic background sites, and adjacent streambeds in the San Rafael Swell, in southeastern Utah. The objective of this sampling program was to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps on Bureau of Land Management property. Uranium waste dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a field leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for Ag, As, Ba, Be, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, U, V, and Zn at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah, Salt Lake City, Utah and for Hg at the U.S. Geological Survey National Water Quality Laboratory, Denver, Colorado. For the initial ranking of chemical loading potential of suspect uranium waste dumps, leachate analyses were compared with existing aquatic life and drinking-water-quality standards and the ratio of samples that exceeded standards to the total number of samples was determined for each element having a water-quality standard for aquatic life and drinking-water. Approximately 56 percent (48/85) of the leachate samples extracted from uranium waste dumps had one or more chemical constituents that exceeded aquatic life and drinking-water-quality standards. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were along Reds Canyon Road between Tomsich Butte and Family Butte. Twelve of the uranium waste dump sites with elevated trace-element concentrations in leachates contained three or more constituents that exceeded drinking-water-quality standards. Eighteen of the uranium waste dump sites had three or more constituents that exceeded trace-element concentrations for aquatic life water-quality standards. The proximity of the uranium waste dumps in the Tomsich Butte area near Muddy Creek, coupled with the elevated concentration of trace elements, increases the offsite impact potential to water resources. Future assessment and remediation priority of these areas may be done by using GIS-based risk-mapping techniques, such as Sensitive Catchment Integrated Mapping and Analysis Project.
42 CFR 403.732 - Condition of participation: Quality assessment and performance improvement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... performance improvement program. (3) The RNHCI must set priorities for performance improvement, considering... assessment and performance improvement program addresses identified priorities in the RNHCI and are...
40 CFR Appendix E to Part 300 - Oil Spill Response
Code of Federal Regulations, 2010 CFR
2010-07-01
..., other waters of the high seas subject to the NCP, and the land surface or land substrata, ground waters... response equipment; and a district response advisory team. Contiguous zone means the zone of the high seas... of the discharge. 2.2Priorities. (a) Safety of human life must be given the highest priority during...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-20
..., Superfund, Water pollution control, Water supply. Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. 9601-9657; E.O... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the Hooker..., as amended, is an appendix of the National Oil and Hazardous Substances Pollution Contingency Plan...
ERIC Educational Resources Information Center
Pinotti, Sadie
2017-01-01
The purpose of this Delphi study was to identify the professional learning activities that experts perceive are necessary for local education agencies (LEAs) to effectively implement California's Quality Professional Learning Standards (QPLS) in alignment with the Local Control Funding Formula (LCFF) Priority 2. The study also examined the degree…
34 CFR 226.14 - What other funding priorities may the Secretary use in making a grant award?
Code of Federal Regulations, 2010 CFR
2010-07-01
... FACILITIES INCENTIVE PROGRAM How Does the Secretary Award a Grant? § 226.14 What other funding priorities may... have been identified for improvement, corrective action, or restructuring under title I of the ESEA; (2... points awarded under these priorities only for proposals that exhibit sufficient quality to warrant...
34 CFR 225.12 - What funding priority may the Secretary use in making a grant award?
Code of Federal Regulations, 2010 CFR
2010-07-01
... SCHOOL FACILITIES PROGRAM How Does the Secretary Award a Grant? § 225.12 What funding priority may the... identified for improvement, corrective action, or restructuring under Title I of the Elementary and Secondary... priority only for proposals that exhibit sufficient quality to warrant funding under the selection criteria...
Identifying priority areas for ecosystem service management in South African grasslands.
Egoh, Benis N; Reyers, Belinda; Rouget, Mathieu; Richardson, David M
2011-06-01
Grasslands provide many ecosystem services required to support human well-being and are home to a diverse fauna and flora. Degradation of grasslands due to agriculture and other forms of land use threaten biodiversity and ecosystem services. Various efforts are underway around the world to stem these declines. The Grassland Programme in South Africa is one such initiative and is aimed at safeguarding both biodiversity and ecosystem services. As part of this developing programme, we identified spatial priority areas for ecosystem services, tested the effect of different target levels of ecosystem services used to identify priority areas, and evaluated whether biodiversity priority areas can be aligned with those for ecosystem services. We mapped five ecosystem services (below ground carbon storage, surface water supply, water flow regulation, soil accumulation and soil retention) and identified priority areas for individual ecosystem services and for all five services at the scale of quaternary catchments. Planning for individual ecosystem services showed that, depending on the ecosystem service of interest, between 4% and 13% of the grassland biome was required to conserve at least 40% of the soil and water services. Thirty-four percent of the biome was needed to conserve 40% of the carbon service in the grassland. Priority areas identified for five ecosystem services under three target levels (20%, 40%, 60% of the total amount) showed that between 17% and 56% of the grassland biome was needed to conserve these ecosystem services. There was moderate to high overlap between priority areas selected for ecosystem services and already-identified terrestrial and freshwater biodiversity priority areas. This level of overlap coupled with low irreplaceability values obtained when planning for individual ecosystem services makes it possible to combine biodiversity and ecosystem services in one plan using systematic conservation planning. Copyright © 2011 Elsevier Ltd. All rights reserved.
De Boer, Dolf; Delnoij, Diana; Rademakers, Jany
2010-01-01
Abstract Background Patient‐given global ratings are frequently interpreted as summary measures of the patient perspective, with limited understanding of what these ratings summarize. Global ratings may be determined by patient experiences on priority aspects of care. Objectives (i) identify patient priorities regarding elements of care for breast cancer, hip‐ or knee surgery, cataract surgery, rheumatoid arthritis and diabetes, (ii) establish whether experiences regarding priorities are associated with patient‐given global ratings, and (iii) determine whether patient experiences regarding priorities are better predictors of global ratings than experiences concerning less important aspects of care. Setting and participants Data collected for the development of five consumer quality index surveys – disease‐specific questionnaires that capture patient experiences and priorities – were used. Results Priorities varied: breast cancer patients for example, prioritized rapid access to care and diagnostics, while diabetics favoured dignity and appropriate frequency of tests. Experiences regarding priorities were inconsistently related to global ratings of care. Regression analyses indicated that demographics explain 2.4–8.4% of the variance in global rating. Introducing patient experiences regarding priorities increased the variance explained to 21.1–35.1%; models with less important aspects of care explained 11.8–23.2%. Conclusions Some experiences regarding priorities are strongly related to the global rating while others are poorly related. Global ratings are marginally dependent on demographics, and experiences regarding priorities are somewhat better predictors of global rating than experiences regarding less important elements. As it remains to be fully determined what global ratings summarize, caution is warranted when using these ratings as summary measures. PMID:20550597
Nilles, Mark A.; Penoyer, Pete E; Ludtke, Amy S.; Ellsworth, Alan C.
2016-07-13
The U.S. Geological Survey (USGS) and the National Park Service (NPS) work together through the USGS–NPS Water-Quality Partnership to support a broad range of policy and management needs related to high-priority water-quality issues in national parks. The program was initiated in 1998 as part of the Clean Water Action Plan, a Presidential initiative to commemorate the 25th anniversary of the Clean Water Act. Partnership projects are developed jointly by the USGS and the NPS. Studies are conducted by the USGS and findings are used by the NPS to guide policy and management actions aimed at protecting and improving water quality.The National Park Service manages many of our Nation’s most highly valued aquatic systems across the country, including portions of the Great Lakes, ocean and coastal zones, historic canals, reservoirs, large rivers, high-elevation lakes and streams, geysers, springs, and wetlands. So far, the Water-Quality Partnership has undertaken 217 projects in 119 national parks. In each project, USGS studies and assessments (http://water.usgs.gov/nps_partnership/pubs.php) have supported science-based management by the NPS to protect and improve water quality in parks. Some of the current projects are highlighted in the NPS Call to Action Centennial initiative, Crystal Clear, which celebrates national park water-resource efforts to ensure clean water for the next century of park management (http://www.nature.nps.gov/water/crystalclear/).New projects are proposed each year by USGS scientists working in collaboration with NPS staff in specific parks. Project selection is highly competitive, with an average of only eight new projects funded each year out of approximately 75 proposals that are submitted. Since the beginning of the Partnership in 1998, 189 publications detailing project findings have been completed. The 217 studies have been conducted in 119 NPS-administered lands, extending from Denali National Park and Preserve in Alaska to Everglades National Park in Florida, and from Acadia National Park in the Northeast to park lands in Hawaii and Pacific Island territories in the West. Project goals range from periodic stream monitoring, to determining the occurrence and concentrations of contaminants and the potential for them to exceed human health or aquatic life criteria, to conducting interpretive studies to evaluate the effect(s) on or vulnerability of national park resources to visitor usage and other natural and anthropogenic activities.
Williams, Marshall L.
2014-01-01
Mountain Home Air Force Base in southwestern Idaho draws most of its drinking water from the regional aquifer. The base is located within the State of Idaho's Mountain Home Groundwater Management Area and is adjacent to the State's Cinder Cone Butte Critical Groundwater Area. Both areas were established by the Idaho Department of Water Resources in the early 1980s because of declining water levels in the regional aquifer. The base also is listed by the Idaho Department of Environmental Quality as a nitrate priority area. The U.S. Geological Survey, in cooperation with the U.S. Air Force, began monitoring wells on the base in 1985, and currently monitors 25 wells for water levels and 17 wells for water quality, primarily nutrients. This report provides a summary of water-level and nitrate concentration data collected primarily between 2001 and 2013 and examines trends in those data. A Regional Kendall Test was run to combine results from all wells to determine an overall regional trend in water level. Groundwater levels declined at an average rate of about 1.08 feet per year. Nitrate concentration trends show that 3 wells (18 percent) are increasing in nitrate concentration trend, 3 wells (18 percent) show a decreasing nitrate concentration trend, and 11 wells (64 percent) show no nitrate concentration trend. Six wells (35 percent) currently exceed the U.S. Environmental Protection Agency's maximum contaminant limit of 10 milligrams per liter for nitrate (nitrite plus nitrate, measured as nitrogen).
NASA Astrophysics Data System (ADS)
Aburizaiza, O. S.; Zaigham, N. A.; Nayyar, Z. A.; Mahar, G. A.; Siddique, A.; Eusufi, S. N.
2011-12-01
The Red Sea and its surrounding countries have harsh arid climatic conditions where fast growth of the socio-economic activities and rapid change of lifestyle have caused tremendous stress on water to the level of acute crisis. To meet the water demands, the Red Sea countries have adopted seawater desalination giving priority against their land-based resources. Saudi Arabia is the largest desalinated-water producers in the Red Sea and has practically no adequate backup plan in case of sudden unforeseen emergency. Out of about 3.64 million m3/day, Saudi Arabia is alone being desalinated about 3.29 m3/day seawater from Red Sea and more projects are in progress. Present integrated research study has identified some of natural and anthropogenic hazards, which may be major threats to the quality of the seawater as well as to the desalination plants themselves. Results of present study reveal that the submarine complex morphologic features may cause the isolation of Red Sea from any of the open sea, the increase in the seismicity trends, the active volcanism causing unique longitudinal as well as transverse deformations of the axial trough particularly in the southern part of the Red Sea, the consistently generating enormous hot-brine tectonic-factory all along the deeper parts of the Red Sea rifting trough and other related issues. Considering the identified odd conditions, the total dependence on seawater desalination may not be worthwhile for sustainable water management strategy and consequent socio-economic developments in future. It is recommended that the priority should also be given mainly in three main disciplines to meet the future water challenges - one, developing reliable backup water management; second, alternate options for the supplementary resources of water; and third, the development and immediate implementation of the water-use conservation strategy plan.
Eutrophication monitoring for Lake Superior's Chequamegon ...
A priority for the Lake Superior CSMI was to identify susceptible nearshore eutrophication areas. We developed an integrated sampling design to collect baseline data for Lake Superior’s Chequamegon Bay to understand how nearshore physical processes and tributary loading relate to observed chlorophyll concentrations. Sampling included ship-based water samples combined with vertical CTD casts, continuous in situ towing and data collected from an autonomous underwater glider. Sampling was conducted during June, July and September. The glider collected regional data as part of three extended missions in Lake Superior over the same periods. During the study, two significant storm events impacted the western end of Lake Superior; the first occurred during July 11-12, with 8-10 inches of rain in 24hrs, and the second on July 21 with winds in excess of 161 km/h. Using GIS software, we organized these diverse temporal data sets along a continuous time line with temporally coincident Modis Satellite data to visualize surface sediment plumes in relation to water quality measurements. Preliminary results suggest that both events impacted regional water quality, and that nearshore physical forces (upwelling and currents) influenced the spatial variability. Results comparing in situ measures with remotely sensed images will be discussed. not applicable
Ecohydrology applications to ecosystem reconstruction after oil-sand mining
NASA Astrophysics Data System (ADS)
Mendoza, Carl; Devito, Kevin
2014-05-01
Oil-sand deposits in northeast Alberta, Canada comprise some of the world's largest oil reserves. Open-pit mining of these resources leads to waste-rock piles, tailings ponds and open pits that must be reclaimed to "equivalent landscape capability", with viable forests and wetlands, using only native vegetation. Understanding ecohydrological processes in natural systems is critical for designing the necessary landforms and landscapes. A challenge is the cold, sub-humid climate, with highly variable precipitation. Furthermore, there are competing demands, needs or uses for water, in both quantity and quality, for reclamation and sustainability of forestlands, wetlands and end-pit lakes. On average there is a potential water deficit in the region, yet wetlands cover half of the undisturbed environment. Water budget analyses demonstrate that, although somewhat unpredictable and uncontrollable, the magnitude and timing of water delivery largely control water storage and conservation within the landscape. The opportunity is to design and manipulate these reconstructed landscapes so that water is stored and conserved, and water quality is naturally managed. Heterogeneous geologic materials can be arranged and layered, and landforms sculpted, to minimize runoff, enhance infiltration, and promote surface and subsurface storage. Similarly, discharge of poor quality water can be minimized or focused. And, appropriate vegetation choices are necessary to conserve water on the landscape. To achieve these ends, careful attention must be paid to the entire water budget, the variability in its components, interconnections between hydrologic units, in both space and time, and coupled vegetation processes. To date our knowledge is guided primarily by natural analogues. To move forward, it is apparent that numerous priorities and constraints, which are potentially competing, must be addressed. These include geotechnical and operational requirements, material limitations or excesses, time, money and performance expectations. Careful landform design and integration of ecohydrological principles can be used to address some of these issues.
Land, Larry F.
1996-01-01
In 1991, the U.S. Geological Survey (USGS) began nationwide implementation of the National Water-Quality Assessment (NAWQA) Program. Long-term goals of NAWQA are to describe the status of and trends in the quality of a large, representative part of the Nation?s surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources (Leahy and others, 1990). The Trinity River Basin in east-central Texas (fig. 1) was among the first 20 hydrologic areas, called study units, to be assessed by this program. The first intensive data-collection phase for the Trinity River Basin NAWQA began in March 1993 and ended in September 1995. Streams in the Trinity River Basin were assessed by sampling water, bed sediment, and tissue of biota and characterizing the aquatic communities and their habitat. Aquifers were assessed by sampling water from wells. The coastal prairie is a small part of the Trinity River Basin, but it is environmentally important because of its proximity to Galveston Bay and the extensive use of agricultural chemicals on many irrigated farms. Galveston Bay (fig. 1) was selected by Congress as an estuary of national significance and was included on a priority list for the National Estuary Program. The Trinity River is especially important because its watershed dominates the total Galveston Bay drainage area and because its flow contributes substantial amounts of freshwater and water-quality constituents to the bay. Historically, measurements of the quantity and quality of water entering Galveston Bay from the Trinity River Basin have been made using data from a station about 113 kilometers (70 miles) upstream from Trinity Bay, an inlet bay to Galveston Bay. With a focused objective of providing additional water-quality information in the intervening coastal prairie area and an overall objective of improving the understanding of the relations between farming practices and stream quality in the Trinity River Basin, a special study was conducted. This report provides a description of the occurrence and concentrations of nutrients in two streams in this intervening area. An earlier report by Brown (1996) describes the occurrence and concentrations of pesticides in these two streams. An overall analysis of nutrient data collected during 1974?91 in the Trinity River Basin is given by Van Metre and Reutter (1995).
Rahman, Md Rejaur; Shi, Z H; Chongfa, Cai
2014-11-01
This study was an attempt to analyse the regional environmental quality with the application of remote sensing, geographical information system, and spatial multiple criteria decision analysis and, to project a quantitative method applicable to identify the status of the regional environment of the study area. Using spatial multi-criteria evaluation (SMCE) approach with expert knowledge in this study, an integrated regional environmental quality index (REQI) was computed and classified into five levels of regional environment quality viz. worse, poor, moderate, good, and very good. During the process, a set of spatial criteria were selected (here, 15 criterions) together with the degree of importance of criteria in sustainability of the regional environment. Integrated remote sensing and GIS technique and models were applied to generate the necessary factors (criterions) maps for the SMCE approach. The ranking, along with expected value method, was used to standardize the factors and on the other hand, an analytical hierarchy process (AHP) was applied for calculating factor weights. The entire process was executed in the integrated land and water information system (ILWIS) software tool that supports SMCE. The analysis showed that the overall regional environmental quality of the area was at moderate level and was partly determined by elevation. Areas under worse and poor quality of environment indicated that the regional environmental status showed decline in these parts of the county. The study also revealed that the human activities, vegetation condition, soil erosion, topography, climate, and soil conditions have serious influence on the regional environment condition of the area. Considering the regional characteristics of environmental quality, priority, and practical needs for environmental restoration, the study area was further regionalized into four priority areas which may serve as base areas of decision making for the recovery, rebuilding, and protection of the environment.
Lawniczak, Agnieszka Ewa; Zbierska, Janina; Nowak, Bogumił; Achtenberg, Krzysztof; Grześkowiak, Artur; Kanas, Krzysztof
2016-03-01
Protected areas due to their long-term protection are expected to be characterized by good water quality. However, in catchments where arable fields dominate, the impact of agriculture on water pollution is still problematic. In Poland, recently, the fertilization level has decreased, mostly for economic reasons. However, this applies primarily to phosphorus and potassium. In order to evaluate the impact of agriculture on water quality in a protected area with a high proportion of arable fields in the aspect of level and type of fertilization, complex monitoring has been applied. The present study was carried out in Wielkopolska National Park and its buffer zone, which are protected under Natura 2000 as Special Areas of Conservation and Special Protection Areas. The aim of the study were (1) to assess the impact of agriculture, with special attention on fertilization, on groundwater, and running water quality and (2) to designate priority areas for implementing nitrogen reduction measures in special attention on protected areas. In our study, high nitrogen concentrations in groundwater and surface waters were detected in the agricultural catchments. The results demonstrate that in the watersheds dominated by arable fields, high nitrogen concentrations in groundwater were measured in comparison to forestry catchments, where high ammonium concentrations were observed. The highest nitrogen concentrations were noted in spring after winter freezing, with a small cover of vegetation, and in the areas with a high level of nitrogen application. In the studied areas, both in the park and its buffer zone, unfavorable N:P and N:K ratios in supplied nutrients were detected. Severe shortage of phosphorus and potassium in applied fertilizers is one of the major factors causing leaching of nitrogen due to limited possibilities of its consumption by plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Wind Vision analysis demonstrates the economic value that wind power can bring to the nation, a value exceeding the costs of deployment. Wind’s environmental benefits can address key societal challenges such as climate change, air quality and public health, and water scarcity. Wind deployment can provide U.S. jobs, U.S. manufacturing, and lease and tax revenues in local communities to strengthen and support a transition of the nation’s electricity sector towards a low-carbon U.S. economy. The path needed to achieve 10% wind by 2020, 20% by 2030, and 35% by 2050 requires new tools, priorities, and emphases beyond those forgedmore » by the wind industry in growing to 4.5% of current U.S. electricity demand. Consideration of new strategies and updated priorities as identified in the Wind Vision could provide substantial positive outcomes for future generations.« less
ERIC Educational Resources Information Center
Association of American Colleges and Universities, 2015
2015-01-01
The Association of American Colleges and Universities (AAC&U) surveyed Chief Academic Officers at member institutions from July-October 2015 concerning priorities related to learning outcomes, assessment, general education design, high-impact practices, and data tracking and goal setting around equity and quality learning. With support from…
ERIC Educational Resources Information Center
Jaggars, Damon E.; Jaggars, Shanna Smith; Duffy, Jocelyn S.
2009-01-01
Using the results for participating Association of Research Libraries from the 2006 LibQUAL+[R] library service quality survey, we examine the service priorities of library staff (for example, whether desired scores for each survey item are above or below average) and the extent to which they are aligned with the priorities of undergraduates,…
Assessment of global water security: moving beyond water scarcity assessment
NASA Astrophysics Data System (ADS)
Wada, Y.; Gain, A. K.; Giupponi, C.
2015-12-01
Water plays an important role in underpinning equitable, stable and productive societies, and the ecosystems on which we depend. Many international river basins are likely to experience 'low water security' over the coming decades. Hence, ensuring water security along with energy and food securities has been recognised as priority goals in Sustainable Development Goals (SDGs) by the United Nations. This water security is not rooted only in the limitation of physical resources, i.e. the shortage in the availability of freshwater relative to water demand, but also on social and economic factors (e.g. flawed water planning and management approaches, institutional incapability to provide water services, unsustainable economic policies). Until recently, advanced tools and methods are available for assessment of global water scarcity. However, integrating both physical and socio-economic indicators assessment of water security at global level is not available yet. In this study, we present the first global understanding of water security using a spatial multi-criteria analysis framework that goes beyond available water scarcity assessment. For assessing water security at global scale, the term 'security' is conceptualized as a function of 'availability', 'accessibility to services', 'safety and quality', and 'management'. The Water security index is calculated by aggregating the indicators using both simple additive weighting (SAW) and ordered weighted average (OWA).
