NASA Astrophysics Data System (ADS)
Dhamala, Mukesh
2015-12-01
Understanding cause-and-effect (causal) relations from observations concerns all sciences including neuroscience. Appropriately defining causality and its nature, though, has been a topic of active discussion for philosophers and scientists for centuries. Although brain research, particularly functional neuroimaging research, is now moving rapidly beyond identification of brain regional activations towards uncovering causal relations between regions, the nature of causality has not be been thoroughly described and resolved. In the current review article [1], Mannino and Bressler take us on a beautiful journey into the history of the work on causality and make a well-reasoned argument that the causality in the brain is inherently probabilistic. This notion is consistent with brain anatomy and functions, and is also inclusive of deterministic cases of inputs leading to outputs in the brain.
A probabilistic framework to infer brain functional connectivity from anatomical connections.
Deligianni, Fani; Varoquaux, Gael; Thirion, Bertrand; Robinson, Emma; Sharp, David J; Edwards, A David; Rueckert, Daniel
2011-01-01
We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model selection framework based on cross-validation with a parametrization-independent loss function suitable to the manifold of covariance matrices. Our model is based on constraining the conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches the structure of the output space. Our results show that functional connectivity can be explained by anatomical connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to assess this link.
Beckmann, Matthias; Johansen-Berg, Heidi; Rushworth, Matthew F S
2009-01-28
Whole-brain neuroimaging studies have demonstrated regional variations in function within human cingulate cortex. At the same time, regional variations in cingulate anatomical connections have been found in animal models. It has, however, been difficult to estimate the relationship between connectivity and function throughout the whole cingulate cortex within the human brain. In this study, magnetic resonance diffusion tractography was used to investigate cingulate probabilistic connectivity in the human brain with two approaches. First, an algorithm was used to search for regional variations in the probabilistic connectivity profiles of all cingulate cortex voxels with the whole of the rest of the brain. Nine subregions with distinctive connectivity profiles were identified. It was possible to characterize several distinct areas in the dorsal cingulate sulcal region. Several distinct regions were also found in subgenual and perigenual cortex. Second, the probabilities of connection between cingulate cortex and 11 predefined target regions of interest were calculated. Cingulate voxels with a high probability of connection with the different targets formed separate clusters within cingulate cortex. Distinct connectivity fingerprints characterized the likelihood of connections between the extracingulate target regions and the nine cingulate subregions. Last, a meta-analysis of 171 functional studies reporting cingulate activation was performed. Seven different cognitive conditions were selected and peak activation coordinates were plotted to create maps of functional localization within the cingulate cortex. Regional functional specialization was found to be related to regional differences in probabilistic anatomical connectivity.
Lee, Dongha; Pae, Chongwon; Lee, Jong Doo; Park, Eun Sook; Cho, Sung-Rae; Um, Min-Hee; Lee, Seung-Koo; Oh, Maeng-Keun; Park, Hae-Jeong
2017-10-01
Manifestation of the functionalities from the structural brain network is becoming increasingly important to understand a brain disease. With the aim of investigating the differential structure-function couplings according to network systems, we investigated the structural and functional brain networks of patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy controls. The structural and functional networks of the whole brain and motor system, constructed using deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson and partial correlation analyses of resting-state functional magnetic resonance images, showed differential embedding of functional networks in the structural networks in patients. In the whole-brain network of patients, significantly reduced global network efficiency compared to healthy controls were found in the structural networks but not in the functional networks, resulting in reduced structural-functional coupling. On the contrary, the motor network of patients had a significantly lower functional network efficiency over the intact structural network and a lower structure-function coupling than the control group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients was prominent particularly between the probabilistic structural and partial correlation-based functional networks. Intact (or less deficient) functional network over impaired structural networks of the whole brain and highly impaired functional network topology over the intact structural motor network might subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study suggests that the structure-function relationship, evaluated specifically using sparse functional connectivity, may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292-5306, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Staudt, Martin; Ticini, Luca F.; Grodd, Wolfgang; Krageloh-Mann, Ingeborg; Karnath, Hans-Otto
2008-01-01
Early periventricular brain lesions can not only cause cerebral palsy, but can also induce a reorganization of language. Here, we asked whether these different functional consequences can be attributed to topographically distinct portions of the periventricular white matter damage. Eight patients with pre- and perinatally acquired left-sided…
A Four-Dimensional Probabilistic Atlas of the Human Brain
Mazziotta, John; Toga, Arthur; Evans, Alan; Fox, Peter; Lancaster, Jack; Zilles, Karl; Woods, Roger; Paus, Tomas; Simpson, Gregory; Pike, Bruce; Holmes, Colin; Collins, Louis; Thompson, Paul; MacDonald, David; Iacoboni, Marco; Schormann, Thorsten; Amunts, Katrin; Palomero-Gallagher, Nicola; Geyer, Stefan; Parsons, Larry; Narr, Katherine; Kabani, Noor; Le Goualher, Georges; Feidler, Jordan; Smith, Kenneth; Boomsma, Dorret; Pol, Hilleke Hulshoff; Cannon, Tyrone; Kawashima, Ryuta; Mazoyer, Bernard
2001-01-01
The authors describe the development of a four-dimensional atlas and reference system that includes both macroscopic and microscopic information on structure and function of the human brain in persons between the ages of 18 and 90 years. Given the presumed large but previously unquantified degree of structural and functional variance among normal persons in the human population, the basis for this atlas and reference system is probabilistic. Through the efforts of the International Consortium for Brain Mapping (ICBM), 7,000 subjects will be included in the initial phase of database and atlas development. For each subject, detailed demographic, clinical, behavioral, and imaging information is being collected. In addition, 5,800 subjects will contribute DNA for the purpose of determining genotype– phenotype–behavioral correlations. The process of developing the strategies, algorithms, data collection methods, validation approaches, database structures, and distribution of results is described in this report. Examples of applications of the approach are described for the normal brain in both adults and children as well as in patients with schizophrenia. This project should provide new insights into the relationship between microscopic and macroscopic structure and function in the human brain and should have important implications in basic neuroscience, clinical diagnostics, and cerebral disorders. PMID:11522763
Jones, Michael N.
2017-01-01
A central goal of cognitive neuroscience is to decode human brain activity—that is, to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utility, a decoding framework must be open-ended, systematic, and context-sensitive—that is, capable of interpreting numerous brain states, presented in arbitrary combinations, in light of prior information. Here we take steps towards this objective by introducing a probabilistic decoding framework based on a novel topic model—Generalized Correspondence Latent Dirichlet Allocation—that learns latent topics from a database of over 11,000 published fMRI studies. The model produces highly interpretable, spatially-circumscribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayesian nature of the model allows one to “seed” decoder priors with arbitrary images and text—enabling researchers, for the first time, to generate quantitative, context-sensitive interpretations of whole-brain patterns of brain activity. PMID:29059185
Figley, Teresa D.; Bhullar, Navdeep; Courtney, Susan M.; Figley, Chase R.
2015-01-01
Diffusion tensor imaging (DTI) is a powerful MRI technique that can be used to estimate both the microstructural integrity and the trajectories of white matter pathways throughout the central nervous system. This fiber tracking (aka, “tractography”) approach is often carried out using anatomically-defined seed points to identify white matter tracts that pass through one or more structures, but can also be performed using functionally-defined regions of interest (ROIs) that have been determined using functional MRI (fMRI) or other methods. In this study, we performed fMRI-guided DTI tractography between all of the previously defined nodes within each of six common resting-state brain networks, including the: dorsal Default Mode Network (dDMN), ventral Default Mode Network (vDMN), left Executive Control Network (lECN), right Executive Control Network (rECN), anterior Salience Network (aSN), and posterior Salience Network (pSN). By normalizing the data from 32 healthy control subjects to a standard template—using high-dimensional, non-linear warping methods—we were able to create probabilistic white matter atlases for each tract in stereotaxic coordinates. By investigating all 198 ROI-to-ROI combinations within the aforementioned resting-state networks (for a total of 6336 independent DTI tractography analyses), the resulting probabilistic atlases represent a comprehensive cohort of functionally-defined white matter regions that can be used in future brain imaging studies to: (1) ascribe DTI or other white matter changes to particular functional brain networks, and (2) compliment resting state fMRI or other functional connectivity analyses. PMID:26578930
Finding models to detect Alzheimer's disease by fusing structural and neuropsychological information
NASA Astrophysics Data System (ADS)
Giraldo, Diana L.; García-Arteaga, Juan D.; Velasco, Nelson; Romero, Eduardo
2015-12-01
Alzheimer's disease (AD) is a neurodegenerative disease that affects higher brain functions. Initial diagnosis of AD is based on the patient's clinical history and a battery of neuropsychological tests. The accuracy of the diagnosis is highly dependent on the examiner's skills and on the evolution of a variable clinical frame. This work presents an automatic strategy that learns probabilistic brain models for different stages of the disease, reducing the complexity, parameter adjustment and computational costs. The proposed method starts by setting a probabilistic class description using the information stored in the neuropsychological test, followed by constructing the different structural class models using membership values from the learned probabilistic functions. These models are then used as a reference frame for the classification problem: a new case is assigned to a particular class simply by projecting to the different models. The validation was performed using a leave-one-out cross-validation, two classes were used: Normal Control (NC) subjects and patients diagnosed with mild AD. In this experiment it is possible to achieve a sensibility and specificity of 80% and 79% respectively.
Tate, Matthew C; Herbet, Guillaume; Moritz-Gasser, Sylvie; Tate, Joseph E; Duffau, Hugues
2014-10-01
The organization of basic functions of the human brain, particularly in the right hemisphere, remains poorly understood. Recent advances in functional neuroimaging have improved our understanding of cortical organization but do not allow for direct interrogation or determination of essential (versus participatory) cortical regions. Direct cortical stimulation represents a unique opportunity to provide novel insights into the functional distribution of critical epicentres. Direct cortical stimulation (bipolar, 60 Hz, 1-ms pulse) was performed in 165 consecutive patients undergoing awake mapping for resection of low-grade gliomas. Tasks included motor, sensory, counting, and picture naming. Stimulation sites eliciting positive (sensory/motor) or negative (speech arrest, dysarthria, anomia, phonological and semantic paraphasias) findings were recorded and mapped onto a standard Montreal Neurological Institute brain atlas. Montreal Neurological Institute-space functional data were subjected to cluster analysis algorithms (K-means, partition around medioids, hierarchical Ward) to elucidate crucial network epicentres. Sensorimotor function was observed in the pre/post-central gyri as expected. Articulation epicentres were also found within the pre/post-central gyri. However, speech arrest localized to ventral premotor cortex, not the classical Broca's area. Anomia/paraphasia data demonstrated foci not only within classical Wernicke's area but also within the middle and inferior frontal gyri. We report the first bilateral probabilistic map for crucial cortical epicentres of human brain functions in the right and left hemispheres, including sensory, motor, and language (speech, articulation, phonology and semantics). These data challenge classical theories of brain organization (e.g. Broca's area as speech output region) and provide a distributed framework for future studies of neural networks. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lee, Dong-Hoon; Lee, Do-Wan; Han, Bong-Soo
2016-04-01
The purpose of this study is to elucidate the symmetrical characteristics of corticospinal tract (CST) related with hand movement in bilateral hemispheres using probabilistic fiber tracking method. Seventeen subjects were participated in this study. Fiber tracking was performed with 2 regions of interest, hand activated functional magnetic resonance imaging (fMRI) results and pontomedullary junction in each cerebral hemisphere. Each subject's extracted fiber tract was normalized with a brain template. To measure the symmetrical distributions of the CST related with hand movement, the laterality and anteriority indices were defined in upper corona radiata (CR), lower CR, and posterior limb of internal capsule. The measured laterality and anteriority indices between the hemispheres in each different brain location showed no significant differences with P < 0.05. There were significant differences in the measured indices among 3 different brain locations in each cerebral hemisphere with P < 0.001. Our results clearly showed that the hand CST had symmetric structures in bilateral hemispheres. The probabilistic fiber tracking with fMRI approach demonstrated that the hand CST can be successfully extracted regardless of crossing fiber problem. Our analytical approaches and results seem to be helpful for providing the database of CST somatotopy to neurologists and clinical researches.
Are You Smarter Than a Teenager? Maybe Not When It Comes to Reinforcement Learning.
DiMenichi, Brynne C; Tricomi, Elizabeth
2016-10-05
Adolescence is a time of tumultuous behavior that may result, in part, from brain circuitry that enhances reward seeking. In this issue of Neuron, Davidow et al. (2016) present a convincing argument that adolescent brain functionality can be adaptive in certain contexts, particularly probabilistic learning environments. Copyright © 2016. Published by Elsevier Inc.
Jenabi, Mehrnaz; Peck, Kyung K; Young, Robert J; Brennan, Nicole; Holodny, Andrei I
2014-12-01
Accurate localization of anatomically and functionally separate SMA tracts is important to improve planning prior to neurosurgery. Using fMRI and probabilistic DTI techniques, we assessed the connectivity between the frontal language area (Broca's area) and the rostral pre-SMA (language SMA) and caudal SMA proper (motor SMA). Twenty brain tumor patients completed motor and language fMRI paradigms and DTI. Peaks of functional activity in the language SMA, motor SMA and Broca's area were used to define seed regions for probabilistic tractography. fMRI and probabilistic tractography identified separate and unique pathways connecting the SMA to Broca's area - the language SMA pathway and the motor SMA pathway. For all subjects, the language SMA pathway had a larger number of voxels (P<0.0001) and higher connectivity (P<0.0001) to Broca's area than did the motor SMA pathway. In each patient, the number of voxels was greater in the language and motor SMA pathways than in background pathways (P<0.0001). No differences were found between patients with ipsilateral and those with contralateral tumors for either the language SMA pathway (degree of connectivity: P<0.36; number of voxels: 0.35) or the motor SMA pathway (degree of connectivity, P<0.28; number of voxels, P<0.74). Probabilistic tractography can identify unique white matter tracts that connect language SMA and motor SMA to Broca's area. The language SMA is more significantly connected to Broca's area than is the motor subdivision of the SMA proper. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Assignment of functional activations to probabilistic cytoarchitectonic areas revisited.
Eickhoff, Simon B; Paus, Tomas; Caspers, Svenja; Grosbras, Marie-Helene; Evans, Alan C; Zilles, Karl; Amunts, Katrin
2007-07-01
Probabilistic cytoarchitectonic maps in standard reference space provide a powerful tool for the analysis of structure-function relationships in the human brain. While these microstructurally defined maps have already been successfully used in the analysis of somatosensory, motor or language functions, several conceptual issues in the analysis of structure-function relationships still demand further clarification. In this paper, we demonstrate the principle approaches for anatomical localisation of functional activations based on probabilistic cytoarchitectonic maps by exemplary analysis of an anterior parietal activation evoked by visual presentation of hand gestures. After consideration of the conceptual basis and implementation of volume or local maxima labelling, we comment on some potential interpretational difficulties, limitations and caveats that could be encountered. Extending and supplementing these methods, we then propose a supplementary approach for quantification of structure-function correspondences based on distribution analysis. This approach relates the cytoarchitectonic probabilities observed at a particular functionally defined location to the areal specific null distribution of probabilities across the whole brain (i.e., the full probability map). Importantly, this method avoids the need for a unique classification of voxels to a single cortical area and may increase the comparability between results obtained for different areas. Moreover, as distribution-based labelling quantifies the "central tendency" of an activation with respect to anatomical areas, it will, in combination with the established methods, allow an advanced characterisation of the anatomical substrates of functional activations. Finally, the advantages and disadvantages of the various methods are discussed, focussing on the question of which approach is most appropriate for a particular situation.
Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making.
Coulthard, Elizabeth J; Bogacz, Rafal; Javed, Shazia; Mooney, Lucy K; Murphy, Gillian; Keeley, Sophie; Whone, Alan L
2012-12-01
Even simple behaviour requires us to make decisions based on combining multiple pieces of learned and new information. Making such decisions requires both learning the optimal response to each given stimulus as well as combining probabilistic information from multiple stimuli before selecting a response. Computational theories of decision making predict that learning individual stimulus-response associations and rapid combination of information from multiple stimuli are dependent on different components of basal ganglia circuitry. In particular, learning and retention of memory, required for optimal response choice, are significantly reliant on dopamine, whereas integrating information probabilistically is critically dependent upon functioning of the glutamatergic subthalamic nucleus (computing the 'normalization term' in Bayes' theorem). Here, we test these theories by investigating 22 patients with Parkinson's disease either treated with deep brain stimulation to the subthalamic nucleus and dopaminergic therapy or managed with dopaminergic therapy alone. We use computerized tasks that probe three cognitive functions-information acquisition (learning), memory over a delay and information integration when multiple pieces of sequentially presented information have to be combined. Patients performed the tasks ON or OFF deep brain stimulation and/or ON or OFF dopaminergic therapy. Consistent with the computational theories, we show that stopping dopaminergic therapy impairs memory for probabilistic information over a delay, whereas deep brain stimulation to the region of the subthalamic nucleus disrupts decision making when multiple pieces of acquired information must be combined. Furthermore, we found that when participants needed to update their decision on the basis of the last piece of information presented in the decision-making task, patients with deep brain stimulation of the subthalamic nucleus region did not slow down appropriately to revise their plan, a pattern of behaviour that mirrors the impulsivity described clinically in some patients with subthalamic nucleus deep brain stimulation. Thus, we demonstrate distinct mechanisms for two important facets of human decision making: first, a role for dopamine in memory consolidation, and second, the critical importance of the subthalamic nucleus in successful decision making when multiple pieces of information must be combined.
Inference in the brain: Statistics flowing in redundant population codes
Pitkow, Xaq; Angelaki, Dora E
2017-01-01
It is widely believed that the brain performs approximate probabilistic inference to estimate causal variables in the world from ambiguous sensory data. To understand these computations, we need to analyze how information is represented and transformed by the actions of nonlinear recurrent neural networks. We propose that these probabilistic computations function by a message-passing algorithm operating at the level of redundant neural populations. To explain this framework, we review its underlying concepts, including graphical models, sufficient statistics, and message-passing, and then describe how these concepts could be implemented by recurrently connected probabilistic population codes. The relevant information flow in these networks will be most interpretable at the population level, particularly for redundant neural codes. We therefore outline a general approach to identify the essential features of a neural message-passing algorithm. Finally, we argue that to reveal the most important aspects of these neural computations, we must study large-scale activity patterns during moderately complex, naturalistic behaviors. PMID:28595050
Murakami, Tatsuya C; Mano, Tomoyuki; Saikawa, Shu; Horiguchi, Shuhei A; Shigeta, Daichi; Baba, Kousuke; Sekiya, Hiroshi; Shimizu, Yoshihiro; Tanaka, Kenji F; Kiyonari, Hiroshi; Iino, Masamitsu; Mochizuki, Hideki; Tainaka, Kazuki; Ueda, Hiroki R
2018-04-01
A three-dimensional single-cell-resolution mammalian brain atlas will accelerate systems-level identification and analysis of cellular circuits underlying various brain functions. However, its construction requires efficient subcellular-resolution imaging throughout the entire brain. To address this challenge, we developed a fluorescent-protein-compatible, whole-organ clearing and homogeneous expansion protocol based on an aqueous chemical solution (CUBIC-X). The expanded, well-cleared brain enabled us to construct a point-based mouse brain atlas with single-cell annotation (CUBIC-Atlas). CUBIC-Atlas reflects inhomogeneous whole-brain development, revealing a significant decrease in the cerebral visual and somatosensory cortical areas during postnatal development. Probabilistic activity mapping of pharmacologically stimulated Arc-dVenus reporter mouse brains onto CUBIC-Atlas revealed the existence of distinct functional structures in the hippocampal dentate gyrus. CUBIC-Atlas is shareable by an open-source web-based viewer, providing a new platform for whole-brain cell profiling.
Patel, Ameera X; Bullmore, Edward T
2016-11-15
Connectome mapping using techniques such as functional magnetic resonance imaging (fMRI) has become a focus of systems neuroscience. There remain many statistical challenges in analysis of functional connectivity and network architecture from BOLD fMRI multivariate time series. One key statistic for any time series is its (effective) degrees of freedom, df, which will generally be less than the number of time points (or nominal degrees of freedom, N). If we know the df, then probabilistic inference on other fMRI statistics, such as the correlation between two voxel or regional time series, is feasible. However, we currently lack good estimators of df in fMRI time series, especially after the degrees of freedom of the "raw" data have been modified substantially by denoising algorithms for head movement. Here, we used a wavelet-based method both to denoise fMRI data and to estimate the (effective) df of the denoised process. We show that seed voxel correlations corrected for locally variable df could be tested for false positive connectivity with better control over Type I error and greater specificity of anatomical mapping than probabilistic connectivity maps using the nominal degrees of freedom. We also show that wavelet despiked statistics can be used to estimate all pairwise correlations between a set of regional nodes, assign a P value to each edge, and then iteratively add edges to the graph in order of increasing P. These probabilistically thresholded graphs are likely more robust to regional variation in head movement effects than comparable graphs constructed by thresholding correlations. Finally, we show that time-windowed estimates of df can be used for probabilistic connectivity testing or dynamic network analysis so that apparent changes in the functional connectome are appropriately corrected for the effects of transient noise bursts. Wavelet despiking is both an algorithm for fMRI time series denoising and an estimator of the (effective) df of denoised fMRI time series. Accurate estimation of df offers many potential advantages for probabilistically thresholding functional connectivity and network statistics tested in the context of spatially variant and non-stationary noise. Code for wavelet despiking, seed correlational testing and probabilistic graph construction is freely available to download as part of the BrainWavelet Toolbox at www.brainwavelet.org. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Multivariate Heteroscedasticity Models for Functional Brain Connectivity.
Seiler, Christof; Holmes, Susan
2017-01-01
Functional brain connectivity is the co-occurrence of brain activity in different areas during resting and while doing tasks. The data of interest are multivariate timeseries measured simultaneously across brain parcels using resting-state fMRI (rfMRI). We analyze functional connectivity using two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the number of brain parcels. Our second model scales quadratically. We apply both models to data from the Human Connectome Project (HCP) comparing connectivity between short and conventional sleepers. We find stronger functional connectivity in short than conventional sleepers in brain areas consistent with previous findings. This might be due to subjects falling asleep in the scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide implementations using R and the probabilistic programming language Stan.
A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies
Tang, Li
2014-01-01
Summary An important goal in fMRI studies is to decompose the observed series of brain images to identify and characterize underlying brain functional networks. Independent component analysis (ICA) has been shown to be a powerful computational tool for this purpose. Classic ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a pre-specified group design matrix. Existing group ICA methods generally concatenate observed fMRI data across subjects on the temporal domain and then decompose multi-subject data in a similar manner to single-subject ICA. The major limitation of existing methods is that they ignore between-subject variability in spatial distributions of brain functional networks in group ICA. In this paper, we propose a new hierarchical probabilistic group ICA method to formally model subject-specific effects in both temporal and spatial domains when decomposing multi-subject fMRI data. The proposed method provides model-based estimation of brain functional networks at both the population and subject level. An important advantage of the hierarchical model is that it provides a formal statistical framework to investigate similarities and differences in brain functional networks across subjects, e.g., subjects with mental disorders or neurodegenerative diseases such as Parkinson’s as compared to normal subjects. We develop an EM algorithm for model estimation where both the E-step and M-step have explicit forms. We compare the performance of the proposed hierarchical model with that of two popular group ICA methods via simulation studies. We illustrate our method with application to an fMRI study of Zen meditation. PMID:24033125
A Brain Network Processing the Age of Faces
Homola, György A.; Jbabdi, Saad; Beckmann, Christian F.; Bartsch, Andreas J.
2012-01-01
Age is one of the most salient aspects in faces and of fundamental cognitive and social relevance. Although face processing has been studied extensively, brain regions responsive to age have yet to be localized. Using evocative face morphs and fMRI, we segregate two areas extending beyond the previously established face-sensitive core network, centered on the inferior temporal sulci and angular gyri bilaterally, both of which process changes of facial age. By means of probabilistic tractography, we compare their patterns of functional activation and structural connectivity. The ventral portion of Wernicke's understudied perpendicular association fasciculus is shown to interconnect the two areas, and activation within these clusters is related to the probability of fiber connectivity between them. In addition, post-hoc age-rating competence is found to be associated with high response magnitudes in the left angular gyrus. Our results provide the first evidence that facial age has a distinct representation pattern in the posterior human brain. We propose that particular face-sensitive nodes interact with additional object-unselective quantification modules to obtain individual estimates of facial age. This brain network processing the age of faces differs from the cortical areas that have previously been linked to less developmental but instantly changeable face aspects. Our probabilistic method of associating activations with connectivity patterns reveals an exemplary link that can be used to further study, assess and quantify structure-function relationships. PMID:23185334
Probabilistic brains: knowns and unknowns
Pouget, Alexandre; Beck, Jeffrey M; Ma, Wei Ji; Latham, Peter E
2015-01-01
There is strong behavioral and physiological evidence that the brain both represents probability distributions and performs probabilistic inference. Computational neuroscientists have started to shed light on how these probabilistic representations and computations might be implemented in neural circuits. One particularly appealing aspect of these theories is their generality: they can be used to model a wide range of tasks, from sensory processing to high-level cognition. To date, however, these theories have only been applied to very simple tasks. Here we discuss the challenges that will emerge as researchers start focusing their efforts on real-life computations, with a focus on probabilistic learning, structural learning and approximate inference. PMID:23955561
Rausch, Franziska; Mier, Daniela; Eifler, Sarah; Esslinger, Christine; Schilling, Claudia; Schirmbeck, Frederike; Englisch, Susanne; Meyer-Lindenberg, Andreas; Kirsch, Peter; Zink, Mathias
2014-07-01
Patients with schizophrenia suffer from deficits in monitoring and controlling their own thoughts. Within these so-called metacognitive impairments, alterations in probabilistic reasoning might be one cognitive phenomenon disposing to delusions. However, so far little is known about alterations in associated brain functionality. A previously established task for functional magnetic resonance imaging (fMRI), which requires a probabilistic decision after a variable amount of stimuli, was applied to 23 schizophrenia patients and 28 healthy controls matched for age, gender and educational levels. We compared activation patterns during decision-making under conditions of certainty versus uncertainty and evaluated the process of final decision-making in ventral striatum (VS) and ventral tegmental area (VTA). We replicated a pre-described extended cortical activation pattern during probabilistic reasoning. During final decision-making, activations in several fronto- and parietocortical areas, as well as in VS and VTA became apparent. In both of these regions schizophrenia patients showed a significantly reduced activation. These results further define the network underlying probabilistic decision-making. The observed hypo-activation in regions commonly associated with dopaminergic neurotransmission fits into current concepts of disrupted prediction error signaling in schizophrenia and suggests functional links to reward anticipation. Forthcoming studies with patients at risk for psychosis and drug-naive first episode patients are necessary to elucidate the development of these findings over time and the interplay with associated clinical symptoms. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Yue; Adalý, Tülay; Kung, Sun-Yuan; Szabo, Zsolt
2007-01-01
This paper presents a probabilistic neural network based technique for unsupervised quantification and segmentation of brain tissues from magnetic resonance images. It is shown that this problem can be solved by distribution learning and relaxation labeling, resulting in an efficient method that may be particularly useful in quantifying and segmenting abnormal brain tissues where the number of tissue types is unknown and the distributions of tissue types heavily overlap. The new technique uses suitable statistical models for both the pixel and context images and formulates the problem in terms of model-histogram fitting and global consistency labeling. The quantification is achieved by probabilistic self-organizing mixtures and the segmentation by a probabilistic constraint relaxation network. The experimental results show the efficient and robust performance of the new algorithm and that it outperforms the conventional classification based approaches. PMID:18172510
Disruption of the Right Temporoparietal Junction Impairs Probabilistic Belief Updating.
Mengotti, Paola; Dombert, Pascasie L; Fink, Gereon R; Vossel, Simone
2017-05-31
Generating and updating probabilistic models of the environment is a fundamental modus operandi of the human brain. Although crucial for various cognitive functions, the neural mechanisms of these inference processes remain to be elucidated. Here, we show the causal involvement of the right temporoparietal junction (rTPJ) in updating probabilistic beliefs and we provide new insights into the chronometry of the process by combining online transcranial magnetic stimulation (TMS) with computational modeling of behavioral responses. Female and male participants performed a modified location-cueing paradigm, where false information about the percentage of cue validity (%CV) was provided in half of the experimental blocks to prompt updating of prior expectations. Online double-pulse TMS over rTPJ 300 ms (but not 50 ms) after target appearance selectively decreased participants' updating of false prior beliefs concerning %CV, reflected in a decreased learning rate of a Rescorla-Wagner model. Online TMS over rTPJ also impacted on participants' explicit beliefs, causing them to overestimate %CV. These results confirm the involvement of rTPJ in updating of probabilistic beliefs, thereby advancing our understanding of this area's function during cognitive processing. SIGNIFICANCE STATEMENT Contemporary views propose that the brain maintains probabilistic models of the world to minimize surprise about sensory inputs. Here, we provide evidence that the right temporoparietal junction (rTPJ) is causally involved in this process. Because neuroimaging has suggested that rTPJ is implicated in divergent cognitive domains, the demonstration of an involvement in updating internal models provides a novel unifying explanation for these findings. We used computational modeling to characterize how participants change their beliefs after new observations. By interfering with rTPJ activity through online transcranial magnetic stimulation, we showed that participants were less able to update prior beliefs with TMS delivered at 300 ms after target onset. Copyright © 2017 the authors 0270-6474/17/375419-10$15.00/0.
A Probabilistic Atlas of Diffuse WHO Grade II Glioma Locations in the Brain
Baumann, Cédric; Zouaoui, Sonia; Yordanova, Yordanka; Blonski, Marie; Rigau, Valérie; Chemouny, Stéphane; Taillandier, Luc; Bauchet, Luc; Duffau, Hugues; Paragios, Nikos
2016-01-01
Diffuse WHO grade II gliomas are diffusively infiltrative brain tumors characterized by an unavoidable anaplastic transformation. Their management is strongly dependent on their location in the brain due to interactions with functional regions and potential differences in molecular biology. In this paper, we present the construction of a probabilistic atlas mapping the preferential locations of diffuse WHO grade II gliomas in the brain. This is carried out through a sparse graph whose nodes correspond to clusters of tumors clustered together based on their spatial proximity. The interest of such an atlas is illustrated via two applications. The first one correlates tumor location with the patient’s age via a statistical analysis, highlighting the interest of the atlas for studying the origins and behavior of the tumors. The second exploits the fact that the tumors have preferential locations for automatic segmentation. Through a coupled decomposed Markov Random Field model, the atlas guides the segmentation process, and characterizes which preferential location the tumor belongs to and consequently which behavior it could be associated to. Leave-one-out cross validation experiments on a large database highlight the robustness of the graph, and yield promising segmentation results. PMID:26751577
Functional brain networks for learning predictive statistics.
Giorgio, Joseph; Karlaftis, Vasilis M; Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew; Kourtzi, Zoe
2017-08-18
Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. This skill relies on extracting regular patterns in space and time by mere exposure to the environment (i.e., without explicit feedback). Yet, we know little about the functional brain networks that mediate this type of statistical learning. Here, we test whether changes in the processing and connectivity of functional brain networks due to training relate to our ability to learn temporal regularities. By combining behavioral training and functional brain connectivity analysis, we demonstrate that individuals adapt to the environment's statistics as they change over time from simple repetition to probabilistic combinations. Further, we show that individual learning of temporal structures relates to decision strategy. Our fMRI results demonstrate that learning-dependent changes in fMRI activation within and functional connectivity between brain networks relate to individual variability in strategy. In particular, extracting the exact sequence statistics (i.e., matching) relates to changes in brain networks known to be involved in memory and stimulus-response associations, while selecting the most probable outcomes in a given context (i.e., maximizing) relates to changes in frontal and striatal networks. Thus, our findings provide evidence that dissociable brain networks mediate individual ability in learning behaviorally-relevant statistics. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Large-scale automated histology in the pursuit of connectomes.
Kleinfeld, David; Bharioke, Arjun; Blinder, Pablo; Bock, Davi D; Briggman, Kevin L; Chklovskii, Dmitri B; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P; Lee, Wei-Chung Allen; Meyer, Hanno S; Micheva, Kristina D; Oberlaender, Marcel; Prohaska, Steffen; Reid, R Clay; Smith, Stephen J; Takemura, Shinya; Tsai, Philbert S; Sakmann, Bert
2011-11-09
How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity.
Large-Scale Automated Histology in the Pursuit of Connectomes
Bharioke, Arjun; Blinder, Pablo; Bock, Davi D.; Briggman, Kevin L.; Chklovskii, Dmitri B.; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P.; Lee, Wei-Chung Allen; Meyer, Hanno S.; Micheva, Kristina D.; Oberlaender, Marcel; Prohaska, Steffen; Reid, R. Clay; Smith, Stephen J.; Takemura, Shinya; Tsai, Philbert S.; Sakmann, Bert
2011-01-01
How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity. PMID:22072665
Yin, Dazhi; Liu, Wenjing; Zeljic, Kristina; Wang, Zhiwei; Lv, Qian; Fan, Mingxia; Cheng, Wenhong; Wang, Zheng
2016-09-28
Extensive evidence suggests that frontoparietal regions can dynamically update their pattern of functional connectivity, supporting cognitive control and adaptive implementation of task demands. However, it is largely unknown whether this flexibly functional reconfiguration is intrinsic and occurs even in the absence of overt tasks. Based on recent advances in dynamics of resting-state functional resonance imaging (fMRI), we propose a probabilistic framework in which dynamic reconfiguration of intrinsic functional connectivity between each brain region and others can be represented as a probability distribution. A complexity measurement (i.e., entropy) was used to quantify functional flexibility, which characterizes heterogeneous connectivity between a particular region and others over time. Following this framework, we identified both functionally flexible and specialized regions over the human life span (112 healthy subjects from 13 to 76 years old). Across brainwide regions, we found regions showing high flexibility mainly in the higher-order association cortex, such as the lateral prefrontal cortex (LPFC), lateral parietal cortex, and lateral temporal lobules. In contrast, visual, auditory, and sensory areas exhibited low flexibility. Furthermore, we observed that flexibility of the right LPFC improved during maturation and reduced due to normal aging, with the opposite occurring for the left lateral parietal cortex. Our findings reveal dissociable changes of frontal and parietal cortices over the life span in terms of inherent functional flexibility. This study not only provides a new framework to quantify the spatiotemporal behavior of spontaneous brain activity, but also sheds light on the organizational principle behind changes in brain function across the human life span. Recent neuroscientific research has demonstrated that the human capability of adaptive task control is primarily the result of the flexible operation of frontal brain networks. However, it remains unclear whether this flexibly functional reconfiguration is intrinsic and occurs in the absence of an overt task. In this study, we propose a probabilistic framework to quantify the functional flexibility of each brain region using resting-state fMRI. We identify regions showing high flexibility mainly in the higher-order association cortex. In contrast, primary and unimodal visual and sensory areas show low flexibility. On the other hand, our findings reveal dissociable changes of frontal and parietal cortices in terms of inherent functional flexibility over the life span. Copyright © 2016 the authors 0270-6474/16/3610060-15$15.00/0.
Probabilistic Learning by Rodent Grid Cells
Cheung, Allen
2016-01-01
Mounting evidence shows mammalian brains are probabilistic computers, but the specific cells involved remain elusive. Parallel research suggests that grid cells of the mammalian hippocampal formation are fundamental to spatial cognition but their diverse response properties still defy explanation. No plausible model exists which explains stable grids in darkness for twenty minutes or longer, despite being one of the first results ever published on grid cells. Similarly, no current explanation can tie together grid fragmentation and grid rescaling, which show very different forms of flexibility in grid responses when the environment is varied. Other properties such as attractor dynamics and grid anisotropy seem to be at odds with one another unless additional properties are assumed such as a varying velocity gain. Modelling efforts have largely ignored the breadth of response patterns, while also failing to account for the disastrous effects of sensory noise during spatial learning and recall, especially in darkness. Here, published electrophysiological evidence from a range of experiments are reinterpreted using a novel probabilistic learning model, which shows that grid cell responses are accurately predicted by a probabilistic learning process. Diverse response properties of probabilistic grid cells are statistically indistinguishable from rat grid cells across key manipulations. A simple coherent set of probabilistic computations explains stable grid fields in darkness, partial grid rescaling in resized arenas, low-dimensional attractor grid cell dynamics, and grid fragmentation in hairpin mazes. The same computations also reconcile oscillatory dynamics at the single cell level with attractor dynamics at the cell ensemble level. Additionally, a clear functional role for boundary cells is proposed for spatial learning. These findings provide a parsimonious and unified explanation of grid cell function, and implicate grid cells as an accessible neuronal population readout of a set of probabilistic spatial computations. PMID:27792723
Probabilistic Orthographic Cues to Grammatical Category in the Brain
ERIC Educational Resources Information Center
Arciuli, Joanne; McMahon, Katie; de Zubicaray, Greig
2012-01-01
What helps us determine whether a word is a noun or a verb, without conscious awareness? We report on cues in the way individual English words are spelled, and, for the first time, identify their neural correlates via functional magnetic resonance imaging (fMRI). We used a lexical decision task with trisyllabic nouns and verbs containing…
Li, Zhixi; Peck, Kyung K.; Brennan, Nicole P.; Jenabi, Mehrnaz; Hsu, Meier; Zhang, Zhigang; Holodny, Andrei I.; Young, Robert J.
2014-01-01
Purpose The purpose of this study was to compare the deterministic and probabilistic tracking methods of diffusion tensor white matter fiber tractography in patients with brain tumors. Materials and Methods We identified 29 patients with left brain tumors <2 cm from the arcuate fasciculus who underwent pre-operative language fMRI and DTI. The arcuate fasciculus was reconstructed using a deterministic Fiber Assignment by Continuous Tracking (FACT) algorithm and a probabilistic method based on an extended Monte Carlo Random Walk algorithm. Tracking was controlled using two ROIs corresponding to Broca’s and Wernicke’s areas. Tracts in tumoraffected hemispheres were examined for extension between Broca’s and Wernicke’s areas, anterior-posterior length and volume, and compared with the normal contralateral tracts. Results Probabilistic tracts displayed more complete anterior extension to Broca’s area than did FACT tracts on the tumor-affected and normal sides (p < 0.0001). The median length ratio for tumor: normal sides was greater for probabilistic tracts than FACT tracts (p < 0.0001). The median tract volume ratio for tumor: normal sides was also greater for probabilistic tracts than FACT tracts (p = 0.01). Conclusion Probabilistic tractography reconstructs the arcuate fasciculus more completely and performs better through areas of tumor and/or edema. The FACT algorithm tends to underestimate the anterior-most fibers of the arcuate fasciculus, which are crossed by primary motor fibers. PMID:25328583
Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.
Anbeek, Petronella; Vincken, Koen L; Groenendaal, Floris; Koeman, Annemieke; van Osch, Matthias J P; van der Grond, Jeroen
2008-02-01
A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and inversion recovery (IR) scans. The method uses a K nearest neighbor (KNN) classification technique with features derived from spatial information and voxel intensities. Probabilistic segmentations of each tissue type were generated. By applying thresholds on these probability maps, binary segmentations were obtained. These final segmentations were evaluated by comparison with a gold standard. The sensitivity, specificity, and Dice similarity index (SI) were calculated for quantitative validation of the results. High sensitivity and specificity with respect to the gold standard were reached: sensitivity >0.82 and specificity >0.9 for all tissue types. Tissue volumes were calculated from the binary and probabilistic segmentations. The probabilistic segmentation volumes of all tissue types accurately estimated the gold standard volumes. The KNN approach offers valuable ways for neonatal brain segmentation. The probabilistic outcomes provide a useful tool for accurate volume measurements. The described method is based on routine diagnostic magnetic resonance imaging (MRI) and is suitable for large population studies.
Zhen, Zonglei; Yang, Zetian; Huang, Lijie; Kong, Xiang-Zhen; Wang, Xu; Dang, Xiaobin; Huang, Yangyue; Song, Yiying; Liu, Jia
2015-06-01
Face-selective regions (FSRs) are among the most widely studied functional regions in the human brain. However, individual variability of the FSRs has not been well quantified. Here we use functional magnetic resonance imaging (fMRI) to localize the FSRs and quantify their spatial and functional variabilities in 202 healthy adults. The occipital face area (OFA), posterior and anterior fusiform face areas (pFFA and aFFA), posterior continuation of the superior temporal sulcus (pcSTS), and posterior and anterior STS (pSTS and aSTS) were delineated for each individual with a semi-automated procedure. A probabilistic atlas was constructed to characterize their interindividual variability, revealing that the FSRs were highly variable in location and extent across subjects. The variability of FSRs was further quantified on both functional (i.e., face selectivity) and spatial (i.e., volume, location of peak activation, and anatomical location) features. Considerable interindividual variability and rightward asymmetry were found in all FSRs on these features. Taken together, our work presents the first effort to characterize comprehensively the variability of FSRs in a large sample of healthy subjects, and invites future work on the origin of the variability and its relation to individual differences in behavioral performance. Moreover, the probabilistic functional atlas will provide an adequate spatial reference for mapping the face network. Copyright © 2015 Elsevier Inc. All rights reserved.
Beer, Anton L.; Plank, Tina; Meyer, Georg; Greenlee, Mark W.
2013-01-01
Functional magnetic resonance imaging (MRI) showed that the superior temporal and occipital cortex are involved in multisensory integration. Probabilistic fiber tracking based on diffusion-weighted MRI suggests that multisensory processing is supported by white matter connections between auditory cortex and the temporal and occipital lobe. Here, we present a combined functional MRI and probabilistic fiber tracking study that reveals multisensory processing mechanisms that remained undetected by either technique alone. Ten healthy participants passively observed visually presented lip or body movements, heard speech or body action sounds, or were exposed to a combination of both. Bimodal stimulation engaged a temporal-occipital brain network including the multisensory superior temporal sulcus (msSTS), the lateral superior temporal gyrus (lSTG), and the extrastriate body area (EBA). A region-of-interest (ROI) analysis showed multisensory interactions (e.g., subadditive responses to bimodal compared to unimodal stimuli) in the msSTS, the lSTG, and the EBA region. Moreover, sounds elicited responses in the medial occipital cortex. Probabilistic tracking revealed white matter tracts between the auditory cortex and the medial occipital cortex, the inferior occipital cortex (IOC), and the superior temporal sulcus (STS). However, STS terminations of auditory cortex tracts showed limited overlap with the msSTS region. Instead, msSTS was connected to primary sensory regions via intermediate nodes in the temporal and occipital cortex. Similarly, the lSTG and EBA regions showed limited direct white matter connections but instead were connected via intermediate nodes. Our results suggest that multisensory processing in the STS is mediated by separate brain areas that form a distinct network in the lateral temporal and inferior occipital cortex. PMID:23407860
Hömke, Lars; Amunts, Katrin; Bönig, Lutz; Fretz, Christian; Binkofski, Ferdinand; Zilles, Karl; Weder, Bruno
2009-05-01
We propose a novel methodical approach to lesion analyses involving high-resolution MR images in combination with probabilistic cytoarchitectonic maps. 3D-MR images of the whole brain and the manually segmented lesion mask are spatially normalized to the reference brain of a stereotaxic probabilistic cytoarchitectonic atlas using a multiscale registration algorithm based on an elastic model. The procedure is demonstrated in three patients suffering from aperceptive tactile agnosia of the right hand due to chronic infarction of the left parietal cortex. Patient 1 presents a lesion in areas of the postcentral sulcus, Patient 3 in areas of the superior parietal lobule and adjacent intraparietal sulcus, and Patient 2 lesions in both regions. On the basis of neurobehavioral data, we conjectured degradation of sequential elementary sensory information processing within the postcentral gyrus, impeding texture recognition in Patients 1 and 2, and disturbed kinaesthetic information processing in the posterior parietal lobe, causing degraded shape recognition in the patients 2 and 3. The involvement of Brodmann areas 4a, 4p, 3a, 3b, 1, 2, and areas IP1 and IP2 of the intraparietal sulcus was assessed in terms of the voxel overlap between the spatially transformed lesion masks and the 50%-isocontours of the cytoarchitectonic maps. The disruption of the critical cytoarchitectonic areas and the impaired subfunctions, texture and shape recognition, relate as conjectured above. We conclude that the proposed method represents a promising approach to hypothesis-driven lesion analyses, yielding lesion-function correlates based on a cytoarchitectonic model. Finally, the lesion-function correlates are validated by functional imaging reference data. (c) 2008 Wiley-Liss, Inc.
James, Anthony; Hough, Morgan; James, Susan; Burge, Linda; Winmill, Louise; Nijhawan, Sunita; Matthews, Paul M; Zarei, Mojtaba
2011-02-01
To identify neuropsychological and structural brain changes using a combination of high-resolution structural and diffusion tensor imaging in pediatric bipolar disorder (PBD) with psychosis (presence of delusions and or hallucinations). We recruited 15 patients and 20 euthymic age- and gender-matched healthy controls. All subjects underwent high-resolution structural and diffusion tensor imaging. Voxel-based morphometry (VBM), tract-based spatial statistics (TBSS), and probabilistic tractography were used to analyse magnetic resonance imaging data. The PBD subjects had normal overall intelligence with specific impairments in working memory, executive function, language function, and verbal memory. Reduced gray matter (GM) density was found in the left orbitofrontal cortex, left pars triangularis, right premotor cortex, occipital cortex, right occipital fusiform gyrus, and right crus of the cerebellum. TBSS analysis showed reduced fractional anisotropy (FA) in the anterior corpus callosum. Probabilistic tractography from this cluster showed that this region of the corpus callosum is connected with the prefrontal cortices, including those regions whose density is decreased in PBD. In addition, FA change was correlated with verbal memory and working memory, while more widespread reductions in GM density correlated with working memory, executive function, language function, and verbal memory. The findings suggest widespread cortical changes as well as specific involvement of interhemispheric prefrontal tracts in PBD, which may reflect delayed myelination in these tracts. © 2011 John Wiley and Sons A/S.
Başar, Erol; Güntekin, Bahar
2007-04-01
The Cartesian System is a fundamental conceptual and analytical framework related and interwoven with the concept and applications of Newtonian Dynamics. In order to analyze quantum processes physicist moved to a Probabilistic Cartesian System in which the causality principle became a probabilistic one. This means the trajectories of particles (obeying quantum rules) can be described only with the concept of cloudy wave packets. The approach to the brain-body-mind problem requires more than the prerequisite of modern physics and quantum dynamics. In the analysis of the brain-body-mind construct we have to include uncertain causalities and consequently multiple uncertain causalities. These multiple causalities originate from (1) nonlinear properties of the vegetative system (e.g. irregularities in biochemical transmitters, cardiac output, turbulences in the vascular system, respiratory apnea, nonlinear oscillatory interactions in peristalsis); (2) nonlinear behavior of the neuronal electricity (e.g. chaotic behavior measured by EEG), (3) genetic modulations, and (4) additional to these physiological entities nonlinear properties of physical processes in the body. The brain shows deterministic chaos with a correlation dimension of approx. D(2)=6, the smooth muscles approx. D(2)=3. According to these facts we propose a hyper-probabilistic approach or a hyper-probabilistic Cartesian System to describe and analyze the processes in the brain-body-mind system. If we add aspects as our sentiments, emotions and creativity to this construct, better said to this already hyper-probabilistic construct, this "New Cartesian System" is more than hyper-probabilistic, it is a nebulous system, we can predict the future only in a nebulous way; however, despite this chain of reasoning we can still provide predictions on brain-body-mind incorporations. We tentatively assume that the processes or mechanisms of the brain-body-mind system can be analyzed and predicted similar to the metaphor of "finding the walking path in a cloudy or foggy day". This is meant by stating "The Nebulous Cartesian System" (NCS). Descartes, at his time undertaking his genius step, did not possess the knowledge of today's physiology and modern physics; we think that the time has come to consider such a New Cartesian System. To deal with this, we propose the utilization of the Heisenberg S-Matrix and a modified version of the Feynman Diagrams which we call "Brain Feynman Diagrams". Another metaphor to consider within the oscillatory approach of the NCS is the "string theory". We also emphasize that fundamental steps should be undertaken in order to create the own dynamical framework of the brain-body-mind incorporation; suggestions or metaphors from physics and mathematics are useful; however, the grammar of the brains intrinsic language must be understood with the help of a new biologically founded, adaptive-probabilistic Cartesian system. This new Cartesian System will undergo mutations and transcend to the philosophy of Henri Bergson in parallel to the Evolution theory of Charles Darwin to open gateways for approaching the brain-body-mind problem.
EEG functional connectivity is partially predicted by underlying white matter connectivity
Chu, CJ; Tanaka, N; Diaz, J; Edlow, BL; Wu, O; Hämäläinen, M; Stufflebeam, S; Cash, SS; Kramer, MA.
2015-01-01
Over the past decade, networks have become a leading model to illustrate both the anatomical relationships (structural networks) and the coupling of dynamic physiology (functional networks) linking separate brain regions. The relationship between these two levels of description remains incompletely understood and an area of intense research interest. In particular, it is unclear how cortical currents relate to underlying brain structural architecture. In addition, although theory suggests that brain communication is highly frequency dependent, how structural connections influence overlying functional connectivity in different frequency bands has not been previously explored. Here we relate functional networks inferred from statistical associations between source imaging of EEG activity and underlying cortico-cortical structural brain connectivity determined by probabilistic white matter tractography. We evaluate spontaneous fluctuating cortical brain activity over a long time scale (minutes) and relate inferred functional networks to underlying structural connectivity for broadband signals, as well as in seven distinct frequency bands. We find that cortical networks derived from source EEG estimates partially reflect both direct and indirect underlying white matter connectivity in all frequency bands evaluated. In addition, we find that when structural support is absent, functional connectivity is significantly reduced for high frequency bands compared to low frequency bands. The association between cortical currents and underlying white matter connectivity highlights the obligatory interdependence of functional and structural networks in the human brain. The increased dependence on structural support for the coupling of higher frequency brain rhythms provides new evidence for how underlying anatomy directly shapes emergent brain dynamics at fast time scales. PMID:25534110
Foundational perspectives on causality in large-scale brain networks
NASA Astrophysics Data System (ADS)
Mannino, Michael; Bressler, Steven L.
2015-12-01
A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical likelihood that a change in the activity of one neuronal population affects the activity in another. We argue that these measures access the inherently probabilistic nature of causal influences in the brain, and are thus better suited for large-scale brain network analysis than are DC-based measures. Our work is consistent with recent advances in the philosophical study of probabilistic causality, which originated from inherent conceptual problems with deterministic regularity theories. It also resonates with concepts of stochasticity that were involved in establishing modern physics. In summary, we argue that probabilistic causality is a conceptually appropriate foundation for describing neural causality in the brain.
Foundational perspectives on causality in large-scale brain networks.
Mannino, Michael; Bressler, Steven L
2015-12-01
A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical likelihood that a change in the activity of one neuronal population affects the activity in another. We argue that these measures access the inherently probabilistic nature of causal influences in the brain, and are thus better suited for large-scale brain network analysis than are DC-based measures. Our work is consistent with recent advances in the philosophical study of probabilistic causality, which originated from inherent conceptual problems with deterministic regularity theories. It also resonates with concepts of stochasticity that were involved in establishing modern physics. In summary, we argue that probabilistic causality is a conceptually appropriate foundation for describing neural causality in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.
Owen, S L F; Heath, J; Kringelbach, M L; Stein, J F; Aziz, T Z
2007-10-01
This study aimed to find out whether preoperative diffusion tensor imaging (DTI) and probabilistic tractography could help with surgical planning for deep brain stimulation in the periaqueductal/periventricular grey area (PAG/PVG) in a patient with lower leg stump pain. A preoperative DTI was obtained from the patient, who then received DBS surgery in the PAG/PVG area with good pain relief. The postoperative MRI scan showing electrode placement was used to calculate four seed areas to represent the contacts on the Medtronic 3387 electrode. Probabilistic tractography was then performed from the pre-operative DTI image. Tracts were seen to connect to many areas within the pain network from the four different contacts. These initial findings suggest that preoperative DTI scanning and probabilistic tractography may be able to assist surgical planning in the future.
Kim, Jae-Hun; Lee, Jong-Min; Jo, Hang Joon; Kim, Sook Hui; Lee, Jung Hee; Kim, Sung Tae; Seo, Sang Won; Cox, Robert W; Na, Duk L; Kim, Sun I; Saad, Ziad S
2010-02-01
Noninvasive parcellation of the human cerebral cortex is an important goal for understanding and examining brain functions. Recently, the patterns of anatomical connections using diffusion tensor imaging (DTI) have been used to parcellate brain regions. Here, we present a noninvasive parcellation approach that uses "functional fingerprints" obtained by correlation measures on resting state functional magnetic resonance imaging (fMRI) data to parcellate brain regions. In other terms, brain regions are parcellated based on the similarity of their connection--as reflected by correlation during resting state--to the whole brain. The proposed method was used to parcellate the medial frontal cortex (MFC) into supplementary motor areas (SMA) and pre-SMA subregions. In agreement with anatomical landmark-based parcellation, we find that functional fingerprint clustering of the MFC results in anterior and posterior clusters. The probabilistic maps from 12 subjects showed that the anterior cluster is mainly located rostral to the vertical commissure anterior (VCA) line, whereas the posterior cluster is mainly located caudal to VCA line, suggesting the homologues of pre-SMA and SMA. The functional connections from the putative pre-SMA cluster were connected to brain regions which are responsible for complex/cognitive motor control, whereas those from the putative SMA cluster were connected to brain regions which are related to the simple motor control. These findings demonstrate the feasibility of the functional connectivity-based parcellation of the human cerebral cortex using resting state fMRI. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Wada, Akihiko; Shizukuishi, Takashi; Kikuta, Junko; Yamada, Haruyasu; Watanabe, Yusuke; Imamura, Yoshiki; Shinozaki, Takahiro; Dezawa, Ko; Haradome, Hiroki; Abe, Osamu
2017-05-01
Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome featuring idiopathic oral pain and burning discomfort despite clinically normal oral mucosa. The etiology of chronic pain syndrome is unclear, but preliminary neuroimaging research has suggested the alteration of volume, metabolism, blood flow, and diffusion at multiple brain regions. According to the neuromatrix theory of Melzack, pain sense is generated in the brain by the network of multiple pain-related brain regions. Therefore, the alteration of pain-related network is also assumed as an etiology of chronic pain. In this study, we investigated the brain network of BMS brain by using probabilistic tractography and graph analysis. Fourteen BMS patients and 14 age-matched healthy controls underwent 1.5T MRI. Structural connectivity was calculated in 83 anatomically defined regions with probabilistic tractography of 60-axis diffusion tensor imaging and 3D T1-weighted imaging. Graph theory network analysis was used to evaluate the brain network at local and global connectivity. In BMS brain, a significant difference of local brain connectivity was recognized at the bilateral rostral anterior cingulate cortex, right medial orbitofrontal cortex, and left pars orbitalis which belong to the medial pain system; however, no significant difference was recognized at the lateral system including the somatic sensory cortex. A strengthened connection of the anterior cingulate cortex and medial prefrontal cortex with the basal ganglia, thalamus, and brain stem was revealed. Structural brain network analysis revealed the alteration of the medial system of the pain-related brain network in chronic pain syndrome.
Menze, Bjoern H.; Van Leemput, Koen; Lashkari, Danial; Riklin-Raviv, Tammy; Geremia, Ezequiel; Alberts, Esther; Gruber, Philipp; Wegener, Susanne; Weber, Marc-André; Székely, Gabor; Ayache, Nicholas; Golland, Polina
2016-01-01
We introduce a generative probabilistic model for segmentation of brain lesions in multi-dimensional images that generalizes the EM segmenter, a common approach for modelling brain images using Gaussian mixtures and a probabilistic tissue atlas that employs expectation-maximization (EM) to estimate the label map for a new image. Our model augments the probabilistic atlas of the healthy tissues with a latent atlas of the lesion. We derive an estimation algorithm with closed-form EM update equations. The method extracts a latent atlas prior distribution and the lesion posterior distributions jointly from the image data. It delineates lesion areas individually in each channel, allowing for differences in lesion appearance across modalities, an important feature of many brain tumor imaging sequences. We also propose discriminative model extensions to map the output of the generative model to arbitrary labels with semantic and biological meaning, such as “tumor core” or “fluid-filled structure”, but without a one-to-one correspondence to the hypo-or hyper-intense lesion areas identified by the generative model. We test the approach in two image sets: the publicly available BRATS set of glioma patient scans, and multimodal brain images of patients with acute and subacute ischemic stroke. We find the generative model that has been designed for tumor lesions to generalize well to stroke images, and the generative-discriminative model to be one of the top ranking methods in the BRATS evaluation. PMID:26599702
Menze, Bjoern H; Van Leemput, Koen; Lashkari, Danial; Riklin-Raviv, Tammy; Geremia, Ezequiel; Alberts, Esther; Gruber, Philipp; Wegener, Susanne; Weber, Marc-Andre; Szekely, Gabor; Ayache, Nicholas; Golland, Polina
2016-04-01
We introduce a generative probabilistic model for segmentation of brain lesions in multi-dimensional images that generalizes the EM segmenter, a common approach for modelling brain images using Gaussian mixtures and a probabilistic tissue atlas that employs expectation-maximization (EM), to estimate the label map for a new image. Our model augments the probabilistic atlas of the healthy tissues with a latent atlas of the lesion. We derive an estimation algorithm with closed-form EM update equations. The method extracts a latent atlas prior distribution and the lesion posterior distributions jointly from the image data. It delineates lesion areas individually in each channel, allowing for differences in lesion appearance across modalities, an important feature of many brain tumor imaging sequences. We also propose discriminative model extensions to map the output of the generative model to arbitrary labels with semantic and biological meaning, such as "tumor core" or "fluid-filled structure", but without a one-to-one correspondence to the hypo- or hyper-intense lesion areas identified by the generative model. We test the approach in two image sets: the publicly available BRATS set of glioma patient scans, and multimodal brain images of patients with acute and subacute ischemic stroke. We find the generative model that has been designed for tumor lesions to generalize well to stroke images, and the extended discriminative -discriminative model to be one of the top ranking methods in the BRATS evaluation.
Kindler, Jochen; Weickert, Cynthia Shannon; Skilleter, Ashley J; Catts, Stanley V; Lenroot, Rhoshel; Weickert, Thomas W
2015-01-01
People with schizophrenia show probabilistic association learning impairment in conjunction with abnormal neural activity. The selective estrogen receptor modulator (SERM) raloxifene preserves neural activity during memory in healthy older men and improves memory in schizophrenia. Here, we tested the extent to which raloxifene modifies neural activity during learning in schizophrenia. Nineteen people with schizophrenia participated in a twelve-week randomized, double-blind, placebo-controlled, cross-over adjunctive treatment trial of the SERM raloxifene administered orally at 120 mg daily to assess brain activity during probabilistic association learning using functional magnetic resonance imaging (fMRI). Raloxifene improved probabilistic association learning and significantly increased fMRI BOLD activity in the hippocampus and parahippocampal gyrus relative to placebo. A separate region of interest confirmatory analysis in 21 patients vs 36 healthy controls showed a positive association between parahippocampal neural activity and learning in patients, but no such relationship in the parahippocampal gyrus of healthy controls. Thus, selective estrogen receptor modulation by raloxifene concurrently increases activity in the parahippocampal gyrus and improves probabilistic association learning in schizophrenia. These results support a role for estrogen receptor modulation of mesial temporal lobe neural activity in the remediation of learning disabilities in both men and women with schizophrenia. PMID:25829142
Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons
NASA Astrophysics Data System (ADS)
Sengupta, Abhronil; Panda, Priyadarshini; Wijesinghe, Parami; Kim, Yusung; Roy, Kaushik
2016-07-01
Brain-inspired computing architectures attempt to mimic the computations performed in the neurons and the synapses in the human brain in order to achieve its efficiency in learning and cognitive tasks. In this work, we demonstrate the mapping of the probabilistic spiking nature of pyramidal neurons in the cortex to the stochastic switching behavior of a Magnetic Tunnel Junction in presence of thermal noise. We present results to illustrate the efficiency of neuromorphic systems based on such probabilistic neurons for pattern recognition tasks in presence of lateral inhibition and homeostasis. Such stochastic MTJ neurons can also potentially provide a direct mapping to the probabilistic computing elements in Belief Networks for performing regenerative tasks.
Testosterone affects language areas of the adult human brain.
Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert
2016-05-01
Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high-dose hormone application in adult female-to-male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel-based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting-state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone-dependent neuroplastic adaptations in adulthood within language-specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738-1748, 2016. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Cao, Qingjiu; Shu, Ni; An, Li; Wang, Peng; Sun, Li; Xia, Ming-Rui; Wang, Jin-Hui; Gong, Gao-Lang; Zang, Yu-Feng; Wang, Yu-Feng; He, Yong
2013-06-26
Attention-deficit/hyperactivity disorder (ADHD), which is characterized by core symptoms of inattention and hyperactivity/impulsivity, is one of the most common neurodevelopmental disorders of childhood. Neuroimaging studies have suggested that these behavioral disturbances are associated with abnormal functional connectivity among brain regions. However, the alterations in the structural connections that underlie these behavioral and functional deficits remain poorly understood. Here, we used diffusion magnetic resonance imaging and probabilistic tractography method to examine whole-brain white matter (WM) structural connectivity in 30 drug-naive boys with ADHD and 30 healthy controls. The WM networks of the human brain were constructed by estimating inter-regional connectivity probability. The topological properties of the resultant networks (e.g., small-world and network efficiency) were then analyzed using graph theoretical approaches. Nonparametric permutation tests were applied for between-group comparisons of these graphic metrics. We found that both the ADHD and control groups showed an efficient small-world organization in the whole-brain WM networks, suggesting a balance between structurally segregated and integrated connectivity patterns. However, relative to controls, patients with ADHD exhibited decreased global efficiency and increased shortest path length, with the most pronounced efficiency decreases in the left parietal, frontal, and occipital cortices. Intriguingly, the ADHD group showed decreased structural connectivity in the prefrontal-dominant circuitry and increased connectivity in the orbitofrontal-striatal circuitry, and these changes significantly correlated with the inattention and hyperactivity/impulsivity symptoms, respectively. The present study shows disrupted topological organization of large-scale WM networks in ADHD, extending our understanding of how structural disruptions of neuronal circuits underlie behavioral disturbances in patients with ADHD.
Brain function during probabilistic learning in relation to IQ and level of education.
van den Bos, Wouter; Crone, Eveline A; Güroğlu, Berna
2012-02-15
Knowing how to adapt your behavior based on feedback lies at the core of successful learning. We investigated the relation between brain function, grey matter volume, educational level and IQ in a Dutch adolescent sample. In total 45 healthy volunteers between ages 13 and 16 were recruited from schools for pre-vocational and pre-university education. For each individual, IQ was estimated using two subtests from the WISC-III-R (similarities and block design). While in the magnetic resonance imaging (MRI) scanner, participants performed a probabilistic learning task. Behavioral comparisons showed that participants with higher IQ used a more adaptive learning strategy after receiving positive feedback. Analysis of neural activation revealed that higher IQ was associated with increased activation in DLPFC and dACC when receiving positive feedback, specifically for rules with low reward probability (i.e., unexpected positive feedback). Furthermore, VBM analyses revealed that IQ correlated positively with grey matter volume within these regions. These results provide support for IQ-related individual differences in the developmental time courses of neural circuitry supporting feedback-based learning. Current findings are interpreted in terms of a prolonged window of flexibility and opportunity for adolescents with higher IQ scores. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hatfield, Fraser N.; Dehmeshki, Jamshid
1998-09-01
Neurosurgery is an extremely specialized area of medical practice, requiring many years of training. It has been suggested that virtual reality models of the complex structures within the brain may aid in the training of neurosurgeons as well as playing an important role in the preparation for surgery. This paper focuses on the application of a probabilistic neural network to the automatic segmentation of the ventricles from magnetic resonance images of the brain, and their three dimensional visualization.
Lin, Xiao; Zhou, Hongli; Dong, Guangheng; Du, Xiaoxia
2015-01-02
This study examined how Internet gaming disorder (IGD) subjects modulating reward and risk at a neural level under a probability-discounting task with functional magnetic resonance imaging (fMRI). Behavioral and imaging data were collected from 19 IGD subjects (22.2 ± 3.08 years) and 21 healthy controls (HC, 22.8 ± 3.5 years). Behavior results showed that IGD subjects prefer the probabilistic options to fixed ones and were associated with shorter reaction time, when comparing to HC. The fMRI results revealed that IGD subjects show decreased activation in the inferior frontal gyrus and the precentral gyrus when choosing the probabilistic options than HC. Correlations were also calculated between behavioral performances and brain activities in relevant brain regions. Both of the behavioral performance and fMRI results indicate that people with IGD show impaired risk evaluation, which might be the reason why IGD subjects continue playing online games despite the risks of widely known negative consequence. Copyright © 2014 Elsevier Inc. All rights reserved.
Xu, Man; Tan, Xiangliang; Zhang, Xinyuan; Guo, Yihao; Mei, Yingjie; Feng, Qianjin; Xu, Yikai; Feng, Yanqiu
2017-01-01
Systemic lupus erythematosus (SLE) is a chronic inflammatory female-predominant autoimmune disease that can affect the central nervous system and exhibit neuropsychiatric symptoms. In SLE patients without neuropsychiatric symptoms (non-NPSLE), recent diffusion tensor imaging studies showed white matter abnormalities in their brains. The present study investigated the entire brain white matter structural connectivity in non-NPSLE patients by using probabilistic tractography and connectivity-based analyses. Whole-brain structural networks of 29 non-NPSLE patients and 29 healthy controls (HCs) were examined. The structural networks were constructed with interregional probabilistic connectivity. Graph theory analysis was performed to investigate the topological properties, and network-based statistic was employed to assess the alterations of the interregional connections among non-NPSLE patients and controls. Compared with HCs, non-NPSLE patients demonstrated significantly decreased global and local network efficiencies and showed increased characteristic path length. This finding suggests that the global integration and local specialization were impaired. Moreover, the regional properties (nodal efficiency and degree) in the frontal, occipital, and cingulum regions of the non-NPSLE patients were significantly changed and negatively correlated with the disease activity index. The distribution pattern of the hubs measured by nodal degree was altered in the patient group. Finally, the non-NPSLE group exhibited decreased structural connectivity in the left median cingulate-centered component and increased connectivity in the left precuneus-centered component and right middle temporal lobe-centered component. This study reveals an altered topological organization of white matter networks in non-NPSLE patients. Furthermore, this research provides new insights into the structural disruptions underlying the functional and neurocognitive deficits in non-NPSLE patients.
Yousefsani, Seyed Abdolmajid; Shamloo, Amir; Farahmand, Farzam
2018-04-01
A transverse-plane hyperelastic micromechanical model of brain white matter tissue was developed using the embedded element technique (EET). The model consisted of a histology-informed probabilistic distribution of axonal fibers embedded within an extracellular matrix, both described using the generalized Ogden hyperelastic material model. A correcting method, based on the strain energy density function, was formulated to resolve the stiffness redundancy problem of the EET in large deformation regime. The model was then used to predict the homogenized tissue behavior and the associated localized responses of the axonal fibers under quasi-static, transverse, large deformations. Results indicated that with a sufficiently large representative volume element (RVE) and fine mesh, the statistically randomized microstructure implemented in the RVE exhibits directional independency in transverse plane, and the model predictions for the overall and local tissue responses, characterized by the normalized strain energy density and Cauchy and von Mises stresses, are independent from the modeling parameters. Comparison of the responses of the probabilistic model with that of a simple uniform RVE revealed that only the first one is capable of representing the localized behavior of the tissue constituents. The validity test of the model predictions for the corona radiata against experimental data from the literature indicated a very close agreement. In comparison with the conventional direct meshing method, the model provided almost the same results after correcting the stiffness redundancy, however, with much less computational cost and facilitated geometrical modeling, meshing, and boundary conditions imposing. It was concluded that the EET can be used effectively for detailed probabilistic micromechanical modeling of the white matter in order to provide more accurate predictions for the axonal responses, which are of great importance when simulating the brain trauma or tumor growth. Copyright © 2018 Elsevier Ltd. All rights reserved.
