Development of a Probabilistic Tsunami Hazard Analysis in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toshiaki Sakai; Tomoyoshi Takeda; Hiroshi Soraoka
2006-07-01
It is meaningful for tsunami assessment to evaluate phenomena beyond the design basis as well as seismic design. Because once we set the design basis tsunami height, we still have possibilities tsunami height may exceeds the determined design tsunami height due to uncertainties regarding the tsunami phenomena. Probabilistic tsunami risk assessment consists of estimating for tsunami hazard and fragility of structures and executing system analysis. In this report, we apply a method for probabilistic tsunami hazard analysis (PTHA). We introduce a logic tree approach to estimate tsunami hazard curves (relationships between tsunami height and probability of excess) and present anmore » example for Japan. Examples of tsunami hazard curves are illustrated, and uncertainty in the tsunami hazard is displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves. The result of PTHA will be used for quantitative assessment of the tsunami risk for important facilities located on coastal area. Tsunami hazard curves are the reasonable input data for structures and system analysis. However the evaluation method for estimating fragility of structures and the procedure of system analysis is now being developed. (authors)« less
Probabilistic wind/tornado/missile analyses for hazard and fragility evaluations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Y.J.; Reich, M.
Detailed analysis procedures and examples are presented for the probabilistic evaluation of hazard and fragility against high wind, tornado, and tornado-generated missiles. In the tornado hazard analysis, existing risk models are modified to incorporate various uncertainties including modeling errors. A significant feature of this paper is the detailed description of the Monte-Carlo simulation analyses of tornado-generated missiles. A simulation procedure, which includes the wind field modeling, missile injection, solution of flight equations, and missile impact analysis, is described with application examples.
Probabilistic analysis of tsunami hazards
Geist, E.L.; Parsons, T.
2006-01-01
Determining the likelihood of a disaster is a key component of any comprehensive hazard assessment. This is particularly true for tsunamis, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models. We discuss probabilistic tsunami hazard analysis (PTHA) from the standpoint of integrating computational methods with empirical analysis of past tsunami runup. PTHA is derived from probabilistic seismic hazard analysis (PSHA), with the main difference being that PTHA must account for far-field sources. The computational methods rely on numerical tsunami propagation models rather than empirical attenuation relationships as in PSHA in determining ground motions. Because a number of source parameters affect local tsunami runup height, PTHA can become complex and computationally intensive. Empirical analysis can function in one of two ways, depending on the length and completeness of the tsunami catalog. For site-specific studies where there is sufficient tsunami runup data available, hazard curves can primarily be derived from empirical analysis, with computational methods used to highlight deficiencies in the tsunami catalog. For region-wide analyses and sites where there are little to no tsunami data, a computationally based method such as Monte Carlo simulation is the primary method to establish tsunami hazards. Two case studies that describe how computational and empirical methods can be integrated are presented for Acapulco, Mexico (site-specific) and the U.S. Pacific Northwest coastline (region-wide analysis).
Probabilistic Tsunami Hazard Analysis
NASA Astrophysics Data System (ADS)
Thio, H. K.; Ichinose, G. A.; Somerville, P. G.; Polet, J.
2006-12-01
The recent tsunami disaster caused by the 2004 Sumatra-Andaman earthquake has focused our attention to the hazard posed by large earthquakes that occur under water, in particular subduction zone earthquakes, and the tsunamis that they generate. Even though these kinds of events are rare, the very large loss of life and material destruction caused by this earthquake warrant a significant effort towards the mitigation of the tsunami hazard. For ground motion hazard, Probabilistic Seismic Hazard Analysis (PSHA) has become a standard practice in the evaluation and mitigation of seismic hazard to populations in particular with respect to structures, infrastructure and lifelines. Its ability to condense the complexities and variability of seismic activity into a manageable set of parameters greatly facilitates the design of effective seismic resistant buildings but also the planning of infrastructure projects. Probabilistic Tsunami Hazard Analysis (PTHA) achieves the same goal for hazards posed by tsunami. There are great advantages of implementing such a method to evaluate the total risk (seismic and tsunami) to coastal communities. The method that we have developed is based on the traditional PSHA and therefore completely consistent with standard seismic practice. Because of the strong dependence of tsunami wave heights on bathymetry, we use a full waveform tsunami waveform computation in lieu of attenuation relations that are common in PSHA. By pre-computing and storing the tsunami waveforms at points along the coast generated for sets of subfaults that comprise larger earthquake faults, we can efficiently synthesize tsunami waveforms for any slip distribution on those faults by summing the individual subfault tsunami waveforms (weighted by their slip). This efficiency make it feasible to use Green's function summation in lieu of attenuation relations to provide very accurate estimates of tsunami height for probabilistic calculations, where one typically computes thousands of earthquake scenarios. We have carried out preliminary tsunami hazard calculations for different return periods for western North America and Hawaii based on thousands of earthquake scenarios around the Pacific rim and along the coast of North America. We will present tsunami hazard maps for several return periods and also discuss how to use these results for probabilistic inundation and runup mapping. Our knowledge of certain types of tsunami sources is very limited (e.g. submarine landslides), but a probabilistic framework for tsunami hazard evaluation can include even such sources and their uncertainties and present the overall hazard in a meaningful and consistent way.
Evaluation of Horizontal Seismic Hazard of Shahrekord, Iran
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amiri, G. Ghodrati; Dehkordi, M. Raeisi; Amrei, S. A. Razavian
2008-07-08
This paper presents probabilistic horizontal seismic hazard assessment of Shahrekord, Iran. It displays the probabilistic estimate of Peak Ground Horizontal Acceleration (PGHA) for the return period of 75, 225, 475 and 2475 years. The output of the probabilistic seismic hazard analysis is based on peak ground acceleration (PGA), which is the most common criterion in designing of buildings. A catalogue of seismic events that includes both historical and instrumental events was developed and covers the period from 840 to 2007. The seismic sources that affect the hazard in Shahrekord were identified within the radius of 150 km and the recurrencemore » relationships of these sources were generated. Finally four maps have been prepared to indicate the earthquake hazard of Shahrekord in the form of iso-acceleration contour lines for different hazard levels by using SEISRISK III software.« less
Site specific probabilistic seismic hazard analysis at Dubai Creek on the west coast of UAE
NASA Astrophysics Data System (ADS)
Shama, Ayman A.
2011-03-01
A probabilistic seismic hazard analysis (PSHA) was conducted to establish the hazard spectra for a site located at Dubai Creek on the west coast of the United Arab Emirates (UAE). The PSHA considered all the seismogenic sources that affect the site, including plate boundaries such as the Makran subduction zone, the Zagros fold-thrust region and the transition fault system between them; and local crustal faults in UAE. PSHA indicated that local faults dominate the hazard. The peak ground acceleration (PGA) for the 475-year return period spectrum is 0.17 g and 0.33 g for the 2,475-year return period spectrum. The hazard spectra are then employed to establish rock ground motions using the spectral matching technique.
A fluvial and pluvial probabilistic flood hazard analysis for Can Tho city, Vietnam
NASA Astrophysics Data System (ADS)
Apel, Heiko; Martinez, Oriol; Thi Chinh, Do; Viet Dung, Nguyen
2014-05-01
Can Tho city is the largest city and the economic heart of the Mekong Delta, Vietnam. Due to its economic importance and envisaged development goals the city grew rapidly in population size and extend over the last two decades. Large parts of the city are located in flood prone areas, and also the central parts of the city recently experienced an increasing number of flood events, both of fluvial and pluvial nature. As the economic power and asset values are constantly increasing, this poses a considerable risk for the city. The the aim of this study is to perform a flood hazard analysis considering both fluvial and pluvial floods and to derive probabilistic flood hazard maps. This requires in a first step an understanding of the typical flood mechanisms. Fluvial floods are triggered by a coincidence of high water levels during the annual flood period in the Mekong Delta with high tidal levels, which cause in combination short term inundations in Can Tho. Pluvial floods are triggered by typical tropical convective rain storms during the monsoon season. These two flood pathways are essentially independent in its sources and can thus be treated in the hazard analysis accordingly. For the fluvial hazard analysis we propose a bivariate frequency analysis of the Mekong flood characteristics, the annual maximum flood discharge Q and the annual flood volume V at the upper boundary of the Mekong Delta, the gauging station Kratie. This defines probabilities of exceedance of different Q-V pairs, which are transferred into synthetic flood hydrographs. The synthetic hydrographs are routed through a quasi-2D hydrodynamic model of the entire Mekong Delta in order to provide boundary conditions for a detailed hazard mapping of Can Tho. This downscaling step is necessary, because the huge complexity of the river and channel network does not allow for a proper definition of boundary conditions for Can Tho city by gauge data alone. In addition the available gauge data around Can Tho are too short for a meaningful frequency analysis. The detailed hazard mapping is performed by a 2D hydrodynamic model for Can Tho city. As the scenarios are derived in a Monte-Carlo framework, the final flood hazard maps are probabilistic, i.e. show the median flood hazard along with uncertainty estimates for each defined level of probabilities of exceedance. For the pluvial flood hazard a frequency analysis of the hourly rain gauge data of Can Tho is performed implementing a peak-over-threshold procedure. Based on this frequency analysis synthetic rains storms are generated in a Monte-Carlo framework for the same probabilities of exceedance as in the fluvial flood hazard analysis. Probabilistic flood hazard maps were then generated with the same 2D hydrodynamic model for the city. In a last step the fluvial and pluvial scenarios are combined assuming independence of the events. These scenarios were also transferred into hazard maps by the 2D hydrodynamic model finally yielding combined fluvial-pluvial probabilistic flood hazard maps for Can Tho. The derived set of maps may be used for an improved city planning or a flood risk analysis.