Di Paolo, Carolina; Ottermanns, Richard; Keiter, Steffen; Ait-Aissa, Selim; Bluhm, Kerstin; Brack, Werner; Breitholtz, Magnus; Buchinger, Sebastian; Carere, Mario; Chalon, Carole; Cousin, Xavier; Dulio, Valeria; Escher, Beate I; Hamers, Timo; Hilscherová, Klára; Jarque, Sergio; Jonas, Adam; Maillot-Marechal, Emmanuelle; Marneffe, Yves; Nguyen, Mai Thao; Pandard, Pascal; Schifferli, Andrea; Schulze, Tobias; Seidensticker, Sven; Seiler, Thomas-Benjamin; Tang, Janet; van der Oost, Ron; Vermeirssen, Etienne; Zounková, Radka; Zwart, Nick; Hollert, Henner
2016-11-01
Bioassays are particularly useful tools to link the chemical and ecological assessments in water quality monitoring. Different methods cover a broad range of toxicity mechanisms in diverse organisms, and account for risks posed by non-target compounds and mixtures. Many tests are already applied in chemical and waste assessments, and stakeholders from the science-police interface have recommended their integration in regulatory water quality monitoring. Still, there is a need to address bioassay suitability to evaluate water samples containing emerging pollutants, which are a current priority in water quality monitoring. The presented interlaboratory study (ILS) verified whether a battery of miniaturized bioassays, conducted in 11 different laboratories following their own protocols, would produce comparable results when applied to evaluate blinded samples consisting of a pristine water extract spiked with four emerging pollutants as single chemicals or mixtures, i.e. triclosan, acridine, 17α-ethinylestradiol (EE2) and 3-nitrobenzanthrone (3-NBA). Assays evaluated effects on aquatic organisms from three different trophic levels (algae, daphnids, zebrafish embryos) and mechanism-specific effects using in vitro estrogenicity (ER-Luc, YES) and mutagenicity (Ames fluctuation) assays. The test battery presented complementary sensitivity and specificity to evaluate the different blinded water extract spikes. Aquatic organisms differed in terms of sensitivity to triclosan (algae > daphnids > fish) and acridine (fish > daphnids > algae) spikes, confirming the complementary role of the three taxa for water quality assessment. Estrogenicity and mutagenicity assays identified with high precision the respective mechanism-specific effects of spikes even when non-specific toxicity occurred in mixture. For estrogenicity, although differences were observed between assays and models, EE2 spike relative induction EC 50 values were comparable to the literature, and E2/EE2 equivalency factors reliably reflected the sample content. In the Ames, strong revertant induction occurred following 3-NBA spike incubation with the TA98 strain, which was of lower magnitude after metabolic transformation and when compared to TA100. Differences in experimental protocols, model organisms, and data analysis can be sources of variation, indicating that respective harmonized standard procedures should be followed when implementing bioassays in water monitoring. Together with other ongoing activities for the validation of a basic bioassay battery, the present study is an important step towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McPherson, A. K.
2002-12-01
The U.S. Geological Survey conducted a 16-month investigation of water quality, aquatic-community structure, bed sediment, and fish tissue in Village and Valley Creeks, two urban streams that drain areas of residential, commercial, and industrial land use in Birmingham, Alabama. Water-quality data were collected between February 2000 and March 2001 at four sites on Village Creek, three sites on Valley Creek, and at two reference sites near Birmingham, Fivemile Creek and Little Cahaba River, that drain less urbanized areas. The occurrence and distribution of chemical constituents in the water column and bed sediment provided an initial assessment of water quality in the streams. Aquatic-community structure, physical condition of fish, and analysis of fish tissue provided an indication of the cumulative effects of the water quality on the aquatic biota. Degraded water quality was seen at the more urbanized sites on Village and Valley Creeks. Elevated concentrations of nutrients, bacteria, trace elements, and organic contaminants were detected in the water column. Trace-element priority pollutants, pesticides, and other organic compounds were detected in higher concentrations in bed sediment and fish tissue at the Village and Valley Creek sites than at the reference site. The richness and density of the fish and benthic-invertebrate communities indicate that the integrity of the aquatic communities in Village and Valley Creeks is poor in comparison to that observed at the two reference sites. Correlations between land use and aquatic-community structure, water quality, bed sediment, and fish tissue were observed. The abundance of mayflies and the number of EPT (ephemeroptera, plecoptera, tricoptera) taxa were negatively correlated with industrial land use. The abundance of midges (an indicator of poor water quality) was positively correlated with industrial land use; the percentage of mosquitofishes (a tolerant species) was positively correlated with commercial land use. In contrast, the numbers of fish species, fish families, and the percentage of sunfishes (intolerant species) were positively correlated with forested land use, indicating that the more diverse fish communities were found in basins with a higher percentage of forested land. The concentrations of 12 water-quality constituents and 18 organic compounds detected in bed sediment were positively correlated with industrial land use. Mercury and molybdenum concentrations detected in fish-liver tissue also were positively correlated with industrial land use. The water quality and aquatic-community structure in Village and Valley Creeks are degraded in comparison to streams flowing through less urbanized areas. Decreased diversity and elevated concentrations of trace elements and organic contaminants in the water column, bed sediment, and fish tissues at Village and Valley Creeks are indicative of the effects of urbanization. Industrial land use, in particular, was significantly correlated to elevated contaminant levels in the water column, bed sediment, fish tissues, and to the declining health of the benthic-invertebrate communities. The results of this 16-month study have long-range watershed management implications, demonstrating the association between urban development and stream degradation. These data can serve as a baseline from which to determine the effectiveness of stream-restoration programs.
A quality function deployment framework for the service quality of health information websites.
Chang, Hyejung; Kim, Dohoon
2010-03-01
This research was conducted to identify both the users' service requirements on health information websites (HIWs) and the key functional elements for running HIWs. With the quality function deployment framework, the derived service attributes (SAs) are mapped into the suppliers' functional characteristics (FCs) to derive the most critical FCs for the users' satisfaction. Using the survey data from 228 respondents, the SAs, FCs and their relationships were analyzed using various multivariate statistical methods such as principal component factor analysis, discriminant analysis, correlation analysis, etc. Simple and compound FC priorities were derived by matrix calculation. Nine factors of SAs and five key features of FCs were identified, and these served as the basis for the house of quality model. Based on the compound FC priorities, the functional elements pertaining to security and privacy, and usage support should receive top priority in the course of enhancing HIWs. The quality function deployment framework can improve the FCs of the HIWs in an effective, structured manner, and it can also be utilized for critical success factors together with their strategic implications for enhancing the service quality of HIWs. Therefore, website managers could efficiently improve website operations by considering this study's results.
Weiskel, Peter K.
2007-01-01
Human activity has profoundly altered the Charles River and its watershed over the past 375 years. Restoration of environmental quality in the watershed has become a high priority for private- and public-sector organizations across the region. The U.S. Environmental Protection Agency and the Massachusetts Executive Office of Environmental Affairs worked together to coordinate the efforts of the various organizations. One result of this initiative has been a series of scientific studies that provide critical information concerning some of the major hydrologic and ecological concerns in the watershed. These studies have focused upon: * Streamflows - Limited aquifer storage, growing water demands, and the spread of impervious surfaces are some of the factors exacerbating low summer streamflows in headwater areas of the watershed. Coordinated management of withdrawals, wastewater returns, and stormwater runoff could substantially increase low streamflows in the summer. Innovative approaches to flood control, including preservation of upstream wetland storage capacity and construction of a specially designed dam at the river mouth, have greatly reduced flooding in the lower part of the watershed in recent decades. * Water quality - Since the mid-1990s, the bacterial quality of the Charles River has improved markedly, because discharges from combined sewer overflows and the number of illicit sewer connections to municipal storm drains have been reduced. Improved management of stormwater runoff will likely be required, however, for full attainment of State and Federal water-quality standards. Phosphorus inputs from a variety of sources remain an important water-quality problem. * Fish communities and habitat quality - The Charles River watershed supports a varied fish community of about 20 resident and migratory species. Habitat conditions for fish and other aquatic species have improved in many parts of the river system in recent years. However, serious challenges remain, including the control of nutrients, algae, and invasive plants, mitigation of dam impacts, addressing remaining sources of bacteria to the river, and remediation of contaminated bottom habitat and the nontidal salt wedge in the lower river.
Reaching common ground: a patient-family-based conceptual framework of quality EOL care.
Howell, Doris; Brazil, Kevin
2005-01-01
Improvement in the quality of end-of-life (EOL) care is a priority health care issue since serious deficiencies in quality of care have been reported across care settings. Increasing pressure is now focused on Canadian health care organizations to be accountable for the quality of palliative and EOL care delivered. Numerous domains of quality EOL care upon which to create accountability frameworks are now published, with some derived from the patient/family perspective. There is a need to reach common ground on the domains of quality EOL care valued by patients and families in order to develop consistent performance measures and set priorities for health care improvement. This paper describes a meta-synthesis study to develop a common conceptual framework of quality EOL care integrating attributes of quality valued by patients and their families.
Plint, Amy C; Stang, Antonia S; Calder, Lisa A
2015-01-01
Patient safety in the context of emergency medicine is a relatively new field of study. To date, no broad research agenda for patient safety in emergency medicine has been established. The objective of this study was to establish patient safety-related research priorities for emergency medicine. These priorities would provide a foundation for high-quality research, important direction to both researchers and health-care funders, and an essential step in improving health-care safety and patient outcomes in the high-risk emergency department (ED) setting. A four-phase consensus procedure with a multidisciplinary expert panel was organized to identify, assess, and agree on research priorities for patient safety in emergency medicine. The 19-member panel consisted of clinicians, administrators, and researchers from adult and pediatric emergency medicine, patient safety, pharmacy, and mental health; as well as representatives from patient safety organizations. In phase 1, we developed an initial list of potential research priorities by electronically surveying a purposeful and convenience sample of patient safety experts, ED clinicians, administrators, and researchers from across North America using contact lists from multiple organizations. We used simple content analysis to remove duplication and categorize the research priorities identified by survey respondents. Our expert panel reached consensus on a final list of research priorities through an in-person meeting (phase 3) and two rounds of a modified Delphi process (phases 2 and 4). After phases 1 and 2, 66 unique research priorities were identified for expert panel review. At the end of phase 4, consensus was reached for 15 research priorities. These priorities represent four themes: (1) methods to identify patient safety issues (five priorities), (2) understanding human and environmental factors related to patient safety (four priorities), (3) the patient perspective (one priority), and (4) interventions for improving patient safety (five priorities). This study established expert, consensus-based research priorities for patient safety in emergency medicine. This framework could be used by researchers and health-care funders and represents an essential guiding step towards enhancing quality of care and patient safety in the ED.
Entropy, recycling and macroeconomics of water resources
NASA Astrophysics Data System (ADS)
Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris
2014-05-01
We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics 3. United Nations (UN) (2012), World Water Development Report 4, UNESCO Publishing
2013-01-01
Background The first objective of this study was to investigate the public perceptions of private water and alternative sources with respect to safety, quality, testing and treatment in Newfoundland and Labrador (NL), Canada. The second objective was to provide public health practitioners with recommendations for improving knowledge translation (KT) efforts in NL, based on assessments of respondents’ perceived information needs and preferred KT methods. Methods A cross-sectional telephone survey of 618 households with private water supplies was conducted in March-April, 2007. Questions pertained to respondents’ perceptions of their tap water, water concerns, alternative water use, well characteristics, and water testing behaviours. Results Approximately 94% of households were supplied by private wells (50% drilled and 50% dug wells), while 6% obtained water from roadside ponds, rivers or springs (RPRS). While 85% rated their water quality highly, 55% nevertheless had concerns about its overall safety. Approximately 11% of respondents never tested their water, and of the 89% that had, 80% tested at frequencies below provincial recommendations for bacterial testing. More than one-third of respondents reported treating their water in the home, and 78% employed active carbon filtration methods. Respondents wanted more information on testing options and advice on effective treatment methods. Targeted advertising through television, flyers/brochures and/or radio is recommended as a first step to increase awareness. More active KT methods involving key stakeholders may be most effective in improving testing and treatment behaviour. Conclusions The results presented here can assist public health practitioners in tailoring current KT initiatives to influence well owner stewardship behaviour. PMID:24365203
A framework for multi-stakeholder decision-making and ...
We propose a decision-making framework to compute compromise solutions that balance conflicting priorities of multiple stakeholders on multiple objectives. In our setting, we shape the stakeholder dis-satisfaction distribution by solving a conditional-value-at-risk (CVaR) minimization problem. The CVaR problem is parameterized by a probability level that shapes the tail of the dissatisfaction distribution. The proposed approach allows us to compute a family of compromise solutions and generalizes multi-stakeholder settings previously proposed in the literature that minimize average and worst-case dissatisfactions. We use the concept of the CVaR norm to give a geometric interpretation to this problem +and use the properties of this norm to prove that the CVaR minimization problem yields Pareto optimal solutions for any choice of the probability level. We discuss a broad range of potential applications of the framework that involve complex decision-making processes. We demonstrate the developments using a biowaste facility location case study in which we seek to balance stakeholder priorities on transportation, safety, water quality, and capital costs. This manuscript describes the methodology of a new decision-making framework that computes compromise solutions that balance conflicting priorities of multiple stakeholders on multiple objectives as needed for SHC Decision Science and Support Tools project. A biowaste facility location is employed as the case study
Understanding perceptions of stakeholder groups about Forestry Best Management Practices in Georgia.
Tumpach, Chantal; Dwivedi, Puneet; Izlar, Robert; Cook, Chase
2018-05-01
Forestry Best Management Practices (BMPs) are critical in ensuring sustainable forest management in the United States because of their effectiveness in protecting water quality, reducing soil erosion, maintaining riparian habitat, and sustaining site productivity. The success of forestry BMPs depends heavily on coordination among primary stakeholder groups. It is important to understand perceptions of such groups for a successful forest policy formulation. We used the SWOT-AHP (Strengths, Weaknesses, Opportunities, and Threats analysis with the Analytical Hierarchy Process) framework to assess perceptions of three stakeholder groups (loggers, landowners, agency foresters) about forestry BMPs in Georgia, the largest roundwood producing state in the United States. The agency and logger stakeholder groups gave the highest priority to improved reputation under the strength category, whereas the landowner stakeholder group perceived sustainable forestry as the highest priority under the same category. Lack of landowner education was the highest priority under the weakness category for landowner and agency stakeholder groups, whereas the logger stakeholder group selected lack of trained personnel as the highest priority under the same category. Agency and landowner stakeholder groups gave the highest priority to training and education while loggers indicated maintenance of forest-based environmental benefits as their highest priority under the opportunity category. Finally, landowners and agency stakeholder groups perceived more regulations and restrictions as most significant in the threat category whereas the logger stakeholder group was most concerned about the insufficient accounting of cost sharing under the same category. Overall, selected stakeholder groups recognize the importance of forestry BMPs and had positive perceptions about them. A collaborative approach based on continuous feedback can streamline expectations of stakeholder groups about forestry BMPs in Georgia and several other states that are interested in maintaining high compliance rate of forestry BMPs for ensuring sustainable forest management. Copyright © 2018 Elsevier Ltd. All rights reserved.
42 CFR 416.43 - Conditions for coverage-Quality assessment and performance improvement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and changes in its patient care. (c) Standard: Program activities. (1) The ASC must set priorities for... by the ASC. (2) Addresses the ASC's priorities and that all improvements are evaluated for...
NASA Astrophysics Data System (ADS)
Lee, C. M.; Omar, A. H.; Hook, S. J.; Tzortziou, M.; Luvall, J. C.; Turner, W. W.
2016-02-01
Observations from the Pre-Aerosol Cloud and ocean Ecosystem (PACE) and Hyperspectral InfraRed Imager (HyspIRI) satellite missions are highly complementary and have the potential to significantly advance understanding of various science and applications challenges in the ocean sciences and water quality communities. Scheduled for launch in the 2022 timeframe, PACE is designed to make climate-quality global measurements essential for understanding ocean biology, biogeochemistry and ecology, and determining the role of the ocean in global biogeochemical cycling and ocean ecology, and how it affects and is affected by climate change. PACE will provide high signal-to-noise, hyperspectral observations over an extended spectral range (UV to SWIR) and will have global coverage every 1-2 days, at approximately 1 km spatial resolution; furthermore, PACE is currently designed to include a polarimeter, which will vastly improve atmospheric correction algorithms over water bodies. The PACE mission will enable advances in applications across a range of areas, including oceans, climate, water resources, ecological forecasting, disasters, human health and air quality. HyspIRI, with contiguous measurements in VSWIR, and multispectral measurements in TIR, will be able to provide detailed spectral observations and higher spatial resolution (30 to 60-m) over aquatic systems, but at a temporal resolution that is approximately 5-16 days. HyspIRI would enable improved, detailed studies of aquatic ecosystems, including benthic communities, algal blooms, coral reefs, and wetland species distribution as well as studies of water quality indicators or pollutants such as oil spills, suspended sediment, and colored dissolved organic matter. Together, PACE and HyspIRI will be able to address numerous applications and science priorities, including improving and extending climate data records, and studies of inland, coastal and ocean environments.
Targeted Water Quality Assessment in Small Reservoirs in Brazil, Zimbabwe, Morocco and Burkina Faso
NASA Astrophysics Data System (ADS)
Boelee, Eline; Rodrigues, Lineu; Senzanje, Aidan; Laamrani, Hammou; Cecchi, Philippe
2010-05-01
Background Physical and chemical parameters of water in reservoirs can be affected by natural and manmade pollutants, causing damage to the aquatic life and water quality. However, the exact water quality considerations depend on what the water will be used for. Brick making, livestock watering, fisheries, irrigation and domestic uses all have their own specific water quality requirements. In turn, these uses impact on water quality. Methodology Water quality was assessed with a variety of methods in small multipurpose reservoirs in the São Francisco Basin in Brazil, Limpopo in Zimbabwe, Souss Massa in Morocco and Nakambé in Burkina Faso. In each case the first step was to select the reservoirs for which the water quality was to be monitored, then identify the main water uses, followed by a determination of key relevant water quality parameters. In addition, a survey was done in some cases to identify quality perceptions of the users. Samples were taken from the reservoir itself and related water bodies such as canals and wells where relevant. Results Accordingly in the four basins different methods gave different locally relevant results. In the Preto River in the Sao Francisco in Brazil small reservoirs are mainly used for irrigated agriculture. Chemical analysis of various small reservoirs showed that water quality was mainly influenced by geological origins. In addition there was nutrient inflow from surrounding areas of intensive agriculture with high fertilizer use. In the Limpopo basin in Zimbabwe small reservoirs are used for almost all community water needs. Plankton was selected as indicator and sampling was carried out in reservoirs in communal areas and in a national park. Park reservoirs were significantly more diversified in phytoplankton taxa compared to those in the communal lands, but not for zooplankton, though communal lands had the highest zooplankton abundance. In Souss Massa in Morocco a combination of perceptions and scientific water quality analyses was applied to a small reservoir. High levels of fecal coliform bacteria were found in the reservoir, which made it unfit for human and animal consumption but suitable for most other purposes. In Burkina Faso, the Nakambé basin has been targeted because of its elevated densities of both population and (small) reservoirs that are used for irrigation, livestock, fishing and other purposes. While a large diversity of phytoplankton was found, the massive dominance of aquatic cyanobacteria was the most significant result. Two lakes exhibited significant cyanotoxins concentrations, which had never been documented before. The presence of the involved bacteria in a large number of sites indicated that such contamination with toxins could potentially affect large populations. Classical limnological descriptors failed to explain the observed situations. Conversely, the cyanobacterial abundances were positively correlated with population densities and land-use. This is probably associated with agricultural intensification and particularly horticulture around most reservoirs, because of the high use of pesticides and their selective impacts on plankton communities that tend to favor cynaobacteria. Still, the scientific hypotheses linking human activities to water quality remain to be formally assessed. Discussion and conclusion Both financial difficulties and the frequent absence of specific and academic local competences limit the implementation of relevant water quality monitoring programs. However, on the basis of our findings in four basins we postulate that while the mobilization of water resources has been an emergency priority for a long time, now the time has come to explicitly target the preservation and protection of aquatic ecosystems. This urgent need should dominate the debate on sustainable multipurpose exploitation of small reservoirs whose several benefits (especially fisheries) appear clearly linked to their quality.
NASA Astrophysics Data System (ADS)
Iritz, L.; Zheleznyak, M.; Dvorzhak, A.; Nesterov, A.; Zaslavsky, A.
2003-04-01
On the European continent the Dnieper is the third largest river basin (509000 sq.km). The Ukrainian part of the drainage basin is 291 400 sq.km. The cascade of 6 reservoirs, that have capacity from 2.5 to 18 cub.km comprises the entire reach of Dnieper River in Ukraine, redistributes the water regime in time. As a result, 17-18 cub. km water can be used, 50% for hydropower production, 30% for agriculture and up to 18% for municipal water supply. The water stress, the pollution load, the insufficient technical conditions require a lot of effort in the water management development. In order to achieve optimal use of water recourses in the Dnieper River basin, it is essential to develop strategies both for the long-term perspective (planning) as well as for the short-term perspective (operation). The Dnieper River basin must be seen as complex of the natural water resources, as well as the human system (water use, social and economic intercourse). In the frame of the project, supported by the Swedish International Development Cooperation Agency (SIDA) the software tool ASUD2 is developed to support reservoir operations provided by the State Committee of Ukraine on Water Management and by the Joint River Commission. ASUD2 includes multicriteria optimization engine that drives the reservoir water balamce models and box models of water quality. A system of supplementary (off-line) tools support more detailed analyses of the water quality parameters of largest reservoirs (Kachovka and Kremechug). The models AQUATOX and WASP ( in the developed 3-D version) are used for these purposes. The Integrated Database IDB-ASUD2 supplies the information such as state of the all reservoirs, hydrological observations and predictions, water demands, measured water quality parameters. ASUD2 is able to give the following information on an operational basis. : - recommended dynamics of the water elevation during the water allocation planning period in all reservoirs calculated on the basis of the different optimisation criteria minimum of the distance to the trajectory of the water level given by decision of the Joint River Commission, minimum value of the water contamination parameters (DO, nutrients, phosphorus), maximum energy production, taking into account limitations from fishery, water intakes of irrigation and transport channels etc; -water releases from the reservoirs to maintain the recommended dynamics in the whole Dnieper Cascade; -integrated water quality parameters for all reservoirs and distributed water quality parameters for the two largest reservoirs (Kremenchug and Kachovka). The analyses based on economical criteria provides the cost-benefit evaluation for different reservoir management alternatives. The assessment takes into account energy production, industry, agriculture as well as the costs associated with ecological damages.
Enright, Katherine A; Taback, Nathan; Powis, Melanie Lynn; Gonzalez, Alejandro; Yun, Lingsong; Sutradhar, Rinku; Trudeau, Maureen E; Booth, Christopher M; Krzyzanowska, Monika K
2017-10-01
Purpose Routine evaluation of quality measures (QMs) can drive improvement in cancer systems by highlighting gaps in care. Targeting quality improvement at QMs that demonstrate substantial variation has the potential to make the largest impact at the population level. We developed an approach that uses both variation in performance and number of patients affected by the QM to set priorities for improving the quality of systemic therapy for women with early-stage breast cancer (EBC). Patients and Methods Patients with EBC diagnosed from 2006 to 2010 in Ontario, Canada, were identified in the Ontario Cancer Registry and linked deterministically to multiple health care databases. Individual QMs within a panel of 15 QMs previously developed to assess the quality of systemic therapy across four domains (access, treatment delivery, toxicity, and safety) were ranked on interinstitutional variation in performance (using interquartile range) and the number of patients who were affected; then the two rankings were averaged for a summative priority ranking. Results We identified 28,427 patients with EBC who were treated at 84 institutions. The use of computerized physician electronic order entry for chemotherapy, emergency room visits or hospitalizations during chemotherapy, and timely receipt of chemotherapy were identified as the QMs that had the largest potential to improve quality of care at a system level within this cohort. Conclusion A simple ranking system based on interinstitutional variation in performance and patient volume can be used to identify high-priority areas for quality improvement from a population perspective. This approach is generalizable to other health care systems that use QMs to drive improvement.