A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei
Pauli, Wolfgang M.; Nili, Amanda N.; Tyszka, J. Michael
2018-01-01
Recent advances in magnetic resonance imaging methods, including data acquisition, pre-processing and analysis, have benefited research on the contributions of subcortical brain nuclei to human cognition and behavior. At the same time, these developments have led to an increasing need for a high-resolution probabilistic in vivo anatomical atlas of subcortical nuclei. In order to address this need, we constructed high spatial resolution, three-dimensional templates, using high-accuracy diffeomorphic registration of T1- and T2- weighted structural images from 168 typical adults between 22 and 35 years old. In these templates, many tissue boundaries are clearly visible, which would otherwise be impossible to delineate in data from individual studies. The resulting delineations of subcortical nuclei complement current histology-based atlases. We further created a companion library of software tools for atlas development, to offer an open and evolving resource for the creation of a crowd-sourced in vivo probabilistic anatomical atlas of the human brain. PMID:29664465
Wild, Heather M.; Heckemann, Rolf A.; Studholme, Colin
2017-01-01
Accurately describing the anatomy of individual brains enables interlaboratory communication of functional and developmental studies and is crucial for possible surgical interventions. The human parietal lobe participates in multimodal sensory integration including language processing and also contains the primary somatosensory area. We describe detailed protocols to subdivide the parietal lobe, analyze morphological and volumetric characteristics, and create probabilistic atlases in MNI152 stereotaxic space. The parietal lobe was manually delineated on 3D T1 MR images of 30 healthy subjects and divided into four regions: supramarginal gyrus (SMG), angular gyrus (AG), superior parietal lobe (supPL) and postcentral gyrus (postCG). There was the expected correlation of male gender with larger brain and intracranial volume. We examined a wide range of anatomical features of the gyri and the sulci separating them. At least a rudimentary primary intermediate sulcus of Jensen (PISJ) separating SMG and AG was identified in nearly all (59/60) hemispheres. Presence of additional gyri in SMG and AG was related to sulcal features and volumetric characteristics. The parietal lobe was slightly (2%) larger on the left, driven by leftward asymmetries of the postCG and SMG. Intersubject variability was highest for SMG and AG, and lowest for postCG. Overall the morphological characteristics tended to be symmetrical, and volumes also tended to covary between hemispheres. This may reflect developmental as well as maturation factors. To assess the accuracy with which the labels can be used to segment newly acquired (unlabelled) T1-weighted brain images, we applied multi-atlas label propagation software (MAPER) in a leave-one-out experiment and compared the resulting automatic labels with the manually prepared ones. The results showed strong agreement (mean Jaccard index 0.69, corresponding to a mean Dice index of 0.82, average mean volume error of 0.6%). Stereotaxic probabilistic atlases of each subregion were obtained. They illustrate the physiological brain torque, with structures in the right hemisphere positioned more anteriorly than in the left, and right/left positional differences of up to 10 mm. They also allow an assessment of sulcal variability, e.g. low variability for parietooccipital fissure and cingulate sulcus. Illustrated protocols, individual label sets, probabilistic atlases, and a maximum-probability atlas which takes into account surrounding structures are available for free download under academic licences. PMID:28846692
Bucci, Monica; Mandelli, Maria Luisa; Berman, Jeffrey I.; Amirbekian, Bagrat; Nguyen, Christopher; Berger, Mitchel S.; Henry, Roland G.
2013-01-01
Introduction Diffusion MRI tractography has been increasingly used to delineate white matter pathways in vivo for which the leading clinical application is presurgical mapping of eloquent regions. However, there is rare opportunity to quantify the accuracy or sensitivity of these approaches to delineate white matter fiber pathways in vivo due to the lack of a gold standard. Intraoperative electrical stimulation (IES) provides a gold standard for the location and existence of functional motor pathways that can be used to determine the accuracy and sensitivity of fiber tracking algorithms. In this study we used intraoperative stimulation from brain tumor patients as a gold standard to estimate the sensitivity and accuracy of diffusion tensor MRI (DTI) and q-ball models of diffusion with deterministic and probabilistic fiber tracking algorithms for delineation of motor pathways. Methods We used preoperative high angular resolution diffusion MRI (HARDI) data (55 directions, b = 2000 s/mm2) acquired in a clinically feasible time frame from 12 patients who underwent a craniotomy for resection of a cerebral glioma. The corticospinal fiber tracts were delineated with DTI and q-ball models using deterministic and probabilistic algorithms. We used cortical and white matter IES sites as a gold standard for the presence and location of functional motor pathways. Sensitivity was defined as the true positive rate of delineating fiber pathways based on cortical IES stimulation sites. For accuracy and precision of the course of the fiber tracts, we measured the distance between the subcortical stimulation sites and the tractography result. Positive predictive rate of the delineated tracts was assessed by comparison of subcortical IES motor function (upper extremity, lower extremity, face) with the connection of the tractography pathway in the motor cortex. Results We obtained 21 cortical and 8 subcortical IES sites from intraoperative mapping of motor pathways. Probabilistic q-ball had the best sensitivity (79%) as determined from cortical IES compared to deterministic q-ball (50%), probabilistic DTI (36%), and deterministic DTI (10%). The sensitivity using the q-ball algorithm (65%) was significantly higher than using DTI (23%) (p < 0.001) and the probabilistic algorithms (58%) were more sensitive than deterministic approaches (30%) (p = 0.003). Probabilistic q-ball fiber tracks had the smallest offset to the subcortical stimulation sites. The offsets between diffusion fiber tracks and subcortical IES sites were increased significantly for those cases where the diffusion fiber tracks were visibly thinner than expected. There was perfect concordance between the subcortical IES function (e.g. hand stimulation) and the cortical connection of the nearest diffusion fiber track (e.g. upper extremity cortex). Discussion This study highlights the tremendous utility of intraoperative stimulation sites to provide a gold standard from which to evaluate diffusion MRI fiber tracking methods and has provided an object standard for evaluation of different diffusion models and approaches to fiber tracking. The probabilistic q-ball fiber tractography was significantly better than DTI methods in terms of sensitivity and accuracy of the course through the white matter. The commonly used DTI fiber tracking approach was shown to have very poor sensitivity (as low as 10% for deterministic DTI fiber tracking) for delineation of the lateral aspects of the corticospinal tract in our study. Effects of the tumor/edema resulted in significantly larger offsets between the subcortical IES and the preoperative fiber tracks. The provided data show that probabilistic HARDI tractography is the most objective and reproducible analysis but given the small sample and number of stimulation points a generalization about our results should be given with caution. Indeed our results inform the capabilities of preoperative diffusion fiber tracking and indicate that such data should be used carefully when making pre-surgical and intra-operative management decisions. PMID:24273719
Down syndrome's brain dynamics: analysis of fractality in resting state.
Hemmati, Sahel; Ahmadlou, Mehran; Gharib, Masoud; Vameghi, Roshanak; Sajedi, Firoozeh
2013-08-01
To the best knowledge of the authors there is no study on nonlinear brain dynamics of down syndrome (DS) patients, whereas brain is a highly complex and nonlinear system. In this study, fractal dimension of EEG, as a key characteristic of brain dynamics, showing irregularity and complexity of brain dynamics, was used for evaluation of the dynamical changes in the DS brain. The results showed higher fractality of the DS brain in almost all regions compared to the normal brain, which indicates less centrality and higher irregular or random functioning of the DS brain regions. Also, laterality analysis of the frontal lobe showed that the normal brain had a right frontal laterality of complexity whereas the DS brain had an inverse pattern (left frontal laterality). Furthermore, the high accuracy of 95.8 % obtained by enhanced probabilistic neural network classifier showed the potential of nonlinear dynamic analysis of the brain for diagnosis of DS patients. Moreover, the results showed that the higher EEG fractality in DS is associated with the higher fractality in the low frequencies (delta and theta), in broad regions of the brain, and the high frequencies (beta and gamma), majorly in the frontal regions.
Testosterone affects language areas of the adult human brain
Hahn, Andreas; Kranz, Georg S.; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.
2016-01-01
Abstract Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high‐dose hormone application in adult female‐to‐male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel‐based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting‐state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone‐dependent neuroplastic adaptations in adulthood within language‐specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738–1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303
Middlebrooks, E H; Tuna, I S; Grewal, S S; Almeida, L; Heckman, M G; Lesser, E R; Foote, K D; Okun, M S; Holanda, V M
2018-06-01
Although globus pallidus internus deep brain stimulation is a widely accepted treatment for Parkinson disease, there is persistent variability in outcomes that is not yet fully understood. In this pilot study, we aimed to investigate the potential role of globus pallidus internus segmentation using probabilistic tractography as a supplement to traditional targeting methods. Eleven patients undergoing globus pallidus internus deep brain stimulation were included in this retrospective analysis. Using multidirection diffusion-weighted MR imaging, we performed probabilistic tractography at all individual globus pallidus internus voxels. Each globus pallidus internus voxel was then assigned to the 1 ROI with the greatest number of propagated paths. On the basis of deep brain stimulation programming settings, the volume of tissue activated was generated for each patient using a finite element method solution. For each patient, the volume of tissue activated within each of the 10 segmented globus pallidus internus regions was calculated and examined for association with a change in the Unified Parkinson Disease Rating Scale, Part III score before and after treatment. Increasing volume of tissue activated was most strongly correlated with a change in the Unified Parkinson Disease Rating Scale, Part III score for the primary motor region (Spearman r = 0.74, P = .010), followed by the supplementary motor area/premotor cortex (Spearman r = 0.47, P = .15). In this pilot study, we assessed a novel method of segmentation of the globus pallidus internus based on probabilistic tractography as a supplement to traditional targeting methods. Our results suggest that our method may be an independent predictor of deep brain stimulation outcome, and evaluation of a larger cohort or prospective study is warranted to validate these findings. © 2018 by American Journal of Neuroradiology.
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity.
Pecevski, Dejan; Maass, Wolfgang
2016-01-01
Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p (*) that generates the examples it receives. This holds even if p (*) contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference.
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123
Pecevski, Dejan
2016-01-01
Abstract Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p* that generates the examples it receives. This holds even if p* contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference. PMID:27419214
Dang, Shilpa; Chaudhury, Santanu; Lall, Brejesh; Roy, Prasun K
2018-05-01
Effective connectivity (EC) is the methodology for determining functional-integration among the functionally active segregated regions of the brain. By definition EC is "the causal influence exerted by one neuronal group on another" which is constrained by anatomical connectivity (AC) (axonal connections). AC is necessary for EC but does not fully determine it, because synaptic communication occurs dynamically in a context-dependent fashion. Although there is a vast emerging evidence of structure-function relationship using multimodal imaging studies, till date only a few studies have done joint modeling of the two modalities: functional MRI (fMRI) and diffusion tensor imaging (DTI). We aim to propose a unified probabilistic framework that combines information from both sources to learn EC using dynamic Bayesian networks (DBNs). DBNs are probabilistic graphical temporal models that learn EC in an exploratory fashion. Specifically, we propose a novel anatomically informed (AI) score that evaluates fitness of a given connectivity structure to both DTI and fMRI data simultaneously. The AI score is employed in structure learning of DBN given the data. Experiments with synthetic-data demonstrate the face validity of structure learning with our AI score over anatomically uninformed counterpart. Moreover, real-data results are cross-validated by performing classification-experiments. EC inferred on real fMRI-DTI datasets is found to be consistent with previous literature and show promising results in light of the AC present as compared to other classically used techniques such as Granger-causality. Multimodal analyses provide a more reliable basis for differentiating brain under abnormal/diseased conditions than the single modality analysis.
Choi, Hi-Jae; Zilles, Karl; Mohlberg, Hartmut; Schleicher, Axel; Fink, Gereon R.; Armstrong, Este; Amunts, Katrin
2008-01-01
Anatomical studies in the macaque cortex and functional imaging studies in humans have demonstrated the existence of different cortical areas within the IntraParietal Sulcus (IPS). Such functional segregation, however, does not correlate with presently available architectonic maps of the human brain. This is particularly true for the classical Brodmann map, which is still widely used as an anatomical reference in functional imaging studies. The aim of this cytoarchitectonic mapping study was to use previously defined algorithms to determine whether consistent regions and borders can be found within the cortex of the anterior IPS in a population of ten postmortem human brains. Two areas, the human IntraParietal area 1 (hIP1) and the human IntraParietal area 2 (hIP2), were delineated in serial histological sections of the anterior, lateral bank of the human IPS. The region hIP1 is located posterior and medial to hIP2, and the former is always within the depths of the IPS. The latter, on the other hand, sometimes reaches the free surface of the superior parietal lobule. The delineations were registered to standard reference space, and probabilistic maps were calculated, thereby quantifying the intersubject variability in location and extent of both areas. In the future, they can be a tool in analyzing structure – function relationships and a basis for determining degrees of homology in the IPS among anthropoid primates. We conclude that the human intraparietal sulcus has a finer grained parcellation than shown in Brodmann’s map. PMID:16432904
Dynamics of EEG functional connectivity during statistical learning.
Tóth, Brigitta; Janacsek, Karolina; Takács, Ádám; Kóbor, Andrea; Zavecz, Zsófia; Nemeth, Dezso
2017-10-01
Statistical learning is a fundamental mechanism of the brain, which extracts and represents regularities of our environment. Statistical learning is crucial in predictive processing, and in the acquisition of perceptual, motor, cognitive, and social skills. Although previous studies have revealed competitive neurocognitive processes underlying statistical learning, the neural communication of the related brain regions (functional connectivity, FC) has not yet been investigated. The present study aimed to fill this gap by investigating FC networks that promote statistical learning in humans. Young adults (N=28) performed a statistical learning task while 128-channels EEG was acquired. The task involved probabilistic sequences, which enabled to measure incidental/implicit learning of conditional probabilities. Phase synchronization in seven frequency bands was used to quantify FC between cortical regions during the first, second, and third periods of the learning task, respectively. Here we show that statistical learning is negatively correlated with FC of the anterior brain regions in slow (theta) and fast (beta) oscillations. These negative correlations increased as the learning progressed. Our findings provide evidence that dynamic antagonist brain networks serve a hallmark of statistical learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Cloutman, Lauren L.; Binney, Richard J.; Morris, David M.; Parker, Geoffrey J.M.; Lambon Ralph, Matthew A.
2013-01-01
Primate studies have recently identified the dorsal stream as constituting multiple dissociable pathways associated with a range of specialized cognitive functions. To elucidate the nature and number of dorsal pathways in the human brain, the current study utilized in vivo probabilistic tractography to map the structural connectivity associated with subdivisions of the left supramarginal gyrus (SMG). The left SMG is a prominent region within the dorsal stream, which has recently been parcellated into five structurally-distinct regions which possess a dorsal–ventral (and rostral-caudal) organisation, postulated to reflect areas of functional specialisation. The connectivity patterns reveal a dissociation of the arcuate fasciculus into at least two segregated pathways connecting frontal-parietal-temporal regions. Specifically, the connectivity of the inferior SMG, implicated as an acoustic-motor speech interface, is carried by an inner/ventro-dorsal arc of fibres, whilst the pathways of the posterior superior SMG, implicated in object use and cognitive control, forms a parallel outer/dorso-dorsal crescent. PMID:23937853
Structural and functional connectivity of the subthalamic nucleus during vocal emotion decoding
Frühholz, Sascha; Ceravolo, Leonardo; Grandjean, Didier
2016-01-01
Our understanding of the role played by the subthalamic nucleus (STN) in human emotion has recently advanced with STN deep brain stimulation, a neurosurgical treatment for Parkinson’s disease and obsessive-compulsive disorder. However, the potential presence of several confounds related to pathological models raises the question of how much they affect the relevance of observations regarding the physiological function of the STN itself. This underscores the crucial importance of obtaining evidence from healthy participants. In this study, we tested the structural and functional connectivity between the STN and other brain regions related to vocal emotion in a healthy population by combining diffusion tensor imaging and psychophysiological interaction analysis from a high-resolution functional magnetic resonance imaging study. As expected, we showed that the STN is functionally connected to the structures involved in emotional prosody decoding, notably the orbitofrontal cortex, inferior frontal gyrus, auditory cortex, pallidum and amygdala. These functional results were corroborated by probabilistic fiber tracking, which revealed that the left STN is structurally connected to the amygdala and the orbitofrontal cortex. These results confirm, in healthy participants, the role played by the STN in human emotion and its structural and functional connectivity with the brain network involved in vocal emotions. PMID:26400857
Hierarchical probabilistic Gabor and MRF segmentation of brain tumours in MRI volumes.
Subbanna, Nagesh K; Precup, Doina; Collins, D Louis; Arbel, Tal
2013-01-01
In this paper, we present a fully automated hierarchical probabilistic framework for segmenting brain tumours from multispectral human brain magnetic resonance images (MRIs) using multiwindow Gabor filters and an adapted Markov Random Field (MRF) framework. In the first stage, a customised Gabor decomposition is developed, based on the combined-space characteristics of the two classes (tumour and non-tumour) in multispectral brain MRIs in order to optimally separate tumour (including edema) from healthy brain tissues. A Bayesian framework then provides a coarse probabilistic texture-based segmentation of tumours (including edema) whose boundaries are then refined at the voxel level through a modified MRF framework that carefully separates the edema from the main tumour. This customised MRF is not only built on the voxel intensities and class labels as in traditional MRFs, but also models the intensity differences between neighbouring voxels in the likelihood model, along with employing a prior based on local tissue class transition probabilities. The second inference stage is shown to resolve local inhomogeneities and impose a smoothing constraint, while also maintaining the appropriate boundaries as supported by the local intensity difference observations. The method was trained and tested on the publicly available MICCAI 2012 Brain Tumour Segmentation Challenge (BRATS) Database [1] on both synthetic and clinical volumes (low grade and high grade tumours). Our method performs well compared to state-of-the-art techniques, outperforming the results of the top methods in cases of clinical high grade and low grade tumour core segmentation by 40% and 45% respectively.
Encoding probabilistic brain atlases using Bayesian inference.
Van Leemput, Koen
2009-06-01
This paper addresses the problem of creating probabilistic brain atlases from manually labeled training data. Probabilistic atlases are typically constructed by counting the relative frequency of occurrence of labels in corresponding locations across the training images. However, such an "averaging" approach generalizes poorly to unseen cases when the number of training images is limited, and provides no principled way of aligning the training datasets using deformable registration. In this paper, we generalize the generative image model implicitly underlying standard "average" atlases, using mesh-based representations endowed with an explicit deformation model. Bayesian inference is used to infer the optimal model parameters from the training data, leading to a simultaneous group-wise registration and atlas estimation scheme that encompasses standard averaging as a special case. We also use Bayesian inference to compare alternative atlas models in light of the training data, and show how this leads to a data compression problem that is intuitive to interpret and computationally feasible. Using this technique, we automatically determine the optimal amount of spatial blurring, the best deformation field flexibility, and the most compact mesh representation. We demonstrate, using 2-D training datasets, that the resulting models are better at capturing the structure in the training data than conventional probabilistic atlases. We also present experiments of the proposed atlas construction technique in 3-D, and show the resulting atlases' potential in fully-automated, pulse sequence-adaptive segmentation of 36 neuroanatomical structures in brain MRI scans.
Mah, Yee-Haur; Jager, Rolf; Kennard, Christopher; Husain, Masud; Nachev, Parashkev
2014-07-01
Making robust inferences about the functional neuroanatomy of the brain is critically dependent on experimental techniques that examine the consequences of focal loss of brain function. Unfortunately, the use of the most comprehensive such technique-lesion-function mapping-is complicated by the need for time-consuming and subjective manual delineation of the lesions, greatly limiting the practicability of the approach. Here we exploit a recently-described general measure of statistical anomaly, zeta, to devise a fully-automated, high-dimensional algorithm for identifying the parameters of lesions within a brain image given a reference set of normal brain images. We proceed to evaluate such an algorithm in the context of diffusion-weighted imaging of the commonest type of lesion used in neuroanatomical research: ischaemic damage. Summary performance metrics exceed those previously published for diffusion-weighted imaging and approach the current gold standard-manual segmentation-sufficiently closely for fully-automated lesion-mapping studies to become a possibility. We apply the new method to 435 unselected images of patients with ischaemic stroke to derive a probabilistic map of the pattern of damage in lesions involving the occipital lobe, demonstrating the variation of anatomical resolvability of occipital areas so as to guide future lesion-function studies of the region. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Diffusion MRI Tractography Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data
Calabrese, Evan; Badea, Alexandra; Cofer, Gary; Qi, Yi; Johnson, G. Allan
2015-01-01
Interest in structural brain connectivity has grown with the understanding that abnormal neural connections may play a role in neurologic and psychiatric diseases. Small animal connectivity mapping techniques are particularly important for identifying aberrant connectivity in disease models. Diffusion magnetic resonance imaging tractography can provide nondestructive, 3D, brain-wide connectivity maps, but has historically been limited by low spatial resolution, low signal-to-noise ratio, and the difficulty in estimating multiple fiber orientations within a single image voxel. Small animal diffusion tractography can be substantially improved through the combination of ex vivo MRI with exogenous contrast agents, advanced diffusion acquisition and reconstruction techniques, and probabilistic fiber tracking. Here, we present a comprehensive, probabilistic tractography connectome of the mouse brain at microscopic resolution, and a comparison of these data with a neuronal tracer-based connectivity data from the Allen Brain Atlas. This work serves as a reference database for future tractography studies in the mouse brain, and demonstrates the fundamental differences between tractography and neuronal tracer data. PMID:26048951
Bhanji, Jamil P.; Beer, Jennifer S.; Bunge, Silvia A.
2014-01-01
A decision may be difficult because complex information processing is required to evaluate choices according to deterministic decision rules and/or because it is not certain which choice will lead to the best outcome in a probabilistic context. Factors that tax decision making such as decision rule complexity and low decision certainty should be disambiguated for a more complete understanding of the decision making process. Previous studies have examined the brain regions that are modulated by decision rule complexity or by decision certainty but have not examined these factors together in the context of a single task or study. In the present functional magnetic resonance imaging study, both decision rule complexity and decision certainty were varied in comparable decision tasks. Further, the level of certainty about which choice to make (choice certainty) was varied separately from certainty about the final outcome resulting from a choice (outcome certainty). Lateral prefrontal cortex, dorsal anterior cingulate cortex, and bilateral anterior insula were modulated by decision rule complexity. Anterior insula was engaged more strongly by low than high choice certainty decisions, whereas ventromedial prefrontal cortex showed the opposite pattern. These regions showed no effect of the independent manipulation of outcome certainty. The results disambiguate the influence of decision rule complexity, choice certainty, and outcome certainty on activity in diverse brain regions that have been implicated in decision making. Lateral prefrontal cortex plays a key role in implementing deterministic decision rules, ventromedial prefrontal cortex in probabilistic rules, and anterior insula in both. PMID:19781652
Schlaier, Juergen R; Beer, Anton L; Faltermeier, Rupert; Fellner, Claudia; Steib, Kathrin; Lange, Max; Greenlee, Mark W; Brawanski, Alexander T; Anthofer, Judith M
2017-06-01
This study compared tractography approaches for identifying cerebellar-thalamic fiber bundles relevant to planning target sites for deep brain stimulation (DBS). In particular, probabilistic and deterministic tracking of the dentate-rubro-thalamic tract (DRTT) and differences between the spatial courses of the DRTT and the cerebello-thalamo-cortical (CTC) tract were compared. Six patients with movement disorders were examined by magnetic resonance imaging (MRI), including two sets of diffusion-weighted images (12 and 64 directions). Probabilistic and deterministic tractography was applied on each diffusion-weighted dataset to delineate the DRTT. Results were compared with regard to their sensitivity in revealing the DRTT and additional fiber tracts and processing time. Two sets of regions-of-interests (ROIs) guided deterministic tractography of the DRTT or the CTC, respectively. Tract distances to an atlas-based reference target were compared. Probabilistic fiber tracking with 64 orientations detected the DRTT in all twelve hemispheres. Deterministic tracking detected the DRTT in nine (12 directions) and in only two (64 directions) hemispheres. Probabilistic tracking was more sensitive in detecting additional fibers (e.g. ansa lenticularis and medial forebrain bundle) than deterministic tracking. Probabilistic tracking lasted substantially longer than deterministic. Deterministic tracking was more sensitive in detecting the CTC than the DRTT. CTC tracts were located adjacent but consistently more posterior to DRTT tracts. These results suggest that probabilistic tracking is more sensitive and robust in detecting the DRTT but harder to implement than deterministic approaches. Although sensitivity of deterministic tracking is higher for the CTC than the DRTT, targets for DBS based on these tracts likely differ. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Dinov, Martin; Leech, Robert
2017-01-01
Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analysis, including the GFP peak definition, the clustering itself and in the post-clustering assignment of microstates back onto the EEG timecourse of interest. We perform a fully probabilistic microstate clustering and labeling, to account for these sources of uncertainty using the closest probabilistic analog to KM called Fuzzy C-means (FCM). We train softmax multi-layer perceptrons (MLPs) using the KM and FCM-inferred cluster assignments as target labels, to then allow for probabilistic labeling of the full EEG data instead of the usual correlation-based deterministic microstate label assignment typically used. We assess the merits of the probabilistic analysis vs. the deterministic approaches in EEG data recorded while participants perform real or imagined motor movements from a publicly available data set of 109 subjects. Though FCM group template maps that are almost topographically identical to KM were found, there is considerable uncertainty in the subsequent assignment of microstate labels. In general, imagined motor movements are less predictable on a time point-by-time point basis, possibly reflecting the more exploratory nature of the brain state during imagined, compared to during real motor movements. We find that some relationships may be more evident using FCM than using KM and propose that future microstate analysis should preferably be performed probabilistically rather than deterministically, especially in situations such as with brain computer interfaces, where both training and applying models of microstates need to account for uncertainty. Probabilistic neural network-driven microstate assignment has a number of advantages that we have discussed, which are likely to be further developed and exploited in future studies. In conclusion, probabilistic clustering and a probabilistic neural network-driven approach to microstate analysis is likely to better model and reveal details and the variability hidden in current deterministic and binarized microstate assignment and analyses.
Dinov, Martin; Leech, Robert
2017-01-01
Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analysis, including the GFP peak definition, the clustering itself and in the post-clustering assignment of microstates back onto the EEG timecourse of interest. We perform a fully probabilistic microstate clustering and labeling, to account for these sources of uncertainty using the closest probabilistic analog to KM called Fuzzy C-means (FCM). We train softmax multi-layer perceptrons (MLPs) using the KM and FCM-inferred cluster assignments as target labels, to then allow for probabilistic labeling of the full EEG data instead of the usual correlation-based deterministic microstate label assignment typically used. We assess the merits of the probabilistic analysis vs. the deterministic approaches in EEG data recorded while participants perform real or imagined motor movements from a publicly available data set of 109 subjects. Though FCM group template maps that are almost topographically identical to KM were found, there is considerable uncertainty in the subsequent assignment of microstate labels. In general, imagined motor movements are less predictable on a time point-by-time point basis, possibly reflecting the more exploratory nature of the brain state during imagined, compared to during real motor movements. We find that some relationships may be more evident using FCM than using KM and propose that future microstate analysis should preferably be performed probabilistically rather than deterministically, especially in situations such as with brain computer interfaces, where both training and applying models of microstates need to account for uncertainty. Probabilistic neural network-driven microstate assignment has a number of advantages that we have discussed, which are likely to be further developed and exploited in future studies. In conclusion, probabilistic clustering and a probabilistic neural network-driven approach to microstate analysis is likely to better model and reveal details and the variability hidden in current deterministic and binarized microstate assignment and analyses. PMID:29163110
Processing Pathways in Mental Arithmetic—Evidence from Probabilistic Fiber Tracking
Glauche, Volkmar; Weiller, Cornelius; Willmes, Klaus
2013-01-01
Numerical cognition is a case of multi-modular and distributed cerebral processing. So far neither the anatomo-functional connections between the cortex areas involved nor their integration into established frameworks such as the differentiation between dorsal and ventral processing streams have been specified. The current study addressed this issue combining a re-analysis of previously published fMRI data with probabilistic fiber tracking data from an independent sample. We aimed at differentiating neural correlates and connectivity for relatively easy and more difficult addition problems in healthy adults and their association with either rather verbally mediated fact retrieval or magnitude manipulations, respectively. The present data suggest that magnitude- and fact retrieval-related processing seem to be subserved by two largely separate networks, both of them comprising dorsal and ventral connections. Importantly, these networks not only differ in localization of activation but also in the connections between the cortical areas involved. However, it has to be noted that even though seemingly distinct anatomically, these networks operate as a functionally integrated circuit for mental calculation as revealed by a parametric analysis of brain activation. PMID:23383194
Games people play: How video games improve probabilistic learning.
Schenk, Sabrina; Lech, Robert K; Suchan, Boris
2017-09-29
Recent research suggests that video game playing is associated with many cognitive benefits. However, little is known about the neural mechanisms mediating such effects, especially with regard to probabilistic categorization learning, which is a widely unexplored area in gaming research. Therefore, the present study aimed to investigate the neural correlates of probabilistic classification learning in video gamers in comparison to non-gamers. Subjects were scanned in a 3T magnetic resonance imaging (MRI) scanner while performing a modified version of the weather prediction task. Behavioral data yielded evidence for better categorization performance of video gamers, particularly under conditions characterized by stronger uncertainty. Furthermore, a post-experimental questionnaire showed that video gamers had acquired higher declarative knowledge about the card combinations and the related weather outcomes. Functional imaging data revealed for video gamers stronger activation clusters in the hippocampus, the precuneus, the cingulate gyrus and the middle temporal gyrus as well as in occipital visual areas and in areas related to attentional processes. All these areas are connected with each other and represent critical nodes for semantic memory, visual imagery and cognitive control. Apart from this, and in line with previous studies, both groups showed activation in brain areas that are related to attention and executive functions as well as in the basal ganglia and in memory-associated regions of the medial temporal lobe. These results suggest that playing video games might enhance the usage of declarative knowledge as well as hippocampal involvement and enhances overall learning performance during probabilistic learning. In contrast to non-gamers, video gamers showed better categorization performance, independently of the uncertainty of the condition. Copyright © 2017 Elsevier B.V. All rights reserved.
White matter pathways and social cognition.
Wang, Yin; Metoki, Athanasia; Alm, Kylie H; Olson, Ingrid R
2018-04-20
There is a growing consensus that social cognition and behavior emerge from interactions across distributed regions of the "social brain". Researchers have traditionally focused their attention on functional response properties of these gray matter networks and neglected the vital role of white matter connections in establishing such networks and their functions. In this article, we conduct a comprehensive review of prior research on structural connectivity in social neuroscience and highlight the importance of this literature in clarifying brain mechanisms of social cognition. We pay particular attention to three key social processes: face processing, embodied cognition, and theory of mind, and their respective underlying neural networks. To fully identify and characterize the anatomical architecture of these networks, we further implement probabilistic tractography on a large sample of diffusion-weighted imaging data. The combination of an in-depth literature review and the empirical investigation gives us an unprecedented, well-defined landscape of white matter pathways underlying major social brain networks. Finally, we discuss current problems in the field, outline suggestions for best practice in diffusion-imaging data collection and analysis, and offer new directions for future research. Copyright © 2018 Elsevier Ltd. All rights reserved.
Smith, David V.; Utevsky, Amanda V.; Bland, Amy R.; Clement, Nathan; Clithero, John A.; Harsch, Anne E. W.; Carter, R. McKell; Huettel, Scott A.
2014-01-01
A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent components analysis (ICA). We estimated voxelwise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal-parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust—yet frequently ignored—neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity. PMID:24662574
Brain networks modulated by subthalamic nucleus deep brain stimulation.
Accolla, Ettore A; Herrojo Ruiz, Maria; Horn, Andreas; Schneider, Gerd-Helge; Schmitz-Hübsch, Tanja; Draganski, Bogdan; Kühn, Andrea A
2016-09-01
Deep brain stimulation of the subthalamic nucleus is an established treatment for the motor symptoms of Parkinson's disease. Given the frequent occurrence of stimulation-induced affective and cognitive adverse effects, a better understanding about the role of the subthalamic nucleus in non-motor functions is needed. The main goal of this study is to characterize anatomical circuits modulated by subthalamic deep brain stimulation, and infer about the inner organization of the nucleus in terms of motor and non-motor areas. Given its small size and anatomical intersubject variability, functional organization of the subthalamic nucleus is difficult to investigate in vivo with current methods. Here, we used local field potential recordings obtained from 10 patients with Parkinson's disease to identify a subthalamic area with an analogous electrophysiological signature, namely a predominant beta oscillatory activity. The spatial accuracy was improved by identifying a single contact per macroelectrode for its vicinity to the electrophysiological source of the beta oscillation. We then conducted whole brain probabilistic tractography seeding from the previously identified contacts, and further described connectivity modifications along the macroelectrode's main axis. The designated subthalamic 'beta' area projected predominantly to motor and premotor cortical regions additional to connections to limbic and associative areas. More ventral subthalamic areas showed predominant connectivity to medial temporal regions including amygdala and hippocampus. We interpret our findings as evidence for the convergence of different functional circuits within subthalamic nucleus' portions deemed to be appropriate as deep brain stimulation target to treat motor symptoms in Parkinson's disease. Potential clinical implications of our study are illustrated by an index case where deep brain stimulation of estimated predominant non-motor subthalamic nucleus induced hypomanic behaviour. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
MacNeilage, Paul R.; Ganesan, Narayan; Angelaki, Dora E.
2008-01-01
Spatial orientation is the sense of body orientation and self-motion relative to the stationary environment, fundamental to normal waking behavior and control of everyday motor actions including eye movements, postural control, and locomotion. The brain achieves spatial orientation by integrating visual, vestibular, and somatosensory signals. Over the past years, considerable progress has been made toward understanding how these signals are processed by the brain using multiple computational approaches that include frequency domain analysis, the concept of internal models, observer theory, Bayesian theory, and Kalman filtering. Here we put these approaches in context by examining the specific questions that can be addressed by each technique and some of the scientific insights that have resulted. We conclude with a recent application of particle filtering, a probabilistic simulation technique that aims to generate the most likely state estimates by incorporating internal models of sensor dynamics and physical laws and noise associated with sensory processing as well as prior knowledge or experience. In this framework, priors for low angular velocity and linear acceleration can explain the phenomena of velocity storage and frequency segregation, both of which have been modeled previously using arbitrary low-pass filtering. How Kalman and particle filters may be implemented by the brain is an emerging field. Unlike past neurophysiological research that has aimed to characterize mean responses of single neurons, investigations of dynamic Bayesian inference should attempt to characterize population activities that constitute probabilistic representations of sensory and prior information. PMID:18842952
Passamonti, Luca; Wald, Lawrence L.; Barbieri, Riccardo
2016-01-01
The causal, directed interactions between brain regions at rest (brain–brain networks) and between resting-state brain activity and autonomic nervous system (ANS) outflow (brain–heart links) have not been completely elucidated. We collected 7 T resting-state functional magnetic resonance imaging (fMRI) data with simultaneous respiration and heartbeat recordings in nine healthy volunteers to investigate (i) the causal interactions between cortical and subcortical brain regions at rest and (ii) the causal interactions between resting-state brain activity and the ANS as quantified through a probabilistic, point-process-based heartbeat model which generates dynamical estimates for sympathetic and parasympathetic activity as well as sympathovagal balance. Given the high amount of information shared between brain-derived signals, we compared the results of traditional bivariate Granger causality (GC) with a globally conditioned approach which evaluated the additional influence of each brain region on the causal target while factoring out effects concomitantly mediated by other brain regions. The bivariate approach resulted in a large number of possibly spurious causal brain–brain links, while, using the globally conditioned approach, we demonstrated the existence of significant selective causal links between cortical/subcortical brain regions and sympathetic and parasympathetic modulation as well as sympathovagal balance. In particular, we demonstrated a causal role of the amygdala, hypothalamus, brainstem and, among others, medial, middle and superior frontal gyri, superior temporal pole, paracentral lobule and cerebellar regions in modulating the so-called central autonomic network (CAN). In summary, we show that, provided proper conditioning is employed to eliminate spurious causalities, ultra-high-field functional imaging coupled with physiological signal acquisition and GC analysis is able to quantify directed brain–brain and brain–heart interactions reflecting central modulation of ANS outflow. PMID:27044985
Large scale digital atlases in neuroscience
NASA Astrophysics Data System (ADS)
Hawrylycz, M.; Feng, D.; Lau, C.; Kuan, C.; Miller, J.; Dang, C.; Ng, L.
2014-03-01
Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.
Lopopolo, Alessandro; Frank, Stefan L; van den Bosch, Antal; Willems, Roel M
2017-01-01
Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.
Luders, Eileen; Kurth, Florian; Toga, Arthur W.; Narr, Katherine L.; Gaser, Christian
2013-01-01
Scientific studies addressing anatomical variations in meditators' brains have emerged rapidly over the last few years, where significant links are most frequently reported with respect to gray matter (GM). To advance prior work, this study examined GM characteristics in a large sample of 100 subjects (50 meditators, 50 controls), where meditators have been practicing close to 20 years, on average. A standard, whole-brain voxel-based morphometry approach was applied and revealed significant meditation effects in the vicinity of the hippocampus, showing more GM in meditators than in controls as well as positive correlations with the number of years practiced. However, the hippocampal complex is regionally segregated by architecture, connectivity, and functional relevance. Thus, to establish differential effects within the hippocampal formation (cornu ammonis, fascia dentata, entorhinal cortex, subiculum) as well as the hippocampal-amygdaloid transition area, we utilized refined cytoarchitectonic probabilistic maps of (peri-) hippocampal subsections. Significant meditation effects were observed within the subiculum specifically. Since the subiculum is known to play a key role in stress regulation and meditation is an established form of stress reduction, these GM findings may reflect neuronal preservation in long-term meditators—perhaps due to an attenuated release of stress hormones and decreased neurotoxicity. PMID:23847572
Zheng, Weili; Ackley, Elena S; Martínez-Ramón, Manel; Posse, Stefan
2013-02-01
In previous works, boosting aggregation of classifier outputs from discrete brain areas has been demonstrated to reduce dimensionality and improve the robustness and accuracy of functional magnetic resonance imaging (fMRI) classification. However, dimensionality reduction and classification of mixed activation patterns of multiple classes remain challenging. In the present study, the goals were (a) to reduce dimensionality by combining feature reduction at the voxel level and backward elimination of optimally aggregated classifiers at the region level, (b) to compare region selection for spatially aggregated classification using boosting and partial least squares regression methods and (c) to resolve mixed activation patterns using probabilistic prediction of individual tasks. Brain activation maps from interleaved visual, motor, auditory and cognitive tasks were segmented into 144 functional regions. Feature selection reduced the number of feature voxels by more than 50%, leaving 95 regions. The two aggregation approaches further reduced the number of regions to 30, resulting in more than 75% reduction of classification time and misclassification rates of less than 3%. Boosting and partial least squares (PLS) were compared to select the most discriminative and the most task correlated regions, respectively. Successful task prediction in mixed activation patterns was feasible within the first block of task activation in real-time fMRI experiments. This methodology is suitable for sparsifying activation patterns in real-time fMRI and for neurofeedback from distributed networks of brain activation. Copyright © 2013 Elsevier Inc. All rights reserved.
Zhang, Miaomiao; Wells, William M; Golland, Polina
2017-10-01
We present an efficient probabilistic model of anatomical variability in a linear space of initial velocities of diffeomorphic transformations and demonstrate its benefits in clinical studies of brain anatomy. To overcome the computational challenges of the high dimensional deformation-based descriptors, we develop a latent variable model for principal geodesic analysis (PGA) based on a low dimensional shape descriptor that effectively captures the intrinsic variability in a population. We define a novel shape prior that explicitly represents principal modes as a multivariate complex Gaussian distribution on the initial velocities in a bandlimited space. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than the state-of-the-art method such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA) that operate in the high dimensional image space. Copyright © 2017 Elsevier B.V. All rights reserved.
Frontal and Parietal Contributions to Probabilistic Association Learning
Rushby, Jacqueline A.; Vercammen, Ans; Loo, Colleen; Short, Brooke
2011-01-01
Neuroimaging studies have shown both dorsolateral prefrontal (DLPFC) and inferior parietal cortex (iPARC) activation during probabilistic association learning. Whether these cortical brain regions are necessary for probabilistic association learning is presently unknown. Participants' ability to acquire probabilistic associations was assessed during disruptive 1 Hz repetitive transcranial magnetic stimulation (rTMS) of the left DLPFC, left iPARC, and sham using a crossover single-blind design. On subsequent sessions, performance improved relative to baseline except during DLPFC rTMS that disrupted the early acquisition beneficial effect of prior exposure. A second experiment examining rTMS effects on task-naive participants showed that neither DLPFC rTMS nor sham influenced naive acquisition of probabilistic associations. A third experiment examining consecutive administration of the probabilistic association learning test revealed early trial interference from previous exposure to different probability schedules. These experiments, showing disrupted acquisition of probabilistic associations by rTMS only during subsequent sessions with an intervening night's sleep, suggest that the DLPFC may facilitate early access to learned strategies or prior task-related memories via consolidation. Although neuroimaging studies implicate DLPFC and iPARC in probabilistic association learning, the present findings suggest that early acquisition of the probabilistic cue-outcome associations in task-naive participants is not dependent on either region. PMID:21216842
Novel Noninvasive Brain Disease Detection System Using a Facial Image Sensor
Shu, Ting; Zhang, Bob; Tang, Yuan Yan
2017-01-01
Brain disease including any conditions or disabilities that affect the brain is fast becoming a leading cause of death. The traditional diagnostic methods of brain disease are time-consuming, inconvenient and non-patient friendly. As more and more individuals undergo examinations to determine if they suffer from any form of brain disease, developing noninvasive, efficient, and patient friendly detection systems will be beneficial. Therefore, in this paper, we propose a novel noninvasive brain disease detection system based on the analysis of facial colors. The system consists of four components. A facial image is first captured through a specialized sensor, where four facial key blocks are next located automatically from the various facial regions. Color features are extracted from each block to form a feature vector for classification via the Probabilistic Collaborative based Classifier. To thoroughly test the system and its performance, seven facial key block combinations were experimented. The best result was achieved using the second facial key block, where it showed that the Probabilistic Collaborative based Classifier is the most suitable. The overall performance of the proposed system achieves an accuracy −95%, a sensitivity −94.33%, a specificity −95.67%, and an average processing time (for one sample) of <1 min at brain disease detection. PMID:29292716
Andreou, Christina; Steinmann, Saskia; Kolbeck, Katharina; Rauh, Jonas; Leicht, Gregor; Moritz, Steffen; Mulert, Christoph
2018-06-01
Reports linking a 'jumping-to-conclusions' bias to delusions have led to growing interest in the neurobiological correlates of probabilistic reasoning. Several brain areas have been implicated in probabilistic reasoning; however, findings are difficult to integrate into a coherent account. The present study aimed to provide additional evidence by investigating, for the first time, effective connectivity among brain areas involved in different stages of evidence gathering. We investigated evidence gathering in 25 healthy individuals using fMRI and a new paradigm (Box Task) designed such as to minimize the effects of cognitive effort and reward processing. Decisions to collect more evidence ('draws') were contrasted to decisions to reach a final choice ('conclusions') with respect to BOLD activity. Psychophysiological interaction analysis was used to investigate effective connectivity. Conclusion events were associated with extensive brain activations in widely distributed brain areas associated with the task-positive network. In contrast, draw events were characterized by higher activation in areas assumed to be part of the task-negative network. Effective connectivity between the two networks decreased during draws and increased during conclusion events. Our findings indicate that probabilistic reasoning may depend on the balance between the task-positive and task-negative network, and that shifts in connectivity between the two may be crucial for evidence gathering. Thus, abnormal connectivity between the two systems may significantly contribute to the jumping-to-conclusions bias. Copyright © 2018 Elsevier Inc. All rights reserved.
Connectivity in the human brain dissociates entropy and complexity of auditory inputs☆
Nastase, Samuel A.; Iacovella, Vittorio; Davis, Ben; Hasson, Uri
2015-01-01
Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. PMID:25536493
Smith, David V; Utevsky, Amanda V; Bland, Amy R; Clement, Nathan; Clithero, John A; Harsch, Anne E W; McKell Carter, R; Huettel, Scott A
2014-07-15
A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent component analysis (ICA). We estimated voxel-wise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal-parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust-yet frequently ignored-neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.
Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits
Meyer, Sarah; Kessner, Simon S.; Cheng, Bastian; Bönstrup, Marlene; Schulz, Robert; Hummel, Friedhelm C.; De Bruyn, Nele; Peeters, Andre; Van Pesch, Vincent; Duprez, Thierry; Sunaert, Stefan; Schrooten, Maarten; Feys, Hilde; Gerloff, Christian; Thomalla, Götz; Thijs, Vincent; Verheyden, Geert
2015-01-01
The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand. PMID:26900565
Testolin, Alberto; Zorzi, Marco
2016-01-01
Connectionist models can be characterized within the more general framework of probabilistic graphical models, which allow to efficiently describe complex statistical distributions involving a large number of interacting variables. This integration allows building more realistic computational models of cognitive functions, which more faithfully reflect the underlying neural mechanisms at the same time providing a useful bridge to higher-level descriptions in terms of Bayesian computations. Here we discuss a powerful class of graphical models that can be implemented as stochastic, generative neural networks. These models overcome many limitations associated with classic connectionist models, for example by exploiting unsupervised learning in hierarchical architectures (deep networks) and by taking into account top-down, predictive processing supported by feedback loops. We review some recent cognitive models based on generative networks, and we point out promising research directions to investigate neuropsychological disorders within this approach. Though further efforts are required in order to fill the gap between structured Bayesian models and more realistic, biophysical models of neuronal dynamics, we argue that generative neural networks have the potential to bridge these levels of analysis, thereby improving our understanding of the neural bases of cognition and of pathologies caused by brain damage. PMID:27468262
Bayesian networks in neuroscience: a survey.
Bielza, Concha; Larrañaga, Pedro
2014-01-01
Bayesian networks are a type of probabilistic graphical models lie at the intersection between statistics and machine learning. They have been shown to be powerful tools to encode dependence relationships among the variables of a domain under uncertainty. Thanks to their generality, Bayesian networks can accommodate continuous and discrete variables, as well as temporal processes. In this paper we review Bayesian networks and how they can be learned automatically from data by means of structure learning algorithms. Also, we examine how a user can take advantage of these networks for reasoning by exact or approximate inference algorithms that propagate the given evidence through the graphical structure. Despite their applicability in many fields, they have been little used in neuroscience, where they have focused on specific problems, like functional connectivity analysis from neuroimaging data. Here we survey key research in neuroscience where Bayesian networks have been used with different aims: discover associations between variables, perform probabilistic reasoning over the model, and classify new observations with and without supervision. The networks are learned from data of any kind-morphological, electrophysiological, -omics and neuroimaging-, thereby broadening the scope-molecular, cellular, structural, functional, cognitive and medical- of the brain aspects to be studied.
Bayesian networks in neuroscience: a survey
Bielza, Concha; Larrañaga, Pedro
2014-01-01
Bayesian networks are a type of probabilistic graphical models lie at the intersection between statistics and machine learning. They have been shown to be powerful tools to encode dependence relationships among the variables of a domain under uncertainty. Thanks to their generality, Bayesian networks can accommodate continuous and discrete variables, as well as temporal processes. In this paper we review Bayesian networks and how they can be learned automatically from data by means of structure learning algorithms. Also, we examine how a user can take advantage of these networks for reasoning by exact or approximate inference algorithms that propagate the given evidence through the graphical structure. Despite their applicability in many fields, they have been little used in neuroscience, where they have focused on specific problems, like functional connectivity analysis from neuroimaging data. Here we survey key research in neuroscience where Bayesian networks have been used with different aims: discover associations between variables, perform probabilistic reasoning over the model, and classify new observations with and without supervision. The networks are learned from data of any kind–morphological, electrophysiological, -omics and neuroimaging–, thereby broadening the scope–molecular, cellular, structural, functional, cognitive and medical– of the brain aspects to be studied. PMID:25360109
The profile of executive function in OCD hoarders and hoarding disorder☆
Morein-Zamir, Sharon; Papmeyer, Martina; Pertusa, Alberto; Chamberlain, Samuel R.; Fineberg, Naomi A.; Sahakian, Barbara J.; Mataix-Cols, David; Robbins, Trevor W.
2014-01-01
Hoarding disorder is a new mental disorder in DSM-5. It is classified alongside OCD and other presumably related disorders in the Obsessive-Compulsive and Related Disorders chapter. We examined cognitive performance in two distinct groups comprising individuals with both OCD and severe hoarding, and individuals with hoarding disorder without comorbid OCD. Participants completed executive function tasks assessing inhibitory control, cognitive flexibility, spatial planning, probabilistic learning and reversal and decision making. Compared to a matched healthy control group, OCD hoarders showed significantly worse performance on measures of response inhibition, set shifting, spatial planning, probabilistic learning and reversal, with intact decision making. Despite having a strikingly different clinical presentation, individuals with only hoarding disorder did not differ significantly from OCD hoarders on any cognitive measure suggesting the two hoarding groups have a similar pattern of cognitive difficulties. Tests of cognitive flexibility were least similar across the groups, but differences were small and potentially reflected subtle variation in underlying brain pathology together with psychometric limitations. These results highlight both commonalities and potential differences between OCD and hoarding disorder, and together with other lines of evidence, support the inclusion of the new disorder within the new Obsessive-Compulsive and Related Disorders chapter in DSM-5. PMID:24467873
Testolin, Alberto; Zorzi, Marco
2016-01-01
Connectionist models can be characterized within the more general framework of probabilistic graphical models, which allow to efficiently describe complex statistical distributions involving a large number of interacting variables. This integration allows building more realistic computational models of cognitive functions, which more faithfully reflect the underlying neural mechanisms at the same time providing a useful bridge to higher-level descriptions in terms of Bayesian computations. Here we discuss a powerful class of graphical models that can be implemented as stochastic, generative neural networks. These models overcome many limitations associated with classic connectionist models, for example by exploiting unsupervised learning in hierarchical architectures (deep networks) and by taking into account top-down, predictive processing supported by feedback loops. We review some recent cognitive models based on generative networks, and we point out promising research directions to investigate neuropsychological disorders within this approach. Though further efforts are required in order to fill the gap between structured Bayesian models and more realistic, biophysical models of neuronal dynamics, we argue that generative neural networks have the potential to bridge these levels of analysis, thereby improving our understanding of the neural bases of cognition and of pathologies caused by brain damage.
Rasmussen, Peter M.; Smith, Amy F.; Sakadžić, Sava; Boas, David A.; Pries, Axel R.; Secomb, Timothy W.; Østergaard, Leif
2017-01-01
Objective In vivo imaging of the microcirculation and network-oriented modeling have emerged as powerful means of studying microvascular function and understanding its physiological significance. Network-oriented modeling may provide the means of summarizing vast amounts of data produced by high-throughput imaging techniques in terms of key, physiological indices. To estimate such indices with sufficient certainty, however, network-oriented analysis must be robust to the inevitable presence of uncertainty due to measurement errors as well as model errors. Methods We propose the Bayesian probabilistic data analysis framework as a means of integrating experimental measurements and network model simulations into a combined and statistically coherent analysis. The framework naturally handles noisy measurements and provides posterior distributions of model parameters as well as physiological indices associated with uncertainty. Results We applied the analysis framework to experimental data from three rat mesentery networks and one mouse brain cortex network. We inferred distributions for more than five hundred unknown pressure and hematocrit boundary conditions. Model predictions were consistent with previous analyses, and remained robust when measurements were omitted from model calibration. Conclusion Our Bayesian probabilistic approach may be suitable for optimizing data acquisition and for analyzing and reporting large datasets acquired as part of microvascular imaging studies. PMID:27987383
Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia
NASA Astrophysics Data System (ADS)
Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto
2010-02-01
Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.
Windows on the brain: the emerging role of atlases and databases in neuroscience
NASA Technical Reports Server (NTRS)
Van Essen, David C.; VanEssen, D. C. (Principal Investigator)
2002-01-01
Brain atlases and associated databases have great potential as gateways for navigating, accessing, and visualizing a wide range of neuroscientific data. Recent progress towards realizing this potential includes the establishment of probabilistic atlases, surface-based atlases and associated databases, combined with improvements in visualization capabilities and internet access.
fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization
NASA Astrophysics Data System (ADS)
Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda
2010-03-01
Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.
Quantum-like Probabilistic Models Outside Physics
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
We present a quantum-like (QL) model in that contexts (complexes of e.g. mental, social, biological, economic or even political conditions) are represented by complex probability amplitudes. This approach gives the possibility to apply the mathematical quantum formalism to probabilities induced in any domain of science. In our model quantum randomness appears not as irreducible randomness (as it is commonly accepted in conventional quantum mechanics, e.g. by von Neumann and Dirac), but as a consequence of obtaining incomplete information about a system. We pay main attention to the QL description of processing of incomplete information. Our QL model can be useful in cognitive, social and political sciences as well as economics and artificial intelligence. In this paper we consider in a more detail one special application — QL modeling of brain's functioning. The brain is modeled as a QL-computer.
Schroeter, Matthias L.; Laird, Angela R.; Chwiesko, Caroline; Deuschl, Christine; Schneider, Else; Bzdok, Danilo; Eickhoff, Simon B.; Neumann, Jane
2014-01-01
Introduction Uniform coordinate systems in neuroimaging research have enabled comprehensive systematic and quantitative meta-analyses. Such approaches are particularly relevant for neuropsychiatric diseases, the understanding of their symptoms, prediction and treatment. Behavioral variant frontotemporal dementia (bvFTD), a common neurodegenerative syndrome, is characterized by deep alterations in behavior and personality. Investigating this ‘nexopathy’ elucidates the healthy social and emotional brain. Methods Here, we combine three multimodal meta-analyses approaches – anatomical & activation likelihood estimates and behavioral domain profiles – to identify neural correlates of bvFTD in 417 patients and 406 control subjects and to extract mental functions associated with this disease by meta-analyzing functional activation studies in the comprehensive probabilistic functional brain atlas of the BrainMap database. Results The analyses identify the frontomedian cortex, basal ganglia, anterior insulae and thalamus as most relevant hubs, with a regional dissociation between atrophy and hypometabolism. Neural networks affected by bvFTD were associated with emotion and reward processing, empathy and executive functions (mainly inhibition), suggesting these functions as core domains affected by the disease and finally leading to its clinical symptoms. In contrast, changes in theory of mind or mentalizing abilities seem to be secondary phenomena of executive dysfunctions. Conclusions The study creates a novel conceptual framework to understand neuropsychiatric diseases by powerful data-driven meta-analytic approaches that shall be extended to the whole neuropsychiatric spectrum in the future. PMID:24763126
The structural and functional brain networks that support human social networks.
Noonan, M P; Mars, R B; Sallet, J; Dunbar, R I M; Fellows, L K
2018-02-20
Social skills rely on a specific set of cognitive processes, raising the possibility that individual differences in social networks are related to differences in specific brain structural and functional networks. Here, we tested this hypothesis with multimodality neuroimaging. With diffusion MRI (DMRI), we showed that differences in structural integrity of particular white matter (WM) tracts, including cingulum bundle, extreme capsule and arcuate fasciculus were associated with an individual's social network size (SNS). A voxel-based morphology analysis demonstrated correlations between gray matter (GM) volume and SNS in limbic and temporal lobe regions. These structural changes co-occured with functional network differences. As a function of SNS, dorsomedial and dorsolateral prefrontal cortex showed altered resting-state functional connectivity with the default mode network (DMN). Finally, we integrated these three complementary methods, interrogating the relationship between social GM clusters and specific WM and resting-state networks (RSNs). Probabilistic tractography seeded in these GM nodes utilized the SNS-related WM pathways. Further, the spatial and functional overlap between the social GM clusters and the DMN was significantly closer than other control RSNs. These integrative analyses provide convergent evidence of the role of specific circuits in SNS, likely supporting the adaptive behavior necessary for success in extensive social environments. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
DISCOUNTING OF DELAYED AND PROBABILISTIC LOSSES OVER A WIDE RANGE OF AMOUNTS
Green, Leonard; Myerson, Joel; Oliveira, Luís; Chang, Seo Eun
2014-01-01
The present study examined delay and probability discounting of hypothetical monetary losses over a wide range of amounts (from $20 to $500,000) in order to determine how amount affects the parameters of the hyperboloid discounting function. In separate conditions, college students chose between immediate payments and larger, delayed payments and between certain payments and larger, probabilistic payments. The hyperboloid function accurately described both types of discounting, and amount of loss had little or no systematic effect on the degree of discounting. Importantly, the amount of loss also had little systematic effect on either the rate parameter or the exponent of the delay and probability discounting functions. The finding that the parameters of the hyperboloid function remain relatively constant across a wide range of amounts of delayed and probabilistic loss stands in contrast to the robust amount effects observed with delayed and probabilistic rewards. At the individual level, the degree to which delayed losses were discounted was uncorrelated with the degree to which probabilistic losses were discounted, and delay and probability loaded on two separate factors, similar to what is observed with delayed and probabilistic rewards. Taken together, these findings argue that although delay and probability discounting involve fundamentally different decision-making mechanisms, nevertheless the discounting of delayed and probabilistic losses share an insensitivity to amount that distinguishes it from the discounting of delayed and probabilistic gains. PMID:24745086
Sigurdsson, Hilmar P; Pépés, Sophia E; Jackson, Georgina M; Draper, Amelia; Morgan, Paul S; Jackson, Stephen R
2018-04-12
Tourette syndrome (TS) is a neurodevelopmental disorder characterised by repetitive and intermittent motor and vocal tics. TS is thought to reflect fronto-striatal dysfunction and the aetiology of the disorder has been linked to widespread alterations in the functional and structural integrity of the brain. The aim of this study was to assess white matter (WM) abnormalities in a large sample of young patients with TS in comparison to a sample of matched typically developing control individuals (CS) using diffusion MRI. The study included 35 patients with TS (3 females; mean age: 14.0 ± 3.3) and 35 CS (3 females; mean age: 13.9 ± 3.3). Diffusion MRI data was analysed using tract-based spatial statistics (TBSS) and probabilistic tractography. Patients with TS demonstrated both marked and widespread decreases in axial diffusivity (AD) together with altered WM connectivity. Moreover, we showed that tic severity and the frequency of premonitory urges (PU) were associated with increased connectivity between primary motor cortex (M1) and the caudate nuclei, and increased information transfer between M1 and the insula, respectively. This is to our knowledge the first study to employ both TBSS and probabilistic tractography in a sample of young patients with TS. Our results contribute to the limited existing literature demonstrating altered connectivity in TS and confirm previous results suggesting in particular, that altered insular function contributes to increased frequency of PU. Copyright © 2018. Published by Elsevier Ltd.
Zhan, Liang; Zhou, Jiayu; Wang, Yalin; Jin, Yan; Jahanshad, Neda; Prasad, Gautam; Nir, Talia M.; Leonardo, Cassandra D.; Ye, Jieping; Thompson, Paul M.; for the Alzheimer’s Disease Neuroimaging Initiative
2015-01-01
Alzheimer’s disease (AD) involves a gradual breakdown of brain connectivity, and network analyses offer a promising new approach to track and understand disease progression. Even so, our ability to detect degenerative changes in brain networks depends on the methods used. Here we compared several tractography and feature extraction methods to see which ones gave best diagnostic classification for 202 people with AD, mild cognitive impairment or normal cognition, scanned with 41-gradient diffusion-weighted magnetic resonance imaging as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project. We computed brain networks based on whole brain tractography with nine different methods – four of them tensor-based deterministic (FACT, RK2, SL, and TL), two orientation distribution function (ODF)-based deterministic (FACT, RK2), two ODF-based probabilistic approaches (Hough and PICo), and one “ball-and-stick” approach (Probtrackx). Brain networks derived from different tractography algorithms did not differ in terms of classification performance on ADNI, but performing principal components analysis on networks helped classification in some cases. Small differences may still be detectable in a truly vast cohort, but these experiments help assess the relative advantages of different tractography algorithms, and different post-processing choices, when used for classification. PMID:25926791
A probabilistic, distributed, recursive mechanism for decision-making in the brain
Gurney, Kevin N.
2018-01-01
Decision formation recruits many brain regions, but the procedure they jointly execute is unknown. Here we characterize its essential composition, using as a framework a novel recursive Bayesian algorithm that makes decisions based on spike-trains with the statistics of those in sensory cortex (MT). Using it to simulate the random-dot-motion task, we demonstrate it quantitatively replicates the choice behaviour of monkeys, whilst predicting losses of otherwise usable information from MT. Its architecture maps to the recurrent cortico-basal-ganglia-thalamo-cortical loops, whose components are all implicated in decision-making. We show that the dynamics of its mapped computations match those of neural activity in the sensorimotor cortex and striatum during decisions, and forecast those of basal ganglia output and thalamus. This also predicts which aspects of neural dynamics are and are not part of inference. Our single-equation algorithm is probabilistic, distributed, recursive, and parallel. Its success at capturing anatomy, behaviour, and electrophysiology suggests that the mechanism implemented by the brain has these same characteristics. PMID:29614077
Korolev, Igor O.; Symonds, Laura L.; Bozoki, Andrea C.
2016-01-01
Background Individuals with mild cognitive impairment (MCI) have a substantially increased risk of developing dementia due to Alzheimer's disease (AD). In this study, we developed a multivariate prognostic model for predicting MCI-to-dementia progression at the individual patient level. Methods Using baseline data from 259 MCI patients and a probabilistic, kernel-based pattern classification approach, we trained a classifier to distinguish between patients who progressed to AD-type dementia (n = 139) and those who did not (n = 120) during a three-year follow-up period. More than 750 variables across four data sources were considered as potential predictors of progression. These data sources included risk factors, cognitive and functional assessments, structural magnetic resonance imaging (MRI) data, and plasma proteomic data. Predictive utility was assessed using a rigorous cross-validation framework. Results Cognitive and functional markers were most predictive of progression, while plasma proteomic markers had limited predictive utility. The best performing model incorporated a combination of cognitive/functional markers and morphometric MRI measures and predicted progression with 80% accuracy (83% sensitivity, 76% specificity, AUC = 0.87). Predictors of progression included scores on the Alzheimer's Disease Assessment Scale, Rey Auditory Verbal Learning Test, and Functional Activities Questionnaire, as well as volume/cortical thickness of three brain regions (left hippocampus, middle temporal gyrus, and inferior parietal cortex). Calibration analysis revealed that the model is capable of generating probabilistic predictions that reliably reflect the actual risk of progression. Finally, we found that the predictive accuracy of the model varied with patient demographic, genetic, and clinical characteristics and could be further improved by taking into account the confidence of the predictions. Conclusions We developed an accurate prognostic model for predicting MCI-to-dementia progression over a three-year period. The model utilizes widely available, cost-effective, non-invasive markers and can be used to improve patient selection in clinical trials and identify high-risk MCI patients for early treatment. PMID:26901338
Palomero-Gallagher, Nicola; Eickhoff, Simon B; Hoffstaedter, Felix; Schleicher, Axel; Mohlberg, Hartmut; Vogt, Brent A; Amunts, Katrin; Zilles, Karl
2015-07-15
Human subgenual anterior cingulate cortex (sACC) is involved in affective experiences and fear processing. Functional neuroimaging studies view it as a homogeneous cortical entity. However, sACC comprises several distinct cyto- and receptorarchitectonical areas: 25, s24, s32, and the ventral portion of area 33. Thus, we hypothesized that the areas may also be connectionally and functionally distinct. We performed structural post mortem and functional in vivo analyses. We computed probabilistic maps of each area based on cytoarchitectonical analysis of ten post mortem brains. Maps, publicly available via the JuBrain atlas and the Anatomy Toolbox, were used to define seed regions of task-dependent functional connectivity profiles and quantitative functional decoding. sACC areas presented distinct co-activation patterns within widespread networks encompassing cortical and subcortical regions. They shared common functional domains related to emotion, perception and cognition. A more specific analysis of these domains revealed an association of s24 with sadness, and of s32 with fear processing. Both areas were activated during taste evaluation, and co-activated with the amygdala, a key node of the affective network. s32 co-activated with areas of the executive control network, and was associated with tasks probing cognition in which stimuli did not have an emotional component. Area 33 was activated by painful stimuli, and co-activated with areas of the sensorimotor network. These results support the concept of a connectional and functional specificity of the cyto- and receptorarchitectonically defined areas within the sACC, which can no longer be seen as a structurally and functionally homogeneous brain region. Copyright © 2015 Elsevier Inc. All rights reserved.
Connectivity in the human brain dissociates entropy and complexity of auditory inputs.
Nastase, Samuel A; Iacovella, Vittorio; Davis, Ben; Hasson, Uri
2015-03-01
Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. Copyright © 2014. Published by Elsevier Inc.
Lasaponara, Stefano; Dragone, Alessio; Lecce, Francesca; Di Russo, Francesco; Doricchi, Fabrizio
2015-10-01
To anticipate upcoming sensory events, the brain picks-up and exploits statistical regularities in the sensory environment. However, it is untested whether cumulated predictive knowledge about consciously seen stimuli improves the access to awareness of stimuli that usually go unseen. To explore this issue, we exploited the Attentional Blink (AB) effect, where conscious processing of a first visual target (T1) hinders detection of early following targets (T2). We report that timing uncertainty and low expectancy about the occurrence of consciously seen T2s presented outside the AB period, improve detection of early and otherwise often unseen T2s presented inside the AB. Recording of high-resolution Event Related Potentials (ERPs) and the study of their intracranial sources showed that the brain achieves this improvement by initially amplifying and extending the pre-conscious storage of T2s' traces signalled by the N2 wave originating in the extra-striate cortex. This enhancement in the N2 wave is followed by specific changes in the latency and amplitude of later components in the P3 wave (P3a and P3b), signalling access of the sensory trace to the network of parietal and frontal areas modulating conscious processing. These findings show that the interaction between conscious and unconscious processing changes adaptively as a function of the probabilistic properties of the sensory environment and that the combination of an active attentional state with loose probabilistic and temporal expectancies on forthcoming conscious events favors the emergence to awareness of otherwise unnoticed visual events. This likely provides an insight on the attentional conditions that predispose an active observer to unexpected "serendipitous" findings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Inferring brain-computational mechanisms with models of activity measurements
Diedrichsen, Jörn
2016-01-01
High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574316
Stillman, Chelsea M; You, Xiaozhen; Seaman, Kendra L; Vaidya, Chandan J; Howard, James H; Howard, Darlene V
2016-08-01
Accumulating evidence shows a positive relationship between mindfulness and explicit cognitive functioning, i.e., that which occurs with conscious intent and awareness. However, recent evidence suggests that there may be a negative relationship between mindfulness and implicit types of learning, or those that occur without conscious awareness or intent. Here we examined the neural mechanisms underlying the recently reported negative relationship between dispositional mindfulness and implicit probabilistic sequence learning in both younger and older adults. We tested the hypothesis that the relationship is mediated by communication, or functional connectivity, of brain regions once traditionally considered to be central to dissociable learning systems: the caudate, medial temporal lobe (MTL), and prefrontal cortex (PFC). We first replicated the negative relationship between mindfulness and implicit learning in a sample of healthy older adults (60-90 years old) who completed three event-related runs of an implicit sequence learning task. Then, using a seed-based connectivity approach, we identified task-related connectivity associated with individual differences in both learning and mindfulness. The main finding was that caudate-MTL connectivity (bilaterally) was positively correlated with learning and negatively correlated with mindfulness. Further, the strength of task-related connectivity between these regions mediated the negative relationship between mindfulness and learning. This pattern of results was limited to the older adults. Thus, at least in healthy older adults, the functional communication between two interactive learning-relevant systems can account for the relationship between mindfulness and implicit probabilistic sequence learning.
Discriminative confidence estimation for probabilistic multi-atlas label fusion.
Benkarim, Oualid M; Piella, Gemma; González Ballester, Miguel Angel; Sanroma, Gerard
2017-12-01
Quantitative neuroimaging analyses often rely on the accurate segmentation of anatomical brain structures. In contrast to manual segmentation, automatic methods offer reproducible outputs and provide scalability to study large databases. Among existing approaches, multi-atlas segmentation has recently shown to yield state-of-the-art performance in automatic segmentation of brain images. It consists in propagating the labelmaps from a set of atlases to the anatomy of a target image using image registration, and then fusing these multiple warped labelmaps into a consensus segmentation on the target image. Accurately estimating the contribution of each atlas labelmap to the final segmentation is a critical step for the success of multi-atlas segmentation. Common approaches to label fusion either rely on local patch similarity, probabilistic statistical frameworks or a combination of both. In this work, we propose a probabilistic label fusion framework based on atlas label confidences computed at each voxel of the structure of interest. Maximum likelihood atlas confidences are estimated using a supervised approach, explicitly modeling the relationship between local image appearances and segmentation errors produced by each of the atlases. We evaluate different spatial pooling strategies for modeling local segmentation errors. We also present a novel type of label-dependent appearance features based on atlas labelmaps that are used during confidence estimation to increase the accuracy of our label fusion. Our approach is evaluated on the segmentation of seven subcortical brain structures from the MICCAI 2013 SATA Challenge dataset and the hippocampi from the ADNI dataset. Overall, our results indicate that the proposed label fusion framework achieves superior performance to state-of-the-art approaches in the majority of the evaluated brain structures and shows more robustness to registration errors. Copyright © 2017 Elsevier B.V. All rights reserved.
A probabilistic template of human mesopontine tegmental nuclei from in vivo 7T MRI.
Bianciardi, Marta; Strong, Christian; Toschi, Nicola; Edlow, Brian L; Fischl, Bruce; Brown, Emery N; Rosen, Bruce R; Wald, Lawrence L
2018-04-15
Mesopontine tegmental nuclei such as the cuneiform, pedunculotegmental, oral pontine reticular, paramedian raphe and caudal linear raphe nuclei, are deep brain structures involved in arousal and motor function. Dysfunction of these nuclei is implicated in the pathogenesis of disorders of consciousness and sleep, as well as in neurodegenerative diseases. However, their localization in conventional neuroimages of living humans is difficult due to limited image sensitivity and contrast, and a stereotaxic probabilistic neuroimaging template of these nuclei in humans does not exist. We used semi-automatic segmentation of single-subject 1.1mm-isotropic 7T diffusion-fractional-anisotropy and T 2 -weighted images in healthy adults to generate an in vivo probabilistic neuroimaging structural template of these nuclei in standard stereotaxic (Montreal Neurological Institute, MNI) space. The template was validated through independent manual delineation, as well as leave-one-out validation and evaluation of nuclei volumes. This template can enable localization of five mesopontine tegmental nuclei in conventional images (e.g. 1.5T, 3T) in future studies of arousal and motor physiology (e.g. sleep, anesthesia, locomotion) and pathology (e.g. disorders of consciousness, sleep disorders, Parkinson's disease). The 7T magnetic resonance imaging procedure for single-subject delineation of these nuclei may also prove useful for future 7T studies of arousal and motor mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.