The Global Tsunami Model (GTM)
NASA Astrophysics Data System (ADS)
Thio, H. K.; Løvholt, F.; Harbitz, C. B.; Polet, J.; Lorito, S.; Basili, R.; Volpe, M.; Romano, F.; Selva, J.; Piatanesi, A.; Davies, G.; Griffin, J.; Baptista, M. A.; Omira, R.; Babeyko, A. Y.; Power, W. L.; Salgado Gálvez, M.; Behrens, J.; Yalciner, A. C.; Kanoglu, U.; Pekcan, O.; Ross, S.; Parsons, T.; LeVeque, R. J.; Gonzalez, F. I.; Paris, R.; Shäfer, A.; Canals, M.; Fraser, S. A.; Wei, Y.; Weiss, R.; Zaniboni, F.; Papadopoulos, G. A.; Didenkulova, I.; Necmioglu, O.; Suppasri, A.; Lynett, P. J.; Mokhtari, M.; Sørensen, M.; von Hillebrandt-Andrade, C.; Aguirre Ayerbe, I.; Aniel-Quiroga, Í.; Guillas, S.; Macias, J.
2016-12-01
The large tsunami disasters of the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.
The Global Tsunami Model (GTM)
NASA Astrophysics Data System (ADS)
Lorito, S.; Basili, R.; Harbitz, C. B.; Løvholt, F.; Polet, J.; Thio, H. K.
2017-12-01
The tsunamis occurred worldwide in the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but often disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.
The Global Tsunami Model (GTM)
NASA Astrophysics Data System (ADS)
Løvholt, Finn
2017-04-01
The large tsunami disasters of the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.
Monte Carlo simulation for slip rate sensitivity analysis in Cimandiri fault area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratama, Cecep, E-mail: great.pratama@gmail.com; Meilano, Irwan; Nugraha, Andri Dian
Slip rate is used to estimate earthquake recurrence relationship which is the most influence for hazard level. We examine slip rate contribution of Peak Ground Acceleration (PGA), in probabilistic seismic hazard maps (10% probability of exceedance in 50 years or 500 years return period). Hazard curve of PGA have been investigated for Sukabumi using a PSHA (Probabilistic Seismic Hazard Analysis). We observe that the most influence in the hazard estimate is crustal fault. Monte Carlo approach has been developed to assess the sensitivity. Then, Monte Carlo simulations properties have been assessed. Uncertainty and coefficient of variation from slip rate formore » Cimandiri Fault area has been calculated. We observe that seismic hazard estimates is sensitive to fault slip rate with seismic hazard uncertainty result about 0.25 g. For specific site, we found seismic hazard estimate for Sukabumi is between 0.4904 – 0.8465 g with uncertainty between 0.0847 – 0.2389 g and COV between 17.7% – 29.8%.« less
A Bimodal Hybrid Model for Time-Dependent Probabilistic Seismic Hazard Analysis
NASA Astrophysics Data System (ADS)
Yaghmaei-Sabegh, Saman; Shoaeifar, Nasser; Shoaeifar, Parva
2018-03-01
The evaluation of evidence provided by geological studies and historical catalogs indicates that in some seismic regions and faults, multiple large earthquakes occur in cluster. Then, the occurrences of large earthquakes confront with quiescence and only the small-to-moderate earthquakes take place. Clustering of large earthquakes is the most distinguishable departure from the assumption of constant hazard of random occurrence of earthquakes in conventional seismic hazard analysis. In the present study, a time-dependent recurrence model is proposed to consider a series of large earthquakes that occurs in clusters. The model is flexible enough to better reflect the quasi-periodic behavior of large earthquakes with long-term clustering, which can be used in time-dependent probabilistic seismic hazard analysis with engineering purposes. In this model, the time-dependent hazard results are estimated by a hazard function which comprises three parts. A decreasing hazard of last large earthquake cluster and an increasing hazard of the next large earthquake cluster, along with a constant hazard of random occurrence of small-to-moderate earthquakes. In the final part of the paper, the time-dependent seismic hazard of the New Madrid Seismic Zone at different time intervals has been calculated for illustrative purpose.
Probabilistic seismic hazard analysis for a nuclear power plant site in southeast Brazil
NASA Astrophysics Data System (ADS)
de Almeida, Andréia Abreu Diniz; Assumpção, Marcelo; Bommer, Julian J.; Drouet, Stéphane; Riccomini, Claudio; Prates, Carlos L. M.
2018-05-01
A site-specific probabilistic seismic hazard analysis (PSHA) has been performed for the only nuclear power plant site in Brazil, located 130 km southwest of Rio de Janeiro at Angra dos Reis. Logic trees were developed for both the seismic source characterisation and ground-motion characterisation models, in both cases seeking to capture the appreciable ranges of epistemic uncertainty with relatively few branches. This logic-tree structure allowed the hazard calculations to be performed efficiently while obtaining results that reflect the inevitable uncertainty in long-term seismic hazard assessment in this tectonically stable region. An innovative feature of the study is an additional seismic source zone added to capture the potential contributions of characteristics earthquake associated with geological faults in the region surrounding the coastal site.
Probabilistic tsunami hazard analysis: Multiple sources and global applications
Grezio, Anita; Babeyko, Andrey; Baptista, Maria Ana; Behrens, Jörn; Costa, Antonio; Davies, Gareth; Geist, Eric L.; Glimsdal, Sylfest; González, Frank I.; Griffin, Jonathan; Harbitz, Carl B.; LeVeque, Randall J.; Lorito, Stefano; Løvholt, Finn; Omira, Rachid; Mueller, Christof; Paris, Raphaël; Parsons, Thomas E.; Polet, Jascha; Power, William; Selva, Jacopo; Sørensen, Mathilde B.; Thio, Hong Kie
2017-01-01
Applying probabilistic methods to infrequent but devastating natural events is intrinsically challenging. For tsunami analyses, a suite of geophysical assessments should be in principle evaluated because of the different causes generating tsunamis (earthquakes, landslides, volcanic activity, meteorological events, and asteroid impacts) with varying mean recurrence rates. Probabilistic Tsunami Hazard Analyses (PTHAs) are conducted in different areas of the world at global, regional, and local scales with the aim of understanding tsunami hazard to inform tsunami risk reduction activities. PTHAs enhance knowledge of the potential tsunamigenic threat by estimating the probability of exceeding specific levels of tsunami intensity metrics (e.g., run-up or maximum inundation heights) within a certain period of time (exposure time) at given locations (target sites); these estimates can be summarized in hazard maps or hazard curves. This discussion presents a broad overview of PTHA, including (i) sources and mechanisms of tsunami generation, emphasizing the variety and complexity of the tsunami sources and their generation mechanisms, (ii) developments in modeling the propagation and impact of tsunami waves, and (iii) statistical procedures for tsunami hazard estimates that include the associated epistemic and aleatoric uncertainties. Key elements in understanding the potential tsunami hazard are discussed, in light of the rapid development of PTHA methods during the last decade and the globally distributed applications, including the importance of considering multiple sources, their relative intensities, probabilities of occurrence, and uncertainties in an integrated and consistent probabilistic framework.
Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications
NASA Astrophysics Data System (ADS)
Grezio, Anita; Babeyko, Andrey; Baptista, Maria Ana; Behrens, Jörn; Costa, Antonio; Davies, Gareth; Geist, Eric L.; Glimsdal, Sylfest; González, Frank I.; Griffin, Jonathan; Harbitz, Carl B.; LeVeque, Randall J.; Lorito, Stefano; Løvholt, Finn; Omira, Rachid; Mueller, Christof; Paris, Raphaël.; Parsons, Tom; Polet, Jascha; Power, William; Selva, Jacopo; Sørensen, Mathilde B.; Thio, Hong Kie
2017-12-01
Applying probabilistic methods to infrequent but devastating natural events is intrinsically challenging. For tsunami analyses, a suite of geophysical assessments should be in principle evaluated because of the different causes generating tsunamis (earthquakes, landslides, volcanic activity, meteorological events, and asteroid impacts) with varying mean recurrence rates. Probabilistic Tsunami Hazard Analyses (PTHAs) are conducted in different areas of the world at global, regional, and local scales with the aim of understanding tsunami hazard to inform tsunami risk reduction activities. PTHAs enhance knowledge of the potential tsunamigenic threat by estimating the probability of exceeding specific levels of tsunami intensity metrics (e.g., run-up or maximum inundation heights) within a certain period of time (exposure time) at given locations (target sites); these estimates can be summarized in hazard maps or hazard curves. This discussion presents a broad overview of PTHA, including (i) sources and mechanisms of tsunami generation, emphasizing the variety and complexity of the tsunami sources and their generation mechanisms, (ii) developments in modeling the propagation and impact of tsunami waves, and (iii) statistical procedures for tsunami hazard estimates that include the associated epistemic and aleatoric uncertainties. Key elements in understanding the potential tsunami hazard are discussed, in light of the rapid development of PTHA methods during the last decade and the globally distributed applications, including the importance of considering multiple sources, their relative intensities, probabilities of occurrence, and uncertainties in an integrated and consistent probabilistic framework.
NASA Astrophysics Data System (ADS)
Moncoulon, D.; Labat, D.; Ardon, J.; Onfroy, T.; Leblois, E.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.
2013-07-01
The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible but not yet occurred flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2012 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90% of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of CCR claim database has shown that approximately 45% of the insured flood losses are located inside the floodplains and 45% outside. 10% other percent are due to seasurge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: generation of fictive river flows based on the historical records of the river gauge network and generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (MACIF) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).
Miran, Seyed M; Ling, Chen; James, Joseph J; Gerard, Alan; Rothfusz, Lans
2017-11-01
Effective design for presenting severe weather information is important to reduce devastating consequences of severe weather. The Probabilistic Hazard Information (PHI) system for severe weather is being developed by NOAA National Severe Storms Laboratory (NSSL) to communicate probabilistic hazardous weather information. This study investigates the effects of four PHI graphical designs for tornado threat, namely, "four-color"," red-scale", "grayscale" and "contour", on users' perception, interpretation, and reaction to threat information. PHI is presented on either a map background or a radar background. Analysis showed that the accuracy was significantly higher and response time faster when PHI was displayed on map background as compared to radar background due to better contrast. When displayed on a radar background, "grayscale" design resulted in a higher accuracy of responses. Possibly due to familiarity, participants reported four-color design as their favorite design, which also resulted in the fastest recognition of probability levels on both backgrounds. Our study shows the importance of using intuitive color-coding and sufficient contrast in conveying probabilistic threat information via graphical design. We also found that users follows a rational perceiving-judging-feeling-and acting approach in processing probabilistic hazard information for tornado. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasser, K.