Recommendations and Proposed Strategic Plan: Water Sector Decontamination Priorities
2008-10-01
safety and health issues of the utility personnel that may be exposed to treatment processes down stream from the treatment Conducting research on...Government Coordinating Council (GCC). This letter serves as our official transmittal of the Work Group’s final product . As the Co-Chairs...Priorities Page xv LIST OF ACRONYMS ACEIH American Council of Education on Industrial Hygiene AMWA Association of Metropolitan Water Agencies ANSI
Burton, Carmen A.; Land, Michael; Belitz, Kenneth
2013-01-01
Groundwater quality in the South Coast Range–Coastal (SCRC) study unit was investigated from May through November 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in the Southern Coast Range hydrologic province and includes parts of Santa Barbara and San Luis Obispo Counties. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The GAMA Priority Basin Project was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifer system. The primary aquifer system is defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the SCRC study unit. The assessments for the SCRC study unit were based on water-quality and ancillary data collected in 2008 by the USGS from 55 wells on a spatially distributed grid, and water-quality data from the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of the natural and human factors affecting groundwater quality. Water-quality and ancillary data were collected from an additional 15 wells for the understanding assessment. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors. The first component of this study, the status assessment of groundwater quality, used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. Although the status assessment applies to untreated groundwater, Federal and California regulatory and non-regulatory water-quality benchmarks that apply to drinking water are used to provide context for the results. Relative-concentrations (sample concentration divided by benchmark concentration) were used for evaluating groundwater. A relative-concentration greater than (>) 1.0 indicates a concentration greater than the benchmark and is classified as high. Inorganic constituents are classified as moderate if relative-concentrations are >0.5 and less than or equal to (≤) 1.0, or low if relative-concentrations are ≤0.5. For organic constituents, the boundary between moderate and low relative-concentrations was set at 0.1. Aquifer-scale proportion was used in the status assessment as the primary metric for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the areal percentage of the primary aquifer system with a high relative-concentration for a particular constituent or class of constituents. Moderate and low aquifer-scale proportions were defined as the areal percentage of the primary aquifer system with moderate and low relative-concentrations, respectively. Two statistical approaches—grid-based and spatially weighted—were used to evaluate aquifer-scale proportions for individual constituents and classes of constituents. Grid-based and spatially weighted estimates were comparable for the study (within 90 percent confidence intervals). For inorganic constituents with human-health benchmarks, relative-concentrations were high for at least one constituent for 33 percent of the primary aquifer system in the SCRC study unit. Arsenic, molybdenum, and nitrate were the primary inorganic constituents with human-health benchmarks that were detected at high relative-concentrations. Inorganic constituents with aesthetic benchmarks, referred to as secondary maximum contaminant levels (SMCLs), had high relative-concentrations for 35 percent of the primary aquifer system. Iron, manganese, total dissolved solids (TDS), and sulfate were the inorganic constituents with SMCLs detected at high relative-concentrations. In contrast to inorganic constituents, organic constituents with human-health benchmarks were not detected at high relative-concentrations in the primary aquifer system in the SCRC study unit. Of the 205 organic constituents analyzed, 21 were detected—13 with human-health benchmarks. Perchloroethene (PCE) was the only VOC detected at moderate relative-concentrations. PCE, dichlorodifluoromethane (CFC-12), and chloroform were detected in more than 10 percent of the primary aquifer system. Of the two special-interest constituents, one was detected; perchlorate, which has a human-health benchmark, was detected at moderate relative-concentrations in 29 percent of the primary aquifer system and had a detection frequency of 60 percent in the SCRC study unit. The second component of this study, the understanding assessment, identified the natural and human factors that may have affected groundwater quality in the SCRC study unit by evaluating statistical correlations between water-quality constituents and potential explanatory factors. The potential explanatory factors evaluated were land use, septic tank density, well depth and depth to top-of-perforations, groundwater age, density and distance to the nearest formerly leaking underground fuel tank (LUFT), pH, and dissolved oxygen (DO) concentration. Results of the statistical evaluations were used to explain the occurrence and distribution of constituents in the study unit. DO was the primary explanatory factor influencing the concentrations of many inorganic constituents. Arsenic, iron, and manganese concentrations increased as DO concentrations decreased, consistent with patterns expected as a result of reductive dissolution of iron and (or) manganese oxides in aquifer sediments. Molybdenum concentrations increased in anoxic conditions and in oxic conditions with high pH, reflecting two mechanisms for the mobilization of molybdenum—reductive dissolution and pH-dependent desorption under oxic conditions from aquifer sediments. Nitrate concentrations decreased as DO concentrations decreased which would be consistent with degradation of nitrate under anoxic conditions (denitrification). It also is possible that nitrate concentrations decreased in relation to increasing depth and groundwater age and not as a result of denitrification. Groundwater age was another explanatory factor frequently correlated to several inorganic constituents. Iron and manganese concentrations were higher in pre-modern (water recharged before 1952) or mixed-age groundwater. This correlation is one indication that iron and manganese are from natural sources. Nitrate, TDS, and sulfate concentrations were higher in modern groundwater (water recharged since 1952) and may indicate that human activities increase concentrations of nitrate, TDS, and sulfate. Land use was a third explanatory factor frequently correlated with inorganic constituents. Nitrate, TDS, and sulfate concentrations were higher in agricultural land-use areas than in natural land-use areas, indicating that increased concentrations may be a result of agricultural practices. Organic constituents usually were detected at low relative-concentrations; therefore, statistical analyses of relations to explanatory factors usually were done for classes of constituents (for example, pesticides or solvents) as well as for selected constituents. The number of VOCs detected in a well was not correlated to any of the explanatory factors evaluated. The number of pesticide and solvent detections and PCE and CFC-12 concentrations were higher in modern groundwater than in pre-modern groundwater. PCE and CFC-12 also were positively correlated to the density of LUFTs. PCE was negatively correlated to natural land use. Chloroform concentrations were positively correlated to the density of septic systems. Perchlorate concentrations were greater in agricultural areas than in urban or natural areas. Correlation of perchlorate with DO may indicate that perchlorate biodegradation under anoxic conditions may occur. Anthropogenic sources have contributed perchlorate to groundwater in the SCRC study unit, although low levels of perchlorate may occur naturally.
An assessment of quality of water from boreholes in Bindura District, Zimbabwe
NASA Astrophysics Data System (ADS)
Hoko, Zvikomborero
This study assessed the water quality of 144 boreholes in Bindura District in Mashonaland Province of Zimbabwe as part of a borehole rehabilitation project implemented by a local NGO. In previous studies it has been observed that some boreholes are not used for domestic purposes because of consumer perceived poor water quality. Consequently, communities have resorted to unsafe alternative water sources thus creating health risks. The study was carried out in June 2005. The objectives of the study were to assess the levels of parameters associated with the aesthetics of the water and to compare them with guideline values for drinking water. The study also investigated the relationship between some of the measured water quality and the consumer perceived water quality. Measured water quality parameters included pH, temperature, electrical conductivity (EC), turbidity, calcium (Ca), magnesium (Mg) and iron (Fe). All parameters were measured in the field except Ca, Mg and Fe, which were measured in a laboratory using a spectrophotometer. Consumer perceptions on water quality were investigated through interviews with the consumer community. Turbidity was found to be 0.75-428(20.8 ± 59.2; n = 144) NTU, pH 5.7-9.3 (6.88 ± 0.46; n = 144), temperature 18-26.8 (22.6 ± 2.1; n = 144) °C. EC 26-546 (199 ± 116; n = 144) μS/cm, Ca 6-71.6 (26.9 ± 14.1; n = 81) mg/l, Mg 1.2-49.6 (12.3 ± 10.0; n = 81) mg/l and Fe 0.08-9.60 (0.56 ± 1.15; n = 81) mg/l. Some 23% of the samples had pH outside the recommended range of 6.5-8.5, whilst 59% of the samples had turbidity values exceeding the 5NTU WHO limit. For EC, all samples had values less than the WHO derived limit of 1380 μS/cm. All Ca and magnesium values were within the common and recommended levels of 100 mg/l and 70 mg/l respectively. Iron had values greater than the WHO and SAZ limit of 0.3 mg/l in 36% of the samples. Water quality was deemed satisfactory for taste and soap consumption by 95% and 72% of the respondents respectively. Satisfaction was higher for drinking compared to soap consumption meaning that generally hard waters may still be acceptable for drinking purposes. The water quality met the stipulated standard or guideline value from a minimum of 41% (turbidity) to a maximum of 100% (EC, Ca and Mg). There was no correlation between taste and conductivity as some 5% of the respondents suggested the water was unsatisfactory although all EC values were far below the maximum limit. Again there was no correlation between iron and taste as iron had 36% of the samples above the threshold of 0.3 mg/l whilst objectionable taste perception was only in 5% of the cases. It is recommended that priority in future projects should be given to repairs of boreholes whose water quality is acceptable according to consumer perceptions obtained at project planning stage. Low cost household treatment aimed at improving quality should be investigated.
Katz, Brian; Raabe, Ellen
2004-01-01
In response to the growing number of environmental concerns in the mostly pristine Suwannee River Basin and the Suwannee River Estuary system, the States of Florida and Georgia, the Federal government, and other local organizations have identified the Suwannee River as an ecosystem in need of protection because of its unique biota and important water resources. Organizations with vested interests in the region formed a coalition, the Suwannee Basin Interagency Alliance (SBIA), whose goals are to promote coordination in the identification, management, and scientific knowledge of the natural resources in the basin and estuary. To date, an integrated assessment of the physical, biological, and water resources has not been completed. A holistic, multi-disciplinary approach is being pursued to address the research needs in the basin and estuary and to provide supportive data for meeting management objectives of the entire ecosystem. The USGS is well situated to focus on the larger concerns of the basin and estuary by addressing specific research questions linking water supply and quality to ecosystem function and health across county and state boundaries. A strategic plan is being prepared in cooperation with Federal, State, and local agencies to identify and implement studies to address the most compelling research issues and management questions, and to conduct fundamental environmental monitoring studies. The USGS, Suwannee River Water Management District and the Florida Marine Research Institute are co-sponsoring this scientific workshop on the Suwannee River Basin and Estuary to: Discuss current and past research findings, Identify information gaps and research priorities, and Develop an action plan for coordinated and relevant research activities in the future. This workshop builds on the highly successful basin-wide conference sponsored by the Suwannee Basin Interagency Alliance that was held three years ago in Live Oak, Florida. This years workshop will focus on identifying information needs and priorities and developing partnerships. The USGS is seeking to define the role of the USGS Florida Integrated Science Center (FISC) in conducting integrated research in the Suwannee River Basin, and to establish a cooperative program with other agencies. Participants interested in river, floodplain, springs, estuary, or basin-wide issues are encouraged to attend. Topics for this years workshop include: Water quality and geochemistry: nutrient enrichment, reduction of nutrient loading to ground water, contaminants, and land use, Hydrogeology: interactions among ground water, surface water and ecosystem, modeling, and baseline mapping, Ecosystem dynamics: structure, process, species, and habitats (estuarine, riverine, floodplain, and wetland), and Information management: data sharing, database development, geographic information system (GIS), and basin-wide models.
Incorporating national priorities into the curriculum.
Lewis, Deborah Y
2012-01-01
There are many aspects of care that need an overhaul to function safely, efficiently, and effectively. There needs to be a new culture in health care that focuses on safety and quality, and it will take many shareholders working together to make this possible. The National Priorities Partnership is a group of 28 national organizations from across the health care spectrum collaborating to change the health care delivery system. The Partners acknowledged four challenges individuals face in the current U.S. system: harm, disparity, disease burden, and waste. To meet these challenges and improve performance, the Partners identified six priorities: patient and family engagement, population health, safety, care coordination, palliative and end-of-life care, and overuse (National Priorities Partnership). It is hopeful that when put into practice, these essentials will have a significant impact on improving health care. It comes down to creating a culture of safety and quality. This culture should start during entry-level education for health care providers, such as nursing schools. The priorities and goals provide a framework that can be incorporated into the curriculum so future nurses are aware of the issues and challenges in health care today. Each challenge needs evidence-based strategies for achieving the desired results. It is time to create a culture of safety and quality in health care. Copyright © 2012 Elsevier Inc. All rights reserved.
Leadership and priority setting: the perspective of hospital CEOs.
Reeleder, David; Goel, Vivek; Singer, Peter A; Martin, Douglas K
2006-11-01
The role of leadership in health care priority setting remains largely unexplored. While the management leadership literature has grown rapidly, the growing literature on priority setting in health care has looked in other directions to improve priority setting practices--to health economics and ethical approaches. Consequently, potential for improvement in hospital priority setting practices may be overlooked. A qualitative study involving interviews with 46 Ontario hospital CEOs was done to describe the role of leadership in priority setting through the perspective of hospital leaders. For the first time, we report a framework of leadership domains including vision, alignment, relationships, values and process to facilitate priority setting practices in health services' organizations. We believe this fledgling framework forms the basis for the sharing of good leadership practices for health reform. It also provides a leadership guide for decision makers to improve the quality of their leadership, and in so doing, we believe, the fairness of their priority setting.
7 CFR 3430.309 - Priority areas.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Agriculture and Food Research Initiative § 3430.309 Priority areas. NIFA will award competitive grants in the...) Conventional breeding, including cultivar and breed development, selection theory, applied quantitative... development, selection theory, applied quantitative genetics, breeding for improved food quality, breeding for...
7 CFR 3430.309 - Priority areas.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Agriculture and Food Research Initiative § 3430.309 Priority areas. NIFA will award competitive grants in the...) Conventional breeding, including cultivar and breed development, selection theory, applied quantitative... development, selection theory, applied quantitative genetics, breeding for improved food quality, breeding for...
7 CFR 3430.309 - Priority areas.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Agriculture and Food Research Initiative § 3430.309 Priority areas. NIFA will award competitive grants in the...) Conventional breeding, including cultivar and breed development, selection theory, applied quantitative... development, selection theory, applied quantitative genetics, breeding for improved food quality, breeding for...
7 CFR 3430.309 - Priority areas.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Agriculture and Food Research Initiative § 3430.309 Priority areas. NIFA will award competitive grants in the...) Conventional breeding, including cultivar and breed development, selection theory, applied quantitative... development, selection theory, applied quantitative genetics, breeding for improved food quality, breeding for...
Runfola, Daniel Miller; Hughes, Sara
2014-01-01
In the United States, urbanization processes have resulted in a large variety—or “continuum”—of urban landscapes. One entry point for understanding the variety of landscape characteristics associated with different forms of urbanization is through a characterization of vegetative (green) land covers. Green land covers—i.e., lawns, parks, forests—have been shown to have a variety of both positive and negative impacts on human and environmental outcomes—ranging from increasing property values, to mitigating urban heat islands, to increasing water use for outdoor watering purposes. While considerable research has examined the variation of vegetation distribution within cities and related social and economic drivers, we know very little about whether or how the economic characteristics and policy priorities of green cities differ from those of “grey” cities—those with little green land cover. To address this gap, this paper seeks to answer the question how do the economic characteristics and policy priorities of green and grey cities differ in the United States? To answer this question, MODIS data from 2001 to 2006 are used to characterize 373 US cities in terms of their vegetative greenness. Information from the International City/County Management Association's (ICMA) 2010 Local Government Sustainability Survey and 2009 Economic Development Survey are used to identify key governance strategies and policies that may differentiate green from grey cities. Two approaches for data analysis—ANOVA and decision tree analysis—are used to identify the most important characteristics for separating each category of city. The results indicate that grey cities tend to place a high priority on economic initiatives, while green cities place an emphasis on social justice, land conservation, and quality of life initiatives. PMID:25541593
Runfola, Daniel Miller; Hughes, Sara
2014-01-01
In the United States, urbanization processes have resulted in a large variety-or "continuum"-of urban landscapes. One entry point for understanding the variety of landscape characteristics associated with different forms of urbanization is through a characterization of vegetative (green) land covers. Green land covers- i.e. , lawns, parks, forests-have been shown to have a variety of both positive and negative impacts on human and environmental outcomes-ranging from increasing property values, to mitigating urban heat islands, to increasing water use for outdoor watering purposes. While considerable research has examined the variation of vegetation distribution within cities and related social and economic drivers, we know very little about whether or how the economic characteristics and policy priorities of green cities differ from those of "grey" cities-those with little green land cover. To address this gap, this paper seeks to answer the question how do the economic characteristics and policy priorities of green and grey cities differ in the United States? To answer this question, MODIS data from 2001 to 2006 are used to characterize 373 US cities in terms of their vegetative greenness. Information from the International City/County Management Association's (ICMA) 2010 Local Government Sustainability Survey and 2009 Economic Development Survey are used to identify key governance strategies and policies that may differentiate green from grey cities. Two approaches for data analysis-ANOVA and decision tree analysis-are used to identify the most important characteristics for separating each category of city. The results indicate that grey cities tend to place a high priority on economic initiatives, while green cities place an emphasis on social justice, land conservation, and quality of life initiatives.
Suspect screening and non-targeted analysis of drinking water using point-of-use filters.
Newton, Seth R; McMahen, Rebecca L; Sobus, Jon R; Mansouri, Kamel; Williams, Antony J; McEachran, Andrew D; Strynar, Mark J
2018-03-01
Monitored contaminants in drinking water represent a small portion of the total compounds present, many of which may be relevant to human health. To understand the totality of human exposure to compounds in drinking water, broader monitoring methods are imperative. In an effort to more fully characterize the drinking water exposome, point-of-use water filtration devices (Brita ® filters) were employed to collect time-integrated drinking water samples in a pilot study of nine North Carolina homes. A suspect screening analysis was performed by matching high resolution mass spectra of unknown features to molecular formulas from EPA's DSSTox database. Candidate compounds with those formulas were retrieved from the EPA's CompTox Chemistry Dashboard, a recently developed data hub for approximately 720,000 compounds. To prioritize compounds into those most relevant for human health, toxicity data from the US federal collaborative Tox21 program and the EPA ToxCast program, as well as exposure estimates from EPA's ExpoCast program, were used in conjunction with sample detection frequency and abundance to calculate a "ToxPi" score for each candidate compound. From ∼15,000 molecular features in the raw data, 91 candidate compounds were ultimately grouped into the highest priority class for follow up study. Fifteen of these compounds were confirmed using analytical standards including the highest priority compound, 1,2-Benzisothiazolin-3-one, which appeared in 7 out of 9 samples. The majority of the other high priority compounds are not targets of routine monitoring, highlighting major gaps in our understanding of drinking water exposures. General product-use categories from EPA's CPCat database revealed that several of the high priority chemicals are used in industrial processes, indicating the drinking water in central North Carolina may be impacted by local industries. Published by Elsevier Ltd.
December 1990 EPA/Corps Enforcement Priorities Guidance
Document from 1990 providing guidance to EPA Regions and Army Corps of Engineers on enforcement priorities for unauthorized discharges of dredged or fill materials in violation of section 301 of the Clean Water Act (CWA).
Fresh Groundwater Resources in Georgia and Management Problems
NASA Astrophysics Data System (ADS)
Gaprindashvili, George; Gaprindashvili, Merab
2015-04-01
Fresh water represents conditioned factor for human body's life. That's why the superiority of drinking water is recognized as human body's priority according to the international declarations. World is experiencing deficit of quality water. Natural Disasters caused by the pollution of the fresh groundwater is also very painful and acute, because it needed more time, more material and financial means for the liquidation of their results, and what the most important practically is, it is impossible to renew the initial natural conditions completely. All these conditions that the rational use of fresh groundwater passed by the interests of separate countries and became worldwide, international problem - fresh water became as considerable raw material for the worlds import and export. The fresh groundwater place the important role among the water recourses of Georgia. Their existing is considerably connected to the development of industry and agriculture, also with water supply issue of populated area. Groundwater management requires precise knowledge of sources (aquifers). Monitoring of Georgia's most important aquifers started many years ago and has provided large amount of data. This was interrupted at the beginning of the 1990s. It could be noted that fresh water existing in the country is distinguished with high quality. According to the mineralization and temperature parameters groundwater is generally divided into the following groups: 1) Fresh drinking waters (mineralization not exceeding 1.0 g/l); 2) Mineral waters (mineralization over 1.0 g/l); 3) Thermal waters -- healing (20˚C - 35˚C), Geothermal (40˚C - 108˚C). Below we present briefly review about the situation of fresh groundwater resources, started recovery of groundwater monitoring network and the analysis of the management problems.
NASA Astrophysics Data System (ADS)
de Jesús-Crespo, Rebeca; Ramirez, Alonso
The growing need to protect stream ecosystems in Puerto Rico requires the development of monitoring procedures that help determine management priorities. Physical habitat assessments have been used to make quick evaluations that are cost efficient and easy conduct, yet they need to be studied further to understand their accuracy at predicting stream health. This study evaluated the efficiency of the Hawaii Stream Visual Assessment Protocol (HSVAP) at determining integrity of streams within the highly urbanized Rio Piedras watershed in Puerto Rico. To validate the protocol we compared results from HSVAP assessments conducted at 16 reaches with water quality and macroinvertebrate data collected at the same sites. Results from linear regressions between the water quality measures and HSVAP scores showed that there was no significant relationships ( R2 = 0.48; p = 0.08). This implies that the protocol is not supported by the water quality data. However, results from regressions between macroinvertebrate diversity and the number of families per site showed a significant positive relation with HSVAP scores ( R2 = 0.30; p = 0.02; R2 = 0.24; p = 0.05). In addition, a significant negative relation was observed between HSVAP scores and the Family Biotic Index (FBI) ( R2 = 0.32; p = 0.02). Comparisons between ratings obtained from the FBI and HSVAP scores suggest that the HSVAP classified sites as having higher quality than the biological metric. Based on these results, it can be concluded that the HSVAP is a good tool for a general assessment of the physical characteristics of a stream, but it needs modifications to accurately assess ecological quality of streams in Puerto Rico.
Playing with LISEM: Experiences from Norway
NASA Astrophysics Data System (ADS)
Greipsland, Inga; Krzeminska, Dominika
2017-04-01
Reducing soil loss from agricultural land is an important environmental challenge that is of relevance for both the European Soil Thematic Strategy (EC 2002) and the Water Framework Directive (EC 2000). Agricultural land in Norway is scarce, covering only around 3% of the total land area (The World Bank, 2015), which puts stress on preserving soil quality for food production. Additionally, reducing sediment loss is a national priority because of associated transport of pollutants such as phosphorous, which can cause eutrophication in nearby waterbodies. It is necessary to find tools that can estimate the effect of different scenarios on erosion processes on agricultural areas. We would like to present the challenges experienced and the results obtained by using LISEM (Limburg Soil Erosion Model) on the plot- subcatchment- and catchment scale in southeastern Norway. The agricultural catchment has been the subject of long-term monitoring of water quality. Challenges included spatial upscaling of local calibration, calibration on areas with very low soil loss rates and equifinality. In this poster, we want to facilitate a discussion about the possibilities of and limitations to the model for predicting hydrological and soil erosion processes at different scales.
NASA Astrophysics Data System (ADS)
Hidayati, N.; Soeprobowati, T. R.; Helmi, M.