Weiner, Kevin S; Barnett, Michael A; Witthoft, Nathan; Golarai, Golijeh; Stigliani, Anthony; Kay, Kendrick N; Gomez, Jesse; Natu, Vaidehi S; Amunts, Katrin; Zilles, Karl; Grill-Spector, Kalanit
2018-04-15
The parahippocampal place area (PPA) is a widely studied high-level visual region in the human brain involved in place and scene processing. The goal of the present study was to identify the most probable location of place-selective voxels in medial ventral temporal cortex. To achieve this goal, we first used cortex-based alignment (CBA) to create a probabilistic place-selective region of interest (ROI) from one group of 12 participants. We then tested how well this ROI could predict place selectivity in each hemisphere within a new group of 12 participants. Our results reveal that a probabilistic ROI (pROI) generated from one group of 12 participants accurately predicts the location and functional selectivity in individual brains from a new group of 12 participants, despite between subject variability in the exact location of place-selective voxels relative to the folding of parahippocampal cortex. Additionally, the prediction accuracy of our pROI is significantly higher than that achieved by volume-based Talairach alignment. Comparing the location of the pROI of the PPA relative to published data from over 500 participants, including data from the Human Connectome Project, shows a striking convergence of the predicted location of the PPA and the cortical location of voxels exhibiting the highest place selectivity across studies using various methods and stimuli. Specifically, the most predictive anatomical location of voxels exhibiting the highest place selectivity in medial ventral temporal cortex is the junction of the collateral and anterior lingual sulci. Methodologically, we make this pROI freely available (vpnl.stanford.edu/PlaceSelectivity), which provides a means to accurately identify a functional region from anatomical MRI data when fMRI data are not available (for example, in patient populations). Theoretically, we consider different anatomical and functional factors that may contribute to the consistent anatomical location of place selectivity relative to the folding of high-level visual cortex. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Serb, Alexander; Bill, Johannes; Khiat, Ali; Berdan, Radu; Legenstein, Robert; Prodromakis, Themis
2016-09-01
In an increasingly data-rich world the need for developing computing systems that cannot only process, but ideally also interpret big data is becoming continuously more pressing. Brain-inspired concepts have shown great promise towards addressing this need. Here we demonstrate unsupervised learning in a probabilistic neural network that utilizes metal-oxide memristive devices as multi-state synapses. Our approach can be exploited for processing unlabelled data and can adapt to time-varying clusters that underlie incoming data by supporting the capability of reversible unsupervised learning. The potential of this work is showcased through the demonstration of successful learning in the presence of corrupted input data and probabilistic neurons, thus paving the way towards robust big-data processors.
Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains.
Bricq, S; Collet, Ch; Armspach, J P
2008-12-01
In the frame of 3D medical imaging, accurate segmentation of multimodal brain MR images is of interest for many brain disorders. However, due to several factors such as noise, imaging artifacts, intrinsic tissue variation and partial volume effects, tissue classification remains a challenging task. In this paper, we present a unifying framework for unsupervised segmentation of multimodal brain MR images including partial volume effect, bias field correction, and information given by a probabilistic atlas. Here-proposed method takes into account neighborhood information using a Hidden Markov Chain (HMC) model. Due to the limited resolution of imaging devices, voxels may be composed of a mixture of different tissue types, this partial volume effect is included to achieve an accurate segmentation of brain tissues. Instead of assigning each voxel to a single tissue class (i.e., hard classification), we compute the relative amount of each pure tissue class in each voxel (mixture estimation). Further, a bias field estimation step is added to the proposed algorithm to correct intensity inhomogeneities. Furthermore, atlas priors were incorporated using probabilistic brain atlas containing prior expectations about the spatial localization of different tissue classes. This atlas is considered as a complementary sensor and the proposed method is extended to multimodal brain MRI without any user-tunable parameter (unsupervised algorithm). To validate this new unifying framework, we present experimental results on both synthetic and real brain images, for which the ground truth is available. Comparison with other often used techniques demonstrates the accuracy and the robustness of this new Markovian segmentation scheme.
NASA Astrophysics Data System (ADS)
Haven, Emmanuel; Khrennikov, Andrei
2013-01-01
Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.
Bernas, Antoine; Barendse, Evelien M; Aldenkamp, Albert P; Backes, Walter H; Hofman, Paul A M; Hendriks, Marc P H; Kessels, Roy P C; Willems, Frans M J; de With, Peter H N; Zinger, Svitlana; Jansen, Jacobus F A
2018-02-01
Autism spectrum disorder (ASD) is mainly characterized by functional and communication impairments as well as restrictive and repetitive behavior. The leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, which can be assessed using functional magnetic resonance imaging (fMRI). Even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic, or resting-state, connectivity. Global default connectivity in individuals with autism versus controls is not well characterized, especially for a high-functioning young population. The aim of this study is to test whether high-functioning adolescents with ASD (HFA) have an abnormal resting-state functional connectivity. We performed spatial and temporal analyses on resting-state networks (RSNs) in 13 HFA adolescents and 13 IQ- and age-matched controls. For the spatial analysis, we used probabilistic independent component analysis (ICA) and a permutation statistical method to reveal the RSN differences between the groups. For the temporal analysis, we applied Granger causality to find differences in temporal neurodynamics. Controls and HFA display very similar patterns and strengths of resting-state connectivity. We do not find any significant differences between HFA adolescents and controls in the spatial resting-state connectivity. However, in the temporal dynamics of this connectivity, we did find differences in the causal effect properties of RSNs originating in temporal and prefrontal cortices. The results show a difference between HFA and controls in the temporal neurodynamics from the ventral attention network to the salience-executive network: a pathway involving cognitive, executive, and emotion-related cortices. We hypothesized that this weaker dynamic pathway is due to a subtle trigger challenging the cognitive state prior to the resting state.
Processes of believing: Where do they come from? What are they good for?
Seitz, Rüdiger J; Paloutzian, Raymond F; Angel, Hans-Ferdinand
2016-01-01
Despite the long scholarly discourse in Western theology and philosophy on religion, spirituality, and faith, explanations of what a belief and what believing is are still lacking. Recently, cognitive neuroscience research addressed the human capacity of believing. We present evidence suggesting that believing is a human brain function which results in probabilistic representations with attributes of personal meaning and value and thereby guides individuals' behavior. We propose that the same mental processes operating on narratives and rituals constitute belief systems in individuals and social groups. Our theoretical model of believing is suited to account for secular and non-secular belief formation.
Processes of believing: Where do they come from? What are they good for?
Seitz, Rüdiger J.; Paloutzian, Raymond F.; Angel, Hans-Ferdinand
2017-01-01
Despite the long scholarly discourse in Western theology and philosophy on religion, spirituality, and faith, explanations of what a belief and what believing is are still lacking. Recently, cognitive neuroscience research addressed the human capacity of believing. We present evidence suggesting that believing is a human brain function which results in probabilistic representations with attributes of personal meaning and value and thereby guides individuals’ behavior. We propose that the same mental processes operating on narratives and rituals constitute belief systems in individuals and social groups. Our theoretical model of believing is suited to account for secular and non-secular belief formation. PMID:28105309
Hong, J H; Kwon, H G; Jang, S H
2011-08-01
The STP has been regarded as the most plausible neural tract responsible for pathogenesis of central poststroke pain. The VPL nucleus has been a target for neurosurgical procedures for control of central poststroke pain. However, to our knowledge, no DTI studies have been conducted to investigate the somatotopic location of the STP at the VPL nucleus of the thalamus. In the current study, we attempted to investigate this location in the human brain by using a probabilistic tractography technique of DTI. DTI was performed at 1.5T by using a Synergy-L SENSE head coil. STPs for both the hand and leg were obtained by selection of fibers passing through 2 regions of interest (the area of the spinothalamic tract in the posterolateral medulla and the postcentral gyrus) for 41 healthy volunteers. Somatotopic mapping was obtained from the highest probabilistic location at the ACPC level. The highest probabilistic locations for the hand and leg were an average of 16.86 and 16.37 mm lateral to the ACPC line and 7.53 and 8.71 mm posterior to the midpoint of the ACPC line, respectively. Somatotopic locations for the hand and leg were different in the anteroposterior direction (P < .05); however, no difference was observed in the mediolateral direction (P > .05). We found the somatotopic locations for hand and leg of the STP at the VPL nucleus; these somatotopies were arranged in the anteroposterior direction.
Multisensory decisions provide support for probabilistic number representations.
Kanitscheider, Ingmar; Brown, Amanda; Pouget, Alexandre; Churchland, Anne K
2015-06-01
A large body of evidence suggests that an approximate number sense allows humans to estimate numerosity in sensory scenes. This ability is widely observed in humans, including those without formal mathematical training. Despite this, many outstanding questions remain about the nature of the numerosity representation in the brain. Specifically, it is not known whether approximate numbers are represented as scalar estimates of numerosity or, alternatively, as probability distributions over numerosity. In the present study, we used a multisensory decision task to distinguish these possibilities. We trained human subjects to decide whether a test stimulus had a larger or smaller numerosity compared with a fixed reference. Depending on the trial, the numerosity was presented as either a sequence of visual flashes or a sequence of auditory tones, or both. To test for a probabilistic representation, we varied the reliability of the stimulus by adding noise to the visual stimuli. In accordance with a probabilistic representation, we observed a significant improvement in multisensory compared with unisensory trials. Furthermore, a trial-by-trial analysis revealed that although individual subjects showed strategic differences in how they leveraged auditory and visual information, all subjects exploited the reliability of unisensory cues. An alternative, nonprobabilistic model, in which subjects combined cues without regard for reliability, was not able to account for these trial-by-trial choices. These findings provide evidence that the brain relies on a probabilistic representation for numerosity decisions. Copyright © 2015 the American Physiological Society.
Resting-State Functional Connectivity in Patients with Long-Term Remission of Cushing's Disease.
van der Werff, Steven J A; Pannekoek, J Nienke; Andela, Cornelie D; Meijer, Onno C; van Buchem, Mark A; Rombouts, Serge A R B; van der Mast, Roos C; Biermasz, Nienke R; Pereira, Alberto M; van der Wee, Nic J A
2015-07-01
Glucocorticoid disturbance can be a cause of psychiatric symptoms. Cushing's disease represents a unique model for examining the effects of prolonged exposure to high levels of endogenous cortisol on the human brain as well as for examining the relation between these effects and psychiatric symptomatology. This study aimed to investigate resting-state functional connectivity (RSFC) of the limbic network, the default mode network (DMN), and the executive control network in patients with long-term remission of Cushing's disease. RSFC of these three networks of interest was compared between patients in remission of Cushing's disease (n=24; 4 male, mean age=44.96 years) and matched healthy controls (n=24; 4 male, mean age=46.5 years), using probabilistic independent component analysis to extract the networks and a dual regression method to compare both groups. Psychological and cognitive functioning was assessed with validated questionnaires and interviews. In comparison with controls, patients with remission of Cushing's disease showed an increased RSFC between the limbic network and the subgenual subregion of the anterior cingulate cortex (ACC) as well as an increased RSFC of the DMN in the left lateral occipital cortex. However, these findings were not associated with psychiatric symptoms in the patient group. Our data indicate that previous exposure to hypercortisolism is related to persisting changes in brain function.
NASA Technical Reports Server (NTRS)
Boyce, L.
1992-01-01
A probabilistic general material strength degradation model has been developed for structural components of aerospace propulsion systems subjected to diverse random effects. The model has been implemented in two FORTRAN programs, PROMISS (Probabilistic Material Strength Simulator) and PROMISC (Probabilistic Material Strength Calibrator). PROMISS calculates the random lifetime strength of an aerospace propulsion component due to as many as eighteen diverse random effects. Results are presented in the form of probability density functions and cumulative distribution functions of lifetime strength. PROMISC calibrates the model by calculating the values of empirical material constants.
Three validation metrics for automated probabilistic image segmentation of brain tumours
Zou, Kelly H.; Wells, William M.; Kikinis, Ron; Warfield, Simon K.
2005-01-01
SUMMARY The validity of brain tumour segmentation is an important issue in image processing because it has a direct impact on surgical planning. We examined the segmentation accuracy based on three two-sample validation metrics against the estimated composite latent gold standard, which was derived from several experts’ manual segmentations by an EM algorithm. The distribution functions of the tumour and control pixel data were parametrically assumed to be a mixture of two beta distributions with different shape parameters. We estimated the corresponding receiver operating characteristic curve, Dice similarity coefficient, and mutual information, over all possible decision thresholds. Based on each validation metric, an optimal threshold was then computed via maximization. We illustrated these methods on MR imaging data from nine brain tumour cases of three different tumour types, each consisting of a large number of pixels. The automated segmentation yielded satisfactory accuracy with varied optimal thresholds. The performances of these validation metrics were also investigated via Monte Carlo simulation. Extensions of incorporating spatial correlation structures using a Markov random field model were considered. PMID:15083482
Raufelder, Diana; Boehme, Rebecca; Romund, Lydia; Golde, Sabrina; Lorenz, Robert C.; Gleich, Tobias; Beck, Anne
2016-01-01
This multi-methodological study applied functional magnetic resonance imaging to investigate neural activation in a group of adolescent students (N = 88) during a probabilistic reinforcement learning task. We related patterns of emerging brain activity and individual learning rates to socio-motivational (in-)dependence manifested in four different motivation types (MTs): (1) peer-dependent MT, (2) teacher-dependent MT, (3) peer-and-teacher-dependent MT, (4) peer-and-teacher-independent MT. A multinomial regression analysis revealed that the individual learning rate predicts students’ membership to the independent MT, or the peer-and-teacher-dependent MT. Additionally, the striatum, a brain region associated with behavioral adaptation and flexibility, showed increased learning-related activation in students with motivational independence. Moreover, the prefrontal cortex, which is involved in behavioral control, was more active in students of the peer-and-teacher-dependent MT. Overall, this study offers new insights into the interplay of motivation and learning with (1) a focus on inter-individual differences in the role of peers and teachers as source of students’ individual motivation and (2) its potential neurobiological basis. PMID:27199873
Yuan, Kai; Yu, Dahua; Bi, Yanzhi; Wang, Ruonan; Li, Min; Zhang, Yajuan; Dong, Minghao; Zhai, Jinquan; Li, Yangding; Lu, Xiaoqi; Tian, Jie
2017-09-01
Although the activation of the prefrontal cortex (PFC) and the striatum had been found in smoking cue induced craving task, whether and how the functional interactions and white matter integrity between these brain regions contribute to craving processing during smoking cue exposure remains unknown. Twenty-five young male smokers and 26 age- and gender-matched nonsmokers participated in the smoking cue-reactivity task. Craving related brain activation was extracted and psychophysiological interactions (PPI) analysis was used to specify the PFC-efferent pathways contributed to smoking cue-induced craving. Diffusion tensor imaging (DTI) and probabilistic tractography was used to explore whether the fiber connectivity strength facilitated functional coupling of the circuit with the smoking cue-induced craving. The PPI analysis revealed the negative functional coupling of the left dorsolateral prefrontal cortex (DLPFC) and the caudate during smoking cue induced craving task, which positively correlated with the craving score. Neither significant activation nor functional connectivity in smoking cue exposure task was detected in nonsmokers. DTI analyses revealed that fiber tract integrity negatively correlated with functional coupling in the DLPFC-caudate pathway and activation of the caudate induced by smoking cue in smokers. Moreover, the relationship between the fiber connectivity integrity of the left DLPFC-caudate and smoking cue induced caudate activation can be fully mediated by functional coupling strength of this circuit in smokers. The present study highlighted the left DLPFC-caudate pathway in smoking cue-induced craving in smokers, which may reflect top-down prefrontal modulation of striatal reward processing in smoking cue induced craving processing. Hum Brain Mapp 38:4644-4656, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A probabilistic atlas of human brainstem pathways based on connectome imaging data.
Tang, Yuchun; Sun, Wei; Toga, Arthur W; Ringman, John M; Shi, Yonggang
2018-04-01
The brainstem is a critical structure that regulates vital autonomic functions, houses the cranial nerves and their nuclei, relays motor and sensory information between the brain and spinal cord, and modulates cognition, mood, and emotions. As a primary relay center, the fiber pathways of the brainstem include efferent and afferent connections among the cerebral cortex, spinal cord, and cerebellum. While diffusion MRI has been successfully applied to map various brain pathways, its application for the in vivo imaging of the brainstem pathways has been limited due to inadequate resolution and large susceptibility-induced distortion artifacts. With the release of high-resolution data from the Human Connectome Project (HCP), there is increasing interest in mapping human brainstem pathways. Previous works relying on HCP data to study brainstem pathways, however, did not consider the prevalence (>80%) of large distortions in the brainstem even after the application of correction procedures from the HCP-Pipeline. They were also limited in the lack of adequate consideration of subject variability in either fiber pathways or region of interests (ROIs) used for bundle reconstruction. To overcome these limitations, we develop in this work a probabilistic atlas of 23 major brainstem bundles using high-quality HCP data passing rigorous quality control. For the large-scale data from the 500-Subject release of HCP, we conducted extensive quality controls to exclude subjects with severe distortions in the brainstem area. After that, we developed a systematic protocol to manually delineate 1300 ROIs on 20 HCP subjects (10 males; 10 females) for the reconstruction of fiber bundles using tractography techniques. Finally, we leveraged our novel connectome modeling techniques including high order fiber orientation distribution (FOD) reconstruction from multi-shell diffusion imaging and topography-preserving tract filtering algorithms to successfully reconstruct the 23 fiber bundles for each subject, which were then used to calculate the probabilistic atlases in the MNI152 space for public release. In our experimental results, we demonstrate that our method yielded anatomically faithful reconstruction of the brainstem pathways and achieved improved performance in comparison with an existing atlas of cerebellar peduncles based on HCP data. These atlases have been publicly released on NITRIC (https://www.nitrc.org/projects/brainstem_atlas/) and can be readily used by brain imaging researchers interested in studying brainstem pathways. Copyright © 2017 Elsevier Inc. All rights reserved.
Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang
2011-01-01
An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows (“explaining away”) and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons. PMID:22219717
Automated liver segmentation using a normalized probabilistic atlas
NASA Astrophysics Data System (ADS)
Linguraru, Marius George; Li, Zhixi; Shah, Furhawn; Chin, See; Summers, Ronald M.
2009-02-01
Probabilistic atlases of anatomical organs, especially the brain and the heart, have become popular in medical image analysis. We propose the construction of probabilistic atlases which retain structural variability by using a size-preserving modified affine registration. The organ positions are modeled in the physical space by normalizing the physical organ locations to an anatomical landmark. In this paper, a liver probabilistic atlas is constructed and exploited to automatically segment liver volumes from abdominal CT data. The atlas is aligned with the patient data through a succession of affine and non-linear registrations. The overlap and correlation with manual segmentations are 0.91 (0.93 DICE coefficient) and 0.99 respectively. Little work has taken place on the integration of volumetric measures of liver abnormality to clinical evaluations, which rely on linear estimates of liver height. Our application measures the liver height at the mid-hepatic line (0.94 correlation with manual measurements) and indicates that its combination with volumetric estimates could assist the development of a noninvasive tool to assess hepatomegaly.
Fully probabilistic control design in an adaptive critic framework.
Herzallah, Randa; Kárný, Miroslav
2011-12-01
Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem; in particular, very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic control algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this paper. Copyright © 2011 Elsevier Ltd. All rights reserved.
Vanhaudenhuyse, Audrey; Noirhomme, Quentin; Tshibanda, Luaba J.-F.; Bruno, Marie-Aurelie; Boveroux, Pierre; Schnakers, Caroline; Soddu, Andrea; Perlbarg, Vincent; Ledoux, Didier; Brichant, Jean-François; Moonen, Gustave; Maquet, Pierre; Greicius, Michael D.
2010-01-01
The ‘default network’ is defined as a set of areas, encompassing posterior-cingulate/precuneus, anterior cingulate/mesiofrontal cortex and temporo-parietal junctions, that show more activity at rest than during attention-demanding tasks. Recent studies have shown that it is possible to reliably identify this network in the absence of any task, by resting state functional magnetic resonance imaging connectivity analyses in healthy volunteers. However, the functional significance of these spontaneous brain activity fluctuations remains unclear. The aim of this study was to test if the integrity of this resting-state connectivity pattern in the default network would differ in different pathological alterations of consciousness. Fourteen non-communicative brain-damaged patients and 14 healthy controls participated in the study. Connectivity was investigated using probabilistic independent component analysis, and an automated template-matching component selection approach. Connectivity in all default network areas was found to be negatively correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative then coma patients. Furthermore, precuneus connectivity was found to be significantly stronger in minimally conscious patients as compared with unconscious patients. Locked-in syndrome patient’s default network connectivity was not significantly different from controls. Our results show that default network connectivity is decreased in severely brain-damaged patients, in proportion to their degree of consciousness impairment. Future prospective studies in a larger patient population are needed in order to evaluate the prognostic value of the presented methodology. PMID:20034928
A Hough Transform Global Probabilistic Approach to Multiple-Subject Diffusion MRI Tractography
Aganj, Iman; Lenglet, Christophe; Jahanshad, Neda; Yacoub, Essa; Harel, Noam; Thompson, Paul M.; Sapiro, Guillermo
2011-01-01
A global probabilistic fiber tracking approach based on the voting process provided by the Hough transform is introduced in this work. The proposed framework tests candidate 3D curves in the volume, assigning to each one a score computed from the diffusion images, and then selects the curves with the highest scores as the potential anatomical connections. The algorithm avoids local minima by performing an exhaustive search at the desired resolution. The technique is easily extended to multiple subjects, considering a single representative volume where the registered high-angular resolution diffusion images (HARDI) from all the subjects are non-linearly combined, thereby obtaining population-representative tracts. The tractography algorithm is run only once for the multiple subjects, and no tract alignment is necessary. We present experimental results on HARDI volumes, ranging from simulated and 1.5T physical phantoms to 7T and 4T human brain and 7T monkey brain datasets. PMID:21376655
Remembrance of inferences past: Amortization in human hypothesis generation.
Dasgupta, Ishita; Schulz, Eric; Goodman, Noah D; Gershman, Samuel J
2018-05-21
Bayesian models of cognition assume that people compute probability distributions over hypotheses. However, the required computations are frequently intractable or prohibitively expensive. Since people often encounter many closely related distributions, selective reuse of computations (amortized inference) is a computationally efficient use of the brain's limited resources. We present three experiments that provide evidence for amortization in human probabilistic reasoning. When sequentially answering two related queries about natural scenes, participants' responses to the second query systematically depend on the structure of the first query. This influence is sensitive to the content of the queries, only appearing when the queries are related. Using a cognitive load manipulation, we find evidence that people amortize summary statistics of previous inferences, rather than storing the entire distribution. These findings support the view that the brain trades off accuracy and computational cost, to make efficient use of its limited cognitive resources to approximate probabilistic inference. Copyright © 2018 Elsevier B.V. All rights reserved.
White matter lesions relate to tract-specific reductions in functional connectivity.
Langen, Carolyn D; Zonneveld, Hazel I; White, Tonya; Huizinga, Wyke; Cremers, Lotte G M; de Groot, Marius; Ikram, Mohammad Arfan; Niessen, Wiro J; Vernooij, Meike W
2017-03-01
White matter lesions play a role in cognitive decline and dementia. One presumed pathway is through disconnection of functional networks. Little is known about location-specific effects of lesions on functional connectivity. This study examined location-specific effects within anatomically-defined white matter tracts in 1584 participants of the Rotterdam Study, aged 50-95. Tracts were delineated from diffusion magnetic resonance images using probabilistic tractography. Lesions were segmented on fluid-attenuated inversion recovery images. Functional connectivity was defined across each tract on resting-state functional magnetic resonance images by using gray matter parcellations corresponding to the tract ends and calculating the correlation of the mean functional activity between the gray matter regions. A significant relationship between both local and brain-wide lesion load and tract-specific functional connectivity was found in several tracts using linear regressions, also after Bonferroni correction. Indirect connectivity analyses revealed that tract-specific functional connectivity is affected by lesions in several tracts simultaneously. These results suggest that local white matter lesions can decrease tract-specific functional connectivity, both in direct and indirect connections. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sotolongo-Costa, O.; Gaggero-Sager, L. M.; Becker, J. T.; Maestu, F.; Sotolongo-Grau, O.
2017-04-01
Aging associated brain decline often result in some kind of dementia. Even when this is a complex brain disorder a physical model can be used in order to describe its general behavior. A probabilistic model for the development of dementia is obtained and fitted to some experimental data obtained from the Alzheimer's Disease Neuroimaging Initiative. It is explained how dementia appears as a consequence of aging and why it is irreversible.
Stillman, Chelsea M.; You, Xiaozhen; Seaman, Kendra L.; Vaidya, Chandan J.; Howard, James H.; Howard, Darlene V.
2016-01-01
Accumulating evidence shows a positive relationship between mindfulness and explicit cognitive functioning, i.e., that which occurs with conscious intent and awareness. However, recent evidence suggests that there may be a negative relationship between mindfulness and implicit types of learning, or those that occur without conscious awareness or intent. Here we examined the neural mechanisms underlying the recently reported negative relationship between dispositional mindfulness and implicit probabilistic sequence learning in both younger and older adults. We tested the hypothesis that the relationship is mediated by communication, or functional connectivity, of brain regions once traditionally considered to be central to dissociable learning systems: the caudate, medial temporal lobe (MTL), and prefrontal cortex (PFC). We first replicated the negative relationship between mindfulness and implicit learning in a sample of healthy older adults (60–90 years old) who completed three event-related runs of an implicit sequence learning task. Then, using a seed-based connectivity approach, we identified task-related connectivity associated with individual differences in both learning and mindfulness. The main finding was that caudate-MTL connectivity (bilaterally) was positively correlated with learning and negatively correlated with mindfulness. Further, the strength of task-related connectivity between these regions mediated the negative relationship between mindfulness and learning. This pattern of results was limited to the older adults. Thus, at least in healthy older adults, the functional communication between two interactive learning-relevant systems can account for the relationship between mindfulness and implicit probabilistic sequence learning. PMID:27121302
Learning to Estimate Dynamical State with Probabilistic Population Codes.
Makin, Joseph G; Dichter, Benjamin K; Sabes, Philip N
2015-11-01
Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH)-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.
Learning to Estimate Dynamical State with Probabilistic Population Codes
Sabes, Philip N.
2015-01-01
Tracking moving objects, including one’s own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, “probabilistic population codes.” We show that a recurrent neural network—a modified form of an exponential family harmonium (EFH)—that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states. PMID:26540152
Probabilistic simulation of stress concentration in composite laminates
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Murthy, P. L. N.; Liaw, L.
1993-01-01
A computational methodology is described to probabilistically simulate the stress concentration factors in composite laminates. This new approach consists of coupling probabilistic composite mechanics with probabilistic finite element structural analysis. The probabilistic composite mechanics is used to probabilistically describe all the uncertainties inherent in composite material properties while probabilistic finite element is used to probabilistically describe the uncertainties associated with methods to experimentally evaluate stress concentration factors such as loads, geometry, and supports. The effectiveness of the methodology is demonstrated by using it to simulate the stress concentration factors in composite laminates made from three different composite systems. Simulated results match experimental data for probability density and for cumulative distribution functions. The sensitivity factors indicate that the stress concentration factors are influenced by local stiffness variables, by load eccentricities and by initial stress fields.
Use of adjoint methods in the probabilistic finite element approach to fracture mechanics
NASA Technical Reports Server (NTRS)
Liu, Wing Kam; Besterfield, Glen; Lawrence, Mark; Belytschko, Ted
1988-01-01
The adjoint method approach to probabilistic finite element methods (PFEM) is presented. When the number of objective functions is small compared to the number of random variables, the adjoint method is far superior to the direct method in evaluating the objective function derivatives with respect to the random variables. The PFEM is extended to probabilistic fracture mechanics (PFM) using an element which has the near crack-tip singular strain field embedded. Since only two objective functions (i.e., mode I and II stress intensity factors) are needed for PFM, the adjoint method is well suited.
Intentionality and "free-will" from a neurodevelopmental perspective.
Leisman, Gerry; Machado, Calixto; Melillo, Robert; Mualem, Raed
2012-01-01
The nature of free-will as a subset of intentionality and probabilistic and deterministic function is explored with the indications being that human behavior is highly predictable which in turn, should compromise the notion of free-will. Data supports the notion that age relates to the ability to progressively effectively establish goals performed by fixed action patterns and that these FAPs produce outcomes that in turn modify choices (free-will) for which FAPs need to be employed. Early goals require behaviors that require greater automation in terms of FAPs that lead to goals being achieved or not; if not, then one can change behavior and that in turn is free-will. Goals change with age based on experience which is similar to the way in which movement functions. We hypothesize that human prefrontal cortex development was a natural expansion of the evolutionarily earlier developed areas of the frontal lobe and that goal-directed movements and behavior, including choice and free-will, provided for an expansion of those areas. The same regions of the human central nervous system that were already employed for better control, coordination, and timing of movements, expanded in parallel with the frontal cortex. The initial focus of the frontal lobes was the control of motor activity, but as the movements became more goal-directed, greater cognitive control over movement was necessitated leading to voluntary control of FAPs or free-will. The paper reviews the neurobiology, neurohistology, and electrophysiology of brain connectivities developmentally, along with the development of those brain functions linked to decision-making from a developmental viewpoint. The paper reviews the neurological development of the frontal lobes and inter-regional brain connectivities in the context of optimization of communication systems within the brain and nervous system and its relation to free-will.
Dacosta-Aguayo, Rosalia; Graña, Manuel; Iturria-Medina, Yasser; Fernández-Andújar, Marina; López-Cancio, Elena; Cáceres, Cynthia; Bargalló, Núria; Barrios, Maite; Clemente, Immaculada; Toran, Pera; Forés, Rosa; Dávalos, Antoni; Auer, Tibor; Mataró, Maria
2015-01-01
Resting-state studies conducted with stroke patients are scarce. The study of brain activity and connectivity at rest provides a unique opportunity for the investigation of brain rewiring after stroke and plasticity changes. This study sought to identify dynamic changes in the functional organization of the default mode network (DMN) of stroke patients at three months after stroke. Eleven patients (eight male and three female; age range: 48–72) with right cortical and subcortical ischemic infarctions and 17 controls (eleven males and six females; age range: 57–69) were assessed by neurological and neuropsychological examinations and scanned with resting-state functional magnetic ressonance imaging. First, we explored group differences in functional activity within the DMN by means of probabilistic independent component analysis followed by a dual regression approach. Second, we estimated functional connectivity between 11 DMN nodes both locally by means of seed-based connectivity analysis, as well as globally by means of graph-computation analysis. We found that patients had greater DMN activity in the left precuneus and the left anterior cingulate gyrus when compared with healthy controls (P < 0.05 family-wise error corrected). Seed-based connectivity analysis showed that stroke patients had significant impairment (P = 0.014; threshold = 2.00) in the connectivity between the following five DMN nodes: left superior frontal gyrus (lSFG) and posterior cingulate cortex (t = 2.01); left parahippocampal gyrus and right superior frontal gyrus (t = 2.11); left parahippocampal gyrus and lSFG (t = 2.39); right parietal and lSFG (t = 2.29). Finally, mean path length obtained from graph-computation analysis showed positive correlations with semantic fluency test (rs = 0.454; P = 0.023), phonetic fluency test (rs = 0.523; P = 0.007) and the mini mental state examination (rs = 0.528; P = 0.007). In conclusion, the ability to regulate activity of the DMN appears to be a central part of normal brain function in stroke patients. Our study expands the understanding of the changes occurring in the brain after stroke providing a new avenue for investigating lesion-induced network plasticity. Hum Brain Mapp 36:577–590, 2015. © 2014 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:25324040
Milienne-Petiot, Morgane; Kesby, James P; Graves, Mary; van Enkhuizen, Jordy; Semenova, Svetlana; Minassian, Arpi; Markou, Athina; Geyer, Mark A; Young, Jared W
2017-02-01
Bipolar disorder (BD) mania patients exhibit poor cognition and reward-seeking/hypermotivation, negatively impacting a patient's quality of life. Current treatments (e.g., lithium), do not treat such deficits. Treatment development has been limited due to a poor understanding of the neural mechanisms underlying these behaviors. Here, we investigated putative mechanisms underlying cognition and reward-seeking/motivational changes relevant to BD mania patients using two validated mouse models and neurochemical analyses. The effects of reducing dopamine transporter (DAT) functioning via genetic (knockdown vs. wild-type littermates), or pharmacological (GBR12909- vs. vehicle-treated C57BL/6J mice) means were assessed in the probabilistic reversal learning task (PRLT), and progressive ratio breakpoint (PRB) test, during either water or chronic lithium treatment. These tasks quantify reward learning and effortful motivation, respectively. Neurochemistry was performed on brain samples of DAT mutants ± chronic lithium using high performance liquid chromatography. Reduced DAT functioning increased reversals in the PRLT, an effect partially attenuated by chronic lithium. Chronic lithium alone slowed PRLT acquisition. Reduced DAT functioning increased motivation (PRB), an effect attenuated by lithium in GBR12909-treated mice. Neurochemical analyses revealed that DAT knockdown mice exhibited elevated homovanillic acid levels, but that lithium had no effect on these elevated levels. Reducing DAT functioning recreates many aspects of BD mania including hypermotivation and improved reversal learning (switching), as well as elevated homovanillic acid levels. Chronic lithium only exerted main effects, impairing learning and elevating norepinephrine and serotonin levels of mice, not specifically treating the underlying mechanisms identified in these models. Copyright © 2016 Elsevier Ltd. All rights reserved.
Probabilistic Evaluation of Blade Impact Damage
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Abumeri, G. H.
2003-01-01
The response to high velocity impact of a composite blade is probabilistically evaluated. The evaluation is focused on quantifying probabilistically the effects of uncertainties (scatter) in the variables that describe the impact, the blade make-up (geometry and material), the blade response (displacements, strains, stresses, frequencies), the blade residual strength after impact, and the blade damage tolerance. The results of probabilistic evaluations results are in terms of probability cumulative distribution functions and probabilistic sensitivities. Results show that the blade has relatively low damage tolerance at 0.999 probability of structural failure and substantial at 0.01 probability.
Reconstructing cerebrovascular networks under local physiological constraints by integer programming
Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D.; ...
2015-04-23
We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to the probabilistic model. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (µCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of ourmore » probabilistic model. As a result, we perform experiments on micro magnetic resonance angiography (µMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.« less
Probabilistic Aeroelastic Analysis of Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, S. K.; Stefko, G. L.
2004-01-01
A probabilistic approach is described for aeroelastic analysis of turbomachinery blade rows. Blade rows with subsonic flow and blade rows with supersonic flow with subsonic leading edge are considered. To demonstrate the probabilistic approach, the flutter frequency, damping and forced response of a blade row representing a compressor geometry is considered. The analysis accounts for uncertainties in structural and aerodynamic design variables. The results are presented in the form of probabilistic density function (PDF) and sensitivity factors. For subsonic flow cascade, comparisons are also made with different probabilistic distributions, probabilistic methods, and Monte-Carlo simulation. The approach shows that the probabilistic approach provides a more realistic and systematic way to assess the effect of uncertainties in design variables on the aeroelastic instabilities and response.
Joint brain connectivity estimation from diffusion and functional MRI data
NASA Astrophysics Data System (ADS)
Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.
2015-03-01
Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information flow is introduced and used to model the propagation of information between GM areas through WM fiber bundles. The link capacity, i.e., ability to transfer information, is characterized by the relative strength of fiber bundles, e.g., fiber count gathered from the tractography of dMRI data. The node information demand is considered to be proportional to the correlation between neural activity at various cortical areas involved in a particular functional mode (e.g. visual, motor, etc.). These two properties lead to the link capacity and node demand constraints in the proposed model. Moreover, the information flow of a link cannot exceed the demand from either end node. This is captured by the feasibility constraints. Two different cost functions are considered in the optimization formulation in this paper. The first cost function, the reciprocal of fiber strength represents the unit cost for information passing through the link. In the second cost function, a min-max (minimizing the maximal link load) approach is used to balance the usage of each link. Optimizing the first cost function selects the pathway with strongest fiber strength for information propagation. In the second case, the optimization procedure finds all the possible propagation pathways and allocates the flow proportionally to their strength. Additionally, a penalty term is incorporated with both the cost functions to capture the possible missing and weak anatomical connections. With this set of constraints and the proposed cost functions, solving the network optimization problem recovers missing and weak anatomical connections supported by the functional information and provides the functional-associated anatomical subnetworks. Feasibility is demonstrated using realistic diffusion and functional MRI phantom data. It is shown that the proposed model recovers the maximum number of true connections, with fewest number of false connections when compared with the connectivity derived from a joint probabilistic model using the expectation-maximization (EM) algorithm presented in a prior work. We also apply the proposed method to data provided by the Human Connectome Project (HCP).
Caspers, Julian; Zilles, Karl; Amunts, Katrin; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.
2016-01-01
The ventral stream of the human extrastriate visual cortex shows a considerable functional heterogeneity from early visual processing (posterior) to higher, domain-specific processing (anterior). The fusiform gyrus hosts several of those “high-level” functional areas. We recently found a subdivision of the posterior fusiform gyrus on the microstructural level, that is, two distinct cytoarchitectonic areas, FG1 and FG2 (Caspers et al., Brain Structure & Function, 2013). To gain a first insight in the function of these two areas, here we studied their behavioral involvement and coactivation patterns by means of meta-analytic connectivity modeling based on the BrainMap database (www.brainmap.org), using probabilistic maps of these areas as seed regions. The coactivation patterns of the areas support the concept of a common involvement in a core network subserving different cognitive tasks, that is, object recognition, visual language perception, or visual attention. In addition, the analysis supports the previous cytoarchitectonic parcellation, indicating that FG1 appears as a transitional area between early and higher visual cortex and FG2 as a higher-order one. The latter area is furthermore lateralized, as it shows strong relations to the visual language processing system in the left hemisphere, while its right side is stronger associated with face selective regions. These findings indicate that functional lateralization of area FG2 relies on a different pattern of connectivity rather than side-specific cytoarchitectonic features. PMID:24038902
Acupuncture Modulates Resting State Connectivity in Default and Sensorimotor Brain Networks
Dhond, Rupali P.; Yeh, Calvin; Park, Kyungmo; Kettner, Norman; Napadow, Vitaly
2008-01-01
Previous studies have defined low-frequency, spatially consistent networks in resting fMRI data which may reflect functional connectivity. We sought to explore how a complex somatosensory stimulation, acupuncture, influences intrinsic connectivity in two of these networks: the default mode network (DMN) and sensorimotor network (SMN). We analyzed resting fMRI data taken before and after verum and sham acupuncture. Electrocardiography data was used to infer autonomic modulation through measures of heart rate variability (HRV). Probabilistic independent component analysis was used to separate resting fMRI data into DMN and SMN components. Following verum, but not sham, acupuncture there was increased DMN connectivity with pain (anterior cingulate cortex (ACC), periaqueductal gray), affective (amygdala, ACC), and memory (hippocampal formation, middle temporal gyrus) related brain regions. Furthermore, increased DMN connectivity with the hippocampal formation, a region known to support memory and interconnected with autonomic brain regions, was negatively correlated with acupuncture-induced increase in a sympathetic related HRV metric (LFu), and positively correlated with a parasympathetic related metric (HFu). Following verum, but not sham, acupuncture there was also increased SMN connectivity with pain related brain regions (ACC, cerebellum). We attribute differences between verum and sham acupuncture to more varied and stronger sensations evoked by verum acupuncture. Our results demonstrate for the first time that acupuncture can enhance the post-stimulation spatial extent of resting brain networks to include anti-nociceptive, memory, and affective brain regions. This modulation and sympathovagal response may relate to acupuncture analgesia and other potential therapeutic effects. PMID:18337009
Buesing, Lars; Bill, Johannes; Nessler, Bernhard; Maass, Wolfgang
2011-01-01
The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons. PMID:22096452
A single dual-stream framework for syntactic computations in music and language.
Musso, Mariacristina; Weiller, Cornelius; Horn, Andreas; Glauche, Volkmer; Umarova, Roza; Hennig, Jürgen; Schneider, Albrecht; Rijntjes, Michel
2015-08-15
This study is the first to compare in the same subjects the specific spatial distribution and the functional and anatomical connectivity of the neuronal resources that activate and integrate syntactic representations during music and language processing. Combining functional magnetic resonance imaging with functional connectivity and diffusion tensor imaging-based probabilistic tractography, we examined the brain network involved in the recognition and integration of words and chords that were not hierarchically related to the preceding syntax; that is, those deviating from the universal principles of grammar and tonal relatedness. This kind of syntactic processing in both domains was found to rely on a shared network in the left hemisphere centered on the inferior part of the inferior frontal gyrus (IFG), including pars opercularis and pars triangularis, and on dorsal and ventral long association tracts connecting this brain area with temporo-parietal regions. Language processing utilized some adjacent left hemispheric IFG and middle temporal regions more than music processing, and music processing also involved right hemisphere regions not activated in language processing. Our data indicate that a dual-stream system with dorsal and ventral long association tracts centered on a functionally and structurally highly differentiated left IFG is pivotal for domain-general syntactic competence over a broad range of elements including words and chords. Copyright © 2015 Elsevier Inc. All rights reserved.
Resting-State Functional Connectivity in Patients with Long-Term Remission of Cushing's Disease
van der Werff, Steven J A; Pannekoek, J Nienke; Andela, Cornelie D; Meijer, Onno C; van Buchem, Mark A; Rombouts, Serge A R B; van der Mast, Roos C; Biermasz, Nienke R; Pereira, Alberto M; van der Wee, Nic J A
2015-01-01
Glucocorticoid disturbance can be a cause of psychiatric symptoms. Cushing's disease represents a unique model for examining the effects of prolonged exposure to high levels of endogenous cortisol on the human brain as well as for examining the relation between these effects and psychiatric symptomatology. This study aimed to investigate resting-state functional connectivity (RSFC) of the limbic network, the default mode network (DMN), and the executive control network in patients with long-term remission of Cushing's disease. RSFC of these three networks of interest was compared between patients in remission of Cushing's disease (n=24; 4 male, mean age=44.96 years) and matched healthy controls (n=24; 4 male, mean age=46.5 years), using probabilistic independent component analysis to extract the networks and a dual regression method to compare both groups. Psychological and cognitive functioning was assessed with validated questionnaires and interviews. In comparison with controls, patients with remission of Cushing's disease showed an increased RSFC between the limbic network and the subgenual subregion of the anterior cingulate cortex (ACC) as well as an increased RSFC of the DMN in the left lateral occipital cortex. However, these findings were not associated with psychiatric symptoms in the patient group. Our data indicate that previous exposure to hypercortisolism is related to persisting changes in brain function. PMID:25652248
Kindermans, Pieter-Jan; Verschore, Hannes; Schrauwen, Benjamin
2013-10-01
In recent years, in an attempt to maximize performance, machine learning approaches for event-related potential (ERP) spelling have become more and more complex. In this paper, we have taken a step back as we wanted to improve the performance without building an overly complex model, that cannot be used by the community. Our research resulted in a unified probabilistic model for ERP spelling, which is based on only three assumptions and incorporates language information. On top of that, the probabilistic nature of our classifier yields a natural dynamic stopping strategy. Furthermore, our method uses the same parameters across 25 subjects from three different datasets. We show that our classifier, when enhanced with language models and dynamic stopping, improves the spelling speed and accuracy drastically. Additionally, we would like to point out that as our model is entirely probabilistic, it can easily be used as the foundation for complex systems in future work. All our experiments are executed on publicly available datasets to allow for future comparison with similar techniques.
Fully probabilistic control for stochastic nonlinear control systems with input dependent noise.
Herzallah, Randa
2015-03-01
Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.
Predictive Technologies: Can Smart Tools Augment the Brain's Predictive Abilities?
Pezzulo, Giovanni; D'Ausilio, Alessandro; Gaggioli, Andrea
2016-01-01
The ability of “looking into the future”—namely, the capacity of anticipating future states of the environment or of the body—represents a fundamental function of human (and animal) brains. A goalkeeper who tries to guess the ball's direction; a chess player who attempts to anticipate the opponent's next move; or a man-in-love who tries to calculate what are the chances of her saying yes—in all these cases, people are simulating possible future states of the world, in order to maximize the success of their decisions or actions. Research in neuroscience is showing that our ability to predict the behavior of physical or social phenomena is largely dependent on the brain's ability to integrate current and past information to generate (probabilistic) simulations of the future. But could predictive processing be augmented using advanced technologies? In this contribution, we discuss how computational technologies may be used to support, facilitate or enhance the prediction of future events, by considering exemplificative scenarios across different domains, from simpler sensorimotor decisions to more complex cognitive tasks. We also examine the key scientific and technical challenges that must be faced to turn this vision into reality. PMID:27199648
Impaired implicit learning and feedback processing after stroke.
Lam, J M; Globas, C; Hosp, J A; Karnath, H-O; Wächter, T; Luft, A R
2016-02-09
The ability to learn is assumed to support successful recovery and rehabilitation therapy after stroke. Hence, learning impairments may reduce the recovery potential. Here, the hypothesis is tested that stroke survivors have deficits in feedback-driven implicit learning. Stroke survivors (n=30) and healthy age-matched control subjects (n=21) learned a probabilistic classification task with brain activation measured using functional magnetic resonance imaging in a subset of these individuals (17 stroke and 10 controls). Stroke subjects learned slower than controls to classify cues. After being rewarded with a smiley face, they were less likely to give the same response when the cue was repeated. Stroke subjects showed reduced brain activation in putamen, pallidum, thalamus, frontal and prefrontal cortices and cerebellum when compared with controls. Lesion analysis identified those stroke survivors as learning-impaired who had lesions in frontal areas, putamen, thalamus, caudate and insula. Lesion laterality had no effect on learning efficacy or brain activation. These findings suggest that stroke survivors have deficits in reinforcement learning that may be related to dysfunctional processing of feedback-based decision-making, reward signals and working memory. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Chen, Yasheng; Juttukonda, Meher; Su, Yi; Benzinger, Tammie; Rubin, Brian G.; Lee, Yueh Z.; Lin, Weili; Shen, Dinggang; Lalush, David
2015-01-01
Purpose To develop a positron emission tomography (PET) attenuation correction method for brain PET/magnetic resonance (MR) imaging by estimating pseudo computed tomographic (CT) images from T1-weighted MR and atlas CT images. Materials and Methods In this institutional review board–approved and HIPAA-compliant study, PET/MR/CT images were acquired in 20 subjects after obtaining written consent. A probabilistic air segmentation and sparse regression (PASSR) method was developed for pseudo CT estimation. Air segmentation was performed with assistance from a probabilistic air map. For nonair regions, the pseudo CT numbers were estimated via sparse regression by using atlas MR patches. The mean absolute percentage error (MAPE) on PET images was computed as the normalized mean absolute difference in PET signal intensity between a method and the reference standard continuous CT attenuation correction method. Friedman analysis of variance and Wilcoxon matched-pairs tests were performed for statistical comparison of MAPE between the PASSR method and Dixon segmentation, CT segmentation, and population averaged CT atlas (mean atlas) methods. Results The PASSR method yielded a mean MAPE ± standard deviation of 2.42% ± 1.0, 3.28% ± 0.93, and 2.16% ± 1.75, respectively, in the whole brain, gray matter, and white matter, which were significantly lower than the Dixon, CT segmentation, and mean atlas values (P < .01). Moreover, 68.0% ± 16.5, 85.8% ± 12.9, and 96.0% ± 2.5 of whole-brain volume had within ±2%, ±5%, and ±10% percentage error by using PASSR, respectively, which was significantly higher than other methods (P < .01). Conclusion PASSR outperformed the Dixon, CT segmentation, and mean atlas methods by reducing PET error owing to attenuation correction. © RSNA, 2014 PMID:25521778
Multiparametric MRI changes persist beyond recovery in concussed adolescent hockey players
Manning, Kathryn Y.; Schranz, Amy; Bartha, Robert; Dekaban, Gregory A.; Barreira, Christy; Brown, Arthur; Fischer, Lisa; Asem, Kevin; Doherty, Timothy J.; Fraser, Douglas D.; Holmes, Jeff
2017-01-01
Objective: To determine whether multiparametric MRI data can provide insight into the acute and long-lasting neuronal sequelae after a concussion in adolescent athletes. Methods: Players were recruited from Bantam hockey leagues in which body checking is first introduced (male, age 11–14 years). Clinical measures, diffusion metrics, resting-state network and region-to-region functional connectivity patterns, and magnetic resonance spectroscopy absolute metabolite concentrations were analyzed from an independent, age-matched control group of hockey players (n = 26) and longitudinally in concussed athletes within 24 to 72 hours (n = 17) and 3 months (n = 14) after a diagnosed concussion. Results: There were diffusion abnormalities within multiple white matter tracts, functional hyperconnectivity, and decreases in choline 3 months after concussion. Tract-specific spatial statistics revealed a large region along the superior longitudinal fasciculus with the largest decreases in diffusivity measures, which significantly correlated with clinical deficits. This region also spatially intersected with probabilistic tracts connecting cortical regions where we found acute functional connectivity changes. Hyperconnectivity patterns at 3 months after concussion were present only in players with relatively less severe clinical outcomes, higher choline concentrations, and diffusivity indicative of relatively less axonal disruption. Conclusions: Changes persisted well after players' clinical scores had returned to normal and they had been cleared to return to play. Ongoing white matter maturation may make adolescent athletes particularly vulnerable to brain injury, and they may require extended recovery periods. The consequences of early brain injury for ongoing brain development and risk of more serious conditions such as second impact syndrome or neural degenerative processes need to be elucidated. PMID:29070666
A Hough transform global probabilistic approach to multiple-subject diffusion MRI tractography.
Aganj, Iman; Lenglet, Christophe; Jahanshad, Neda; Yacoub, Essa; Harel, Noam; Thompson, Paul M; Sapiro, Guillermo
2011-08-01
A global probabilistic fiber tracking approach based on the voting process provided by the Hough transform is introduced in this work. The proposed framework tests candidate 3D curves in the volume, assigning to each one a score computed from the diffusion images, and then selects the curves with the highest scores as the potential anatomical connections. The algorithm avoids local minima by performing an exhaustive search at the desired resolution. The technique is easily extended to multiple subjects, considering a single representative volume where the registered high-angular resolution diffusion images (HARDI) from all the subjects are non-linearly combined, thereby obtaining population-representative tracts. The tractography algorithm is run only once for the multiple subjects, and no tract alignment is necessary. We present experimental results on HARDI volumes, ranging from simulated and 1.5T physical phantoms to 7T and 4T human brain and 7T monkey brain datasets. Copyright © 2011 Elsevier B.V. All rights reserved.
Generative diffeomorphic modelling of large MRI data sets for probabilistic template construction.
Blaiotta, Claudia; Freund, Patrick; Cardoso, M Jorge; Ashburner, John
2018-02-01
In this paper we present a hierarchical generative model of medical image data, which can capture simultaneously the variability of both signal intensity and anatomical shapes across large populations. Such a model has a direct application for learning average-shaped probabilistic tissue templates in a fully automated manner. While in principle the generality of the proposed Bayesian approach makes it suitable to address a wide range of medical image computing problems, our work focuses primarily on neuroimaging applications. In particular we validate the proposed method on both real and synthetic brain MR scans including the cervical cord and demonstrate that it yields accurate alignment of brain and spinal cord structures, as compared to state-of-the-art tools for medical image registration. At the same time we illustrate how the resulting tissue probability maps can readily be used to segment, bias correct and spatially normalise unseen data, which are all crucial pre-processing steps for MR imaging studies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Distribution functions of probabilistic automata
NASA Technical Reports Server (NTRS)
Vatan, F.
2001-01-01
Each probabilistic automaton M over an alphabet A defines a probability measure Prob sub(M) on the set of all finite and infinite words over A. We can identify a k letter alphabet A with the set {0, 1,..., k-1}, and, hence, we can consider every finite or infinite word w over A as a radix k expansion of a real number X(w) in the interval [0, 1]. This makes X(w) a random variable and the distribution function of M is defined as usual: F(x) := Prob sub(M) { w: X(w) < x }. Utilizing the fixed-point semantics (denotational semantics), extended to probabilistic computations, we investigate the distribution functions of probabilistic automata in detail. Automata with continuous distribution functions are characterized. By a new, and much more easier method, it is shown that the distribution function F(x) is an analytic function if it is a polynomial. Finally, answering a question posed by D. Knuth and A. Yao, we show that a polynomial distribution function F(x) on [0, 1] can be generated by a prob abilistic automaton iff all the roots of F'(x) = 0 in this interval, if any, are rational numbers. For this, we define two dynamical systems on the set of polynomial distributions and study attracting fixed points of random composition of these two systems.
Identifying a Probabilistic Boolean Threshold Network From Samples.
Melkman, Avraham A; Cheng, Xiaoqing; Ching, Wai-Ki; Akutsu, Tatsuya
2018-04-01
This paper studies the problem of exactly identifying the structure of a probabilistic Boolean network (PBN) from a given set of samples, where PBNs are probabilistic extensions of Boolean networks. Cheng et al. studied the problem while focusing on PBNs consisting of pairs of AND/OR functions. This paper considers PBNs consisting of Boolean threshold functions while focusing on those threshold functions that have unit coefficients. The treatment of Boolean threshold functions, and triplets and -tuplets of such functions, necessitates a deepening of the theoretical analyses. It is shown that wide classes of PBNs with such threshold functions can be exactly identified from samples under reasonable constraints, which include: 1) PBNs in which any number of threshold functions can be assigned provided that all have the same number of input variables and 2) PBNs consisting of pairs of threshold functions with different numbers of input variables. It is also shown that the problem of deciding the equivalence of two Boolean threshold functions is solvable in pseudopolynomial time but remains co-NP complete.
A review of predictive coding algorithms.
Spratling, M W
2017-03-01
Predictive coding is a leading theory of how the brain performs probabilistic inference. However, there are a number of distinct algorithms which are described by the term "predictive coding". This article provides a concise review of these different predictive coding algorithms, highlighting their similarities and differences. Five algorithms are covered: linear predictive coding which has a long and influential history in the signal processing literature; the first neuroscience-related application of predictive coding to explaining the function of the retina; and three versions of predictive coding that have been proposed to model cortical function. While all these algorithms aim to fit a generative model to sensory data, they differ in the type of generative model they employ, in the process used to optimise the fit between the model and sensory data, and in the way that they are related to neurobiology. Copyright © 2016 Elsevier Inc. All rights reserved.
Identification of probabilities.
Vitányi, Paul M B; Chater, Nick
2017-02-01
Within psychology, neuroscience and artificial intelligence, there has been increasing interest in the proposal that the brain builds probabilistic models of sensory and linguistic input: that is, to infer a probabilistic model from a sample. The practical problems of such inference are substantial: the brain has limited data and restricted computational resources. But there is a more fundamental question: is the problem of inferring a probabilistic model from a sample possible even in principle? We explore this question and find some surprisingly positive and general results. First, for a broad class of probability distributions characterized by computability restrictions, we specify a learning algorithm that will almost surely identify a probability distribution in the limit given a finite i.i.d. sample of sufficient but unknown length. This is similarly shown to hold for sequences generated by a broad class of Markov chains, subject to computability assumptions. The technical tool is the strong law of large numbers. Second, for a large class of dependent sequences, we specify an algorithm which identifies in the limit a computable measure for which the sequence is typical, in the sense of Martin-Löf (there may be more than one such measure). The technical tool is the theory of Kolmogorov complexity. We analyze the associated predictions in both cases. We also briefly consider special cases, including language learning, and wider theoretical implications for psychology.
Probabilistic Simulation of Stress Concentration in Composite Laminates
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Murthy, P. L. N.; Liaw, D. G.
1994-01-01
A computational methodology is described to probabilistically simulate the stress concentration factors (SCF's) in composite laminates. This new approach consists of coupling probabilistic composite mechanics with probabilistic finite element structural analysis. The composite mechanics is used to probabilistically describe all the uncertainties inherent in composite material properties, whereas the finite element is used to probabilistically describe the uncertainties associated with methods to experimentally evaluate SCF's, such as loads, geometry, and supports. The effectiveness of the methodology is demonstrated by using is to simulate the SCF's in three different composite laminates. Simulated results match experimental data for probability density and for cumulative distribution functions. The sensitivity factors indicate that the SCF's are influenced by local stiffness variables, by load eccentricities, and by initial stress fields.
Probabilistic co-adaptive brain-computer interfacing
NASA Astrophysics Data System (ADS)
Bryan, Matthew J.; Martin, Stefan A.; Cheung, Willy; Rao, Rajesh P. N.
2013-12-01
Objective. Brain-computer interfaces (BCIs) are confronted with two fundamental challenges: (a) the uncertainty associated with decoding noisy brain signals, and (b) the need for co-adaptation between the brain and the interface so as to cooperatively achieve a common goal in a task. We seek to mitigate these challenges. Approach. We introduce a new approach to brain-computer interfacing based on partially observable Markov decision processes (POMDPs). POMDPs provide a principled approach to handling uncertainty and achieving co-adaptation in the following manner: (1) Bayesian inference is used to compute posterior probability distributions (‘beliefs’) over brain and environment state, and (2) actions are selected based on entire belief distributions in order to maximize total expected reward; by employing methods from reinforcement learning, the POMDP’s reward function can be updated over time to allow for co-adaptive behaviour. Main results. We illustrate our approach using a simple non-invasive BCI which optimizes the speed-accuracy trade-off for individual subjects based on the signal-to-noise characteristics of their brain signals. We additionally demonstrate that the POMDP BCI can automatically detect changes in the user’s control strategy and can co-adaptively switch control strategies on-the-fly to maximize expected reward. Significance. Our results suggest that the framework of POMDPs offers a promising approach for designing BCIs that can handle uncertainty in neural signals and co-adapt with the user on an ongoing basis. The fact that the POMDP BCI maintains a probability distribution over the user’s brain state allows a much more powerful form of decision making than traditional BCI approaches, which have typically been based on the output of classifiers or regression techniques. Furthermore, the co-adaptation of the system allows the BCI to make online improvements to its behaviour, adjusting itself automatically to the user’s changing circumstances.
Fracture mechanics analysis of cracked structures using weight function and neural network method
NASA Astrophysics Data System (ADS)
Chen, J. G.; Zang, F. G.; Yang, Y.; Shi, K. K.; Fu, X. L.
2018-06-01
Stress intensity factors(SIFs) due to thermal-mechanical load has been established by using weight function method. Two reference stress states sere used to determine the coefficients in the weight function. Results were evaluated by using data from literature and show a good agreement between them. So, the SIFs can be determined quickly using the weight function obtained when cracks subjected to arbitrary loads, and presented method can be used for probabilistic fracture mechanics analysis. A probabilistic methodology considering Monte-Carlo with neural network (MCNN) has been developed. The results indicate that an accurate probabilistic characteristic of the KI can be obtained by using the developed method. The probability of failure increases with the increasing of loads, and the relationship between is nonlinear.
Functional dissociation of stimulus intensity encoding and predictive coding of pain in the insula
Geuter, Stephan; Boll, Sabrina; Eippert, Falk; Büchel, Christian
2017-01-01
The computational principles by which the brain creates a painful experience from nociception are still unknown. Classic theories suggest that cortical regions either reflect stimulus intensity or additive effects of intensity and expectations, respectively. By contrast, predictive coding theories provide a unified framework explaining how perception is shaped by the integration of beliefs about the world with mismatches resulting from the comparison of these beliefs against sensory input. Using functional magnetic resonance imaging during a probabilistic heat pain paradigm, we investigated which computations underlie pain perception. Skin conductance, pupil dilation, and anterior insula responses to cued pain stimuli strictly followed the response patterns hypothesized by the predictive coding model, whereas posterior insula encoded stimulus intensity. This novel functional dissociation of pain processing within the insula together with previously observed alterations in chronic pain offer a novel interpretation of aberrant pain processing as disturbed weighting of predictions and prediction errors. DOI: http://dx.doi.org/10.7554/eLife.24770.001 PMID:28524817
Probabilistic dual heuristic programming-based adaptive critic
NASA Astrophysics Data System (ADS)
Herzallah, Randa
2010-02-01
Adaptive critic (AC) methods have common roots as generalisations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, non-linear and non-stationary environments. In this study, a novel probabilistic dual heuristic programming (DHP)-based AC controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) AC method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterised by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the probabilistic critic network is then calculated and shown to be equal to the analytically derived correct value. Full derivation of the Riccati solution for this non-standard stochastic linear quadratic control problem is also provided. Moreover, the performance of the proposed probabilistic controller is demonstrated on linear and non-linear control examples.
Carnevale, Lorenzo; D'Angelosante, Valentina; Landolfi, Alessandro; Grillea, Giovanni; Selvetella, Giulio; Storto, Marianna; Lembo, Giuseppe; Carnevale, Daniela
2018-06-12
Hypertension is one of the main risk factor for dementia. The subtle damage provoked by chronic high blood pressure in the brain is usually evidenced by conventional magnetic resonance imaging (MRI), in terms of white matter (WM) hyperintensities or cerebral atrophy. However, it is clear that by the time brain damage is visible, it may be too late hampering neurodegeneration. Aim of this study was to characterize a signature of early brain damage induced by hypertension, before the neurodegenerative injury manifests. This work was conducted on hypertensive and normotensive subjects with no sign of structural damage at conventional neuroimaging and no diagnosis of dementia revealed by neuropsychological assessment. All individuals underwent cardiological clinical examination in order to define the hypertensive status and the related target organ damage. Additionally, patients were subjected to DTI-MRI scan to identify microstructural damage of WM by probabilistic fiber-tracking. To gain insights in the neurocognitive profile of patients a specific battery of tests was administered. As primary outcome of the study we aimed at finding any specific signature of fiber-tracts alterations in hypertensive patients, associated with an impairment of the related cognitive functions. Hypertensive patients showed significant alterations in three specific WM fiber-tracts: the anterior thalamic radiation, the superior longitudinal fasciculus and the forceps minor. Hypertensive patients also scored significantly worse in the cognitive domains ascribable to brain regions connected through those WM fiber-tracts, showing decreased performances in executive functions, processing speed, memory, and paired associative learning tasks. Overall, WM fiber-tracking on MRI evidenced an early signature of damage in hypertensive patients when otherwise undetectable by conventional neuroimaging. In perspective, this approach could allow identifying those patients that are in initial stages of brain damage and could benefit of therapies aimed at limiting the transition to dementia and neurodegeneration.
Brain networks for confidence weighting and hierarchical inference during probabilistic learning.
Meyniel, Florent; Dehaene, Stanislas
2017-05-09
Learning is difficult when the world fluctuates randomly and ceaselessly. Classical learning algorithms, such as the delta rule with constant learning rate, are not optimal. Mathematically, the optimal learning rule requires weighting prior knowledge and incoming evidence according to their respective reliabilities. This "confidence weighting" implies the maintenance of an accurate estimate of the reliability of what has been learned. Here, using fMRI and an ideal-observer analysis, we demonstrate that the brain's learning algorithm relies on confidence weighting. While in the fMRI scanner, human adults attempted to learn the transition probabilities underlying an auditory or visual sequence, and reported their confidence in those estimates. They knew that these transition probabilities could change simultaneously at unpredicted moments, and therefore that the learning problem was inherently hierarchical. Subjective confidence reports tightly followed the predictions derived from the ideal observer. In particular, subjects managed to attach distinct levels of confidence to each learned transition probability, as required by Bayes-optimal inference. Distinct brain areas tracked the likelihood of new observations given current predictions, and the confidence in those predictions. Both signals were combined in the right inferior frontal gyrus, where they operated in agreement with the confidence-weighting model. This brain region also presented signatures of a hierarchical process that disentangles distinct sources of uncertainty. Together, our results provide evidence that the sense of confidence is an essential ingredient of probabilistic learning in the human brain, and that the right inferior frontal gyrus hosts a confidence-based statistical learning algorithm for auditory and visual sequences.
Probabilistic classifiers with high-dimensional data
Kim, Kyung In; Simon, Richard
2011-01-01
For medical classification problems, it is often desirable to have a probability associated with each class. Probabilistic classifiers have received relatively little attention for small n large p classification problems despite of their importance in medical decision making. In this paper, we introduce 2 criteria for assessment of probabilistic classifiers: well-calibratedness and refinement and develop corresponding evaluation measures. We evaluated several published high-dimensional probabilistic classifiers and developed 2 extensions of the Bayesian compound covariate classifier. Based on simulation studies and analysis of gene expression microarray data, we found that proper probabilistic classification is more difficult than deterministic classification. It is important to ensure that a probabilistic classifier is well calibrated or at least not “anticonservative” using the methods developed here. We provide this evaluation for several probabilistic classifiers and also evaluate their refinement as a function of sample size under weak and strong signal conditions. We also present a cross-validation method for evaluating the calibration and refinement of any probabilistic classifier on any data set. PMID:21087946
Cannon, Tyrone D; Thompson, Paul M; van Erp, Theo G M; Huttunen, Matti; Lonnqvist, Jouko; Kaprio, Jaakko; Toga, Arthur W
2006-01-01
There is an urgent need to decipher the complex nature of genotype-phenotype relationships within the multiple dimensions of brain structure and function that are compromised in neuropsychiatric syndromes such as schizophrenia. Doing so requires sophisticated methodologies to represent population variability in neural traits and to probe their heritable and molecular genetic bases. We have recently developed and applied computational algorithms to map the heritability of, as well as genetic linkage and association to, neural features encoded using brain imaging in the context of three-dimensional (3D), populationbased, statistical brain atlases. One set of algorithms builds on our prior work using classical twin study methods to estimate heritability by fitting biometrical models for additive genetic, unique, and common environmental influences. Another set of algorithms performs regression-based (Haseman-Elston) identical-bydescent linkage analysis and genetic association analysis of DNA polymorphisms in relation to neural traits of interest in the same 3D population-based brain atlas format. We demonstrate these approaches using samples of healthy monozygotic (MZ) and dizygotic (DZ) twin pairs, as well as MZ and DZ twin pairs discordant for schizophrenia, but the methods can be generalized to other classes of relatives and to other diseases. The results confirm prior evidence of genetic influences on gray matter density in frontal brain regions. They also provide converging evidence that the chromosome 1q42 region is relevant to schizophrenia by demonstrating linkage and association of markers of the Transelin-Associated-Factor-X and Disrupted-In- Schizophrenia-1 genes with prefrontal cortical gray matter deficits in twins discordant for schizophrenia.
An advanced probabilistic structural analysis method for implicit performance functions
NASA Technical Reports Server (NTRS)
Wu, Y.-T.; Millwater, H. R.; Cruse, T. A.
1989-01-01
In probabilistic structural analysis, the performance or response functions usually are implicitly defined and must be solved by numerical analysis methods such as finite element methods. In such cases, the most commonly used probabilistic analysis tool is the mean-based, second-moment method which provides only the first two statistical moments. This paper presents a generalized advanced mean value (AMV) method which is capable of establishing the distributions to provide additional information for reliability design. The method requires slightly more computations than the second-moment method but is highly efficient relative to the other alternative methods. In particular, the examples show that the AMV method can be used to solve problems involving non-monotonic functions that result in truncated distributions.
Lester-Coll, Nataniel H; Dosoretz, Arie P; Magnuson, William J; Laurans, Maxwell S; Chiang, Veronica L; Yu, James B
2016-12-01
OBJECTIVE The JLGK0901 study found that stereotactic radiosurgery (SRS) is a safe and effective treatment option for treating up to 10 brain metastases. The purpose of this study is to determine the cost-effectiveness of treating up to 10 brain metastases with SRS, whole-brain radiation therapy (WBRT), or SRS and immediate WBRT (SRS+WBRT). METHODS A Markov model was developed to evaluate the cost effectiveness of SRS, WBRT, and SRS+WBRT in patients with 1 or 2-10 brain metastases. Transition probabilities were derived from the JLGK0901 study and modified according to the recurrence rates observed in the Radiation Therapy Oncology Group (RTOG) 9508 and European Organization for Research and Treatment of Cancer (EORTC) 22952-26001 studies to simulate the outcomes for patients who receive WBRT. Costs are based on 2015 Medicare reimbursements. Health state utilities were prospectively collected using the Standard Gamble method. End points included cost, quality-adjusted life years (QALYs), and incremental cost-effectiveness ratios (ICERs). The willingness-to-pay (WTP) threshold was $100,000 per QALY. One-way and probabilistic sensitivity analyses explored uncertainty with regard to the model assumptions. RESULTS In patients with 1 brain metastasis, the ICERs for SRS versus WBRT, SRS versus SRS+WBRT, and SRS+WBRT versus WBRT were $117,418, $51,348, and $746,997 per QALY gained, respectively. In patients with 2-10 brain metastases, the ICERs were $123,256, $58,903, and $821,042 per QALY gained, respectively. On the sensitivity analyses, the model was sensitive to the cost of SRS and the utilities associated with stable post-SRS and post-WBRT states. In patients with 2-10 brain metastases, SRS versus WBRT becomes cost-effective if the cost of SRS is reduced by $3512. SRS versus WBRT was also cost effective at a WTP of $200,000 per QALY on the probabilistic sensitivity analysis. CONCLUSIONS The most cost-effective strategy for patients with up to 10 brain metastases is SRS alone relative to SRS+WBRT. SRS alone may also be cost-effective relative to WBRT alone, but this depends on WTP, the cost of SRS, and patient preferences.
Temporally consistent probabilistic detection of new multiple sclerosis lesions in brain MRI.