1994-06-01
In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not availablemore » or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.« less
NASA Astrophysics Data System (ADS)
Lane, E. M.; Gillibrand, P. A.; Wang, X.; Power, W.
2013-09-01
Regional source tsunamis pose a potentially devastating hazard to communities and infrastructure on the New Zealand coast. But major events are very uncommon. This dichotomy of infrequent but potentially devastating hazards makes realistic assessment of the risk challenging. Here, we describe a method to determine a probabilistic assessment of the tsunami hazard by regional source tsunamis with an "Average Recurrence Interval" of 2,500-years. The method is applied to the east Auckland region of New Zealand. From an assessment of potential regional tsunamigenic events over 100,000 years, the inundation of the Auckland region from the worst 100 events is modelled using a hydrodynamic model and probabilistic inundation depths on a 2,500-year time scale were determined. Tidal effects on the potential inundation were included by coupling the predicted wave heights with the probability density function of tidal heights at the inundation site. Results show that the more exposed northern section of the east coast and outer islands in the Hauraki Gulf face the greatest hazard from regional tsunamis in the Auckland region. Incorporating tidal effects into predictions of inundation reduced the predicted hazard compared to modelling all the tsunamis arriving at high tide giving a more accurate hazard assessment on the specified time scale. This study presents the first probabilistic analysis of dynamic modelling of tsunami inundation for the New Zealand coast and as such provides the most comprehensive assessment of tsunami inundation of the Auckland region from regional source tsunamis available to date.
Guo, Guang-Hui; Wu, Feng-Chang; He, Hong-Ping; Feng, Cheng-Lian; Zhang, Rui-Qing; Li, Hui-Xian
2012-04-01
Probabilistic approaches, such as Monte Carlo Sampling (MCS) and Latin Hypercube Sampling (LHS), and non-probabilistic approaches, such as interval analysis, fuzzy set theory and variance propagation, were used to characterize uncertainties associated with risk assessment of sigma PAH8 in surface water of Taihu Lake. The results from MCS and LHS were represented by probability distributions of hazard quotients of sigma PAH8 in surface waters of Taihu Lake. The probabilistic distribution of hazard quotient were obtained from the results of MCS and LHS based on probabilistic theory, which indicated that the confidence intervals of hazard quotient at 90% confidence level were in the range of 0.000 18-0.89 and 0.000 17-0.92, with the mean of 0.37 and 0.35, respectively. In addition, the probabilities that the hazard quotients from MCS and LHS exceed the threshold of 1 were 9.71% and 9.68%, respectively. The sensitivity analysis suggested the toxicity data contributed the most to the resulting distribution of quotients. The hazard quotient of sigma PAH8 to aquatic organisms ranged from 0.000 17 to 0.99 using interval analysis. The confidence interval was (0.001 5, 0.016 3) at the 90% confidence level calculated using fuzzy set theory, and the confidence interval was (0.000 16, 0.88) at the 90% confidence level based on the variance propagation. These results indicated that the ecological risk of sigma PAH8 to aquatic organisms were low. Each method has its own set of advantages and limitations, which was based on different theory; therefore, the appropriate method should be selected on a case-by-case to quantify the effects of uncertainties on the ecological risk assessment. Approach based on the probabilistic theory was selected as the most appropriate method to assess the risk of sigma PAH8 in surface water of Taihu Lake, which provided an important scientific foundation of risk management and control for organic pollutants in water.
Why is Probabilistic Seismic Hazard Analysis (PSHA) still used?
NASA Astrophysics Data System (ADS)
Mulargia, Francesco; Stark, Philip B.; Geller, Robert J.
2017-03-01
Even though it has never been validated by objective testing, Probabilistic Seismic Hazard Analysis (PSHA) has been widely used for almost 50 years by governments and industry in applications with lives and property hanging in the balance, such as deciding safety criteria for nuclear power plants, making official national hazard maps, developing building code requirements, and determining earthquake insurance rates. PSHA rests on assumptions now known to conflict with earthquake physics; many damaging earthquakes, including the 1988 Spitak, Armenia, event and the 2011 Tohoku, Japan, event, have occurred in regions relatively rated low-risk by PSHA hazard maps. No extant method, including PSHA, produces reliable estimates of seismic hazard. Earthquake hazard mitigation should be recognized to be inherently political, involving a tradeoff between uncertain costs and uncertain risks. Earthquake scientists, engineers, and risk managers can make important contributions to the hard problem of allocating limited resources wisely, but government officials and stakeholders must take responsibility for the risks of accidents due to natural events that exceed the adopted safety criteria.
B-value and slip rate sensitivity analysis for PGA value in Lembang fault and Cimandiri fault area
NASA Astrophysics Data System (ADS)
Pratama, Cecep; Ito, Takeo; Meilano, Irwan; Nugraha, Andri Dian
2017-07-01
We examine slip rate and b-value contribution of Peak Ground Acceleration (PGA), in probabilistic seismic hazard maps (10% probability of exceedence in 50 years or 500 years return period). Hazard curve of PGA have been investigated for Sukabumi and Bandung using a PSHA (Probabilistic Seismic Hazard Analysis). We observe that the most influence in the hazard estimate is crustal fault. Monte Carlo approach has been developed to assess the sensitivity. Uncertainty and coefficient of variation from slip rate and b-value in Lembang and Cimandiri Fault area have been calculated. We observe that seismic hazard estimates are sensitive to fault slip rate and b-value with uncertainty result are 0.25 g dan 0.1-0.2 g, respectively. For specific site, we found seismic hazard estimate are 0.49 + 0.13 g with COV 27% and 0.39 + 0.05 g with COV 13% for Sukabumi and Bandung, respectively.
Report of the Workshop on Extreme Ground Motions at Yucca Mountain, August 23-25, 2004
Hanks, T.C.; Abrahamson, N.A.; Board, M.; Boore, D.M.; Brune, J.N.; Cornell, C.A.
2006-01-01
This Workshop has its origins in the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain, the designated site of the underground repository for the nation's high-level radioactive waste. In 1998 the Nuclear Regulatory Commission's Senior Seismic Hazard Analysis Committee (SSHAC) developed guidelines for PSHA which were published as NUREG/CR-6372, 'Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and the use of experts,' (SSHAC, 1997). This Level-4 study was the most complicated and complex PSHA ever undertaken at the time. The procedures, methods, and results of this PSHA are described in Stepp et al. (2001), mostly in the context of a probability of exceedance (hazard) of 10-4/yr for ground motion at Site A, a hypothetical, reference rock outcrop site at the elevation of the proposed emplacement drifts within the mountain. Analysis and inclusion of both aleatory and epistemic uncertainty were significant and time-consuming aspects of the study, which took place over three years and involved several dozen scientists, engineers, and analysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin; Slaughter, Andrew; Veeraraghavan, Swetha
Multi-hazard Analysis for STOchastic time-DOmaiN phenomena (MASTODON) is a finite element application that aims at analyzing the response of 3-D soil-structure systems to natural and man-made hazards such as earthquakes, floods and fire. MASTODON currently focuses on the simulation of seismic events and has the capability to perform extensive ‘source-to-site’ simulations including earthquake fault rupture, nonlinear wave propagation and nonlinear soil-structure interaction (NLSSI) analysis. MASTODON is being developed to be a dynamic probabilistic risk assessment framework that enables analysts to not only perform deterministic analyses, but also easily perform probabilistic or stochastic simulations for the purpose of risk assessment.
A probabilistic tsunami hazard assessment for Indonesia
NASA Astrophysics Data System (ADS)
Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.
2014-11-01
Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence-based decision-making regarding risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean tsunami, but this has been largely concentrated on the Sunda Arc with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent probabilistic tsunami hazard assessment (PTHA) for Indonesia. This assessment produces time-independent forecasts of tsunami hazards at the coast using data from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting the larger maximum magnitudes. The annual probability of experiencing a tsunami with a height of > 0.5 m at the coast is greater than 10% for Sumatra, Java, the Sunda islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of > 3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national-scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.
A framework for the probabilistic analysis of meteotsunamis
Geist, Eric L.; ten Brink, Uri S.; Gove, Matthew D.
2014-01-01
A probabilistic technique is developed to assess the hazard from meteotsunamis. Meteotsunamis are unusual sea-level events, generated when the speed of an atmospheric pressure or wind disturbance is comparable to the phase speed of long waves in the ocean. A general aggregation equation is proposed for the probabilistic analysis, based on previous frameworks established for both tsunamis and storm surges, incorporating different sources and source parameters of meteotsunamis. Parameterization of atmospheric disturbances and numerical modeling is performed for the computation of maximum meteotsunami wave amplitudes near the coast. A historical record of pressure disturbances is used to establish a continuous analytic distribution of each parameter as well as the overall Poisson rate of occurrence. A demonstration study is presented for the northeast U.S. in which only isolated atmospheric pressure disturbances from squall lines and derechos are considered. For this study, Automated Surface Observing System stations are used to determine the historical parameters of squall lines from 2000 to 2013. The probabilistic equations are implemented using a Monte Carlo scheme, where a synthetic catalog of squall lines is compiled by sampling the parameter distributions. For each entry in the catalog, ocean wave amplitudes are computed using a numerical hydrodynamic model. Aggregation of the results from the Monte Carlo scheme results in a meteotsunami hazard curve that plots the annualized rate of exceedance with respect to maximum event amplitude for a particular location along the coast. Results from using multiple synthetic catalogs, resampled from the parent parameter distributions, yield mean and quantile hazard curves. Further refinements and improvements for probabilistic analysis of meteotsunamis are discussed.