2018-03-01
The existence of water hyacinths and other aquatic plants have been a major concern in Rawapening Lake for many years. Nutrient input from water catchment area and fish feed residues suspected to leads eutrophication, a condition that induces uncontrolled growth of aquatic plants. In dry season, aquatic plants cover almost 70% of lake area. This problem should be handled properly due to wide range of lake function such as water resources, fish farming, power plants, flood control, irrigation and many other important things. In 2011, Rawapening Lake was appointed as pilot project of Save Indonesian Lake Movement: the Indonesian movement for lakes ecosystem conservation and rehabilitation. This project consists of 6 super priority programs and 11 priority programs. This paper will evaluate the first super priority program which aims to control water hyacinth bloom. Result show that the three indicators in water hyacinth control program was not achieved. The coverage area of Water hyacinth was not reduced, tend to increase during period 2012 to 2016. We suggesting better coordination should be performed in order to avoid policies misinterpretation and to clarify the authority from each institution. We also give a support to the establishment of lake zonation plan and keep using all the three methods of cleaning water hyacinth with a maximum population remained at 20%.
The Top Training Priorities for 2003.
ERIC Educational Resources Information Center
Hall, Brandon
2003-01-01
A survey of 222 training professionals identified current training priorities: soft skills training; technical training; enhancing the quality of training; business skills; business alignment, business impact, and return on investment; online learning; sales training; safety and compliance training; performance management; and human…
Exploring Citizen Infrastructure and Environmental Priorities in Mumbai, India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperling, Joshua; Romero-Lankao, Patricia; Beig, Gufran
Many cities worldwide seek to understand local policy priorities among their general populations. This study explores how differences in local conditions and among citizens within and across Mumbai, India shape local infrastructure (e.g. energy, water, transport) and environmental (e.g. managing pollution, climate-related extreme weather events) policy priorities for change that may or may not be aligned with local government action or global environmental sustainability concerns such as low-carbon development. In this rapidly urbanizing city, multiple issues compete for prominence, ranging from improved management of pollution and extreme weather to energy and other infrastructure services. To inform a broader perspective ofmore » policy priorities for urban development and risk mitigation, a survey was conducted among over 1200 citizens. The survey explored the state of local conditions, the challenges citizens face, and the ways in which differences in local conditions (socio-institutional, infrastructure, and health-related) demonstrate inequities and influence how citizens perceive risks and rank priorities for the future design and implementation of local planning, policy, and community-based efforts. With growing discussion and tensions surrounding the new urban sustainable development goal, announced by the UN in late September 2015, and a new global urban agenda document to be agreed upon at 'Habitat III', issues on whether sustainable urbanization priorities should be set at the international, national or local level remain controversial. As such, this study aims to first understand determinants of and variations in local priorities across one city, with implications discussed for local-to-global urban sustainability. Findings from survey results indicate the determinants and variation in conditions such as age, assets, levels of participation in residential action groups, the health outcome of chronic asthma, and the infrastructure service of piped water provision to homes are significant in shaping the top infrastructure and environmental policy priorities that include water supply and sanitation, air pollution, waste, and extreme heat.« less
The U.S. Geological Survey Federal-State Cooperative Water-Resources Program, fiscal year 1986
Gilbert, B.K.; Mann, W.B.
1987-01-01
The U.S. Geological Survey 's Federal-State Cooperative Water Resources Program has been in operation for 91 years as of fiscal year (FY) 1986. Hydrologic data collection and interpretive investigations are underway in every State, Puerto Rico, and several territories in cooperation with more than 900 State, regional and local agencies. Federal funds amounted to $49.8 million in this 50-50 matching activity. Total funding was about $106 million, which included $6.9 million furnished by cooperating agencies on an unmatched basis. The Cooperative Program comprised more than 40% of the overall FY 1986 budget of the Survey 's Water Resources Division. The areas of principal emphasis during the year included groundwater contamination, stream quality, water supply and demand, and hydrologic hazards. Information is presented on program priorities and investigations implemented under the merit proposal process. The status of water use information activities, which are being carried out in 48 states and Puerto Rico is reviewed briefly. Standard methods for collecting the data are being developed. Each state has a computerized State Water-Use Data System for storage and retrieval of water-use data for individual users or facilities. (Lantz-PTT)
Opinions of patients and the public regarding NHS priorities.
Baker, A D; Bassran, A; Paterson-Brown, S
2001-10-01
The purpose of this study was to ascertain the views of patients and the public on NHS priorities. Data were gathered by interview questionnaire throughout Edinburgh city centre, and within various departments of one large teaching hospital. Of the 1502 responses, 462 were from within the hospital and 1040 were from city centre locations. 1497 (99.7%) were in favour of treating emergencies, and 1467 (97.7%) life threatening conditions as a priority. 1315 (88%) agreed that treatable conditions that seriously affect quality of life should also be considered a priority and 1127 (75%) were in favour of treating patients with incurable terminal disease regardless of cost. In order to provide these services 584 (39%) considered it acceptable to make patients with less serious conditions wait longer. Of the 918 (61%) who considered it not acceptable to wait longer 812 (88%) would be prepared to pay more in tax to provide this. The General Public do support the treatment of emergency and life threatening conditions as an absolute priority. The majority also support the prioritization of conditions which are treatable and seriously affect quality of life. If in establishing these priorities waiting times for other conditions are likely to rise, the public would generally accept increased taxation or some form of fee for service.
NASA Astrophysics Data System (ADS)
Conley, Alan H.; Midgley, Desmond C.
1988-07-01
A resourceful holistic water management strategy has been developed for ensuring equitable provision of adequate quantities of water of satisfactory quality at acceptable risk and affordable cost to a wide international range of competing user groups subject to adverse physical and hydrological factors and under rapidly changing social conditions. Scarce resource allocation strategies, based on scientific studies and supported by modern data processing facilities, focus primarily on supply, demand and quality. Supply management implies creation of the best combination of affordable elements of infrastructure for bulk water supplies from available runoff, groundwater, re-use, imports and unconventional sources, sized to meet determinable requirements with appropriate degrees of assurance, coupled with continuous optimization of system operation. Demand management seeks optimum allocation of available supplies to towns, power generation, industry, mining, agriculture, forestry, recreation and ecology, according to priority criteria determined from scientific, economic and socioeconomic studies. Quality management strategies relate to the control of salination, eutrophication and pollution from both diffuse and point sources. As the combined demands of complex First and Third World societies and economies on the available resources rise, increasing attention has to be paid to finding practical compromises to facilitate handling of conflict between legitimate users having widely divergent interests, aspirations and levels of sophistication. For optimum joint utilization, the central regulating authority is striving to forge a consultative partnership within which to promote, among the widest possible spectrum of users, enlightened understanding of the opportunities and limitations in handling complex international, social, political, legal, economic and financial issues associated with water development. These cannot readily be resolved by the methods of traditional hydrological sciences alone.
A Descriptive Analysis of End-of-Life Conversations With Long-Term Glioblastoma Survivors.
Miranda, Stephen P; Bernacki, Rachelle E; Paladino, Joanna M; Norden, Andrew D; Kavanagh, Jane E; Palmor, Marissa C; Block, Susan D
2018-05-01
Early, high-quality serious illness (SI) conversations are critical for patients with glioblastoma (GBM) but are often mistimed or mishandled. To describe the prevalence, timing, and quality of documented SI conversations and evaluate their focus on patient goals/priorities. Thirty-three patients with GBM enrolled in the control group of a randomized controlled trial of a communication intervention and were followed for 2 years or until death. At baseline, all patients answered a validated question about preferences for life-extending versus comfort-focused care and completed a Life Priorities Survey about their goals/priorities. In this secondary analysis, retrospective chart review was performed for 18 patients with GBM who died. Documented SI conversations were systematically identified and evaluated using a codebook reflecting 4 domains: prognosis, goals/priorities, end-of-life planning, and life-sustaining treatments. Patient goals/priorities were compared to documentation. At baseline, 16 of 24 patients preferred life-extending care. In the Life Priorities Survey, goals/priorities most frequently ranked among the top 3 were "Live as long as possible," "Be mentally aware," "Provide support for family," "Be independent," and "Be at peace." Fifteen of 18 patients had at least 1 documented SI conversation (range: 1-4). Median timing of the first documented SI conversation was 84 days before death (range: 29-231; interquartile range: 46-119). Fifteen patients had documentation about end-of-life planning, with "hospice" and "palliative care" most frequently documented. Five of 18 patients had documentation about their goals. Patients with GBM had multiple goals/priorities with potential treatment implications, but documentation showed SI conversations occurred relatively late and infrequently reflected patient goals/priorities.
A Quality Function Deployment Framework for the Service Quality of Health Information Websites
Kim, Dohoon
2010-01-01
Objectives This research was conducted to identify both the users' service requirements on health information websites (HIWs) and the key functional elements for running HIWs. With the quality function deployment framework, the derived service attributes (SAs) are mapped into the suppliers' functional characteristics (FCs) to derive the most critical FCs for the users' satisfaction. Methods Using the survey data from 228 respondents, the SAs, FCs and their relationships were analyzed using various multivariate statistical methods such as principal component factor analysis, discriminant analysis, correlation analysis, etc. Simple and compound FC priorities were derived by matrix calculation. Results Nine factors of SAs and five key features of FCs were identified, and these served as the basis for the house of quality model. Based on the compound FC priorities, the functional elements pertaining to security and privacy, and usage support should receive top priority in the course of enhancing HIWs. Conclusions The quality function deployment framework can improve the FCs of the HIWs in an effective, structured manner, and it can also be utilized for critical success factors together with their strategic implications for enhancing the service quality of HIWs. Therefore, website managers could efficiently improve website operations by considering this study's results. PMID:21818418
Gratacós, Jordi; Luelmo, Jesús; Rodríguez, Jesús; Notario, Jaume; Marco, Teresa Navío; de la Cueva, Pablo; Busquets, Manel Pujol; Font, Mercè García; Joven, Beatriz; Rivera, Raquel; Vega, Jose Luis Alvarez; Álvarez, Antonio Javier Chaves; Parera, Ricardo Sánchez; Carrascosa, Jose Carlos Ruiz; Martínez, Fernando José Rodríguez; Sánchez, José Pardo; Olmos, Carlos Feced; Pujol, Conrad; Galindez, Eva; Barrio, Silvia Pérez; Arana, Ana Urruticoechea; Hergueta, Mercedes; Coto, Pablo; Queiro, Rubén
2018-06-01
To define and give priority to standards of care and quality indicators of multidisciplinary care for patients with psoriatic arthritis (PsA). A systematic literature review on PsA standards of care and quality indicators was performed. An expert panel of rheumatologists and dermatologists who provide multidisciplinary care was established. In a consensus meeting group, the experts discussed and developed the standards of care and quality indicators and graded their priority, agreement and also the feasibility (only for quality indicators) following qualitative methodology and a Delphi process. Afterwards, these results were discussed with 2 focus groups, 1 with patients, another with health managers. A descriptive analysis is presented. We obtained 25 standards of care (9 of structure, 9 of process, 7 of results) and 24 quality indicators (2 of structure, 5 of process, 17 of results). Standards of care include relevant aspects in the multidisciplinary care of PsA patients like an appropriate physical infrastructure and technical equipment, the access to nursing care, labs and imaging techniques, other health professionals and treatments, or the development of care plans. Regarding quality indicators, the definition of multidisciplinary care model objectives and referral criteria, the establishment of responsibilities and coordination among professionals and the active evaluation of patients and data collection were given a high priority. Patients considered all of them as important. This set of standards of care and quality indicators for the multidisciplinary care of patients with PsA should help improve quality of care in these patients.
Tueros, Itziar; Borja, Angel; Larreta, Joana; Rodríguez, J Germán; Valencia, Victoriano; Millán, Esmeralda
2009-09-01
The European Water Framework Directive (WFD) establishes a framework for the protection and improvement of estuarine (transitional) and coastal waters, attempting to achieve good water status by 2015; this includes, within the assessment, biological and chemical elements. The European Commission has proposed a list of priority dangerous substances (including metals such as Cd, Hg, Ni and Pb), with the corresponding list of environmental quality standards (EQS), to assess chemical status, but only for waters. In this contribution, a long-term (1995-2007) dataset of transitional and coastal water and sediment trace elements concentrations, from the Basque Country (northern Spain), has been used to investigate the response of these systems to water treatment programmes. Moreover, the approach proposed in the WFD, for assessing water chemical status (the 'one out, all out' approach), is compared with the integration of water and sediment data, into a unique assessment. For this exercise, background levels are used as reference conditions, identifying the boundary between high and good chemical status. EQS are used as the boundary between good and moderate chemical status. This contribution reveals that the first approach can lead to misclassification, with the second approach representing the pattern shown by the long-term data trends. Finally, the management implications, using each approach are discussed.
MacDonald, D.D.; Carr, R.S.; Eckenrod, D.; Greening, H.; Grabe, S.; Ingersoll, C.G.; Janicki, S.; Janicki, T.; Lindskoog, R.A.; Long, E.R.; Pribble, R.; Sloane, G.; Smorong, D.E.
2004-01-01
Tampa Bay is a large, urban estuary that is located in west central Florida. Although water quality conditions represent an important concern in this estuary, information from numerous sources indicates that sediment contamination also has the potential to adversely affect aquatic organisms, aquatic-dependent wildlife, and human health. As such, protecting relatively uncontaminated areas of the bay from contamination and reducing the amount of toxic chemicals in contaminated sediments have been identified as high-priority sediment management objectives for Tampa Bay. To address concerns related to sediment contamination in the bay, an ecosystem-based framework for assessing and managing sediment quality conditions was developed that included identification of sediment quality issues and concerns, development of ecosystem goals and objectives, selection of ecosystem health indicators, establishment of metrics and targets for key indicators, and incorporation of key indicators, metrics, and targets into watershed management plans and decision-making processes. This paper describes the process that was used to select and evaluate numerical sediment quality targets (SQTs) for assessing and managing contaminated sediments. These SQTs included measures of sediment chemistry, whole-sediment and pore-water toxicity, and benthic invertebrate community structure. In addition, the paper describes how the SQTs were used to develop site-specific concentration-response models that describe how the frequency of adverse biological effects changes with increasing concentrations of chemicals of potential concern. Finally, a key application of the SQTs for defining sediment management areas is discussed.
Bee, Penny; Berzins, Kathryn; Calam, Rachel; Pryjmachuk, Steven; Abel, Kathryn M.
2013-01-01
Severe parental mental illness poses a challenge to quality of life (QoL) in a substantial number of children and adolescents, and improving the lives of these children is of urgent political and public health concern. This study used a bottom-up qualitative approach to develop a new stakeholder-led model of quality of life relevant to this population. Qualitative data were collected from 19 individuals participating in focus groups or individual interviews. Participants comprised 8 clinical academics, health and social care professionals or voluntary agency representatives; 5 parents and 6 young people (aged 13–18 yrs) with lived experience of severe parental mental illness. Data underwent inductive thematic analysis for the purposes of informing a population-specific quality of life model. Fifty nine individual themes were identified and grouped into 11 key ‘meta-themes’. Mapping each meta-theme against existing child-centred quality of life concepts revealed a multi-dimensional model that endorsed, to a greater or lesser degree, the core domains of generic quality of life models. Three new population-specific priorities were also observed: i) the alleviation of parental mental health symptoms, ii) improved problem-based coping skills and iii) increased mental health literacy. The identification of these priorities raises questions regarding the validity of generic quality of life measures to monitor the effectiveness of services for families and children affected by severe mental illness. New, age-appropriate instruments that better reflect the life priorities and unique challenges faced by the children of parents with severe mental illness may need to be developed. Challenges then remain in augmenting and adapting service design and delivery mechanisms better to meet these needs. Future child and adult mental health services need to work seamlessly alongside statutory education and social care services and a growing number of relevant third sector providers to address fully the quality of life priorities of these vulnerable families. PMID:24040050
Bee, Penny; Berzins, Kathryn; Calam, Rachel; Pryjmachuk, Steven; Abel, Kathryn M
2013-01-01
Severe parental mental illness poses a challenge to quality of life (QoL) in a substantial number of children and adolescents, and improving the lives of these children is of urgent political and public health concern. This study used a bottom-up qualitative approach to develop a new stakeholder-led model of quality of life relevant to this population. Qualitative data were collected from 19 individuals participating in focus groups or individual interviews. Participants comprised 8 clinical academics, health and social care professionals or voluntary agency representatives; 5 parents and 6 young people (aged 13-18 yrs) with lived experience of severe parental mental illness. Data underwent inductive thematic analysis for the purposes of informing a population-specific quality of life model. Fifty nine individual themes were identified and grouped into 11 key 'meta-themes'. Mapping each meta-theme against existing child-centred quality of life concepts revealed a multi-dimensional model that endorsed, to a greater or lesser degree, the core domains of generic quality of life models. Three new population-specific priorities were also observed: i) the alleviation of parental mental health symptoms, ii) improved problem-based coping skills and iii) increased mental health literacy. The identification of these priorities raises questions regarding the validity of generic quality of life measures to monitor the effectiveness of services for families and children affected by severe mental illness. New, age-appropriate instruments that better reflect the life priorities and unique challenges faced by the children of parents with severe mental illness may need to be developed. Challenges then remain in augmenting and adapting service design and delivery mechanisms better to meet these needs. Future child and adult mental health services need to work seamlessly alongside statutory education and social care services and a growing number of relevant third sector providers to address fully the quality of life priorities of these vulnerable families.
Ada Quality and Style: Guidelines for Professional Programmers, Version 02.01.01
1992-12-01
47, 78, 79 predicate queue , entry not prioritized, 95 as function name, 22 for boolean object, 21 R preemptive scheduling. 118 race condition. 49...when lower priority tasks are given service while higher priority tasks remain blocked. In the above example, this occurred because entry queues are...from an entry queue 100 Ada QUALITY AND STYLE due to execution of an abort statement as well as expiration of a timed entry call. The use of this
Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.
2013-01-01
Groundwater quality in the approximately 860-square-mile Madera and Chowchilla Subbasins (Madera-Chowchilla study unit) of the San Joaquin Valley Basin was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in California's Central Valley region in parts of Madera, Merced, and Fresno Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The Project was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems in California. The primary aquifer system within each study unit is defined by the depth of the perforated or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for municipal and community drinking-water supply. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifer system; shallower groundwater may be more vulnerable to contamination from the surface. The assessments for the Madera-Chowchilla study unit were based on water-quality and ancillary data collected by the USGS from 35 wells during April-May 2008 and water-quality data reported in the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of natural factors and human activities affecting groundwater quality. The primary aquifer system is represented by the grid wells, of which 90 percent (%) had depths that ranged from about 200 to 800 feet (ft) below land surface and had depths to the top of perforations that ranged from about 140 to 400 ft below land surface. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration (RC) greater than 1.0 indicates a concentration above a benchmark. RCs for organic constituents (volatile organic compounds and pesticides) and special-interest constituents (perchlorate) were classified as "high" (RC is greater than 1.0), "moderate" (RC is less than or equal to 1.0 and greater than 0.1), or "low" (RC is less than or equal to 0.1). For inorganic constituents (major and minor ions, trace elements, nutrients, and radioactive constituents), the boundary between low and moderate RCs was set at 0.5. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors; drinking-water benchmarks, and thus relative-concentrations, are used to provide context for the concentrations of constituents measured in groundwater. Aquifer-scale proportion was used in the status assessment as the primary metric for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifer system with RCs greater than 1.0 for a particular constituent or class of constituents; moderate and low aquifer-scale proportions are defined as the percentages of the area of the primary aquifer system with moderate and low RCs, respectively. Percentages are based on an areal, rather than a volumetric basis. Two statistical approaches--grid-based, which used one value per grid cell, and spatially weighted, which used multiple values per grid cell--were used to calculate aquifer-scale proportions for individual constituents and classes of constituents. The spatially weighted estimates of high aquifer-scale proportions were within the 90% confidence intervals of the grid-based estimates for all constituents except iron. The status assessment showed that inorganic constituents had greater high and moderate aquifer-scale proportions in the Madera-Chowchilla study unit than did organic constituents. RCs for inorganic constituents with health-based benchmarks were high in 37% of the primary aquifer system, moderate in 30%, and low in 33%. The inorganic constituents contributing most to the high aquifer-scale proportion were arsenic (13%), uranium (17%), gross alpha particle activity (20%), nitrate (6.7%), and vanadium (3.3%). RCs for inorganic constituents with non-health-based benchmarks were high in 6.7% of the primary aquifer system, and the constituent contributing most to the high aquifer-scale proportion was total dissolved solids (TDS). RCs for organic constituents with health-based benchmarks were high in 10% of the primary aquifer system, moderate in 3.3%, and low in 40%; organic constituents were not detected in 47% of the primary aquifer system. The fumigant 1,2-dibromo-3-chloropropane (DBCP) was the only organic constituent detected at high RCs. Seven organic constituents were detected in 10% or more of the primary aquifer system: DBCP; the fumigant additive 1,2,3-trichloropropane; the herbicides simazine, atrazine, and diuron; the trihalomethane chloroform; and the solvent tetrachloroethene (PCE). RCs for the special-interest constituent perchlorate were moderate in 20% of the primary aquifer system. The second component of this study, the understanding assessment, identified the natural and human factors that may affect groundwater quality by evaluating statistical correlations between water-quality constituents and potential explanatory factors, such as land use, position relative to important geologic features, groundwater age, well depth, and geochemical conditions in the aquifer. Results of the statistical evaluations were used to explain the distribution of constituents in the study unit. Depth to the top of perforations in the well and groundwater age were the most important explanatory factors for many constituents. High and moderate RCs of nitrate, uranium, and TDS and the presence of herbicides, trihalomethanes, and solvents were all associated with depths to the top of perforations less than 235 ft and modern- and mixed-age groundwater. Positive correlations between uranium, bicarbonate, TDS, and the proportion of calcium and magnesium in the total cations suggest that downward movement of recharge from irrigation water contributed to the elevated concentrations of these constituents in the primary aquifer system. High and moderate RCs of arsenic were associated with depths to the top of perforations greater than 235 ft, mixed- and pre-modern-age groundwater, and location in sediments from the Chowchilla River alluvial fan, suggesting that increased residence time and appropriate aquifer materials were needed for arsenic to accumulate in the groundwater. High and moderate RCs of fumigants were associated with depths to the top of perforations of less than 235 ft and location south of the city of Madera; low RCs of fumigants were detected in wells dispersed across the study unit with a range of depths to top of perforations.
Apportioning Sources of Riverine Nitrogen at Multiple Watershed Scales
NASA Astrophysics Data System (ADS)
Boyer, E. W.; Alexander, R. B.; Sebestyen, S. D.