Elliott, Colm; Arnold, Douglas L; Collins, D Louis; Arbel, Tal
2013-08-01
Detection of new Multiple Sclerosis (MS) lesions on magnetic resonance imaging (MRI) is important as a marker of disease activity and as a potential surrogate for relapses. We propose an approach where sequential scans are jointly segmented, to provide a temporally consistent tissue segmentation while remaining sensitive to newly appearing lesions. The method uses a two-stage classification process: 1) a Bayesian classifier provides a probabilistic brain tissue classification at each voxel of reference and follow-up scans, and 2) a random-forest based lesion-level classification provides a final identification of new lesions. Generative models are learned based on 364 scans from 95 subjects from a multi-center clinical trial. The method is evaluated on sequential brain MRI of 160 subjects from a separate multi-center clinical trial, and is compared to 1) semi-automatically generated ground truth segmentations and 2) fully manual identification of new lesions generated independently by nine expert raters on a subset of 60 subjects. For new lesions greater than 0.15 cc in size, the classifier has near perfect performance (99% sensitivity, 2% false detection rate), as compared to ground truth. The proposed method was also shown to exceed the performance of any one of the nine expert manual identifications.
Toward a Probabilistic Phenological Model for Wheat Growing Degree Days (GDD)
NASA Astrophysics Data System (ADS)
Rahmani, E.; Hense, A.
2017-12-01
Are there deterministic relations between phenological and climate parameters? The answer is surely `No'. This answer motivated us to solve the problem through probabilistic theories. Thus, we developed a probabilistic phenological model which has the advantage of giving additional information in terms of uncertainty. To that aim, we turned to a statistical analysis named survival analysis. Survival analysis deals with death in biological organisms and failure in mechanical systems. In survival analysis literature, death or failure is considered as an event. By event, in this research we mean ripening date of wheat. We will assume only one event in this special case. By time, we mean the growing duration from sowing to ripening as lifetime for wheat which is a function of GDD. To be more precise we will try to perform the probabilistic forecast for wheat ripening. The probability value will change between 0 and 1. Here, the survivor function gives the probability that the not ripened wheat survives longer than a specific time or will survive to the end of its lifetime as a ripened crop. The survival function at each station is determined by fitting a normal distribution to the GDD as the function of growth duration. Verification of the models obtained is done using CRPS skill score (CRPSS). The positive values of CRPSS indicate the large superiority of the probabilistic phonologic survival model to the deterministic models. These results demonstrate that considering uncertainties in modeling are beneficial, meaningful and necessary. We believe that probabilistic phenological models have the potential to help reduce the vulnerability of agricultural production systems to climate change thereby increasing food security.
Lee, Insuk; Li, Zhihua; Marcotte, Edward M.
2007-01-01
Background Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations. Methodology/Principal Findings We report a significantly improved version (v. 2) of a probabilistic functional gene network [1] of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis. Conclusions/Significance YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome). YeastNet is available from http://www.yeastnet.org. PMID:17912365
Decision making generalized by a cumulative probability weighting function
NASA Astrophysics Data System (ADS)
dos Santos, Lindomar Soares; Destefano, Natália; Martinez, Alexandre Souto
2018-01-01
Typical examples of intertemporal decision making involve situations in which individuals must choose between a smaller reward, but more immediate, and a larger one, delivered later. Analogously, probabilistic decision making involves choices between options whose consequences differ in relation to their probability of receiving. In Economics, the expected utility theory (EUT) and the discounted utility theory (DUT) are traditionally accepted normative models for describing, respectively, probabilistic and intertemporal decision making. A large number of experiments confirmed that the linearity assumed by the EUT does not explain some observed behaviors, as nonlinear preference, risk-seeking and loss aversion. That observation led to the development of new theoretical models, called non-expected utility theories (NEUT), which include a nonlinear transformation of the probability scale. An essential feature of the so-called preference function of these theories is that the probabilities are transformed by decision weights by means of a (cumulative) probability weighting function, w(p) . We obtain in this article a generalized function for the probabilistic discount process. This function has as particular cases mathematical forms already consecrated in the literature, including discount models that consider effects of psychophysical perception. We also propose a new generalized function for the functional form of w. The limiting cases of this function encompass some parametric forms already proposed in the literature. Far beyond a mere generalization, our function allows the interpretation of probabilistic decision making theories based on the assumption that individuals behave similarly in the face of probabilities and delays and is supported by phenomenological models.
A Functional-Genetic Scheme for Seizure Forecasting in Canine Epilepsy.
Bou Assi, Elie; Nguyen, Dang K; Rihana, Sandy; Sawan, Mohamad
2018-06-01
The objective of this work is the development of an accurate seizure forecasting algorithm that considers brain's functional connectivity for electrode selection. We start by proposing Kmeans-directed transfer function, an adaptive functional connectivity method intended for seizure onset zone localization in bilateral intracranial EEG recordings. Electrodes identified as seizure activity sources and sinks are then used to implement a seizure-forecasting algorithm on long-term continuous recordings in dogs with naturally-occurring epilepsy. A precision-recall genetic algorithm is proposed for feature selection in line with a probabilistic support vector machine classifier. Epileptic activity generators were focal in all dogs confirming the diagnosis of focal epilepsy in these animals while sinks spanned both hemispheres in 2 of 3 dogs. Seizure forecasting results show performance improvement compared to previous studies, achieving average sensitivity of 84.82% and time in warning of 0.1. Achieved performances highlight the feasibility of seizure forecasting in canine epilepsy. The ability to improve seizure forecasting provides promise for the development of EEG-triggered closed-loop seizure intervention systems for ambulatory implantation in patients with refractory epilepsy.
Neural network connectivity differences in children who stutter
Zhu, David C.
2013-01-01
Affecting 1% of the general population, stuttering impairs the normally effortless process of speech production, which requires precise coordination of sequential movement occurring among the articulatory, respiratory, and resonance systems, all within millisecond time scales. Those afflicted experience frequent disfluencies during ongoing speech, often leading to negative psychosocial consequences. The aetiology of stuttering remains unclear; compared to other neurodevelopmental disorders, few studies to date have examined the neural bases of childhood stuttering. Here we report, for the first time, results from functional (resting state functional magnetic resonance imaging) and structural connectivity analyses (probabilistic tractography) of multimodal neuroimaging data examining neural networks in children who stutter. We examined how synchronized brain activity occurring among brain areas associated with speech production, and white matter tracts that interconnect them, differ in young children who stutter (aged 3–9 years) compared with age-matched peers. Results showed that children who stutter have attenuated connectivity in neural networks that support timing of self-paced movement control. The results suggest that auditory-motor and basal ganglia-thalamocortical networks develop differently in stuttering children, which may in turn affect speech planning and execution processes needed to achieve fluent speech motor control. These results provide important initial evidence of neurological differences in the early phases of symptom onset in children who stutter. PMID:24131593
Multiparametric MRI changes persist beyond recovery in concussed adolescent hockey players.
Manning, Kathryn Y; Schranz, Amy; Bartha, Robert; Dekaban, Gregory A; Barreira, Christy; Brown, Arthur; Fischer, Lisa; Asem, Kevin; Doherty, Timothy J; Fraser, Douglas D; Holmes, Jeff; Menon, Ravi S
2017-11-21
To determine whether multiparametric MRI data can provide insight into the acute and long-lasting neuronal sequelae after a concussion in adolescent athletes. Players were recruited from Bantam hockey leagues in which body checking is first introduced (male, age 11-14 years). Clinical measures, diffusion metrics, resting-state network and region-to-region functional connectivity patterns, and magnetic resonance spectroscopy absolute metabolite concentrations were analyzed from an independent, age-matched control group of hockey players (n = 26) and longitudinally in concussed athletes within 24 to 72 hours (n = 17) and 3 months (n = 14) after a diagnosed concussion. There were diffusion abnormalities within multiple white matter tracts, functional hyperconnectivity, and decreases in choline 3 months after concussion. Tract-specific spatial statistics revealed a large region along the superior longitudinal fasciculus with the largest decreases in diffusivity measures, which significantly correlated with clinical deficits. This region also spatially intersected with probabilistic tracts connecting cortical regions where we found acute functional connectivity changes. Hyperconnectivity patterns at 3 months after concussion were present only in players with relatively less severe clinical outcomes, higher choline concentrations, and diffusivity indicative of relatively less axonal disruption. Changes persisted well after players' clinical scores had returned to normal and they had been cleared to return to play. Ongoing white matter maturation may make adolescent athletes particularly vulnerable to brain injury, and they may require extended recovery periods. The consequences of early brain injury for ongoing brain development and risk of more serious conditions such as second impact syndrome or neural degenerative processes need to be elucidated. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Kwon, H G; Hong, J H; Jang, S H
2011-12-01
Little is known about the detailed anatomic location and somatotopic arrangement at the CP. Using DTT with FSL tools, we conducted an investigation of the anatomic location and somatotopic arrangement of the CST at the CP in the human brain. We recruited 43 healthy volunteers for this study. DTI was obtained by using 1.5T, and CSTs for the hand and leg were obtained by using the FSL tool. The somatotopic location of the CST was evaluated as the highest probabilistic location at the upper and lower midbrain. The posterior boundary was determined as the line between the interpeduncular fossa and the lateral sulcus; we then drew a rectangle on the basis of the boundary of the CP. In the mediolateral direction, the highest probabilistic locations for the hand and leg were an average of 60.46% and 69.98% from the medial boundary at the upper midbrain level and 53.44% and 62.76% at the lower midbrain level, respectively. As for the anteroposterior direction, the highest probabilistic locations for the hand and leg were an average of 28.26% and 32.03% from the anterior boundary at the upper midbrain level and 30.19% and 33.59% at the lower midbrain level, respectively. We found that the hand somatotopy for the CST is located at the middle portion of the CP and the leg somatotopy is located lateral to the hand somatotopy.
An investigation into the probabilistic combination of quasi-static and random accelerations
NASA Technical Reports Server (NTRS)
Schock, R. W.; Tuell, L. P.
1984-01-01
The development of design load factors for aerospace and aircraft components and experiment support structures, which are subject to a simultaneous vehicle dynamic vibration (quasi-static) and acoustically generated random vibration, require the selection of a combination methodology. Typically, the procedure is to define the quasi-static and the random generated response separately, and arithmetically add or root sum square to get combined accelerations. Since the combination of a probabilistic and a deterministic function yield a probabilistic function, a viable alternate approach would be to determine the characteristics of the combined acceleration probability density function and select an appropriate percentile level for the combined acceleration. The following paper develops this mechanism and provides graphical data to select combined accelerations for most popular percentile levels.
Application of a stochastic snowmelt model for probabilistic decisionmaking
NASA Technical Reports Server (NTRS)
Mccuen, R. H.
1983-01-01
A stochastic form of the snowmelt runoff model that can be used for probabilistic decision-making was developed. The use of probabilistic streamflow predictions instead of single valued deterministic predictions leads to greater accuracy in decisions. While the accuracy of the output function is important in decisionmaking, it is also important to understand the relative importance of the coefficients. Therefore, a sensitivity analysis was made for each of the coefficients.
Westerhausen, René; Grüner, Renate; Specht, Karsten; Hugdahl, Kenneth
2009-06-01
The midsagittal corpus callosum is topographically organized, that is, with regard to their cortical origin several subtracts can be distinguished within the corpus callosum that belong to specific functional brain networks. Recent diffusion tensor tractography studies have also revealed remarkable interindividual differences in the size and exact localization of these tracts. To examine the functional relevance of interindividual variability in callosal tracts, 17 right-handed male participants underwent structural and diffusion tensor magnetic resonance imaging. Probabilistic tractography was carried out to identify the callosal subregions that interconnect left and right temporal lobe auditory processing areas, and the midsagittal size of this tract was seen as indicator of the (anatomical) strength of this connection. Auditory information transfer was assessed applying an auditory speech perception task with dichotic presentations of consonant-vowel syllables (e.g., /ba-ga/). The frequency of correct left ear reports in this task served as a functional measure of interhemispheric transfer. Statistical analysis showed that a stronger anatomical connection between the superior temporal lobe areas supports a better information transfer. This specific structure-function association in the auditory modality supports the general notion that interindividual differences in callosal topography possess functional relevance.
Probabilistic DHP adaptive critic for nonlinear stochastic control systems.
Herzallah, Randa
2013-06-01
Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.
Münnich, Timo; Klein, Jan; Hattingen, Elke; Noack, Anika; Herrmann, Eva; Seifert, Volker; Senft, Christian; Forster, Marie-Therese
2018-04-14
Tractography is a popular tool for visualizing the corticospinal tract (CST). However, results may be influenced by numerous variables, eg, the selection of seeding regions of interests (ROIs) or the chosen tracking algorithm. To compare different variable sets by correlating tractography results with intraoperative subcortical stimulation of the CST, correcting intraoperative brain shift by the use of intraoperative MRI. Seeding ROIs were created by means of motor cortex segmentation, functional MRI (fMRI), and navigated transcranial magnetic stimulation (nTMS). Based on these ROIs, tractography was run for each patient using a deterministic and a probabilistic algorithm. Tractographies were processed on pre- and postoperatively acquired data. Using a linear mixed effects statistical model, best correlation between subcortical stimulation intensity and the distance between tractography and stimulation sites was achieved by using the segmented motor cortex as seeding ROI and applying the probabilistic algorithm on preoperatively acquired imaging sequences. Tractographies based on fMRI or nTMS results differed very little, but with enlargement of positive nTMS sites the stimulation-distance correlation of nTMS-based tractography improved. Our results underline that the use of tractography demands for careful interpretation of its virtual results by considering all influencing variables.
Padula, Maria C; Schaer, Marie; Scariati, Elisa; Maeder, Johanna; Schneider, Maude; Eliez, Stephan
2017-04-01
Large-scale brain networks play a prominent role in cognitive abilities and their activity is impaired in psychiatric disorders, such as schizophrenia. Patients with 22q11.2 deletion syndrome (22q11DS) are at high risk of developing schizophrenia and present similar cognitive impairments, including executive functions deficits. Thus, 22q11DS represents a model for the study of neural biomarkers associated with schizophrenia. In this study, we investigated structural and functional connectivity within and between the Default Mode (DMN), the Central Executive (CEN), and the Saliency network (SN) in 22q11DS using resting-state fMRI and DTI. Furthermore, we investigated if triple network impairments were related to executive dysfunctions or the presence of psychotic symptoms. Sixty-three patients with 22q11DS and sixty-eighty controls (age 6-33 years) were included in the study. Structural connectivity between main nodes of DMN, CEN, and SN was computed using probabilistic tractography. Functional connectivity was computed as the partial correlation between the time courses extracted from each node. Structural and functional connectivity measures were then correlated to executive functions and psychotic symptom scores. Our results showed mainly reduced structural connectivity within the CEN, DMN, and SN, in patients with 22q11DS compared with controls as well as reduced between-network connectivity. Functional connectivity appeared to be more preserved, with impairments being evident only within the DMN. Structural connectivity impairments were also related to executive dysfunctions. These findings show an association between triple network structural alterations and executive deficits in patients with the microdeletion, suggesting that 22q11DS and schizophrenia share common psychopathological mechanisms. Hum Brain Mapp 38:2177-2189, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
The organisation of the elderly connectome.
Perry, Alistair; Wen, Wei; Lord, Anton; Thalamuthu, Anbupalam; Roberts, Gloria; Mitchell, Philip B; Sachdev, Perminder S; Breakspear, Michael
2015-07-01
Investigations of the human connectome have elucidated core features of adult structural networks, particularly the crucial role of hub-regions. However, little is known regarding network organisation of the healthy elderly connectome, a crucial prelude to the systematic study of neurodegenerative disorders. Here, whole-brain probabilistic tractography was performed on high-angular diffusion-weighted images acquired from 115 healthy elderly subjects (age 76-94 years; 65 females). Structural networks were reconstructed between 512 cortical and subcortical brain regions. We sought to investigate the architectural features of hub-regions, as well as left-right asymmetries, and sexual dimorphisms. We observed that the topology of hub-regions is consistent with a young adult population, and previously published adult connectomic data. More importantly, the architectural features of hub connections reflect their ongoing vital role in network communication. We also found substantial sexual dimorphisms, with females exhibiting stronger inter-hemispheric connections between cingulate and prefrontal cortices. Lastly, we demonstrate intriguing left-lateralized subnetworks consistent with the neural circuitry specialised for language and executive functions, whilst rightward subnetworks were dominant in visual and visuospatial streams. These findings provide insights into healthy brain ageing and provide a benchmark for the study of neurodegenerative disorders such as Alzheimer's disease (AD) and frontotemporal dementia (FTD). Copyright © 2015 Elsevier Inc. All rights reserved.
Quantum-like model of brain's functioning: decision making from decoherence.
Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu; Basieva, Irina; Khrennikov, Andrei
2011-07-21
We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in a complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices (representing mental states). This equilibrium state determines Alice's mixed (i.e., probabilistic) strategy. We use a master equation in which quantum physics describes the process of decoherence as the result of interaction with environment. Thus our model is a model of thinking through decoherence of the initially pure mental state. Decoherence is induced by the interaction with memory and the external mental environment. We study (numerically) the dynamics of quantum entropy of Alice's mental state in the process of decision making. We also consider classical entropy corresponding to Alice's choices. We introduce a measure of Alice's diffidence as the difference between classical and quantum entropies of Alice's mental state. We see that (at least in our model example) diffidence decreases (approaching zero) in the process of decision making. Finally, we discuss the problem of neuronal realization of quantum-like dynamics in the brain; especially roles played by lateral prefrontal cortex or/and orbitofrontal cortex. Copyright © 2011 Elsevier Ltd. All rights reserved.
Probabilistic simulation of uncertainties in thermal structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Shiao, Michael
1990-01-01
Development of probabilistic structural analysis methods for hot structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) blade temperature, pressure, and torque of the Space Shuttle Main Engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; (3) evaluation of the failure probability; (4) reliability and risk-cost assessment, and (5) an outline of an emerging approach for eventual hot structures certification. Collectively, the results demonstrate that the structural durability/reliability of hot structural components can be effectively evaluated in a formal probabilistic framework. In addition, the approach can be readily extended to computationally simulate certification of hot structures for aerospace environments.
Probabilistic structural analysis methods of hot engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hopkins, D. A.
1989-01-01
Development of probabilistic structural analysis methods for hot engine structures at Lewis Research Center is presented. Three elements of the research program are: (1) composite load spectra methodology; (2) probabilistic structural analysis methodology; and (3) probabilistic structural analysis application. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) turbine blade temperature, pressure, and torque of the space shuttle main engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; and (3) evaluation of the failure probability. Collectively, the results demonstrate that the structural durability of hot engine structural components can be effectively evaluated in a formal probabilistic/reliability framework.
Displaying uncertainty: investigating the effects of display format and specificity.
Bisantz, Ann M; Marsiglio, Stephanie Schinzing; Munch, Jessica
2005-01-01
We conducted four studies regarding the representation of probabilistic information. Experiments 1 through 3 compared performance on a simulated stock purchase task, in which information regarding stock profitability was probabilistic. Two variables were manipulated: display format for probabilistic information (blurred and colored icons, linguistic phrases, numeric expressions, and combinations) and specificity level (in which the number and size of discrete steps into which the probabilistic information was mapped differed). Results indicated few performance differences attributable to display format; however, performance did improve with greater specificity. Experiment 4, in which participants generated membership functions corresponding to three display formats, found a high degree of similarity in functions across formats and participants and a strong relationship between the shape of the membership function and the intended meaning of the representation. These results indicate that participants can successfully interpret nonnumeric representations of uncertainty and can use such representations in a manner similar to the way numeric expressions are used in a decision-making task. Actual or potential applications of this research include the use of graphical representations of uncertainty in systems such as command and control and situation displays.
Cost-effectiveness analysis of neurocognitive-sparing treatments for brain metastases.
Savitz, Samuel T; Chen, Ronald C; Sher, David J
2015-12-01
Decisions regarding how to treat patients who have 1 to 3 brain metastases require important tradeoffs between controlling recurrences, side effects, and costs. In this analysis, the authors compared novel treatments versus usual care to determine the incremental cost-effectiveness ratio from a payer's (Medicare) perspective. Cost-effectiveness was evaluated using a microsimulation of a Markov model for 60 one-month cycles. The model used 4 simulated cohorts of patients aged 65 years with 1 to 3 brain metastases. The 4 cohorts had a median survival of 3, 6, 12, and 24 months to test the sensitivity of the model to different prognoses. The treatment alternatives evaluated included stereotactic radiosurgery (SRS) with 3 variants of salvage after recurrence (whole-brain radiotherapy [WBRT], hippocampal avoidance WBRT [HA-WBRT], SRS plus WBRT, and SRS plus HA-WBRT). The findings were tested for robustness using probabilistic and deterministic sensitivity analyses. Traditional radiation therapies remained cost-effective for patients in the 3-month and 6-month cohorts. In the cohorts with longer median survival, HA-WBRT and SRS plus HA-WBRT became cost-effective relative to traditional treatments. When the treatments that involved HA-WBRT were excluded, either SRS alone or SRS plus WBRT was cost-effective relative to WBRT alone. The deterministic and probabilistic sensitivity analyses confirmed the robustness of these results. HA-WBRT and SRS plus HA-WBRT were cost-effective for 2 of the 4 cohorts, demonstrating the value of controlling late brain toxicity with this novel therapy. Cost-effectiveness depended on patient life expectancy. SRS was cost-effective in the cohorts with short prognoses (3 and 6 months), whereas HA-WBRT and SRS plus HA-WBRT were cost-effective in the cohorts with longer prognoses (12 and 24 months). © 2015 American Cancer Society.
Schurz, Matthias; Tholen, Matthias G; Perner, Josef; Mars, Rogier B; Sallet, Jerome
2017-09-01
In this quantitative review, we specified the anatomical basis of brain activity reported in the Temporo-Parietal Junction (TPJ) in Theory of Mind (ToM) research. Using probabilistic brain atlases, we labeled TPJ peak coordinates reported in the literature. This was carried out for four different atlas modalities: (i) gyral-parcellation, (ii) sulco-gyral parcellation, (iii) cytoarchitectonic parcellation and (iv) connectivity-based parcellation. In addition, our review distinguished between two ToM task types (false belief and social animations) and a nonsocial task (attention reorienting). We estimated the mean probabilities of activation for each atlas label, and found that for all three task types part of TPJ activations fell into the same areas: (i) Angular Gyrus (AG) and Lateral Occpital Cortex (LOC) in terms of a gyral atlas, (ii) AG and Superior Temporal Sulcus (STS) in terms of a sulco-gyral atlas, (iii) areas PGa and PGp in terms of cytoarchitecture and (iv) area TPJp in terms of a connectivity-based parcellation atlas. Beside these commonalities, we also found that individual task types showed preferential activation for particular labels. Main findings for the right hemisphere were preferential activation for false belief tasks in AG/PGa, and in Supramarginal Gyrus (SMG)/PFm for attention reorienting. Social animations showed strongest selective activation in the left hemisphere, specifically in left Middle Temporal Gyrus (MTG). We discuss how our results (i.e., identified atlas structures) can provide a new reference for describing future findings, with the aim to integrate different labels and terminologies used for studying brain activity around the TPJ. Hum Brain Mapp 38:4788-4805, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A Bayesian Attractor Model for Perceptual Decision Making
Bitzer, Sebastian; Bruineberg, Jelle; Kiebel, Stefan J.
2015-01-01
Even for simple perceptual decisions, the mechanisms that the brain employs are still under debate. Although current consensus states that the brain accumulates evidence extracted from noisy sensory information, open questions remain about how this simple model relates to other perceptual phenomena such as flexibility in decisions, decision-dependent modulation of sensory gain, or confidence about a decision. We propose a novel approach of how perceptual decisions are made by combining two influential formalisms into a new model. Specifically, we embed an attractor model of decision making into a probabilistic framework that models decision making as Bayesian inference. We show that the new model can explain decision making behaviour by fitting it to experimental data. In addition, the new model combines for the first time three important features: First, the model can update decisions in response to switches in the underlying stimulus. Second, the probabilistic formulation accounts for top-down effects that may explain recent experimental findings of decision-related gain modulation of sensory neurons. Finally, the model computes an explicit measure of confidence which we relate to recent experimental evidence for confidence computations in perceptual decision tasks. PMID:26267143
Celone, Kim A.; Thompson-Brenner, Heather; Ross, Robert S.; Pratt, Elizabeth M.; Stern, Chantal E.
2013-01-01
In the present study, we sought to examine whether the fronto-striatal learning system, which has been implicated in bulimia nervosa, would demonstrate altered BOLD activity during probabilistic category learning in women who met subthreshold criteria for bulimia nervosa (Sub-BN). Sub-BN, which falls within the clinical category of Eating Disorder Not Otherwise Specified (EDNOS), is comprised of individuals who demonstrate recurrent binge eating, efforts to minimize their caloric intake and caloric retention, and elevated levels of concern about shape, weight, and/or eating, but just fail to meet the diagnostic threshold for bulimia nervosa (BN). fMRI data were collected from eighteen women with subthreshold-BN (Sub-BN) and nineteen healthy control women group-matched for age, education and body mass index (MC) during the weather prediction task. Sub-BN participants demonstrated increased caudate nucleus and dorsolateral prefrontal cortex (DLPFC) activation during the learning of probabilistic categories. Though the two subject groups did not differ in behavioral performance, over the course of learning, Sub-BN participants showed a dynamic pattern of brain activity differences when compared to matched control participants. Regions implicated in episodic memory, including the medial temporal lobe (MTL), retrosplenial cortex, middle frontal gyrus, and anterior and posterior cingulate cortex showed decreased activity in the Sub-BN participants compared to MCs during early learning which was followed by increased involvement of the DLPFC during later learning. These findings demonstrate that women with Sub-BN demonstrate differences in fronto-striatal learning system activity, as well as a distinct functional pattern between fronto-striatal and MTL learning systems during the course of implicit probabilistic category learning. PMID:21419229
Pannek, Kerstin; Boyd, Roslyn N; Fiori, Simona; Guzzetta, Andrea; Rose, Stephen E
2014-01-01
Cerebral palsy (CP) is a term to describe the spectrum of disorders of impaired motor and sensory function caused by a brain lesion occurring early during development. Diffusion MRI and tractography have been shown to be useful in the study of white matter (WM) microstructure in tracts likely to be impacted by the static brain lesion. The purpose of this study was to identify WM pathways with altered connectivity in children with unilateral CP caused by periventricular white matter lesions using a whole-brain connectivity approach. Data of 50 children with unilateral CP caused by periventricular white matter lesions (5-17 years; manual ability classification system [MACS] I = 25/II = 25) and 17 children with typical development (CTD; 7-16 years) were analysed. Structural and High Angular Resolution Diffusion weighted Images (HARDI; 64 directions, b = 3000 s/mm(2)) were acquired at 3 T. Connectomes were calculated using whole-brain probabilistic tractography in combination with structural parcellation of the cortex and subcortical structures. Connections with altered fractional anisotropy (FA) in children with unilateral CP compared to CTD were identified using network-based statistics (NBS). The relationship between FA and performance of the impaired hand in bimanual tasks (Assisting Hand Assessment-AHA) was assessed in connections that showed significant differences in FA compared to CTD. FA was reduced in children with unilateral CP compared to CTD. Seven pathways, including the corticospinal, thalamocortical, and fronto-parietal association pathways were identified simultaneously in children with left and right unilateral CP. There was a positive relationship between performance of the impaired hand in bimanual tasks and FA within the cortico-spinal and thalamo-cortical pathways (r(2) = 0.16-0.44; p < 0.05). This study shows that network-based analysis of structural connectivity can identify alterations in FA in unilateral CP, and that these alterations in FA are related to clinical function. Application of this connectome-based analysis to investigate alterations in connectivity following treatment may elucidate the neurological correlates of improved functioning due to intervention.
Brandsch, Rainer
2017-10-01
Migration modelling provides reliable migration estimates from food-contact materials (FCM) to food or food simulants based on mass-transfer parameters like diffusion and partition coefficients related to individual materials. In most cases, mass-transfer parameters are not readily available from the literature and for this reason are estimated with a given uncertainty. Historically, uncertainty was accounted for by introducing upper limit concepts first, turning out to be of limited applicability due to highly overestimated migration results. Probabilistic migration modelling gives the possibility to consider uncertainty of the mass-transfer parameters as well as other model inputs. With respect to a functional barrier, the most important parameters among others are the diffusion properties of the functional barrier and its thickness. A software tool that accepts distribution as inputs and is capable of applying Monte Carlo methods, i.e., random sampling from the input distributions of the relevant parameters (i.e., diffusion coefficient and layer thickness), predicts migration results with related uncertainty and confidence intervals. The capabilities of probabilistic migration modelling are presented in the view of three case studies (1) sensitivity analysis, (2) functional barrier efficiency and (3) validation by experimental testing. Based on the predicted migration by probabilistic migration modelling and related exposure estimates, safety evaluation of new materials in the context of existing or new packaging concepts is possible. Identifying associated migration risk and potential safety concerns in the early stage of packaging development is possible. Furthermore, dedicated material selection exhibiting required functional barrier efficiency under application conditions becomes feasible. Validation of the migration risk assessment by probabilistic migration modelling through a minimum of dedicated experimental testing is strongly recommended.
Kim, H; Rajagopalan, M S; Beriwal, S; Smith, K J
2017-10-01
Stereotactic radiosurgery (SRS) alone or upfront whole brain radiation therapy (WBRT) plus SRS are the most commonly used treatment options for one to three brain oligometastases. The most recent randomised clinical trial result comparing SRS alone with upfront WBRT plus SRS (NCCTG N0574) has favoured SRS alone for neurocognitive function, whereas treatment options remain controversial in terms of cognitive decline and local control. The aim of this study was to conduct a cost-effectiveness analysis of these two competing treatments. A Markov model was constructed for patients treated with SRS alone or SRS plus upfront WBRT based on largely randomised clinical trials. Costs were based on 2016 Medicare reimbursement. Strategies were compared using the incremental cost-effectiveness ratio (ICER) and effectiveness was measured in quality-adjusted life years (QALYs). One-way and probabilistic sensitivity analyses were carried out. Strategies were evaluated from the healthcare payer's perspective with a willingness-to-pay threshold of $100 000 per QALY gained. In the base case analysis, the median survival was 9 months for both arms. SRS alone resulted in an ICER of $9917 per QALY gained. In one-way sensitivity analyses, results were most sensitive to variation in cognitive decline rates for both groups and median survival rates, but the SRS alone remained cost-effective for most parameter ranges. Based on the current available evidence, SRS alone was found to be cost-effective for patients with one to three brain metastases compared with upfront WBRT plus SRS. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Automated Functional Analysis of Astrocytes from Chronic Time-Lapse Calcium Imaging Data
Wang, Yinxue; Shi, Guilai; Miller, David J.; Wang, Yizhi; Wang, Congchao; Broussard, Gerard; Wang, Yue; Tian, Lin; Yu, Guoqiang
2017-01-01
Recent discoveries that astrocytes exert proactive regulatory effects on neural information processing and that they are deeply involved in normal brain development and disease pathology have stimulated broad interest in understanding astrocyte functional roles in brain circuit. Measuring astrocyte functional status is now technically feasible, due to recent advances in modern microscopy and ultrasensitive cell-type specific genetically encoded Ca2+ indicators for chronic imaging. However, there is a big gap between the capability of generating large dataset via calcium imaging and the availability of sophisticated analytical tools for decoding the astrocyte function. Current practice is essentially manual, which not only limits analysis throughput but also risks introducing bias and missing important information latent in complex, dynamic big data. Here, we report a suite of computational tools, called Functional AStrocyte Phenotyping (FASP), for automatically quantifying the functional status of astrocytes. Considering the complex nature of Ca2+ signaling in astrocytes and low signal to noise ratio, FASP is designed with data-driven and probabilistic principles, to flexibly account for various patterns and to perform robustly with noisy data. In particular, FASP explicitly models signal propagation, which rules out the applicability of tools designed for other types of data. We demonstrate the effectiveness of FASP using extensive synthetic and real data sets. The findings by FASP were verified by manual inspection. FASP also detected signals that were missed by purely manual analysis but could be confirmed by more careful manual examination under the guidance of automatic analysis. All algorithms and the analysis pipeline are packaged into a plugin for Fiji (ImageJ), with the source code freely available online at https://github.com/VTcbil/FASP. PMID:28769780
Automated Functional Analysis of Astrocytes from Chronic Time-Lapse Calcium Imaging Data.
Wang, Yinxue; Shi, Guilai; Miller, David J; Wang, Yizhi; Wang, Congchao; Broussard, Gerard; Wang, Yue; Tian, Lin; Yu, Guoqiang
2017-01-01
Recent discoveries that astrocytes exert proactive regulatory effects on neural information processing and that they are deeply involved in normal brain development and disease pathology have stimulated broad interest in understanding astrocyte functional roles in brain circuit. Measuring astrocyte functional status is now technically feasible, due to recent advances in modern microscopy and ultrasensitive cell-type specific genetically encoded Ca 2+ indicators for chronic imaging. However, there is a big gap between the capability of generating large dataset via calcium imaging and the availability of sophisticated analytical tools for decoding the astrocyte function. Current practice is essentially manual, which not only limits analysis throughput but also risks introducing bias and missing important information latent in complex, dynamic big data. Here, we report a suite of computational tools, called Functional AStrocyte Phenotyping (FASP), for automatically quantifying the functional status of astrocytes. Considering the complex nature of Ca 2+ signaling in astrocytes and low signal to noise ratio, FASP is designed with data-driven and probabilistic principles, to flexibly account for various patterns and to perform robustly with noisy data. In particular, FASP explicitly models signal propagation, which rules out the applicability of tools designed for other types of data. We demonstrate the effectiveness of FASP using extensive synthetic and real data sets. The findings by FASP were verified by manual inspection. FASP also detected signals that were missed by purely manual analysis but could be confirmed by more careful manual examination under the guidance of automatic analysis. All algorithms and the analysis pipeline are packaged into a plugin for Fiji (ImageJ), with the source code freely available online at https://github.com/VTcbil/FASP.
Probabilistic Aeroelastic Analysis Developed for Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, Subodh K.; Stefko, George L.; Pai, Shantaram S.
2003-01-01
Aeroelastic analyses for advanced turbomachines are being developed for use at the NASA Glenn Research Center and industry. However, these analyses at present are used for turbomachinery design with uncertainties accounted for by using safety factors. This approach may lead to overly conservative designs, thereby reducing the potential of designing higher efficiency engines. An integration of the deterministic aeroelastic analysis methods with probabilistic analysis methods offers the potential to design efficient engines with fewer aeroelastic problems and to make a quantum leap toward designing safe reliable engines. In this research, probabilistic analysis is integrated with aeroelastic analysis: (1) to determine the parameters that most affect the aeroelastic characteristics (forced response and stability) of a turbomachine component such as a fan, compressor, or turbine and (2) to give the acceptable standard deviation on the design parameters for an aeroelastically stable system. The approach taken is to combine the aeroelastic analysis of the MISER (MIStuned Engine Response) code with the FPI (fast probability integration) code. The role of MISER is to provide the functional relationships that tie the structural and aerodynamic parameters (the primitive variables) to the forced response amplitudes and stability eigenvalues (the response properties). The role of FPI is to perform probabilistic analyses by utilizing the response properties generated by MISER. The results are a probability density function for the response properties. The probabilistic sensitivities of the response variables to uncertainty in primitive variables are obtained as a byproduct of the FPI technique. The combined analysis of aeroelastic and probabilistic analysis is applied to a 12-bladed cascade vibrating in bending and torsion. Out of the total 11 design parameters, 6 are considered as having probabilistic variation. The six parameters are space-to-chord ratio (SBYC), stagger angle (GAMA), elastic axis (ELAXS), Mach number (MACH), mass ratio (MASSR), and frequency ratio (WHWB). The cascade is considered to be in subsonic flow with Mach 0.7. The results of the probabilistic aeroelastic analysis are the probability density function of predicted aerodynamic damping and frequency for flutter and the response amplitudes for forced response.
Reliability and risk assessment of structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1991-01-01
Development of reliability and risk assessment of structural components and structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) the evaluation of the various uncertainties in terms of cumulative distribution functions for various structural response variables based on known or assumed uncertainties in primitive structural variables; (2) evaluation of the failure probability; (3) reliability and risk-cost assessment; and (4) an outline of an emerging approach for eventual certification of man-rated structures by computational methods. Collectively, the results demonstrate that the structural durability/reliability of man-rated structural components and structures can be effectively evaluated by using formal probabilistic methods.
Engell, Andrew D; McCarthy, Gregory
2013-07-01
Neuroimaging research has identified several category-selective regions in visual cortex that respond most strongly when viewing an exemplar image from a preferred category, such as faces. Recent studies, however, have suggested a more complex pattern of activation that has been heretofore unrecognized, e.g., the presence of additional patches of activation to faces beyond the well-studied fusiform face area, and the activation of ostensible face selective regions by animate motion of non-biological forms. Here, we characterize the spatial pattern of brain activity evoked by viewing faces or biological motion in large fMRI samples (N>120). We create probabilistic atlases for both face and biological motion activation, and directly compare their spatial patterns of activation. Our findings support the suggestion that the fusiform face area is composed of at least two separable foci of activation. The face-evoked response in the fusiform and nearby ventral temporal cortex has good reliability across runs; however, we found surprisingly high variability in lateral brain regions by faces, and for all brain regions by biological motion, which had an overall much lower effect size. We found that faces and biological motion evoke substantially overlapping activation distributions in both ventral and lateral occipitotemporal cortices. The peaks of activation for these different categories within these overlapping regions were close but distinct. Copyright © 2013 Elsevier Inc. All rights reserved.
Lucas-Neto, Lia; Reimão, Sofia; Oliveira, Edson; Rainha-Campos, Alexandre; Sousa, João; Nunes, Rita G; Gonçalves-Ferreira, António; Campos, Jorge G
2015-07-01
The human nucleus accumbens (Acc) has become a target for deep brain stimulation (DBS) in some neuropsychiatric disorders. Nonetheless, even with the most recent advances in neuroimaging it remains difficult to accurately delineate the Acc and closely related subcortical structures, by conventional MRI sequences. It is our purpose to perform a MRI study of the human Acc and to determine whether there are reliable anatomical landmarks that enable the precise location and identification of the nucleus and its core/shell division. For the Acc identification and delineation, based on anatomical landmarks, T1WI, T1IR and STIR 3T-MR images were acquired in 10 healthy volunteers. Additionally, 32-direction DTI was obtained for Acc segmentation. Seed masks for the Acc were generated with FreeSurfer and probabilistic tractography was performed using FSL. The probability of connectivity between the seed voxels and distinct brain areas was determined and subjected to k-means clustering analysis, defining 2 different regions. With conventional T1WI, the Acc borders are better defined through its surrounding anatomical structures. The DTI color-coded vector maps and IR sequences add further detail in the Acc identification and delineation. Additionally, using probabilistic tractography it is possible to segment the Acc into a core and shell division and establish its structural connectivity with different brain areas. Advanced MRI techniques allow in vivo delineation and segmentation of the human Acc and represent an additional guiding tool in the precise and safe target definition for DBS. © 2015 International Neuromodulation Society.
Brain networks for confidence weighting and hierarchical inference during probabilistic learning
Meyniel, Florent; Dehaene, Stanislas
2017-01-01
Learning is difficult when the world fluctuates randomly and ceaselessly. Classical learning algorithms, such as the delta rule with constant learning rate, are not optimal. Mathematically, the optimal learning rule requires weighting prior knowledge and incoming evidence according to their respective reliabilities. This “confidence weighting” implies the maintenance of an accurate estimate of the reliability of what has been learned. Here, using fMRI and an ideal-observer analysis, we demonstrate that the brain’s learning algorithm relies on confidence weighting. While in the fMRI scanner, human adults attempted to learn the transition probabilities underlying an auditory or visual sequence, and reported their confidence in those estimates. They knew that these transition probabilities could change simultaneously at unpredicted moments, and therefore that the learning problem was inherently hierarchical. Subjective confidence reports tightly followed the predictions derived from the ideal observer. In particular, subjects managed to attach distinct levels of confidence to each learned transition probability, as required by Bayes-optimal inference. Distinct brain areas tracked the likelihood of new observations given current predictions, and the confidence in those predictions. Both signals were combined in the right inferior frontal gyrus, where they operated in agreement with the confidence-weighting model. This brain region also presented signatures of a hierarchical process that disentangles distinct sources of uncertainty. Together, our results provide evidence that the sense of confidence is an essential ingredient of probabilistic learning in the human brain, and that the right inferior frontal gyrus hosts a confidence-based statistical learning algorithm for auditory and visual sequences. PMID:28439014
NASA Technical Reports Server (NTRS)
Duffy, S. F.; Hu, J.; Hopkins, D. A.
1995-01-01
The article begins by examining the fundamentals of traditional deterministic design philosophy. The initial section outlines the concepts of failure criteria and limit state functions two traditional notions that are embedded in deterministic design philosophy. This is followed by a discussion regarding safety factors (a possible limit state function) and the common utilization of statistical concepts in deterministic engineering design approaches. Next the fundamental aspects of a probabilistic failure analysis are explored and it is shown that deterministic design concepts mentioned in the initial portion of the article are embedded in probabilistic design methods. For components fabricated from ceramic materials (and other similarly brittle materials) the probabilistic design approach yields the widely used Weibull analysis after suitable assumptions are incorporated. The authors point out that Weibull analysis provides the rare instance where closed form solutions are available for a probabilistic failure analysis. Since numerical methods are usually required to evaluate component reliabilities, a section on Monte Carlo methods is included to introduce the concept. The article concludes with a presentation of the technical aspects that support the numerical method known as fast probability integration (FPI). This includes a discussion of the Hasofer-Lind and Rackwitz-Fiessler approximations.
Prior probability modulates anticipatory activity in category-specific areas.
Trapp, Sabrina; Lepsien, Jöran; Kotz, Sonja A; Bar, Moshe
2016-02-01
Bayesian models are currently a dominant framework for describing human information processing. However, it is not clear yet how major tenets of this framework can be translated to brain processes. In this study, we addressed the neural underpinning of prior probability and its effect on anticipatory activity in category-specific areas. Before fMRI scanning, participants were trained in two behavioral sessions to learn the prior probability and correct order of visual events within a sequence. The events of each sequence included two different presentations of a geometric shape and one picture of either a house or a face, which appeared with either a high or a low likelihood. Each sequence was preceded by a cue that gave participants probabilistic information about which items to expect next. This allowed examining cue-related anticipatory modulation of activity as a function of prior probability in category-specific areas (fusiform face area and parahippocampal place area). Our findings show that activity in the fusiform face area was higher when faces had a higher prior probability. The finding of a difference between levels of expectations is consistent with graded, probabilistically modulated activity, but the data do not rule out the alternative explanation of a categorical neural response. Importantly, these differences were only visible during anticipation, and vanished at the time of stimulus presentation, calling for a functional distinction when considering the effects of prior probability. Finally, there were no anticipatory effects for houses in the parahippocampal place area, suggesting sensitivity to stimulus material when looking at effects of prediction.
Hazrati, Mehrnaz Kh; Erfanian, Abbas
2008-01-01
This paper presents a new EEG-based Brain-Computer Interface (BCI) for on-line controlling the sequence of hand grasping and holding in a virtual reality environment. The goal of this research is to develop an interaction technique that will allow the BCI to be effective in real-world scenarios for hand grasp control. Moreover, for consistency of man-machine interface, it is desirable the intended movement to be what the subject imagines. For this purpose, we developed an on-line BCI which was based on the classification of EEG associated with imagination of the movement of hand grasping and resting state. A classifier based on probabilistic neural network (PNN) was introduced for classifying the EEG. The PNN is a feedforward neural network that realizes the Bayes decision discriminant function by estimating probability density function using mixtures of Gaussian kernels. Two types of classification schemes were considered here for on-line hand control: adaptive and static. In contrast to static classification, the adaptive classifier was continuously updated on-line during recording. The experimental evaluation on six subjects on different days demonstrated that by using the static scheme, a classification accuracy as high as the rate obtained by the adaptive scheme can be achieved. At the best case, an average classification accuracy of 93.0% and 85.8% was obtained using adaptive and static scheme, respectively. The results obtained from more than 1500 trials on six subjects showed that interactive virtual reality environment can be used as an effective tool for subject training in BCI.
NASA Technical Reports Server (NTRS)
Fayssal, Safie; Weldon, Danny
2008-01-01
The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program called Constellation to send crew and cargo to the international Space Station, to the moon, and beyond. As part of the Constellation program, a new launch vehicle, Ares I, is being developed by NASA Marshall Space Flight Center. Designing a launch vehicle with high reliability and increased safety requires a significant effort in understanding design variability and design uncertainty at the various levels of the design (system, element, subsystem, component, etc.) and throughout the various design phases (conceptual, preliminary design, etc.). In a previous paper [1] we discussed a probabilistic functional failure analysis approach intended mainly to support system requirements definition, system design, and element design during the early design phases. This paper provides an overview of the application of probabilistic engineering methods to support the detailed subsystem/component design and development as part of the "Design for Reliability and Safety" approach for the new Ares I Launch Vehicle. Specifically, the paper discusses probabilistic engineering design analysis cases that had major impact on the design and manufacturing of the Space Shuttle hardware. The cases represent important lessons learned from the Space Shuttle Program and clearly demonstrate the significance of probabilistic engineering analysis in better understanding design deficiencies and identifying potential design improvement for Ares I. The paper also discusses the probabilistic functional failure analysis approach applied during the early design phases of Ares I and the forward plans for probabilistic design analysis in the detailed design and development phases.
ERIC Educational Resources Information Center
Simon, Jessica R.; Vaidya, Chandan J.; Howard, James H., Jr.; Howard, Darlene V.
2012-01-01
Few studies have investigated how aging influences the neural basis of implicit associative learning, and available evidence is inconclusive. One emerging behavioral pattern is that age differences increase with practice, perhaps reflecting the involvement of different brain regions with training. Many studies report hippocampal involvement early…
ERIC Educational Resources Information Center
de Vries, Meinou H.; Ulte, Catrin; Zwitserlood, Pienie; Szymanski, Barbara; Knecht, Stefan
2010-01-01
Recently, an increasing number of studies have suggested a role for the basal ganglia and related dopamine inputs in procedural learning, specifically when learning occurs through trial-by-trial feedback (Shohamy, Myers, Kalanithi, & Gluck. (2008). "Basal ganglia and dopamine contributions to probabilistic category learning." "Neuroscience and…
Tracking thoughts: Exploring the neural architecture of mental time travel during mind-wandering.
Karapanagiotidis, Theodoros; Bernhardt, Boris C; Jefferies, Elizabeth; Smallwood, Jonathan
2017-02-15
The capacity to imagine situations that have already happened or fictitious events that may take place in the future is known as mental time travel (MTT). Studies have shown that MTT is an important aspect of spontaneous thought, yet we lack a clear understanding of how the neurocognitive architecture of the brain constrains this element of human cognition. Previous functional magnetic resonance imaging (MRI) studies have shown that MTT involves the coordination between multiple regions that include mesiotemporal structures such as the hippocampus, as well as prefrontal and parietal regions commonly associated with the default mode network (DMN). The current study used a multimodal neuroimaging approach to identify the structural and functional brain organisation that underlies individual differences in the capacity to spontaneously engage in MTT. Using regionally unconstrained diffusion tractography analysis, we found increased diffusion anisotropy in right lateralised temporo-limbic, corticospinal, inferior fronto-occipital tracts in participants who reported greater MTT. Probabilistic connectivity mapping revealed a significantly higher connection probability of the right hippocampus with these tracts. Resting-state functional MRI connectivity analysis using the right hippocampus as a seed region revealed greater functional coupling to the anterior regions of the DMN with increasing levels of MTT. These findings demonstrate that the interactions between the hippocampus and regions of the cortex underlie the capacity to engage in MTT, and support contemporary theoretical accounts that suggest that the integration of the hippocampus with the DMN provides the neurocognitive landscape that allows us to imagine distant times and places. Copyright © 2016 Elsevier Inc. All rights reserved.
Structural disconnection is responsible for increased functional connectivity in multiple sclerosis.
Patel, Kevin R; Tobyne, Sean; Porter, Daria; Bireley, John Daniel; Smith, Victoria; Klawiter, Eric
2018-06-01
Increased synchrony within neuroanatomical networks is often observed in neurophysiologic studies of human brain disease. Most often, this phenomenon is ascribed to a compensatory process in the face of injury, though evidence supporting such accounts is limited. Given the known dependence of resting-state functional connectivity (rsFC) on underlying structural connectivity (SC), we examine an alternative hypothesis: that topographical changes in SC, specifically particular patterns of disconnection, contribute to increased network rsFC. We obtain measures of rsFC using fMRI and SC using probabilistic tractography in 50 healthy and 28 multiple sclerosis subjects. Using a computational model of neuronal dynamics, we simulate BOLD using healthy subject SC to couple regions. We find that altering the model by introducing structural disconnection patterns observed in those multiple sclerosis subjects with high network rsFC generates simulations with high rsFC as well, suggesting that disconnection itself plays a role in producing high network functional connectivity. We then examine SC data in individuals. In multiple sclerosis subjects with high network rsFC, we find a preferential disconnection between the relevant network and wider system. We examine the significance of such network isolation by introducing random disconnection into the model. As observed empirically, simulated network rsFC increases with removal of connections bridging a community with the remainder of the brain. We thus show that structural disconnection known to occur in multiple sclerosis contributes to network rsFC changes in multiple sclerosis and further that community isolation is responsible for elevated network functional connectivity.
NASA Astrophysics Data System (ADS)
Vico, Giulia; Porporato, Amilcare
2013-04-01
Supplemental irrigation represents one of the main strategies to mitigate the effects of climate variability and stabilize yields. Irrigated agriculture currently provides 40% of food production and its relevance is expected to further increase in the near future, in face of the projected alterations of rainfall patterns and increase in food, fiber, and biofuel demand. Because of the significant investments and water requirements involved in irrigation, strategic choices are needed to preserve productivity and profitability, while maintaining a sustainable water management - a nontrivial task given the unpredictability of the rainfall forcing. To facilitate decision making under uncertainty, a widely applicable probabilistic framework is proposed. The occurrence of rainfall events and irrigation applications are linked probabilistically to crop development during the growing season and yields at harvest. Based on these linkages, the probability density function of yields and corresponding probability density function of required irrigation volumes, as well as the probability density function of yields under the most common case of limited water availability are obtained analytically, as a function of irrigation strategy, climate, soil and crop parameters. The full probabilistic description of the frequency of occurrence of yields and water requirements is a crucial tool for decision making under uncertainty, e.g., via expected utility analysis. Furthermore, the knowledge of the probability density function of yield allows us to quantify the yield reduction hydrologic risk. Two risk indices are defined and quantified: the long-term risk index, suitable for long-term irrigation strategy assessment and investment planning, and the real-time risk index, providing a rigorous probabilistic quantification of the emergence of drought conditions during a single growing season in an agricultural setting. Our approach employs relatively few parameters and is thus easily and broadly applicable to different crops and sites, under current and future climate scenarios. Hence, the proposed probabilistic framework provides a quantitative tool to assess the impact of irrigation strategy and water allocation on the risk of not meeting a certain target yield, thus guiding the optimal allocation of water resources for human and environmental needs.
Liu, Hongjian; Wang, Zidong; Shen, Bo; Huang, Tingwen; Alsaadi, Fuad E
2018-06-01
This paper is concerned with the globally exponential stability problem for a class of discrete-time stochastic memristive neural networks (DSMNNs) with both leakage delays as well as probabilistic time-varying delays. For the probabilistic delays, a sequence of Bernoulli distributed random variables is utilized to determine within which intervals the time-varying delays fall at certain time instant. The sector-bounded activation function is considered in the addressed DSMNN. By taking into account the state-dependent characteristics of the network parameters and choosing an appropriate Lyapunov-Krasovskii functional, some sufficient conditions are established under which the underlying DSMNN is globally exponentially stable in the mean square. The derived conditions are made dependent on both the leakage and the probabilistic delays, and are therefore less conservative than the traditional delay-independent criteria. A simulation example is given to show the effectiveness of the proposed stability criterion. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Nagpal, Vinod K.; Tong, Michael; Murthy, P. L. N.; Mital, Subodh
1998-01-01
An integrated probabilistic approach has been developed to assess composites for high temperature applications. This approach was used to determine thermal and mechanical properties and their probabilistic distributions of a 5-harness 0/90 Sylramic fiber/CVI-SiC/Mi-SiC woven Ceramic Matrix Composite (CMC) at high temperatures. The purpose of developing this approach was to generate quantitative probabilistic information on this CMC to help complete the evaluation for its potential application for HSCT combustor liner. This approach quantified the influences of uncertainties inherent in constituent properties called primitive variables on selected key response variables of the CMC at 2200 F. The quantitative information is presented in the form of Cumulative Density Functions (CDFs). Probability Density Functions (PDFS) and primitive variable sensitivities on response. Results indicate that the scatters in response variables were reduced by 30-50% when the uncertainties in the primitive variables, which showed the most influence, were reduced by 50%.
NASA Astrophysics Data System (ADS)
Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.
2017-08-01
While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.
Registration of 3D fetal neurosonography and MRI☆
Kuklisova-Murgasova, Maria; Cifor, Amalia; Napolitano, Raffaele; Papageorghiou, Aris; Quaghebeur, Gerardine; Rutherford, Mary A.; Hajnal, Joseph V.; Noble, J. Alison; Schnabel, Julia A.
2013-01-01
We propose a method for registration of 3D fetal brain ultrasound with a reconstructed magnetic resonance fetal brain volume. This method, for the first time, allows the alignment of models of the fetal brain built from magnetic resonance images with 3D fetal brain ultrasound, opening possibilities to develop new, prior information based image analysis methods for 3D fetal neurosonography. The reconstructed magnetic resonance volume is first segmented using a probabilistic atlas and a pseudo ultrasound image volume is simulated from the segmentation. This pseudo ultrasound image is then affinely aligned with clinical ultrasound fetal brain volumes using a robust block-matching approach that can deal with intensity artefacts and missing features in the ultrasound images. A qualitative and quantitative evaluation demonstrates good performance of the method for our application, in comparison with other tested approaches. The intensity average of 27 ultrasound images co-aligned with the pseudo ultrasound template shows good correlation with anatomy of the fetal brain as seen in the reconstructed magnetic resonance image. PMID:23969169
Diagnostic Validity of an Automated Probabilistic Tractography in Amnestic Mild Cognitive Impairment
Jung, Won Sang; Um, Yoo Hyun; Kang, Dong Woo; Lee, Chang Uk; Woo, Young Sup; Bahk, Won-Myong
2018-01-01
Objective Although several prior works showed the white matter (WM) integrity changes in amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease, it is still unclear the diagnostic accuracy of the WM integrity measurements using diffusion tensor imaging (DTI) in discriminating aMCI from normal controls. The aim of this study is to explore diagnostic validity of whole brain automated probabilistic tractography in discriminating aMCI from normal controls. Methods One hundred-two subjects (50 aMCI and 52 normal controls) were included and underwent DTI scans. Whole brain WM tracts were reconstructed with automated probabilistic tractography. Fractional anisotropy (FA) and mean diffusivity (MD) values of the memory related WM tracts were measured and compared between the aMCI and the normal control groups. In addition, the diagnostic validities of these WM tracts were evaluated. Results Decreased FA and increased MD values of memory related WM tracts were observed in the aMCI group compared with the control group. Among FA and MD value of each tract, the FA value of left cingulum angular bundle showed the highest area under the curve (AUC) of 0.85 with a sensitivity of 88.2%, a specificity of 76.9% in differentiating MCI patients from control subjects. Furthermore, the combination FA values of WM integrity measures of memory related WM tracts showed AUC value of 0.98, a sensitivity of 96%, a specificity of 94.2%. Conclusion Our results with good diagnostic validity of WM integrity measurements suggest DTI might be promising neuroimaging tool for early detection of aMCI and AD patients. PMID:29739127
Development of a probabilistic analysis methodology for structural reliability estimation
NASA Technical Reports Server (NTRS)
Torng, T. Y.; Wu, Y.-T.
1991-01-01
The novel probabilistic analysis method for assessment of structural reliability presented, which combines fast-convolution with an efficient structural reliability analysis, can after identifying the most important point of a limit state proceed to establish a quadratic-performance function. It then transforms the quadratic function into a linear one, and applies fast convolution. The method is applicable to problems requiring computer-intensive structural analysis. Five illustrative examples of the method's application are given.
Probabilistic track coverage in cooperative sensor networks.
Ferrari, Silvia; Zhang, Guoxian; Wettergren, Thomas A
2010-12-01
The quality of service of a network performing cooperative track detection is represented by the probability of obtaining multiple elementary detections over time along a target track. Recently, two different lines of research, namely, distributed-search theory and geometric transversals, have been used in the literature for deriving the probability of track detection as a function of random and deterministic sensors' positions, respectively. In this paper, we prove that these two approaches are equivalent under the same problem formulation. Also, we present a new performance function that is derived by extending the geometric-transversal approach to the case of random sensors' positions using Poisson flats. As a result, a unified approach for addressing track detection in both deterministic and probabilistic sensor networks is obtained. The new performance function is validated through numerical simulations and is shown to bring about considerable computational savings for both deterministic and probabilistic sensor networks.
Abivardi, Aslan; Bach, Dominik R
2017-08-01
Structural alterations in long-range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non-systematic. Harnessing diffusion-weighted imaging and probabilistic tractography in humans, we investigate connections between two main amygdala nucleus groups, thalamic nuclei, and cortex. We first parcellated amygdala into deep (basolateral) and superficial (centrocortical) nucleus groups, and thalamus into six subregions, using previously established protocols based on connectivity. Cortex was parcellated based on T1-weighted images. We found substantial amygdala connections to thalamus, with different patterns for the two amygdala nuclei. Crucially, we describe direct subcortical connections between amygdala and paraventricular thalamus. Different from rodents but similar to non-human primates, these are more pronounced for basolateral than centrocortical amygdala. Substantial white-matter connectivity between amygdala and visual pulvinar is also more pronounced for basolateral amygdala. Furthermore, we establish detailed connectivity profiles for basolateral and centrocortical amygdala to cortical regions. These exhibit cascadic connections with sensory cortices as suggested previously based on tracer methods in non-human animals. We propose that the quantitative connectivity profiles provided here may guide future work on normal and pathological function of human amygdala. Hum Brain Mapp 38:3927-3940, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
The structural connectome of children with traumatic brain injury.
Königs, Marsh; van Heurn, L W Ernest; Bakx, Roel; Vermeulen, R Jeroen; Goslings, J Carel; Poll-The, Bwee Tien; van der Wees, Marleen; Catsman-Berrevoets, Coriene E; Oosterlaan, Jaap; Pouwels, Petra J W
2017-04-21
This study aimed to investigate the impact of mild to severe pediatric TBI on the structural connectome. Children aged 8-14 years with trauma control (TC) injury (n = 27) were compared to children with mild TBI and risk factors for complicated TBI (mild RF+ , n = 20) or moderate/severe TBI (n = 16) at 2.8 years post-injury. Probabilistic tractography on diffusion tensor imaging data was used in combination with graph theory to study structural connectivity. Functional outcome was measured using neurocognitive tests and parent and teacher questionnaires for behavioral functioning. The results revealed no evidence for an impact of mild RF+ TBI on the structural connectome. In contrast, the moderate/severe TBI group showed longer characteristic path length (P = 0.022, d = 0.82) than the TC group. Furthermore, longer characteristic path length was related to poorer intelligence and poorer working memory in children with TBI. In conclusion, children have abnormal organization of the structural connectome after moderate/severe TBI, which may be implicated in neurocognitive dysfunction associated with pediatric TBI. These findings should be interpreted in the context of our exploratory analyses, which indicate that the definition and weighting of connectivity (e.g., streamline density, fractional anisotropy) influence the properties of the reconstructed connectome and its sensitivity to the impact and outcome of pediatric TBI. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Independent effects of age and levodopa on reversal learning in healthy volunteers.
Vo, Andrew; Seergobin, Ken N; MacDonald, Penny A
2018-05-18
The dopamine overdose hypothesis has provided an important theoretical framework for understanding cognition in Parkinson's disease. It posits that effects of dopaminergic therapy on cognition in Parkinson's disease depend on baseline dopamine levels in brain regions that support different functions. Although functions performed by more severely dopamine-depleted brain regions improve with medication, those associated with less dopamine deficient areas are actually worsened. It is presumed that medication-related worsening of cognition owes to dopamine overdose. We investigated whether age-related changes in baseline dopamine levels would modulate effects of dopaminergic therapy on reward learning in healthy volunteers. In a double-blind, crossover design, healthy younger and older adults completed a probabilistic reversal learning task after treatment with 100/25 mg of levodopa/carbidopa versus placebo. Older adults learned more poorly than younger adults at baseline, being more likely to shift responses after misleading punishment. Levodopa worsened stimulus-reward learning relative to placebo to the same extent in both groups, irrespective of differences in baseline performance and expected dopamine levels. When order effects were eliminated, levodopa induced response shifts after reward more often than placebo. Our results reveal independent deleterious effects of age group and exogenous dopamine on reward learning, suggesting a more complex scenario than predicted by the dopamine overdose hypothesis. Copyright © 2018 Elsevier Inc. All rights reserved.
Frank, G K W; Shott, M E; Riederer, J; Pryor, T L
2016-11-01
Anorexia and bulimia nervosa are severe eating disorders that share many behaviors. Structural and functional brain circuits could provide biological links that those disorders have in common. We recruited 77 young adult women, 26 healthy controls, 26 women with anorexia and 25 women with bulimia nervosa. Probabilistic tractography was used to map white matter connectivity strength across taste and food intake regulating brain circuits. An independent multisample greedy equivalence search algorithm tested effective connectivity between those regions during sucrose tasting. Anorexia and bulimia nervosa had greater structural connectivity in pathways between insula, orbitofrontal cortex and ventral striatum, but lower connectivity from orbitofrontal cortex and amygdala to the hypothalamus (P<0.05, corrected for comorbidity, medication and multiple comparisons). Functionally, in controls the hypothalamus drove ventral striatal activity, but in anorexia and bulimia nervosa effective connectivity was directed from anterior cingulate via ventral striatum to the hypothalamus. Across all groups, sweetness perception was predicted by connectivity strength in pathways connecting to the middle orbitofrontal cortex. This study provides evidence that white matter structural as well as effective connectivity within the energy-homeostasis and food reward-regulating circuitry is fundamentally different in anorexia and bulimia nervosa compared with that in controls. In eating disorders, anterior cingulate cognitive-emotional top down control could affect food reward and eating drive, override hypothalamic inputs to the ventral striatum and enable prolonged food restriction.
Multi-Scale/Multi-Functional Probabilistic Composite Fatigue
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2008-01-01
A multi-level (multi-scale/multi-functional) evaluation is demonstrated by applying it to three different sample problems. These problems include the probabilistic evaluation of a space shuttle main engine blade, an engine rotor and an aircraft wing. The results demonstrate that the blade will fail at the highest probability path, the engine two-stage rotor will fail by fracture at the rim and the aircraft wing will fail at 109 fatigue cycles with a probability of 0.9967.
Modeling the Effect of Reward Amount on Probability Discounting
ERIC Educational Resources Information Center
Myerson, Joel; Green, Leonard; Morris, Joshua
2011-01-01
The present study with college students examined the effect of amount on the discounting of probabilistic monetary rewards. A hyperboloid function accurately described the discounting of hypothetical rewards ranging in amount from $20 to $10,000,000. The degree of discounting increased continuously with amount of probabilistic reward. This effect…
Cai, Shanqing; Tourville, Jason A.; Beal, Deryk S.; Perkell, Joseph S.; Guenther, Frank H.; Ghosh, Satrajit S.
2013-01-01
Deficits in brain white matter have been a main focus of recent neuroimaging studies on stuttering. However, no prior study has examined brain connectivity on the global level of the cerebral cortex in persons who stutter (PWS). In the current study, we analyzed the results from probabilistic tractography between regions comprising the cortical speech network. An anatomical parcellation scheme was used to define 28 speech production-related ROIs in each hemisphere. We used network-based statistic (NBS) and graph theory to analyze the connectivity patterns obtained from tractography. At the network-level, the probabilistic corticocortical connectivity from the PWS group were significantly weaker than that from persons with fluent speech (PFS). NBS analysis revealed significant components in the bilateral speech networks with negative correlations with stuttering severity. To facilitate comparison with previous studies, we also performed tract-based spatial statistics (TBSS) and regional fractional anisotropy (FA) averaging. Results from tractography, TBSS and regional FA averaging jointly highlight the importance of several regions in the left peri-Rolandic sensorimotor and premotor areas, most notably the left ventral premotor cortex (vPMC) and middle primary motor cortex, in the neuroanatomical basis of stuttering. PMID:24611042
Cai, Shanqing; Tourville, Jason A; Beal, Deryk S; Perkell, Joseph S; Guenther, Frank H; Ghosh, Satrajit S
2014-01-01
Deficits in brain white matter have been a main focus of recent neuroimaging studies on stuttering. However, no prior study has examined brain connectivity on the global level of the cerebral cortex in persons who stutter (PWS). In the current study, we analyzed the results from probabilistic tractography between regions comprising the cortical speech network. An anatomical parcellation scheme was used to define 28 speech production-related ROIs in each hemisphere. We used network-based statistic (NBS) and graph theory to analyze the connectivity patterns obtained from tractography. At the network-level, the probabilistic corticocortical connectivity from the PWS group were significantly weaker than that from persons with fluent speech (PFS). NBS analysis revealed significant components in the bilateral speech networks with negative correlations with stuttering severity. To facilitate comparison with previous studies, we also performed tract-based spatial statistics (TBSS) and regional fractional anisotropy (FA) averaging. Results from tractography, TBSS and regional FA averaging jointly highlight the importance of several regions in the left peri-Rolandic sensorimotor and premotor areas, most notably the left ventral premotor cortex (vPMC) and middle primary motor cortex, in the neuroanatomical basis of stuttering.
From cyclone tracks to the costs of European winter storms: A probabilistic loss assessment model
NASA Astrophysics Data System (ADS)
Renggli, Dominik; Corti, Thierry; Reese, Stefan; Wueest, Marc; Viktor, Elisabeth; Zimmerli, Peter
2014-05-01
The quantitative assessment of the potential losses of European winter storms is essential for the economic viability of a global reinsurance company. For this purpose, reinsurance companies generally use probabilistic loss assessment models. This work presents an innovative approach to develop physically meaningful probabilistic events for Swiss Re's new European winter storm loss model. The meteorological hazard component of the new model is based on cyclone and windstorm tracks identified in the 20th Century Reanalysis data. The knowledge of the evolution of winter storms both in time and space allows the physically meaningful perturbation of properties of historical events (e.g. track, intensity). The perturbation includes a random element but also takes the local climatology and the evolution of the historical event into account. The low-resolution wind footprints taken from 20th Century Reanalysis are processed by a statistical-dynamical downscaling to generate high-resolution footprints of the historical and probabilistic winter storm events. Downscaling transfer functions are generated using ENSEMBLES regional climate model data. The result is a set of reliable probabilistic events representing thousands of years. The event set is then combined with country- and risk-specific vulnerability functions and detailed market- or client-specific exposure information to compute (re-)insurance risk premiums.
Simulation of probabilistic wind loads and building analysis
NASA Technical Reports Server (NTRS)
Shah, Ashwin R.; Chamis, Christos C.
1991-01-01
Probabilistic wind loads likely to occur on a structure during its design life are predicted. Described here is a suitable multifactor interactive equation (MFIE) model and its use in the Composite Load Spectra (CLS) computer program to simulate the wind pressure cumulative distribution functions on four sides of a building. The simulated probabilistic wind pressure load was applied to a building frame, and cumulative distribution functions of sway displacements and reliability against overturning were obtained using NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), a stochastic finite element computer code. The geometry of the building and the properties of building members were also considered as random in the NESSUS analysis. The uncertainties of wind pressure, building geometry, and member section property were qualified in terms of their respective sensitivities on the structural response.
Hashmi, Javeria A; Baliki, Marwan N; Huang, Lejian; Baria, Alex T; Torbey, Souraya; Hermann, Kristina M; Schnitzer, Thomas J; Apkarian, A Vania
2013-09-01
Chronic pain conditions are associated with abnormalities in brain structure and function. Moreover, some studies indicate that brain activity related to the subjective perception of chronic pain may be distinct from activity for acute pain. However, the latter are based on observations from cross-sectional studies. How brain activity reorganizes with transition from acute to chronic pain has remained unexplored. Here we study this transition by examining brain activity for rating fluctuations of back pain magnitude. First we compared back pain-related brain activity between subjects who have had the condition for ∼2 months with no prior history of back pain for 1 year (early, acute/subacute back pain group, n = 94), to subjects who have lived with back pain for >10 years (chronic back pain group, n = 59). In a subset of subacute back pain patients, we followed brain activity for back pain longitudinally over a 1-year period, and compared brain activity between those who recover (recovered acute/sub-acute back pain group, n = 19) and those in which the back pain persists (persistent acute/sub-acute back pain group, n = 20; based on a 20% decrease in intensity of back pain in 1 year). We report results in relation to meta-analytic probabilistic maps related to the terms pain, emotion, and reward (each map is based on >200 brain imaging studies, derived from neurosynth.org). We observed that brain activity for back pain in the early, acute/subacute back pain group is limited to regions involved in acute pain, whereas in the chronic back pain group, activity is confined to emotion-related circuitry. Reward circuitry was equally represented in both groups. In the recovered acute/subacute back pain group, brain activity diminished in time, whereas in the persistent acute/subacute back pain group, activity diminished in acute pain regions, increased in emotion-related circuitry, and remained unchanged in reward circuitry. The results demonstrate that brain representation for a constant percept, back pain, can undergo large-scale shifts in brain activity with the transition to chronic pain. These observations challenge long-standing theoretical concepts regarding brain and mind relationships, as well as provide important novel insights regarding definitions and mechanisms of chronic pain.