Kernel Smoothing Methods for Non-Poissonian Seismic Hazard Analysis
NASA Astrophysics Data System (ADS)
Woo, Gordon
2017-04-01
For almost fifty years, the mainstay of probabilistic seismic hazard analysis has been the methodology developed by Cornell, which assumes that earthquake occurrence is a Poisson process, and that the spatial distribution of epicentres can be represented by a set of polygonal source zones, within which seismicity is uniform. Based on Vere-Jones' use of kernel smoothing methods for earthquake forecasting, these methods were adapted in 1994 by the author for application to probabilistic seismic hazard analysis. There is no need for ambiguous boundaries of polygonal source zones, nor for the hypothesis of time independence of earthquake sequences. In Europe, there are many regions where seismotectonic zones are not well delineated, and where there is a dynamic stress interaction between events, so that they cannot be described as independent. From the Amatrice earthquake of 24 August, 2016, the subsequent damaging earthquakes in Central Italy over months were not independent events. Removing foreshocks and aftershocks is not only an ill-defined task, it has a material effect on seismic hazard computation. Because of the spatial dispersion of epicentres, and the clustering of magnitudes for the largest events in a sequence, which might all be around magnitude 6, the specific event causing the highest ground motion can vary from one site location to another. Where significant active faults have been clearly identified geologically, they should be modelled as individual seismic sources. The remaining background seismicity should be modelled as non-Poissonian using statistical kernel smoothing methods. This approach was first applied for seismic hazard analysis at a UK nuclear power plant two decades ago, and should be included within logic-trees for future probabilistic seismic hazard at critical installations within Europe. In this paper, various salient European applications are given.
NASA Astrophysics Data System (ADS)
Moncoulon, D.; Labat, D.; Ardon, J.; Leblois, E.; Onfroy, T.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.
2014-09-01
The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible (but which have not yet occurred) flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2010 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90 % of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff, due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of the CCR (Caisse Centrale de Reassurance) claim database have shown that approximately 45 % of the insured flood losses are located inside the floodplains and 45 % outside. Another 10 % is due to sea surge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: a generation of fictive river flows based on the historical records of the river gauge network and a generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (Macif) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).
Probabilistic tsunami hazard assessment at Seaside, Oregon, for near-and far-field seismic sources
Gonzalez, F.I.; Geist, E.L.; Jaffe, B.; Kanoglu, U.; Mofjeld, H.; Synolakis, C.E.; Titov, V.V.; Areas, D.; Bellomo, D.; Carlton, D.; Horning, T.; Johnson, J.; Newman, J.; Parsons, T.; Peters, R.; Peterson, C.; Priest, G.; Venturato, A.; Weber, J.; Wong, F.; Yalciner, A.
2009-01-01
The first probabilistic tsunami flooding maps have been developed. The methodology, called probabilistic tsunami hazard assessment (PTHA), integrates tsunami inundation modeling with methods of probabilistic seismic hazard assessment (PSHA). Application of the methodology to Seaside, Oregon, has yielded estimates of the spatial distribution of 100- and 500-year maximum tsunami amplitudes, i.e., amplitudes with 1% and 0.2% annual probability of exceedance. The 100-year tsunami is generated most frequently by far-field sources in the Alaska-Aleutian Subduction Zone and is characterized by maximum amplitudes that do not exceed 4 m, with an inland extent of less than 500 m. In contrast, the 500-year tsunami is dominated by local sources in the Cascadia Subduction Zone and is characterized by maximum amplitudes in excess of 10 m and an inland extent of more than 1 km. The primary sources of uncertainty in these results include those associated with interevent time estimates, modeling of background sea level, and accounting for temporal changes in bathymetry and topography. Nonetheless, PTHA represents an important contribution to tsunami hazard assessment techniques; viewed in the broader context of risk analysis, PTHA provides a method for quantifying estimates of the likelihood and severity of the tsunami hazard, which can then be combined with vulnerability and exposure to yield estimates of tsunami risk. Copyright 2009 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Power, William; Wang, Xiaoming; Lane, Emily; Gillibrand, Philip
2013-09-01
Regional source tsunamis represent a potentially devastating threat to coastal communities in New Zealand, yet are infrequent events for which little historical information is available. It is therefore essential to develop robust methods for quantitatively estimating the hazards posed, so that effective mitigation measures can be implemented. We develop a probabilistic model for the tsunami hazard posed to the Auckland region of New Zealand from the Kermadec Trench and the southern New Hebrides Trench subduction zones. An innovative feature of our model is the systematic analysis of uncertainty regarding the magnitude-frequency distribution of earthquakes in the source regions. The methodology is first used to estimate the tsunami hazard at the coastline, and then used to produce a set of scenarios that can be applied to produce probabilistic maps of tsunami inundation for the study region; the production of these maps is described in part II. We find that the 2,500 year return period regional source tsunami hazard for the densely populated east coast of Auckland is dominated by events originating in the Kermadec Trench, while the equivalent hazard to the sparsely populated west coast is approximately equally due to events on the Kermadec Trench and the southern New Hebrides Trench.
NASA Astrophysics Data System (ADS)
Győri, Erzsébet; Gráczer, Zoltán; Tóth, László; Bán, Zoltán; Horváth, Tibor
2017-04-01
Liquefaction potential evaluations are generally made to assess the hazard from specific scenario earthquakes. These evaluations may estimate the potential in a binary fashion (yes/no), define a factor of safety or predict the probability of liquefaction given a scenario event. Usually the level of ground shaking is obtained from the results of PSHA. Although it is determined probabilistically, a single level of ground shaking is selected and used within the liquefaction potential evaluation. In contrary, the fully probabilistic liquefaction potential assessment methods provide a complete picture of liquefaction hazard, namely taking into account the joint probability distribution of PGA and magnitude of earthquake scenarios; both of which are key inputs in the stress-based simplified methods. Kramer and Mayfield (2007) has developed a fully probabilistic liquefaction potential evaluation method using a performance-based earthquake engineering (PBEE) framework. The results of the procedure are the direct estimate of the return period of liquefaction and the liquefaction hazard curves in function of depth. The method combines the disaggregation matrices computed for different exceedance frequencies during probabilistic seismic hazard analysis with one of the recent models for the conditional probability of liquefaction. We have developed a software for the assessment of performance-based liquefaction triggering on the basis of Kramer and Mayfield method. Originally the SPT based probabilistic method of Cetin et al. (2004) was built-in into the procedure of Kramer and Mayfield to compute the conditional probability however there is no professional consensus about its applicability. Therefore we have included not only Cetin's method but Idriss and Boulanger (2012) SPT based moreover Boulanger and Idriss (2014) CPT based procedures into our computer program. In 1956, a damaging earthquake of magnitude 5.6 occurred in Dunaharaszti, in Hungary. Its epicenter was located about 5 km from the southern boundary of Budapest. The quake caused serious damages in the epicentral area and in the southern districts of the capital. The epicentral area of the earthquake is located along the Danube River. Sand boils were observed in some locations that indicated the occurrence of liquefaction. Because their exact locations were recorded at the time of the earthquake, in situ geotechnical measurements (CPT and SPT) could be performed at two (Dunaharaszti and Taksony) sites. The different types of measurements enabled the probabilistic liquefaction hazard computations at the two studied sites. We have compared the return periods of liquefaction that were computed using different built-in simplified stress based methods.
NASA Astrophysics Data System (ADS)
González, F. I.; Leveque, R. J.; Hatheway, D.; Metzger, N.
2011-12-01
Risk is defined in many ways, but most are consistent with Crichton's [1999] definition based on the ''risk triangle'' concept and the explicit identification of three risk elements: ''Risk is the probability of a loss, and this depends on three elements: hazard, vulnerability, and exposure. If any of these three elements in risk increases or decreases, then the risk increases or decreases respectively." The World Meteorological Organization, for example, cites Crichton [1999] and then defines risk as [WMO, 2008] Risk = function (Hazard x Vulnerability x Exposure) while the Asian Disaster Reduction Center adopts the more general expression [ADRC, 2005] Risk = function (Hazard, Vulnerability, Exposure) In practice, probabilistic concepts are invariably invoked, and at least one of the three factors are specified as probabilistic in nature. The Vulnerability and Exposure factors are defined in multiple ways in the relevant literature; but the Hazard factor, which is the focus of our presentation, is generally understood to deal only with the physical aspects of the phenomena and, in particular, the ability of the phenomena to inflict harm [Thywissen, 2006]. A Hazard factor can be estimated by a methodology known as Probabilistic Tsunami Hazard Assessment (PTHA) [González, et al., 2009]. We will describe the PTHA methodology and provide an example -- the results of a previous application to Seaside, OR. We will also present preliminary results for a PTHA of Crescent City, CA -- a pilot project and coastal modeling/mapping effort funded by the Federal Emergency Management Agency (FEMA) Region IX office as part of the new California Coastal Analysis and Mapping Project (CCAMP). CCAMP and the PTHA in Crescent City are being conducted under the nationwide FEMA Risk Mapping, Assessment, and Planning (Risk MAP) Program which focuses on providing communities with flood information and tools they can use to enhance their mitigation plans and better protect their citizens.
Simulation-Based Probabilistic Tsunami Hazard Analysis: Empirical and Robust Hazard Predictions
NASA Astrophysics Data System (ADS)
De Risi, Raffaele; Goda, Katsuichiro
2017-08-01
Probabilistic tsunami hazard analysis (PTHA) is the prerequisite for rigorous risk assessment and thus for decision-making regarding risk mitigation strategies. This paper proposes a new simulation-based methodology for tsunami hazard assessment for a specific site of an engineering project along the coast, or, more broadly, for a wider tsunami-prone region. The methodology incorporates numerous uncertain parameters that are related to geophysical processes by adopting new scaling relationships for tsunamigenic seismic regions. Through the proposed methodology it is possible to obtain either a tsunami hazard curve for a single location, that is the representation of a tsunami intensity measure (such as inundation depth) versus its mean annual rate of occurrence, or tsunami hazard maps, representing the expected tsunami intensity measures within a geographical area, for a specific probability of occurrence in a given time window. In addition to the conventional tsunami hazard curve that is based on an empirical statistical representation of the simulation-based PTHA results, this study presents a robust tsunami hazard curve, which is based on a Bayesian fitting methodology. The robust approach allows a significant reduction of the number of simulations and, therefore, a reduction of the computational effort. Both methods produce a central estimate of the hazard as well as a confidence interval, facilitating the rigorous quantification of the hazard uncertainties.