2005-05-01
Loadings of reactive nitrogen (N) entering terrestrial landscapes have increased in recent decades due to anthropogenic activities associated with food and energy production. In the northeastern USA, this enhanced supply of N has been linked to many environmental concerns in both terrestrial and aquatic ecosystems, such as forest decline, lake and stream acidification, human respiratory problems, and coastal eutrophication. Thus N is a priority pollutant with regard to a whole host of air, land, and water quality issues, highlighting the need for methods to identify and quantify various N sources. Further, understanding precursor sources of N is critical to current and proposed public policies targeted at the reduction of N inputs to the terrestrial landscape and receiving waters. We present results from published and ongoing studies using multiple approaches to fingerprint sources of N in the northeastern USA, at watershed scales ranging from the headwaters to the coastal zone. The approaches include: 1) a mass balance model with a nitrogen-budgeting approach for analyses of large watersheds; 2) a spatially-referenced regression model with an empirical modeling approach for analyses of water quality at regional scales; and 3) a meta-analysis of monitoring data with a chemical tracer approach, utilizing concentrations of multiple elements and isotopic composition of N from water samples collected in the streams and rivers. We discuss the successes and limitations of these various approaches for apportioning contributions of N from multiple sources to receiving waters at regional scales.
Kent, Robert; Belitz, Kenneth
2012-01-01
Groundwater quality in the approximately 1,000-square-mile (2,590-square-kilometer) Upper Santa Ana Watershed (USAW) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southern California in Riverside and San Bernardino Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The GAMA USAW study was designed to provide a spatially unbiased assessment of untreated groundwater quality within the primary aquifer systems in the study unit. The primary aquifer systems (hereinafter, primary aquifers) are defined as the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the USAW study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to surficial contamination. The assessment is based on water-quality and ancillary data collected by the U.S. Geological Survey (USGS) from 90 wells during November 2006 through March 2007, and water-quality data from the CDPH database. The status of the current quality of the groundwater resource was assessed based on data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the USAW study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration greater than (>) 1.0 indicates a concentration above a benchmark, and a relative-concentration less than or equal to (≤) 1.0 indicates a concentration equal to or less than a benchmark. Organic and special-interest constituent relative-concentrations were classified as "high" (> 1.0), "moderate" (0.1 1.0), "moderate" (0.5 < relative-concentration ≤ 1.0), or "low" ( ≤ 0.5). Aquifer-scale proportion was used as the primary metric in the status assessment for evaluating regional-scale groundwater quality. Aquifer-scale proportions are defined as the percentage of the area of the primary aquifer system with concentrations above or below specified thresholds relative to regulatory or aesthetic benchmarks. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifers with a relative-concentration greater than 1.0 for a particular constituent or class of constituents; percentage is based on an areal, rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentage of the primary aquifers with moderate and low relative-concentrations, respectively. Two statistical approaches—grid-based and spatially weighted—were used to evaluate aquifer-scale proportions for individual constituents and classes of constituents. Grid-based and spatially weighted estimates were comparable in the USAW study unit (within 90-percent confidence intervals). Inorganic constituents with human-health benchmarks had relative-concentrations that were high in 32.9 percent of the primary aquifers, moderate in 29.3 percent, and low in 37.8 percent. The high aquifer-scale proportion of these inorganic constituents primarily reflected high aquifer-scale proportions of nitrate (high relative-concentration in 25.3 percent of the aquifer), although seven other inorganic constituents with human-health benchmarks also were detected at high relative-concentrations in some percentage of the aquifer: arsenic, boron, fluoride, gross alpha activity, molybdenum, uranium, and vanadium. Perchlorate, as a constituent of special interest, was evaluated separately from other inorganic constituents, and had high relative-concentrations in 11.1 percent, moderate in 53.3 percent, and low or not detected in 35.6 percent of the primary aquifers. In contrast to the inorganic constituents, relative-concentrations of organic constituents (one or more) were high in 6.7 percent, moderate in 11.1 percent, and low or not detected in 82.2 percent of the primary aquifers. Of the 237 organic and special-interest constituents analyzed for, 39 constituents were detected (21 VOCs, 13 pesticides, 3 pharmaceuticals, and 2 constituents of special interest). All of the detected VOCs had health-based benchmarks, and five of these—1,1-dichloroethene, 1,2-dibromo-3-chloropropane (DBCP), tetrachloroethene (PCE), carbon tetrachloride, and trichloroethene (TCE)—were detected in at least one sample at a concentration above a benchmark (high relative-concentration). Seven of the 13 pesticides had health-based benchmarks, and none were detected above these benchmarks (no high relative-concentrations). Pharmaceuticals do not have health-based benchmarks. Thirteen organic constituents were frequently detected (detected in at least 10 percent of samples without regard to relative-concentrations): bromodichloromethane, chloroform, cis-1,2-dichloroethene, 1,1-dichloroethene, dichlorodifluoromethane (CFC-12), methyl tert-butyl ether (MTBE), PCE, TCE, trichlorofluoromethane (CFC-11), atrazine, bromacil, diuron, and simazine.
Parsons, Mary C.; Hancock, Tracy Connell; Kulongoski, Justin T.; Belitz, Kenneth
2014-01-01
Groundwater quality in the approximately 963-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southern California in San Bernardino, Riverside, San Diego, and Imperial Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The GAMA Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected by the U.S. Geological Survey from 52 wells (49 grid wells and 3 understanding wells) and on water-quality data from the California Department of Public Health database. The primary aquifer system was defined by the depth intervals of the wells listed in the California Department of Public Health database for the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration greater than 1.0 indicates a concentration greater than a benchmark, and a relative-concentration less than or equal to 1.0 indicates a concentration equal to or less than a benchmark. Relative-concentrations of organic constituents and special-interest constituents [perchlorate and N-nitrosodimethylamine (NDMA)] were classified as high (relative-concentration greater than 1.0), moderate (relative-concentration greater than 0.1 and less than or equal to 1.0), or low (relative-concentration less than or equal to 0.1). Relative-concentrations of inorganic constituents were classified as high (relative-concentration greater than 1.0), moderate (relative-concentration greater than 0.5 and less than or equal to 1.0), or low (relative-concentration less than or equal to 0.5). Aquifer-scale proportion was used as the primary metric in the status assessment for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifer system with a high relative-concentration for a particular constituent or class of constituents; this percentage is based on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentages of the primary aquifer system with moderate and low relative-concentrations, respectively, of a constituent or class of constituents. Two statistical approaches—grid-based and spatially weighted—were used to evaluate aquifer-scale proportions for individual constituents and classes of constituents. Grid-based and spatially weighted estimates were comparable to each other (within 90-percent confidence intervals) in the study unit. Inorganic constituents (one or more) with health-based benchmarks were detected at high relative-concentrations in 48 percent of the primary aquifer system and at moderate relative-concentrations in 26 percent of the primary aquifer system. The high aquifer-scale proportion of inorganic constituents primarily reflected high aquifer-scale proportions of fluoride (27 percent), arsenic (18 percent), molybdenum (16 percent), boron (10 percent), uranium (5.6 percent), gross alpha radioactivity (9.7 percent), and nitrate (2.7 percent). The inorganic constituents with secondary maximum contaminant levels (SMCLs) were detected at high relative-concentrations in 13 percent of the primary aquifer system and at moderate relative-concentrations in 39 percent. The high aquifer-scale proportion for SMCL constituents reflected high aquifer-scale proportions of total dissolved solids (TDS, 11 percent), manganese (2.8 percent), and chloride (2.8 percent). Organic constituents were not detected at high relative-concentrations in the primary aquifer system, and were present at moderate relative-concentrations in 5.0 percent, and at low relative-concentrations or were not detected in 95 percent of the primary aquifer system. Of the 148 organic constituents analyzed, 12 constituents were detected. Two organic constituents, chloroform and tetrachloroethene (PCE), were detected in more than 10 percent of samples, but were detected mostly at low relative-concentrations.
Church, Stanley E; Owen, J. Robert; Von Guerard, Paul; Verplanck, Philip L.; Kimball, Briant A.; Yager, Douglas B.
2006-01-01
Historical production of metals in the western United States has left a legacy of acidic drainage and toxic metals in many mountain watersheds that are a potential threat to human and ecosystem health. Studies of the effects of historical mining on surface water chemistry and riparian habitat in the Animas River watershed have shown that cost-effective remediation of mine sites must be carefully planned. Of the more than 5400 mine, mill, and prospect sites in the watershed, 80 sites account for more than 90% of the metal loads to the surface drainages. Much of the low pH water and some of the metal loads are the result of weathering of hydrothermally altered rock that has not been disturbed by historical mining. Some stream reaches in areas underlain by hydrothermally altered rock contained no aquatic life prior to mining. Scientific studies of the processes and metal-release pathways are necessary to develop effective remediation strategies, particularly in watersheds where there is little land available to build mine-waste repositories. Characterization of mine waste, development of runoff profiles, and evaluation of ground-water pathways all require rigorous study and are expensive upfront costs that land managers find difficult to justify. Tracer studies of water quality provide a detailed spatial analysis of processes affecting surface- and ground-water chemistry. Reactive transport models were used in conjunction with the best state-of-the-art engineering solutions to make informed and cost-effective remediation decisions. Remediation of 23% of the high-priority sites identified in the watershed has resulted in steady improvement in water quality. More than $12 million, most contributed by private entities, has been spent on remediation in the Animas River watershed. The recovery curve for aquatic life in the Animas River system will require further documentation and long-term monitoring to evaluate the effectiveness of remediation projects implemented.
Church, Stanley E.; Owen, Robert J.; Von Guerard, Paul; Verplanck, Philip L.; Kimball, Briant A.; Yager, Douglas B.
2007-01-01
Historical production of metals in the western United States has left a legacy of acidic drainage and toxic metals in many mountain watersheds that are a potential threat to human and ecosystem health. Studies of the effects of historical mining on surface water chemistry and riparian habitat in the Animas River watershed have shown that cost-effective remediation of mine sites must be carefully planned. of the more than 5400 mine, mill, and prospect sites in the watershed, ∼80 sites account for more than 90% of the metal loads to the surface drainages. Much of the low pH water and some of the metal loads are the result of weathering of hydrothermally altered rock that has not been disturbed by historical mining. Some stream reaches in areas underlain by hydrothermally altered rock contained no aquatic life prior to mining.Scientific studies of the processes and metal-release pathways are necessary to develop effective remediation strategies, particularly in watersheds where there is little land available to build mine-waste repositories. Characterization of mine waste, development of runoff profiles, and evaluation of ground-water pathways all require rigorous study and are expensive upfront costs that land managers find difficult to justify. Tracer studies of water quality provide a detailed spatial analysis of processes affecting surface- and ground-water chemistry. Reactive transport models were used in conjunction with the best state-of-the-art engineering solutions to make informed and cost-effective remediation decisions.Remediation of 23% of the high-priority sites identified in the watershed has resulted in steady improvement in water quality. More than $12 million, most contributed by private entities, has been spent on remediation in the Animas River watershed. The recovery curve for aquatic life in the Animas River system will require further documentation and long-term monitoring to evaluate the effectiveness of remediation projects implemented.
Access to water provides economic relief through enhanced relationships in Kenya.
Zolnikov, Tara Rava; Blodgett-Salafia, Elizabeth
2017-03-01
Sub-Saharan Africa is comprised of low- and middle-income countries subject to the residual effects of chronic poverty. Poverty contributes to health disparities and social inequities. Public health strategies and solutions seek to remedy the effects of poverty. Providing access to quality water is one priority public health project that alleviates adverse health effects, but may have additional outcomes. Previous research has not thoroughly reviewed the economic relief and relationship changes from implemented water interventions. A qualitative phenomenological approach used 52 semi-structured interviews to understand relationship experiences among primary water gatherers and their families after implemented water interventions in a community. This study took place throughout the historically semi-arid eastern region in Kitui, Kenya, where community members have been beneficiaries of various water interventions. Prior to the water intervention, relationships were strained because of economic hardships. Households experienced economic difficulties in paying for children's school fees, buying bricks for housing structures, having water for house gardens, trees for shade in the compound, crops and providing water for their animals. After receiving access to water, relationships improved, because families were able to discuss and address economic challenges. Additional financial revenue was gained and used to pay for water to make bricks to sell or use on housing structures, expand on house gardens and agricultural crops, build new businesses, purchase water for animals, and construct local water spouts near the household. Access to water improved relationships, which encouraged economic growth. This information provides a critical component in understanding the interconnected nature between access to water, poverty and family relationships. Ultimately, this research suggests an increased need for access to quality water worldwide to improve both economic situations and relationships in low- and middle-income countries. © The Author 2016. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hochreiter, Joseph J.
1982-01-01
This report presents chemical-quality data collected from May 1980 to January 1981 at several locations within the Delaware River estuary and selected New Jersey tributaries. Samples of surface water were analyzed Environmental Protection Agency ' priority pollutants, ' including acid extractable, base/neutral extractable and volatile organic compounds, in addition to selected dissolved inorganic constituents. Surficial bed material at selected locations was examined for trace metals, insecticides, polychlorinated biphenyls, and base/neutral extractable organic compounds. Trace levels (1-50 micrograms per liter) of purgeable organic compounds, particularly those associated with the occurrence of hydrocarbons, were found in about 60% of the water samples taken. DDT, DDD, DDE, PCB 's and chlordane are present in most surficial bed material samples. Diazinon was the only organophosphorous insecticide detected in the study (1.6 micrograms per kilogram at one location). High values for select trace metals in bed material were discovered at two locations. Of the 10 sites sampled, the surficial bed material containing the most contamination was found along one cross section of Raccoon Creek at Bridgeport. An additional analysis of Raccoon Creek revealed bed material containing toluene, oil and grease, and trace quantities of 15 base/neutral extractable organic compounds, including polynuclear aromatic hydrocarbons, phthalate esters, and chlorinated benzenes.
Pinto, U; Maheshwari, B L; Ollerton, R L
2013-06-01
The Hawkesbury-Nepean River (HNR) system in South-Eastern Australia is the main source of water supply for the Sydney Metropolitan area and is one of the more complex river systems due to the influence of urbanisation and other activities in the peri-urban landscape through which it flows. The long-term monitoring of river water quality is likely to suffer from data gaps due to funding cuts, changes in priority and related reasons. Nevertheless, we need to assess river health based on the available information. In this study, we demonstrated how the Factor Analysis (FA), Hierarchical Agglomerative Cluster Analysis (HACA) and Trend Analysis (TA) can be applied to evaluate long-term historic data sets. Six water quality parameters, viz., temperature, chlorophyll-a, dissolved oxygen, oxides of nitrogen, suspended solids and reactive silicates, measured at weekly intervals between 1985 and 2008 at 12 monitoring stations located along the 300 km length of the HNR system were evaluated to understand the human and natural influences on the river system in a peri-urban landscape. The application of FA extracted three latent factors which explained more than 70 % of the total variance of the data and related to the 'bio-geographical', 'natural' and 'nutrient pollutant' dimensions of the HNR system. The bio-geographical and nutrient pollution factors more likely related to the direct influence of changes and activities of peri-urban natures and accounted for approximately 50 % of variability in water quality. The application of HACA indicated two major clusters representing clean and polluted zones of the river. On the spatial scale, one cluster was represented by the upper and lower sections of the river (clean zone) and accounted for approximately 158 km of the river. The other cluster was represented by the middle section (polluted zone) with a length of approximately 98 km. Trend Analysis indicated how the point sources influence river water quality on spatio-temporal scales, taking into account the various effects of nutrient and other pollutant loads from sewerage effluents, agriculture and other point and non-point sources along the river and major tributaries of the HNR. Over the past 26 years, water temperature has significantly increased while suspended solids have significantly decreased (p < 0.05). The analysis of water quality data through FA, HACA and TA helped to characterise the key sections and cluster the key water quality variables of the HNR system. The insights gained from this study have the potential to improve the effectiveness of river health-monitoring programs in terms of cost, time and effort, particularly in a peri-urban context.
Highlights of the 1983 Federal-state cooperative water resources program
Gilbert, B.K.; Buchanan, T.J.
1983-01-01
The U.S. Geological Survey Federal-State Cooperative Water Resources Program in fiscal year 1983 continued to concentrate on investigations of highest priority to the Nation. Hydrologic data collection and interpretive studies were underway in every State, Puerto Rico, and several U.S. territories with focus on such current concerns as ground-water contamination, floods, impacts of toxic wastes, acid precipitation, and stream quality. During the year, this 50-50 matching program was carried out in working partnership with more than 800 State, regional, and local agencies. Joint funding from all sources totaled approximately $92 million. Details of the program are mutually negotiated at the working level by representatives of the Survey and representatives of the cooperating agencies. The pooling of interests results in a balanced effort that directs combined resources to hydrologic investigations having the most significance to both parties. A few of the highlights for FY 1983, and how the program is developed with other agencies are described. (USGS)
NASA Astrophysics Data System (ADS)
2016-02-01
As from January 2016, Dr. Andrew Barry and Dr. Andrea Rinaldo have retired as Editors of Advances in Water Resources. Dr Barry has been a long serving Editor for 14 years, beginning this role on January 1, 2002. During this time he has served the science community with dedication, commitment, and diligence while bringing to the journal a strong vision and a wealth of knowledge that has tremendously improved the visibility and impact of Advances in Water Resources. Throughout this period he has also broadened the scope of the journal by adapting to the new emerging needs of the field through proactively seeking and promoting numerous special issues, which have now become a hallmark of the journal. The importance of obtaining high quality reviews and timeliness in decision-making, have always been a priority under Dr Barry's Editorship. It is clear that Advances in Water Resources and the community which it serves, has benefited enormously under Andrew's tenure and we will miss his energy, enthusiasm and passion for hydrologic science.
Witt, Adam; Magee, Timothy; Stewart, Kevin; ...
2017-08-10
Managing energy, water, and environmental priorities and constraints within a cascade hydropower system is a challenging multiobjective optimization effort that requires advanced modeling and forecasting tools. Within the mid-Columbia River system, there is currently a lack of specific solutions for predicting how coordinated operational decisions can mitigate the impacts of total dissolved gas (TDG) supersaturation while satisfying multiple additional policy and hydropower generation objectives. In this study, a reduced-order TDG uptake equation is developed that predicts tailrace TDG at seven hydropower facilities on the mid-Columbia River. The equation is incorporated into a general multiobjective river, reservoir, and hydropower optimization toolmore » as a prioritized operating goal within a broader set of system-level objectives and constraints. A test case is presented to assess the response of TDG and hydropower generation when TDG supersaturation is optimized to remain under state water-quality standards. Satisfaction of TDG as an operating goal is highly dependent on whether constraints that limit TDG uptake are implemented at a higher priority than generation requests. According to the model, an opportunity exists to reduce TDG supersaturation and meet hydropower generation requirements by shifting spillway flows to different time periods. In conclusion, a coordinated effort between all project owners is required to implement systemwide optimized solutions that satisfy the operating policies of all stakeholders.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witt, Adam; Magee, Timothy; Stewart, Kevin
Managing energy, water, and environmental priorities and constraints within a cascade hydropower system is a challenging multiobjective optimization effort that requires advanced modeling and forecasting tools. Within the mid-Columbia River system, there is currently a lack of specific solutions for predicting how coordinated operational decisions can mitigate the impacts of total dissolved gas (TDG) supersaturation while satisfying multiple additional policy and hydropower generation objectives. In this study, a reduced-order TDG uptake equation is developed that predicts tailrace TDG at seven hydropower facilities on the mid-Columbia River. The equation is incorporated into a general multiobjective river, reservoir, and hydropower optimization toolmore » as a prioritized operating goal within a broader set of system-level objectives and constraints. A test case is presented to assess the response of TDG and hydropower generation when TDG supersaturation is optimized to remain under state water-quality standards. Satisfaction of TDG as an operating goal is highly dependent on whether constraints that limit TDG uptake are implemented at a higher priority than generation requests. According to the model, an opportunity exists to reduce TDG supersaturation and meet hydropower generation requirements by shifting spillway flows to different time periods. In conclusion, a coordinated effort between all project owners is required to implement systemwide optimized solutions that satisfy the operating policies of all stakeholders.« less
77 FR 70786 - Request for Information Regarding Health Care Quality for Exchanges
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-27
...] Request for Information Regarding Health Care Quality for Exchanges AGENCY: Centers for Medicare... Quality Improvement in Health Care (National Quality Strategy) to create national aims and priorities that would guide local, state, and national efforts to improve the quality of health care in the United...
45 CFR 2531.20 - Funding priorities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 4 2014-10-01 2014-10-01 false Funding priorities. 2531.20 Section 2531.20 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE PURPOSES AND AVAILABILITY OF GRANTS FOR INVESTMENT FOR QUALITY AND INNOVATION ACTIVITIES § 2531.20 Funding...
45 CFR 2531.20 - Funding priorities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false Funding priorities. 2531.20 Section 2531.20 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE PURPOSES AND AVAILABILITY OF GRANTS FOR INVESTMENT FOR QUALITY AND INNOVATION ACTIVITIES § 2531.20 Funding...
45 CFR 2531.20 - Funding priorities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 4 2011-10-01 2011-10-01 false Funding priorities. 2531.20 Section 2531.20 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE PURPOSES AND AVAILABILITY OF GRANTS FOR INVESTMENT FOR QUALITY AND INNOVATION ACTIVITIES § 2531.20 Funding...
45 CFR 2531.20 - Funding priorities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 4 2012-10-01 2012-10-01 false Funding priorities. 2531.20 Section 2531.20 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE PURPOSES AND AVAILABILITY OF GRANTS FOR INVESTMENT FOR QUALITY AND INNOVATION ACTIVITIES § 2531.20 Funding...
45 CFR 2531.20 - Funding priorities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 4 2013-10-01 2013-10-01 false Funding priorities. 2531.20 Section 2531.20 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE PURPOSES AND AVAILABILITY OF GRANTS FOR INVESTMENT FOR QUALITY AND INNOVATION ACTIVITIES § 2531.20 Funding...
Quality Work, Quality Control in Technical Services.
ERIC Educational Resources Information Center
Horny, Karen L.
1985-01-01
Quality in library technical services is explored in light of changes produced by automation. Highlights include a definition of quality; new opportunities and shifting priorities; cataloging (fullness of records, heading consistency, accountability, local standards, automated checking); need for new skills (management, staff); and boons of…
Optimum Water Chemistry in radiation field buildup control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chien, C.