Hashmi, Javeria A.; Baliki, Marwan N.; Huang, Lejian; Baria, Alex T.; Torbey, Souraya; Hermann, Kristina M.; Schnitzer, Thomas J.; Apkarian, A. Vania
2013-01-01
Chronic pain conditions are associated with abnormalities in brain structure and function. Moreover, some studies indicate that brain activity related to the subjective perception of chronic pain may be distinct from activity for acute pain. However, the latter are based on observations from cross-sectional studies. How brain activity reorganizes with transition from acute to chronic pain has remained unexplored. Here we study this transition by examining brain activity for rating fluctuations of back pain magnitude. First we compared back pain-related brain activity between subjects who have had the condition for ∼2 months with no prior history of back pain for 1 year (early, acute/subacute back pain group, n = 94), to subjects who have lived with back pain for >10 years (chronic back pain group, n = 59). In a subset of subacute back pain patients, we followed brain activity for back pain longitudinally over a 1-year period, and compared brain activity between those who recover (recovered acute/sub-acute back pain group, n = 19) and those in which the back pain persists (persistent acute/sub-acute back pain group, n = 20; based on a 20% decrease in intensity of back pain in 1 year). We report results in relation to meta-analytic probabilistic maps related to the terms pain, emotion, and reward (each map is based on >200 brain imaging studies, derived from neurosynth.org). We observed that brain activity for back pain in the early, acute/subacute back pain group is limited to regions involved in acute pain, whereas in the chronic back pain group, activity is confined to emotion-related circuitry. Reward circuitry was equally represented in both groups. In the recovered acute/subacute back pain group, brain activity diminished in time, whereas in the persistent acute/subacute back pain group, activity diminished in acute pain regions, increased in emotion-related circuitry, and remained unchanged in reward circuitry. The results demonstrate that brain representation for a constant percept, back pain, can undergo large-scale shifts in brain activity with the transition to chronic pain. These observations challenge long-standing theoretical concepts regarding brain and mind relationships, as well as provide important novel insights regarding definitions and mechanisms of chronic pain. PMID:23983029
Tustison, Nicholas J; Shrinidhi, K L; Wintermark, Max; Durst, Christopher R; Kandel, Benjamin M; Gee, James C; Grossman, Murray C; Avants, Brian B
2015-04-01
Segmenting and quantifying gliomas from MRI is an important task for diagnosis, planning intervention, and for tracking tumor changes over time. However, this task is complicated by the lack of prior knowledge concerning tumor location, spatial extent, shape, possible displacement of normal tissue, and intensity signature. To accommodate such complications, we introduce a framework for supervised segmentation based on multiple modality intensity, geometry, and asymmetry feature sets. These features drive a supervised whole-brain and tumor segmentation approach based on random forest-derived probabilities. The asymmetry-related features (based on optimal symmetric multimodal templates) demonstrate excellent discriminative properties within this framework. We also gain performance by generating probability maps from random forest models and using these maps for a refining Markov random field regularized probabilistic segmentation. This strategy allows us to interface the supervised learning capabilities of the random forest model with regularized probabilistic segmentation using the recently developed ANTsR package--a comprehensive statistical and visualization interface between the popular Advanced Normalization Tools (ANTs) and the R statistical project. The reported algorithmic framework was the top-performing entry in the MICCAI 2013 Multimodal Brain Tumor Segmentation challenge. The challenge data were widely varying consisting of both high-grade and low-grade glioma tumor four-modality MRI from five different institutions. Average Dice overlap measures for the final algorithmic assessment were 0.87, 0.78, and 0.74 for "complete", "core", and "enhanced" tumor components, respectively.
Reliability, Risk and Cost Trade-Offs for Composite Designs
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Singhal, Surendra N.; Chamis, Christos C.
1996-01-01
Risk and cost trade-offs have been simulated using a probabilistic method. The probabilistic method accounts for all naturally-occurring uncertainties including those in constituent material properties, fabrication variables, structure geometry and loading conditions. The probability density function of first buckling load for a set of uncertain variables is computed. The probabilistic sensitivity factors of uncertain variables to the first buckling load is calculated. The reliability-based cost for a composite fuselage panel is defined and minimized with respect to requisite design parameters. The optimization is achieved by solving a system of nonlinear algebraic equations whose coefficients are functions of probabilistic sensitivity factors. With optimum design parameters such as the mean and coefficient of variation (representing range of scatter) of uncertain variables, the most efficient and economical manufacturing procedure can be selected. In this paper, optimum values of the requisite design parameters for a predetermined cost due to failure occurrence are computationally determined. The results for the fuselage panel analysis show that the higher the cost due to failure occurrence, the smaller the optimum coefficient of variation of fiber modulus (design parameter) in longitudinal direction.
Learning Predictive Statistics: Strategies and Brain Mechanisms.
Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe
2017-08-30
When immersed in a new environment, we are challenged to decipher initially incomprehensible streams of sensory information. However, quite rapidly, the brain finds structure and meaning in these incoming signals, helping us to predict and prepare ourselves for future actions. This skill relies on extracting the statistics of event streams in the environment that contain regularities of variable complexity from simple repetitive patterns to complex probabilistic combinations. Here, we test the brain mechanisms that mediate our ability to adapt to the environment's statistics and predict upcoming events. By combining behavioral training and multisession fMRI in human participants (male and female), we track the corticostriatal mechanisms that mediate learning of temporal sequences as they change in structure complexity. We show that learning of predictive structures relates to individual decision strategy; that is, selecting the most probable outcome in a given context (maximizing) versus matching the exact sequence statistics. These strategies engage distinct human brain regions: maximizing engages dorsolateral prefrontal, cingulate, sensory-motor regions, and basal ganglia (dorsal caudate, putamen), whereas matching engages occipitotemporal regions (including the hippocampus) and basal ganglia (ventral caudate). Our findings provide evidence for distinct corticostriatal mechanisms that facilitate our ability to extract behaviorally relevant statistics to make predictions. SIGNIFICANCE STATEMENT Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. Past work has studied how humans identify repetitive patterns and associative pairings. However, the natural environment contains regularities that vary in complexity from simple repetition to complex probabilistic combinations. Here, we combine behavior and multisession fMRI to track the brain mechanisms that mediate our ability to adapt to changes in the environment's statistics. We provide evidence for an alternate route for learning complex temporal statistics: extracting the most probable outcome in a given context is implemented by interactions between executive and motor corticostriatal mechanisms compared with visual corticostriatal circuits (including hippocampal cortex) that support learning of the exact temporal statistics. Copyright © 2017 Wang et al.
Global/local methods for probabilistic structural analysis
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Wu, Y.-T.
1993-01-01
A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.
Global/local methods for probabilistic structural analysis
NASA Astrophysics Data System (ADS)
Millwater, H. R.; Wu, Y.-T.
1993-04-01
A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.
Weng, Ling; Xie, Qiuyou; Zhao, Ling; Zhang, Ruibin; Ma, Qing; Wang, Junjing; Jiang, Wenjie; He, Yanbin; Chen, Yan; Li, Changhong; Ni, Xiaoxiao; Xu, Qin; Yu, Ronghao; Huang, Ruiwang
2017-05-01
Consciousness loss in patients with severe brain injuries is associated with reduced functional connectivity of the default mode network (DMN), fronto-parietal network, and thalamo-cortical network. However, it is still unclear if the brain white matter connectivity between the above mentioned networks is changed in patients with disorders of consciousness (DOC). In this study, we collected diffusion tensor imaging (DTI) data from 13 patients and 17 healthy controls, constructed whole-brain white matter (WM) structural networks with probabilistic tractography. Afterward, we estimated and compared topological properties, and revealed an altered structural organization in the patients. We found a disturbance in the normal balance between segregation and integration in brain structural networks and detected significantly decreased nodal centralities primarily in the basal ganglia and thalamus in the patients. A network-based statistical analysis detected a subnetwork with uniformly significantly decreased structural connections between the basal ganglia, thalamus, and frontal cortex in the patients. Further analysis indicated that along the WM fiber tracts linking the basal ganglia, thalamus, and frontal cortex, the fractional anisotropy was decreased and the radial diffusivity was increased in the patients compared to the controls. Finally, using the receiver operating characteristic method, we found that the structural connections within the NBS-derived component that showed differences between the groups demonstrated high sensitivity and specificity (>90%). Our results suggested that major consciousness deficits in DOC patients may be related to the altered WM connections between the basal ganglia, thalamus, and frontal cortex. Copyright © 2017 Elsevier Ltd. All rights reserved.
Studholme, Colin
2011-08-15
The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.
Donnarumma, Francesco; Maisto, Domenico; Pezzulo, Giovanni
2016-01-01
How do humans and other animals face novel problems for which predefined solutions are not available? Human problem solving links to flexible reasoning and inference rather than to slow trial-and-error learning. It has received considerable attention since the early days of cognitive science, giving rise to well known cognitive architectures such as SOAR and ACT-R, but its computational and brain mechanisms remain incompletely known. Furthermore, it is still unclear whether problem solving is a “specialized” domain or module of cognition, in the sense that it requires computations that are fundamentally different from those supporting perception and action systems. Here we advance a novel view of human problem solving as probabilistic inference with subgoaling. In this perspective, key insights from cognitive architectures are retained such as the importance of using subgoals to split problems into subproblems. However, here the underlying computations use probabilistic inference methods analogous to those that are increasingly popular in the study of perception and action systems. To test our model we focus on the widely used Tower of Hanoi (ToH) task, and show that our proposed method can reproduce characteristic idiosyncrasies of human problem solvers: their sensitivity to the “community structure” of the ToH and their difficulties in executing so-called “counterintuitive” movements. Our analysis reveals that subgoals have two key roles in probabilistic inference and problem solving. First, prior beliefs on (likely) useful subgoals carve the problem space and define an implicit metric for the problem at hand—a metric to which humans are sensitive. Second, subgoals are used as waypoints in the probabilistic problem solving inference and permit to find effective solutions that, when unavailable, lead to problem solving deficits. Our study thus suggests that a probabilistic inference scheme enhanced with subgoals provides a comprehensive framework to study problem solving and its deficits. PMID:27074140
Donnarumma, Francesco; Maisto, Domenico; Pezzulo, Giovanni
2016-04-01
How do humans and other animals face novel problems for which predefined solutions are not available? Human problem solving links to flexible reasoning and inference rather than to slow trial-and-error learning. It has received considerable attention since the early days of cognitive science, giving rise to well known cognitive architectures such as SOAR and ACT-R, but its computational and brain mechanisms remain incompletely known. Furthermore, it is still unclear whether problem solving is a "specialized" domain or module of cognition, in the sense that it requires computations that are fundamentally different from those supporting perception and action systems. Here we advance a novel view of human problem solving as probabilistic inference with subgoaling. In this perspective, key insights from cognitive architectures are retained such as the importance of using subgoals to split problems into subproblems. However, here the underlying computations use probabilistic inference methods analogous to those that are increasingly popular in the study of perception and action systems. To test our model we focus on the widely used Tower of Hanoi (ToH) task, and show that our proposed method can reproduce characteristic idiosyncrasies of human problem solvers: their sensitivity to the "community structure" of the ToH and their difficulties in executing so-called "counterintuitive" movements. Our analysis reveals that subgoals have two key roles in probabilistic inference and problem solving. First, prior beliefs on (likely) useful subgoals carve the problem space and define an implicit metric for the problem at hand-a metric to which humans are sensitive. Second, subgoals are used as waypoints in the probabilistic problem solving inference and permit to find effective solutions that, when unavailable, lead to problem solving deficits. Our study thus suggests that a probabilistic inference scheme enhanced with subgoals provides a comprehensive framework to study problem solving and its deficits.
Quantum information, cognition, and music.
Dalla Chiara, Maria L; Giuntini, Roberto; Leporini, Roberto; Negri, Eleonora; Sergioli, Giuseppe
2015-01-01
Parallelism represents an essential aspect of human mind/brain activities. One can recognize some common features between psychological parallelism and the characteristic parallel structures that arise in quantum theory and in quantum computation. The article is devoted to a discussion of the following questions: a comparison between classical probabilistic Turing machines and quantum Turing machines.possible applications of the quantum computational semantics to cognitive problems.parallelism in music.
Quantum information, cognition, and music
Dalla Chiara, Maria L.; Giuntini, Roberto; Leporini, Roberto; Negri, Eleonora; Sergioli, Giuseppe
2015-01-01
Parallelism represents an essential aspect of human mind/brain activities. One can recognize some common features between psychological parallelism and the characteristic parallel structures that arise in quantum theory and in quantum computation. The article is devoted to a discussion of the following questions: a comparison between classical probabilistic Turing machines and quantum Turing machines.possible applications of the quantum computational semantics to cognitive problems.parallelism in music. PMID:26539139
Hardware-Assisted Large-Scale Neuroevolution for Multiagent Learning
2014-12-30
SECURITY CLASSIFICATION OF: This DURIP equipment award was used to purchase, install, and bring on-line two Berkeley Emulation Engines ( BEEs ) and two...mini- BEE machines to establish an FPGA-based high-performance multiagent training platform and its associated software. This acquisition of BEE4-W...Platform; Probabilistic Domain Transformation; Hardware-Assisted; FPGA; BEE ; Hive Brain; Multiagent. REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S
Casteels, Cindy; Vunckx, Kathleen; Aelvoet, Sarah-Ann; Baekelandt, Veerle; Bormans, Guy; Van Laere, Koen; Koole, Michel
2013-01-01
Automated voxel-based or pre-defined volume-of-interest (VOI) analysis of small-animal PET data in mice is necessary for optimal information usage as the number of available resolution elements is limited. We have mapped metabolic ([(18)F]FDG) and dopamine transporter ([(18)F]FECT) small-animal PET data onto a 3D Magnetic Resonance Microscopy (MRM) mouse brain template and aligned them in space to the Paxinos co-ordinate system. In this way, ligand-specific templates for sensitive analysis and accurate anatomical localization were created. Next, using a pre-defined VOI approach, test-retest and intersubject variability of various quantification methods were evaluated. Also, the feasibility of mouse brain statistical parametric mapping (SPM) was explored for [(18)F]FDG and [(18)F]FECT imaging of 6-hydroxydopamine-lesioned (6-OHDA) mice. Twenty-three adult C57BL6 mice were scanned with [(18)F]FDG and [(18)F]FECT. Registrations and affine spatial normalizations were performed using SPM8. [(18)F]FDG data were quantified using (1) an image-derived-input function obtained from the liver (cMRglc), using (2) standardized uptake values (SUVglc) corrected for blood glucose levels and by (3) normalizing counts to the whole-brain uptake. Parametric [(18)F]FECT binding images were constructed by reference to the cerebellum. Registration accuracy was determined using random simulated misalignments and vectorial mismatch determination. Registration accuracy was between 0.21-1.11 mm. Regional intersubject variabilities of cMRglc ranged from 15.4% to 19.2%, while test-retest values were between 5.0% and 13.0%. For [(18)F]FECT uptake in the caudate-putamen, these values were 13.0% and 10.3%, respectively. Regional values of cMRglc positively correlated to SUVglc measured within the 45-60 min time frame (spearman r = 0.71). Next, SPM analysis of 6-OHDA-lesioned mice showed hypometabolism in the bilateral caudate-putamen and cerebellum, and an unilateral striatal decrease in DAT availability. MRM-based small-animal PET templates facilitate accurate assessment and spatial localization of mouse brain function using VOI or voxel-based analysis. Regional intersubject- and test-retest variations indicate that for these targets accuracy comparable to humans can be achieved.
Pannek, Kerstin; Boyd, Roslyn N.; Fiori, Simona; Guzzetta, Andrea; Rose, Stephen E.
2014-01-01
Background Cerebral palsy (CP) is a term to describe the spectrum of disorders of impaired motor and sensory function caused by a brain lesion occurring early during development. Diffusion MRI and tractography have been shown to be useful in the study of white matter (WM) microstructure in tracts likely to be impacted by the static brain lesion. Aim The purpose of this study was to identify WM pathways with altered connectivity in children with unilateral CP caused by periventricular white matter lesions using a whole-brain connectivity approach. Methods Data of 50 children with unilateral CP caused by periventricular white matter lesions (5–17 years; manual ability classification system [MACS] I = 25/II = 25) and 17 children with typical development (CTD; 7–16 years) were analysed. Structural and High Angular Resolution Diffusion weighted Images (HARDI; 64 directions, b = 3000 s/mm2) were acquired at 3 T. Connectomes were calculated using whole-brain probabilistic tractography in combination with structural parcellation of the cortex and subcortical structures. Connections with altered fractional anisotropy (FA) in children with unilateral CP compared to CTD were identified using network-based statistics (NBS). The relationship between FA and performance of the impaired hand in bimanual tasks (Assisting Hand Assessment—AHA) was assessed in connections that showed significant differences in FA compared to CTD. Results FA was reduced in children with unilateral CP compared to CTD. Seven pathways, including the corticospinal, thalamocortical, and fronto-parietal association pathways were identified simultaneously in children with left and right unilateral CP. There was a positive relationship between performance of the impaired hand in bimanual tasks and FA within the cortico-spinal and thalamo-cortical pathways (r2 = 0.16–0.44; p < 0.05). Conclusion This study shows that network-based analysis of structural connectivity can identify alterations in FA in unilateral CP, and that these alterations in FA are related to clinical function. Application of this connectome-based analysis to investigate alterations in connectivity following treatment may elucidate the neurological correlates of improved functioning due to intervention. PMID:25003031
Circadian-Time Sickness: Time-of-Day Cue-Conflicts Directly Affect Health.
van Ee, Raymond; Van de Cruys, Sander; Schlangen, Luc J M; Vlaskamp, Björn N S
2016-11-01
A daily rhythm that is not in synchrony with the environmental light-dark cycle (as in jetlag and shift work) is known to affect mood and health through an as yet unresolved neural mechanism. Here, we combine Bayesian probabilistic 'cue-conflict' theory with known physiology of the biological clock of the brain, entailing the insight that, for a functional pacemaker, it is sufficient to have two interacting units (reflecting environmental and internal time-of-day cues), without the need for an extra homuncular directing unit. Unnatural light-dark cycles cause a time-of-day cue-conflict that is reflected by a desynchronization between the ventral (environmental) and dorsal (internal) pacemaking signals of the pacemaker. We argue that this desynchronization, in-and-of-itself, produces health issues that we designate as 'circadian-time sickness', analogous to 'motion sickness'. Copyright © 2016 Elsevier Ltd. All rights reserved.
Davidow, Juliet Y; Foerde, Karin; Galván, Adriana; Shohamy, Daphna
2016-10-05
Adolescents are notorious for engaging in reward-seeking behaviors, a tendency attributed to heightened activity in the brain's reward systems during adolescence. It has been suggested that reward sensitivity in adolescence might be adaptive, but evidence of an adaptive role has been scarce. Using a probabilistic reinforcement learning task combined with reinforcement learning models and fMRI, we found that adolescents showed better reinforcement learning and a stronger link between reinforcement learning and episodic memory for rewarding outcomes. This behavioral benefit was related to heightened prediction error-related BOLD activity in the hippocampus and to stronger functional connectivity between the hippocampus and the striatum at the time of reinforcement. These findings reveal an important role for the hippocampus in reinforcement learning in adolescence and suggest that reward sensitivity in adolescence is related to adaptive differences in how adolescents learn from experience. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
This paper presents a study on the optimization of systems with structured uncertainties, whose inputs and outputs can be exhaustively described in the probabilistic sense. By propagating the uncertainty from the input to the output in the space of the probability density functions and the moments, optimization problems that pursue performance, robustness and reliability based designs are studied. Be specifying the desired outputs in terms of desired probability density functions and then in terms of meaningful probabilistic indices, we settle a computationally viable framework for solving practical optimization problems. Applications to static optimization and stability control are used to illustrate the relevance of incorporating uncertainty in the early stages of the design. Several examples that admit a full probabilistic description of the output in terms of the design variables and the uncertain inputs are used to elucidate the main features of the generic problem and its solution. Extensions to problems that do not admit closed form solutions are also evaluated. Concrete evidence of the importance of using a consistent probabilistic formulation of the optimization problem and a meaningful probabilistic description of its solution is provided in the examples. In the stability control problem the analysis shows that standard deterministic approaches lead to designs with high probability of running into instability. The implementation of such designs can indeed have catastrophic consequences.
Base-Rate Neglect as a Function of Base Rates in Probabilistic Contingency Learning
ERIC Educational Resources Information Center
Kutzner, Florian; Freytag, Peter; Vogel, Tobias; Fiedler, Klaus
2008-01-01
When humans predict criterion events based on probabilistic predictors, they often lend excessive weight to the predictor and insufficient weight to the base rate of the criterion event. In an operant analysis, using a matching-to-sample paradigm, Goodie and Fantino (1996) showed that humans exhibit base-rate neglect when predictors are associated…
The Gain-Loss Model: A Probabilistic Skill Multimap Model for Assessing Learning Processes
ERIC Educational Resources Information Center
Robusto, Egidio; Stefanutti, Luca; Anselmi, Pasquale
2010-01-01
Within the theoretical framework of knowledge space theory, a probabilistic skill multimap model for assessing learning processes is proposed. The learning process of a student is modeled as a function of the student's knowledge and of an educational intervention on the attainment of specific skills required to solve problems in a knowledge…
A new discriminative kernel from probabilistic models.
Tsuda, Koji; Kawanabe, Motoaki; Rätsch, Gunnar; Sonnenburg, Sören; Müller, Klaus-Robert
2002-10-01
Recently, Jaakkola and Haussler (1999) proposed a method for constructing kernel functions from probabilistic models. Their so-called Fisher kernel has been combined with discriminative classifiers such as support vector machines and applied successfully in, for example, DNA and protein analysis. Whereas the Fisher kernel is calculated from the marginal log-likelihood, we propose the TOP kernel derived; from tangent vectors of posterior log-odds. Furthermore, we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing the TOP kernel. In experiments, our new discriminative TOP kernel compares favorably to the Fisher kernel.
Probabilistic assessment of uncertain adaptive hybrid composites
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Singhal, Surendra N.; Chamis, Christos C.
1994-01-01
Adaptive composite structures using actuation materials, such as piezoelectric fibers, were assessed probabilistically utilizing intraply hybrid composite mechanics in conjunction with probabilistic composite structural analysis. Uncertainties associated with the actuation material as well as the uncertainties in the regular (traditional) composite material properties were quantified and considered in the assessment. Static and buckling analyses were performed for rectangular panels with various boundary conditions and different control arrangements. The probability density functions of the structural behavior, such as maximum displacement and critical buckling load, were computationally simulated. The results of the assessment indicate that improved design and reliability can be achieved with actuation material.
MEG/EEG Source Reconstruction, Statistical Evaluation, and Visualization with NUTMEG
Dalal, Sarang S.; Zumer, Johanna M.; Guggisberg, Adrian G.; Trumpis, Michael; Wong, Daniel D. E.; Sekihara, Kensuke; Nagarajan, Srikantan S.
2011-01-01
NUTMEG is a source analysis toolbox geared towards cognitive neuroscience researchers using MEG and EEG, including intracranial recordings. Evoked and unaveraged data can be imported to the toolbox for source analysis in either the time or time-frequency domains. NUTMEG offers several variants of adaptive beamformers, probabilistic reconstruction algorithms, as well as minimum-norm techniques to generate functional maps of spatiotemporal neural source activity. Lead fields can be calculated from single and overlapping sphere head models or imported from other software. Group averages and statistics can be calculated as well. In addition to data analysis tools, NUTMEG provides a unique and intuitive graphical interface for visualization of results. Source analyses can be superimposed onto a structural MRI or headshape to provide a convenient visual correspondence to anatomy. These results can also be navigated interactively, with the spatial maps and source time series or spectrogram linked accordingly. Animations can be generated to view the evolution of neural activity over time. NUTMEG can also display brain renderings and perform spatial normalization of functional maps using SPM's engine. As a MATLAB package, the end user may easily link with other toolboxes or add customized functions. PMID:21437174
MEG/EEG source reconstruction, statistical evaluation, and visualization with NUTMEG.
Dalal, Sarang S; Zumer, Johanna M; Guggisberg, Adrian G; Trumpis, Michael; Wong, Daniel D E; Sekihara, Kensuke; Nagarajan, Srikantan S
2011-01-01
NUTMEG is a source analysis toolbox geared towards cognitive neuroscience researchers using MEG and EEG, including intracranial recordings. Evoked and unaveraged data can be imported to the toolbox for source analysis in either the time or time-frequency domains. NUTMEG offers several variants of adaptive beamformers, probabilistic reconstruction algorithms, as well as minimum-norm techniques to generate functional maps of spatiotemporal neural source activity. Lead fields can be calculated from single and overlapping sphere head models or imported from other software. Group averages and statistics can be calculated as well. In addition to data analysis tools, NUTMEG provides a unique and intuitive graphical interface for visualization of results. Source analyses can be superimposed onto a structural MRI or headshape to provide a convenient visual correspondence to anatomy. These results can also be navigated interactively, with the spatial maps and source time series or spectrogram linked accordingly. Animations can be generated to view the evolution of neural activity over time. NUTMEG can also display brain renderings and perform spatial normalization of functional maps using SPM's engine. As a MATLAB package, the end user may easily link with other toolboxes or add customized functions.
Probabilistic analysis of a materially nonlinear structure
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Wu, Y.-T.; Fossum, A. F.
1990-01-01
A probabilistic finite element program is used to perform probabilistic analysis of a materially nonlinear structure. The program used in this study is NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), under development at Southwest Research Institute. The cumulative distribution function (CDF) of the radial stress of a thick-walled cylinder under internal pressure is computed and compared with the analytical solution. In addition, sensitivity factors showing the relative importance of the input random variables are calculated. Significant plasticity is present in this problem and has a pronounced effect on the probabilistic results. The random input variables are the material yield stress and internal pressure with Weibull and normal distributions, respectively. The results verify the ability of NESSUS to compute the CDF and sensitivity factors of a materially nonlinear structure. In addition, the ability of the Advanced Mean Value (AMV) procedure to assess the probabilistic behavior of structures which exhibit a highly nonlinear response is shown. Thus, the AMV procedure can be applied with confidence to other structures which exhibit nonlinear behavior.
Marsh, Rachel; Alexander, Gerianne M; Packard, Mark G; Zhu, Hongtu; Peterson, Bradley S
2005-01-01
Procedural learning and memory systems likely comprise several skills that are differentially affected by various illnesses of the central nervous system, suggesting their relative functional independence and reliance on differing neural circuits. Gilles de la Tourette syndrome (GTS) is a movement disorder that involves disturbances in the structure and function of the striatum and related circuitry. Recent studies suggest that patients with GTS are impaired in performance of a probabilistic classification task that putatively involves the acquisition of stimulus-response (S-R)-based habits. Assessing the learning of perceptual-motor skills and probabilistic classification in the same samples of GTS and healthy control subjects may help to determine whether these various forms of procedural (habit) learning rely on the same or differing neuroanatomical substrates and whether those substrates are differentially affected in persons with GTS. Therefore, we assessed perceptual-motor skill learning using the pursuit-rotor and mirror tracing tasks in 50 patients with GTS and 55 control subjects who had previously been compared at learning a task of probabilistic classifications. The GTS subjects did not differ from the control subjects in performance of either the pursuit rotor or mirror-tracing tasks, although they were significantly impaired in the acquisition of a probabilistic classification task. In addition, learning on the perceptual-motor tasks was not correlated with habit learning on the classification task in either the GTS or healthy control subjects. These findings suggest that the differing forms of procedural learning are dissociable both functionally and neuroanatomically. The specific deficits in the probabilistic classification form of habit learning in persons with GTS are likely to be a consequence of disturbances in specific corticostriatal circuits, but not the same circuits that subserve the perceptual-motor form of habit learning.
The free-energy self: a predictive coding account of self-recognition.
Apps, Matthew A J; Tsakiris, Manos
2014-04-01
Recognising and representing one's self as distinct from others is a fundamental component of self-awareness. However, current theories of self-recognition are not embedded within global theories of cortical function and therefore fail to provide a compelling explanation of how the self is processed. We present a theoretical account of the neural and computational basis of self-recognition that is embedded within the free-energy account of cortical function. In this account one's body is processed in a Bayesian manner as the most likely to be "me". Such probabilistic representation arises through the integration of information from hierarchically organised unimodal systems in higher-level multimodal areas. This information takes the form of bottom-up "surprise" signals from unimodal sensory systems that are explained away by top-down processes that minimise the level of surprise across the brain. We present evidence that this theoretical perspective may account for the findings of psychological and neuroimaging investigations into self-recognition and particularly evidence that representations of the self are malleable, rather than fixed as previous accounts of self-recognition might suggest. Copyright © 2013 Elsevier Ltd. All rights reserved.
The free-energy self: A predictive coding account of self-recognition
Apps, Matthew A.J.; Tsakiris, Manos
2013-01-01
Recognising and representing one’s self as distinct from others is a fundamental component of self-awareness. However, current theories of self-recognition are not embedded within global theories of cortical function and therefore fail to provide a compelling explanation of how the self is processed. We present a theoretical account of the neural and computational basis of self-recognition that is embedded within the free-energy account of cortical function. In this account one’s body is processed in a Bayesian manner as the most likely to be “me”. Such probabilistic representation arises through the integration of information from hierarchically organised unimodal systems in higher-level multimodal areas. This information takes the form of bottom-up “surprise” signals from unimodal sensory systems that are explained away by top-down processes that minimise the level of surprise across the brain. We present evidence that this theoretical perspective may account for the findings of psychological and neuroimaging investigations into self-recognition and particularly evidence that representations of the self are malleable, rather than fixed as previous accounts of self-recognition might suggest. PMID:23416066
Automated diagnosis of epilepsy using CWT, HOS and texture parameters.
Acharya, U Rajendra; Yanti, Ratna; Zheng, Jia Wei; Krishnan, M Muthu Rama; Tan, Jen Hong; Martis, Roshan Joy; Lim, Choo Min
2013-06-01
Epilepsy is a chronic brain disorder which manifests as recurrent seizures. Electroencephalogram (EEG) signals are generally analyzed to study the characteristics of epileptic seizures. In this work, we propose a method for the automated classification of EEG signals into normal, interictal and ictal classes using Continuous Wavelet Transform (CWT), Higher Order Spectra (HOS) and textures. First the CWT plot was obtained for the EEG signals and then the HOS and texture features were extracted from these plots. Then the statistically significant features were fed to four classifiers namely Decision Tree (DT), K-Nearest Neighbor (KNN), Probabilistic Neural Network (PNN) and Support Vector Machine (SVM) to select the best classifier. We observed that the SVM classifier with Radial Basis Function (RBF) kernel function yielded the best results with an average accuracy of 96%, average sensitivity of 96.9% and average specificity of 97% for 23.6 s duration of EEG data. Our proposed technique can be used as an automatic seizure monitoring software. It can also assist the doctors to cross check the efficacy of their prescribed drugs.
Spectral-temporal EEG dynamics of speech discrimination processing in infants during sleep.
Gilley, Phillip M; Uhler, Kristin; Watson, Kaylee; Yoshinaga-Itano, Christine
2017-03-22
Oddball paradigms are frequently used to study auditory discrimination by comparing event-related potential (ERP) responses from a standard, high probability sound and to a deviant, low probability sound. Previous research has established that such paradigms, such as the mismatch response or mismatch negativity, are useful for examining auditory processes in young children and infants across various sleep and attention states. The extent to which oddball ERP responses may reflect subtle discrimination effects, such as speech discrimination, is largely unknown, especially in infants that have not yet acquired speech and language. Mismatch responses for three contrasts (non-speech, vowel, and consonant) were computed as a spectral-temporal probability function in 24 infants, and analyzed at the group level by a modified multidimensional scaling. Immediately following an onset gamma response (30-50 Hz), the emergence of a beta oscillation (12-30 Hz) was temporally coupled with a lower frequency theta oscillation (2-8 Hz). The spectral-temporal probability of this coupling effect relative to a subsequent theta modulation corresponds with discrimination difficulty for non-speech, vowel, and consonant contrast features. The theta modulation effect suggests that unexpected sounds are encoded as a probabilistic measure of surprise. These results support the notion that auditory discrimination is driven by the development of brain networks for predictive processing, and can be measured in infants during sleep. The results presented here have implications for the interpretation of discrimination as a probabilistic process, and may provide a basis for the development of single-subject and single-trial classification in a clinically useful context. An infant's brain is processing information about the environment and performing computations, even during sleep. These computations reflect subtle differences in acoustic feature processing that are necessary for language-learning. Results from this study suggest that brain responses to deviant sounds in an oddball paradigm follow a cascade of oscillatory modulations. This cascade begins with a gamma response that later emerges as a beta synchronization, which is temporally coupled with a theta modulation, and followed by a second, subsequent theta modulation. The difference in frequency and timing of the theta modulations appears to reflect a measure of surprise. These insights into the neurophysiological mechanisms of auditory discrimination provide a basis for exploring the clinically utility of the MMR TF and other auditory oddball responses.
Brain tumor locating in 3D MR volume using symmetry
NASA Astrophysics Data System (ADS)
Dvorak, Pavel; Bartusek, Karel
2014-03-01
This work deals with the automatic determination of a brain tumor location in 3D magnetic resonance volumes. The aim of this work is not the precise segmentation of the tumor and its parts but only the detection of its location. This work is the first step in the tumor segmentation process, an important topic in neuro-image processing. The algorithm expects 3D magnetic resonance volumes of brain containing a tumor. The detection is based on locating the area that breaks the left-right symmetry of the brain. This is done by multi-resolution comparing of corresponding regions in left and right hemisphere. The output of the computation is the probabilistic map of the tumor location. The created algorithm was tested on 80 volumes from publicly available BRATS databases containing 3D brain volumes afflicted by a brain tumor. These pathological structures had various sizes and shapes and were located in various parts of the brain. The locating performance of the algorithm was 85% for T1-weighted volumes, 91% for T1-weighted contrast enhanced volumes, 96% for FLAIR and T2-wieghted volumes and 95% for their combinations.
Barsky, Murray M.; Tucker, Matthew A.; Stickgold, Robert
2015-01-01
During wakefulness the brain creates meaningful relationships between disparate stimuli in ways that escape conscious awareness. Processes active during sleep can strengthen these relationships, leading to more adaptive use of those stimuli when encountered during subsequent wake. Performance on the weather prediction task (WPT), a well-studied measure of implicit probabilistic learning, has been shown to improve significantly following a night of sleep, with stronger initial learning predicting more nocturnal REM sleep. We investigated this relationship further, studying the effect on WPT performance of a daytime nap containing REM sleep. We also added an interference condition after the nap/wake period as an additional probe of memory strength. Our results show that a nap significantly boosts WPT performance, and that this improvement is correlated with the amount of REM sleep obtained during the nap. When interference training is introduced following the nap, however, this REM-sleep benefit vanishes. In contrast, following an equal period of wake, performance is both unchanged from training and unaffected by interference training. Thus, while the true probabilistic relationships between WPT stimuli are strengthened by sleep, these changes are selectively susceptible to the destructive effects of retroactive interference, at least in the short term. PMID:25769506
Failed rib region prediction in a human body model during crash events with precrash braking.
Guleyupoglu, B; Koya, B; Barnard, R; Gayzik, F S
2018-02-28
The objective of this study is 2-fold. We used a validated human body finite element model to study the predicted chest injury (focusing on rib fracture as a function of element strain) based on varying levels of simulated precrash braking. Furthermore, we compare deterministic and probabilistic methods of rib injury prediction in the computational model. The Global Human Body Models Consortium (GHBMC) M50-O model was gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and airbag. Twelve cases were investigated with permutations for failure, precrash braking system, and crash severity. The severities used were median (17 kph), severe (34 kph), and New Car Assessment Program (NCAP; 56.4 kph). Cases with failure enabled removed rib cortical bone elements once 1.8% effective plastic strain was exceeded. Alternatively, a probabilistic framework found in the literature was used to predict rib failure. Both the probabilistic and deterministic methods take into consideration location (anterior, lateral, and posterior). The deterministic method is based on a rubric that defines failed rib regions dependent on a threshold for contiguous failed elements. The probabilistic method depends on age-based strain and failure functions. Kinematics between both methods were similar (peak max deviation: ΔX head = 17 mm; ΔZ head = 4 mm; ΔX thorax = 5 mm; ΔZ thorax = 1 mm). Seat belt forces at the time of probabilistic failed region initiation were lower than those at deterministic failed region initiation. The probabilistic method for rib fracture predicted more failed regions in the rib (an analog for fracture) than the deterministic method in all but 1 case where they were equal. The failed region patterns between models are similar; however, there are differences that arise due to stress reduced from element elimination that cause probabilistic failed regions to continue to rise after no deterministic failed region would be predicted. Both the probabilistic and deterministic methods indicate similar trends with regards to the effect of precrash braking; however, there are tradeoffs. The deterministic failed region method is more spatially sensitive to failure and is more sensitive to belt loads. The probabilistic failed region method allows for increased capability in postprocessing with respect to age. The probabilistic failed region method predicted more failed regions than the deterministic failed region method due to force distribution differences.
Probabilistic graphs as a conceptual and computational tool in hydrology and water management
NASA Astrophysics Data System (ADS)
Schoups, Gerrit
2014-05-01
Originally developed in the fields of machine learning and artificial intelligence, probabilistic graphs constitute a general framework for modeling complex systems in the presence of uncertainty. The framework consists of three components: 1. Representation of the model as a graph (or network), with nodes depicting random variables in the model (e.g. parameters, states, etc), which are joined together by factors. Factors are local probabilistic or deterministic relations between subsets of variables, which, when multiplied together, yield the joint distribution over all variables. 2. Consistent use of probability theory for quantifying uncertainty, relying on basic rules of probability for assimilating data into the model and expressing unknown variables as a function of observations (via the posterior distribution). 3. Efficient, distributed approximation of the posterior distribution using general-purpose algorithms that exploit model structure encoded in the graph. These attributes make probabilistic graphs potentially useful as a conceptual and computational tool in hydrology and water management (and beyond). Conceptually, they can provide a common framework for existing and new probabilistic modeling approaches (e.g. by drawing inspiration from other fields of application), while computationally they can make probabilistic inference feasible in larger hydrological models. The presentation explores, via examples, some of these benefits.
Probabilistic drug connectivity mapping
2014-01-01
Background The aim of connectivity mapping is to match drugs using drug-treatment gene expression profiles from multiple cell lines. This can be viewed as an information retrieval task, with the goal of finding the most relevant profiles for a given query drug. We infer the relevance for retrieval by data-driven probabilistic modeling of the drug responses, resulting in probabilistic connectivity mapping, and further consider the available cell lines as different data sources. We use a special type of probabilistic model to separate what is shared and specific between the sources, in contrast to earlier connectivity mapping methods that have intentionally aggregated all available data, neglecting information about the differences between the cell lines. Results We show that the probabilistic multi-source connectivity mapping method is superior to alternatives in finding functionally and chemically similar drugs from the Connectivity Map data set. We also demonstrate that an extension of the method is capable of retrieving combinations of drugs that match different relevant parts of the query drug response profile. Conclusions The probabilistic modeling-based connectivity mapping method provides a promising alternative to earlier methods. Principled integration of data from different cell lines helps to identify relevant responses for specific drug repositioning applications. PMID:24742351
NASA Astrophysics Data System (ADS)
Bin, Che; Ruoying, Yu; Dongsheng, Dang; Xiangyan, Wang
2017-05-01
Distributed Generation (DG) integrating to the network would cause the harmonic pollution which would cause damages on electrical devices and affect the normal operation of power system. On the other hand, due to the randomness of the wind and solar irradiation, the output of DG is random, too, which leads to an uncertainty of the harmonic generated by the DG. Thus, probabilistic methods are needed to analyse the impacts of the DG integration. In this work we studied the harmonic voltage probabilistic distribution and the harmonic distortion in distributed network after the distributed photovoltaic (DPV) system integrating in different weather conditions, mainly the sunny day, cloudy day, rainy day and the snowy day. The probabilistic distribution function of the DPV output power in different typical weather conditions could be acquired via the parameter identification method of maximum likelihood estimation. The Monte-Carlo simulation method was adopted to calculate the probabilistic distribution of harmonic voltage content at different frequency orders as well as the harmonic distortion (THD) in typical weather conditions. The case study was based on the IEEE33 system and the results of harmonic voltage content probabilistic distribution as well as THD in typical weather conditions were compared.
Frank, G K W; Shott, M E; Riederer, J; Pryor, T L
2016-01-01
Anorexia and bulimia nervosa are severe eating disorders that share many behaviors. Structural and functional brain circuits could provide biological links that those disorders have in common. We recruited 77 young adult women, 26 healthy controls, 26 women with anorexia and 25 women with bulimia nervosa. Probabilistic tractography was used to map white matter connectivity strength across taste and food intake regulating brain circuits. An independent multisample greedy equivalence search algorithm tested effective connectivity between those regions during sucrose tasting. Anorexia and bulimia nervosa had greater structural connectivity in pathways between insula, orbitofrontal cortex and ventral striatum, but lower connectivity from orbitofrontal cortex and amygdala to the hypothalamus (P<0.05, corrected for comorbidity, medication and multiple comparisons). Functionally, in controls the hypothalamus drove ventral striatal activity, but in anorexia and bulimia nervosa effective connectivity was directed from anterior cingulate via ventral striatum to the hypothalamus. Across all groups, sweetness perception was predicted by connectivity strength in pathways connecting to the middle orbitofrontal cortex. This study provides evidence that white matter structural as well as effective connectivity within the energy-homeostasis and food reward-regulating circuitry is fundamentally different in anorexia and bulimia nervosa compared with that in controls. In eating disorders, anterior cingulate cognitive–emotional top down control could affect food reward and eating drive, override hypothalamic inputs to the ventral striatum and enable prolonged food restriction. PMID:27801897
Galleske, I; Castellanos, J
2002-05-01
This article proposes a procedure for the automatic determination of the elements of the covariance matrix of the gaussian kernel function of probabilistic neural networks. Two matrices, a rotation matrix and a matrix of variances, can be calculated by analyzing the local environment of each training pattern. The combination of them will form the covariance matrix of each training pattern. This automation has two advantages: First, it will free the neural network designer from indicating the complete covariance matrix, and second, it will result in a network with better generalization ability than the original model. A variation of the famous two-spiral problem and real-world examples from the UCI Machine Learning Repository will show a classification rate not only better than the original probabilistic neural network but also that this model can outperform other well-known classification techniques.
Martínez-Velázquez, Eduardo S; Ramos-Loyo, Julieta; González-Garrido, Andrés A; Sequeira, Henrique
2015-01-21
Feedback-related negativity (FRN) is a negative deflection that appears around 250 ms after the gain or loss of feedback to chosen alternatives in a gambling task in frontocentral regions following outcomes. Few studies have reported FRN enhancement in adolescents compared with adults in a gambling task without probabilistic reinforcement learning, despite the fact that learning from positive or negative consequences is crucial for decision-making during adolescence. Therefore, the aim of the present research was to identify differences in FRN amplitude and latency between adolescents and adults on a gambling task with favorable and unfavorable probabilistic reinforcement learning conditions, in addition to a nonlearning condition with monetary gains and losses. Higher rate scores of high-magnitude choices during the final 30 trials compared with the first 30 trials were observed during the favorable condition, whereas lower rates were observed during the unfavorable condition in both groups. Higher FRN amplitude in all conditions and longer latency in the nonlearning condition were observed in adolescents compared with adults and in relation to losses. Results indicate that both the adolescents and the adults improved their performance in relation to positive and negative feedback. However, the FRN findings suggest an increased sensitivity to external feedback to losses in adolescents compared with adults, irrespective of the presence or absence of probabilistic reinforcement learning. These results reflect processing differences on the neural monitoring system and provide new perspectives on the dynamic development of an adolescent's brain.
NASA Astrophysics Data System (ADS)
Duncan, Elizabeth C.; Reddick, Wilburn E.; Glass, John O.; Hyun, Jung Won; Ji, Qing; Li, Yimei; Gajjar, Amar
2016-03-01
We applied a modified probabilistic fiber-tracking method for the extraction of fiber pathways to quantify decreased white matter integrity as a surrogate of structural loss in connectivity due to cranial radiation therapy (CRT) as treatment for pediatric medulloblastoma. Thirty subjects were examined (n=8 average-risk, n=22 high-risk) and the groups did not differ significantly in age at examination. The pathway analysis created a structural connectome focused on sub-networks within the central executive network (CEN) for comparison between baseline and post-CRT scans and for comparison between standard and high dose CRT. A paired-wise comparison of the connectivity between baseline and post-CRT scans showed the irradiation did have a significant detrimental impact on white matter integrity (decreased fractional anisotropy (FA) and decreased axial diffusivity (AX)) in most of the CEN sub-networks. Group comparisons of the change in the connectivity revealed that patients receiving high dose CRT experienced significant AX decreases in all sub-networks while the patients receiving standard dose CRT had relatively stable AX measures across time. This study on pediatric patients with medulloblastoma demonstrated the utility of this method to identify specific sub-networks within the developing brain affected by CRT.
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced.more » The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
2017-08-31
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) ismore » analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
Cerliani, Leonardo; Thomas, Rajat M; Jbabdi, Saad; Siero, Jeroen CW; Nanetti, Luca; Crippa, Alessandro; Gazzola, Valeria; D'Arceuil, Helen; Keysers, Christian
2012-01-01
The insular cortex of macaques has a wide spectrum of anatomical connections whose distribution is related to its heterogeneous cytoarchitecture. Although there is evidence of a similar cytoarchitectural arrangement in humans, the anatomical connectivity of the insula in the human brain has not yet been investigated in vivo. In the present work, we used in vivo probabilistic white-matter tractography and Laplacian eigenmaps (LE) to study the variation of connectivity patterns across insular territories in humans. In each subject and hemisphere, we recovered a rostrocaudal trajectory of connectivity variation ranging from the anterior dorsal and ventral insula to the dorsal caudal part of the long insular gyri. LE suggested that regional transitions among tractography patterns in the insula occur more gradually than in other brain regions. In particular, the change in tractography patterns was more gradual in the insula than in the medial premotor region, where a sharp transition between different tractography patterns was found. The recovered trajectory of connectivity variation in the insula suggests a relation between connectivity and cytoarchitecture in humans resembling that previously found in macaques: tractography seeds from the anterior insula were mainly found in limbic and paralimbic regions and in anterior parts of the inferior frontal gyrus, while seeds from caudal insular territories mostly reached parietal and posterior temporal cortices. Regions in the putative dysgranular insula displayed more heterogeneous connectivity patterns, with regional differences related to the proximity with either putative granular or agranular regions. Hum Brain Mapp 33:2005–2034, 2012. © 2011 Wiley Periodicals, Inc. PMID:21761507
Cortico-Cerebellar Structural Connectivity Is Related to Residual Motor Output in Chronic Stroke.
Schulz, Robert; Frey, Benedikt M; Koch, Philipp; Zimerman, Maximo; Bönstrup, Marlene; Feldheim, Jan; Timmermann, Jan E; Schön, Gerhard; Cheng, Bastian; Thomalla, Götz; Gerloff, Christian; Hummel, Friedhelm C
2017-01-01
Functional imaging studies have argued that interactions between cortical motor areas and the cerebellum are relevant for motor output and recovery processes after stroke. However, the impact of the underlying structural connections is poorly understood. To investigate this, diffusion-weighted brain imaging was conducted in 26 well-characterized chronic stroke patients (aged 63 ± 1.9 years, 18 males) with supratentorial ischemic lesions and 26 healthy participants. Probabilistic tractography was used to reconstruct reciprocal cortico-cerebellar tracts and to relate their microstructural integrity to residual motor functioning applying linear regression modeling. The main finding was a significant association between cortico-cerebellar structural connectivity and residual motor function, independent from the level of damage to the cortico-spinal tract. Specifically, white matter integrity of the cerebellar outflow tract, the dentato-thalamo-cortical tract, was positively related to both general motor output and fine motor skills. Additionally, the integrity of the descending cortico-ponto-cerebellar tract contributed to rather fine motor skills. A comparable structure-function relationship was not evident in the controls. The present study provides first tract-related structural data demonstrating a critical importance of distinct cortico-cerebellar connections for motor output after stroke. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Uddin, Lucina Q; Supekar, Kaustubh; Amin, Hitha; Rykhlevskaia, Elena; Nguyen, Daniel A; Greicius, Michael D; Menon, Vinod
2010-11-01
The inferior parietal lobule (IPL) of the human brain is a heterogeneous region involved in visuospatial attention, memory, and mathematical cognition. Detailed description of connectivity profiles of subdivisions within the IPL is critical for accurate interpretation of functional neuroimaging studies involving this region. We separately examined functional and structural connectivity of the angular gyrus (AG) and the intraparietal sulcus (IPS) using probabilistic cytoarchitectonic maps. Regions-of-interest (ROIs) included anterior and posterior AG subregions (PGa, PGp) and 3 IPS subregions (hIP2, hIP1, and hIP3). Resting-state functional connectivity analyses showed that PGa was more strongly linked to basal ganglia, ventral premotor areas, and ventrolateral prefrontal cortex, while PGp was more strongly connected with ventromedial prefrontal cortex, posterior cingulate, and hippocampus-regions comprising the default mode network. The anterior-most IPS ROIs, hIP2 and hIP1, were linked with ventral premotor and middle frontal gyrus, while the posterior-most IPS ROI, hIP3, showed connectivity with extrastriate visual areas. In addition, hIP1 was connected with the insula. Tractography using diffusion tensor imaging revealed structural connectivity between most of these functionally connected regions. Our findings provide evidence for functional heterogeneity of cytoarchitectonically defined subdivisions within IPL and offer a novel framework for synthesis and interpretation of the task-related activations and deactivations involving the IPL during cognition.
Supekar, Kaustubh; Amin, Hitha; Rykhlevskaia, Elena; Nguyen, Daniel A.; Greicius, Michael D.; Menon, Vinod
2010-01-01
The inferior parietal lobule (IPL) of the human brain is a heterogeneous region involved in visuospatial attention, memory, and mathematical cognition. Detailed description of connectivity profiles of subdivisions within the IPL is critical for accurate interpretation of functional neuroimaging studies involving this region. We separately examined functional and structural connectivity of the angular gyrus (AG) and the intraparietal sulcus (IPS) using probabilistic cytoarchitectonic maps. Regions-of-interest (ROIs) included anterior and posterior AG subregions (PGa, PGp) and 3 IPS subregions (hIP2, hIP1, and hIP3). Resting-state functional connectivity analyses showed that PGa was more strongly linked to basal ganglia, ventral premotor areas, and ventrolateral prefrontal cortex, while PGp was more strongly connected with ventromedial prefrontal cortex, posterior cingulate, and hippocampus—regions comprising the default mode network. The anterior-most IPS ROIs, hIP2 and hIP1, were linked with ventral premotor and middle frontal gyrus, while the posterior-most IPS ROI, hIP3, showed connectivity with extrastriate visual areas. In addition, hIP1 was connected with the insula. Tractography using diffusion tensor imaging revealed structural connectivity between most of these functionally connected regions. Our findings provide evidence for functional heterogeneity of cytoarchitectonically defined subdivisions within IPL and offer a novel framework for synthesis and interpretation of the task-related activations and deactivations involving the IPL during cognition. PMID:20154013
Reduced rich-club connectivity is related to disability in primary progressive MS
Hodecker, Sibylle; Cheng, Bastian; Wanke, Nadine; Young, Kim Lea; Hilgetag, Claus; Gerloff, Christian; Heesen, Christoph; Thomalla, Götz; Siemonsen, Susanne
2017-01-01
Objective: To investigate whether the structural connectivity of the brain's rich-club organization is altered in patients with primary progressive MS and whether such changes to this fundamental network feature are associated with disability measures. Methods: We recruited 37 patients with primary progressive MS and 21 healthy controls for an observational cohort study. Structural connectomes were reconstructed based on diffusion-weighted imaging data using probabilistic tractography and analyzed with graph theory. Results: We observed the same topological organization of brain networks in patients and controls. Consistent with the originally defined rich-club regions, we identified superior frontal, precuneus, superior parietal, and insular cortex in both hemispheres as rich-club nodes. Connectivity within the rich club was significantly reduced in patients with MS (p = 0.039). The extent of reduced rich-club connectivity correlated with clinical measurements of mobility (Kendall rank correlation coefficient τ = −0.20, p = 0.047), hand function (τ = −0.26, p = 0.014), and information processing speed (τ = −0.20, p = 0.049). Conclusions: In patients with primary progressive MS, the fundamental organization of the structural connectome in rich-club and peripheral nodes was preserved and did not differ from healthy controls. The proportion of rich-club connections was altered and correlated with disability measures. Thus, the rich-club organization of the brain may be a promising network phenotype for understanding the patterns and mechanisms of neurodegeneration in MS. PMID:28804744
Dera, Dimah; Bouaynaya, Nidhal; Fathallah-Shaykh, Hassan M
2016-07-01
We address the problem of fully automated region discovery and robust image segmentation by devising a new deformable model based on the level set method (LSM) and the probabilistic nonnegative matrix factorization (NMF). We describe the use of NMF to calculate the number of distinct regions in the image and to derive the local distribution of the regions, which is incorporated into the energy functional of the LSM. The results demonstrate that our NMF-LSM method is superior to other approaches when applied to synthetic binary and gray-scale images and to clinical magnetic resonance images (MRI) of the human brain with and without a malignant brain tumor, glioblastoma multiforme. In particular, the NMF-LSM method is fully automated, highly accurate, less sensitive to the initial selection of the contour(s) or initial conditions, more robust to noise and model parameters, and able to detect as small distinct regions as desired. These advantages stem from the fact that the proposed method relies on histogram information instead of intensity values and does not introduce nuisance model parameters. These properties provide a general approach for automated robust region discovery and segmentation in heterogeneous images. Compared with the retrospective radiological diagnoses of two patients with non-enhancing grade 2 and 3 oligodendroglioma, the NMF-LSM detects earlier progression times and appears suitable for monitoring tumor response. The NMF-LSM method fills an important need of automated segmentation of clinical MRI.
Gleichgerrcht, Ezequiel; Fridriksson, Julius; Rorden, Chris; Nesland, Travis; Desai, Rutvik; Bonilha, Leonardo
2015-01-01
Background Representations of objects and actions in everyday speech are usually materialized as nouns and verbs, two grammatical classes that constitute the core elements of language. Given their very distinct roles in singling out objects (nouns) or referring to transformative actions (verbs), they likely rely on distinct brain circuits. Method We tested this hypothesis by conducting network-based lesion-symptom mapping in 38 patients with chronic stroke to the left hemisphere. We reconstructed the individual brain connectomes from probabilistic tractography applied to magnetic resonance imaging and obtained measures of production of words referring to objects and actions from narrative discourse elicited by picture naming tasks. Results Words for actions were associated with a frontal network strongly engaging structures involved in motor control and programming. Words for objects, instead, were related to a posterior network spreading across the occipital, posterior inferior temporal, and parietal regions, likely related with visual processing and imagery, object recognition, and spatial attention/scanning. Thus, each of these networks engaged brain areas typically involved in cognitive and sensorimotor experiences equivalent to the function served by each grammatical class (e.g. motor areas for verbs, perception areas for nouns). Conclusions The finding that the two major grammatical classes in human speech rely on two dissociable networks has both important theoretical implications for the neurobiology of language and clinical implications for the assessment and potential rehabilitation and treatment of patients with chronic aphasia due to stroke. PMID:26759789
Probabilistic combination of static and dynamic gait features for verification
NASA Astrophysics Data System (ADS)
Bazin, Alex I.; Nixon, Mark S.
2005-03-01
This paper describes a novel probabilistic framework for biometric identification and data fusion. Based on intra and inter-class variation extracted from training data, posterior probabilities describing the similarity between two feature vectors may be directly calculated from the data using the logistic function and Bayes rule. Using a large publicly available database we show the two imbalanced gait modalities may be fused using this framework. All fusion methods tested provide an improvement over the best modality, with the weighted sum rule giving the best performance, hence showing that highly imbalanced classifiers may be fused in a probabilistic setting; improving not only the performance, but also generalized application capability.
Ali, Anjum A; Dale, Anders M; Badea, Alexandra; Johnson, G Allan
2005-08-15
We present the automated segmentation of magnetic resonance microscopy (MRM) images of the C57BL/6J mouse brain into 21 neuroanatomical structures, including the ventricular system, corpus callosum, hippocampus, caudate putamen, inferior colliculus, internal capsule, globus pallidus, and substantia nigra. The segmentation algorithm operates on multispectral, three-dimensional (3D) MR data acquired at 90-microm isotropic resolution. Probabilistic information used in the segmentation is extracted from training datasets of T2-weighted, proton density-weighted, and diffusion-weighted acquisitions. Spatial information is employed in the form of prior probabilities of occurrence of a structure at a location (location priors) and the pairwise probabilities between structures (contextual priors). Validation using standard morphometry indices shows good consistency between automatically segmented and manually traced data. Results achieved in the mouse brain are comparable with those achieved in human brain studies using similar techniques. The segmentation algorithm shows excellent potential for routine morphological phenotyping of mouse models.
NASA Astrophysics Data System (ADS)
Rangarajan, J. R.; Van Kuyck, K.; Himmelreich, U.; Nuttin, B.; Maes, F.; Suetens, P.
2011-03-01
Clinical and pre-clinical studies show that deep brain stimulation (DBS) of targeted brain regions by neurosurgical techniques ameliorate psychiatric disorder such as anorexia nervosa. Neurosurgical interventions in preclinical rodent brain are mostly accomplished manually with a 2D atlas. Considering both the large number of animals subjected to stereotactic surgical experiments and the associated imaging cost, feasibility of sophisticated pre-operative imaging based surgical path planning and/or robotic guidance is limited. Here, we spatially normalize vasculature information and assess the intra-strain variability in cerebral vasculature for a neurosurgery planning. By co-registering and subsequently building a probabilistic vasculature template in a standard space, we evaluate the risk of a user defined electrode trajectory damaging a blood vessel on its path. The use of such a method may not only be confined to DBS therapy in small animals, but also could be readily applicable to a wide range of stereotactic small animal surgeries like targeted injection of contrast agents and cell labeling applications.
101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol
Klein, Arno; Tourville, Jason
2012-01-01
We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The “Desikan–Killiany–Tourville” (DKT) protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://mindboggle.info/data website. PMID:23227001
Banerjee, Abhirup; Maji, Pradipta
2015-12-01
The segmentation of brain MR images into different tissue classes is an important task for automatic image analysis technique, particularly due to the presence of intensity inhomogeneity artifact in MR images. In this regard, this paper presents a novel approach for simultaneous segmentation and bias field correction in brain MR images. It integrates judiciously the concept of rough sets and the merit of a novel probability distribution, called stomped normal (SN) distribution. The intensity distribution of a tissue class is represented by SN distribution, where each tissue class consists of a crisp lower approximation and a probabilistic boundary region. The intensity distribution of brain MR image is modeled as a mixture of finite number of SN distributions and one uniform distribution. The proposed method incorporates both the expectation-maximization and hidden Markov random field frameworks to provide an accurate and robust segmentation. The performance of the proposed approach, along with a comparison with related methods, is demonstrated on a set of synthetic and real brain MR images for different bias fields and noise levels.
A probabilistic approach to aircraft design emphasizing stability and control uncertainties
NASA Astrophysics Data System (ADS)
Delaurentis, Daniel Andrew
In order to address identified deficiencies in current approaches to aerospace systems design, a new method has been developed. This new method for design is based on the premise that design is a decision making activity, and that deterministic analysis and synthesis can lead to poor, or misguided decision making. This is due to a lack of disciplinary knowledge of sufficient fidelity about the product, to the presence of uncertainty at multiple levels of the aircraft design hierarchy, and to a failure to focus on overall affordability metrics as measures of goodness. Design solutions are desired which are robust to uncertainty and are based on the maximum knowledge possible. The new method represents advances in the two following general areas. 1. Design models and uncertainty. The research performed completes a transition from a deterministic design representation to a probabilistic one through a modeling of design uncertainty at multiple levels of the aircraft design hierarchy, including: (1) Consistent, traceable uncertainty classification and representation; (2) Concise mathematical statement of the Probabilistic Robust Design problem; (3) Variants of the Cumulative Distribution Functions (CDFs) as decision functions for Robust Design; (4) Probabilistic Sensitivities which identify the most influential sources of variability. 2. Multidisciplinary analysis and design. Imbedded in the probabilistic methodology is a new approach for multidisciplinary design analysis and optimization (MDA/O), employing disciplinary analysis approximations formed through statistical experimentation and regression. These approximation models are a function of design variables common to the system level as well as other disciplines. For aircraft, it is proposed that synthesis/sizing is the proper avenue for integrating multiple disciplines. Research hypotheses are translated into a structured method, which is subsequently tested for validity. Specifically, the implementation involves the study of the relaxed static stability technology for a supersonic commercial transport aircraft. The probabilistic robust design method is exercised resulting in a series of robust design solutions based on different interpretations of "robustness". Insightful results are obtained and the ability of the method to expose trends in the design space are noted as a key advantage.
Heuristic and optimal policy computations in the human brain during sequential decision-making.
Korn, Christoph W; Bach, Dominik R
2018-01-23
Optimal decisions across extended time horizons require value calculations over multiple probabilistic future states. Humans may circumvent such complex computations by resorting to easy-to-compute heuristics that approximate optimal solutions. To probe the potential interplay between heuristic and optimal computations, we develop a novel sequential decision-making task, framed as virtual foraging in which participants have to avoid virtual starvation. Rewards depend only on final outcomes over five-trial blocks, necessitating planning over five sequential decisions and probabilistic outcomes. Here, we report model comparisons demonstrating that participants primarily rely on the best available heuristic but also use the normatively optimal policy. FMRI signals in medial prefrontal cortex (MPFC) relate to heuristic and optimal policies and associated choice uncertainties. Crucially, reaction times and dorsal MPFC activity scale with discrepancies between heuristic and optimal policies. Thus, sequential decision-making in humans may emerge from integration between heuristic and optimal policies, implemented by controllers in MPFC.
Zhang, Miaomiao; Wells, William M; Golland, Polina
2016-10-01
Using image-based descriptors to investigate clinical hypotheses and therapeutic implications is challenging due to the notorious "curse of dimensionality" coupled with a small sample size. In this paper, we present a low-dimensional analysis of anatomical shape variability in the space of diffeomorphisms and demonstrate its benefits for clinical studies. To combat the high dimensionality of the deformation descriptors, we develop a probabilistic model of principal geodesic analysis in a bandlimited low-dimensional space that still captures the underlying variability of image data. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than models based on the high-dimensional state-of-the-art approaches such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA).
Design for cyclic loading endurance of composites
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Murthy, Pappu L. N.; Chamis, Christos C.; Liaw, Leslie D. G.
1993-01-01
The application of the computer code IPACS (Integrated Probabilistic Assessment of Composite Structures) to aircraft wing type structures is described. The code performs a complete probabilistic analysis for composites taking into account the uncertainties in geometry, boundary conditions, material properties, laminate lay-ups, and loads. Results of the analysis are presented in terms of cumulative distribution functions (CDF) and probability density function (PDF) of the fatigue life of a wing type composite structure under different hygrothermal environments subjected to the random pressure. The sensitivity of the fatigue life to a number of critical structural/material variables is also computed from the analysis.
Probabilistic analysis of bladed turbine disks and the effect of mistuning
NASA Technical Reports Server (NTRS)
Shah, A. R.; Nagpal, V. K.; Chamis, Christos C.
1990-01-01
Probabilistic assessment of the maximum blade response on a mistuned rotor disk is performed using the computer code NESSUS. The uncertainties in natural frequency, excitation frequency, amplitude of excitation and damping are included to obtain the cumulative distribution function (CDF) of blade responses. Advanced mean value first order analysis is used to compute CDF. The sensitivities of different random variables are identified. Effect of the number of blades on a rotor on mistuning is evaluated. It is shown that the uncertainties associated with the forcing function parameters have significant effect on the response distribution of the bladed rotor.
Probabilistic analysis of bladed turbine disks and the effect of mistuning
NASA Technical Reports Server (NTRS)
Shah, Ashwin; Nagpal, V. K.; Chamis, C. C.
1990-01-01
Probabilistic assessment of the maximum blade response on a mistuned rotor disk is performed using the computer code NESSUS. The uncertainties in natural frequency, excitation frequency, amplitude of excitation and damping have been included to obtain the cumulative distribution function (CDF) of blade responses. Advanced mean value first order analysis is used to compute CDF. The sensitivities of different random variables are identified. Effect of the number of blades on a rotor on mistuning is evaluated. It is shown that the uncertainties associated with the forcing function parameters have significant effect on the response distribution of the bladed rotor.
A novel Bayesian framework for discriminative feature extraction in Brain-Computer Interfaces.
Suk, Heung-Il; Lee, Seong-Whan
2013-02-01
As there has been a paradigm shift in the learning load from a human subject to a computer, machine learning has been considered as a useful tool for Brain-Computer Interfaces (BCIs). In this paper, we propose a novel Bayesian framework for discriminative feature extraction for motor imagery classification in an EEG-based BCI in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatiospectral filter optimization is formulated as the estimation of an unknown posterior probability density function (pdf) that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. In order to estimate the posterior pdf, we propose a particle-based approximation method by extending a factored-sampling technique with a diffusion process. An information-theoretic observation model is also devised to measure discriminative power of features between classes. From the viewpoint of classifier design, the proposed method naturally allows us to construct a spectrally weighted label decision rule by linearly combining the outputs from multiple classifiers. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on three public databases.
Loxley, P N
2017-10-01
The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.
Sripada, Chandra; Railton, Peter; Baumeister, Roy F; Seligman, Martin E P
2013-03-01
Evidence of prospective processes is increasingly common in psychological research, which suggests the fruitfulness of a theoretical framework for mind and brain built around future orientation. No metaphysics of determinism or indeterminism is presupposed by this framework, nor do considerations of scientific method require determinism-successful scientific theories in the natural sciences all involve probabilistic elements. We speculate that expressive behavior and moral decision making use prospective processes parallel to those used in nonmoral decisions. © The Author(s) 2013.
NASA Technical Reports Server (NTRS)
Canfield, R. C.; Ricchiazzi, P. J.
1980-01-01
An approximate probabilistic radiative transfer equation and the statistical equilibrium equations are simultaneously solved for a model hydrogen atom consisting of three bound levels and ionization continuum. The transfer equation for L-alpha, L-beta, H-alpha, and the Lyman continuum is explicitly solved assuming complete redistribution. The accuracy of this approach is tested by comparing source functions and radiative loss rates to values obtained with a method that solves the exact transfer equation. Two recent model solar-flare chromospheres are used for this test. It is shown that for the test atmospheres the probabilistic method gives values of the radiative loss rate that are characteristically good to a factor of 2. The advantage of this probabilistic approach is that it retains a description of the dominant physical processes of radiative transfer in the complete redistribution case, yet it achieves a major reduction in computational requirements.
Discounting of food, sex, and money.
Holt, Daniel D; Newquist, Matthew H; Smits, Rochelle R; Tiry, Andrew M
2014-06-01
Discounting is a useful framework for understanding choice involving a range of delayed and probabilistic outcomes (e.g., money, food, drugs), but relatively few studies have examined how people discount other commodities (e.g., entertainment, sex). Using a novel discounting task, where the length of a line represented the value of an outcome and was adjusted using a staircase procedure, we replicated previous findings showing that individuals discount delayed and probabilistic outcomes in a manner well described by a hyperbola-like function. In addition, we found strong positive correlations between discounting rates of delayed, but not probabilistic, outcomes. This suggests that discounting of delayed outcomes may be relatively predictable across outcome types but that discounting of probabilistic outcomes may depend more on specific contexts. The generality of delay discounting and potential context dependence of probability discounting may provide important information regarding factors contributing to choice behavior.
Probabilistic Assessment of Cancer Risk for Astronauts on Lunar Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
2009-01-01
During future lunar missions, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon transit. NASA s new lunar program anticipates that up to 15% of crew time may be on EVA, with minimal radiation shielding. For the operational challenge to respond to events of unknown size and duration, a probabilistic risk assessment approach is essential for mission planning and design. Using the historical database of proton measurements during the past 5 solar cycles, a typical hazard function for SPE occurrence was defined using a non-homogeneous Poisson model as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions ranging from the 5th to 95th percentile of particle fluences for a specified mission period were simulated. Organ doses corresponding to particle fluences at the median and at the 95th percentile for a specified mission period were assessed using NASA s baryon transport model, BRYNTRN. The cancer fatality risk for astronauts as functions of age, gender, and solar cycle activity were then analyzed. The probability of exceeding the NASA 30- day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated. Future work will involve using this probabilistic risk assessment approach to SPE forecasting, combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.