Hazard function theory for nonstationary natural hazards
NASA Astrophysics Data System (ADS)
Read, L.; Vogel, R. M.
2015-12-01
Studies from the natural hazards literature indicate that many natural processes, including wind speeds, landslides, wildfires, precipitation, streamflow and earthquakes, show evidence of nonstationary behavior such as trends in magnitudes through time. Traditional probabilistic analysis of natural hazards based on partial duration series (PDS) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance is constant through time. Given evidence of trends and the consequent expected growth in devastating impacts from natural hazards across the world, new methods are needed to characterize their probabilistic behavior. The field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (x) with its failure time series (t), enabling computation of corresponding average return periods and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose PDS magnitudes are assumed to follow the widely applied Poisson-GP model. We derive a 2-parameter Generalized Pareto hazard model and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series x, with corresponding failure time series t, should have application to a wide class of natural hazards.
NASA Astrophysics Data System (ADS)
Hussin, Haydar; van Westen, Cees; Reichenbach, Paola
2013-04-01
Local and regional authorities in mountainous areas that deal with hydro-meteorological hazards like landslides and floods try to set aside budgets for emergencies and risk mitigation. However, future losses are often not calculated in a probabilistic manner when allocating budgets or determining how much risk is acceptable. The absence of probabilistic risk estimates can create a lack of preparedness for reconstruction and risk reduction costs and a deficiency in promoting risk mitigation and prevention in an effective way. The probabilistic risk of natural hazards at local scale is usually ignored all together due to the difficulty in acknowledging, processing and incorporating uncertainties in the estimation of losses (e.g. physical damage, fatalities and monetary loss). This study attempts to set up a working framework for a probabilistic risk assessment (PRA) of landslides and floods at a municipal scale using the Fella river valley (Eastern Italian Alps) as a multi-hazard case study area. The emphasis is on the evaluation and determination of the uncertainty in the estimation of losses from multi-hazards. To carry out this framework some steps are needed: (1) by using physically based stochastic landslide and flood models we aim to calculate the probability of the physical impact on individual elements at risk, (2) this is then combined with a statistical analysis of the vulnerability and monetary value of the elements at risk in order to include their uncertainty in the risk assessment, (3) finally the uncertainty from each risk component is propagated into the loss estimation. The combined effect of landslides and floods on the direct risk to communities in narrow alpine valleys is also one of important aspects that needs to be studied.
A~probabilistic tsunami hazard assessment for Indonesia
NASA Astrophysics Data System (ADS)
Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.
2014-05-01
Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence based decision making on risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean Tsunami, but this has been largely concentrated on the Sunda Arc, with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent Probabilistic Tsunami Hazard Assessment (PTHA) for Indonesia. This assessment produces time independent forecasts of tsunami hazard at the coast from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte-carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and through sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting larger maximum magnitudes along the Sunda Arc. The annual probability of experiencing a tsunami with a height at the coast of > 0.5 m is greater than 10% for Sumatra, Java, the Sunda Islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of >3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.
NASA Astrophysics Data System (ADS)
Anita, G.; Selva, J.; Laura, S.
2011-12-01
We develop a comprehensive and total probabilistic tsunami hazard assessment (TotPTHA), in which many different possible source types concur to the definition of the total tsunami hazard at given target sites. In a multi-hazard and multi-risk perspective, such an innovative approach allows, in principle, to consider all possible tsunamigenic sources, from seismic events, to slides, asteroids, volcanic eruptions, etc. In this respect, we also formally introduce and discuss the treatment of interaction/cascade effects in the TotPTHA analysis. We demonstrate how external triggering events may induce significant temporary variations in the tsunami hazard. Because of this, such effects should always be considered, at least in short-term applications, to obtain unbiased analyses. Finally, we prove the feasibility of the TotPTHA and of the treatment of interaction/cascade effects by applying this methodology to an ideal region with realistic characteristics (Neverland).
DOT National Transportation Integrated Search
2009-10-13
This paper describes a probabilistic approach to estimate the conditional probability of release of hazardous materials from railroad tank cars during train accidents. Monte Carlo methods are used in developing a probabilistic model to simulate head ...
St. Louis area earthquake hazards mapping project; seismic and liquefaction hazard maps
Cramer, Chris H.; Bauer, Robert A.; Chung, Jae-won; Rogers, David; Pierce, Larry; Voigt, Vicki; Mitchell, Brad; Gaunt, David; Williams, Robert; Hoffman, David; Hempen, Gregory L.; Steckel, Phyllis; Boyd, Oliver; Watkins, Connor M.; Tucker, Kathleen; McCallister, Natasha
2016-01-01
We present probabilistic and deterministic seismic and liquefaction hazard maps for the densely populated St. Louis metropolitan area that account for the expected effects of surficial geology on earthquake ground shaking. Hazard calculations were based on a map grid of 0.005°, or about every 500 m, and are thus higher in resolution than any earlier studies. To estimate ground motions at the surface of the model (e.g., site amplification), we used a new detailed near‐surface shear‐wave velocity model in a 1D equivalent‐linear response analysis. When compared with the 2014 U.S. Geological Survey (USGS) National Seismic Hazard Model, which uses a uniform firm‐rock‐site condition, the new probabilistic seismic‐hazard estimates document much more variability. Hazard levels for upland sites (consisting of bedrock and weathered bedrock overlain by loess‐covered till and drift deposits), show up to twice the ground‐motion values for peak ground acceleration (PGA), and similar ground‐motion values for 1.0 s spectral acceleration (SA). Probabilistic ground‐motion levels for lowland alluvial floodplain sites (generally the 20–40‐m‐thick modern Mississippi and Missouri River floodplain deposits overlying bedrock) exhibit up to twice the ground‐motion levels for PGA, and up to three times the ground‐motion levels for 1.0 s SA. Liquefaction probability curves were developed from available standard penetration test data assuming typical lowland and upland water table levels. A simplified liquefaction hazard map was created from the 5%‐in‐50‐year probabilistic ground‐shaking model. The liquefaction hazard ranges from low (60% of area expected to liquefy) in the lowlands. Because many transportation routes, power and gas transmission lines, and population centers exist in or on the highly susceptible lowland alluvium, these areas in the St. Louis region are at significant potential risk from seismically induced liquefaction and associated ground deformation
Assessment of a Tsunami Hazard for Mediterranean Coast of Egypt
NASA Astrophysics Data System (ADS)
Zaytsev, Andrey; Babeyko, Andrey; Yalciner, Ahmet; Pelinovsky, Efim
2017-04-01
Analysis of tsunami hazard for Egypt based on historic data and numerical modelling of historic and prognostic events is given. There are 13 historic events for 4000 years, including one instrumental record (1956). Tsunami database includes 12 earthquake tsunamis and 1 event of volcanic origin (Santorini eruption). Tsunami intensity of events (365, 881, 1303, 1870) is estimated as I = 3 led to tsunami wave height more than 6 m. Numerical simulation of some possible scenario of tsunamis of seismic and landslide origin is done with use of NAMI-DANCE software solved the shallow-water equations. The PTHA method (Probabilistic Tsunami Hazard Assessment - Probabilistic assessment of a tsunami hazard) for the Mediterranean Sea developed in (Sorensen M.B., Spada M., Babeyko A., Wiemer S., Grunthal G. Probabilistic tsunami hazard in the Mediterranean Sea. J Geophysical Research, 2012, vol. 117, B01305) is used to evaluate the probability of tsunami occurrence on the Egyptian coast. The synthetic catalogue of prognostic tsunamis of seismic origin with magnitude more than 6.5 includes 84 920 events for 100000 years. For the wave heights more 1 m the curve: exceedance probability - tsunami height can be approximated by exponential Gumbel function with two parameters which are determined for each coastal location in Egypt (totally. 24 points). Prognostic extreme highest events with probability less 10-4 are not satisfied to the Gumbel function (approximately 10 events) and required the special analysis. Acknowledgements: This work was supported EU FP7 ASTARTE Project [603839], and for EP - NS6637.2016.5.
Landslide Hazard from Coupled Inherent and Dynamic Probabilities
NASA Astrophysics Data System (ADS)
Strauch, R. L.; Istanbulluoglu, E.; Nudurupati, S. S.
2015-12-01
Landslide hazard research has typically been conducted independently from hydroclimate research. We sought to unify these two lines of research to provide regional scale landslide hazard information for risk assessments and resource management decision-making. Our approach couples an empirical inherent landslide probability, based on a frequency ratio analysis, with a numerical dynamic probability, generated by combining subsurface water recharge and surface runoff from the Variable Infiltration Capacity (VIC) macro-scale land surface hydrologic model with a finer resolution probabilistic slope stability model. Landslide hazard mapping is advanced by combining static and dynamic models of stability into a probabilistic measure of geohazard prediction in both space and time. This work will aid resource management decision-making in current and future landscape and climatic conditions. The approach is applied as a case study in North Cascade National Park Complex in northern Washington State.