1995-03-01
Nuclear utilities continue to face the challenGE of reducing exposure of plant maintenance personnel. GE Nuclear Energy has developed the concept of Optimum Water Chemistry (OWC) to reduce the radiation field buildup and minimize the radioactive waste production. It is believed that reduction of radioactive sources and improvement of the water chemistry quality should significantly reduce both the radiation exposure and radwaste production. The most important source of radioactivity is cobalt and replacement of cobalt containing alloy in the core region as well as in the entire primary system is considered the first priority to achieve the goal of lowmore » exposure and minimized waste production. A plant specific computerized cobalt transport model has been developed to evaluate various options in a BWR system under specific conditions. Reduction of iron input and maintaining low ionic impurities in the coolant have been identified as two major tasks for operators. Addition of depleted zinc is a proven technique to reduce Co-60 in reactor water and on out-of-core piping surfaces. The effect of HWC on Co-60 transport in the primary system will also be discussed.« less
Burton, Carmen A.; Belitz, Kenneth
2008-01-01
Ground-water quality in the approximately 3,800 square-mile Southeast San Joaquin Valley study unit (SESJ) was investigated from October 2005 through February 2006 as part of the Priority Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The SESJ study was designed to provide a spatially unbiased assessment of raw ground-water quality within SESJ, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 99 wells in Fresno, Tulare, and Kings Counties, 83 of which were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 16 of which were sampled to evaluate changes in water chemistry along ground-water flow paths or across alluvial fans (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine, and 1,2,3-trichloropropane), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected at approximately 10 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control data resulted in censoring of less than 1 percent of the detections of constituents measured in ground-water samples. This study did not attempt to evaluate the quality of drinking water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable drinking-water quality. Regulatory thresholds apply to the treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and other health-based thresholds established by the U.S. Environmental Protection Agency and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns by CDPH. Two VOCs were detected above health-based thresholds: 1,2-dibromo-3-chloropropane (DBCP), and benzene. DBCP was detected above the U.S. Environmental Protections Agency's maximum contaminant level (MCL-US) in three grid wells and five understanding wells. Benzene was detected above the CDPH's maximum contaminant level (MCL-CA) in one grid well. All pesticide detections were below health-based thresholds. Perchlorate was detected above its maximum contaminate level for California in one grid well. Nitrate was detected above the MCL-US in six samples from understanding wells, of which one was a public supply well. Two trace elements were detected above MCLs-US: arsenic and uranium. Arsenic was detected above the MCL-US in four grid wells and two understanding wells; uranium was detected above the MCL-US in one grid well and one understanding well. Gross alpha radiation was detected above MCLs-US in five samples; four of them understanding wells, and uranium isotope activity was greater than the MCL-US for one understanding well
Kulongoski, Justin T.; Belitz, Kenneth
2011-01-01
Groundwater quality in the approximately 1,000 square mile (2,590 km2) Monterey Bay and Salinas Valley Basins (MS) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in central California in Monterey, Santa Cruz, and San Luis Obispo Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA MS study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers). The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 97 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth intervals of the wells listed in the CDPH database for the MS study unit. The quality of groundwater in the primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the MS study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration greater than (>) 1.0 indicates a concentration greater than a benchmark, and less than or equal to (≤) 1.0 indicates a concentration less than or equal to a benchmark. Relative-concentrations of organic and special interest constituents [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3-trichloropropane (1,2,3-TCP)], were classified as "high" (relative-concentration > 1.0), "moderate" (0.1 1.0), "moderate" (0.5 < relative-concentration ≤ 1.0), or "low" (relative-concentration ≤ 0.5). Aquifer-scale proportion was used as the primary metric in the status assessment for evaluating regional-scale groundwater quality. High aquifer-scale proportion was defined as the percentage of the area of the primary aquifers with a relative-concentration greater than 1.0 for a particular constituent or class of constituents; percentage is based on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentage of the primary aquifers with moderate and low relative-concentrations, respectively. Two statistical approaches-grid-based and spatially weighted-were used to evaluate aquifer-scale proportions for individual constituents and classes of constituents. Grid-based and spatially-weighted estimates were comparable in the MS study unit (within 90-percent confidence intervals). Inorganic constituents with human-health benchmarks were detected at high relative-concentrations in 14.5 percent of the primary aquifers, moderate in 35.5 percent, and low in 50.0 percent. High aquifer-scale proportion of inorganic constituents primarily reflected high aquifer-scale proportions of nitrate (7.9 percent), molybdenum (2.9 percent), arsenic (2.8 percent), boron (1.9 percent), and gross alpha-beta radioactivity (1.5 percent). Relative-concentrations of organic constituents (one or more) were high in 0.2 percent, moderate in 6.6 percent, and low in 93.2 percent (not detected in 48.1 percent) of the primary aquifers. The high aquifer-scale proportion of organic constituents primarily reflected high aquifer-scale proportions of tetrachloroethene (0.1 percent) and methyl tert-butyl ether (0.1 percent). Relative-concentration for inorganic constituents with secondary maximum contaminant levels, manganese, total dissolved solids, iron, sulfate, and chloride were high in 18.6, 8.6, 7.1, 2.9, and 1.4 percent of the primary aquifers, respectively. Of the 205 organic and special-interest constituents analyzed, 32 constituents were detected. One organic constituent, the herbicide simazine, was frequently detected (in 10 percent or more of samples), but was detected at low relative-concentrations. The second component of this study, the understanding assessment, identified the natural and human factors that affect groundwater quality by evaluating land use, physical characteristics of the wells, and geochemical conditions of the aquifer. Results from these evaluations were used to explain the occurrence and distribution of constituents in the study unit. The understanding assessment indicated that most wells that contained nitrate were classified as being in agricultural land-use areas, and depths to the top of perforations in most of the wells were less than 350 ft (76 m). High and moderate relative-concentrations of arsenic may be attributed to reductive dissolution of manganese or iron oxides, or to desorption or inhibition of arsenic sorption under alkaline conditions. Arsenic concentrations increased with increasing groundwater depth and residence time (age). Simazine was detected more often in groundwater from wells with surrounding land use classified as agricultural or urban, and with top of perforation depths less than 200 ft (61 m), than in groundwater from wells with natural land use or with deeper depths. Tritium, helium-isotope, and carbon-14 data were used to classify the predominant age of groundwater samples into three categories: modern (water that has entered the aquifer since 1953), pre-modern (water that entered the aquifer prior to 1953 to tens of thousands of years ago), and mixed (mixtures of modern- and pre-modern-age waters). Arsenic concentrations were significantly greater in groundwater with pre-modern age classification than in groundwater with modern-age classification, suggesting that arsenic accumulates with groundwater residence time.
15 CFR 700.18 - Limitations on placing rated orders.
Code of Federal Regulations, 2012 CFR
2012-01-01
... transportation (Department of Transportation); (v) Water resources (Department of Defense/U.S. Army Corps of... (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE NATIONAL SECURITY INDUSTRIAL BASE REGULATIONS DEFENSE PRIORITIES AND ALLOCATIONS SYSTEM Industrial Priorities § 700.18 Limitations on placing...
15 CFR 700.18 - Limitations on placing rated orders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... transportation (Department of Transportation); (v) Water resources (Department of Defense/U.S. Army Corps of... (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE NATIONAL SECURITY INDUSTRIAL BASE REGULATIONS DEFENSE PRIORITIES AND ALLOCATIONS SYSTEM Industrial Priorities § 700.18 Limitations on placing...
15 CFR 700.18 - Limitations on placing rated orders.
Code of Federal Regulations, 2013 CFR
2013-01-01
... transportation (Department of Transportation); (v) Water resources (Department of Defense/U.S. Army Corps of... (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE NATIONAL SECURITY INDUSTRIAL BASE REGULATIONS DEFENSE PRIORITIES AND ALLOCATIONS SYSTEM Industrial Priorities § 700.18 Limitations on placing...
Methodological Quality of National Guidelines for Pediatric Inpatient Conditions
Hester, Gabrielle; Nelson, Katherine; Mahant, Sanjay; Eresuma, Emily; Keren, Ron; Srivastava, Rajendu
2014-01-01
Background Guidelines help inform standardization of care for quality improvement (QI). The Pediatric Research in Inpatient Settings (PRIS) network published a prioritization list of inpatient conditions with high prevalence, cost, and variation in resource utilization across children’s hospitals. The methodological quality of guidelines for priority conditions is unknown. Objective To rate the methodological quality of national guidelines for 20 priority pediatric inpatient conditions. Design We searched sources including PubMed for national guidelines published 2002–2012. Guidelines specific to one organism, test or treatment, or institution were excluded. Guidelines were rated by two raters using a validated tool (AGREE II) with an overall rating on a 7-point scale (7–highest). Inter-rater reliability was measured with a weighted kappa coefficient. Results 17 guidelines met inclusion criteria for 13 conditions, 7 conditions yielded no relevant national guidelines. The highest methodological quality guidelines were for asthma, tonsillectomy, and bronchiolitis (mean overall rating 7, 6.5 and 6.5 respectively); the lowest were for sickle cell disease (2 guidelines) and dental caries (mean overall rating 4, 3.5, and 3 respectively). The overall weighted kappa was 0.83 (95% confidence interval 0.78–0.87). Conclusions We identified a group of moderate to high methodological quality national guidelines for priority pediatric inpatient conditions. Hospitals should consider these guidelines to inform QI initiatives. PMID:24677729
A Fair Contention Access Scheme for Low-Priority Traffic in Wireless Body Area Networks
Sajeel, Muhammad; Bashir, Faisal; Asfand-e-yar, Muhammad; Tauqir, Muhammad
2017-01-01
Recently, wireless body area networks (WBANs) have attracted significant consideration in ubiquitous healthcare. A number of medium access control (MAC) protocols, primarily derived from the superframe structure of the IEEE 802.15.4, have been proposed in literature. These MAC protocols aim to provide quality of service (QoS) by prioritizing different traffic types in WBANs. A contention access period (CAP)with high contention in priority-based MAC protocols can result in higher number of collisions and retransmissions. During CAP, traffic classes with higher priority are dominant over low-priority traffic; this has led to starvation of low-priority traffic, thus adversely affecting WBAN throughput, delay, and energy consumption. Hence, this paper proposes a traffic-adaptive priority-based superframe structure that is able to reduce contention in the CAP period, and provides a fair chance for low-priority traffic. Simulation results in ns-3 demonstrate that the proposed MAC protocol, called traffic- adaptive priority-based MAC (TAP-MAC), achieves low energy consumption, high throughput, and low latency compared to the IEEE 802.15.4 standard, and the most recent priority-based MAC protocol, called priority-based MAC protocol (PA-MAC). PMID:28832495
Forsyth, G G; Le Maitre, D C; O'Farrell, P J; van Wilgen, B W
2012-07-30
Invasions by alien plants are a significant threat to the biodiversity and functioning of ecosystems and the services they provide. The South African Working for Water program was established to address this problem. It needs to formulate objective and transparent priorities for clearing in the face of multiple and sometimes conflicting demands. This study used the analytic hierarchy process (a multi-criteria decision support technique) to develop and rank criteria for prioritising alien plant control operations in the Western Cape, South Africa. Stakeholder workshops were held to identify a goal and criteria and to conduct pair-wise comparisons to weight the criteria with respect to invasive alien plant control. The combination of stakeholder input (to develop decision models) with data-driven model solutions enabled us to include many alternatives (water catchments), that would otherwise not have been feasible. The most important criteria included the capacity to maintain gains made through control operations, the potential to enhance water resources and conserve biodiversity, and threats from priority invasive alien plant species. We selected spatial datasets and used them to generate weights that could be used to objectively compare alternatives with respect to agreed criteria. The analysis showed that there are many high priority catchments which are not receiving any funding and low priority catchments which are receiving substantial allocations. Clearly, there is a need for realigning priorities, including directing sufficient funds to the highest priority catchments to provide effective control. This approach provided a tractable, consensus-based solution that can be used to direct clearing operations. Copyright © 2012 Elsevier Ltd. All rights reserved.
UNICEF's Priorities for Children, 2002-2005.
ERIC Educational Resources Information Center
United Nations Children's Fund, New York, NY.
This document provides an overview of UNICEF's medium-term strategic plan for the period 2002-2005. Five priorities are detailed to which UNICEF has committed resources: (1) girls' education, completion of a quality primary school education for every girl and boy; (2) early intervention, promotion of integrated early childhood development to…
NASA Astrophysics Data System (ADS)
Raby, K. S.; Williams, M. W.
2004-12-01
Each passing year amplifies the demands placed on communities across the US in terms of population growth, increased tourism, and stresses resulting from escalated use. The conflicting concerns of recreational users, local citizens, environmentalists, and traditional economic interests cause land managers to contend with controversial decisions regarding development and protection of watersheds. Local history and culture, politics, economic goals, and science are all influential factors in land use decision making. Here we report on a scientific study to determine the sensitivity of alpine areas, and the adaptation of this study into a decision support framework. We use water quality data as an indicator of ecosystem health across a variety of alpine and subalpine landscapes, and input this information into a spatially-based decision support tool that planners can use to make informed land use decisions. We develop this tool in a case study in San Juan County, Colorado, a site chosen because its largest town, Silverton, is a small mountain community experiencing a recent surge in tourism and development, and its fragile high elevation locale makes it more sensitive to environmental changes. Extensive field surveys were conducted in priority drainages throughout the county to map the spatial distribution and aerial extent of landscape types during the summers of 2003 and 2004. Surface water samples were collected and analyzed for inorganic and organic solutes, and water quality values were associated with different land covers to enable sensitivity analysis at the landscape scale. Water quality results for each watershed were entered into a module linked to a geographic information system (GIS), which displays maps of sensitive areas based on criteria selected by the user. The decision support system initially incorporates two major water quality parameters: acid neutralizing capacity (ANC) and nitrate (NO3-) concentration, and several categories of sensitivity were created based on ANC and NO3- levels (e.g., pristine, slightly sensitive, moderately sensitive, highly sensitive, sensitive but unimpacted, disturbance impacted). We based threshold concentrations for these water quality parameters on first principles developed at the Niwot Ridge LTER site. Additional parameters such as specific conductance, base cation concentration, sulfate concentration, and dissolved organic carbon concentration may be added for a particular landscape type. Superimposed on this categorization, federal, state, and county planners are able to make decisions about the degree of potential impairment or enhancement produced by a particular project, or the maximum level of acceptable impairment to a particular area. Because water quality parameters are correlated with landscape types, the model returns a map of the watershed, partitioned by landscape type, presenting the sensitivity level of each area. This format provides land use managers with spatial criteria for project implementation.
Schmitt, Stephen J.; Fram, Miranda S.; Milby Dawson, Barbara J.; Belitz, Kenneth
2008-01-01
Ground-water quality in the approximately 3,340 square mile Middle Sacramento Valley study unit (MSACV) was investigated from June through September, 2006, as part of the California Groundwater Ambient Monitoring and Assessment (GAMA) program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Middle Sacramento Valley study was designed to provide a spatially unbiased assessment of raw ground-water quality within MSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 108 wells in Butte, Colusa, Glenn, Sutter, Tehama, Yolo, and Yuba Counties. Seventy-one wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells), 15 wells were selected to evaluate changes in water chemistry along ground-water flow paths (flow-path wells), and 22 were shallow monitoring wells selected to assess the effects of rice agriculture, a major land use in the study unit, on ground-water chemistry (RICE wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. Quality-control samples (blanks, replicates, laboratory matrix spikes) were collected at approximately 10 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a noticeable source of bias in the data for the ground-water samples. Differences between replicate samples were within acceptable ranges, indicating acceptably low variability. Matrix spike recoveries were within acceptable ranges for most constituents. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and are not indicative of compliance or noncompliance with regulatory thresholds. Most constituents that were detected in ground-water samples were found at concentrations below drinking-water thresholds. VOCs were detected in less than one-third and pesticides and pesticide degradates in just over one-half of the grid wells, and all detections of these constituents in samples from all wells of the MSACV study unit were below health-based thresholds. All detections of trace elements in samples from MSACV grid wells were below health-based thresholds, with the exceptions of arsenic and boro
NASA Astrophysics Data System (ADS)
Syme, Geoffrey J.; Nancarrow, Blair E.
Despite the important societal consequences of water policy, community attitudes toward planning, ethics, and equity for allocation of water have received little research attention. This preliminary research was conducted to assess the range and structure of planning attitudes and equity and ethical considerations which might be relevant to the general public's evaluation of water allocation systems. The relationship of these to priorities for water allocation were also examined. The results showed a complex structure for planning attitudes. There were also generalized but clearly defined community approaches to water allocation. A number of significant relationships between planning attitudes and philosophies of allocation were shown. Planning attitudes also related to priorities for water allocation. In practical terms the research provides some preliminary, ethically based evaluative criteria which could be applied to allocation decision-making systems. Theoretical research possibilities are also outlined.
7 CFR 1780.17 - Selection priorities and process.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Projects that primarily recycle solid waste products thereby limiting the need for solid waste disposal—5..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS General Policies and Requirements... solid waste violations—15 points. (c) Median household income priorities. The median household income of...
7 CFR 1780.17 - Selection priorities and process.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Projects that primarily recycle solid waste products thereby limiting the need for solid waste disposal—5..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS General Policies and Requirements... solid waste violations—15 points. (c) Median household income priorities. The median household income of...
7 CFR 1780.17 - Selection priorities and process.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Projects that primarily recycle solid waste products thereby limiting the need for solid waste disposal—5..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS General Policies and Requirements... solid waste violations—15 points. (c) Median household income priorities. The median household income of...
OCCURRENCE OF A NEW GENERATION OF DISINFECTION BY-PRODUCTS
A survey of disinfection by-product (DBP) occurrence in the United States was conducted at 12 drinking water treatment plants. In addition to currently regulated DBPs, more than 50 DBPs that rated a high priority for potential toxicity were studied. These priority DBPs included...
Fluvial processes in Ma'adim Vallis and the potential of Gusev crater as a high priority site
NASA Technical Reports Server (NTRS)
Cabrol, Nathalie; Landheim, Ragnild; Greeley, Ronald; Farmer, Jack
1994-01-01
According to exobiology site selection criteria for Mars, the search for potential extinct/extant water dependent life should focus on sites were water flowed and ponded. The Ma'adim Vallis/Gusev crater system is of high priority for exobiology research, because it appears to have involved long term flooding, different periods and rates of sedimentation, and probable episodic ponding. The topics covered include the following: evidence of nonuniform fluvial processes and early overflooding of the plateau and ponding.
Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho
NASA Astrophysics Data System (ADS)
Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.
2014-12-01
We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.
Romanok, Kristin M.; Reilly, Timothy J.; Barber, Larry B.; Boone, J. Scott; Buxton, Herbert T.; Foreman, William T.; Furlong, Edward T.; Hladik, Michelle; Iwanowicz, Luke R.; Journey, Celeste A.; Kolpin, Dana W.; Kuivila, Kathryn; Loftin, Keith A.; Mills, Marc A.; Meyer, Michael T.; Orlando, James L.; Smalling, Kelly L.; Villeneuve, Daniel L.; Bradley, Paul M.
2017-03-22
A vast array of chemical compounds are in wide commercial use in the United States, and the potential ecological and human-health effect of exposure to chemical mixtures has been identified as a high priority in environment health science. Awareness of the potential effects of low-level chemical exposures is rising. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted a study in which samples were collected from 38 streams in 25 States to provide an overview of contaminants found in stream water across the Nation. Additionally, biological screening assays were used to help determine any potential ecological and human-health effects of these chemical mixtures and to prioritize target chemicals for future toxicological studies. This report describes the site locations and the sampling and analytical methods and quality-assurance procedures used in the study.
Utah Science Activities, Update 2010
,
2010-01-01
The U.S. Geological Survey (USGS), a bureau of the U.S. Department of the Interior, serves the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. The USGS has become a world leader in the natural sciences thanks to our scientific excellence and responsiveness to society's needs. This newsletter describes some of the current and recently completed USGS earth-science activities in Utah. As an unbiased, multi-disciplinary science organization that focuses on biology, geography, geology, and water, we are dedicated to the timely, relevant, and impartial study of the landscape, our natural resources, and the natural hazards that threaten us. Learn more about our goals and priorities for the coming decade in the USGS Science Strategy at http://www.usgs.gov/science_strategy/ .
Pseudomonas aeruginosa dose response and bathing water infection.
Roser, D J; van den Akker, B; Boase, S; Haas, C N; Ashbolt, N J; Rice, S A
2014-03-01
Pseudomonas aeruginosa is the opportunistic pathogen mostly implicated in folliculitis and acute otitis externa in pools and hot tubs. Nevertheless, infection risks remain poorly quantified. This paper reviews disease aetiologies and bacterial skin colonization science to advance dose-response theory development. Three model forms are identified for predicting disease likelihood from pathogen density. Two are based on Furumoto & Mickey's exponential 'single-hit' model and predict infection likelihood and severity (lesions/m2), respectively. 'Third-generation', mechanistic, dose-response algorithm development is additionally scoped. The proposed formulation integrates dispersion, epidermal interaction, and follicle invasion. The review also details uncertainties needing consideration which pertain to water quality, outbreaks, exposure time, infection sites, biofilms, cerumen, environmental factors (e.g. skin saturation, hydrodynamics), and whether P. aeruginosa is endogenous or exogenous. The review's findings are used to propose a conceptual infection model and identify research priorities including pool dose-response modelling, epidermis ecology and infection likelihood-based hygiene management.
Azerbaijan: environmental conditions and outlook.
Shelton, Napier
2003-06-01
The author describes present environmental conditions in Azerbaijan in relation to the Soviet legacy and measures taken since independence. Environmental projects have been financed largely by international organizations and foreign companies. The most serious problems are contaminants in the Caspian Sea; air, water, and soil pollution in Sumgait; illegal fishing; poor quality of drinking water; cutting of forests for fuel and pasture; overgrazing; and soil erosion and salinization. Progress in developing an environmental conscience, necessary for sustained protection of the environment, will depend most importantly on environmental education, growth of democratic institutions and attitudes that encourage both governmental and citizen responsibility for the environment, and economic development that produces a substantial middle class. Positive advances include a Constitution and laws that require protection of the environment, and individuals who speak out for environmental care. Negative factors include poverty and the present government's low priority for environmental protection.
Mills, G.A.; Vrana, B.; Allan, I.; Alvarez, D.A.; Huckins, J.N.; Greenwood, R.
2007-01-01
The use of passive sampling in monitoring pharmaceuticals and personal-care products (PPCPs) in the aquatic environment is discussed. The utility of passive sampling methods for monitoring the fraction of heavy metals and the biologically available fraction of non-polar organic priority pollutants is recognized and these technologies are being used in surveys of water quality. These devices are used to measure the dissolved fraction and they can yield information that can be used in the development of risk assessments models. These devices can also be used to locate illegal dumping and to monitor specific sources of input of PPCPs into the environment, or to monitor the effectiveness of water treatment processes in the removal of these compounds from wastewater. These devices can provide representative information at low cost which necessitate a combination of laboratory calibration and field studies for emerging pollutants.
[Hygienic evaluation of transboundary pollution of the Ural River basin].
Iskakov, A Zh; Lestsova, N A; Zasorin, B V; Boev, M V
2009-01-01
The anthropogenic pollution of the Ural River and its tributaries is the most important problem of the Ural-Caspian basin. Transboundary inflow from Kazakhstan to Russian is 30.9 km3/year. The border Ilek river pollution was hygienically evaluated and the contribution of pollution sources was ascertained, with the seasonal variations and hydrochemical background being kept in mind, from 2002 to 2007. The monitoring data on the content of priority pollutants of the surface waters of the basin of the Ilek River, a tributary of the Ural River, which come from the Republic of Kazakhstan, are given. Semiquantitative spectral estimation and the atomic absorption method were used to study the chemical composition of bottom sediments in the Ilek River and its tributaries. The magnitude and sources of influence of man-caused pollution on the quality of the river water were established.