A probabilistic atlas of the cerebellar white matter.
van Baarsen, K M; Kleinnijenhuis, M; Jbabdi, S; Sotiropoulos, S N; Grotenhuis, J A; van Cappellen van Walsum, A M
2016-01-01
Imaging of the cerebellar cortex, deep cerebellar nuclei and their connectivity are gaining attraction, due to the important role the cerebellum plays in cognition and motor control. Atlases of the cerebellar cortex and nuclei are used to locate regions of interest in clinical and neuroscience studies. However, the white matter that connects these relay stations is of at least similar functional importance. Damage to these cerebellar white matter tracts may lead to serious language, cognitive and emotional disturbances, although the pathophysiological mechanism behind it is still debated. Differences in white matter integrity between patients and controls might shed light on structure-function correlations. A probabilistic parcellation atlas of the cerebellar white matter would help these studies by facilitating automatic segmentation of the cerebellar peduncles, the localization of lesions and the comparison of white matter integrity between patients and controls. In this work a digital three-dimensional probabilistic atlas of the cerebellar white matter is presented, based on high quality 3T, 1.25mm resolution diffusion MRI data from 90 subjects participating in the Human Connectome Project. The white matter tracts were estimated using probabilistic tractography. Results over 90 subjects were symmetrical and trajectories of superior, middle and inferior cerebellar peduncles resembled the anatomy as known from anatomical studies. This atlas will contribute to a better understanding of cerebellar white matter architecture. It may eventually aid in defining structure-function correlations in patients with cerebellar disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lowe, R.; Ballester, J.; Robine, J.; Herrmann, F. R.; Jupp, T. E.; Stephenson, D.; Rodó, X.
2013-12-01
Users of climate information often require probabilistic information on which to base their decisions. However, communicating information contained within a probabilistic forecast presents a challenge. In this paper we demonstrate a novel visualisation technique to display ternary probabilistic forecasts on a map in order to inform decision making. In this method, ternary probabilistic forecasts, which assign probabilities to a set of three outcomes (e.g. low, medium, and high risk), are considered as a point in a triangle of barycentric coordinates. This allows a unique colour to be assigned to each forecast from a continuum of colours defined on the triangle. Colour saturation increases with information gain relative to the reference forecast (i.e. the long term average). This provides additional information to decision makers compared with conventional methods used in seasonal climate forecasting, where one colour is used to represent one forecast category on a forecast map (e.g. red = ';dry'). We use the tool to present climate-related mortality projections across Europe. Temperature and humidity are related to human mortality via location-specific transfer functions, calculated using historical data. Daily mortality data at the NUTS2 level for 16 countries in Europe were obtain from 1998-2005. Transfer functions were calculated for 54 aggregations in Europe, defined using criteria related to population and climatological similarities. Aggregations are restricted to fall within political boundaries to avoid problems related to varying adaptation policies between countries. A statistical model is fit to cold and warm tails to estimate future mortality using forecast temperatures, in a Bayesian probabilistic framework. Using predefined categories of temperature-related mortality risk, we present maps of probabilistic projections for human mortality at seasonal to decadal time scales. We demonstrate the information gained from using this technique compared to more traditional methods to display ternary probabilistic forecasts. This technique allows decision makers to identify areas where the model predicts with certainty area-specific heat waves or cold snaps, in order to effectively target resources to those areas most at risk, for a given season or year. It is hoped that this visualisation tool will facilitate the interpretation of the probabilistic forecasts not only for public health decision makers but also within a multi-sectoral climate service framework.
Method and system for dynamic probabilistic risk assessment
NASA Technical Reports Server (NTRS)
Dugan, Joanne Bechta (Inventor); Xu, Hong (Inventor)
2013-01-01
The DEFT methodology, system and computer readable medium extends the applicability of the PRA (Probabilistic Risk Assessment) methodology to computer-based systems, by allowing DFT (Dynamic Fault Tree) nodes as pivot nodes in the Event Tree (ET) model. DEFT includes a mathematical model and solution algorithm, supports all common PRA analysis functions and cutsets. Additional capabilities enabled by the DFT include modularization, phased mission analysis, sequence dependencies, and imperfect coverage.
Probabilistic finite elements for fracture and fatigue analysis
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Lawrence, M.; Besterfield, G. H.
1989-01-01
The fusion of the probabilistic finite element method (PFEM) and reliability analysis for probabilistic fracture mechanics (PFM) is presented. A comprehensive method for determining the probability of fatigue failure for curved crack growth was developed. The criterion for failure or performance function is stated as: the fatigue life of a component must exceed the service life of the component; otherwise failure will occur. An enriched element that has the near-crack-tip singular strain field embedded in the element is used to formulate the equilibrium equation and solve for the stress intensity factors at the crack-tip. Performance and accuracy of the method is demonstrated on a classical mode 1 fatigue problem.
Probabilistic objective functions for sensor management
NASA Astrophysics Data System (ADS)
Mahler, Ronald P. S.; Zajic, Tim R.
2004-08-01
This paper continues the investigation of a foundational and yet potentially practical basis for control-theoretic sensor management, using a comprehensive, intuitive, system-level Bayesian paradigm based on finite-set statistics (FISST). In this paper we report our most recent progress, focusing on multistep look-ahead -- i.e., allocation of sensor resources throughout an entire future time-window. We determine future sensor states in the time-window using a "probabilistically natural" sensor management objective function, the posterior expected number of targets (PENT). This objective function is constructed using a new "maxi-PIMS" optimization strategy that hedges against unknowable future observation-collections. PENT is used in conjuction with approximate multitarget filters: the probability hypothesis density (PHD) filter or the multi-hypothesis correlator (MHC) filter.
Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.; ...
2017-07-11
Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.
Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less
A Unified Probabilistic Framework for Dose-Response Assessment of Human Health Effects.
Chiu, Weihsueh A; Slob, Wout
2015-12-01
When chemical health hazards have been identified, probabilistic dose-response assessment ("hazard characterization") quantifies uncertainty and/or variability in toxicity as a function of human exposure. Existing probabilistic approaches differ for different types of endpoints or modes-of-action, lacking a unifying framework. We developed a unified framework for probabilistic dose-response assessment. We established a framework based on four principles: a) individual and population dose responses are distinct; b) dose-response relationships for all (including quantal) endpoints can be recast as relating to an underlying continuous measure of response at the individual level; c) for effects relevant to humans, "effect metrics" can be specified to define "toxicologically equivalent" sizes for this underlying individual response; and d) dose-response assessment requires making adjustments and accounting for uncertainty and variability. We then derived a step-by-step probabilistic approach for dose-response assessment of animal toxicology data similar to how nonprobabilistic reference doses are derived, illustrating the approach with example non-cancer and cancer datasets. Probabilistically derived exposure limits are based on estimating a "target human dose" (HDMI), which requires risk management-informed choices for the magnitude (M) of individual effect being protected against, the remaining incidence (I) of individuals with effects ≥ M in the population, and the percent confidence. In the example datasets, probabilistically derived 90% confidence intervals for HDMI values span a 40- to 60-fold range, where I = 1% of the population experiences ≥ M = 1%-10% effect sizes. Although some implementation challenges remain, this unified probabilistic framework can provide substantially more complete and transparent characterization of chemical hazards and support better-informed risk management decisions.
Advanced fiber tracking in early acquired brain injury causing cerebral palsy.
Lennartsson, F; Holmström, L; Eliasson, A-C; Flodmark, O; Forssberg, H; Tournier, J-D; Vollmer, B
2015-01-01
Diffusion-weighted MR imaging and fiber tractography can be used to investigate alterations in white matter tracts in patients with early acquired brain lesions and cerebral palsy. Most existing studies have used diffusion tensor tractography, which is limited in areas of complex fiber structures or pathologic processes. We explored a combined normalization and probabilistic fiber-tracking method for more realistic fiber tractography in this patient group. This cross-sectional study included 17 children with unilateral cerebral palsy and 24 typically developing controls. DWI data were collected at 1.5T (45 directions, b=1000 s/mm(2)). Regions of interest were defined on a study-specific fractional anisotropy template and mapped onto subjects for fiber tracking. Probabilistic fiber tracking of the corticospinal tract and thalamic projections to the somatosensory cortex was performed by using constrained spherical deconvolution. Tracts were qualitatively assessed, and DTI parameters were extracted close to and distant from lesions and compared between groups. The corticospinal tract and thalamic projections to the somatosensory cortex were realistically reconstructed in both groups. Structural changes to tracts were seen in the cerebral palsy group and included splits, dislocations, compaction of the tracts, or failure to delineate the tract and were associated with underlying pathology seen on conventional MR imaging. Comparisons of DTI parameters indicated primary and secondary neurodegeneration along the corticospinal tract. Corticospinal tract and thalamic projections to the somatosensory cortex showed dissimilarities in both structural changes and DTI parameters. Our proposed method offers a sensitive means to explore alterations in WM tracts to further understand pathophysiologic changes following early acquired brain injury. © 2015 by American Journal of Neuroradiology.
Multivariate decoding of brain images using ordinal regression.
Doyle, O M; Ashburner, J; Zelaya, F O; Williams, S C R; Mehta, M A; Marquand, A F
2013-11-01
Neuroimaging data are increasingly being used to predict potential outcomes or groupings, such as clinical severity, drug dose response, and transitional illness states. In these examples, the variable (target) we want to predict is ordinal in nature. Conventional classification schemes assume that the targets are nominal and hence ignore their ranked nature, whereas parametric and/or non-parametric regression models enforce a metric notion of distance between classes. Here, we propose a novel, alternative multivariate approach that overcomes these limitations - whole brain probabilistic ordinal regression using a Gaussian process framework. We applied this technique to two data sets of pharmacological neuroimaging data from healthy volunteers. The first study was designed to investigate the effect of ketamine on brain activity and its subsequent modulation with two compounds - lamotrigine and risperidone. The second study investigates the effect of scopolamine on cerebral blood flow and its modulation using donepezil. We compared ordinal regression to multi-class classification schemes and metric regression. Considering the modulation of ketamine with lamotrigine, we found that ordinal regression significantly outperformed multi-class classification and metric regression in terms of accuracy and mean absolute error. However, for risperidone ordinal regression significantly outperformed metric regression but performed similarly to multi-class classification both in terms of accuracy and mean absolute error. For the scopolamine data set, ordinal regression was found to outperform both multi-class and metric regression techniques considering the regional cerebral blood flow in the anterior cingulate cortex. Ordinal regression was thus the only method that performed well in all cases. Our results indicate the potential of an ordinal regression approach for neuroimaging data while providing a fully probabilistic framework with elegant approaches for model selection. Copyright © 2013. Published by Elsevier Inc.
Predicting BCI subject performance using probabilistic spatio-temporal filters.
Suk, Heung-Il; Fazli, Siamac; Mehnert, Jan; Müller, Klaus-Robert; Lee, Seong-Whan
2014-01-01
Recently, spatio-temporal filtering to enhance decoding for Brain-Computer-Interfacing (BCI) has become increasingly popular. In this work, we discuss a novel, fully Bayesian-and thereby probabilistic-framework, called Bayesian Spatio-Spectral Filter Optimization (BSSFO) and apply it to a large data set of 80 non-invasive EEG-based BCI experiments. Across the full frequency range, the BSSFO framework allows to analyze which spatio-spectral parameters are common and which ones differ across the subject population. As expected, large variability of brain rhythms is observed between subjects. We have clustered subjects according to similarities in their corresponding spectral characteristics from the BSSFO model, which is found to reflect their BCI performances well. In BCI, a considerable percentage of subjects is unable to use a BCI for communication, due to their missing ability to modulate their brain rhythms-a phenomenon sometimes denoted as BCI-illiteracy or inability. Predicting individual subjects' performance preceding the actual, time-consuming BCI-experiment enhances the usage of BCIs, e.g., by detecting users with BCI inability. This work additionally contributes by using the novel BSSFO method to predict the BCI-performance using only 2 minutes and 3 channels of resting-state EEG data recorded before the actual BCI-experiment. Specifically, by grouping the individual frequency characteristics we have nicely classified them into the subject 'prototypes' (like μ - or β -rhythm type subjects) or users without ability to communicate with a BCI, and then by further building a linear regression model based on the grouping we could predict subjects' performance with the maximum correlation coefficient of 0.581 with the performance later seen in the actual BCI session.
Duraisamy, Baskar; Shanmugam, Jayanthi Venkatraman; Annamalai, Jayanthi
2018-02-19
An early intervention of Alzheimer's disease (AD) is highly essential due to the fact that this neuro degenerative disease generates major life-threatening issues, especially memory loss among patients in society. Moreover, categorizing NC (Normal Control), MCI (Mild Cognitive Impairment) and AD early in course allows the patients to experience benefits from new treatments. Therefore, it is important to construct a reliable classification technique to discriminate the patients with or without AD from the bio medical imaging modality. Hence, we developed a novel FCM based Weighted Probabilistic Neural Network (FWPNN) classification algorithm and analyzed the brain images related to structural MRI modality for better discrimination of class labels. Initially our proposed framework begins with brain image normalization stage. In this stage, ROI regions related to Hippo-Campus (HC) and Posterior Cingulate Cortex (PCC) from the brain images are extracted using Automated Anatomical Labeling (AAL) method. Subsequently, nineteen highly relevant AD related features are selected through Multiple-criterion feature selection method. At last, our novel FWPNN classification algorithm is imposed to remove suspicious samples from the training data with an end goal to enhance the classification performance. This newly developed classification algorithm combines both the goodness of supervised and unsupervised learning techniques. The experimental validation is carried out with the ADNI subset and then to the Bordex-3 city dataset. Our proposed classification approach achieves an accuracy of about 98.63%, 95.4%, 96.4% in terms of classification with AD vs NC, MCI vs NC and AD vs MCI. The experimental results suggest that the removal of noisy samples from the training data can enhance the decision generation process of the expert systems.
Neurodynamical model of collective brain
NASA Technical Reports Server (NTRS)
Zak, Michail
1992-01-01
A dynamical system which mimics collective purposeful activities of a set of units of intelligence is introduced and discussed. A global control of the unit activities is replaced by the probabilistic correlations between them. These correlations are learned during a long term period of performing collective tasks, and are stored in the synaptic interconnections. The model is represented by a system of ordinary differential equations with terminal attractors and repellers, and does not contain any man-made digital devices.
2013-08-27
University of New Jersey, Newark, New Jersey, United States of America, 3 Department of Psychology , Rutgers, The State University of New Jersey...United States of America, 5 Marcs Institute for Brain and Behaviour & School of Social Sciences and Psychology , University of Western Sydney, Sydney...for current, severe PTSD symptoms (PTSS) were tested on a probabilistic classification task [19] that interleaves reward learning and punishment
Probabilistic structural analysis of a truss typical for space station
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.
1990-01-01
A three-bay, space, cantilever truss is probabilistically evaluated using the computer code NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) to identify and quantify the uncertainties and respective sensitivities associated with corresponding uncertainties in the primitive variables (structural, material, and loads parameters) that defines the truss. The distribution of each of these primitive variables is described in terms of one of several available distributions such as the Weibull, exponential, normal, log-normal, etc. The cumulative distribution function (CDF's) for the response functions considered and sensitivities associated with the primitive variables for given response are investigated. These sensitivities help in determining the dominating primitive variables for that response.
NASA Astrophysics Data System (ADS)
Gueddana, Amor; Attia, Moez; Chatta, Rihab
2015-03-01
In this work, we study the error sources standing behind the non-perfect linear optical quantum components composing a non-deterministic quantum CNOT gate model, which performs the CNOT function with a success probability of 4/27 and uses a double encoding technique to represent photonic qubits at the control and the target. We generalize this model to an abstract probabilistic CNOT version and determine the realizability limits depending on a realistic range of the errors. Finally, we discuss physical constraints allowing the implementation of the Asymmetric Partially Polarizing Beam Splitter (APPBS), which is at the heart of correctly realizing the CNOT function.
Hazard function analysis for flood planning under nonstationarity
NASA Astrophysics Data System (ADS)
Read, Laura K.; Vogel, Richard M.
2016-05-01
The field of hazard function analysis (HFA) involves a probabilistic assessment of the "time to failure" or "return period," T, of an event of interest. HFA is used in epidemiology, manufacturing, medicine, actuarial statistics, reliability engineering, economics, and elsewhere. For a stationary process, the probability distribution function (pdf) of the return period always follows an exponential distribution, the same is not true for nonstationary processes. When the process of interest, X, exhibits nonstationary behavior, HFA can provide a complementary approach to risk analysis with analytical tools particularly useful for hydrological applications. After a general introduction to HFA, we describe a new mathematical linkage between the magnitude of the flood event, X, and its return period, T, for nonstationary processes. We derive the probabilistic properties of T for a nonstationary one-parameter exponential model of X, and then use both Monte-Carlo simulation and HFA to generalize the behavior of T when X arises from a nonstationary two-parameter lognormal distribution. For this case, our findings suggest that a two-parameter Weibull distribution provides a reasonable approximation for the pdf of T. We document how HFA can provide an alternative approach to characterize the probabilistic properties of both nonstationary flood series and the resulting pdf of T.
A Unified Probabilistic Framework for Dose–Response Assessment of Human Health Effects
Slob, Wout
2015-01-01
Background When chemical health hazards have been identified, probabilistic dose–response assessment (“hazard characterization”) quantifies uncertainty and/or variability in toxicity as a function of human exposure. Existing probabilistic approaches differ for different types of endpoints or modes-of-action, lacking a unifying framework. Objectives We developed a unified framework for probabilistic dose–response assessment. Methods We established a framework based on four principles: a) individual and population dose responses are distinct; b) dose–response relationships for all (including quantal) endpoints can be recast as relating to an underlying continuous measure of response at the individual level; c) for effects relevant to humans, “effect metrics” can be specified to define “toxicologically equivalent” sizes for this underlying individual response; and d) dose–response assessment requires making adjustments and accounting for uncertainty and variability. We then derived a step-by-step probabilistic approach for dose–response assessment of animal toxicology data similar to how nonprobabilistic reference doses are derived, illustrating the approach with example non-cancer and cancer datasets. Results Probabilistically derived exposure limits are based on estimating a “target human dose” (HDMI), which requires risk management–informed choices for the magnitude (M) of individual effect being protected against, the remaining incidence (I) of individuals with effects ≥ M in the population, and the percent confidence. In the example datasets, probabilistically derived 90% confidence intervals for HDMI values span a 40- to 60-fold range, where I = 1% of the population experiences ≥ M = 1%–10% effect sizes. Conclusions Although some implementation challenges remain, this unified probabilistic framework can provide substantially more complete and transparent characterization of chemical hazards and support better-informed risk management decisions. Citation Chiu WA, Slob W. 2015. A unified probabilistic framework for dose–response assessment of human health effects. Environ Health Perspect 123:1241–1254; http://dx.doi.org/10.1289/ehp.1409385 PMID:26006063
Chou, Ming-Chung; Ko, Chih-Hung; Chang, Jer-Ming; Hsieh, Tsyh-Jyi
2018-05-04
End-stage renal disease (ESRD) patients on hemodialysis were demonstrated to exhibit silent and invisible white-matter alterations which would likely lead to disruptions of brain structural networks. Therefore, the purpose of this study was to investigate the disruptions of brain structural network in ESRD patients. Thiry-three ESRD patients with normal-appearing brain tissues and 29 age- and gender-matched healthy controls were enrolled in this study and underwent both cognitive ability screening instrument (CASI) assessment and diffusion tensor imaging (DTI) acquisition. Brain structural connectivity network was constructed using probabilistic tractography with automatic anatomical labeling template. Graph-theory analysis was performed to detect the alterations of node-strength, node-degree, node-local efficiency, and node-clustering coefficient in ESRD patients. Correlational analysis was performed to understand the relationship between network measures, CASI score, and dialysis duration. Structural connectivity, node-strength, node-degree, and node-local efficiency were significantly decreased, whereas node-clustering coefficient was significantly increased in ESRD patients as compared with healthy controls. The disrupted local structural networks were generally associated with common neurological complications of ESRD patients, but the correlational analysis did not reveal significant correlation between network measures, CASI score, and dialysis duration. Graph-theory analysis was helpful to investigate disruptions of brain structural network in ESRD patients with normal-appearing brain tissues. Copyright © 2018. Published by Elsevier Masson SAS.
The DOZZ formula from the path integral
NASA Astrophysics Data System (ADS)
Kupiainen, Antti; Rhodes, Rémi; Vargas, Vincent
2018-05-01
We present a rigorous proof of the Dorn, Otto, Zamolodchikov, Zamolodchikov formula (the DOZZ formula) for the 3 point structure constants of Liouville Conformal Field Theory (LCFT) starting from a rigorous probabilistic construction of the functional integral defining LCFT given earlier by the authors and David. A crucial ingredient in our argument is a probabilistic derivation of the reflection relation in LCFT based on a refined tail analysis of Gaussian multiplicative chaos measures.
A computational framework to empower probabilistic protein design
Fromer, Menachem; Yanover, Chen
2008-01-01
Motivation: The task of engineering a protein to perform a target biological function is known as protein design. A commonly used paradigm casts this functional design problem as a structural one, assuming a fixed backbone. In probabilistic protein design, positional amino acid probabilities are used to create a random library of sequences to be simultaneously screened for biological activity. Clearly, certain choices of probability distributions will be more successful in yielding functional sequences. However, since the number of sequences is exponential in protein length, computational optimization of the distribution is difficult. Results: In this paper, we develop a computational framework for probabilistic protein design following the structural paradigm. We formulate the distribution of sequences for a structure using the Boltzmann distribution over their free energies. The corresponding probabilistic graphical model is constructed, and we apply belief propagation (BP) to calculate marginal amino acid probabilities. We test this method on a large structural dataset and demonstrate the superiority of BP over previous methods. Nevertheless, since the results obtained by BP are far from optimal, we thoroughly assess the paradigm using high-quality experimental data. We demonstrate that, for small scale sub-problems, BP attains identical results to those produced by exact inference on the paradigmatic model. However, quantitative analysis shows that the distributions predicted significantly differ from the experimental data. These findings, along with the excellent performance we observed using BP on the smaller problems, suggest potential shortcomings of the paradigm. We conclude with a discussion of how it may be improved in the future. Contact: fromer@cs.huji.ac.il PMID:18586717
Using the Detectability Index to Predict P300 Speller Performance
Mainsah, B.O.; Collins, L.M.; Throckmorton, C.S.
2017-01-01
Objective The P300 speller is a popular brain-computer interface (BCI) system that has been investigated as a potential communication alternative for individuals with severe neuromuscular limitations. To achieve acceptable accuracy levels for communication, the system requires repeated data measurements in a given signal condition to enhance the signal-to-noise ratio of elicited brain responses. These elicited brain responses, which are used as control signals, are embedded in noisy electroencephalography (EEG) data. The discriminability between target and non-target EEG responses defines a user’s performance with the system. A previous P300 speller model has been proposed to estimate system accuracy given a certain amount of data collection. However, the approach was limited to a static stopping algorithm, i.e. averaging over a fixed number of measurements, and the row-column paradigm. A generalized method that is also applicable to dynamic stopping algorithms and other stimulus paradigms is desirable. Approach We developed a new probabilistic model-based approach to predicting BCI performance, where performance functions can be derived analytically or via Monte Carlo methods. Within this framework, we introduce a new model for the P300 speller with the Bayesian dynamic stopping (DS) algorithm, by simplifying a multi-hypothesis to a binary hypothesis problem using the likelihood ratio test. Under a normality assumption, the performance functions for the Bayesian algorithm can be parameterized with the detectability index, a measure which quantifies the discriminability between target and non-target EEG responses. Main results Simulations with synthetic and empirical data provided initial verification of the proposed method of estimating performance with Bayesian DS using the detectability index. Analysis of results from previous online studies validated the proposed method. Significance The proposed method could serve as a useful tool to initially asses BCI performance without extensive online testing, in order to estimate the amount of data required to achieve a desired accuracy level. PMID:27705956
Using the detectability index to predict P300 speller performance
NASA Astrophysics Data System (ADS)
Mainsah, B. O.; Collins, L. M.; Throckmorton, C. S.
2016-12-01
Objective. The P300 speller is a popular brain-computer interface (BCI) system that has been investigated as a potential communication alternative for individuals with severe neuromuscular limitations. To achieve acceptable accuracy levels for communication, the system requires repeated data measurements in a given signal condition to enhance the signal-to-noise ratio of elicited brain responses. These elicited brain responses, which are used as control signals, are embedded in noisy electroencephalography (EEG) data. The discriminability between target and non-target EEG responses defines a user’s performance with the system. A previous P300 speller model has been proposed to estimate system accuracy given a certain amount of data collection. However, the approach was limited to a static stopping algorithm, i.e. averaging over a fixed number of measurements, and the row-column paradigm. A generalized method that is also applicable to dynamic stopping (DS) algorithms and other stimulus paradigms is desirable. Approach. We developed a new probabilistic model-based approach to predicting BCI performance, where performance functions can be derived analytically or via Monte Carlo methods. Within this framework, we introduce a new model for the P300 speller with the Bayesian DS algorithm, by simplifying a multi-hypothesis to a binary hypothesis problem using the likelihood ratio test. Under a normality assumption, the performance functions for the Bayesian algorithm can be parameterized with the detectability index, a measure which quantifies the discriminability between target and non-target EEG responses. Main results. Simulations with synthetic and empirical data provided initial verification of the proposed method of estimating performance with Bayesian DS using the detectability index. Analysis of results from previous online studies validated the proposed method. Significance. The proposed method could serve as a useful tool to initially assess BCI performance without extensive online testing, in order to estimate the amount of data required to achieve a desired accuracy level.
Development of Probabilistic Flood Inundation Mapping For Flooding Induced by Dam Failure
NASA Astrophysics Data System (ADS)
Tsai, C.; Yeh, J. J. J.
2017-12-01
A primary function of flood inundation mapping is to forecast flood hazards and assess potential losses. However, uncertainties limit the reliability of inundation hazard assessments. Major sources of uncertainty should be taken into consideration by an optimal flood management strategy. This study focuses on the 20km reach downstream of the Shihmen Reservoir in Taiwan. A dam failure induced flood herein provides the upstream boundary conditions of flood routing. The two major sources of uncertainty that are considered in the hydraulic model and the flood inundation mapping herein are uncertainties in the dam break model and uncertainty of the roughness coefficient. The perturbance moment method is applied to a dam break model and the hydro system model to develop probabilistic flood inundation mapping. Various numbers of uncertain variables can be considered in these models and the variability of outputs can be quantified. The probabilistic flood inundation mapping for dam break induced floods can be developed with consideration of the variability of output using a commonly used HEC-RAS model. Different probabilistic flood inundation mappings are discussed and compared. Probabilistic flood inundation mappings are hoped to provide new physical insights in support of the evaluation of concerning reservoir flooded areas.
New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis.
Ingo, Carson; Magin, Richard L; Parrish, Todd B
2014-11-01
Fractional order derivative operators offer a concise description to model multi-scale, heterogeneous and non-local systems. Specifically, in magnetic resonance imaging, there has been recent work to apply fractional order derivatives to model the non-Gaussian diffusion signal, which is ubiquitous in the movement of water protons within biological tissue. To provide a new perspective for establishing the utility of fractional order models, we apply entropy for the case of anomalous diffusion governed by a fractional order diffusion equation generalized in space and in time. This fractional order representation, in the form of the Mittag-Leffler function, gives an entropy minimum for the integer case of Gaussian diffusion and greater values of spectral entropy for non-integer values of the space and time derivatives. Furthermore, we consider kurtosis, defined as the normalized fourth moment, as another probabilistic description of the fractional time derivative. Finally, we demonstrate the implementation of anomalous diffusion, entropy and kurtosis measurements in diffusion weighted magnetic resonance imaging in the brain of a chronic ischemic stroke patient.
Anisotropic connectivity implements motion-based prediction in a spiking neural network.
Kaplan, Bernhard A; Lansner, Anders; Masson, Guillaume S; Perrinet, Laurent U
2013-01-01
Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input to establish a coherent representation of the world. Although it is becoming generally accepted, it is not clear on which level spiking neural networks may implement predictive coding and what function their connectivity may have. We present a network model of conductance-based integrate-and-fire neurons inspired by the architecture of retinotopic cortical areas that assumes predictive coding is implemented through network connectivity, namely in the connection delays and in selectiveness for the tuning properties of source and target cells. We show that the applied connection pattern leads to motion-based prediction in an experiment tracking a moving dot. In contrast to our proposed model, a network with random or isotropic connectivity fails to predict the path when the moving dot disappears. Furthermore, we show that a simple linear decoding approach is sufficient to transform neuronal spiking activity into a probabilistic estimate for reading out the target trajectory.
Predicting the Location of Human Perirhinal Cortex, Brodmann's area 35, from MRI
Augustinack, Jean C.; Huber, Kristen E.; Stevens, Allison A.; Roy, Michelle; Frosch, Matthew P.; van der Kouwe, André J.W.; Wald, Lawrence L.; Van Leemput, Koen; McKee, Ann; Fischl, Bruce
2012-01-01
The perirhinal cortex (Brodmann's area 35) is a multimodal area that is important for normal memory function. Specifically, perirhinal cortex is involved in detection of novel objects and manifests neurofibrillary tangles in Alzheimer's disease very early in disease progression. We scanned ex vivo brain hemispheres at standard resolution (1 mm × 1 mm × 1 mm) to construct pial/white matter surfaces in FreeSurfer and scanned again at high resolution (120 μm × 120 μm × 120 μm) to determine cortical architectural boundaries. After labeling perirhinal area 35 in the high resolution images, we mapped the high resolution labels to the surface models to localize area 35 in fourteen cases. We validated the area boundaries determined using histological Nissl staining. To test the accuracy of the probabilistic mapping, we measured the Hausdorff distance between the predicted and true labels and found that the median Hausdorff distance was 4.0 mm for left hemispheres (n = 7) and 3.2 mm for right hemispheres (n = 7) across subjects. To show the utility of perirhinal localization, we mapped our labels to a subset of the Alzheimer's Disease Neuroimaging Initiative dataset and found decreased cortical thickness measures in mild cognitive impairment and Alzheimer's disease compared to controls in the predicted perirhinal area 35. Our ex vivo probabilistic mapping of perirhinal cortex provides histologically validated, automated and accurate labeling of architectonic regions in the medial temporal lobe, and facilitates the analysis of atrophic changes in a large dataset for earlier detection and diagnosis. PMID:22960087
Feedforward Inhibition and Synaptic Scaling – Two Sides of the Same Coin?
Lücke, Jörg
2012-01-01
Feedforward inhibition and synaptic scaling are important adaptive processes that control the total input a neuron can receive from its afferents. While often studied in isolation, the two have been reported to co-occur in various brain regions. The functional implications of their interactions remain unclear, however. Based on a probabilistic modeling approach, we show here that fast feedforward inhibition and synaptic scaling interact synergistically during unsupervised learning. In technical terms, we model the input to a neural circuit using a normalized mixture model with Poisson noise. We demonstrate analytically and numerically that, in the presence of lateral inhibition introducing competition between different neurons, Hebbian plasticity and synaptic scaling approximate the optimal maximum likelihood solutions for this model. Our results suggest that, beyond its conventional use as a mechanism to remove undesired pattern variations, input normalization can make typical neural interaction and learning rules optimal on the stimulus subspace defined through feedforward inhibition. Furthermore, learning within this subspace is more efficient in practice, as it helps avoid locally optimal solutions. Our results suggest a close connection between feedforward inhibition and synaptic scaling which may have important functional implications for general cortical processing. PMID:22457610
Feedforward inhibition and synaptic scaling--two sides of the same coin?
Keck, Christian; Savin, Cristina; Lücke, Jörg
2012-01-01
Feedforward inhibition and synaptic scaling are important adaptive processes that control the total input a neuron can receive from its afferents. While often studied in isolation, the two have been reported to co-occur in various brain regions. The functional implications of their interactions remain unclear, however. Based on a probabilistic modeling approach, we show here that fast feedforward inhibition and synaptic scaling interact synergistically during unsupervised learning. In technical terms, we model the input to a neural circuit using a normalized mixture model with Poisson noise. We demonstrate analytically and numerically that, in the presence of lateral inhibition introducing competition between different neurons, Hebbian plasticity and synaptic scaling approximate the optimal maximum likelihood solutions for this model. Our results suggest that, beyond its conventional use as a mechanism to remove undesired pattern variations, input normalization can make typical neural interaction and learning rules optimal on the stimulus subspace defined through feedforward inhibition. Furthermore, learning within this subspace is more efficient in practice, as it helps avoid locally optimal solutions. Our results suggest a close connection between feedforward inhibition and synaptic scaling which may have important functional implications for general cortical processing.
Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P.; Johnson, G. Allan
2015-01-01
Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved 3D reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate accurate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. PMID:26043869
A Discounting Framework for Choice With Delayed and Probabilistic Rewards
Green, Leonard; Myerson, Joel
2005-01-01
When choosing between delayed or uncertain outcomes, individuals discount the value of such outcomes on the basis of the expected time to or the likelihood of their occurrence. In an integrative review of the expanding experimental literature on discounting, the authors show that although the same form of hyperbola-like function describes discounting of both delayed and probabilistic outcomes, a variety of recent findings are inconsistent with a single-process account. The authors also review studies that compare discounting in different populations and discuss the theoretical and practical implications of the findings. The present effort illustrates the value of studying choice involving both delayed and probabilistic outcomes within a general discounting framework that uses similar experimental procedures and a common analytical approach. PMID:15367080
Mapping visual cortex in monkeys and humans using surface-based atlases
NASA Technical Reports Server (NTRS)
Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.
2001-01-01
We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.
Probabilistic structural analysis methods for improving Space Shuttle engine reliability
NASA Technical Reports Server (NTRS)
Boyce, L.
1989-01-01
Probabilistic structural analysis methods are particularly useful in the design and analysis of critical structural components and systems that operate in very severe and uncertain environments. These methods have recently found application in space propulsion systems to improve the structural reliability of Space Shuttle Main Engine (SSME) components. A computer program, NESSUS, based on a deterministic finite-element program and a method of probabilistic analysis (fast probability integration) provides probabilistic structural analysis for selected SSME components. While computationally efficient, it considers both correlated and nonnormal random variables as well as an implicit functional relationship between independent and dependent variables. The program is used to determine the response of a nickel-based superalloy SSME turbopump blade. Results include blade tip displacement statistics due to the variability in blade thickness, modulus of elasticity, Poisson's ratio or density. Modulus of elasticity significantly contributed to blade tip variability while Poisson's ratio did not. Thus, a rational method for choosing parameters to be modeled as random is provided.
The cerebellum and decision making under uncertainty.
Blackwood, Nigel; Ffytche, Dominic; Simmons, Andrew; Bentall, Richard; Murray, Robin; Howard, Robert
2004-06-01
This study aimed to identify the neural basis of probabilistic reasoning, a type of inductive inference that aids decision making under conditions of uncertainty. Eight normal subjects performed two separate two-alternative-choice tasks (the balls in a bottle and personality survey tasks) while undergoing functional magnetic resonance imaging (fMRI). The experimental conditions within each task were chosen so that they differed only in their requirement to make a decision under conditions of uncertainty (probabilistic reasoning and frequency determination required) or under conditions of certainty (frequency determination required). The same visual stimuli and motor responses were used in the experimental conditions. We provide evidence that the neo-cerebellum, in conjunction with the premotor cortex, inferior parietal lobule and medial occipital cortex, mediates the probabilistic inferences that guide decision making under uncertainty. We hypothesise that the neo-cerebellum constructs internal working models of uncertain events in the external world, and that such probabilistic models subserve the predictive capacity central to induction. Copyright 2004 Elsevier B.V.
Coupled Multi-Disciplinary Optimization for Structural Reliability and Affordability
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
A computational simulation method is presented for Non-Deterministic Multidisciplinary Optimization of engine composite materials and structures. A hypothetical engine duct made with ceramic matrix composites (CMC) is evaluated probabilistically in the presence of combined thermo-mechanical loading. The structure is tailored by quantifying the uncertainties in all relevant design variables such as fabrication, material, and loading parameters. The probabilistic sensitivities are used to select critical design variables for optimization. In this paper, two approaches for non-deterministic optimization are presented. The non-deterministic minimization of combined failure stress criterion is carried out by: (1) performing probabilistic evaluation first and then optimization and (2) performing optimization first and then probabilistic evaluation. The first approach shows that the optimization feasible region can be bounded by a set of prescribed probability limits and that the optimization follows the cumulative distribution function between those limits. The second approach shows that the optimization feasible region is bounded by 0.50 and 0.999 probabilities.
Light-scattering signal may indicate critical time zone to rescue brain tissue after hypoxia
NASA Astrophysics Data System (ADS)
Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto
2011-02-01
A light-scattering signal, which is sensitive to cellular/subcellular structural integrity, is a potential indicator of brain tissue viability because metabolic energy is used in part to maintain the structure of cells. We previously observed a unique triphasic scattering change (TSC) at a certain time after oxygen/glucose deprivation for blood-free rat brains; TSC almost coincided with the cerebral adenosine triphosphate (ATP) depletion. We examine whether such TSC can be observed in the presence of blood in vivo, for which transcranial diffuse reflectance measurement is performed for rat brains during hypoxia induced by nitrogen gas inhalation. At a certain time after hypoxia, diffuse reflectance intensity in the near-infrared region changes in three phases, which is shown by spectroscopic analysis to be due to scattering change in the tissue. During hypoxia, rats are reoxygenated at various time points. When the oxygen supply is started before TSC, all rats survive, whereas no rats survive when the oxygen supply is started after TSC. Survival is probabilistic when the oxygen supply is started during TSC, indicating that the period of TSC can be regarded as a critical time zone for rescuing the brain. The results demonstrate that light scattering signal can be an indicator of brain tissue reversibility.
Probabilistic methods for rotordynamics analysis
NASA Technical Reports Server (NTRS)
Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.
1991-01-01
This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.
Quantum formalism for classical statistics
NASA Astrophysics Data System (ADS)
Wetterich, C.
2018-06-01
In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.
Segmentation of Image Ensembles via Latent Atlases
Van Leemput, Koen; Menze, Bjoern H.; Wells, William M.; Golland, Polina
2010-01-01
Spatial priors, such as probabilistic atlases, play an important role in MRI segmentation. However, the availability of comprehensive, reliable and suitable manual segmentations for atlas construction is limited. We therefore propose a method for joint segmentation of corresponding regions of interest in a collection of aligned images that does not require labeled training data. Instead, a latent atlas, initialized by at most a single manual segmentation, is inferred from the evolving segmentations of the ensemble. The algorithm is based on probabilistic principles but is solved using partial differential equations (PDEs) and energy minimization criteria. We evaluate the method on two datasets, segmenting subcortical and cortical structures in a multi-subject study and extracting brain tumors in a single-subject multi-modal longitudinal experiment. We compare the segmentation results to manual segmentations, when those exist, and to the results of a state-of-the-art atlas-based segmentation method. The quality of the results supports the latent atlas as a promising alternative when existing atlases are not compatible with the images to be segmented. PMID:20580305
NASA Astrophysics Data System (ADS)
Acedo, L.; Villanueva-Oller, J.; Moraño, J. A.; Villanueva, R.-J.
2013-01-01
The Berkeley Open Infrastructure for Network Computing (BOINC) has become the standard open source solution for grid computing in the Internet. Volunteers use their computers to complete an small part of the task assigned by a dedicated server. We have developed a BOINC project called Neurona@Home whose objective is to simulate a cellular automata random network with, at least, one million neurons. We consider a cellular automata version of the integrate-and-fire model in which excitatory and inhibitory nodes can activate or deactivate neighbor nodes according to a set of probabilistic rules. Our aim is to determine the phase diagram of the model and its behaviour and to compare it with the electroencephalographic signals measured in real brains.
Software for Probabilistic Risk Reduction
NASA Technical Reports Server (NTRS)
Hensley, Scott; Michel, Thierry; Madsen, Soren; Chapin, Elaine; Rodriguez, Ernesto
2004-01-01
A computer program implements a methodology, denoted probabilistic risk reduction, that is intended to aid in planning the development of complex software and/or hardware systems. This methodology integrates two complementary prior methodologies: (1) that of probabilistic risk assessment and (2) a risk-based planning methodology, implemented in a prior computer program known as Defect Detection and Prevention (DDP), in which multiple requirements and the beneficial effects of risk-mitigation actions are taken into account. The present methodology and the software are able to accommodate both process knowledge (notably of the efficacy of development practices) and product knowledge (notably of the logical structure of a system, the development of which one seeks to plan). Estimates of the costs and benefits of a planned development can be derived. Functional and non-functional aspects of software can be taken into account, and trades made among them. It becomes possible to optimize the planning process in the sense that it becomes possible to select the best suite of process steps and design choices to maximize the expectation of success while remaining within budget.
McClelland, James L.
2013-01-01
This article seeks to establish a rapprochement between explicitly Bayesian models of contextual effects in perception and neural network models of such effects, particularly the connectionist interactive activation (IA) model of perception. The article is in part an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach to understanding perception and how it may be shaped by context, and also reviewing ideas about how such probabilistic computations may be carried out in neural networks, focusing on the role of context in interactive neural networks, in which both bottom-up and top-down signals affect the interpretation of sensory inputs. It is pointed out that connectionist units that use the logistic or softmax activation functions can exactly compute Bayesian posterior probabilities when the bias terms and connection weights affecting such units are set to the logarithms of appropriate probabilistic quantities. Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability matching and maximizing, and calculating vs. sampling from the posterior are all reviewed and linked to neural network computations. Probabilistic and neural network models are explicitly linked to the concept of a probabilistic generative model that describes the relationship between the underlying target of perception (e.g., the word intended by a speaker or other source of sensory stimuli) and the sensory input that reaches the perceiver for use in inferring the underlying target. It is shown how a new version of the IA model called the multinomial interactive activation (MIA) model can sample correctly from the joint posterior of a proposed generative model for perception of letters in words, indicating that interactive processing is fully consistent with principled probabilistic computation. Ways in which these computations might be realized in real neural systems are also considered. PMID:23970868
McClelland, James L
2013-01-01
This article seeks to establish a rapprochement between explicitly Bayesian models of contextual effects in perception and neural network models of such effects, particularly the connectionist interactive activation (IA) model of perception. The article is in part an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach to understanding perception and how it may be shaped by context, and also reviewing ideas about how such probabilistic computations may be carried out in neural networks, focusing on the role of context in interactive neural networks, in which both bottom-up and top-down signals affect the interpretation of sensory inputs. It is pointed out that connectionist units that use the logistic or softmax activation functions can exactly compute Bayesian posterior probabilities when the bias terms and connection weights affecting such units are set to the logarithms of appropriate probabilistic quantities. Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability matching and maximizing, and calculating vs. sampling from the posterior are all reviewed and linked to neural network computations. Probabilistic and neural network models are explicitly linked to the concept of a probabilistic generative model that describes the relationship between the underlying target of perception (e.g., the word intended by a speaker or other source of sensory stimuli) and the sensory input that reaches the perceiver for use in inferring the underlying target. It is shown how a new version of the IA model called the multinomial interactive activation (MIA) model can sample correctly from the joint posterior of a proposed generative model for perception of letters in words, indicating that interactive processing is fully consistent with principled probabilistic computation. Ways in which these computations might be realized in real neural systems are also considered.
Probabilistic objective functions for margin-less IMRT planning
NASA Astrophysics Data System (ADS)
Bohoslavsky, Román; Witte, Marnix G.; Janssen, Tomas M.; van Herk, Marcel
2013-06-01
We present a method to implement probabilistic treatment planning of intensity-modulated radiation therapy using custom software plugins in a commercial treatment planning system. Our method avoids the definition of safety-margins by directly including the effect of geometrical uncertainties during optimization when objective functions are evaluated. Because the shape of the resulting dose distribution implicitly defines the robustness of the plan, the optimizer has much more flexibility than with a margin-based approach. We expect that this added flexibility helps to automatically strike a better balance between target coverage and dose reduction for surrounding healthy tissue, especially for cases where the planning target volume overlaps organs at risk. Prostate cancer treatment planning was chosen to develop our method, including a novel technique to include rotational uncertainties. Based on population statistics, translations and rotations are simulated independently following a marker-based IGRT correction strategy. The effects of random and systematic errors are incorporated by first blurring and then shifting the dose distribution with respect to the clinical target volume. For simplicity and efficiency, dose-shift invariance and a rigid-body approximation are assumed. Three prostate cases were replanned using our probabilistic objective functions. To compare clinical and probabilistic plans, an evaluation tool was used that explicitly incorporates geometric uncertainties using Monte-Carlo methods. The new plans achieved similar or better dose distributions than the original clinical plans in terms of expected target coverage and rectum wall sparing. Plan optimization times were only about a factor of two higher than in the original clinical system. In conclusion, we have developed a practical planning tool that enables margin-less probability-based treatment planning with acceptable planning times, achieving the first system that is feasible for clinical implementation.
Structural system reliability calculation using a probabilistic fault tree analysis method
NASA Technical Reports Server (NTRS)
Torng, T. Y.; Wu, Y.-T.; Millwater, H. R.
1992-01-01
The development of a new probabilistic fault tree analysis (PFTA) method for calculating structural system reliability is summarized. The proposed PFTA procedure includes: developing a fault tree to represent the complex structural system, constructing an approximation function for each bottom event, determining a dominant sampling sequence for all bottom events, and calculating the system reliability using an adaptive importance sampling method. PFTA is suitable for complicated structural problems that require computer-intensive computer calculations. A computer program has been developed to implement the PFTA.
Functional mechanisms of probabilistic inference in feature- and space-based attentional systems.
Dombert, Pascasie L; Kuhns, Anna; Mengotti, Paola; Fink, Gereon R; Vossel, Simone
2016-11-15
Humans flexibly attend to features or locations and these processes are influenced by the probability of sensory events. We combined computational modeling of response times with fMRI to compare the functional correlates of (re-)orienting, and the modulation by probabilistic inference in spatial and feature-based attention systems. Twenty-four volunteers performed two task versions with spatial or color cues. Percentage of cue validity changed unpredictably. A hierarchical Bayesian model was used to derive trial-wise estimates of probability-dependent attention, entering the fMRI analysis as parametric regressors. Attentional orienting activated a dorsal frontoparietal network in both tasks, without significant parametric modulation. Spatially invalid trials activated a bilateral frontoparietal network and the precuneus, while invalid feature trials activated the left intraparietal sulcus (IPS). Probability-dependent attention modulated activity in the precuneus, left posterior IPS, middle occipital gyrus, and right temporoparietal junction for spatial attention, and in the left anterior IPS for feature-based and spatial attention. These findings provide novel insights into the generality and specificity of the functional basis of attentional control. They suggest that probabilistic inference can distinctively affect each attentional subsystem, but that there is an overlap in the left IPS, which responds to both spatial and feature-based expectancy violations. Copyright © 2016 Elsevier Inc. All rights reserved.
A Probabilistic Model of Social Working Memory for Information Retrieval in Social Interactions.
Li, Liyuan; Xu, Qianli; Gan, Tian; Tan, Cheston; Lim, Joo-Hwee
2018-05-01
Social working memory (SWM) plays an important role in navigating social interactions. Inspired by studies in psychology, neuroscience, cognitive science, and machine learning, we propose a probabilistic model of SWM to mimic human social intelligence for personal information retrieval (IR) in social interactions. First, we establish a semantic hierarchy as social long-term memory to encode personal information. Next, we propose a semantic Bayesian network as the SWM, which integrates the cognitive functions of accessibility and self-regulation. One subgraphical model implements the accessibility function to learn the social consensus about IR-based on social information concept, clustering, social context, and similarity between persons. Beyond accessibility, one more layer is added to simulate the function of self-regulation to perform the personal adaptation to the consensus based on human personality. Two learning algorithms are proposed to train the probabilistic SWM model on a raw dataset of high uncertainty and incompleteness. One is an efficient learning algorithm of Newton's method, and the other is a genetic algorithm. Systematic evaluations show that the proposed SWM model is able to learn human social intelligence effectively and outperforms the baseline Bayesian cognitive model. Toward real-world applications, we implement our model on Google Glass as a wearable assistant for social interaction.
Gluck, Mark A.; Shohamy, Daphna; Myers, Catherine
2002-01-01
Probabilistic category learning is often assumed to be an incrementally learned cognitive skill, dependent on nondeclarative memory systems. One paradigm in particular, the weather prediction task, has been used in over half a dozen neuropsychological and neuroimaging studies to date. Because of the growing interest in using this task and others like it as behavioral tools for studying the cognitive neuroscience of cognitive skill learning, it becomes especially important to understand how subjects solve this kind of task and whether all subjects learn it in the same way. We present here new experimental and theoretical analyses of the weather prediction task that indicate that there are at least three different strategies that describe how subjects learn this task. (1) An optimal multi-cue strategy, in which they respond to each pattern on the basis of associations of all four cues with each outcome; (2) a one-cue strategy, in which they respond on the basis of presence or absence of a single cue, disregarding all other cues; or (3) a singleton strategy, in which they learn only about the four patterns that have only one cue present and all others absent. This variability in how subjects approach this task may have important implications for interpreting how different brain regions are involved in probabilistic category learning. PMID:12464701
Alomari, Yazan M.; MdZin, Reena Rahayu
2015-01-01
Analysis of whole-slide tissue for digital pathology images has been clinically approved to provide a second opinion to pathologists. Localization of focus points from Ki-67-stained histopathology whole-slide tissue microscopic images is considered the first step in the process of proliferation rate estimation. Pathologists use eye pooling or eagle-view techniques to localize the highly stained cell-concentrated regions from the whole slide under microscope, which is called focus-point regions. This procedure leads to a high variety of interpersonal observations and time consuming, tedious work and causes inaccurate findings. The localization of focus-point regions can be addressed as a clustering problem. This paper aims to automate the localization of focus-point regions from whole-slide images using the random patch probabilistic density method. Unlike other clustering methods, random patch probabilistic density method can adaptively localize focus-point regions without predetermining the number of clusters. The proposed method was compared with the k-means and fuzzy c-means clustering methods. Our proposed method achieves a good performance, when the results were evaluated by three expert pathologists. The proposed method achieves an average false-positive rate of 0.84% for the focus-point region localization error. Moreover, regarding RPPD used to localize tissue from whole-slide images, 228 whole-slide images have been tested; 97.3% localization accuracy was achieved. PMID:25793010
Best Merge Region Growing with Integrated Probabilistic Classification for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2011-01-01
A new method for spectral-spatial classification of hyperspectral images is proposed. The method is based on the integration of probabilistic classification within the hierarchical best merge region growing algorithm. For this purpose, preliminary probabilistic support vector machines classification is performed. Then, hierarchical step-wise optimization algorithm is applied, by iteratively merging regions with the smallest Dissimilarity Criterion (DC). The main novelty of this method consists in defining a DC between regions as a function of region statistical and geometrical features along with classification probabilities. Experimental results are presented on a 200-band AVIRIS image of the Northwestern Indiana s vegetation area and compared with those obtained by recently proposed spectral-spatial classification techniques. The proposed method improves classification accuracies when compared to other classification approaches.
UQTools: The Uncertainty Quantification Toolbox - Introduction and Tutorial
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Crespo, Luis G.; Giesy, Daniel P.
2012-01-01
UQTools is the short name for the Uncertainty Quantification Toolbox, a software package designed to efficiently quantify the impact of parametric uncertainty on engineering systems. UQTools is a MATLAB-based software package and was designed to be discipline independent, employing very generic representations of the system models and uncertainty. Specifically, UQTools accepts linear and nonlinear system models and permits arbitrary functional dependencies between the system s measures of interest and the probabilistic or non-probabilistic parametric uncertainty. One of the most significant features incorporated into UQTools is the theoretical development centered on homothetic deformations and their application to set bounding and approximating failure probabilities. Beyond the set bounding technique, UQTools provides a wide range of probabilistic and uncertainty-based tools to solve key problems in science and engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Wei, E-mail: zhoux123@umn.edu
2013-06-15
We consider the value function of a stochastic optimal control of degenerate diffusion processes in a domain D. We study the smoothness of the value function, under the assumption of the non-degeneracy of the diffusion term along the normal to the boundary and an interior condition weaker than the non-degeneracy of the diffusion term. When the diffusion term, drift term, discount factor, running payoff and terminal payoff are all in the class of C{sup 1,1}( D-bar ) , the value function turns out to be the unique solution in the class of C{sub loc}{sup 1,1}(D) Intersection C{sup 0,1}( D-bar )more » to the associated degenerate Bellman equation with Dirichlet boundary data. Our approach is probabilistic.« less
Serang, Oliver
2014-01-01
Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and associative symmetry of its inputs (called "causal independence"). For this reason, it is desirable to exploit such symmetry on big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the probabilistic convolution tree, we reduce the runtime to O(k log(k)2) and the space to O(k log(k)) where k is the number of variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially generalizes to multiple dimensions.
Serang, Oliver
2014-01-01
Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and associative symmetry of its inputs (called “causal independence”). For this reason, it is desirable to exploit such symmetry on big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the probabilistic convolution tree, we reduce the runtime to and the space to where is the number of variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially generalizes to multiple dimensions. PMID:24626234
Bennett, T D; Dean, J M; Keenan, H T; McGlincy, M H; Thomas, A M; Cook, L J
2015-01-01
Record linkage may create powerful datasets with which investigators can conduct comparative effectiveness studies evaluating the impact of tests or interventions on health. All linkages of health care data files to date have used protected health information (PHI) in their linkage variables. A technique to link datasets without using PHI would be advantageous both to preserve privacy and to increase the number of potential linkages. We applied probabilistic linkage to records of injured children in the National Trauma Data Bank (NTDB, N = 156,357) and the Pediatric Health Information Systems (PHIS, N = 104,049) databases from 2007 to 2010. 49 match variables without PHI were used, many of them administrative variables and indicators for procedures recorded as International Classification of Diseases, 9th revision, Clinical Modification codes. We validated the accuracy of the linkage using identified data from a single center that submits to both databases. We accurately linked the PHIS and NTDB records for 69% of children with any injury, and 88% of those with severe traumatic brain injury eligible for a study of intervention effectiveness (positive predictive value of 98%, specificity of 99.99%). Accurate linkage was associated with longer lengths of stay, more severe injuries, and multiple injuries. In populations with substantial illness or injury severity, accurate record linkage may be possible in the absence of PHI. This methodology may enable linkages and, in turn, comparative effectiveness studies that would be unlikely or impossible otherwise.
Lasaponara, Stefano; D' Onofrio, Marianna; Dragone, Alessio; Pinto, Mario; Caratelli, Ludovica; Doricchi, Fabrizio
2017-05-01
Brain activity related to orienting of attention with spatial cues and brain responses to attentional targets are influenced the probabilistic contingency between cues and targets. Compared to predictive cues, cues predicting at chance the location of targets reduce the filtering out of uncued locations and the costs in reorienting attention to targets presented at these locations. Slagter et al. (2016) have recently suggested that the larger target related P1 component that is found in the hemisphere ipsilateral to validly cued targets reflects stimulus-driven inhibition in the processing of the unstimulated side of space contralateral to the same hemisphere. Here we verified whether the strength of this inhibition and the amplitude of the corresponding P1 wave are modulated by the probabilistic link between cues and targets. Healthy participants performed a task of endogenous orienting once with predictive and once with non-predictive directional cues. In the non-predictive condition we observed a drop in the amplitude of the P1 ipsilateral to the target and in the costs of reorienting. No change in the inter-hemispheric latencies of the P1 was found between the two predictive conditions. The N1 facilitatory component was unaffected by predictive cuing. These results show that the predictive context modulates the strength of the inhibitory P1 response and that this modulation is not matched with changes in the inter-hemispheric interaction between the P1 generators of the two hemispheres. Copyright © 2017. Published by Elsevier Ltd.
Spiking neuron network Helmholtz machine.
Sountsov, Pavel; Miller, Paul
2015-01-01
An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule.
Connectome sensitivity or specificity: which is more important?
Zalesky, Andrew; Fornito, Alex; Cocchi, Luca; Gollo, Leonardo L; van den Heuvel, Martijn P; Breakspear, Michael
2016-11-15
Connectomes with high sensitivity and high specificity are unattainable with current axonal fiber reconstruction methods, particularly at the macro-scale afforded by magnetic resonance imaging. Tensor-guided deterministic tractography yields sparse connectomes that are incomplete and contain false negatives (FNs), whereas probabilistic methods steered by crossing-fiber models yield dense connectomes, often with low specificity due to false positives (FPs). Densely reconstructed probabilistic connectomes are typically thresholded to improve specificity at the cost of a reduction in sensitivity. What is the optimal tradeoff between connectome sensitivity and specificity? We show empirically and theoretically that specificity is paramount. Our evaluations of the impact of FPs and FNs on empirical connectomes indicate that specificity is at least twice as important as sensitivity when estimating key properties of brain networks, including topological measures of network clustering, network efficiency and network modularity. Our asymptotic analysis of small-world networks with idealized modular structure reveals that as the number of nodes grows, specificity becomes exactly twice as important as sensitivity to the estimation of the clustering coefficient. For the estimation of network efficiency, the relative importance of specificity grows linearly with the number of nodes. The greater importance of specificity is due to FPs occurring more prevalently between network modules rather than within them. These spurious inter-modular connections have a dramatic impact on network topology. We argue that efforts to maximize the sensitivity of connectome reconstruction should be realigned with the need to map brain networks with high specificity. Copyright © 2016 Elsevier Inc. All rights reserved.
Spiking neuron network Helmholtz machine
Sountsov, Pavel; Miller, Paul
2015-01-01
An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule. PMID:25954191
NASA Astrophysics Data System (ADS)
Wels, Michael; Zheng, Yefeng; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin
2011-06-01
We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average Dice coefficients of 0.93 ± 0.03 (WM) and 0.90 ± 0.05 (GM) on simulated mono-spectral and 0.94 ± 0.02 (WM) and 0.92 ± 0.04 (GM) on simulated multi-spectral data from the BrainWeb repository. The scores are 0.81 ± 0.09 (WM) and 0.82 ± 0.06 (GM) and 0.87 ± 0.05 (WM) and 0.83 ± 0.12 (GM) for the two collections of real-world data sets—consisting of 20 and 18 volumes, respectively—provided by the Internet Brain Segmentation Repository.
Wels, Michael; Zheng, Yefeng; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin
2011-06-07
We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average Dice coefficients of 0.93 ± 0.03 (WM) and 0.90 ± 0.05 (GM) on simulated mono-spectral and 0.94 ± 0.02 (WM) and 0.92 ± 0.04 (GM) on simulated multi-spectral data from the BrainWeb repository. The scores are 0.81 ± 0.09 (WM) and 0.82 ± 0.06 (GM) and 0.87 ± 0.05 (WM) and 0.83 ± 0.12 (GM) for the two collections of real-world data sets-consisting of 20 and 18 volumes, respectively-provided by the Internet Brain Segmentation Repository.
NASA Astrophysics Data System (ADS)
Juarez, A. M.; Kibler, K. M.; Sayama, T.; Ohara, M.
2016-12-01
Flood management decision-making is often supported by risk assessment, which may overlook the role of coping capacity and the potential benefits derived from direct use of flood-prone land. Alternatively, risk-benefit analysis can support floodplain management to yield maximum socio-ecological benefits for the minimum flood risk. We evaluate flood risk-probabilistic benefit tradeoffs of livelihood practices compatible with direct human use of flood-prone land (agriculture/wild fisheries) and nature conservation (wild fisheries only) in Candaba, Philippines. Located north-west to Metro Manila, Candaba area is a multi-functional landscape that provides a temporally-variable mix of possible land uses, benefits and ecosystem services of local and regional value. To characterize inundation from 1.3- to 100-year recurrence intervals we couple frequency analysis with rainfall-runoff-inundation modelling and remotely-sensed data. By combining simulated probabilistic floods with both damage and benefit functions (e.g. fish capture and rice yield with flood intensity) we estimate potential damages and benefits over varying probabilistic flood hazards. We find that although direct human uses of flood-prone land are associated with damages, for all the investigated magnitudes of flood events with different frequencies, the probabilistic benefits ( 91 million) exceed risks by a large margin ( 33 million). Even considering risk, probabilistic livelihood benefits of direct human uses far exceed benefits provided by scenarios that exclude direct "risky" human uses (difference of 85 million). In addition, we find that individual coping strategies, such as adapting crop planting periods to the flood pulse or fishing rather than cultivating rice in the wet season, minimize flood losses ( 6 million) while allowing for valuable livelihood benefits ($ 125 million) in flood-prone land. Analysis of societal benefits and local capacities to cope with regular floods demonstrate the relevance of accounting for the full range of flood events and their relation to both potential damages and benefits in risk assessments. Management measures may thus be designed to reflect local contexts and support benefits of natural hydrologic processes, while minimizing flood damage.
Detecting event-related changes of multivariate phase coupling in dynamic brain networks.
Canolty, Ryan T; Cadieu, Charles F; Koepsell, Kilian; Ganguly, Karunesh; Knight, Robert T; Carmena, Jose M
2012-04-01
Oscillatory phase coupling within large-scale brain networks is a topic of increasing interest within systems, cognitive, and theoretical neuroscience. Evidence shows that brain rhythms play a role in controlling neuronal excitability and response modulation (Haider B, McCormick D. Neuron 62: 171-189, 2009) and regulate the efficacy of communication between cortical regions (Fries P. Trends Cogn Sci 9: 474-480, 2005) and distinct spatiotemporal scales (Canolty RT, Knight RT. Trends Cogn Sci 14: 506-515, 2010). In this view, anatomically connected brain areas form the scaffolding upon which neuronal oscillations rapidly create and dissolve transient functional networks (Lakatos P, Karmos G, Mehta A, Ulbert I, Schroeder C. Science 320: 110-113, 2008). Importantly, testing these hypotheses requires methods designed to accurately reflect dynamic changes in multivariate phase coupling within brain networks. Unfortunately, phase coupling between neurophysiological signals is commonly investigated using suboptimal techniques. Here we describe how a recently developed probabilistic model, phase coupling estimation (PCE; Cadieu C, Koepsell K Neural Comput 44: 3107-3126, 2010), can be used to investigate changes in multivariate phase coupling, and we detail the advantages of this model over the commonly employed phase-locking value (PLV; Lachaux JP, Rodriguez E, Martinerie J, Varela F. Human Brain Map 8: 194-208, 1999). We show that the N-dimensional PCE is a natural generalization of the inherently bivariate PLV. Using simulations, we show that PCE accurately captures both direct and indirect (network mediated) coupling between network elements in situations where PLV produces erroneous results. We present empirical results on recordings from humans and nonhuman primates and show that the PCE-estimated coupling values are different from those using the bivariate PLV. Critically on these empirical recordings, PCE output tends to be sparser than the PLVs, indicating fewer significant interactions and perhaps a more parsimonious description of the data. Finally, the physical interpretation of PCE parameters is straightforward: the PCE parameters correspond to interaction terms in a network of coupled oscillators. Forward modeling of a network of coupled oscillators with parameters estimated by PCE generates synthetic data with statistical characteristics identical to empirical signals. Given these advantages over the PLV, PCE is a useful tool for investigating multivariate phase coupling in distributed brain networks.
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Wing, Kam Liu
1987-01-01
In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given.
Vanderveldt, Ariana; Green, Leonard; Myerson, Joel
2014-01-01
The value of an outcome is affected both by the delay until its receipt (delay discounting) and by the likelihood of its receipt (probability discounting). Despite being well-described by the same hyperboloid function, delay and probability discounting involve fundamentally different processes, as revealed, for example, by the differential effects of reward amount. Previous research has focused on the discounting of delayed and probabilistic rewards separately, with little research examining more complex situations in which rewards are both delayed and probabilistic. In two experiments, participants made choices between smaller rewards that were both immediate and certain and larger rewards that were both delayed and probabilistic. Analyses revealed significant interactions between delay and probability factors inconsistent with an additive model. In contrast, a hyperboloid discounting model in which delay and probability were combined multiplicatively provided an excellent fit to the data. These results suggest that the hyperboloid is a good descriptor of decision making in complicated monetary choice situations like those people encounter in everyday life. PMID:24933696
Probabilistic Parameter Uncertainty Analysis of Single Input Single Output Control Systems
NASA Technical Reports Server (NTRS)
Smith, Brett A.; Kenny, Sean P.; Crespo, Luis G.
2005-01-01
The current standards for handling uncertainty in control systems use interval bounds for definition of the uncertain parameters. This approach gives no information about the likelihood of system performance, but simply gives the response bounds. When used in design, current methods of m-analysis and can lead to overly conservative controller design. With these methods, worst case conditions are weighted equally with the most likely conditions. This research explores a unique approach for probabilistic analysis of control systems. Current reliability methods are examined showing the strong areas of each in handling probability. A hybrid method is developed using these reliability tools for efficiently propagating probabilistic uncertainty through classical control analysis problems. The method developed is applied to classical response analysis as well as analysis methods that explore the effects of the uncertain parameters on stability and performance metrics. The benefits of using this hybrid approach for calculating the mean and variance of responses cumulative distribution functions are shown. Results of the probabilistic analysis of a missile pitch control system, and a non-collocated mass spring system, show the added information provided by this hybrid analysis.
Bayesian anomaly detection in monitoring data applying relevance vector machine
NASA Astrophysics Data System (ADS)
Saito, Tomoo
2011-04-01
A method for automatically classifying the monitoring data into two categories, normal and anomaly, is developed in order to remove anomalous data included in the enormous amount of monitoring data, applying the relevance vector machine (RVM) to a probabilistic discriminative model with basis functions and their weight parameters whose posterior PDF (probabilistic density function) conditional on the learning data set is given by Bayes' theorem. The proposed framework is applied to actual monitoring data sets containing some anomalous data collected at two buildings in Tokyo, Japan, which shows that the trained models discriminate anomalous data from normal data very clearly, giving high probabilities of being normal to normal data and low probabilities of being normal to anomalous data.
Probabilistic Modeling of Aircraft Trajectories for Dynamic Separation Volumes
NASA Technical Reports Server (NTRS)
Lewis, Timothy A.
2016-01-01
With a proliferation of new and unconventional vehicles and operations expected in the future, the ab initio airspace design will require new approaches to trajectory prediction for separation assurance and other air traffic management functions. This paper presents an approach to probabilistic modeling of the trajectory of an aircraft when its intent is unknown. The approach uses a set of feature functions to constrain a maximum entropy probability distribution based on a set of observed aircraft trajectories. This model can be used to sample new aircraft trajectories to form an ensemble reflecting the variability in an aircraft's intent. The model learning process ensures that the variability in this ensemble reflects the behavior observed in the original data set. Computational examples are presented.
Li, Yongxin; Hu, Yuzheng; Wang, Yunqi; Weng, Jian; Chen, Feiyan
2013-01-01
Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM) for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI) to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the gray matter (GM) volume in the left intraparietal sulcus (IPS). Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF), bilateral inferior longitudinal fasciculus (ILF) and inferior fronto-occipital fasciculus (IFOF) were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA) values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children's arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren. PMID:24367320
Automated pixel-wise brain tissue segmentation of diffusion-weighted images via machine learning.
Ciritsis, Alexander; Boss, Andreas; Rossi, Cristina
2018-04-26
The diffusion-weighted (DW) MR signal sampled over a wide range of b-values potentially allows for tissue differentiation in terms of cellularity, microstructure, perfusion, and T 2 relaxivity. This study aimed to implement a machine learning algorithm for automatic brain tissue segmentation from DW-MRI datasets, and to determine the optimal sub-set of features for accurate segmentation. DWI was performed at 3 T in eight healthy volunteers using 15 b-values and 20 diffusion-encoding directions. The pixel-wise signal attenuation, as well as the trace and fractional anisotropy (FA) of the diffusion tensor, were used as features to train a support vector machine classifier for gray matter, white matter, and cerebrospinal fluid classes. The datasets of two volunteers were used for validation. For each subject, tissue classification was also performed on 3D T 1 -weighted data sets with a probabilistic framework. Confusion matrices were generated for quantitative assessment of image classification accuracy in comparison with the reference method. DWI-based tissue segmentation resulted in an accuracy of 82.1% on the validation dataset and of 82.2% on the training dataset, excluding relevant model over-fitting. A mean Dice coefficient (DSC) of 0.79 ± 0.08 was found. About 50% of the classification performance was attributable to five features (i.e. signal measured at b-values of 5/10/500/1200 s/mm 2 and the FA). This reduced set of features led to almost identical performances for the validation (82.2%) and the training (81.4%) datasets (DSC = 0.79 ± 0.08). Machine learning techniques applied to DWI data allow for accurate brain tissue segmentation based on both morphological and functional information. Copyright © 2018 John Wiley & Sons, Ltd.
Orbitofrontal cortex function and structure in depression.
Drevets, Wayne C
2007-12-01
The orbitofrontal cortex (OFC) has been implicated in the pathophysiology of major depression by evidence obtained using neuroimaging, neuropathologic, and lesion analysis techniques. The abnormalities revealed by these techniques show a regional specificity, and suggest that some OFC regions which appear cytoarchitectonically distinct also are functionally distinct with respect to mood regulation. For example, the severity of depression correlates inversely with physiological activity in parts of the posterior lateral and medial OFC, consistent with evidence that dysfunction of the OFC associated with cerebrovascular lesions increases the vulnerability for developing the major depressive syndrome. The posterior lateral and medial OFC function may also be impaired in individuals who develop primary mood disorders, as these patients show grey-matter volumetric reductions, histopathologic abnormalities, and altered hemodynamic responses to emotionally valenced stimuli, probabilistic reversal learning, and reward processing. In contrast, physiological activity in the anteromedial OFC situated in the ventromedial frontal polar cortex increases during the depressed versus the remitted phases of major depressive disorder to an extent that is positively correlated with the severity of depression. Effective antidepressant treatment is associated with a reduction in activity in this region. Taken together these data are compatible with evidence from studies in experimental animals indicating that some orbitofrontal and medial prefrontal cortex regions function to inhibit, while others function to enhance, emotional expression. Alterations in the functional balance between these regions and the circuits they form with anatomically related areas of the temporal lobe, striatum, thalamus, and brain stem thus may underlie the pathophysiology of mood disorders, such as major depression.
Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P; Johnson, G Allan
2015-08-01
Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved three-dimensional (3D) reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. © 2015 Wiley Periodicals, Inc.
Subcortical structure segmentation using probabilistic atlas priors
NASA Astrophysics Data System (ADS)
Gouttard, Sylvain; Styner, Martin; Joshi, Sarang; Smith, Rachel G.; Cody Hazlett, Heather; Gerig, Guido
2007-03-01
The segmentation of the subcortical structures of the brain is required for many forms of quantitative neuroanatomic analysis. The volumetric and shape parameters of structures such as lateral ventricles, putamen, caudate, hippocampus, pallidus and amygdala are employed to characterize a disease or its evolution. This paper presents a fully automatic segmentation of these structures via a non-rigid registration of a probabilistic atlas prior and alongside a comprehensive validation. Our approach is based on an unbiased diffeomorphic atlas with probabilistic spatial priors built from a training set of MR images with corresponding manual segmentations. The atlas building computes an average image along with transformation fields mapping each training case to the average image. These transformation fields are applied to the manually segmented structures of each case in order to obtain a probabilistic map on the atlas. When applying the atlas for automatic structural segmentation, an MR image is first intensity inhomogeneity corrected, skull stripped and intensity calibrated to the atlas. Then the atlas image is registered to the image using an affine followed by a deformable registration matching the gray level intensity. Finally, the registration transformation is applied to the probabilistic maps of each structures, which are then thresholded at 0.5 probability. Using manual segmentations for comparison, measures of volumetric differences show high correlation with our results. Furthermore, the dice coefficient, which quantifies the volumetric overlap, is higher than 62% for all structures and is close to 80% for basal ganglia. The intraclass correlation coefficient computed on these same datasets shows a good inter-method correlation of the volumetric measurements. Using a dataset of a single patient scanned 10 times on 5 different scanners, reliability is shown with a coefficient of variance of less than 2 percents over the whole dataset. Overall, these validation and reliability studies show that our method accurately and reliably segments almost all structures. Only the hippocampus and amygdala segmentations exhibit relative low correlation with the manual segmentation in at least one of the validation studies, whereas they still show appropriate dice overlap coefficients.
Assessing a learning process with functional ANOVA estimators of EEG power spectral densities.
Gutiérrez, David; Ramírez-Moreno, Mauricio A
2016-04-01
We propose to assess the process of learning a task using electroencephalographic (EEG) measurements. In particular, we quantify changes in brain activity associated to the progression of the learning experience through the functional analysis-of-variances (FANOVA) estimators of the EEG power spectral density (PSD). Such functional estimators provide a sense of the effect of training in the EEG dynamics. For that purpose, we implemented an experiment to monitor the process of learning to type using the Colemak keyboard layout during a twelve-lessons training. Hence, our aim is to identify statistically significant changes in PSD of various EEG rhythms at different stages and difficulty levels of the learning process. Those changes are taken into account only when a probabilistic measure of the cognitive state ensures the high engagement of the volunteer to the training. Based on this, a series of statistical tests are performed in order to determine the personalized frequencies and sensors at which changes in PSD occur, then the FANOVA estimates are computed and analyzed. Our experimental results showed a significant decrease in the power of [Formula: see text] and [Formula: see text] rhythms for ten volunteers during the learning process, and such decrease happens regardless of the difficulty of the lesson. These results are in agreement with previous reports of changes in PSD being associated to feature binding and memory encoding.
Hemispheric Division of Function Is the Result of Independent Probabilistic Biases
ERIC Educational Resources Information Center
Whitehouse, Andrew J. O.; Bishop, Dorothy V. M.
2009-01-01
Verbal and visuospatial abilities are typically subserved by different cerebral hemispheres: the left hemisphere for the former and the right hemisphere for the latter. However little is known of the origin of this division of function. Causal theories propose that functional asymmetry is an obligatory pattern of organisation, while statistical…
Andrews, Derek S.; Gudbrandsen, Christina M.; Marquand, Andre F.; Ginestet, Cedric E.; Daly, Eileen M.; Murphy, Clodagh M.; Lai, Meng-Chuan; Lombardo, Michael V.; Ruigrok, Amber N. V.; Bullmore, Edward T.; Suckling, John; Williams, Steven C. R.; Baron-Cohen, Simon; Craig, Michael C.; Murphy, Declan G. M.
2017-01-01
Importance Autism spectrum disorder (ASD) is 2 to 5 times more common in male individuals than in female individuals. While the male preponderant prevalence of ASD might partially be explained by sex differences in clinical symptoms, etiological models suggest that the biological male phenotype carries a higher intrinsic risk for ASD than the female phenotype. To our knowledge, this hypothesis has never been tested directly, and the neurobiological mechanisms that modulate ASD risk in male individuals and female individuals remain elusive. Objectives To examine the probability of ASD as a function of normative sex-related phenotypic diversity in brain structure and to identify the patterns of sex-related neuroanatomical variability associated with low or high probability of ASD. Design, Setting, and Participants This study examined a cross-sectional sample of 98 right-handed, high-functioning adults with ASD and 98 matched neurotypical control individuals aged 18 to 42 years. A multivariate probabilistic classification approach was used to develop a predictive model of biological sex based on cortical thickness measures assessed via magnetic resonance imaging in neurotypical controls. This normative model was subsequently applied to individuals with ASD. The study dates were June 2005 to October 2009, and this analysis was conducted between June 2015 and July 2016. Main Outcomes and Measures Sample and population ASD probability estimates as a function of normative sex-related diversity in brain structure, as well as neuroanatomical patterns associated with low or high ASD probability in male individuals and female individuals. Results Among the 98 individuals with ASD, 49 were male and 49 female, with a mean (SD) age of 26.88 (7.18) years. Among the 98 controls, 51 were male and 47 female, with a mean (SD) age of 27.39 (6.44) years. The sample probability of ASD increased significantly with predictive probabilities for the male neuroanatomical brain phenotype. For example, biological female individuals with a more male-typic pattern of brain anatomy were significantly (ie, 3 times) more likely to have ASD than biological female individuals with a characteristically female brain phenotype (P = .72 vs .24, respectively; χ21 = 20.26; P < .001; difference in P values, 0.48; 95% CI, 0.29-0.68). This finding translates to an estimated variability in population prevalence from 0.2% to 1.3%, respectively. Moreover, the patterns of neuroanatomical variability carrying low or high ASD probability were sex specific (eg, in inferior temporal regions, where ASD has different neurobiological underpinnings in male individuals and female individuals). Conclusions and Relevance These findings highlight the need for considering normative sex-related phenotypic diversity when determining an individual’s risk for ASD and provide important novel insights into the neurobiological mechanisms mediating sex differences in ASD prevalence. PMID:28196230
Feedback-Driven Trial-by-Trial Learning in Autism Spectrum Disorders
Solomon, Marjorie; Frank, Michael J.; Ragland, J. Daniel; Smith, Anne C.; Niendam, Tara A.; Lesh, Tyler A.; Grayson, David S.; Beck, Jonathan S.; Matter, John C.; Carter, Cameron S.
2017-01-01
Objective Impairments in learning are central to autism spectrum disorders. The authors investigated the cognitive and neural basis of these deficits in young adults with autism spectrum disorders using a well-characterized probabilistic reinforcement learning paradigm. Method The probabilistic selection task was implemented among matched participants with autism spectrum disorders (N=22) and with typical development (N=25), aged 18–40 years, using rapid event-related functional MRI. Participants were trained to choose the correct stimulus in high-probability (AB), medium-probability (CD), and low-probability (EF) pairs, presented with valid feedback 80%, 70%, and 60% of the time, respectively. Whole-brain voxel-wise and parametric modulator analyses examined early and late learning during the stimulus and feedback epochs of the task. Results The groups exhibited comparable performance on medium- and low-probability pairs. Typically developing persons showed higher accuracy on the high-probability pair, better win-stay performance (selection of the previously rewarded stimulus on the next trial of that type), and more robust recruitment of the anterior and medial prefrontal cortex during the stimulus epoch, suggesting development of an intact reward-based working memory for recent stimulus values. Throughout the feedback epoch, individuals with autism spectrum disorders exhibited greater recruitment of the anterior cingulate and orbito-frontal cortices compared with individuals with typical development, indicating continuing trial-by-trial activity related to feedback processing. Conclusions Individuals with autism spectrum disorders exhibit learning deficits reflecting impaired ability to develop an effective reward-based working memory to guide stimulus selection. Instead, they continue to rely on trial-by-trial feedback processing to support learning dependent upon engagement of the anterior cingulate and orbito-frontal cortices. PMID:25158242
Harmouche, Rola; Subbanna, Nagesh K; Collins, D Louis; Arnold, Douglas L; Arbel, Tal
2015-05-01
In this paper, a fully automatic probabilistic method for multiple sclerosis (MS) lesion classification is presented, whereby the posterior probability density function over healthy tissues and two types of lesions (T1-hypointense and T2-hyperintense) is generated at every voxel. During training, the system explicitly models the spatial variability of the intensity distributions throughout the brain by first segmenting it into distinct anatomical regions and then building regional likelihood distributions for each tissue class based on multimodal magnetic resonance image (MRI) intensities. Local class smoothness is ensured by incorporating neighboring voxel information in the prior probability through Markov random fields. The system is tested on two datasets from real multisite clinical trials consisting of multimodal MRIs from a total of 100 patients with MS. Lesion classification results based on the framework are compared with and without the regional information, as well as with other state-of-the-art methods against the labels from expert manual raters. The metrics for comparison include Dice overlap, sensitivity, and positive predictive rates for both voxel and lesion classifications. Statistically significant improvements in Dice values ( ), for voxel-based and lesion-based sensitivity values ( ), and positive predictive rates ( and respectively) are shown when the proposed method is compared to the method without regional information, and to a widely used method [1]. This holds particularly true in the posterior fossa, an area where classification is very challenging. The proposed method allows us to provide clinicians with accurate tissue labels for T1-hypointense and T2-hyperintense lesions, two types of lesions that differ in appearance and clinical ramifications, and with a confidence level in the classification, which helps clinicians assess the classification results.
Probabilistic Seismic Risk Model for Western Balkans
NASA Astrophysics Data System (ADS)
Stejskal, Vladimir; Lorenzo, Francisco; Pousse, Guillaume; Radovanovic, Slavica; Pekevski, Lazo; Dojcinovski, Dragi; Lokin, Petar; Petronijevic, Mira; Sipka, Vesna
2010-05-01
A probabilistic seismic risk model for insurance and reinsurance purposes is presented for an area of Western Balkans, covering former Yugoslavia and Albania. This territory experienced many severe earthquakes during past centuries producing significant damage to many population centres in the region. The highest hazard is related to external Dinarides, namely to the collision zone of the Adriatic plate. The model is based on a unified catalogue for the region and a seismic source model consisting of more than 30 zones covering all the three main structural units - Southern Alps, Dinarides and the south-western margin of the Pannonian Basin. A probabilistic methodology using Monte Carlo simulation was applied to generate the hazard component of the model. Unique set of damage functions based on both loss experience and engineering assessments is used to convert the modelled ground motion severity into the monetary loss.
Probabilistic Analysis of Gas Turbine Field Performance
NASA Technical Reports Server (NTRS)
Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.
2002-01-01
A gas turbine thermodynamic cycle was computationally simulated and probabilistically evaluated in view of the several uncertainties in the performance parameters, which are indices of gas turbine health. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design, enhance performance, increase system availability and make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in the gas turbine health determination and to the identification of both the most critical measurements and parameters. Probabilistic analysis aims at unifying and improving the control and health monitoring of gas turbine aero-engines by increasing the quality and quantity of information available about the engine's health and performance.
A probabilistic and continuous model of protein conformational space for template-free modeling.
Zhao, Feng; Peng, Jian; Debartolo, Joe; Freed, Karl F; Sosnick, Tobin R; Xu, Jinbo
2010-06-01
One of the major challenges with protein template-free modeling is an efficient sampling algorithm that can explore a huge conformation space quickly. The popular fragment assembly method constructs a conformation by stringing together short fragments extracted from the Protein Data Base (PDB). The discrete nature of this method may limit generated conformations to a subspace in which the native fold does not belong. Another worry is that a protein with really new fold may contain some fragments not in the PDB. This article presents a probabilistic model of protein conformational space to overcome the above two limitations. This probabilistic model employs directional statistics to model the distribution of backbone angles and 2(nd)-order Conditional Random Fields (CRFs) to describe sequence-angle relationship. Using this probabilistic model, we can sample protein conformations in a continuous space, as opposed to the widely used fragment assembly and lattice model methods that work in a discrete space. We show that when coupled with a simple energy function, this probabilistic method compares favorably with the fragment assembly method in the blind CASP8 evaluation, especially on alpha or small beta proteins. To our knowledge, this is the first probabilistic method that can search conformations in a continuous space and achieves favorable performance. Our method also generated three-dimensional (3D) models better than template-based methods for a couple of CASP8 hard targets. The method described in this article can also be applied to protein loop modeling, model refinement, and even RNA tertiary structure prediction.
NASA Astrophysics Data System (ADS)
Yan, Wang-Ji; Ren, Wei-Xin
2018-01-01
This study applies the theoretical findings of circularly-symmetric complex normal ratio distribution Yan and Ren (2016) [1,2] to transmissibility-based modal analysis from a statistical viewpoint. A probabilistic model of transmissibility function in the vicinity of the resonant frequency is formulated in modal domain, while some insightful comments are offered. It theoretically reveals that the statistics of transmissibility function around the resonant frequency is solely dependent on 'noise-to-signal' ratio and mode shapes. As a sequel to the development of the probabilistic model of transmissibility function in modal domain, this study poses the process of modal identification in the context of Bayesian framework by borrowing a novel paradigm. Implementation issues unique to the proposed approach are resolved by Lagrange multiplier approach. Also, this study explores the possibility of applying Bayesian analysis in distinguishing harmonic components and structural ones. The approaches are verified through simulated data and experimentally testing data. The uncertainty behavior due to variation of different factors is also discussed in detail.
a Probabilistic Embedding Clustering Method for Urban Structure Detection
NASA Astrophysics Data System (ADS)
Lin, X.; Li, H.; Zhang, Y.; Gao, L.; Zhao, L.; Deng, M.
2017-09-01
Urban structure detection is a basic task in urban geography. Clustering is a core technology to detect the patterns of urban spatial structure, urban functional region, and so on. In big data era, diverse urban sensing datasets recording information like human behaviour and human social activity, suffer from complexity in high dimension and high noise. And unfortunately, the state-of-the-art clustering methods does not handle the problem with high dimension and high noise issues concurrently. In this paper, a probabilistic embedding clustering method is proposed. Firstly, we come up with a Probabilistic Embedding Model (PEM) to find latent features from high dimensional urban sensing data by "learning" via probabilistic model. By latent features, we could catch essential features hidden in high dimensional data known as patterns; with the probabilistic model, we can also reduce uncertainty caused by high noise. Secondly, through tuning the parameters, our model could discover two kinds of urban structure, the homophily and structural equivalence, which means communities with intensive interaction or in the same roles in urban structure. We evaluated the performance of our model by conducting experiments on real-world data and experiments with real data in Shanghai (China) proved that our method could discover two kinds of urban structure, the homophily and structural equivalence, which means clustering community with intensive interaction or under the same roles in urban space.
De novo identification of highly diverged protein repeats by probabilistic consistency.
Biegert, A; Söding, J
2008-03-15
An estimated 25% of all eukaryotic proteins contain repeats, which underlines the importance of duplication for evolving new protein functions. Internal repeats often correspond to structural or functional units in proteins. Methods capable of identifying diverged repeated segments or domains at the sequence level can therefore assist in predicting domain structures, inferring hypotheses about function and mechanism, and investigating the evolution of proteins from smaller fragments. We present HHrepID, a method for the de novo identification of repeats in protein sequences. It is able to detect the sequence signature of structural repeats in many proteins that have not yet been known to possess internal sequence symmetry, such as outer membrane beta-barrels. HHrepID uses HMM-HMM comparison to exploit evolutionary information in the form of multiple sequence alignments of homologs. In contrast to a previous method, the new method (1) generates a multiple alignment of repeats; (2) utilizes the transitive nature of homology through a novel merging procedure with fully probabilistic treatment of alignments; (3) improves alignment quality through an algorithm that maximizes the expected accuracy; (4) is able to identify different kinds of repeats within complex architectures by a probabilistic domain boundary detection method and (5) improves sensitivity through a new approach to assess statistical significance. Server: http://toolkit.tuebingen.mpg.de/hhrepid; Executables: ftp://ftp.tuebingen.mpg.de/pub/protevo/HHrepID
NASA Astrophysics Data System (ADS)
Gözükırmızı, Coşar; Kırkın, Melike Ebru
2017-01-01
Probabilistic evolution theory (PREVTH) provides a powerful framework for the solution of initial value problems of explicit ordinary differential equation sets with second degree multinomial right hand side functions. The use of the recursion between squarified telescope matrices provides the opportunity to obtain accurate results without much effort. Convergence may be considered as one of the drawbacks of PREVTH. It is related to many factors: the initial values and the coefficients in the right hand side functions are the most apparent ones. If a space extension is utilized before PREVTH, the convergence of PREVTH may also be affected by how the space extension is performed. There are works about implementations related to probabilistic evolution and how to improve the convergence by methods like analytic continuation. These works were written before squarification was introduced. Since recursion between squarified telescope matrices has given us the opportunity to obtain results corresponding to relatively higher truncation levels, it is important to obtain and analyze results related to certain problems in different areas of engineering. This manuscript may be considered to be in a series of papers and conference proceedings which serves for this purpose.
Probing the Small-scale Structure in Strongly Lensed Systems via Transdimensional Inference
NASA Astrophysics Data System (ADS)
Daylan, Tansu; Cyr-Racine, Francis-Yan; Diaz Rivero, Ana; Dvorkin, Cora; Finkbeiner, Douglas P.
2018-02-01
Strong lensing is a sensitive probe of the small-scale density fluctuations in the Universe. We implement a pipeline to model strongly lensed systems using probabilistic cataloging, which is a transdimensional, hierarchical, and Bayesian framework to sample from a metamodel (union of models with different dimensionality) consistent with observed photon count maps. Probabilistic cataloging allows one to robustly characterize modeling covariances within and across lens models with different numbers of subhalos. Unlike traditional cataloging of subhalos, it does not require model subhalos to improve the goodness of fit above the detection threshold. Instead, it allows the exploitation of all information contained in the photon count maps—for instance, when constraining the subhalo mass function. We further show that, by not including these small subhalos in the lens model, fixed-dimensional inference methods can significantly mismodel the data. Using a simulated Hubble Space Telescope data set, we show that the subhalo mass function can be probed even when many subhalos in the sample catalogs are individually below the detection threshold and would be absent in a traditional catalog. The implemented software, Probabilistic Cataloger (PCAT) is made publicly available at https://github.com/tdaylan/pcat.
Probabilistic, meso-scale flood loss modelling
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno
2016-04-01
Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.
NASA Astrophysics Data System (ADS)
Peeters, L. J.; Mallants, D.; Turnadge, C.
2017-12-01
Groundwater impact assessments are increasingly being undertaken in a probabilistic framework whereby various sources of uncertainty (model parameters, model structure, boundary conditions, and calibration data) are taken into account. This has resulted in groundwater impact metrics being presented as probability density functions and/or cumulative distribution functions, spatial maps displaying isolines of percentile values for specific metrics, etc. Groundwater management on the other hand typically uses single values (i.e., in a deterministic framework) to evaluate what decisions are required to protect groundwater resources. For instance, in New South Wales, Australia, a nominal drawdown value of two metres is specified by the NSW Aquifer Interference Policy as trigger-level threshold. In many cases, when drawdowns induced by groundwater extraction exceed two metres, "make-good" provisions are enacted (such as the surrendering of extraction licenses). The information obtained from a quantitative uncertainty analysis can be used to guide decision making in several ways. Two examples are discussed here: the first of which would not require modification of existing "deterministic" trigger or guideline values, whereas the second example assumes that the regulatory criteria are also expressed in probabilistic terms. The first example is a straightforward interpretation of calculated percentile values for specific impact metrics. The second examples goes a step further, as the previous deterministic thresholds do not currently allow for a probabilistic interpretation; e.g., there is no statement that "the probability of exceeding the threshold shall not be larger than 50%". It would indeed be sensible to have a set of thresholds with an associated acceptable probability of exceedance (or probability of not exceeding a threshold) that decreases as the impact increases. We here illustrate how both the prediction uncertainty and management rules can be expressed in a probabilistic framework, using groundwater metrics derived for a highly stressed groundwater system.
NASA Astrophysics Data System (ADS)
González, F. I.; Leveque, R. J.; Hatheway, D.; Metzger, N.
2011-12-01
Risk is defined in many ways, but most are consistent with Crichton's [1999] definition based on the ''risk triangle'' concept and the explicit identification of three risk elements: ''Risk is the probability of a loss, and this depends on three elements: hazard, vulnerability, and exposure. If any of these three elements in risk increases or decreases, then the risk increases or decreases respectively." The World Meteorological Organization, for example, cites Crichton [1999] and then defines risk as [WMO, 2008] Risk = function (Hazard x Vulnerability x Exposure) while the Asian Disaster Reduction Center adopts the more general expression [ADRC, 2005] Risk = function (Hazard, Vulnerability, Exposure) In practice, probabilistic concepts are invariably invoked, and at least one of the three factors are specified as probabilistic in nature. The Vulnerability and Exposure factors are defined in multiple ways in the relevant literature; but the Hazard factor, which is the focus of our presentation, is generally understood to deal only with the physical aspects of the phenomena and, in particular, the ability of the phenomena to inflict harm [Thywissen, 2006]. A Hazard factor can be estimated by a methodology known as Probabilistic Tsunami Hazard Assessment (PTHA) [González, et al., 2009]. We will describe the PTHA methodology and provide an example -- the results of a previous application to Seaside, OR. We will also present preliminary results for a PTHA of Crescent City, CA -- a pilot project and coastal modeling/mapping effort funded by the Federal Emergency Management Agency (FEMA) Region IX office as part of the new California Coastal Analysis and Mapping Project (CCAMP). CCAMP and the PTHA in Crescent City are being conducted under the nationwide FEMA Risk Mapping, Assessment, and Planning (Risk MAP) Program which focuses on providing communities with flood information and tools they can use to enhance their mitigation plans and better protect their citizens.
NASA Astrophysics Data System (ADS)
Anees, Asim; Aryal, Jagannath; O'Reilly, Małgorzata M.; Gale, Timothy J.; Wardlaw, Tim
2016-12-01
A robust non-parametric framework, based on multiple Radial Basic Function (RBF) kernels, is proposed in this study, for detecting land/forest cover changes using Landsat 7 ETM+ images. One of the widely used frameworks is to find change vectors (difference image) and use a supervised classifier to differentiate between change and no-change. The Bayesian Classifiers e.g. Maximum Likelihood Classifier (MLC), Naive Bayes (NB), are widely used probabilistic classifiers which assume parametric models, e.g. Gaussian function, for the class conditional distributions. However, their performance can be limited if the data set deviates from the assumed model. The proposed framework exploits the useful properties of Least Squares Probabilistic Classifier (LSPC) formulation i.e. non-parametric and probabilistic nature, to model class posterior probabilities of the difference image using a linear combination of a large number of Gaussian kernels. To this end, a simple technique, based on 10-fold cross-validation is also proposed for tuning model parameters automatically instead of selecting a (possibly) suboptimal combination from pre-specified lists of values. The proposed framework has been tested and compared with Support Vector Machine (SVM) and NB for detection of defoliation, caused by leaf beetles (Paropsisterna spp.) in Eucalyptus nitens and Eucalyptus globulus plantations of two test areas, in Tasmania, Australia, using raw bands and band combination indices of Landsat 7 ETM+. It was observed that due to multi-kernel non-parametric formulation and probabilistic nature, the LSPC outperforms parametric NB with Gaussian assumption in change detection framework, with Overall Accuracy (OA) ranging from 93.6% (κ = 0.87) to 97.4% (κ = 0.94) against 85.3% (κ = 0.69) to 93.4% (κ = 0.85), and is more robust to changing data distributions. Its performance was comparable to SVM, with added advantages of being probabilistic and capable of handling multi-class problems naturally with its original formulation.
Ehrenfeld, Stephan; Herbort, Oliver; Butz, Martin V.
2013-01-01
This paper addresses the question of how the brain maintains a probabilistic body state estimate over time from a modeling perspective. The neural Modular Modality Frame (nMMF) model simulates such a body state estimation process by continuously integrating redundant, multimodal body state information sources. The body state estimate itself is distributed over separate, but bidirectionally interacting modules. nMMF compares the incoming sensory and present body state information across the interacting modules and fuses the information sources accordingly. At the same time, nMMF enforces body state estimation consistency across the modules. nMMF is able to detect conflicting sensory information and to consequently decrease the influence of implausible sensor sources on the fly. In contrast to the previously published Modular Modality Frame (MMF) model, nMMF offers a biologically plausible neural implementation based on distributed, probabilistic population codes. Besides its neural plausibility, the neural encoding has the advantage of enabling (a) additional probabilistic information flow across the separate body state estimation modules and (b) the representation of arbitrary probability distributions of a body state. The results show that the neural estimates can detect and decrease the impact of false sensory information, can propagate conflicting information across modules, and can improve overall estimation accuracy due to additional module interactions. Even bodily illusions, such as the rubber hand illusion, can be simulated with nMMF. We conclude with an outlook on the potential of modeling human data and of invoking goal-directed behavioral control. PMID:24191151
Reduced Volume of the Arcuate Fasciculus in Adults with High-Functioning Autism Spectrum Conditions
Moseley, Rachel L.; Correia, Marta M.; Baron-Cohen, Simon; Shtyrov, Yury; Pulvermüller, Friedemann; Mohr, Bettina
2016-01-01
Atypical language is a fundamental feature of autism spectrum conditions (ASC), but few studies have examined the structural integrity of the arcuate fasciculus, the major white matter tract connecting frontal and temporal language regions, which is usually implicated as the main transfer route used in processing linguistic information by the brain. Abnormalities in the arcuate have been reported in young children with ASC, mostly in low-functioning or non-verbal individuals, but little is known regarding the structural properties of the arcuate in adults with ASC or, in particular, in individuals with ASC who have intact language, such as those with high-functioning autism or Asperger syndrome. We used probabilistic tractography of diffusion-weighted imaging to isolate and scrutinize the arcuate in a mixed-gender sample of 18 high-functioning adults with ASC (17 Asperger syndrome) and 14 age- and IQ-matched typically developing controls. Arcuate volume was significantly reduced bilaterally with clearest differences in the right hemisphere. This finding remained significant in an analysis of all male participants alone. Volumetric reduction in the arcuate was significantly correlated with the severity of autistic symptoms as measured by the Autism-Spectrum Quotient. These data reveal that structural differences are present even in high-functioning adults with ASC, who presented with no clinically manifest language deficits and had no reported developmental language delay. Arcuate structural integrity may be useful as an index of ASC severity and thus as a predictor and biomarker for ASC. Implications for future research are discussed. PMID:27242478
Estimation of integral curves from high angular resolution diffusion imaging (HARDI) data.
Carmichael, Owen; Sakhanenko, Lyudmila
2015-05-15
We develop statistical methodology for a popular brain imaging technique HARDI based on the high order tensor model by Özarslan and Mareci [10]. We investigate how uncertainty in the imaging procedure propagates through all levels of the model: signals, tensor fields, vector fields, and fibers. We construct asymptotically normal estimators of the integral curves or fibers which allow us to trace the fibers together with confidence ellipsoids. The procedure is computationally intense as it blends linear algebra concepts from high order tensors with asymptotical statistical analysis. The theoretical results are illustrated on simulated and real datasets. This work generalizes the statistical methodology proposed for low angular resolution diffusion tensor imaging by Carmichael and Sakhanenko [3], to several fibers per voxel. It is also a pioneering statistical work on tractography from HARDI data. It avoids all the typical limitations of the deterministic tractography methods and it delivers the same information as probabilistic tractography methods. Our method is computationally cheap and it provides well-founded mathematical and statistical framework where diverse functionals on fibers, directions and tensors can be studied in a systematic and rigorous way.
Estimation of integral curves from high angular resolution diffusion imaging (HARDI) data
Carmichael, Owen; Sakhanenko, Lyudmila
2015-01-01
We develop statistical methodology for a popular brain imaging technique HARDI based on the high order tensor model by Özarslan and Mareci [10]. We investigate how uncertainty in the imaging procedure propagates through all levels of the model: signals, tensor fields, vector fields, and fibers. We construct asymptotically normal estimators of the integral curves or fibers which allow us to trace the fibers together with confidence ellipsoids. The procedure is computationally intense as it blends linear algebra concepts from high order tensors with asymptotical statistical analysis. The theoretical results are illustrated on simulated and real datasets. This work generalizes the statistical methodology proposed for low angular resolution diffusion tensor imaging by Carmichael and Sakhanenko [3], to several fibers per voxel. It is also a pioneering statistical work on tractography from HARDI data. It avoids all the typical limitations of the deterministic tractography methods and it delivers the same information as probabilistic tractography methods. Our method is computationally cheap and it provides well-founded mathematical and statistical framework where diverse functionals on fibers, directions and tensors can be studied in a systematic and rigorous way. PMID:25937674
A performance-based approach to landslide risk analysis
NASA Astrophysics Data System (ADS)
Romeo, R. W.
2009-04-01
An approach for the risk assessment based on a probabilistic analysis of the performance of structures threatened by landslides is shown and discussed. The risk is a possible loss due to the occurrence of a potentially damaging event. Analytically the risk is the probability convolution of hazard, which defines the frequency of occurrence of the event (i.e., the demand), and fragility that defines the capacity of the system to withstand the event given its characteristics (i.e., severity) and those of the exposed goods (vulnerability), that is: Risk=p(D>=d|S,V) The inequality sets a damage (or loss) threshold beyond which the system's performance is no longer met. Therefore a consistent approach to risk assessment should: 1) adopt a probabilistic model which takes into account all the uncertainties of the involved variables (capacity and demand), 2) follow a performance approach based on given loss or damage thresholds. The proposed method belongs to the category of the semi-empirical ones: the theoretical component is given by the probabilistic capacity-demand model; the empirical component is given by the observed statistical behaviour of structures damaged by landslides. Two landslide properties alone are required: the area-extent and the type (or kinematism). All other properties required to determine the severity of landslides (such as depth, speed and frequency) are derived via probabilistic methods. The severity (or intensity) of landslides, in terms of kinetic energy, is the demand of resistance; the resistance capacity is given by the cumulative distribution functions of the limit state performance (fragility functions) assessed via damage surveys and cards compilation. The investigated limit states are aesthetic (of nominal concern alone), functional (interruption of service) and structural (economic and social losses). The damage probability is the probabilistic convolution of hazard (the probability mass function of the frequency of occurrence of given severities) and vulnerability (the probability of a limit state performance be reached, given a certain severity). Then, for each landslide all the exposed goods (structures and infrastructures) within the landslide area and within a buffer (representative of the maximum extension of a landslide given a reactivation), are counted. The risk is the product of the damage probability and the ratio of the exposed goods of each landslide to the whole assets exposed to the same type of landslides. Since the risk is computed numerically and by the same procedure applied to all landslides, it is free from any subjective assessment such as those implied in the qualitative methods.
Online probabilistic learning with an ensemble of forecasts
NASA Astrophysics Data System (ADS)
Thorey, Jean; Mallet, Vivien; Chaussin, Christophe
2016-04-01
Our objective is to produce a calibrated weighted ensemble to forecast a univariate time series. In addition to a meteorological ensemble of forecasts, we rely on observations or analyses of the target variable. The celebrated Continuous Ranked Probability Score (CRPS) is used to evaluate the probabilistic forecasts. However applying the CRPS on weighted empirical distribution functions (deriving from the weighted ensemble) may introduce a bias because of which minimizing the CRPS does not produce the optimal weights. Thus we propose an unbiased version of the CRPS which relies on clusters of members and is strictly proper. We adapt online learning methods for the minimization of the CRPS. These methods generate the weights associated to the members in the forecasted empirical distribution function. The weights are updated before each forecast step using only past observations and forecasts. Our learning algorithms provide the theoretical guarantee that, in the long run, the CRPS of the weighted forecasts is at least as good as the CRPS of any weighted ensemble with weights constant in time. In particular, the performance of our forecast is better than that of any subset ensemble with uniform weights. A noteworthy advantage of our algorithm is that it does not require any assumption on the distributions of the observations and forecasts, both for the application and for the theoretical guarantee to hold. As application example on meteorological forecasts for photovoltaic production integration, we show that our algorithm generates a calibrated probabilistic forecast, with significant performance improvements on probabilistic diagnostic tools (the CRPS, the reliability diagram and the rank histogram).
Arons, Alexander M M; Krabbe, Paul F M
2013-02-01
Interest is rising in measuring subjective health outcomes, such as treatment outcomes that are not directly quantifiable (functional disability, symptoms, complaints, side effects and health-related quality of life). Health economists in particular have applied probabilistic choice models in the area of health evaluation. They increasingly use discrete choice models based on random utility theory to derive values for healthcare goods or services. Recent attempts have been made to use discrete choice models as an alternative method to derive values for health states. In this article, various probabilistic choice models are described according to their underlying theory. A historical overview traces their development and applications in diverse fields. The discussion highlights some theoretical and technical aspects of the choice models and their similarity and dissimilarity. The objective of the article is to elucidate the position of each model and their applications for health-state valuation.
Classification of Company Performance using Weighted Probabilistic Neural Network
NASA Astrophysics Data System (ADS)
Yasin, Hasbi; Waridi Basyiruddin Arifin, Adi; Warsito, Budi
2018-05-01
Classification of company performance can be judged by looking at its financial status, whether good or bad state. Classification of company performance can be achieved by some approach, either parametric or non-parametric. Neural Network is one of non-parametric methods. One of Artificial Neural Network (ANN) models is Probabilistic Neural Network (PNN). PNN consists of four layers, i.e. input layer, pattern layer, addition layer, and output layer. The distance function used is the euclidean distance and each class share the same values as their weights. In this study used PNN that has been modified on the weighting process between the pattern layer and the addition layer by involving the calculation of the mahalanobis distance. This model is called the Weighted Probabilistic Neural Network (WPNN). The results show that the company's performance modeling with the WPNN model has a very high accuracy that reaches 100%.
Probabilistic Analysis of Large-Scale Composite Structures Using the IPACS Code
NASA Technical Reports Server (NTRS)
Lemonds, Jeffrey; Kumar, Virendra
1995-01-01
An investigation was performed to ascertain the feasibility of using IPACS (Integrated Probabilistic Assessment of Composite Structures) for probabilistic analysis of a composite fan blade, the development of which is being pursued by various industries for the next generation of aircraft engines. A model representative of the class of fan blades used in the GE90 engine has been chosen as the structural component to be analyzed with IPACS. In this study, typical uncertainties are assumed in the level, and structural responses for ply stresses and frequencies are evaluated in the form of cumulative probability density functions. Because of the geometric complexity of the blade, the number of plies varies from several hundred at the root to about a hundred at the tip. This represents a extremely complex composites application for the IPACS code. A sensitivity study with respect to various random variables is also performed.
Modular analysis of the probabilistic genetic interaction network.
Hou, Lin; Wang, Lin; Qian, Minping; Li, Dong; Tang, Chao; Zhu, Yunping; Deng, Minghua; Li, Fangting
2011-03-15
Epistatic Miniarray Profiles (EMAP) has enabled the mapping of large-scale genetic interaction networks; however, the quantitative information gained from EMAP cannot be fully exploited since the data are usually interpreted as a discrete network based on an arbitrary hard threshold. To address such limitations, we adopted a mixture modeling procedure to construct a probabilistic genetic interaction network and then implemented a Bayesian approach to identify densely interacting modules in the probabilistic network. Mixture modeling has been demonstrated as an effective soft-threshold technique of EMAP measures. The Bayesian approach was applied to an EMAP dataset studying the early secretory pathway in Saccharomyces cerevisiae. Twenty-seven modules were identified, and 14 of those were enriched by gold standard functional gene sets. We also conducted a detailed comparison with state-of-the-art algorithms, hierarchical cluster and Markov clustering. The experimental results show that the Bayesian approach outperforms others in efficiently recovering biologically significant modules.
Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations
NASA Astrophysics Data System (ADS)
Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.
2014-02-01
The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.
Probabilistic delay differential equation modeling of event-related potentials.
Ostwald, Dirk; Starke, Ludger
2016-08-01
"Dynamic causal models" (DCMs) are a promising approach in the analysis of functional neuroimaging data due to their biophysical interpretability and their consolidation of functional-segregative and functional-integrative propositions. In this theoretical note we are concerned with the DCM framework for electroencephalographically recorded event-related potentials (ERP-DCM). Intuitively, ERP-DCM combines deterministic dynamical neural mass models with dipole-based EEG forward models to describe the event-related scalp potential time-series over the entire electrode space. Since its inception, ERP-DCM has been successfully employed to capture the neural underpinnings of a wide range of neurocognitive phenomena. However, in spite of its empirical popularity, the technical literature on ERP-DCM remains somewhat patchy. A number of previous communications have detailed certain aspects of the approach, but no unified and coherent documentation exists. With this technical note, we aim to close this gap and to increase the technical accessibility of ERP-DCM. Specifically, this note makes the following novel contributions: firstly, we provide a unified and coherent review of the mathematical machinery of the latent and forward models constituting ERP-DCM by formulating the approach as a probabilistic latent delay differential equation model. Secondly, we emphasize the probabilistic nature of the model and its variational Bayesian inversion scheme by explicitly deriving the variational free energy function in terms of both the likelihood expectation and variance parameters. Thirdly, we detail and validate the estimation of the model with a special focus on the explicit form of the variational free energy function and introduce a conventional nonlinear optimization scheme for its maximization. Finally, we identify and discuss a number of computational issues which may be addressed in the future development of the approach. Copyright © 2016 Elsevier Inc. All rights reserved.
Zeng, Jia; Hannenhalli, Sridhar
2013-01-01
Gene duplication, followed by functional evolution of duplicate genes, is a primary engine of evolutionary innovation. In turn, gene expression evolution is a critical component of overall functional evolution of paralogs. Inferring evolutionary history of gene expression among paralogs is therefore a problem of considerable interest. It also represents significant challenges. The standard approaches of evolutionary reconstruction assume that at an internal node of the duplication tree, the two duplicates evolve independently. However, because of various selection pressures functional evolution of the two paralogs may be coupled. The coupling of paralog evolution corresponds to three major fates of gene duplicates: subfunctionalization (SF), conserved function (CF) or neofunctionalization (NF). Quantitative analysis of these fates is of great interest and clearly influences evolutionary inference of expression. These two interrelated problems of inferring gene expression and evolutionary fates of gene duplicates have not been studied together previously and motivate the present study. Here we propose a novel probabilistic framework and algorithm to simultaneously infer (i) ancestral gene expression and (ii) the likely fate (SF, NF, CF) at each duplication event during the evolution of gene family. Using tissue-specific gene expression data, we develop a nonparametric belief propagation (NBP) algorithm to predict the ancestral expression level as a proxy for function, and describe a novel probabilistic model that relates the predicted and known expression levels to the possible evolutionary fates. We validate our model using simulation and then apply it to a genome-wide set of gene duplicates in human. Our results suggest that SF tends to be more frequent at the earlier stage of gene family expansion, while NF occurs more frequently later on.
Degnan, Andrew J; Wisnowski, Jessica L; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M; Corby, Patricia; Schmithorst, Vincent J; Panigrahy, Ashok
2015-01-07
Late preterm birth is increasingly recognized as a risk factor for cognitive and social deficits. The prefrontal cortex is particularly vulnerable to injury in late prematurity because of its protracted development and extensive cortical connections. Our study examined children born late preterm without access to advanced postnatal care to assess structural and functional connectivity related to the prefrontal cortex. Thirty-eight preadolescents [19 born late preterm (34-36 /7 weeks gestational age) and 19 at term] were recruited from a developing community in Brazil. Participants underwent neuropsychological testing. Individuals underwent three-dimensional T1-weighted, diffusion-weighted, and resting state functional MRI. Probabilistic tractography and functional connectivity analyses were carried out using unilateral seeds combining the medial prefrontal cortex and the anterior cingulate cortex. Late preterm children showed increased functional connectivity within regions of the default mode, salience, and central-executive networks from both right and left frontal cortex seeds. Decreased functional connectivity was observed within the right parahippocampal region from left frontal seeding. Probabilistic tractography showed a pattern of decreased streamlines in frontal white matter pathways and the corpus callosum, but also increased streamlines in the left orbitofrontal white matter and the right frontal white matter when seeded from the right. Late preterm children and term control children scored similarly on neuropsychological testing. Prefrontal cortical connectivity is altered in late prematurity, with hyperconnectivity observed in key resting state networks in the absence of neuropsychological deficits. Abnormal structural connectivity indicated by probabilistic tractography suggests subtle changes in white matter development, implying disruption of normal maturation during the late gestational period.
A minimalist probabilistic description of root zone soil water
Milly, P.C.D.
2001-01-01
The probabilistic response of depth‐integrated soil water to given climatic forcing can be described readily using an existing supply‐demand‐storage model. An apparently complex interaction of numerous soil, climate, and plant controls can be reduced to a relatively simple expression for the equilibrium probability density function of soil water as a function of only two dimensionless parameters. These are the index of dryness (ratio of mean potential evaporation to mean precipitation) and a dimensionless storage capacity (active root zone soil water capacity divided by mean storm depth). The first parameter is mainly controlled by climate, with surface albedo playing a subsidiary role in determining net radiation. The second is a composite of soil (through moisture retention characteristics), vegetation (through rooting characteristics), and climate (mean storm depth). This minimalist analysis captures many essential features of a more general probabilistic analysis, but with a considerable reduction in complexity and consequent elucidation of the critical controls on soil water variability. In particular, it is shown that (1) the dependence of mean soil water on the index of dryness approaches a step function in the limit of large soil water capacity; (2) soil water variance is usually maximized when the index of dryness equals 1, and the width of the peak varies inversely with dimensionless storage capacity; (3) soil water has a uniform probability density function when the index of dryness is 1 and the dimensionless storage capacity is large; and (4) the soil water probability density function is bimodal if and only if the index of dryness is <1, but this bimodality is pronounced only for artificially small values of the dimensionless storage capacity.
fMRI evidence for strategic decision-making during resolution of pronoun reference
McMillan, Corey T.; Clark, Robin; Gunawardena, Delani; Ryant, Neville; Grossman, Murray
2012-01-01
Pronouns are extraordinarily common in daily language yet little is known about the neural mechanisms that support decisions about pronoun reference. We propose a large-scale neural network for resolving pronoun reference that consists of two components. First, a core language network in peri-Sylvian cortex supports syntactic and semantic resources for interpreting pronoun meaning in sentences. Second, a frontal-parietal network that supports strategic decision-making is recruited to support probabilistic and risk-related components of resolving a pronoun’s referent. In an fMRI study of healthy young adults, we observed activation of left inferior frontal and superior temporal cortex, consistent with a language network. We also observed activation of brain regions not associated with traditional language areas. By manipulating the context of the pronoun, we were able to demonstrate recruitment of dorsolateral prefrontal cortex during probabilistic evaluation of a pronoun’s reference, and orbital frontal activation when a pronoun must adopt a risky referent. Together, these findings are consistent with a two-component model for resolving a pronoun’s reference that includes neuroanatomic regions supporting core linguistic and decision-making mechanisms. PMID:22245014
Probabilistic atlas and geometric variability estimation to drive tissue segmentation.
Xu, Hao; Thirion, Bertrand; Allassonnière, Stéphanie
2014-09-10
Computerized anatomical atlases play an important role in medical image analysis. While an atlas usually refers to a standard or mean image also called template, which presumably represents well a given population, it is not enough to characterize the observed population in detail. A template image should be learned jointly with the geometric variability of the shapes represented in the observations. These two quantities will in the sequel form the atlas of the corresponding population. The geometric variability is modeled as deformations of the template image so that it fits the observations. In this paper, we provide a detailed analysis of a new generative statistical model based on dense deformable templates that represents several tissue types observed in medical images. Our atlas contains both an estimation of probability maps of each tissue (called class) and the deformation metric. We use a stochastic algorithm for the estimation of the probabilistic atlas given a dataset. This atlas is then used for atlas-based segmentation method to segment the new images. Experiments are shown on brain T1 MRI datasets. Copyright © 2014 John Wiley & Sons, Ltd.
Ekman, Matthias; Fiebach, Christian J; Melzer, Corina; Tittgemeyer, Marc; Derrfuss, Jan
2016-03-09
The ability to temporarily store and manipulate information in working memory is a hallmark of human intelligence and differs considerably across individuals, but the structural brain correlates underlying these differences in working memory capacity (WMC) are only poorly understood. In two separate studies, diffusion MRI data and WMC scores were collected for 70 and 109 healthy individuals. Using a combination of probabilistic tractography and network analysis of the white matter tracts, we examined whether structural brain network properties were predictive of individual WMC. Converging evidence from both studies showed that lateral prefrontal cortex and posterior parietal cortex of high-capacity individuals are more densely connected compared with low-capacity individuals. Importantly, our network approach was further able to dissociate putative functional roles associated with two different pathways connecting frontal and parietal regions: a corticocortical pathway and a subcortical pathway. In Study 1, where participants were required to maintain and update working memory items, the connectivity of the direct and indirect pathway was predictive of WMC. In contrast, in Study 2, where participants were required to maintain working memory items without updating, only the connectivity of the direct pathway was predictive of individual WMC. Our results suggest an important dissociation in the circuitry connecting frontal and parietal regions, where direct frontoparietal connections might support storage and maintenance, whereas subcortically mediated connections support the flexible updating of working memory content. Copyright © 2016 the authors 0270-6474/16/362894-10$15.00/0.
Models and simulation of 3D neuronal dendritic trees using Bayesian networks.
López-Cruz, Pedro L; Bielza, Concha; Larrañaga, Pedro; Benavides-Piccione, Ruth; DeFelipe, Javier
2011-12-01
Neuron morphology is crucial for neuronal connectivity and brain information processing. Computational models are important tools for studying dendritic morphology and its role in brain function. We applied a class of probabilistic graphical models called Bayesian networks to generate virtual dendrites from layer III pyramidal neurons from three different regions of the neocortex of the mouse. A set of 41 morphological variables were measured from the 3D reconstructions of real dendrites and their probability distributions used in a machine learning algorithm to induce the model from the data. A simulation algorithm is also proposed to obtain new dendrites by sampling values from Bayesian networks. The main advantage of this approach is that it takes into account and automatically locates the relationships between variables in the data instead of using predefined dependencies. Therefore, the methodology can be applied to any neuronal class while at the same time exploiting class-specific properties. Also, a Bayesian network was defined for each part of the dendrite, allowing the relationships to change in the different sections and to model heterogeneous developmental factors or spatial influences. Several univariate statistical tests and a novel multivariate test based on Kullback-Leibler divergence estimation confirmed that virtual dendrites were similar to real ones. The analyses of the models showed relationships that conform to current neuroanatomical knowledge and support model correctness. At the same time, studying the relationships in the models can help to identify new interactions between variables related to dendritic morphology.
Lal, Rakesh M.; An, Michael; Poynton, Clare B.; Li, Muwei; Jiang, Hangyi; Oishi, Kenichi; Selemon, Lynn D.; Mori, Susumu; Miller, Michael I.
2013-01-01
Abstract Probabilistic methods have the potential to generate multiple and complex white matter fiber tracts in diffusion tensor imaging (DTI). Here, a method based on dynamic programming (DP) is introduced to reconstruct fibers pathways whose complex anatomical structures cannot be resolved beyond the resolution of standard DTI data. DP is based on optimizing a sequentially additive cost function derived from a Gaussian diffusion model whose covariance is defined by the diffusion tensor. DP is used to determine the optimal path between initial and terminal nodes by efficiently searching over all paths, connecting the nodes, and choosing the path in which the total probability is maximized. An ex vivo high-resolution scan of a macaque hemi-brain is used to demonstrate the advantages and limitations of DP. DP can generate fiber bundles between distant cortical areas (superior longitudinal fasciculi, arcuate fasciculus, uncinate fasciculus, and fronto-occipital fasciculus), neighboring cortical areas (dorsal and ventral banks of the principal sulcus), as well as cortical projections to the hippocampal formation (cingulum bundle), neostriatum (motor cortical projections to the putamen), thalamus (subcortical bundle), and hippocampal formation projections to the mammillary bodies via the fornix. Validation is established either by comparison with in vivo intracellular transport of horseradish peroxidase in another macaque monkey or by comparison with atlases. DP is able to generate known pathways, including crossing and kissing tracts. Thus, DP has the potential to enhance neuroimaging studies of cortical connectivity. PMID:23879573
NASA Astrophysics Data System (ADS)
Maryam, Syeda; McCrackin, Laura; Crowley, Mark; Rathi, Yogesh; Michailovich, Oleg
2017-03-01
The world's aging population has given rise to an increasing awareness towards neurodegenerative disorders, including Alzheimers Disease (AD). Treatment options for AD are currently limited, but it is believed that future success depends on our ability to detect the onset of the disease in its early stages. The most frequently used tools for this include neuropsychological assessments, along with genetic, proteomic, and image-based diagnosis. Recently, the applicability of Diffusion Magnetic Resonance Imaging (dMRI) analysis for early diagnosis of AD has also been reported. The sensitivity of dMRI to the microstructural organization of cerebral tissue makes it particularly well-suited to detecting changes which are known to occur in the early stages of AD. Existing dMRI approaches can be divided into two broad categories: region-based and tract-based. In this work, we propose a new approach, which extends region-based approaches to the simultaneous characterization of multiple brain regions. Given a predefined set of features derived from dMRI data, we compute the probabilistic distances between different brain regions and treat the resulting connectivity pattern as an undirected, fully-connected graph. The characteristics of this graph are then used as markers to discriminate between AD subjects and normal controls (NC). Although in this preliminary work we omit subjects in the prodromal stage of AD, mild cognitive impairment (MCI), our method demonstrates perfect separability between AD and NC subject groups with substantial margin, and thus holds promise for fine-grained stratification of NC, MCI and AD populations.
Uncertainty plus Prior Equals Rational Bias: An Intuitive Bayesian Probability Weighting Function
ERIC Educational Resources Information Center
Fennell, John; Baddeley, Roland
2012-01-01
Empirical research has shown that when making choices based on probabilistic options, people behave as if they overestimate small probabilities, underestimate large probabilities, and treat positive and negative outcomes differently. These distortions have been modeled using a nonlinear probability weighting function, which is found in several…
What do we gain with Probabilistic Flood Loss Models?
NASA Astrophysics Data System (ADS)
Schroeter, K.; Kreibich, H.; Vogel, K.; Merz, B.; Lüdtke, S.
2015-12-01
The reliability of flood loss models is a prerequisite for their practical usefulness. Oftentimes, traditional uni-variate damage models as for instance depth-damage curves fail to reproduce the variability of observed flood damage. Innovative multi-variate probabilistic modelling approaches are promising to capture and quantify the uncertainty involved and thus to improve the basis for decision making. In this study we compare the predictive capability of two probabilistic modelling approaches, namely Bagging Decision Trees and Bayesian Networks and traditional stage damage functions which are cast in a probabilistic framework. For model evaluation we use empirical damage data which are available from computer aided telephone interviews that were respectively compiled after the floods in 2002, 2005, 2006 and 2013 in the Elbe and Danube catchments in Germany. We carry out a split sample test by sub-setting the damage records. One sub-set is used to derive the models and the remaining records are used to evaluate the predictive performance of the model. Further we stratify the sample according to catchments which allows studying model performance in a spatial transfer context. Flood damage estimation is carried out on the scale of the individual buildings in terms of relative damage. The predictive performance of the models is assessed in terms of systematic deviations (mean bias), precision (mean absolute error) as well as in terms of reliability which is represented by the proportion of the number of observations that fall within the 95-quantile and 5-quantile predictive interval. The reliability of the probabilistic predictions within validation runs decreases only slightly and achieves a very good coverage of observations within the predictive interval. Probabilistic models provide quantitative information about prediction uncertainty which is crucial to assess the reliability of model predictions and improves the usefulness of model results.
Role of ionotropic glutamate receptors in delay and probability discounting in the rat.
Yates, Justin R; Batten, Seth R; Bardo, Michael T; Beckmann, Joshua S
2015-04-01
Discounting of delayed and probabilistic reinforcement is linked to increased drug use and pathological gambling. Understanding the neurobiology of discounting is important for designing treatments for these disorders. Glutamate is considered to be involved in addiction-like behaviors; however, the role of ionotropic glutamate receptors (iGluRs) in discounting remains unclear. The current study examined the effects of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor blockade on performance in delay and probability discounting tasks. Following training in either delay or probability discounting, rats (n = 12, each task) received pretreatments of the NMDA receptor antagonists MK-801 (0, 0.01, 0.03, 0.1, or 0.3 mg/kg, s.c.) or ketamine (0, 1.0, 5.0, or 10.0 mg/kg, i.p.), as well as the AMPA receptor antagonist CNQX (0, 1.0, 3.0, or 5.6 mg/kg, i.p.). Hyperbolic discounting functions were used to estimate sensitivity to delayed/probabilistic reinforcement and sensitivity to reinforcer amount. An intermediate dose of MK-801 (0.03 mg/kg) decreased sensitivity to both delayed and probabilistic reinforcement. In contrast, ketamine did not affect the rate of discounting in either task but decreased sensitivity to reinforcer amount. CNQX did not alter sensitivity to reinforcer amount or delayed/probabilistic reinforcement. These results show that blockade of NMDA receptors, but not AMPA receptors, decreases sensitivity to delayed/probabilistic reinforcement (MK-801) and sensitivity to reinforcer amount (ketamine). The differential effects of MK-801 and ketamine demonstrate that sensitivities to delayed/probabilistic reinforcement and reinforcer amount are pharmacologically dissociable.
Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno
2016-01-01
Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision. PMID:27303323
Lubrini, G; Martín-Montes, A; Díez-Ascaso, O; Díez-Tejedor, E
2018-04-01
Our conception of the mind-brain relationship has evolved from the traditional idea of dualism to current evidence that mental functions result from brain activity. This paradigm shift, combined with recent advances in neuroimaging, has led to a novel definition of brain functioning in terms of structural and functional connectivity. The purpose of this literature review is to describe the relationship between connectivity, brain lesions, cerebral plasticity, and functional recovery. Assuming that brain function results from the organisation of the entire brain in networks, brain dysfunction would be a consequence of altered brain network connectivity. According to this approach, cognitive and behavioural impairment following brain damage result from disrupted functional organisation of brain networks. However, the dynamic and versatile nature of these circuits makes recovering brain function possible. Cerebral plasticity allows for functional reorganisation leading to recovery, whether spontaneous or resulting from cognitive therapy, after brain disease. Current knowledge of brain connectivity and cerebral plasticity provides new insights into normal brain functioning, the mechanisms of brain damage, and functional recovery, which in turn serve as the foundations of cognitive therapy. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Opportunities of probabilistic flood loss models
NASA Astrophysics Data System (ADS)
Schröter, Kai; Kreibich, Heidi; Lüdtke, Stefan; Vogel, Kristin; Merz, Bruno
2016-04-01
Oftentimes, traditional uni-variate damage models as for instance depth-damage curves fail to reproduce the variability of observed flood damage. However, reliable flood damage models are a prerequisite for the practical usefulness of the model results. Innovative multi-variate probabilistic modelling approaches are promising to capture and quantify the uncertainty involved and thus to improve the basis for decision making. In this study we compare the predictive capability of two probabilistic modelling approaches, namely Bagging Decision Trees and Bayesian Networks and traditional stage damage functions. For model evaluation we use empirical damage data which are available from computer aided telephone interviews that were respectively compiled after the floods in 2002, 2005, 2006 and 2013 in the Elbe and Danube catchments in Germany. We carry out a split sample test by sub-setting the damage records. One sub-set is used to derive the models and the remaining records are used to evaluate the predictive performance of the model. Further we stratify the sample according to catchments which allows studying model performance in a spatial transfer context. Flood damage estimation is carried out on the scale of the individual buildings in terms of relative damage. The predictive performance of the models is assessed in terms of systematic deviations (mean bias), precision (mean absolute error) as well as in terms of sharpness of the predictions the reliability which is represented by the proportion of the number of observations that fall within the 95-quantile and 5-quantile predictive interval. The comparison of the uni-variable Stage damage function and the multivariable model approach emphasises the importance to quantify predictive uncertainty. With each explanatory variable, the multi-variable model reveals an additional source of uncertainty. However, the predictive performance in terms of precision (mbe), accuracy (mae) and reliability (HR) is clearly improved in comparison to uni-variable Stage damage function. Overall, Probabilistic models provide quantitative information about prediction uncertainty which is crucial to assess the reliability of model predictions and improves the usefulness of model results.
Wels, Michael; Carneiro, Gustavo; Aplas, Alexander; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin
2008-01-01
In this paper we present a fully automated approach to the segmentation of pediatric brain tumors in multi-spectral 3-D magnetic resonance images. It is a top-down segmentation approach based on a Markov random field (MRF) model that combines probabilistic boosting trees (PBT) and lower-level segmentation via graph cuts. The PBT algorithm provides a strong discriminative observation model that classifies tumor appearance while a spatial prior takes into account the pair-wise homogeneity in terms of classification labels and multi-spectral voxel intensities. The discriminative model relies not only on observed local intensities but also on surrounding context for detecting candidate regions for pathology. A mathematically sound formulation for integrating the two approaches into a unified statistical framework is given. The proposed method is applied to the challenging task of detection and delineation of pediatric brain tumors. This segmentation task is characterized by a high non-uniformity of both the pathology and the surrounding non-pathologic brain tissue. A quantitative evaluation illustrates the robustness of the proposed method. Despite dealing with more complicated cases of pediatric brain tumors the results obtained are mostly better than those reported for current state-of-the-art approaches to 3-D MR brain tumor segmentation in adult patients. The entire processing of one multi-spectral data set does not require any user interaction, and takes less time than previously proposed methods.
A selective emotional decision-making bias elicited by facial expressions.
Furl, Nicholas; Gallagher, Shannon; Averbeck, Bruno B
2012-01-01
Emotional and social information can sway otherwise rational decisions. For example, when participants decide between two faces that are probabilistically rewarded, they make biased choices that favor smiling relative to angry faces. This bias may arise because facial expressions evoke positive and negative emotional responses, which in turn may motivate social approach and avoidance. We tested a wide range of pictures that evoke emotions or convey social information, including animals, words, foods, a variety of scenes, and faces differing in trustworthiness or attractiveness, but we found only facial expressions biased decisions. Our results extend brain imaging and pharmacological findings, which suggest that a brain mechanism supporting social interaction may be involved. Facial expressions appear to exert special influence over this social interaction mechanism, one capable of biasing otherwise rational choices. These results illustrate that only specific types of emotional experiences can best sway our choices.
Bakas, Spyridon; Zeng, Ke; Sotiras, Aristeidis; Rathore, Saima; Akbari, Hamed; Gaonkar, Bilwaj; Rozycki, Martin; Pati, Sarthak; Davatzikos, Christos
2016-01-01
We present an approach for segmenting low- and high-grade gliomas in multimodal magnetic resonance imaging volumes. The proposed approach is based on a hybrid generative-discriminative model. Firstly, a generative approach based on an Expectation-Maximization framework that incorporates a glioma growth model is used to segment the brain scans into tumor, as well as healthy tissue labels. Secondly, a gradient boosting multi-class classification scheme is used to refine tumor labels based on information from multiple patients. Lastly, a probabilistic Bayesian strategy is employed to further refine and finalize the tumor segmentation based on patient-specific intensity statistics from the multiple modalities. We evaluated our approach in 186 cases during the training phase of the BRAin Tumor Segmentation (BRATS) 2015 challenge and report promising results. During the testing phase, the algorithm was additionally evaluated in 53 unseen cases, achieving the best performance among the competing methods.
A Selective Emotional Decision-Making Bias Elicited by Facial Expressions
Furl, Nicholas; Gallagher, Shannon; Averbeck, Bruno B.
2012-01-01
Emotional and social information can sway otherwise rational decisions. For example, when participants decide between two faces that are probabilistically rewarded, they make biased choices that favor smiling relative to angry faces. This bias may arise because facial expressions evoke positive and negative emotional responses, which in turn may motivate social approach and avoidance. We tested a wide range of pictures that evoke emotions or convey social information, including animals, words, foods, a variety of scenes, and faces differing in trustworthiness or attractiveness, but we found only facial expressions biased decisions. Our results extend brain imaging and pharmacological findings, which suggest that a brain mechanism supporting social interaction may be involved. Facial expressions appear to exert special influence over this social interaction mechanism, one capable of biasing otherwise rational choices. These results illustrate that only specific types of emotional experiences can best sway our choices. PMID:22438936
Mathematical modeling of the malignancy of cancer using graph evolution.
Gunduz-Demir, Cigdem
2007-10-01
We report a novel computational method based on graph evolution process to model the malignancy of brain cancer called glioma. In this work, we analyze the phases that a graph passes through during its evolution and demonstrate strong relation between the malignancy of cancer and the phase of its graph. From the photomicrographs of tissues, which are diagnosed as normal, low-grade cancerous and high-grade cancerous, we construct cell-graphs based on the locations of cells; we probabilistically generate an edge between every pair of cells depending on the Euclidean distance between them. For a cell-graph, we extract connectivity information including the properties of its connected components in order to analyze the phase of the cell-graph. Working with brain tissue samples surgically removed from 12 patients, we demonstrate that cell-graphs generated for different tissue types evolve differently and that they exhibit different phase properties, which distinguish a tissue type from another.
Jacquet, Claire; Mouillot, David; Kulbicki, Michel; Gravel, Dominique
2017-02-01
The Theory of Island Biogeography (TIB) predicts how area and isolation influence species richness equilibrium on insular habitats. However, the TIB remains silent about functional trait composition and provides no information on the scaling of functional diversity with area, an observation that is now documented in many systems. To fill this gap, we develop a probabilistic approach to predict the distribution of a trait as a function of habitat area and isolation, extending the TIB beyond the traditional species-area relationship. We compare model predictions to the body-size distribution of piscivorous and herbivorous fishes found on tropical reefs worldwide. We find that small and isolated reefs have a higher proportion of large-sized species than large and connected reefs. We also find that knowledge of species body-size and trophic position improves the predictions of fish occupancy on tropical reefs, supporting both the allometric and trophic theory of island biogeography. The integration of functional ecology to island biogeography is broadly applicable to any functional traits and provides a general probabilistic approach to study the scaling of trait distribution with habitat area and isolation. © 2016 John Wiley & Sons Ltd/CNRS.
A novel framework for the local extraction of extra-axial cerebrospinal fluid from MR brain images
NASA Astrophysics Data System (ADS)
Mostapha, Mahmoud; Shen, Mark D.; Kim, SunHyung; Swanson, Meghan; Collins, D. Louis; Fonov, Vladimir; Gerig, Guido; Piven, Joseph; Styner, Martin A.
2018-03-01
The quantification of cerebrospinal fluid (CSF) in the human brain has shown to play an important role in early postnatal brain developmental. Extr a-axial fluid (EA-CSF), which is characterized by the CSF in the subarachnoid space, is promising in the early detection of children at risk for neurodevelopmental disorders. Currently, though, there is no tool to extract local EA-CSF measurements in a way that is suitable for localized analysis. In this paper, we propose a novel framework for the localized, cortical surface based analysis of EA-CSF. In our proposed processing, we combine probabilistic brain tissue segmentation, cortical surface reconstruction as well as streamline based local EA-CSF quantification. For streamline computation, we employ the vector field generated by solving a Laplacian partial differential equation (PDE) between the cortical surface and the outer CSF hull. To achieve sub-voxel accuracy while minimizing numerical errors, fourth-order Runge-Kutta (RK4) integration was used to generate the streamlines. Finally, the local EA-CSF is computed by integrating the CSF probability along the generated streamlines. The proposed local EA-CSF extraction tool was used to study the early postnatal brain development in typically developing infants. The results show that the proposed localized EA-CSF extraction pipeline can produce statistically significant regions that are not observed in previous global approach.
Probabilistic Description of the Hydrologic Risk in Agriculture
NASA Astrophysics Data System (ADS)
Vico, G.; Porporato, A. M.
2011-12-01
Supplemental irrigation represents one of the main strategies to mitigate the effects of climatic variability on agroecosystems productivity and profitability, at the expenses of increasing water requirements for irrigation purposes. Optimizing water allocation for crop yield preservation and sustainable development needs to account for hydro-climatic variability, which is by far the main source of uncertainty affecting crop yields and irrigation water requirements. In this contribution, a widely applicable probabilistic framework is proposed to quantitatively define the hydrologic risk of yield reduction for both rainfed and irrigated agriculture. The occurrence of rainfall events and irrigation applications are linked probabilistically to crop development during the growing season. Based on these linkages, long-term and real-time yield reduction risk indices are defined as a function of climate, soil and crop parameters, as well as irrigation strategy. The former risk index is suitable for long-term irrigation strategy assessment and investment planning, while the latter risk index provides a rigorous probabilistic quantification of the emergence of drought conditions during a single growing season. This probabilistic framework allows also assessing the impact of limited water availability on crop yield, thus guiding the optimal allocation of water resources for human and environmental needs. Our approach employs relatively few parameters and is thus easily and broadly applicable to different crops and sites, under current and future climate scenarios, thus facilitating the assessment of the impact of increasingly frequent water shortages on agricultural productivity, profitability, and sustainability.
Probabilistic #D data fusion for multiresolution surface generation
NASA Technical Reports Server (NTRS)
Manduchi, R.; Johnson, A. E.
2002-01-01
In this paper we present an algorithm for adaptive resolution integration of 3D data collected from multiple distributed sensors. The input to the algorithm is a set of 3D surface points and associated sensor models. Using a probabilistic rule, a surface probability function is generated that represents the probability that a particular volume of space contains the surface. The surface probability function is represented using an octree data structure; regions of space with samples of large conariance are stored at a coarser level than regions of space containing samples with smaller covariance. The algorithm outputs an adaptive resolution surface generated by connecting points that lie on the ridge of surface probability with triangles scaled to match the local discretization of space given by the algorithm, we present results from 3D data generated by scanning lidar and structure from motion.