NASA Astrophysics Data System (ADS)
Chapman, Martin Colby
1998-12-01
The design earthquake selection problem is fundamentally probabilistic. Disaggregation of a probabilistic model of the seismic hazard offers a rational and objective approach that can identify the most likely earthquake scenario(s) contributing to hazard. An ensemble of time series can be selected on the basis of the modal earthquakes derived from the disaggregation. This gives a useful time-domain realization of the seismic hazard, to the extent that a single motion parameter captures the important time-domain characteristics. A possible limitation to this approach arises because most currently available motion prediction models for peak ground motion or oscillator response are essentially independent of duration, and modal events derived using the peak motions for the analysis may not represent the optimal characterization of the hazard. The elastic input energy spectrum is an alternative to the elastic response spectrum for these types of analyses. The input energy combines the elements of amplitude and duration into a single parameter description of the ground motion that can be readily incorporated into standard probabilistic seismic hazard analysis methodology. This use of the elastic input energy spectrum is examined. Regression analysis is performed using strong motion data from Western North America and consistent data processing procedures for both the absolute input energy equivalent velocity, (Vsbea), and the elastic pseudo-relative velocity response (PSV) in the frequency range 0.5 to 10 Hz. The results show that the two parameters can be successfully fit with identical functional forms. The dependence of Vsbea and PSV upon (NEHRP) site classification is virtually identical. The variance of Vsbea is uniformly less than that of PSV, indicating that Vsbea can be predicted with slightly less uncertainty as a function of magnitude, distance and site classification. The effects of site class are important at frequencies less than a few Hertz. The regression modeling does not resolve significant effects due to site class at frequencies greater than approximately 5 Hz. Disaggregation of general seismic hazard models using Vsbea indicates that the modal magnitudes for the higher frequency oscillators tend to be larger, and vary less with oscillator frequency, than those derived using PSV. Insofar as the elastic input energy may be a better parameter for quantifying the damage potential of ground motion, its use in probabilistic seismic hazard analysis could provide an improved means for selecting earthquake scenarios and establishing design earthquakes for many types of engineering analyses.
NASA Astrophysics Data System (ADS)
Tonini, R.; Lorito, S.; Orefice, S.; Graziani, L.; Brizuela, B.; Smedile, A.; Volpe, M.; Romano, F.; De Martini, P. M.; Maramai, A.; Selva, J.; Piatanesi, A.; Pantosti, D.
2016-12-01
Site-specific probabilistic tsunami hazard analyses demand very high computational efforts that are often reduced by introducing approximations on tsunami sources and/or tsunami modeling. On one hand, the large variability of source parameters implies the definition of a huge number of potential tsunami scenarios, whose omission could easily lead to important bias in the analysis. On the other hand, detailed inundation maps computed by tsunami numerical simulations require very long running time. When tsunami effects are calculated at regional scale, a common practice is to propagate tsunami waves in deep waters (up to 50-100 m depth) neglecting non-linear effects and using coarse bathymetric meshes. Then, maximum wave heights on the coast are empirically extrapolated, saving a significant amount of computational time. However, moving to local scale, such assumptions drop out and tsunami modeling would require much greater computational resources. In this work, we perform a local Seismic Probabilistic Tsunami Hazard Analysis (SPTHA) for the 50 km long coastal segment between Augusta and Siracusa, a touristic and commercial area placed along the South-Eastern Sicily coast, Italy. The procedure consists in using the outcomes of a regional SPTHA as input for a two-step filtering method to select and substantially reduce the number of scenarios contributing to the specific target area. These selected scenarios are modeled using high resolution topo-bathymetry for producing detailed inundation maps. Results are presented as probabilistic hazard curves and maps, with the goal of analyze, compare and highlight the different results provided by regional and local hazard assessments. Moreover, the analysis is enriched by the use of local observed tsunami data, both geological and historical. Indeed, tsunami data-sets available for the selected target areas are particularly rich with respect to the scarce and heterogeneous data-sets usually available elsewhere. Therefore, they can represent valuable benchmarks for testing and strengthening the results of such kind of studies. The work is funded by the Italian Flagship Project RITMARE, the two EC FP7 projects ASTARTE (Grant agreement 603839) and STREST (Grant agreement 603389), and the INGV-DPC Agreement.
Hazard function theory for nonstationary natural hazards
NASA Astrophysics Data System (ADS)
Read, L. K.; Vogel, R. M.
2015-11-01
Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied Generalized Pareto (GP) model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series X, with corresponding failure time series T, should have application to a wide class of natural hazards with rich opportunities for future extensions.
Hazard function theory for nonstationary natural hazards
NASA Astrophysics Data System (ADS)
Read, Laura K.; Vogel, Richard M.
2016-04-01
Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppersmith , Kevin J.; Bommer, Julian J.; Bryce, Robert W.
Under the sponsorship of the US Department of Energy (DOE) and the electric utility Energy Northwest, the Pacific Northwest National Laboratory (PNNL) is conducting a probabilistic seismic hazard analysis (PSHA) within the framework of a SSHAC Level 3 procedure (Senior Seismic Hazard Analysis Committee; Budnitz et al., 1997). Specifically, the project is being conducted following the guidelines and requirements specified in NUREG-2117 (USNRC, 2012b) and consistent with approach given in the American Nuclear Standard ANSI/ANS-2.29-2008 Probabilistic Seismic Hazard Analysis. The collaboration between DOE and Energy Northwest is spawned by the needs of both organizations for an accepted PSHA with highmore » levels of regulatory assurance that can be used for the design and safety evaluation of nuclear facilities. DOE committed to this study after performing a ten-year review of the existing PSHA, as required by DOE Order 420.1C. The study will also be used by Energy Northwest as a basis for fulfilling the NRC’s 10CFR50.54(f) requirement that the western US nuclear power plants conduct PSHAs in conformance with SSHAC Level 3 procedures. The study was planned and is being carried out in conjunction with a project Work Plan, which identifies the purpose of the study, the roles and responsibilities of all participants, tasks and their associated schedules, Quality Assurance (QA) requirements, and project deliverables. New data collection and analysis activities are being conducted as a means of reducing the uncertainties in key inputs to the PSHA. It is anticipated that the results of the study will provide inputs to the site response analyses at multiple nuclear facility sites within the Hanford Site and at the Columbia Generating Station.« less
NASA Astrophysics Data System (ADS)
Tierz, Pablo; Sandri, Laura; Ramona Stefanescu, Elena; Patra, Abani; Marzocchi, Warner; Costa, Antonio; Sulpizio, Roberto
2014-05-01
Explosive volcanoes and, especially, Pyroclastic Density Currents (PDCs) pose an enormous threat to populations living in the surroundings of volcanic areas. Difficulties in the modeling of PDCs are related to (i) very complex and stochastic physical processes, intrinsic to their occurrence, and (ii) to a lack of knowledge about how these processes actually form and evolve. This means that there are deep uncertainties (namely, of aleatory nature due to point (i) above, and of epistemic nature due to point (ii) above) associated to the study and forecast of PDCs. Consequently, the assessment of their hazard is better described in terms of probabilistic approaches rather than by deterministic ones. What is actually done to assess probabilistic hazard from PDCs is to couple deterministic simulators with statistical techniques that can, eventually, supply probabilities and inform about the uncertainties involved. In this work, some examples of both PDC numerical simulators (Energy Cone and TITAN2D) and uncertainty quantification techniques (Monte Carlo sampling -MC-, Polynomial Chaos Quadrature -PCQ- and Bayesian Linear Emulation -BLE-) are presented, and their advantages, limitations and future potential are underlined. The key point in choosing a specific method leans on the balance between its related computational cost, the physical reliability of the simulator and the pursued target of the hazard analysis (type of PDCs considered, time-scale selected for the analysis, particular guidelines received from decision-making agencies, etc.). Although current numerical and statistical techniques have brought important advances in probabilistic volcanic hazard assessment from PDCs, some of them may be further applicable to more sophisticated simulators. In addition, forthcoming improvements could be focused on three main multidisciplinary directions: 1) Validate the simulators frequently used (through comparison with PDC deposits and other simulators), 2) Decrease simulator runtimes (whether by increasing the knowledge about the physical processes or by doing more efficient programming, parallelization, ...) and 3) Improve uncertainty quantification techniques.
Neo-Deterministic and Probabilistic Seismic Hazard Assessments: a Comparative Analysis
NASA Astrophysics Data System (ADS)
Peresan, Antonella; Magrin, Andrea; Nekrasova, Anastasia; Kossobokov, Vladimir; Panza, Giuliano F.
2016-04-01
Objective testing is the key issue towards any reliable seismic hazard assessment (SHA). Different earthquake hazard maps must demonstrate their capability in anticipating ground shaking from future strong earthquakes before an appropriate use for different purposes - such as engineering design, insurance, and emergency management. Quantitative assessment of maps performances is an essential step also in scientific process of their revision and possible improvement. Cross-checking of probabilistic models with available observations and independent physics based models is recognized as major validation procedure. The existing maps from the classical probabilistic seismic hazard analysis (PSHA), as well as those from the neo-deterministic analysis (NDSHA), which have been already developed for several regions worldwide (including Italy, India and North Africa), are considered to exemplify the possibilities of the cross-comparative analysis in spotting out limits and advantages of different methods. Where the data permit, a comparative analysis versus the documented seismic activity observed in reality is carried out, showing how available observations about past earthquakes can contribute to assess performances of the different methods. Neo-deterministic refers to a scenario-based approach, which allows for consideration of a wide range of possible earthquake sources as the starting point for scenarios constructed via full waveforms modeling. The method does not make use of empirical attenuation models (i.e. Ground Motion Prediction Equations, GMPE) and naturally supplies realistic time series of ground shaking (i.e. complete synthetic seismograms), readily applicable to complete engineering analysis and other mitigation actions. The standard NDSHA maps provide reliable envelope estimates of maximum seismic ground motion from a wide set of possible scenario earthquakes, including the largest deterministically or historically defined credible earthquake. In addition, the flexibility of NDSHA allows for generation of ground shaking maps at specified long-term return times, which may permit a straightforward comparison between NDSHA and PSHA maps in terms of average rates of exceedance for specified time windows. The comparison of NDSHA and PSHA maps, particularly for very long recurrence times, may indicate to what extent probabilistic ground shaking estimates are consistent with those from physical models of seismic waves propagation. A systematic comparison over the territory of Italy is carried out exploiting the uniqueness of the Italian earthquake catalogue, a data set covering more than a millennium (a time interval about ten times longer than that available in most of the regions worldwide) with a satisfactory completeness level for M>5, which warrants the results of analysis. By analysing in some detail seismicity in the Vrancea region, we show that well constrained macroseismic field information for individual earthquakes may provide useful information about the reliability of ground shaking estimates. Finally, in order to generalise observations, the comparative analysis is extended to further regions where both standard NDSHA and PSHA maps are available (e.g. State of Gujarat, India). The final Global Seismic Hazard Assessment Program (GSHAP) results and the most recent version of Seismic Hazard Harmonization in Europe (SHARE) project maps, along with other national scale probabilistic maps, all obtained by PSHA, are considered for this comparative analysis.