Davis, Jenny; O'Grady, Anthony P; Dale, Allan; Arthington, Angela H; Gell, Peter A; Driver, Patrick D; Bond, Nick; Casanova, Michelle; Finlayson, Max; Watts, Robyn J; Capon, Samantha J; Nagelkerken, Ivan; Tingley, Reid; Fry, Brian; Page, Timothy J; Specht, Alison
2015-11-15
Intensification of the use of natural resources is a world-wide trend driven by the increasing demand for water, food, fibre, minerals and energy. These demands are the result of a rising world population, increasing wealth and greater global focus on economic growth. Land use intensification, together with climate change, is also driving intensification of the global hydrological cycle. Both processes will have major socio-economic and ecological implications for global water availability. In this paper we focus on the implications of land use intensification for the conservation and management of freshwater ecosystems using Australia as an example. We consider this in the light of intensification of the hydrologic cycle due to climate change, and associated hydrological scenarios that include the occurrence of more intense hydrological events (extreme storms, larger floods and longer droughts). We highlight the importance of managing water quality, the value of providing environmental flows within a watershed framework and the critical role that innovative science and adaptive management must play in developing proactive and robust responses to intensification. We also suggest research priorities to support improved systemic governance, including adaptation planning and management to maximise freshwater biodiversity outcomes while supporting the socio-economic objectives driving land use intensification. Further research priorities include: i) determining the relative contributions of surface water and groundwater in supporting freshwater ecosystems; ii) identifying and protecting freshwater biodiversity hotspots and refugia; iii) improving our capacity to model hydro-ecological relationships and predict ecological outcomes from land use intensification and climate change; iv) developing an understanding of long term ecosystem behaviour; and v) exploring systemic approaches to enhancing governance systems, including planning and management systems affecting freshwater outcomes. A major policy challenge will be the integration of land and water management, which increasingly are being considered within different policy frameworks. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sykes, Helena; Neale, Simon; Coe, Sarah
2016-04-01
Natural Resources Wales is a UK government body responsible for environmental regulation, among other areas. River walks in Water Framework Directive (WFD) priority catchments in South West Wales, UK, identified soil entering water courses due to poaching and bank erosion, leading to deterioration in the water quality and jeopardising the water quality meeting legal minimum standards. Bare soil has also been shown to cause quicker and higher hydrograph peaks in rural catchments than if those areas were vegetated, which can lead to flooding of domestic properties during peak storm flows. The aim was to target farm visits by operational staff to advise on practices likely to improve water quality and to identify areas where soft engineering solutions such as revegetation could alleviate flood risk in rural areas. High resolution colour-infrared aerial photography, 25cm in the three colour bands and 50cm in the near infrared band, was used to map bare soil in seven catchments using supervised classification of a five band stack including the Normalised Difference Vegetation Index (NDVI). Mapping was combined with agricultural land use and field boundary data to filter out arable fields, which are supposed to bare soil for part of their cycle, and was very successful when compared to ground truthing, with the exception of silage fields which contained sparse, no or unproductive vegetation at the time the imagery was acquired leading to spectral similarity to bare soil. A raindrop trace model was used to show the path sediment from bare soil areas would take when moving through the catchment to a watercourse, with hedgerows inserted as barriers following our observations from ground truthing. The findings have been used to help farmers gain funding for improvements such as fencing to keep animals away from vulnerable river banks. These efficient and automated methods can be rolled out to more catchments in Wales and updated using aerial imagery acquired more recently to examine the effects of change.
18 CFR 740.4 - State water management planning program.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false State water management planning program. 740.4 Section 740.4 Conservation of Power and Water Resources WATER RESOURCES COUNCIL...) Describe water and related land resources problems, needs and opportunities, and the priorities proposed...
18 CFR 740.4 - State water management planning program.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false State water management planning program. 740.4 Section 740.4 Conservation of Power and Water Resources WATER RESOURCES COUNCIL...) Describe water and related land resources problems, needs and opportunities, and the priorities proposed...
18 CFR 740.4 - State water management planning program.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false State water management planning program. 740.4 Section 740.4 Conservation of Power and Water Resources WATER RESOURCES COUNCIL...) Describe water and related land resources problems, needs and opportunities, and the priorities proposed...
18 CFR 740.4 - State water management planning program.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true State water management planning program. 740.4 Section 740.4 Conservation of Power and Water Resources WATER RESOURCES COUNCIL...) Describe water and related land resources problems, needs and opportunities, and the priorities proposed...
Earle-Richardson, Giulia; Scribani, Melissa; Wyckoff, Lynae; Strogatz, David; May, John; Jenkins, Paul
2015-01-01
New York, like many other states, provides county-level health statistics for use in local priority settings but does not provide any data on public views about priority health issues. This study assessed whether health department priorities are notably different from community concerns about health, and how both groups' priorities compare with local health statistics. Data from a 2009 rural survey on community health concerns were compared to priorities named by the seven area county health departments, and to local health indicator data. Health care/insurance cost (60%), obesity (53%), and prescription cost (41%) were leading community concerns, regardless of age, education, sex, or Internet in the home. Six of seven county health departments selected access to quality health care (which includes health care/insurance cost) as a leading public health priority, but only three identified obesity. The following leading local health issues were suggested by health indicators: Physical activity and nutrition, Smoking, and Unintentional injury. Health departments diverged from community priorities, from health indicator data, and from one another in choosing priorities. Adding a question about community health priorities to existing state telephone surveys on health behavior and lifestyle would provide an important tool to local health departments. © 2014 Society for Public Health Education.
Murray, L.C.; Daniel, C. C.
1990-01-01
Hydrogeologic and ground-water quality data were collected near the wastewater-treatment plant and associated polishing lagoons at the Marine Corps Air Station, Cherry Point, North Carolina, in 1988. Between March and May 1988, two observation wells were installed upgradient and six wells were installed downgradient of the polishing lagoons and sampled for organic and inorganic U.S. Environmental Protection Agency priority pollutants. Placement of the well screens allowed sampling from both the upper and lower parts of the surficial aquifer. Natural gamma-ray geophysical logs were run in the four deepest wells. Lithologic logs were prepared from split-spoon samples collected during the drilling operations. Laboratory hydraulic conductivity tests were conducted on samples of fine-grained material recovered from the two confining units that separate the surficial aquifer and the drinking-water supply aquifer; values ranged from 0.011 to 0.014 foot per day (4x10-6 to 5x10-6 centimeters per second). Static water levels were recorded on April 25, 1988. Relatively low concentrations of purgeable organic compounds (up to 2.2 micrograms per liter for dichlorodifluoromethane), acid and base/neutral extractable compounds (up to 58 micrograms per liter for bis(2-ethylhexyl) phthalate), or pesticides (up to 0.03 micrograms per liter for diazinon and methyl parathion) were detected in water samples collected from all of the wells. Trace metals were detected in concentrations above minimum detectable limits in all of the wells and were found to be higher in water samples collected from the downgradient wells (up to 320 micrograms per liter for zinc) than in water samples from the upgradient wells.
Rieuwerts, J S; Austin, S; Harris, E A
2009-01-01
The UK is legally required by the EU Water Framework Directive (WFD) to improve the environmental quality of inland and coastal waters in the coming years. Historic metal mine sites are recognised as an important source of some of the elements on the WFD priority chemicals list. Despite their contamination potential, such sites are valued for their heritage and for other cultural and scientific reasons. Remediating historic mining areas to control the contamination of stream waters, whilst also preserving the integrity of the mine site, is a challenge but might be achieved by novel forms of remediation. In this study, we have carried out environmental monitoring at a historic, and culturally-sensitive, lead-silver mine site in southwest England and have undertaken a pilot experiment to investigate the potential for a novel, non-invasive remediation method at the site. Concentrations of Pb and Zn in mine spoil were clearly elevated with geometric mean concentrations of 6,888 and 710 microg g(-1), respectively. Mean concentrations of Pb in stream waters were between 21 and 54 microg l(-1), in exceedance of the WFD environmental quality standard (EQS) of 7.2 microg l(-1) (annual average). Mean Zn concentrations in water were between 30 and 97 microg l(-1), compared to the UK EQS of 66.5 microg l(-1) (average). Stream sediments within, and downstream from, the mining site were similarly elevated, indicating transport of mine waste particles into and within the stream. We undertook a simple trial to investigate the potential of hydroxyapatite, in the form of bonemeal, to passively remove the Pb and Zn, from the stream waters. After percolating through bonemeal in a leaching column, 96-99% of the dissolved Pb and Zn in stream water samples was removed.
Kuperman, Gilad J; Boyer, Aurelia; Cole, Curt; Forman, Bruce; Stetson, Peter D; Cooper, Mary
2006-01-01
At NewYork-Presbyterian Hospital, we are committed to the delivery of high quality care. We have implemented a strategic planning process to determine the information technology initiatives that will best help us improve quality. The process began with the creation of a Clinical Quality and IT Committee. The Committee identified 2 high priority goals that would enable demonstrably high quality care: 1) excellence at data warehousing, and 2) optimal use of automated clinical documentation to capture encounter-related quality and safety data. For each high priority goal, a working group was created to develop specific recommendations. The Data Warehousing subgroup has recommended the implementation of an architecture management process and an improved ability for users to get access to aggregate data. The Structured Documentation subgroup is establishing recommendations for a documentation template creation process. The strategic planning process at times is slow, but assures that the organization is focusing on the information technology activities most likely to lead to improved quality.
Kuperman, Gilad J.; Boyer, Aurelia; Cole, Curt; Forman, Bruce; Stetson, Peter D.; Cooper, Mary
2006-01-01
At NewYork-Presbyterian Hospital, we are committed to the delivery of high quality care. We have implemented a strategic planning process to determine the information technology initiatives that will best help us improve quality. The process began with the creation of a Clinical Quality and IT Committee. The Committee identified 2 high priority goals that would enable demonstrably high quality care: 1) excellence at data warehousing, and 2) optimal use of automated clinical documentation to capture encounter-related quality and safety data. For each high priority goal, a working group was created to develop specific recommendations. The Data Warehousing subgroup has recommended the implementation of an architecture management process and an improved ability for users to get access to aggregate data. The Structured Documentation subgroup is establishing recommendations for a documentation template creation process. The strategic planning process at times is slow, but assures that the organization is focusing on the information technology activities most likely to lead to improved quality. PMID:17238381
Sikder, Mustafa; Daraz, Umar; Lantagne, Daniele; Saltori, Roberto
2018-01-01
Water, sanitation, and hygiene (WASH) are immediate priorities for human survival and dignity in emergencies. In 2010, > 90% of Syrians had access to improved drinking water. In 2011, armed conflict began and currently 12 million people need WASH services. We analyzed data collected in southern Syria to identify effective WASH response activities for this context. Cross-sectional household surveys were conducted in 2016 and 2017 in 17 sub-districts of two governorates in opposition controlled southern Syria. During the survey, household water was tested for free chlorine residual (FCR). Descriptive statistics were calculated, and mixed effect logistic regressions were completed to determine associations between demographic and WASH variables with outcomes of FCR > 0.1 mg/L in household water and reported diarrhea in children < 5 years old. In 2016 and 2017, 1281 and 1360 surveys were conducted. Piped water as the main water source declined from 22.0% to 15.3% over this time. Households accessed 50-60 l per capita daily (primarily from private water trucking networks). Households spent ~ 20% of income on water and reported market-available hygiene items were unaffordable. FCR > 0.1 mg/L increased from 4.1% to 27.9% over this time, with Water Safety Plan (WSP) programming strongly associated with FCR (mOR: 24.16; 95% CI: 5.93-98.5). The proportion of households with childhood diarrhea declined from 32.8% to 20.4% over this time; sanitation and hygiene access were protective against childhood diarrhea. The private sector has effectively replaced decaying infrastructure in Syria, although at high cost and uncertain quality. Allowing market forces to manage WASH services and quantity, and targeting emergency response activities on increasing affordability with well-targeted subsidies and improving water quality and regulation via WSPs can be an effective, scalable, and cost-effective strategy to guarantee water and sanitation access in protracted emergencies with local markets.
Bridle, Helen; Balharry, Dominique; Gaiser, Birgit; Johnston, Helinor
2015-09-15
Contaminated drinking water is one of the most important environmental contributors to the human disease burden. Monitoring of water for the presence of pathogens is an essential part of ensuring drinking water safety. In order to assess water quality it is essential to have methods available to sample and detect the type, level and viability of pathogens in water which are effective, cheap, quick, sensitive, and where possible high throughput. Nanotechnology has the potential to drastically improve the monitoring of waterborne pathogens when compared to conventional approaches. To date, there have been no reviews that outline the applications of nanotechnology in this area despite increasing exploitation of nanotechnology for this purpose. This review is therefore the first overview of the state-of-the-art in the application of nanotechnology to waterborne pathogen sampling and detection schemes. Research in this field has been centered on the use of engineered nanomaterials. The effectiveness and limitations of nanomaterial-based approaches is outlined. A future outlook of the advances that are likely to emerge in this area, as well as recommendations for areas of further research are provided.
Ferguson, Christobel M; Croke, Barry F W; Beatson, Peter J; Ashbolt, Nicholas J; Deere, Daniel A
2007-06-01
In drinking water catchments, reduction of pathogen loads delivered to reservoirs is an important priority for the management of raw source water quality. To assist with the evaluation of management options, a process-based mathematical model (pathogen catchment budgets - PCB) is developed to predict Cryptosporidium, Giardia and E. coli loads generated within and exported from drinking water catchments. The model quantifies the key processes affecting the generation and transport of microorganisms from humans and animals using land use and flow data, and catchment specific information including point sources such as sewage treatment plants and on-site systems. The resultant pathogen catchment budgets (PCB) can be used to prioritize the implementation of control measures for the reduction of pathogen risks to drinking water. The model is applied in the Wingecarribee catchment and used to rank those sub-catchments that would contribute the highest pathogen loads in dry weather, and in intermediate and large wet weather events. A sensitivity analysis of the model identifies that pathogen excretion rates from animals and humans, and manure mobilization rates are significant factors determining the output of the model and thus warrant further investigation.
2011-01-01
Background Public priorities for improvement often differ from those of clinicians and managers. Public involvement has been proposed as a way to bridge the gap between professional and public clinical care priorities but has not been studied in the context of quality-indicator choice. Our objective is to assess the feasibility and impact of public involvement on quality-indicator choice and agreement with public priorities. Methods We will conduct a cluster randomised controlled trial comparing quality-indicator prioritisation with and without public involvement. In preparation for the trial, we developed a 'menu' of quality indicators, based on a systematic review of existing validated indicator sets. Participants (public representatives, clinicians, and managers) will be recruited from six participating sites. In intervention sites, public representatives will be involved through direct participation (public representatives, clinicians, and managers will deliberate together to agree on quality-indicator choice and use) and consultation (individual public recommendations for improvement will be collected and presented to decision makers). In control sites, only clinicians and managers will take part in the prioritisation process. Data on quality-indicator choice and intended use will be collected. Our primary outcome will compare quality-indicator choice and agreement with public priorities between intervention and control groups. A process evaluation based on direct observation, videorecording, and participants' assessment will be conducted to help explain the study's results. The marginal cost of public involvement will also be assessed. Discussion We identified 801 quality indicators that met our inclusion criteria. An expert panel agreed on a final set of 37 items containing validated quality indicators relevant for chronic disease prevention and management in primary care. We pilot tested our public-involvement intervention with 27 participants (11 public representatives and 16 clinicians and managers) and our study instruments with an additional 21 participants, which demonstrated the feasibility of the intervention and generated important insights and adaptations to engage public representatives more effectively. To our knowledge, this study is the first trial of public involvement in quality-indicator prioritisation, and its results could foster more effective upstream engagement of patients and the public in clinical practice improvement. Trial registration NTR2496 (Netherlands National Trial Register, http://www.trialregister.nl). PMID:21554691
42 CFR 482.21 - Condition of participation: Quality assessment and performance improvement program.
Code of Federal Regulations, 2013 CFR
2013-10-01
... quality improvement and patient safety, including the reduction of medical errors, is defined, implemented... address priorities for improved quality of care and patient safety; and that all improvement actions are... incorporate quality indicator data including patient care data, and other relevant data, for example...
42 CFR 482.21 - Condition of participation: Quality assessment and performance improvement program.
Code of Federal Regulations, 2014 CFR
2014-10-01
... quality improvement and patient safety, including the reduction of medical errors, is defined, implemented... address priorities for improved quality of care and patient safety; and that all improvement actions are... incorporate quality indicator data including patient care data, and other relevant data, for example...
42 CFR 482.21 - Condition of participation: Quality assessment and performance improvement program.
Code of Federal Regulations, 2012 CFR
2012-10-01
... quality improvement and patient safety, including the reduction of medical errors, is defined, implemented... address priorities for improved quality of care and patient safety; and that all improvement actions are... incorporate quality indicator data including patient care data, and other relevant data, for example...
Williams, Donald R.; Clark, Mary E.; Brown, Juliane B.
1999-01-01
IntroductionThe Cheat River Basin is in the Allegheny Plateau and Allegheny Mountain Sections of the Appalachian Plateau Physiographic Province (Fenneman, 1946) and is almost entirely within the state of West Virginia. The Cheat River drains an area of 1,422 square miles in Randolph, Tucker, Preston, and Monongalia Counties in West Virginia and Fayette County in Pennsylvania. From its headwaters in Randolph County, W.Va., the Cheat River flows 157 miles north to the Pennsylvania state line, where it enters the Monongahela River. The Cheat River drainage comprises approximately 19 percent of the total Monongahela River Basin. The Cheat River and streams within the Cheat River Basin are characterized by steep gradients, rock channels, and high flow velocities that have created a thriving white-water rafting industry for the area. The headwaters of the Cheat River contain some of the most pristine and aesthetic streams in West Virginia. The attraction to the area, particularly the lower part of the Cheat River Basin (the lower 412 square miles of the basin), has been suppressed because of poor water quality. The economy of the Lower Cheat River Basin has been dominated by coal mining over many decades. As a result, many abandoned deep and surface mines discharge untreated acid mine drainage (AMD), which degrades water quality, into the Cheat River and many of its tributary streams. Approximately 60 regulated mine-related discharges (West Virginia Department of Environmental Protection, 1996) and 185 abandoned mine sites (U.S. Office of Surface Mining, 1998) discharge treated and untreated AMD into the Cheat River and its tributaries.The West Virginia Department of Environmental Protection (WVDEP) Office of Abandoned Mine Lands and Reclamation (AML&R) has recently completed several AMD reclamation projects throughout the Cheat River Basin that have collectively improved the mainstem water quality. The AML&R office is currently involved in acquiring grant funds and designing treatment facilities for several additional AMD sites that adversely affect the Cheat River and its tributaries. To obtain the baseline water-quality information necessary to evaluate instream treatment and alternative methods for remediating AMD and its effects, the U.S. Geological Survey (USGS), in cooperation with the WVDEP, collected stream water samples at 111 sites throughout the Lower Cheat River Basin during low-flow conditions from July 16-18, 1997. The data also will provide information on stream water quality in areas affected by AMD and thus would point to priority areas of focus, such as the sources of the AMD. This report presents the results of analyses of the samples collected in July 1997 and describes a process for ranking of stream water-quality degradation as a guide to water-resource managers considering AMD remediation activities.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
..., Intergovernmental relations, Penalties, Reporting and recordkeeping requirements, Superfund, Water pollution control...] National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the... Substances Pollution Contingency Plan (NCP). The EPA and the State of California, through the California...
Groundwater science relevant to the Great Lakes Water Quality Agreement: A status report
Grannemann, Norman G.; Van Stempvoort, Dale
2016-01-01
When the Great Lakes Water Quality Agreement (GLWQA) was signed in 1972 by the Governments of Canada and the United States (the “Parties”) (Environment Canada, 2013a), groundwater was not recognized as important to the water quality of the Lakes. At that time, groundwater and surface water were still considered as two separate systems, with almost no appreciation for their interaction. When the GLWQA was revised in 1978 (US Environmental Protection Agency (USEPA), 2012), groundwater contamination, such as that reported at legacy industrial sites such as those at Love Canal near the Niagara River, was squarely in the news. Consequently, the potential impacts of contaminated groundwater from such sites on Great Lakes water quality became a concern (Beck, 1979), and Annex 16 was added to the agreement, to address “pollution from contaminated groundwater” (Francis, 1989). However, no formal process for reporting under this annex was provided. The GLWQA Protocol in 1987 modified Annex 16 and called for progress reports beginning in 1988 (USEPA, 1988). The Protocol in 2012 provided a new Annex 8 to address groundwater more holistically (Environment 2 Canada, 2013b). Annex 8 (Environment Canada, 2013b) commits the Parties to coordinate groundwater science and management actions; as a first step, to “publish a report on the relevant and available groundwater science” by February 2015 (this report); and to “identify priorities for science activities and actions for groundwater management, protection, and remediation…” The broader mandate of Annex 8 is to (1) “identify groundwater impacts on the chemical, physical and biological integrity of the Waters of the Great Lakes;” (2) “analyze contaminants, including nutrients in groundwater, derived from both point and non-point sources impacting the Waters of the Great Lakes;” (3) “assess information gaps and science needs related to groundwater to protect the quality of the Waters of the Great Lakes;” and (4) “analyze other factors, such as climate change, that individually or cumulatively affect groundwater’s impact on the quality of the Waters of the Great Lakes.” A binational Annex 8 Subcommittee was formed to lead efforts to fulfill the mandate of this annex (members listed on p. i of this report). In turn, this subcommittee has recruited a task team to prepare this report (listed as authors of each chapter). This report addresses all of the above four objectives, based on a compilation of the “relevant and available groundwater science.” Specifically, the second objective (to “analyze contaminants”) is addressed by incorporating information obtained in ongoing monitoring and research activities conducted by the Parties, and by various other members of the Great Lakes Executive Committee.
Quantifying the Global Fresh Water Budget: Capabilities from Current and Future Satellite Sensors
NASA Technical Reports Server (NTRS)
Hildebrand, Peter; Zaitchik, Benjamin
2007-01-01
The global water cycle is complex and its components are difficult to measure, particularly at the global scales and with the precision needed for assessing climate impacts. Recent advances in satellite observational capabilities, however, are greatly improving our knowledge of the key terms in the fresh water flux budget. Many components of the of the global water budget, e.g. precipitation, atmospheric moisture profiles, soil moisture, snow cover, sea ice are now routinely measured globally using instruments on satellites such as TRMM, AQUA, TERRA, GRACE, and ICESat, as well as on operational satellites. New techniques, many using data assimilation approaches, are providing pathways toward measuring snow water equivalent, evapotranspiration, ground water, ice mass, as well as improving the measurement quality for other components of the global water budget. This paper evaluates these current and developing satellite capabilities to observe the global fresh water budget, then looks forward to evaluate the potential for improvements that may result from future space missions as detailed by the US Decadal Survey, and operational plans. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest some priorities for the future, based on new approaches that may provide the improved measurements and the analyses needed to understand and observe the potential speed-up of the global water cycle under the effects of climate change.