Voon, Valerie; Droux, Fabien; Morris, Laurel; Chabardes, Stephan; Bougerol, Thierry; David, Olivier; Krack, Paul; Polosan, Mircea
2017-02-01
Why do we make hasty decisions for short-term gain? Rapid decision-making with limited accumulation of evidence and delay discounting are forms of decisional impulsivity. The subthalamic nucleus is implicated in inhibitory function but its role in decisional impulsivity is less well-understood. Here we assess decisional impulsivity in subjects with obsessive compulsive disorder who have undergone deep brain stimulation of the limbic and associative subthalamic nucleus. We show that stimulation of the subthalamic nucleus is causally implicated in increasing decisional impulsivity with less accumulation of evidence during probabilistic uncertainty and in enhancing delay discounting. Subthalamic stimulation shifts evidence accumulation in subjects with obsessive-compulsive disorder towards a functional less cautious style closer to that of healthy controls emphasizing its adaptive nature. Thus, subjects with obsessive compulsive disorder on subthalamic stimulation may be less likely to check for evidence (e.g. checking that the stove is on) with no difference in subjective confidence (or doubt). In a separate study, we replicate in humans (154 healthy controls) using resting state functional connectivity, tracing studies conducted in non-human primates dissociating limbic, associative and motor frontal hyper-direct connectivity with anterior and posterior subregions of the subthalamic nucleus. We show lateralization of functional connectivity of bilateral ventral striatum to right anterior ventromedial subthalamic nucleus consistent with previous observations of lateralization of emotionally evoked activity to right ventral subthalamic nucleus. We use a multi-echo sequence with independent components analysis, which has been shown to have enhanced signal-to-noise ratio, thus optimizing visualization of small subcortical structures. These findings in healthy controls converge with the effective contacts in obsessive compulsive disorder patients localized within the anterior and ventral subthalamic nucleus. We further show that evidence accumulation is associated with anterior associative-limbic subthalamic nucleus and right dorsolateral prefrontal functional connectivity in healthy controls, a region implicated in decision-making under uncertainty. Together, our findings highlight specificity of the anterior associative-limbic subthalamic nucleus in decisional impulsivity. Given increasing interest in the potential for subthalamic stimulation in psychiatric disorders and the neuropsychiatric symptoms of Parkinson's disease, these findings have clinical implications for behavioural symptoms and cognitive effects as a function of localization of subthalamic stimulation. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
Perobelli, Sandra; Alessandrini, Franco; Zoccatelli, Giada; Nicolis, Elena; Beltramello, Alberto; Assael, Baroukh M.; Cipolli, Marco
2015-01-01
Shwachman–Diamond syndrome is a rare recessive genetic disease caused by mutations in SBDS gene, at chromosome 7q11. Phenotypically, the syndrome is characterized by exocrine pancreatic insufficiency, bone marrow dysfunction, skeletal dysplasia and variable cognitive impairments. Structural brain abnormalities (smaller head circumference and decreased brain volume) have also been reported. No correlation studies between brain abnormalities and neuropsychological features have yet been performed. In this study we investigate neuroanatomical findings, neurofunctional pathways and cognitive functioning of Shwachman–Diamond syndrome subjects compared with healthy controls. To be eligible for inclusion, participants were required to have known SBDS mutations on both alleles, no history of cranial trauma or any standard contraindication to magnetic resonance imaging. Appropriate tests were used to assess cognitive functions. The static images were acquired on a 3 × 0 T magnetic resonance scanner and blood oxygen level-dependent functional magnetic resonance imaging data were collected both during the execution of the Stroop task and at rest. Diffusion tensor imaging was used to assess brain white matter. The Tract-based Spatial Statistics package and probabilistic tractography were used to characterize white matter pathways. Nine participants (5 males), half of all the subjects aged 9–19 years included in the Italian Shwachman–Diamond Syndrome Registry, were evaluated and compared with nine healthy subjects, matched for sex and age. The patients performed less well than norms and controls on cognitive tasks (p = 0.0002). Overall, cortical thickness was greater in the patients, both in the left (+10%) and in the right (+15%) hemisphere, significantly differently increased in the temporal (left and right, p = 0.04), and right parietal (p = 0.03) lobes and in Brodmann area 44 (p = 0.04) of the right frontal lobe. The greatest increases were observed in the left limbic-anterior cingulate cortex (≥43%, p < 0.0004). Only in Broca's area in the left hemisphere did the patients show a thinner cortical thickness than that of controls (p = 0.01). Diffusion tensor imaging showed large, significant difference increases in both fractional anisotropy (+37%, p < 0.0001) and mean diffusivity (+35%, p < 0.005); the Tract-based Spatial Statistics analysis identified six abnormal clusters of white matter fibres in the fronto-callosal, right fronto-external capsulae, left fronto-parietal, right pontine, temporo-mesial and left anterior–medial–temporal regions. Brain areas activated during the Stroop task and those active during the resting state, are different, fewer and smaller in patients and correlate with worse performance (p = 0.002). Cognitive impairment in Shwachman–Diamond syndrome subjects is associated with diffuse brain anomalies in the grey matter (verbal skills with BA44 and BA20 in the right hemisphere; perceptual skills with BA5, 37, 20, 21, 42 in the left hemisphere) and white matter connectivity (verbal skills with alterations in the fronto-occipital fasciculus and with the inferior-longitudinal fasciculus; perceptual skills with the arcuate fasciculus, limbic and ponto-cerebellar fasciculus; memory skills with the arcuate fasciculus; executive functions with the anterior cingulated and arcuate fasciculus). PMID:25844324
Perobelli, Sandra; Alessandrini, Franco; Zoccatelli, Giada; Nicolis, Elena; Beltramello, Alberto; Assael, Baroukh M; Cipolli, Marco
2015-01-01
Shwachman-Diamond syndrome is a rare recessive genetic disease caused by mutations in SBDS gene, at chromosome 7q11. Phenotypically, the syndrome is characterized by exocrine pancreatic insufficiency, bone marrow dysfunction, skeletal dysplasia and variable cognitive impairments. Structural brain abnormalities (smaller head circumference and decreased brain volume) have also been reported. No correlation studies between brain abnormalities and neuropsychological features have yet been performed. In this study we investigate neuroanatomical findings, neurofunctional pathways and cognitive functioning of Shwachman-Diamond syndrome subjects compared with healthy controls. To be eligible for inclusion, participants were required to have known SBDS mutations on both alleles, no history of cranial trauma or any standard contraindication to magnetic resonance imaging. Appropriate tests were used to assess cognitive functions. The static images were acquired on a 3 × 0 T magnetic resonance scanner and blood oxygen level-dependent functional magnetic resonance imaging data were collected both during the execution of the Stroop task and at rest. Diffusion tensor imaging was used to assess brain white matter. The Tract-based Spatial Statistics package and probabilistic tractography were used to characterize white matter pathways. Nine participants (5 males), half of all the subjects aged 9-19 years included in the Italian Shwachman-Diamond Syndrome Registry, were evaluated and compared with nine healthy subjects, matched for sex and age. The patients performed less well than norms and controls on cognitive tasks (p = 0.0002). Overall, cortical thickness was greater in the patients, both in the left (+10%) and in the right (+15%) hemisphere, significantly differently increased in the temporal (left and right, p = 0.04), and right parietal (p = 0.03) lobes and in Brodmann area 44 (p = 0.04) of the right frontal lobe. The greatest increases were observed in the left limbic-anterior cingulate cortex (≥43%, p < 0.0004). Only in Broca's area in the left hemisphere did the patients show a thinner cortical thickness than that of controls (p = 0.01). Diffusion tensor imaging showed large, significant difference increases in both fractional anisotropy (+37%, p < 0.0001) and mean diffusivity (+35%, p < 0.005); the Tract-based Spatial Statistics analysis identified six abnormal clusters of white matter fibres in the fronto-callosal, right fronto-external capsulae, left fronto-parietal, right pontine, temporo-mesial and left anterior-medial-temporal regions. Brain areas activated during the Stroop task and those active during the resting state, are different, fewer and smaller in patients and correlate with worse performance (p = 0.002). Cognitive impairment in Shwachman-Diamond syndrome subjects is associated with diffuse brain anomalies in the grey matter (verbal skills with BA44 and BA20 in the right hemisphere; perceptual skills with BA5, 37, 20, 21, 42 in the left hemisphere) and white matter connectivity (verbal skills with alterations in the fronto-occipital fasciculus and with the inferior-longitudinal fasciculus; perceptual skills with the arcuate fasciculus, limbic and ponto-cerebellar fasciculus; memory skills with the arcuate fasciculus; executive functions with the anterior cingulated and arcuate fasciculus).
Probabilistic Learning in Junior High School: Investigation of Student Probabilistic Thinking Levels
NASA Astrophysics Data System (ADS)
Kurniasih, R.; Sujadi, I.
2017-09-01
This paper was to investigate level on students’ probabilistic thinking. Probabilistic thinking level is level of probabilistic thinking. Probabilistic thinking is thinking about probabilistic or uncertainty matter in probability material. The research’s subject was students in grade 8th Junior High School students. The main instrument is a researcher and a supporting instrument is probabilistic thinking skills test and interview guidelines. Data was analyzed using triangulation method. The results showed that the level of students probabilistic thinking before obtaining a teaching opportunity at the level of subjective and transitional. After the students’ learning level probabilistic thinking is changing. Based on the results of research there are some students who have in 8th grade level probabilistic thinking numerically highest of levels. Level of students’ probabilistic thinking can be used as a reference to make a learning material and strategy.
Daianu, Madelaine; Mezher, Adam; Mendez, Mario F.; Jahanshad, Neda; Jimenez, Elvira E.; Thompson, Paul M.
2016-01-01
In network analysis, the so-called ‘rich club’ describes the core areas of the brain that are more densely interconnected among themselves than expected by chance, and has been identified as a fundamental aspect of the human brain connectome. This is the first in-depth diffusion imaging study to investigate the rich club along with other organizational changes in the brain's anatomical network in behavioral frontotemporal dementia (bvFTD), and a matched cohort with early-onset Alzheimer's disease (EOAD). Our study sheds light on how bvFTD and EOAD affect connectivity of white matter fiber pathways in the brain, revealing differences and commonalities in the connectome among the dementias. To analyze the breakdown in connectivity, we studied 3 groups: 20 bvFTD, 23 EOAD and 37 healthy elderly controls. All participants were scanned with diffusion-weighted MRI, and based on whole-brain probabilistic tractography and cortical parcellations, we analyzed the rich club of the brain's connectivity network. This revealed distinct patterns of disruption in both forms of dementia. In the connectome, we detected less disruption overall in EOAD than in bvFTD (False Discovery Rate (FDR) critical Pperm=5.7×10−3, 10,000 permutations), with more involvement of richly interconnected areas of the brain (chi-squared PΧ2=1.4×10−4) – predominantly posterior cognitive alterations. In bvFTD, we found a greater spread of disruption including the rich club (FDR critical Pperm=6×10−4), but especially more peripheral alterations (PΧ2=6.5×10−3), particularly in medial frontal areas of the brain, in line with the known behavioral socioemotional deficits seen in these patients. PMID:26678225
USDA-ARS?s Scientific Manuscript database
Objective: To examine the risk factors of developing functional decline and make probabilistic predictions by using a tree-based method that allows higher order polynomials and interactions of the risk factors. Methods: The conditional inference tree analysis, a data mining approach, was used to con...
Naïve Bayes classification in R.
Zhang, Zhongheng
2016-06-01
Naïve Bayes classification is a kind of simple probabilistic classification methods based on Bayes' theorem with the assumption of independence between features. The model is trained on training dataset to make predictions by predict() function. This article introduces two functions naiveBayes() and train() for the performance of Naïve Bayes classification.
NASA Astrophysics Data System (ADS)
Yan, Wang-Ji; Ren, Wei-Xin
2016-12-01
Recent advances in signal processing and structural dynamics have spurred the adoption of transmissibility functions in academia and industry alike. Due to the inherent randomness of measurement and variability of environmental conditions, uncertainty impacts its applications. This study is focused on statistical inference for raw scalar transmissibility functions modeled as complex ratio random variables. The goal is achieved through companion papers. This paper (Part I) is dedicated to dealing with a formal mathematical proof. New theorems on multivariate circularly-symmetric complex normal ratio distribution are proved on the basis of principle of probabilistic transformation of continuous random vectors. The closed-form distributional formulas for multivariate ratios of correlated circularly-symmetric complex normal random variables are analytically derived. Afterwards, several properties are deduced as corollaries and lemmas to the new theorems. Monte Carlo simulation (MCS) is utilized to verify the accuracy of some representative cases. This work lays the mathematical groundwork to find probabilistic models for raw scalar transmissibility functions, which are to be expounded in detail in Part II of this study.
Kendal, W S
2000-04-01
To illustrate how probability-generating functions (PGFs) can be employed to derive a simple probabilistic model for clonogenic survival after exposure to ionizing irradiation. Both repairable and irreparable radiation damage to DNA were assumed to occur by independent (Poisson) processes, at intensities proportional to the irradiation dose. Also, repairable damage was assumed to be either repaired or further (lethally) injured according to a third (Bernoulli) process, with the probability of lethal conversion being directly proportional to dose. Using the algebra of PGFs, these three processes were combined to yield a composite PGF that described the distribution of lethal DNA lesions in irradiated cells. The composite PGF characterized a Poisson distribution with mean, chiD+betaD2, where D was dose and alpha and beta were radiobiological constants. This distribution yielded the conventional linear-quadratic survival equation. To test the composite model, the derived distribution was used to predict the frequencies of multiple chromosomal aberrations in irradiated human lymphocytes. The predictions agreed well with observation. This probabilistic model was consistent with single-hit mechanisms, but it was not consistent with binary misrepair mechanisms. A stochastic model for radiation survival has been constructed from elementary PGFs that exactly yields the linear-quadratic relationship. This approach can be used to investigate other simple probabilistic survival models.
Bayesian convolutional neural network based MRI brain extraction on nonhuman primates.
Zhao, Gengyan; Liu, Fang; Oler, Jonathan A; Meyerand, Mary E; Kalin, Ned H; Birn, Rasmus M
2018-07-15
Brain extraction or skull stripping of magnetic resonance images (MRI) is an essential step in neuroimaging studies, the accuracy of which can severely affect subsequent image processing procedures. Current automatic brain extraction methods demonstrate good results on human brains, but are often far from satisfactory on nonhuman primates, which are a necessary part of neuroscience research. To overcome the challenges of brain extraction in nonhuman primates, we propose a fully-automated brain extraction pipeline combining deep Bayesian convolutional neural network (CNN) and fully connected three-dimensional (3D) conditional random field (CRF). The deep Bayesian CNN, Bayesian SegNet, is used as the core segmentation engine. As a probabilistic network, it is not only able to perform accurate high-resolution pixel-wise brain segmentation, but also capable of measuring the model uncertainty by Monte Carlo sampling with dropout in the testing stage. Then, fully connected 3D CRF is used to refine the probability result from Bayesian SegNet in the whole 3D context of the brain volume. The proposed method was evaluated with a manually brain-extracted dataset comprising T1w images of 100 nonhuman primates. Our method outperforms six popular publicly available brain extraction packages and three well-established deep learning based methods with a mean Dice coefficient of 0.985 and a mean average symmetric surface distance of 0.220 mm. A better performance against all the compared methods was verified by statistical tests (all p-values < 10 -4 , two-sided, Bonferroni corrected). The maximum uncertainty of the model on nonhuman primate brain extraction has a mean value of 0.116 across all the 100 subjects. The behavior of the uncertainty was also studied, which shows the uncertainty increases as the training set size decreases, the number of inconsistent labels in the training set increases, or the inconsistency between the training set and the testing set increases. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sari, Dwi Ivayana; Budayasa, I. Ketut; Juniati, Dwi
2017-08-01
Formulation of mathematical learning goals now is not only oriented on cognitive product, but also leads to cognitive process, which is probabilistic thinking. Probabilistic thinking is needed by students to make a decision. Elementary school students are required to develop probabilistic thinking as foundation to learn probability at higher level. A framework of probabilistic thinking of students had been developed by using SOLO taxonomy, which consists of prestructural probabilistic thinking, unistructural probabilistic thinking, multistructural probabilistic thinking and relational probabilistic thinking. This study aimed to analyze of probability task completion based on taxonomy of probabilistic thinking. The subjects were two students of fifth grade; boy and girl. Subjects were selected by giving test of mathematical ability and then based on high math ability. Subjects were given probability tasks consisting of sample space, probability of an event and probability comparison. The data analysis consisted of categorization, reduction, interpretation and conclusion. Credibility of data used time triangulation. The results was level of boy's probabilistic thinking in completing probability tasks indicated multistructural probabilistic thinking, while level of girl's probabilistic thinking in completing probability tasks indicated unistructural probabilistic thinking. The results indicated that level of boy's probabilistic thinking was higher than level of girl's probabilistic thinking. The results could contribute to curriculum developer in developing probability learning goals for elementary school students. Indeed, teachers could teach probability with regarding gender difference.
2017-01-01
Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs) for robust movement decoding of Parkinson's disease (PD) and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value) at about 0.729 ± 0.16 for decoding movement from the resting state and about 0.671 ± 0.14 for decoding left and right visually cued movements. PMID:29201041
Automated segmentation of the actively stained mouse brain using multi-spectral MR microscopy.
Sharief, Anjum A; Badea, Alexandra; Dale, Anders M; Johnson, G Allan
2008-01-01
Magnetic resonance microscopy (MRM) has created new approaches for high-throughput morphological phenotyping of mouse models of diseases. Transgenic and knockout mice serve as a test bed for validating hypotheses that link genotype to the phenotype of diseases, as well as developing and tracking treatments. We describe here a Markov random fields based segmentation of the actively stained mouse brain, as a prerequisite for morphological phenotyping. Active staining achieves higher signal to noise ratio (SNR) thereby enabling higher resolution imaging per unit time than obtained in previous formalin-fixed mouse brain studies. The segmentation algorithm was trained on isotropic 43-mum T1- and T2-weighted MRM images. The mouse brain was segmented into 33 structures, including the hippocampus, amygdala, hypothalamus, thalamus, as well as fiber tracts and ventricles. Probabilistic information used in the segmentation consisted of (a) intensity distributions in the T1- and T2-weighted data, (b) location, and (c) contextual priors for incorporating spatial information. Validation using standard morphometric indices showed excellent consistency between automatically and manually segmented data. The algorithm has been tested on the widely used C57BL/6J strain, as well as on a selection of six recombinant inbred BXD strains, chosen especially for their largely variant hippocampus.
Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung
2015-02-01
Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.
Probabilistic flood damage modelling at the meso-scale
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno
2014-05-01
Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.
Neural Encoding and Integration of Learned Probabilistic Sequences in Avian Sensory-Motor Circuitry
Brainard, Michael S.
2013-01-01
Many complex behaviors, such as human speech and birdsong, reflect a set of categorical actions that can be flexibly organized into variable sequences. However, little is known about how the brain encodes the probabilities of such sequences. Behavioral sequences are typically characterized by the probability of transitioning from a given action to any subsequent action (which we term “divergence probability”). In contrast, we hypothesized that neural circuits might encode the probability of transitioning to a given action from any preceding action (which we term “convergence probability”). The convergence probability of repeatedly experienced sequences could naturally become encoded by Hebbian plasticity operating on the patterns of neural activity associated with those sequences. To determine whether convergence probability is encoded in the nervous system, we investigated how auditory-motor neurons in vocal premotor nucleus HVC of songbirds encode different probabilistic characterizations of produced syllable sequences. We recorded responses to auditory playback of pseudorandomly sequenced syllables from the bird's repertoire, and found that variations in responses to a given syllable could be explained by a positive linear dependence on the convergence probability of preceding sequences. Furthermore, convergence probability accounted for more response variation than other probabilistic characterizations, including divergence probability. Finally, we found that responses integrated over >7–10 syllables (∼700–1000 ms) with the sign, gain, and temporal extent of integration depending on convergence probability. Our results demonstrate that convergence probability is encoded in sensory-motor circuitry of the song-system, and suggest that encoding of convergence probability is a general feature of sensory-motor circuits. PMID:24198363
Probalistic Assessment of Radiation Risk for Solar Particle Events
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
2008-01-01
For long duration missions outside of the protection of the Earth's magnetic field, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon or Earth-to-Mars transit. The large majority (90%) of SPEs have small or no health consequences because the doses are low and the particles do not penetrate to organ depths. However, there is an operational challenge to respond to events of unknown size and duration. We have developed a probabilistic approach to SPE risk assessment in support of mission design and operational planning. Using the historical database of proton measurements during the past 5 solar cycles, the functional form of hazard function of SPE occurrence per cycle was found for nonhomogeneous Poisson model. A typical hazard function was defined as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions of particle fluences for a specified mission period were simulated ranging from its 5th to 95th percentile. Organ doses from large SPEs were assessed using NASA's Baryon transport model, BRYNTRN. The SPE risk was analyzed with the organ dose distribution for the given particle fluences during a mission period. In addition to the total particle fluences of SPEs, the detailed energy spectra of protons, especially at high energy levels, were recognized as extremely important for assessing the cancer risk associated with energetic particles for large events. The probability of exceeding the NASA 30-day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated for various SPE sizes. This probabilistic approach to SPE protection will be combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks in future work.
Smith, William B; Steinberg, Joni; Scholtes, Stefan; Mcnamara, Iain R
2017-03-01
To compare the age-based cost-effectiveness of total knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), and high tibial osteotomy (HTO) for the treatment of medial compartment knee osteoarthritis (MCOA). A Markov model was used to simulate theoretical cohorts of patients 40, 50, 60, and 70 years of age undergoing primary TKA, UKA, or HTO. Costs and outcomes associated with initial and subsequent interventions were estimated by following these virtual cohorts over a 10-year period. Revision and mortality rates, costs, and functional outcome data were estimated from a systematic review of the literature. Probabilistic analysis was conducted to accommodate these parameters' inherent uncertainty, and both discrete and probabilistic sensitivity analyses were utilized to assess the robustness of the model's outputs to changes in key variables. HTO was most likely to be cost-effective in cohorts under 60, and UKA most likely in those 60 and over. Probabilistic results did not indicate one intervention to be significantly more cost-effective than another. The model was exquisitely sensitive to changes in utility (functional outcome), somewhat sensitive to changes in cost, and least sensitive to changes in 10-year revision risk. HTO may be the most cost-effective option when treating MCOA in younger patients, while UKA may be preferred in older patients. Functional utility is the primary driver of the cost-effectiveness of these interventions. For the clinician, this study supports HTO as a competitive treatment option in young patient populations. It also validates each one of the three interventions considered as potentially optimal, depending heavily on patient preferences and functional utility derived over time.
A Multiatlas Segmentation Using Graph Cuts with Applications to Liver Segmentation in CT Scans
2014-01-01
An atlas-based segmentation approach is presented that combines low-level operations, an affine probabilistic atlas, and a multiatlas-based segmentation. The proposed combination provides highly accurate segmentation due to registrations and atlas selections based on the regions of interest (ROIs) and coarse segmentations. Our approach shares the following common elements between the probabilistic atlas and multiatlas segmentation: (a) the spatial normalisation and (b) the segmentation method, which is based on minimising a discrete energy function using graph cuts. The method is evaluated for the segmentation of the liver in computed tomography (CT) images. Low-level operations define a ROI around the liver from an abdominal CT. We generate a probabilistic atlas using an affine registration based on geometry moments from manually labelled data. Next, a coarse segmentation of the liver is obtained from the probabilistic atlas with low computational effort. Then, a multiatlas segmentation approach improves the accuracy of the segmentation. Both the atlas selections and the nonrigid registrations of the multiatlas approach use a binary mask defined by coarse segmentation. We experimentally demonstrate that this approach performs better than atlas selections and nonrigid registrations in the entire ROI. The segmentation results are comparable to those obtained by human experts and to other recently published results. PMID:25276219
Yurtkuran, Alkın; Emel, Erdal
2016-01-01
The artificial bee colony (ABC) algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA) to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.
NASA Astrophysics Data System (ADS)
Yu, Bo; Ning, Chao-lie; Li, Bing
2017-03-01
A probabilistic framework for durability assessment of concrete structures in marine environments was proposed in terms of reliability and sensitivity analysis, which takes into account the uncertainties under the environmental, material, structural and executional conditions. A time-dependent probabilistic model of chloride ingress was established first to consider the variations in various governing parameters, such as the chloride concentration, chloride diffusion coefficient, and age factor. Then the Nataf transformation was adopted to transform the non-normal random variables from the original physical space into the independent standard Normal space. After that the durability limit state function and its gradient vector with respect to the original physical parameters were derived analytically, based on which the first-order reliability method was adopted to analyze the time-dependent reliability and parametric sensitivity of concrete structures in marine environments. The accuracy of the proposed method was verified by comparing with the second-order reliability method and the Monte Carlo simulation. Finally, the influences of environmental conditions, material properties, structural parameters and execution conditions on the time-dependent reliability of concrete structures in marine environments were also investigated. The proposed probabilistic framework can be implemented in the decision-making algorithm for the maintenance and repair of deteriorating concrete structures in marine environments.
NASA Technical Reports Server (NTRS)
Shih, Ann T.; Lo, Yunnhon; Ward, Natalie C.
2010-01-01
Quantifying the probability of significant launch vehicle failure scenarios for a given design, while still in the design process, is critical to mission success and to the safety of the astronauts. Probabilistic risk assessment (PRA) is chosen from many system safety and reliability tools to verify the loss of mission (LOM) and loss of crew (LOC) requirements set by the NASA Program Office. To support the integrated vehicle PRA, probabilistic design analysis (PDA) models are developed by using vehicle design and operation data to better quantify failure probabilities and to better understand the characteristics of a failure and its outcome. This PDA approach uses a physics-based model to describe the system behavior and response for a given failure scenario. Each driving parameter in the model is treated as a random variable with a distribution function. Monte Carlo simulation is used to perform probabilistic calculations to statistically obtain the failure probability. Sensitivity analyses are performed to show how input parameters affect the predicted failure probability, providing insight for potential design improvements to mitigate the risk. The paper discusses the application of the PDA approach in determining the probability of failure for two scenarios from the NASA Ares I project
Functional, structural, and emotional correlates of impaired insight in cocaine addiction
Moeller, Scott J.; Konova, Anna B.; Parvaz, Muhammad A.; Tomasi, Dardo; Lane, Richard D.; Fort, Carolyn; Goldstein, Rita Z.
2014-01-01
Context Individuals with cocaine use disorder (CUD) have difficulty monitoring ongoing behavior, possibly stemming from dysfunction of brain regions subserving insight and self-awareness [e.g., anterior cingulate cortex (ACC)]. Objective To test the hypothesis that CUD with impaired insight (iCUD) would show abnormal (A) ACC activity during error processing, assessed with functional magnetic resonance imaging during a classic inhibitory control task; (B) ACC gray matter integrity assessed with voxel-based morphometry; and (C) awareness of one’s own emotional experiences, assessed with the Levels of Emotional Awareness Scale (LEAS). Using a previously validated probabilistic choice task, we grouped 33 CUD according to insight [iCUD: N=15; unimpaired insight CUD: N=18]; we also studied 20 healthy controls, all with unimpaired insight. Design Multimodal imaging design. Setting Clinical Research Center at Brookhaven National Laboratory. Participants Thirty-three CUD and 20 healthy controls. Main Outcome Measure Functional magnetic resonance imaging, voxel-based morphometry, LEAS, and drug use variables. Results Compared with the other two study groups, iCUD showed lower (A) error-induced rostral ACC (rACC) activity as associated with more frequent cocaine use; (B) gray matter within the rACC; and (C) LEAS scores. Conclusions These results point to rACC functional and structural abnormalities, and diminished emotional awareness, in a subpopulation of CUD characterized by impaired insight. Because the rACC has been implicated in appraising the affective/motivational significance of errors and other types of self-referential processing, functional and structural abnormalities in this region could result in lessened concern (frequently ascribed to minimization and denial) about behavioral outcomes that could potentially culminate in increased drug use. Treatments targeting this CUD subgroup could focus on enhancing the salience of errors (e.g., lapses). PMID:24258223
Structural and functional connectivity of the precuneus and thalamus to the default mode network.
Cunningham, Samantha I; Tomasi, Dardo; Volkow, Nora D
2017-02-01
Neuroimaging studies have identified functional interactions between the thalamus, precuneus, and default mode network (DMN) in studies of consciousness. However, less is known about the structural connectivity of the precuneus and thalamus to regions within the DMN. We used diffusion tensor imaging (DTI) to parcellate the precuneus and thalamus based on their probabilistic white matter connectivity to each other and DMN regions of interest (ROIs) in 37 healthy subjects from the Human Connectome Database. We further assessed resting-state functional connectivity (RSFC) among the precuneus, thalamus, and DMN ROIs. The precuneus was found to have the greatest structural connectivity with the thalamus, where connection fractional anisotropy (FA) increased with age. The precuneus also showed significant structural connectivity to the hippocampus and middle pre-frontal cortex, but minimal connectivity to the angular gyrus and midcingulate cortex. In contrast, the precuneus exhibited significant RSFC with the thalamus and the strongest RSFC with the AG. Significant symmetrical structural connectivity was found between the thalamus and hippocampus, mPFC, sFG, and precuneus that followed known thalamocortical pathways, while thalamic RSFC was strongest with the precuneus and hippocampus. Overall, these findings reveal high levels of structural and functional connectivity linking the thalamus, precuneus, and DMN. Differences between structural and functional connectivity (such as between the precuneus and AG) may be interpreted to reflect dynamic shifts in RSFC for cortical hub-regions involved with consciousness, but could also reflect the limitations of DTI to detect superficial white matter tracts that connect cortico-cortical regions. Hum Brain Mapp 38:938-956, 2017. © 2016 Wiley Periodicals, Inc. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-01-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Astrophysics Data System (ADS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-08-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1987-01-01
Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Probabilistic analysis for fatigue strength degradation of materials
NASA Technical Reports Server (NTRS)
Royce, Lola
1989-01-01
This report presents the results of the first year of a research program conducted for NASA-LeRC by the University of Texas at San Antonio. The research included development of methodology that provides a probabilistic treatment of lifetime prediction of structural components of aerospace propulsion systems subjected to fatigue. Material strength degradation models, based on primitive variables, include both a fatigue strength reduction model and a fatigue crack growth model. Linear elastic fracture mechanics is utilized in the latter model. Probabilistic analysis is based on simulation, and both maximum entropy and maximum penalized likelihood methods are used for the generation of probability density functions. The resulting constitutive relationships are included in several computer programs, RANDOM2, RANDOM3, and RANDOM4. These programs determine the random lifetime of an engine component, in mechanical load cycles, to reach a critical fatigue strength or crack size. The material considered was a cast nickel base superalloy, one typical of those used in the Space Shuttle Main Engine.
Robust Control Design for Systems With Probabilistic Uncertainty
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.
2005-01-01
This paper presents a reliability- and robustness-based formulation for robust control synthesis for systems with probabilistic uncertainty. In a reliability-based formulation, the probability of violating design requirements prescribed by inequality constraints is minimized. In a robustness-based formulation, a metric which measures the tendency of a random variable/process to cluster close to a target scalar/function is minimized. A multi-objective optimization procedure, which combines stability and performance requirements in time and frequency domains, is used to search for robustly optimal compensators. Some of the fundamental differences between the proposed strategy and conventional robust control methods are: (i) unnecessary conservatism is eliminated since there is not need for convex supports, (ii) the most likely plants are favored during synthesis allowing for probabilistic robust optimality, (iii) the tradeoff between robust stability and robust performance can be explored numerically, (iv) the uncertainty set is closely related to parameters with clear physical meaning, and (v) compensators with improved robust characteristics for a given control structure can be synthesized.
NASA Technical Reports Server (NTRS)
Bast, Callie C.; Boyce, Lola
1995-01-01
The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.
On the probabilistic structure of water age: Probabilistic Water Age
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porporato, Amilcare; Calabrese, Salvatore
We report the age distribution of water in hydrologic systems has received renewed interest recently, especially in relation to watershed response to rainfall inputs. The purpose of this contribution is first to draw attention to existing theories of age distributions in population dynamics, fluid mechanics and stochastic groundwater, and in particular to the McKendrick-von Foerster equation and its generalizations and solutions. A second and more important goal is to clarify that, when hydrologic fluxes are modeled by means of time-varying stochastic processes, the age distributions must themselves be treated as random functions. Once their probabilistic structure is obtained, it canmore » be used to characterize the variability of age distributions in real systems and thus help quantify the inherent uncertainty in the field determination of water age. Finally, we illustrate these concepts with reference to a stochastic storage model, which has been used as a minimalist model of soil moisture and streamflow dynamics.« less
On the probabilistic structure of water age: Probabilistic Water Age
Porporato, Amilcare; Calabrese, Salvatore
2015-04-23
We report the age distribution of water in hydrologic systems has received renewed interest recently, especially in relation to watershed response to rainfall inputs. The purpose of this contribution is first to draw attention to existing theories of age distributions in population dynamics, fluid mechanics and stochastic groundwater, and in particular to the McKendrick-von Foerster equation and its generalizations and solutions. A second and more important goal is to clarify that, when hydrologic fluxes are modeled by means of time-varying stochastic processes, the age distributions must themselves be treated as random functions. Once their probabilistic structure is obtained, it canmore » be used to characterize the variability of age distributions in real systems and thus help quantify the inherent uncertainty in the field determination of water age. Finally, we illustrate these concepts with reference to a stochastic storage model, which has been used as a minimalist model of soil moisture and streamflow dynamics.« less
Dependence in probabilistic modeling Dempster-Shafer theory and probability bounds analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferson, Scott; Nelsen, Roger B.; Hajagos, Janos
2015-05-01
This report summarizes methods to incorporate information (or lack of information) about inter-variable dependence into risk assessments that use Dempster-Shafer theory or probability bounds analysis to address epistemic and aleatory uncertainty. The report reviews techniques for simulating correlated variates for a given correlation measure and dependence model, computation of bounds on distribution functions under a specified dependence model, formulation of parametric and empirical dependence models, and bounding approaches that can be used when information about the intervariable dependence is incomplete. The report also reviews several of the most pervasive and dangerous myths among risk analysts about dependence in probabilistic models.
NASA Astrophysics Data System (ADS)
Ishibashi, Yoshihiro; Fukui, Minoru
2018-03-01
The effect of the probabilistic delayed start on the one-dimensional traffic flow is investigated on the basis of several models. Analogy with the degeneracy of the states and its resolution, as well as that with the mathematical procedures adopted for them, is utilized. The perturbation is assumed to be proportional to the probability of the delayed start, and the perturbation function is determined so that imposed conditions are fulfilled. The obtained formulas coincide with those previously derived on the basis of the mean-field analyses of the Nagel-Schreckenberg and Fukui-Ishibashi models, and reproduce the cellular automaton simulation results.
Probabilistic evaluation of fuselage-type composite structures
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1992-01-01
A methodology is developed to computationally simulate the uncertain behavior of composite structures. The uncertain behavior includes buckling loads, natural frequencies, displacements, stress/strain etc., which are the consequences of the random variation (scatter) of the primitive (independent random) variables in the constituent, ply, laminate and structural levels. This methodology is implemented in the IPACS (Integrated Probabilistic Assessment of Composite Structures) computer code. A fuselage-type composite structure is analyzed to demonstrate the code's capability. The probability distribution functions of the buckling loads, natural frequency, displacement, strain and stress are computed. The sensitivity of each primitive (independent random) variable to a given structural response is also identified from the analyses.
Probabilistic metrology or how some measurement outcomes render ultra-precise estimates
NASA Astrophysics Data System (ADS)
Calsamiglia, J.; Gendra, B.; Muñoz-Tapia, R.; Bagan, E.
2016-10-01
We show on theoretical grounds that, even in the presence of noise, probabilistic measurement strategies (which have a certain probability of failure or abstention) can provide, upon a heralded successful outcome, estimates with a precision that exceeds the deterministic bounds for the average precision. This establishes a new ultimate bound on the phase estimation precision of particular measurement outcomes (or sequence of outcomes). For probe systems subject to local dephasing, we quantify such precision limit as a function of the probability of failure that can be tolerated. Our results show that the possibility of abstaining can set back the detrimental effects of noise.
NASA Astrophysics Data System (ADS)
Setiawan, R.
2018-03-01
In this paper, Economic Order Quantity (EOQ) of probabilistic two-level supply – chain system for items with imperfect quality has been analyzed under service level constraint. A firm applies an active service level constraint to avoid unpredictable shortage terms in the objective function. Mathematical analysis of optimal result is delivered using two equilibrium scheme concept in game theory approach. Stackelberg’s equilibrium for cooperative strategy and Stackelberg’s Equilibrium for noncooperative strategy. This is a new approach to game theory result in inventory system whether service level constraint is applied by a firm in his moves.
Stochastic methods for analysis of power flow in electric networks
NASA Astrophysics Data System (ADS)
1982-09-01
The modeling and effects of probabilistic behavior on steady state power system operation were analyzed. A solution to the steady state network flow equations which adhere both to Kirchoff's Laws and probabilistic laws, using either combinatorial or functional approximation techniques was obtained. The development of sound techniques for producing meaningful data to serve as input is examined. Electric demand modeling, equipment failure analysis, and algorithm development are investigated. Two major development areas are described: a decomposition of stochastic processes which gives stationarity, ergodicity, and even normality; and a powerful surrogate probability approach using proportions of time which allows the calculation of joint events from one dimensional probability spaces.
Merker, Bjorn
2013-01-01
The 20 billion neurons of the neocortex have a mere hundred thousand motor neurons by which to express cortical contents in overt behavior. Implemented through a staggered cortical “efference cascade” originating in the descending axons of layer five pyramidal cells throughout the neocortical expanse, this steep convergence accomplishes final integration for action of cortical information through a system of interconnected subcortical way stations. Coherent and effective action control requires the inclusion of a continually updated joint “global best estimate” of current sensory, motivational, and motor circumstances in this process. I have previously proposed that this running best estimate is extracted from cortical probabilistic preliminaries by a subcortical neural “reality model” implementing our conscious sensory phenomenology. As such it must exhibit first person perspectival organization, suggested to derive from formating requirements of the brain's subsystem for gaze control, with the superior colliculus at its base. Gaze movements provide the leading edge of behavior by capturing targets of engagement prior to contact. The rotation-based geometry of directional gaze movements places their implicit origin inside the head, a location recoverable by cortical probabilistic source reconstruction from the rampant primary sensory variance generated by the incessant play of collicularly triggered gaze movements. At the interface between cortex and colliculus lies the dorsal pulvinar. Its unique long-range inhibitory circuitry may precipitate the brain's global best estimate of its momentary circumstances through multiple constraint satisfaction across its afferents from numerous cortical areas and colliculus. As phenomenal content of our sensory awareness, such a global best estimate would exhibit perspectival organization centered on a purely implicit first person origin, inherently incapable of appearing as a phenomenal content of the sensory space it serves. PMID:23950750
Wen, Hongwei; Liu, Yue; Rekik, Islem; Wang, Shengpei; Zhang, Jishui; Zhang, Yue; Peng, Yun; He, Huiguang
2017-08-01
Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. Although previous TS studies revealed structural abnormalities in distinct corticobasal ganglia circuits, the topological alterations of the whole-brain white matter (WM) structural networks remain poorly understood. Here, we used diffusion MRI probabilistic tractography and graph theoretical analysis to investigate the topological organization of WM networks in 44 drug-naive TS children and 41 age- and gender-matched healthy children. The WM networks were constructed by estimating inter-regional connectivity probability and the topological properties were characterized using graph theory. We found that both TS and control groups showed an efficient small-world organization in WM networks. However, compared to controls, TS children exhibited decreased global and local efficiency, increased shortest path length and small worldness, indicating a disrupted balance between local specialization and global integration in structural networks. Although both TS and control groups showed highly similar hub distributions, TS children exhibited significant decreased nodal efficiency, mainly distributed in the default mode, language, visual, and sensorimotor systems. Furthermore, two separate networks showing significantly decreased connectivity in TS group were identified using network-based statistical (NBS) analysis, primarily composed of the parieto-occipital cortex, precuneus, and paracentral lobule. Importantly, we combined support vector machine and multiple kernel learning frameworks to fuse multiple levels of network topological features for classification of individuals, achieving high accuracy of 86.47%. Together, our study revealed the disrupted topological organization of structural networks related to pathophysiology of TS, and the discriminative topological features for classification are potential quantitative neuroimaging biomarkers for clinical TS diagnosis. Hum Brain Mapp 38:3988-4008, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Bayesian network models for error detection in radiotherapy plans
NASA Astrophysics Data System (ADS)
Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.
2015-04-01
The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.
Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index1
Zou, Kelly H.; Warfield, Simon K.; Bharatha, Aditya; Tempany, Clare M.C.; Kaus, Michael R.; Haker, Steven J.; Wells, William M.; Jolesz, Ferenc A.; Kikinis, Ron
2005-01-01
Rationale and Objectives To examine a statistical validation method based on the spatial overlap between two sets of segmentations of the same anatomy. Materials and Methods The Dice similarity coefficient (DSC) was used as a statistical validation metric to evaluate the performance of both the reproducibility of manual segmentations and the spatial overlap accuracy of automated probabilistic fractional segmentation of MR images, illustrated on two clinical examples. Example 1: 10 consecutive cases of prostate brachytherapy patients underwent both preoperative 1.5T and intraoperative 0.5T MR imaging. For each case, 5 repeated manual segmentations of the prostate peripheral zone were performed separately on preoperative and on intraoperative images. Example 2: A semi-automated probabilistic fractional segmentation algorithm was applied to MR imaging of 9 cases with 3 types of brain tumors. DSC values were computed and logit-transformed values were compared in the mean with the analysis of variance (ANOVA). Results Example 1: The mean DSCs of 0.883 (range, 0.876–0.893) with 1.5T preoperative MRI and 0.838 (range, 0.819–0.852) with 0.5T intraoperative MRI (P < .001) were within and at the margin of the range of good reproducibility, respectively. Example 2: Wide ranges of DSC were observed in brain tumor segmentations: Meningiomas (0.519–0.893), astrocytomas (0.487–0.972), and other mixed gliomas (0.490–0.899). Conclusion The DSC value is a simple and useful summary measure of spatial overlap, which can be applied to studies of reproducibility and accuracy in image segmentation. We observed generally satisfactory but variable validation results in two clinical applications. This metric may be adapted for similar validation tasks. PMID:14974593
ProMotE: an efficient algorithm for counting independent motifs in uncertain network topologies.
Ren, Yuanfang; Sarkar, Aisharjya; Kahveci, Tamer
2018-06-26
Identifying motifs in biological networks is essential in uncovering key functions served by these networks. Finding non-overlapping motif instances is however a computationally challenging task. The fact that biological interactions are uncertain events further complicates the problem, as it makes the existence of an embedding of a given motif an uncertain event as well. In this paper, we develop a novel method, ProMotE (Probabilistic Motif Embedding), to count non-overlapping embeddings of a given motif in probabilistic networks. We utilize a polynomial model to capture the uncertainty. We develop three strategies to scale our algorithm to large networks. Our experiments demonstrate that our method scales to large networks in practical time with high accuracy where existing methods fail. Moreover, our experiments on cancer and degenerative disease networks show that our method helps in uncovering key functional characteristics of biological networks.
Probability and Cumulative Density Function Methods for the Stochastic Advection-Reaction Equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barajas-Solano, David A.; Tartakovsky, Alexandre M.
We present a cumulative density function (CDF) method for the probabilistic analysis of $d$-dimensional advection-dominated reactive transport in heterogeneous media. We employ a probabilistic approach in which epistemic uncertainty on the spatial heterogeneity of Darcy-scale transport coefficients is modeled in terms of random fields with given correlation structures. Our proposed CDF method employs a modified Large-Eddy-Diffusivity (LED) approach to close and localize the nonlocal equations governing the one-point PDF and CDF of the concentration field, resulting in a $(d + 1)$ dimensional PDE. Compared to the classsical LED localization, the proposed modified LED localization explicitly accounts for the mean-field advectivemore » dynamics over the phase space of the PDF and CDF. To illustrate the accuracy of the proposed closure, we apply our CDF method to one-dimensional single-species reactive transport with uncertain, heterogeneous advection velocities and reaction rates modeled as random fields.« less
NASA Astrophysics Data System (ADS)
Bandte, Oliver
It has always been the intention of systems engineering to invent or produce the best product possible. Many design techniques have been introduced over the course of decades that try to fulfill this intention. Unfortunately, no technique has succeeded in combining multi-criteria decision making with probabilistic design. The design technique developed in this thesis, the Joint Probabilistic Decision Making (JPDM) technique, successfully overcomes this deficiency by generating a multivariate probability distribution that serves in conjunction with a criterion value range of interest as a universally applicable objective function for multi-criteria optimization and product selection. This new objective function constitutes a meaningful Xnetric, called Probability of Success (POS), that allows the customer or designer to make a decision based on the chance of satisfying the customer's goals. In order to incorporate a joint probabilistic formulation into the systems design process, two algorithms are created that allow for an easy implementation into a numerical design framework: the (multivariate) Empirical Distribution Function and the Joint Probability Model. The Empirical Distribution Function estimates the probability that an event occurred by counting how many times it occurred in a given sample. The Joint Probability Model on the other hand is an analytical parametric model for the multivariate joint probability. It is comprised of the product of the univariate criterion distributions, generated by the traditional probabilistic design process, multiplied with a correlation function that is based on available correlation information between pairs of random variables. JPDM is an excellent tool for multi-objective optimization and product selection, because of its ability to transform disparate objectives into a single figure of merit, the likelihood of successfully meeting all goals or POS. The advantage of JPDM over other multi-criteria decision making techniques is that POS constitutes a single optimizable function or metric that enables a comparison of all alternative solutions on an equal basis. Hence, POS allows for the use of any standard single-objective optimization technique available and simplifies a complex multi-criteria selection problem into a simple ordering problem, where the solution with the highest POS is best. By distinguishing between controllable and uncontrollable variables in the design process, JPDM can account for the uncertain values of the uncontrollable variables that are inherent to the design problem, while facilitating an easy adjustment of the controllable ones to achieve the highest possible POS. Finally, JPDM's superiority over current multi-criteria decision making techniques is demonstrated with an optimization of a supersonic transport concept and ten contrived equations as well as a product selection example, determining an airline's best choice among Boeing's B-747, B-777, Airbus' A340, and a Supersonic Transport. The optimization examples demonstrate JPDM's ability to produce a better solution with a higher POS than an Overall Evaluation Criterion or Goal Programming approach. Similarly, the product selection example demonstrates JPDM's ability to produce a better solution with a higher POS and different ranking than the Overall Evaluation Criterion or Technique for Order Preferences by Similarity to the Ideal Solution (TOPSIS) approach.
2017-01-01
Abstract Structural alterations in long‐range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non‐systematic. Harnessing diffusion‐weighted imaging and probabilistic tractography in humans, we investigate connections between two main amygdala nucleus groups, thalamic nuclei, and cortex. We first parcellated amygdala into deep (basolateral) and superficial (centrocortical) nucleus groups, and thalamus into six subregions, using previously established protocols based on connectivity. Cortex was parcellated based on T1‐weighted images. We found substantial amygdala connections to thalamus, with different patterns for the two amygdala nuclei. Crucially, we describe direct subcortical connections between amygdala and paraventricular thalamus. Different from rodents but similar to non‐human primates, these are more pronounced for basolateral than centrocortical amygdala. Substantial white‐matter connectivity between amygdala and visual pulvinar is also more pronounced for basolateral amygdala. Furthermore, we establish detailed connectivity profiles for basolateral and centrocortical amygdala to cortical regions. These exhibit cascadic connections with sensory cortices as suggested previously based on tracer methods in non‐human animals. We propose that the quantitative connectivity profiles provided here may guide future work on normal and pathological function of human amygdala. Hum Brain Mapp 38:3927–3940, 2017. © 2017 Wiley Periodicals, Inc. PMID:28512761
Griffiths, K R; Lagopoulos, J; Hermens, D F; Hickie, I B; Balleine, B W
2015-01-01
Cognitive impairment is a functionally disabling feature of depression contributing to maladaptive decision-making, a loss of behavioral control and an increased disease burden. The ability to calculate the causal efficacy of ones actions in achieving specific goals is critical to normal decision-making and, in this study, we combined voxel-based morphometry (VBM), shape analysis and diffusion tensor tractography to investigate the relationship between cortical–basal ganglia structural integrity and such causal awareness in 43 young subjects with depression and 21 demographically similar healthy controls. Volumetric analysis determined a relationship between right pallidal size and sensitivity to the causal status of specific actions. More specifically, shape analysis identified dorsolateral surface vertices where an inward location was correlated with reduced levels of causal awareness. Probabilistic tractography revealed that affected parts of the pallidum were primarily connected with the striatum, dorsal thalamus and hippocampus. VBM did not reveal any whole-brain gray matter regions that correlated with causal awareness. We conclude that volumetric reduction within the indirect pathway involving the right dorsolateral pallidum is associated with reduced awareness of the causal efficacy of goal-directed actions in young depressed individuals. This causal awareness task allows for the identification of a functionally and biologically relevant subgroup to which more targeted cognitive interventions could be applied, potentially enhancing the long-term outcomes for these individuals. PMID:26440541
Brain tumor segmentation from multimodal magnetic resonance images via sparse representation.
Li, Yuhong; Jia, Fucang; Qin, Jing
2016-10-01
Accurately segmenting and quantifying brain gliomas from magnetic resonance (MR) images remains a challenging task because of the large spatial and structural variability among brain tumors. To develop a fully automatic and accurate brain tumor segmentation algorithm, we present a probabilistic model of multimodal MR brain tumor segmentation. This model combines sparse representation and the Markov random field (MRF) to solve the spatial and structural variability problem. We formulate the tumor segmentation problem as a multi-classification task by labeling each voxel as the maximum posterior probability. We estimate the maximum a posteriori (MAP) probability by introducing the sparse representation into a likelihood probability and a MRF into the prior probability. Considering the MAP as an NP-hard problem, we convert the maximum posterior probability estimation into a minimum energy optimization problem and employ graph cuts to find the solution to the MAP estimation. Our method is evaluated using the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013) and obtained Dice coefficient metric values of 0.85, 0.75, and 0.69 on the high-grade Challenge data set, 0.73, 0.56, and 0.54 on the high-grade Challenge LeaderBoard data set, and 0.84, 0.54, and 0.57 on the low-grade Challenge data set for the complete, core, and enhancing regions. The experimental results show that the proposed algorithm is valid and ranks 2nd compared with the state-of-the-art tumor segmentation algorithms in the MICCAI BRATS 2013 challenge. Copyright © 2016 Elsevier B.V. All rights reserved.
Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia.
Napadow, Vitaly; Kim, Jieun; Clauw, Daniel J; Harris, Richard E
2012-07-01
A major impediment to the development of novel treatment strategies for fibromyalgia (FM) is the lack of an objective marker that reflects spontaneously reported clinical pain in patients with FM. Studies of resting-state intrinsic brain connectivity in FM have demonstrated increased insular connectivity to the default mode network (DMN), a network whose activity is increased during nontask states. Moreover, increased insular connectivity to the DMN was associated with increased spontaneous pain levels. However, as these analyses were cross-sectional in nature, they provided no insight into dynamic changes in connectivity or their relationship to variations in self-reported clinical pain. The purpose of this study was to evaluate longitudinal changes in the intrinsic brain connectivity of FM patients treated with nonpharmacologic interventions known to modulate pain levels in this patient population, and to test the hypothesis that the reduction of DMN-insula connectivity following therapy would correlate with diminished pain. Seventeen FM patients underwent resting-state functional magnetic resonance imaging at baseline and following 4 weeks of a nonpharmacologic intervention to diminish pain. Intrinsic DMN connectivity was evaluated using probabilistic independent components analysis. Longitudinal changes in intrinsic DMN connectivity were evaluated by paired analysis, and correlations between longitudinal changes in clinical pain and changes in intrinsic DMN connectivity were investigated by multiple linear regression analysis. Changes in clinical pain were assessed with the short form of the McGill Pain Questionnaire (SF-MPQ). Clinical pain as assessed using the sensory scale of the SF-MPQ was reduced following therapy (P=0.02). Intrinsic DMN connectivity to the insula was reduced, and this reduction correlated with reductions in pain (corrected P<0.05). Our findings suggest that intrinsic brain connectivity can be used as a candidate objective marker that reflects changes in spontaneous chronic pain within individual FM patients. We propose that intrinsic connectivity measures could potentially be used in either research or clinical settings as a complementary, more objective outcome measure for use in FM. Copyright © 2012 by the American College of Rheumatology.
Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing.
Ciullo, Valentina; Vecchio, Daniela; Gili, Tommaso; Spalletta, Gianfranco; Piras, Federica
2018-01-01
The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition) or onset (temporal condition) were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation. Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between explicit and implicit temporal orienting processes was considered at the long interval, we found that explicit processes were related to centrality measures of the bilateral inferior parietal lobule. Degree centrality of the same region in the left hemisphere covaried with behavioral measures indexing the process of attentional re-orienting. These results represent a crucial step forward the ordinary predictive processing description, as we identified the patterns of connectivity characterizing the brain organization associated with the ability to generate and update temporal expectancies in case of contextual violations.
NASA Astrophysics Data System (ADS)
Bressler, Steven L.
2014-09-01
Pessoa [5] has performed a valuable service by reviewing the extant literature on brain networks and making a number of interesting proposals about their cognitive function. The term function is at the core of understanding the brain networks of cognition, or neurocognitive networks (NCNs) [1]. The great Russian neuropsychologist, Luria [4], defined brain function as the common task executed by a distributed brain network of complex dynamic structures united by the demands of cognition. Casting Luria in a modern light, we can say that function emerges from the interactions of brain regions in NCNs as they dynamically self-organize according to cognitive demands. Pessoa rightly details the mapping between brain function and structure, emphasizing both its pluripotency (one structure having multiple functions) and degeneracy (many structures having the same function). However, he fails to consider the potential importance of a one-to-one mapping between NCNs and function. If NCNs are uniquely composed of specific collections of brain areas, then each NCN has a unique function determined by that composition.
Tractography patterns of subthalamic nucleus deep brain stimulation.
Vanegas-Arroyave, Nora; Lauro, Peter M; Huang, Ling; Hallett, Mark; Horovitz, Silvina G; Zaghloul, Kareem A; Lungu, Codrin
2016-04-01
Deep brain stimulation therapy is an effective symptomatic treatment for Parkinson's disease, yet the precise mechanisms responsible for its therapeutic effects remain unclear. Although the targets of deep brain stimulation are grey matter structures, axonal modulation is known to play an important role in deep brain stimulation's therapeutic mechanism. Several white matter structures in proximity to the subthalamic nucleus have been implicated in the clinical benefits of deep brain stimulation for Parkinson's disease. We assessed the connectivity patterns that characterize clinically beneficial electrodes in Parkinson's disease patients, after deep brain stimulation of the subthalamic nucleus. We evaluated 22 patients with Parkinson's disease (11 females, age 57 ± 9.1 years, disease duration 13.3 ± 6.3 years) who received bilateral deep brain stimulation of the subthalamic nucleus at the National Institutes of Health. During an initial electrode screening session, one month after deep brain stimulation implantation, the clinical benefits of each contact were determined. The electrode was localized by coregistering preoperative magnetic resonance imaging and postoperative computer tomography images and the volume of tissue activated was estimated from stimulation voltage and impedance. Brain connectivity for the volume of tissue activated of deep brain stimulation contacts was assessed using probabilistic tractography with diffusion-tensor data. Areas most frequently connected to clinically effective contacts included the thalamus, substantia nigra, brainstem and superior frontal gyrus. A series of discriminant analyses demonstrated that the strength of connectivity to the superior frontal gyrus and the thalamus were positively associated with clinical effectiveness. The connectivity patterns observed in our study suggest that the modulation of white matter tracts directed to the superior frontal gyrus and the thalamus is associated with favourable clinical outcomes and may contribute to the therapeutic effects of deep brain stimulation. Our method can be further developed to reliably identify effective deep brain stimulation contacts and aid in the programming process. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Towards an improved ensemble precipitation forecast: A probabilistic post-processing approach
NASA Astrophysics Data System (ADS)
Khajehei, Sepideh; Moradkhani, Hamid
2017-03-01
Recently, ensemble post-processing (EPP) has become a commonly used approach for reducing the uncertainty in forcing data and hence hydrologic simulation. The procedure was introduced to build ensemble precipitation forecasts based on the statistical relationship between observations and forecasts. More specifically, the approach relies on a transfer function that is developed based on a bivariate joint distribution between the observations and the simulations in the historical period. The transfer function is used to post-process the forecast. In this study, we propose a Bayesian EPP approach based on copula functions (COP-EPP) to improve the reliability of the precipitation ensemble forecast. Evaluation of the copula-based method is carried out by comparing the performance of the generated ensemble precipitation with the outputs from an existing procedure, i.e. mixed type meta-Gaussian distribution. Monthly precipitation from Climate Forecast System Reanalysis (CFS) and gridded observation from Parameter-Elevation Relationships on Independent Slopes Model (PRISM) have been employed to generate the post-processed ensemble precipitation. Deterministic and probabilistic verification frameworks are utilized in order to evaluate the outputs from the proposed technique. Distribution of seasonal precipitation for the generated ensemble from the copula-based technique is compared to the observation and raw forecasts for three sub-basins located in the Western United States. Results show that both techniques are successful in producing reliable and unbiased ensemble forecast, however, the COP-EPP demonstrates considerable improvement in the ensemble forecast in both deterministic and probabilistic verification, in particular in characterizing the extreme events in wet seasons.
White Matter Volume Predicts Language Development in Congenital Heart Disease
Rollins, Caitlin K.; Asaro, Lisa A.; Akhondi-Asl, Alireza; Kussman, Barry D.; Rivkin, Michael J.; Bellinger, David C.; Warfield, Simon K.; Wypij, David; Newburger, Jane W.; Soul, Janet S.
2016-01-01
Objective To determine whether brain volume is reduced at one year and whether these volumes are associated with neurodevelopment in biventricular congenital heart disease (CHD) repaired in infancy. Study design Infants with biventricular CHD (n = 48) underwent brain magnetic resonance imaging (MRI) and neurodevelopmental testing with the Bayley Scales of Infant Development-II (BSID-II) and the MacArthur-Bates Communicative Development Inventories (CDI) at one year. A multi-template based probabilistic segmentation algorithm was applied to volumetric MRI data. We compared volumes with those of 13 healthy control infants of comparable ages. In the CHD group, we measured Spearman correlations between neurodevelopmental outcomes and the residuals from linear regression of the volumes on corrected chronological age at MRI and sex. Results Compared with controls, CHD infant had reductions of 54 mL in total brain (P = 0.009), 40 mL in cerebral white matter (P < 0.001), and 1.2 mL in brainstem (P = 0.003) volumes. Within the CHD group, brain volumes were not correlated with BSID-II scores but did correlate positively with CDI language development. Conclusion Infants with biventricular CHD show total brain volume reductions at one year of age, driven by differences in cerebral white matter. White matter volume correlates with language development, but not broader developmental indices. These findings suggest that abnormalities in white matter development detected months after corrective heart surgery may contribute to language impairment. Trial registration ClinicalTrials.gov: NCT00006183 PMID:27837950
Motivational orientation modulates the neural response to reward.
Linke, Julia; Kirsch, Peter; King, Andrea V; Gass, Achim; Hennerici, Michael G; Bongers, André; Wessa, Michèle
2010-02-01
Motivational orientation defines the source of motivation for an individual to perform a particular action and can either originate from internal desires (e.g., interest) or external compensation (e.g., money). To this end, motivational orientation should influence the way positive or negative feedback is processed during learning situations and this might in turn have an impact on the learning process. In the present study, we thus investigated whether motivational orientation, i.e., extrinsic and intrinsic motivation modulates the neural response to reward and punishment as well as learning from reward and punishment in 33 healthy individuals. To assess neural responses to reward, punishment and learning of reward contingencies we employed a probabilistic reversal learning task during functional magnetic resonance imaging. Extrinsic and intrinsic motivation were assessed with a self-report questionnaire. Rewarding trials fostered activation in the medial orbitofrontal cortex and anterior cingulate gyrus (ACC) as well as the amygdala and nucleus accumbens, whereas for punishment an increased neural response was observed in the medial and inferior prefrontal cortex, the superior parietal cortex and the insula. High extrinsic motivation was positively correlated to increased neural responses to reward in the ACC, amygdala and putamen, whereas a negative relationship between intrinsic motivation and brain activation in these brain regions was observed. These findings show that motivational orientation indeed modulates the responsiveness to reward delivery in major components of the human reward system and therefore extends previous results showing a significant influence of individual differences in reward-related personality traits on the neural processing of reward. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Monge, Zachary A.; Greenwood, Pamela M.; Parasuraman, Raja; Strenziok, Maren
2016-01-01
Objective Although reasoning and attention are two cognitive processes necessary for ensuring the efficiency of many everyday activities in older adults, the role of white matter integrity in these processes has been little studied. This is an important question due to the role of white matter integrity as a neural substrate of cognitive aging. Here, we sought to examine the white matter tracts subserving reasoning and visuospatial attention in healthy older adults. Method Sixty-one adults aged 60 and older completed a battery of cognitive tests to assess reasoning and visuospatial attention. In addition, diffusion tensor images were collected to assess Fractional Anisotropy (FA) – a measure of white matter integrity. A principle component analysis of the test scores yielded two components: reasoning and visuospatial attention. Whole-brain correlations between FA and the cognitive components were submitted to probabilistic tractography analyses for visualization of cortical targets of tracts. Results For reasoning, bilateral thalamo-anterior prefrontal, anterior corpus callosum, and corpus callosum body tracts interconnecting the superior frontal cortices and right cingulum bundle were found. For visuospatial attention, a right inferior fronto-parietal tract, and bilateral parietal and temporal connections were found. Conclusions We conclude that in older adults, prefrontal cortex white matter tracts and interhemispheric communication are important in higher order cognitive functioning. On the other hand, right-sided fronto-parietal tracts appear to be critical for supporting control of cognitive processes, such as redirecting attention. Researchers may use our results to develop neuroscience-based interventions for older adults targeting brain mechanisms involved in cognitive plasticity. PMID:26986750
Label fusion based brain MR image segmentation via a latent selective model
NASA Astrophysics Data System (ADS)
Liu, Gang; Guo, Xiantang; Zhu, Kai; Liao, Hengxu
2018-04-01
Multi-atlas segmentation is an effective approach and increasingly popular for automatically labeling objects of interest in medical images. Recently, segmentation methods based on generative models and patch-based techniques have become the two principal branches of label fusion. However, these generative models and patch-based techniques are only loosely related, and the requirement for higher accuracy, faster segmentation, and robustness is always a great challenge. In this paper, we propose novel algorithm that combines the two branches using global weighted fusion strategy based on a patch latent selective model to perform segmentation of specific anatomical structures for human brain magnetic resonance (MR) images. In establishing this probabilistic model of label fusion between the target patch and patch dictionary, we explored the Kronecker delta function in the label prior, which is more suitable than other models, and designed a latent selective model as a membership prior to determine from which training patch the intensity and label of the target patch are generated at each spatial location. Because the image background is an equally important factor for segmentation, it is analyzed in label fusion procedure and we regard it as an isolated label to keep the same privilege between the background and the regions of interest. During label fusion with the global weighted fusion scheme, we use Bayesian inference and expectation maximization algorithm to estimate the labels of the target scan to produce the segmentation map. Experimental results indicate that the proposed algorithm is more accurate and robust than the other segmentation methods.
fMRI evidence for strategic decision-making during resolution of pronoun reference.
McMillan, Corey T; Clark, Robin; Gunawardena, Delani; Ryant, Neville; Grossman, Murray
2012-04-01
Pronouns are extraordinarily common in daily language yet little is known about the neural mechanisms that support decisions about pronoun reference. We propose a large-scale neural network for resolving pronoun reference that consists of two components. First, a core language network in peri-Sylvian cortex supports syntactic and semantic resources for interpreting pronoun meaning in sentences. Second, a frontal-parietal network that supports strategic decision-making is recruited to support probabilistic and risk-related components of resolving a pronoun's referent. In an fMRI study of healthy young adults, we observed activation of left inferior frontal and superior temporal cortex, consistent with a language network. We also observed activation of brain regions not associated with traditional language areas. By manipulating the context of the pronoun, we were able to demonstrate recruitment of dorsolateral prefrontal cortex during probabilistic evaluation of a pronoun's reference, and orbital frontal activation when a pronoun must adopt a risky referent. Together, these findings are consistent with a two-component model for resolving a pronoun's reference that includes neuroanatomic regions supporting core linguistic and decision-making mechanisms. Copyright © 2012 Elsevier Ltd. All rights reserved.
Solway, A.; Botvinick, M.
2013-01-01
Recent work has given rise to the view that reward-based decision making is governed by two key controllers: a habit system, which stores stimulus-response associations shaped by past reward, and a goal-oriented system that selects actions based on their anticipated outcomes. The current literature provides a rich body of computational theory addressing habit formation, centering on temporal-difference learning mechanisms. Less progress has been made toward formalizing the processes involved in goal-directed decision making. We draw on recent work in cognitive neuroscience, animal conditioning, cognitive and developmental psychology and machine learning, to outline a new theory of goal-directed decision making. Our basic proposal is that the brain, within an identifiable network of cortical and subcortical structures, implements a probabilistic generative model of reward, and that goal-directed decision making is effected through Bayesian inversion of this model. We present a set of simulations implementing the account, which address benchmark behavioral and neuroscientific findings, and which give rise to a set of testable predictions. We also discuss the relationship between the proposed framework and other models of decision making, including recent models of perceptual choice, to which our theory bears a direct connection. PMID:22229491
Vinken, Kasper; Vogels, Rufin
2017-11-20
In predictive coding theory, the brain is conceptualized as a prediction machine that constantly constructs and updates expectations of the sensory environment [1]. In the context of this theory, Bell et al.[2] recently studied the effect of the probability of task-relevant stimuli on the activity of macaque inferior temporal (IT) neurons and observed a reduced population response to expected faces in face-selective neurons. They concluded that "IT neurons encode long-term, latent probabilistic information about stimulus occurrence", supporting predictive coding. They manipulated expectation by the frequency of face versus fruit stimuli in blocks of trials. With such a design, stimulus repetition is confounded with expectation. As previous studies showed that IT neurons decrease their response with repetition [3], such adaptation (or repetition suppression), instead of expectation suppression as assumed by the authors, could explain their effects. The authors attempted to control for this alternative interpretation with a multiple regression approach. Here we show by using simulation that adaptation can still masquerade as expectation effects reported in [2]. Further, the results from the regression model used for most analyses cannot be trusted, because the model is not uniquely defined. Copyright © 2017 Elsevier Ltd. All rights reserved.
Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis.
Song, Jie; Nair, Veena A; Gaggl, Wolfgang; Prabhakaran, Vivek
2015-06-01
The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently.
Raffelt, David A.; Smith, Robert E.; Ridgway, Gerard R.; Tournier, J-Donald; Vaughan, David N.; Rose, Stephen; Henderson, Robert; Connelly, Alan
2015-01-01
In brain regions containing crossing fibre bundles, voxel-average diffusion MRI measures such as fractional anisotropy (FA) are difficult to interpret, and lack within-voxel single fibre population specificity. Recent work has focused on the development of more interpretable quantitative measures that can be associated with a specific fibre population within a voxel containing crossing fibres (herein we use fixel to refer to a specific fibre population within a single voxel). Unfortunately, traditional 3D methods for smoothing and cluster-based statistical inference cannot be used for voxel-based analysis of these measures, since the local neighbourhood for smoothing and cluster formation can be ambiguous when adjacent voxels may have different numbers of fixels, or ill-defined when they belong to different tracts. Here we introduce a novel statistical method to perform whole-brain fixel-based analysis called connectivity-based fixel enhancement (CFE). CFE uses probabilistic tractography to identify structurally connected fixels that are likely to share underlying anatomy and pathology. Probabilistic connectivity information is then used for tract-specific smoothing (prior to the statistical analysis) and enhancement of the statistical map (using a threshold-free cluster enhancement-like approach). To investigate the characteristics of the CFE method, we assessed sensitivity and specificity using a large number of combinations of CFE enhancement parameters and smoothing extents, using simulated pathology generated with a range of test-statistic signal-to-noise ratios in five different white matter regions (chosen to cover a broad range of fibre bundle features). The results suggest that CFE input parameters are relatively insensitive to the characteristics of the simulated pathology. We therefore recommend a single set of CFE parameters that should give near optimal results in future studies where the group effect is unknown. We then demonstrate the proposed method by comparing apparent fibre density between motor neurone disease (MND) patients with control subjects. The MND results illustrate the benefit of fixel-specific statistical inference in white matter regions that contain crossing fibres. PMID:26004503
Ma, Zhiwei; Perez, Pablo; Ma, Zilu; Liu, Yikang; Hamilton, Christina; Liang, Zhifeng; Zhang, Nanyin
2018-04-15
Connectivity-based parcellation approaches present an innovative method to segregate the brain into functionally specialized regions. These approaches have significantly advanced our understanding of the human brain organization. However, parallel progress in animal research is sparse. Using resting-state fMRI data and a novel, data-driven parcellation method, we have obtained robust functional parcellations of the rat brain. These functional parcellations reveal the regional specialization of the rat brain, which exhibited high within-parcel homogeneity and high reproducibility across animals. Graph analysis of the whole-brain network constructed based on these functional parcels indicates that the rat brain has a topological organization similar to humans, characterized by both segregation and integration. Our study also provides compelling evidence that the cingulate cortex is a functional hub region conserved from rodents to humans. Together, this study has characterized the rat brain specialization and integration, and has significantly advanced our understanding of the rat brain organization. In addition, it is valuable for studies of comparative functional neuroanatomy in mammalian brains. Copyright © 2016 Elsevier Inc. All rights reserved.
Taslimitehrani, Vahid; Dong, Guozhu; Pereira, Naveen L; Panahiazar, Maryam; Pathak, Jyotishman
2016-04-01
Computerized survival prediction in healthcare identifying the risk of disease mortality, helps healthcare providers to effectively manage their patients by providing appropriate treatment options. In this study, we propose to apply a classification algorithm, Contrast Pattern Aided Logistic Regression (CPXR(Log)) with the probabilistic loss function, to develop and validate prognostic risk models to predict 1, 2, and 5year survival in heart failure (HF) using data from electronic health records (EHRs) at Mayo Clinic. The CPXR(Log) constructs a pattern aided logistic regression model defined by several patterns and corresponding local logistic regression models. One of the models generated by CPXR(Log) achieved an AUC and accuracy of 0.94 and 0.91, respectively, and significantly outperformed prognostic models reported in prior studies. Data extracted from EHRs allowed incorporation of patient co-morbidities into our models which helped improve the performance of the CPXR(Log) models (15.9% AUC improvement), although did not improve the accuracy of the models built by other classifiers. We also propose a probabilistic loss function to determine the large error and small error instances. The new loss function used in the algorithm outperforms other functions used in the previous studies by 1% improvement in the AUC. This study revealed that using EHR data to build prediction models can be very challenging using existing classification methods due to the high dimensionality and complexity of EHR data. The risk models developed by CPXR(Log) also reveal that HF is a highly heterogeneous disease, i.e., different subgroups of HF patients require different types of considerations with their diagnosis and treatment. Our risk models provided two valuable insights for application of predictive modeling techniques in biomedicine: Logistic risk models often make systematic prediction errors, and it is prudent to use subgroup based prediction models such as those given by CPXR(Log) when investigating heterogeneous diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Neural connections foster social connections: a diffusion-weighted imaging study of social networks
Hampton, William H.; Unger, Ashley; Von Der Heide, Rebecca J.
2016-01-01
Although we know the transition from childhood to adulthood is marked by important social and neural development, little is known about how social network size might affect neurocognitive development or vice versa. Neuroimaging research has identified several brain regions, such as the amygdala, as key to this affiliative behavior. However, white matter connectivity among these regions, and its behavioral correlates, remain unclear. Here we tested two hypotheses: that an amygdalocentric structural white matter network governs social affiliative behavior and that this network changes during adolescence and young adulthood. We measured social network size behaviorally, and white matter microstructure using probabilistic diffusion tensor imaging in a sample of neurologically normal adolescents and young adults. Our results suggest amygdala white matter microstructure is key to understanding individual differences in social network size, with connectivity to other social brain regions such as the orbitofrontal cortex and anterior temporal lobe predicting much variation. In addition, participant age correlated with both network size and white matter variation in this network. These findings suggest the transition to adulthood may constitute a critical period for the optimization of structural brain networks underlying affiliative behavior. PMID:26755769
Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis
Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming
2013-01-01
Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508