Probabilistic, Seismically-Induced Landslide Hazard Mapping of Western Oregon
NASA Astrophysics Data System (ADS)
Olsen, M. J.; Sharifi Mood, M.; Gillins, D. T.; Mahalingam, R.
2015-12-01
Earthquake-induced landslides can generate significant damage within urban communities by damaging structures, obstructing lifeline connection routes and utilities, generating various environmental impacts, and possibly resulting in loss of life. Reliable hazard and risk maps are important to assist agencies in efficiently allocating and managing limited resources to prepare for such events. This research presents a new methodology in order to communicate site-specific landslide hazard assessments in a large-scale, regional map. Implementation of the proposed methodology results in seismic-induced landslide hazard maps that depict the probabilities of exceeding landslide displacement thresholds (e.g. 0.1, 0.3, 1.0 and 10 meters). These maps integrate a variety of data sources including: recent landslide inventories, LIDAR and photogrammetric topographic data, geology map, mapped NEHRP site classifications based on available shear wave velocity data in each geologic unit, and USGS probabilistic seismic hazard curves. Soil strength estimates were obtained by evaluating slopes present along landslide scarps and deposits for major geologic units. Code was then developed to integrate these layers to perform a rigid, sliding block analysis to determine the amount and associated probabilities of displacement based on each bin of peak ground acceleration in the seismic hazard curve at each pixel. The methodology was applied to western Oregon, which contains weak, weathered, and often wet soils at steep slopes. Such conditions have a high landslide hazard even without seismic events. A series of landslide hazard maps highlighting the probabilities of exceeding the aforementioned thresholds were generated for the study area. These output maps were then utilized in a performance based design framework enabling them to be analyzed in conjunction with other hazards for fully probabilistic-based hazard evaluation and risk assessment. a) School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331, USA
Including foreshocks and aftershocks in time-independent probabilistic seismic hazard analyses
Boyd, Oliver S.
2012-01-01
Time‐independent probabilistic seismic‐hazard analysis treats each source as being temporally and spatially independent; hence foreshocks and aftershocks, which are both spatially and temporally dependent on the mainshock, are removed from earthquake catalogs. Yet, intuitively, these earthquakes should be considered part of the seismic hazard, capable of producing damaging ground motions. In this study, I consider the mainshock and its dependents as a time‐independent cluster, each cluster being temporally and spatially independent from any other. The cluster has a recurrence time of the mainshock; and, by considering the earthquakes in the cluster as a union of events, dependent events have an opportunity to contribute to seismic ground motions and hazard. Based on the methods of the U.S. Geological Survey for a high‐hazard site, the inclusion of dependent events causes ground motions that are exceeded at probability levels of engineering interest to increase by about 10% but could be as high as 20% if variations in aftershock productivity can be accounted for reliably.
Seismic Hazard Analysis — Quo vadis?
NASA Astrophysics Data System (ADS)
Klügel, Jens-Uwe
2008-05-01
The paper is dedicated to the review of methods of seismic hazard analysis currently in use, analyzing the strengths and weaknesses of different approaches. The review is performed from the perspective of a user of the results of seismic hazard analysis for different applications such as the design of critical and general (non-critical) civil infrastructures, technical and financial risk analysis. A set of criteria is developed for and applied to an objective assessment of the capabilities of different analysis methods. It is demonstrated that traditional probabilistic seismic hazard analysis (PSHA) methods have significant deficiencies, thus limiting their practical applications. These deficiencies have their roots in the use of inadequate probabilistic models and insufficient understanding of modern concepts of risk analysis, as have been revealed in some recent large scale studies. These deficiencies result in the lack of ability of a correct treatment of dependencies between physical parameters and finally, in an incorrect treatment of uncertainties. As a consequence, results of PSHA studies have been found to be unrealistic in comparison with empirical information from the real world. The attempt to compensate these problems by a systematic use of expert elicitation has, so far, not resulted in any improvement of the situation. It is also shown that scenario-earthquakes developed by disaggregation from the results of a traditional PSHA may not be conservative with respect to energy conservation and should not be used for the design of critical infrastructures without validation. Because the assessment of technical as well as of financial risks associated with potential damages of earthquakes need a risk analysis, current method is based on a probabilistic approach with its unsolved deficiencies. Traditional deterministic or scenario-based seismic hazard analysis methods provide a reliable and in general robust design basis for applications such as the design of critical infrastructures, especially with systematic sensitivity analyses based on validated phenomenological models. Deterministic seismic hazard analysis incorporates uncertainties in the safety factors. These factors are derived from experience as well as from expert judgment. Deterministic methods associated with high safety factors may lead to too conservative results, especially if applied for generally short-lived civil structures. Scenarios used in deterministic seismic hazard analysis have a clear physical basis. They are related to seismic sources discovered by geological, geomorphologic, geodetic and seismological investigations or derived from historical references. Scenario-based methods can be expanded for risk analysis applications with an extended data analysis providing the frequency of seismic events. Such an extension provides a better informed risk model that is suitable for risk-informed decision making.
Hazard function theory for nonstationary natural hazards
Read, Laura K.; Vogel, Richard M.
2016-04-11
Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field ofmore » hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series ( X) with its failure time series ( T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. As a result, our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.« less
Hazard function theory for nonstationary natural hazards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, Laura K.; Vogel, Richard M.
Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field ofmore » hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series ( X) with its failure time series ( T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. As a result, our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.« less
Payne, Suzette J.; Coppersmith, Kevin J.; Coppersmith, Ryan; ...
2017-08-23
A key decision for nuclear facilities is evaluating the need for an update of an existing seismic hazard analysis in light of new data and information that has become available since the time that the analysis was completed. We introduce the newly developed risk-informed Seismic Hazard Periodic Review Methodology (referred to as the SHPRM) and present how a Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 probabilistic seismic hazard analysis (PSHA) was performed in an implementation of this new methodology. The SHPRM offers a defensible and documented approach that considers both the changes in seismic hazard and engineering-based risk informationmore » of an existing nuclear facility to assess the need for an update of an existing PSHA. The SHPRM has seven evaluation criteria that are employed at specific analysis, decision, and comparison points which are applied to seismic design categories established for nuclear facilities in United States. The SHPRM is implemented using a SSHAC Level 1 study performed for the Idaho National Laboratory, USA. The implementation focuses on the first six of the seven evaluation criteria of the SHPRM which are all provided from the SSHAC Level 1 PSHA. Finally, to illustrate outcomes of the SHPRM that do not lead to the need for an update and those that do, the example implementations of the SHPRM are performed for nuclear facilities that have target performance goals expressed as the mean annual frequency of unacceptable performance at 1x10 -4, 4x10 -5 and 1x10 -5.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Suzette J.; Coppersmith, Kevin J.; Coppersmith, Ryan
A key decision for nuclear facilities is evaluating the need for an update of an existing seismic hazard analysis in light of new data and information that has become available since the time that the analysis was completed. We introduce the newly developed risk-informed Seismic Hazard Periodic Review Methodology (referred to as the SHPRM) and present how a Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 probabilistic seismic hazard analysis (PSHA) was performed in an implementation of this new methodology. The SHPRM offers a defensible and documented approach that considers both the changes in seismic hazard and engineering-based risk informationmore » of an existing nuclear facility to assess the need for an update of an existing PSHA. The SHPRM has seven evaluation criteria that are employed at specific analysis, decision, and comparison points which are applied to seismic design categories established for nuclear facilities in United States. The SHPRM is implemented using a SSHAC Level 1 study performed for the Idaho National Laboratory, USA. The implementation focuses on the first six of the seven evaluation criteria of the SHPRM which are all provided from the SSHAC Level 1 PSHA. Finally, to illustrate outcomes of the SHPRM that do not lead to the need for an update and those that do, the example implementations of the SHPRM are performed for nuclear facilities that have target performance goals expressed as the mean annual frequency of unacceptable performance at 1x10 -4, 4x10 -5 and 1x10 -5.« less
NASA Astrophysics Data System (ADS)
Donovan, Amy; Oppenheimer, Clive; Bravo, Michael
2012-12-01
This paper constitutes a philosophical and social scientific study of expert elicitation in the assessment and management of volcanic risk on Montserrat during the 1995-present volcanic activity. It outlines the broader context of subjective probabilistic methods and then uses a mixed-method approach to analyse the use of these methods in volcanic crises. Data from a global survey of volcanologists regarding the use of statistical methods in hazard assessment are presented. Detailed qualitative data from Montserrat are then discussed, particularly concerning the expert elicitation procedure that was pioneered during the eruptions. These data are analysed and conclusions about the use of these methods in volcanology are drawn. The paper finds that while many volcanologists are open to the use of these methods, there are still some concerns, which are similar to the concerns encountered in the literature on probabilistic and determinist approaches to seismic hazard analysis.
Pappenberger, F; Jendritzky, G; Staiger, H; Dutra, E; Di Giuseppe, F; Richardson, D S; Cloke, H L
2015-03-01
Although over a hundred thermal indices can be used for assessing thermal health hazards, many ignore the human heat budget, physiology and clothing. The Universal Thermal Climate Index (UTCI) addresses these shortcomings by using an advanced thermo-physiological model. This paper assesses the potential of using the UTCI for forecasting thermal health hazards. Traditionally, such hazard forecasting has had two further limitations: it has been narrowly focused on a particular region or nation and has relied on the use of single 'deterministic' forecasts. Here, the UTCI is computed on a global scale, which is essential for international health-hazard warnings and disaster preparedness, and it is provided as a probabilistic forecast. It is shown that probabilistic UTCI forecasts are superior in skill to deterministic forecasts and that despite global variations, the UTCI forecast is skilful for lead times up to 10 days. The paper also demonstrates the utility of probabilistic UTCI forecasts on the example of the 2010 heat wave in Russia.