Improvement Research Priorities: USA Survey and Expert Consensus
Stevens, Kathleen R.; Ovretveit, John
2013-01-01
The purpose of this study was to identify stakeholder views about national priorities for improvement science and build agreement for action in a national improvement and implementation research network in the USA. This was accomplished using three stages of identification and consensus. (1) Topics were identified through a multipronged environmental scan of the literature and initiatives. (2) Based on this scan, a survey was developed, and stakeholders (n = 2,777) were invited to rate the resulting 33-topic, 9-category list, via an online survey. Data from 560 respondents (20% response) were analyzed. (3) An expert panel used survey results to further refine the research priorities through a Rand Delphi process. Priorities identified were within four categories: care coordination and transitions, high-performing clinical systems and microsystems improvement approaches, implementation of evidence-based improvements and best practices, and culture of quality and safety. The priorities identified were adopted by the improvement science research network as the research agenda to guide strategy. The process and conclusions may be of value to quality improvement research funding agencies, governments, and research units seeking to concentrate their resources on improvement topics where research is capable of yielding timely and actionable answers as well as contributing to the knowledge base for improvement. PMID:24024029
Quality measures for nurse practitioner practice evaluation.
Kleinpell, Ruth; Kapu, April N
2017-08-01
Evaluating the impact of nurse practitioner (NP) practice has become a priority area of focus for demonstrating outcomes. A number of quality measures are available to enable practice-specific evaluation of NP roles and initiatives. This article reviews sources of quality measures that can be used to facilitate quantifying the outcomes of NP practice as part of an overall evaluation agenda. National resources and published literature on NP quality measures were reviewed. Various resources and toolkits exist to assist NPs in identifying outcomes of practice using quality measures. The need to demonstrate outcomes of NP practice remains an ongoing priority area regardless of the clinical practice setting. A variety of sources of quality measures exist that can be used to showcase the effect of NP care. The use of quality measures can be effectively integrated into evaluation of NP role and NP-directed initiatives to demonstrate impact, and enhance the conduct of an NP outcomes assessment. The use of organizational, NP-specific, and national-related quality measures can help to showcase how NP care improves the quality, safety, and costs of health care. ©2017 American Association of Nurse Practitioners.
Byrne, Michael J.; Wood, Molly S.
2011-01-01
Lake Okeechobee in south-central Florida is the second largest freshwater lake in the contiguous United States. Excessive phosphorus loading, harmful high and low water levels, and rapid expansion of non-native vegetation have threatened the health of the lake in recent decades. A study was conducted to monitor discharge and nutrient concentrations from selected tributaries into Lake Okeechobee and to evaluate nutrient loads. The data analysis was performed at 16 monitoring stations from December 2003 to September 2008. Annual and seasonal discharge measured at monitoring stations is affected by rainfall. Hurricanes affected three wet years (2004, 2005, and the latter part of 2008) and resulted in substantially greater discharge than the drought years of 2006, 2007, and the early part of 2008. Rainfall supplies about 50 percent of the water to Lake Okeechobee, discharge from the Kissimmee River supplies about 25 percent, and discharge from tributaries and groundwater seepage along the lake perimeter collectively provide the remaining 25 percent. Annually, tributary discharge from basins located on the west side of the Kissimmee River is about 5 to 6 times greater than that from basins located on the east side. For the purposes of this study, the basins on the east side of the Kissimmee River are called "priority basins" because of elevated phosphorus concentrations, while those on the west side are called "nonpriority" basins. Total annual discharge in the non-priority basins ranged from 245,000 acre-feet (acre-ft) in 2007 to 1,322,000 acre-ft in 2005, while annual discharge from the priority basins ranged from 41,000 acre-ft in 2007 to 219,000 acre-ft in 2005. Mean total phosphorus concentrations ranged from 0.10 to 0.54 milligrams per liter (mg/L) at the 16 tributaries during 2004–2008. Mean concentrations were significantly higher at priority basin sites than at non-priority basin sites, particularly at Arbuckle Creek and C 41A Canal. Concentrations of organic nitrogen plus ammonia ranged from 1.27 to 2.96 mg/L at the 16 tributaries during 2004–2008. Mean concentrations were highest at Fisheating Creek at Lake Placid (a non-priority site), and lowest at Wolff Creek, Taylor Creek near Grassy Island, and Otter Creek (three priority basin sites), and at Arbuckle Creek (a non-priority basin site). Mean concentrations of nitrite plus nitrate ranged from 0.01 to 0.55 mg/L at the 16 tributaries during 2004–2008. Mean concentrations measured in priority basins were significantly higher than those measured in non-priority basins. Nutrient concentrations were substantially lower in the non-priority basins; however, total loads were substantially higher due to discharge that was 5 to 6 times greater than from the priority basins. Total phosphorus, organic nitrogen plus ammonia, and nitrite plus nitrate loads from the non-priority basins were 1.5, 4.5, and 3.5 times greater, respectively, than were loads from the priority basins. In the non-priority basins, total phosphorus loads ranged from 35 metric tons (MT) in 2007 to 247 MT in 2005. In the priority basins, the loads ranged from 18 MT in 2007 to 136 MT in 2005. In the non-priority basins, organic nitrogen plus ammonia loads ranged from 337 MT in 2007 to 2,817 MT in 2005. In the priority basins, organic nitrogen plus ammonia loads ranged from 85 MT in 2007 to 503 MT in 2005. In the non-priority basins, nitrite plus nitrate loads ranged from 34 MT in 2007 to 143 MT in 2005. In the priority basins, nitrite plus nitrate loads ranged from 4 MT in 2007 to 27 MT in 2005.
Cocchioni, M; Scuri, S; Morichetti, L; Petrelli, F; Grappasonni, I
2006-01-01
The article underlines the fundamental importance of the protection and promotion of environmental quality for the human health. The evolution of fluvial monitoring techniques is contemplated from chemical and bacteriological analysis until the Index Functional Index (I.F.F). This evolution it's very important because shows a new methodological and cultural maturation that has carried from a anthropocentric vision until an ecocentric vision. The target of this ecological vision is the re-establishment of ecological functionality of the rivers, eliminating the consumer's vision of the water considered only as a usable resource. The importance of an correct monitoring of a river is confirmed, even though the preventive approach priority remains.
ERIC Educational Resources Information Center
Sseguya, Haroon; Mazur, Robert; Abbott, Eric; Matsiko, Frank
2012-01-01
Purpose: To examine the status and priorities for agricultural information generation, dissemination and utilization in the context of agricultural innovation systems in southeast Uganda. Design/Methodology/Approach: Group discussions were conducted with six communities in Kamuli district, southeast Uganda. The focus was on information sources and…
A Blueprint for Excellence: Lakeland Community College.
ERIC Educational Resources Information Center
Lakeland Community Coll., Mentor, OH.
In 1988, Lakeland Community College (LCC), in Mentor, Ohio, began a strategic planning process to refocus the college on its mission, identify priorities for the years ahead, and establish a process to achieve them. Five strategic priorities were identified: (1) sustain and strengthen academic quality for students by adding at least 25 full-time…
7 CFR 3430.1004 - Project types and priorities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ADMINISTRATIVE PROVISIONS Sun Grant Program § 3430.1004 Project types and priorities. (a) Project types. The Sun... on the basis of merit, quality, and relevance to advancing the purposes of the Sun Grant Program. (2... provided by NIFA for the Sun Grant Program that are not allocated to the Subcenter. For the Subcenter, the...
7 CFR 3430.1004 - Project types and priorities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ADMINISTRATIVE PROVISIONS Sun Grant Program § 3430.1004 Project types and priorities. (a) Project types. The Sun... on the basis of merit, quality, and relevance to advancing the purposes of the Sun Grant Program. (2... provided by NIFA for the Sun Grant Program that are not allocated to the Subcenter. For the Subcenter, the...
7 CFR 3430.1004 - Project types and priorities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ADMINISTRATIVE PROVISIONS Sun Grant Program § 3430.1004 Project types and priorities. (a) Project types. The Sun... on the basis of merit, quality, and relevance to advancing the purposes of the Sun Grant Program. (2... provided by NIFA for the Sun Grant Program that are not allocated to the Subcenter. For the Subcenter, the...
7 CFR 3430.1004 - Project types and priorities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ADMINISTRATIVE PROVISIONS Sun Grant Program § 3430.1004 Project types and priorities. (a) Project types. The Sun... on the basis of merit, quality, and relevance to advancing the purposes of the Sun Grant Program. (2... provided by NIFA for the Sun Grant Program that are not allocated to the Subcenter. For the Subcenter, the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-29
... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Notice of Intent for... Contingency Plan (NCP). The EPA and the State of Texas, through the Texas Commission on Environmental Quality... Notice of Deletion for SMPA Superfund Site without prior Notice of Intent for Deletion because EPA views...
The Relationship of Leadership Qualities to Wisconsin School Superintendent Hiring Practices
ERIC Educational Resources Information Center
VerDuin, Joel A.
2011-01-01
The purpose of this study was to examine the relationship between school board hiring practices and specific leadership behaviors. The current priority of educational leaders is often spoken of in terms of accountability for student achievement. This study considered the priority of educational improvement, and examined hiring practices using five…
Liu, Shiliang; Yin, Yijie; Cheng, Fangyan; Hou, Xiaoyun; Dong, Shikui; Wu, Xue
2017-01-01
Integrating biodiversity and ecosystem services (BES) has been viewed as an appropriate approach to identifying conservation priorities. Taking Xishuangbanna tropical region in Southwest China, different BESs (habitat quality [used as a proxy for biodiversity], carbon storage, and water yield) were quantified using the InVEST model and conservation hotspots from 1976, 1990, and 2010 were identified by overlapping and ranking the service layers. Results showed that BESs areas were unevenly distributed. High habitat quality and carbon storage areas located in the eastern part of the region were mainly occupied by broad-leaved forest, while high water yield areas were covered by grassland and tropical forests. Recognized hotspots were primarily composed of the broad-leaved forest and shrub grassland. However, these habitat types declined by nearly 50% from 1.25×105 ha to 0.63×105 ha and became more fragmented during the study period. We also found that the sub-watersheds which decreased in BES had fewer hotspots distributed and suffered greater landscape fragmentation. Our study further explored the impacts of land-use conversion on BES, and illustrated the necessity and feasibility of BESs in identifying potential conservation areas.
NASA Astrophysics Data System (ADS)
Bui, E. N.; Wilkinson, S. N.; Bartley, R.
2014-12-01
Sediment input to the Great Barrier Reef (GBR) lagoon has had deleterious impacts on seagrass and coral ecosystems. The response of the Australian government has been to develop policies to: (i) reverse the impact of threats from sediments and nutrients, and improve water quality and aquatic health of the GBR lagoon; and (ii) to facilitate the uptake of sustainable farming and land management practices that deliver improved ecosystem services, by at least 30 per cent of farmers. The Reef2050 Long term sustainability plan aims to identify priority locations for on-ground investment of remediation options that will result in a reduction of constituent loads to the GBR. Recent sediment tracing studies indicate that subsoil from erosion features such as gullies and channel banks are the dominant contributors of sediment in the GBR catchments. Better control of gully and streambank erosion and restoration of riparian habitats are therefore necessary. Here we review the evidence for bank erosion in the GBR catchments and how scientific evidence on feedback relationships between climate- geochemistry-vegetation-landforms can be used to develop better guidelines for streambank and gully re-vegetation.
Liu, Shiliang; Yin, Yijie; Cheng, Fangyan; Hou, Xiaoyun; Dong, Shikui; Wu, Xue
2017-01-01
Integrating biodiversity and ecosystem services (BES) has been viewed as an appropriate approach to identifying conservation priorities. Taking Xishuangbanna tropical region in Southwest China, different BESs (habitat quality [used as a proxy for biodiversity], carbon storage, and water yield) were quantified using the InVEST model and conservation hotspots from 1976, 1990, and 2010 were identified by overlapping and ranking the service layers. Results showed that BESs areas were unevenly distributed. High habitat quality and carbon storage areas located in the eastern part of the region were mainly occupied by broad-leaved forest, while high water yield areas were covered by grassland and tropical forests. Recognized hotspots were primarily composed of the broad-leaved forest and shrub grassland. However, these habitat types declined by nearly 50% from 1.25×105 ha to 0.63×105 ha and became more fragmented during the study period. We also found that the sub-watersheds which decreased in BES had fewer hotspots distributed and suffered greater landscape fragmentation. Our study further explored the impacts of land-use conversion on BES, and illustrated the necessity and feasibility of BESs in identifying potential conservation areas. PMID:29232370
Yang, Wanhong; Liu, Yongbo; Ou, Chunping; Gabor, Shane
2016-06-01
Wetland conservation has two important tasks: The first is to halt wetland loss and the second is to conduct wetland restoration. In order to facilitate these tasks, it is important to understand the environmental degradation from wetland loss and the environmental benefits from wetland restoration. The purpose of the study is to develop SWAT based wetland modelling to examine water quality effects of riparian wetland loss and restoration scenarios in the 323-km(2) Black River watershed in southern Ontario, Canada. The SWAT based wetland modelling was set up, calibrated and validated to fit into watershed conditions. The modelling was then applied to evaluate various scenarios of wetland loss from existing 7590 ha of riparian wetlands (baseline scenario) to 100% loss, and wetland restoration up to the year 1800 condition with 11,237 ha of riparian wetlands (100% restoration). The modelling was further applied to examine 100% riparian wetland loss and restoration in three subareas of the watershed to understand spatial pattern of water quality effects. Modelling results show that in comparing to baseline condition, the sediment, total nitrogen (TN), and total phosphorus (TP) loadings increase by 251.0%, 260.5%, and 890.9% respectively for 100% riparian wetland loss, and decrease by 34.5%, 28.3%, and 37.0% respectively for 100% riparian wetland restoration. Modelling results also show that as riparian wetland loss increases, the corresponding environmental degradation worsens at accelerated rates. In contrast, as riparian wetland restoration increases, the environmental benefits improve but at decelerated rates. Particularly, the water quality effects of riparian wetland loss or restoration show considerable spatial variations. The watershed wetland modelling contributes to inform decisions on riparian wetland conservation or restoration at different rates. The results further demonstrate the importance of targeting priority areas for stopping riparian wetland loss and initiating riparian wetland restoration based on scientific understanding of watershed wetland effects. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Green, Corinne; Eady, Michelle; Andersen, Peter
2018-01-01
There are many factors that impact student learning, with quality educators being one of the most important elements for student success. Accordingly, the promotion of quality teacher preparation programs has become a priority for tertiary institutions, researchers, policymakers, and practitioners. There is a known disparity between tertiary…
Understanding the influence of nutrients on stream ecosystems in agricultural landscapes
Munn, Mark D.; Frey, Jeffrey W.; Tesoriero, Anthony J.; Black, Robert W.; Duff, John H.; Lee, Kathy E.; Maret, Terry R.; Mebane, Christopher A.; Waite, Ian R.; Zelt, Ronald B.
2018-06-06
Sustaining the quality of the Nation’s water resources and the health of our diverse ecosystems depends on the availability of sound water-resources data and information to develop effective, science-based policies. Effective management of water resources also brings more certainty and efficiency to important economic sectors. Taken together, these actions lead to immediate and long-term economic, social, and environmental benefits that make a difference to the lives of the almost 400 million people projected to live in the United States by 2050.In 1991, Congress established the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) to address where, when, why, and how the Nation’s water quality has changed, or is likely to change in the future, in response to human activities and natural factors. Since then, NAWQA has been a leading source of scientific data and knowledge used by national, regional, State, and local agencies to develop science-based policies and management strategies to improve and protect water resources used for drinking water, recreation, irrigation, energy development, and ecosystem needs (https://water.usgs.gov/nawqa/applications/). Plans for the third decade of NAWQA (2013–23) address priority water-quality issues and science needs identified by NAWQA stakeholders, such as the Advisory Committee on Water Information and the National Research Council, and are designed to meet increasing challenges related to population growth, increasing needs for clean water, and changing land-use and weather patterns.Excess nutrients are a pervasive problem of streams, lakes, and coastal waters. The current report, “The Quality of Our Nation’s Waters—Understanding the Effects of Nutrients on Stream Ecosystems in Agricultural Landscapes,” presents a summary of results from USGS investigations conducted from 2003 to 2011 on processes that influence nutrients and how nutrient enrichment can alter biological components of agricultural streams. This study included collecting data from 232 sites distributed among eight study areas. This report summarizes findings on processes that influence nutrients and how nutrient enrichment can alter biological communities in agricultural streams. These findings are relevant to local, State, regional, and national decision-makers involved in efforts to (1) better understand the influence of nutrients on agricultural streams, (2) develop nutrient criteria for streams and rivers, (3) reduce nutrients to streams and downstream receiving waters, and (4) develop tools for tracking nutrient and biological conditions following nutrient reduction strategies. All NAWQA reports are available online at https://water.usgs.gov/nawqa/bib/.We hope this publication will provide you with insights and information to meet your water-resource needs and will foster increased citizen awareness and involvement in the protection and restoration of our Nation’s waters. The information in this report is intended primarily for those interested or involved in resource management and protection, conservation, regulation, and policymaking at the regional and national levels.
Georeferenced model simulations efficiently support targeted monitoring
NASA Astrophysics Data System (ADS)
Berlekamp, Jürgen; Klasmeier, Jörg
2010-05-01
The European Water Framework Directive (WFD) demands the good ecological and chemical status of surface waters. To meet the definition of good chemical status of the WFD surface water concentrations of priority pollutants must not exceed established environmental quality standards (EQS). Surveillance of the concentrations of numerous chemical pollutants in whole river basins by monitoring is laborious and time-consuming. Moreover, measured data do often not allow for immediate source apportionment which is a prerequisite for defining promising reduction strategies to be implemented within the programme of measures. In this context, spatially explicit model approaches are highly advantageous because they provide a direct link between local point emissions (e.g. treated wastewater) or diffuse non-point emissions (e.g. agricultural runoff) and resulting surface water concentrations. Scenario analyses with such models allow for a priori investigation of potential positive effects of reduction measures such as optimization of wastewater treatment. The geo-referenced model GREAT-ER (Geography-referenced Regional Exposure Assessment Tool for European Rivers) has been designed to calculate spatially resolved averaged concentrations for different flow conditions (e.g. mean or low flow) based on emission estimations for local point source emissions such as treated effluents from wastewater treatment plants. The methodology was applied to selected pharmaceuticals (diclofenac, sotalol, metoprolol, carbamazepin) in the Main river basin in Germany (approx. 27,290 km²). Average concentrations of the compounds were calculated for each river reach in the whole catchment. Simulation results were evaluated by comparison with available data from orienting monitoring and used to develop an optimal monitoring strategy for the assessment of water quality regarding micropollutants at the catchment scale.
40 CFR 35.925-3 - Priority determination.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Priority determination. 35.925-3 Section 35.925-3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-3...
40 CFR 35.925-3 - Priority determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Priority determination. 35.925-3 Section 35.925-3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-3...
25 CFR 170.420 - What is the tribal priority list?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false What is the tribal priority list? 170.420 Section 170.420 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Planning, Design, and Construction of Indian Reservation Roads Program Facilities Transportation...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Partial Deletion of the... appendix of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). This partial deletion pertains to the soil and ground water associated with the northern 62-acre parcel. After this...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Partial Deletion of the... National Oil and Hazardous Substances Pollution Contingency Plan (NCP). This partial deletion pertains to the surface soil, unsaturated subsurface soil, surface water and sediments of Operable Unit (OU) 1...
Focused Field Investigations for Sewer Condition Assessment with EPA SSOAP Toolbox - abstract
The Nation’s sanitary sewer infrastructure is aging, and it is currently one of the top national water program priorities, and is one of the top priorities of the U.S. Conference of Mayors. The U.S. Environmental Protection Agency developed the Sanitary Sewer Overflow Analysis a...
Focused Field Investigations for Sewer Condition Assessment with EPA SSOAP Toolbox
The Nation’s sanitary sewer infrastructure is aging, and it is currently one of the top national water program priorities, and is one of the top priorities of the U.S. Conference of Mayors. The U.S. Environmental Protection Agency (EPA) developed the Sanitary Sewer Overflow Anal...
Odaga, John; Henriksson, Dorcus K; Nkolo, Charles; Tibeihaho, Hector; Musabe, Richard; Katusiime, Margaret; Sinabulya, Zaccheus; Mucunguzi, Stephen; Mbonye, Anthony K; Valadez, Joseph J
2016-01-01
Local health system managers in low- and middle-income countries have the responsibility to set health priorities and allocate resources accordingly. Although tools exist to aid this process, they are not widely applied for various reasons including non-availability, poor knowledge of the tools, and poor adaptability into the local context. In Uganda, delivery of basic services is devolved to the District Local Governments through the District Health Teams (DHTs). The Community and District Empowerment for Scale-up (CODES) project aims to provide a set of management tools that aid contextualised priority setting, fund allocation, and problem-solving in a systematic way to improve effective coverage and quality of child survival interventions. Although the various tools have previously been used at the national level, the project aims to combine them in an integral way for implementation at the district level. These tools include Lot Quality Assurance Sampling (LQAS) surveys to generate local evidence, Bottleneck analysis and Causal analysis as analytical tools, Continuous Quality Improvement, and Community Dialogues based on Citizen Report Cards and U reports. The tools enable identification of gaps, prioritisation of possible solutions, and allocation of resources accordingly. This paper presents some of the tools used by the project in five districts in Uganda during the proof-of-concept phase of the project. All five districts were trained and participated in LQAS surveys and readily adopted the tools for priority setting and resource allocation. All districts developed health operational work plans, which were based on the evidence and each of the districts implemented more than three of the priority activities which were included in their work plans. In the five districts, the CODES project demonstrated that DHTs can adopt and integrate these tools in the planning process by systematically identifying gaps and setting priority interventions for child survival.
Odaga, John; Henriksson, Dorcus K.; Nkolo, Charles; Tibeihaho, Hector; Musabe, Richard; Katusiime, Margaret; Sinabulya, Zaccheus; Mucunguzi, Stephen; Mbonye, Anthony K.; Valadez, Joseph J.
2016-01-01
Background Local health system managers in low- and middle-income countries have the responsibility to set health priorities and allocate resources accordingly. Although tools exist to aid this process, they are not widely applied for various reasons including non-availability, poor knowledge of the tools, and poor adaptability into the local context. In Uganda, delivery of basic services is devolved to the District Local Governments through the District Health Teams (DHTs). The Community and District Empowerment for Scale-up (CODES) project aims to provide a set of management tools that aid contextualised priority setting, fund allocation, and problem-solving in a systematic way to improve effective coverage and quality of child survival interventions. Design Although the various tools have previously been used at the national level, the project aims to combine them in an integral way for implementation at the district level. These tools include Lot Quality Assurance Sampling (LQAS) surveys to generate local evidence, Bottleneck analysis and Causal analysis as analytical tools, Continuous Quality Improvement, and Community Dialogues based on Citizen Report Cards and U reports. The tools enable identification of gaps, prioritisation of possible solutions, and allocation of resources accordingly. This paper presents some of the tools used by the project in five districts in Uganda during the proof-of-concept phase of the project. Results All five districts were trained and participated in LQAS surveys and readily adopted the tools for priority setting and resource allocation. All districts developed health operational work plans, which were based on the evidence and each of the districts implemented more than three of the priority activities which were included in their work plans. Conclusions In the five districts, the CODES project demonstrated that DHTs can adopt and integrate these tools in the planning process by systematically identifying gaps and setting priority interventions for child survival. PMID:27225791