Probabilistic seismic hazard estimates incorporating site effects - An example from Indiana, U.S.A
Hasse, J.S.; Park, C.H.; Nowack, R.L.; Hill, J.R.
2010-01-01
The U.S. Geological Survey (USGS) has published probabilistic earthquake hazard maps for the United States based on current knowledge of past earthquake activity and geological constraints on earthquake potential. These maps for the central and eastern United States assume standard site conditions with Swave velocities of 760 m/s in the top 30 m. For urban and infrastructure planning and long-term budgeting, the public is interested in similar probabilistic seismic hazard maps that take into account near-surface geological materials. We have implemented a probabilistic method for incorporating site effects into the USGS seismic hazard analysis that takes into account the first-order effects of the surface geologic conditions. The thicknesses of sediments, which play a large role in amplification, were derived from a P-wave refraction database with over 13, 000 profiles, and a preliminary geology-based velocity model was constructed from available information on S-wave velocities. An interesting feature of the preliminary hazard maps incorporating site effects is the approximate factor of two increases in the 1-Hz spectral acceleration with 2 percent probability of exceedance in 50 years for parts of the greater Indianapolis metropolitan region and surrounding parts of central Indiana. This effect is primarily due to the relatively thick sequence of sediments infilling ancient bedrock topography that has been deposited since the Pleistocene Epoch. As expected, the Late Pleistocene and Holocene depositional systems of the Wabash and Ohio Rivers produce additional amplification in the southwestern part of Indiana. Ground motions decrease, as would be expected, toward the bedrock units in south-central Indiana, where motions are significantly lower than the values on the USGS maps.
NASA Astrophysics Data System (ADS)
Klügel, J.
2006-12-01
Deterministic scenario-based seismic hazard analysis has a long tradition in earthquake engineering for developing the design basis of critical infrastructures like dams, transport infrastructures, chemical plants and nuclear power plants. For many applications besides of the design of infrastructures it is of interest to assess the efficiency of the design measures taken. These applications require a method allowing to perform a meaningful quantitative risk analysis. A new method for a probabilistic scenario-based seismic risk analysis has been developed based on a probabilistic extension of proven deterministic methods like the MCE- methodology. The input data required for the method are entirely based on the information which is necessary to perform any meaningful seismic hazard analysis. The method is based on the probabilistic risk analysis approach common for applications in nuclear technology developed originally by Kaplan & Garrick (1981). It is based (1) on a classification of earthquake events into different size classes (by magnitude), (2) the evaluation of the frequency of occurrence of events, assigned to the different classes (frequency of initiating events, (3) the development of bounding critical scenarios assigned to each class based on the solution of an optimization problem and (4) in the evaluation of the conditional probability of exceedance of critical design parameters (vulnerability analysis). The advantage of the method in comparison with traditional PSHA consists in (1) its flexibility, allowing to use different probabilistic models for earthquake occurrence as well as to incorporate advanced physical models into the analysis, (2) in the mathematically consistent treatment of uncertainties, and (3) in the explicit consideration of the lifetime of the critical structure as a criterion to formulate different risk goals. The method was applied for the evaluation of the risk of production interruption losses of a nuclear power plant during its residual lifetime.
Research on response spectrum of dam based on scenario earthquake
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Zhang, Yushan
2017-10-01
Taking a large hydropower station as an example, the response spectrum based on scenario earthquake is determined. Firstly, the potential source of greatest contribution to the site is determined on the basis of the results of probabilistic seismic hazard analysis (PSHA). Secondly, the magnitude and epicentral distance of the scenario earthquake are calculated according to the main faults and historical earthquake of the potential seismic source zone. Finally, the response spectrum of scenario earthquake is calculated using the Next Generation Attenuation (NGA) relations. The response spectrum based on scenario earthquake method is less than the probability-consistent response spectrum obtained by PSHA method. The empirical analysis shows that the response spectrum of scenario earthquake considers the probability level and the structural factors, and combines the advantages of the deterministic and probabilistic seismic hazard analysis methods. It is easy for people to accept and provide basis for seismic engineering of hydraulic engineering.
Khan, F I; Iqbal, A; Ramesh, N; Abbasi, S A
2001-10-12
As it is conventionally done, strategies for incorporating accident--prevention measures in any hazardous chemical process industry are developed on the basis of input from risk assessment. However, the two steps-- risk assessment and hazard reduction (or safety) measures--are not linked interactively in the existing methodologies. This prevents a quantitative assessment of the impacts of safety measures on risk control. We have made an attempt to develop a methodology in which risk assessment steps are interactively linked with implementation of safety measures. The resultant system tells us the extent of reduction of risk by each successive safety measure. It also tells based on sophisticated maximum credible accident analysis (MCAA) and probabilistic fault tree analysis (PFTA) whether a given unit can ever be made 'safe'. The application of the methodology has been illustrated with a case study.
NASA Astrophysics Data System (ADS)
Convertito, Vincenzo; Zollo, Aldo
2011-08-01
In this study, we address the issue of short-term to medium-term probabilistic seismic hazard analysis for two volcanic areas, Campi Flegrei caldera and Mt. Vesuvius in the Campania region of southern Italy. Two different phases of the volcanic activity are considered. The first, which we term the pre-crisis phase, concerns the present quiescent state of the volcanoes that is characterized by low-to-moderate seismicity. The second phase, syn-crisis, concerns the unrest phase that can potentially lead to eruption. For the Campi Flegrei case study, we analyzed the pattern of seismicity during the 1982-1984 ground uplift episode (bradyseism). For Mt. Vesuvius, two different time-evolutionary models for seismicity were adopted, corresponding to different ways in which the volcano might erupt. We performed a site-specific analysis, linked with the hazard map, to investigate the effects of input parameters, in terms of source geometry, mean activity rate, periods of data collection, and return periods, for the syn-crisis phase. The analysis in the present study of the pre-crisis phase allowed a comparison of the results of probabilistic seismic hazard analysis for the two study areas with those provided in the Italian national hazard map. For the Mt. Vesuvius area in particular, the results show that the hazard can be greater than that reported in the national hazard map when information at a local scale is used. For the syn-crisis phase, the main result is that the data recorded during the early months of the unrest phase are substantially representative of the seismic hazard during the whole duration of the crisis.
Hazard function analysis for flood planning under nonstationarity
NASA Astrophysics Data System (ADS)
Read, Laura K.; Vogel, Richard M.
2016-05-01
The field of hazard function analysis (HFA) involves a probabilistic assessment of the "time to failure" or "return period," T, of an event of interest. HFA is used in epidemiology, manufacturing, medicine, actuarial statistics, reliability engineering, economics, and elsewhere. For a stationary process, the probability distribution function (pdf) of the return period always follows an exponential distribution, the same is not true for nonstationary processes. When the process of interest, X, exhibits nonstationary behavior, HFA can provide a complementary approach to risk analysis with analytical tools particularly useful for hydrological applications. After a general introduction to HFA, we describe a new mathematical linkage between the magnitude of the flood event, X, and its return period, T, for nonstationary processes. We derive the probabilistic properties of T for a nonstationary one-parameter exponential model of X, and then use both Monte-Carlo simulation and HFA to generalize the behavior of T when X arises from a nonstationary two-parameter lognormal distribution. For this case, our findings suggest that a two-parameter Weibull distribution provides a reasonable approximation for the pdf of T. We document how HFA can provide an alternative approach to characterize the probabilistic properties of both nonstationary flood series and the resulting pdf of T.
A Software Tool for Quantitative Seismicity Analysis - ZMAP
NASA Astrophysics Data System (ADS)
Wiemer, S.; Gerstenberger, M.
2001-12-01
Earthquake catalogs are probably the most basic product of seismology, and remain arguably the most useful for tectonic studies. Modern seismograph networks can locate up to 100,000 earthquakes annually, providing a continuous and sometime overwhelming stream of data. ZMAP is a set of tools driven by a graphical user interface (GUI), designed to help seismologists analyze catalog data. ZMAP is primarily a research tool suited to the evaluation of catalog quality and to addressing specific hypotheses; however, it can also be useful in routine network operations. Examples of ZMAP features include catalog quality assessment (artifacts, completeness, explosion contamination), interactive data exploration, mapping transients in seismicity (rate changes, b-values, p-values), fractal dimension analysis and stress tensor inversions. Roughly 100 scientists worldwide have used the software at least occasionally. About 30 peer-reviewed publications have made use of ZMAP. ZMAP code is open source, written in the commercial software language Matlab by the Mathworks, a widely used software in the natural sciences. ZMAP was first published in 1994, and has continued to grow over the past 7 years. Recently, we released ZMAP v.6. The poster will introduce the features of ZMAP. We will specifically focus on ZMAP features related to time-dependent probabilistic hazard assessment. We are currently implementing a ZMAP based system that computes probabilistic hazard maps, which combine the stationary background hazard as well as aftershock and foreshock hazard into a comprehensive time dependent probabilistic hazard map. These maps will be displayed in near real time on the Internet. This poster is also intended as a forum for ZMAP users to provide feedback and discuss the future of ZMAP.
NASA Astrophysics Data System (ADS)
García-Mayordomo, J.; Gaspar-Escribano, J. M.; Benito, B.
2007-10-01
A probabilistic seismic hazard assessment of the Province of Murcia in terms of peak ground acceleration (PGA) and spectral accelerations [SA( T)] is presented in this paper. In contrast to most of the previous studies in the region, which were performed for PGA making use of intensity-to-PGA relationships, hazard is here calculated in terms of magnitude and using European spectral ground-motion models. Moreover, we have considered the most important faults in the region as specific seismic sources, and also comprehensively reviewed the earthquake catalogue. Hazard calculations are performed following the Probabilistic Seismic Hazard Assessment (PSHA) methodology using a logic tree, which accounts for three different seismic source zonings and three different ground-motion models. Hazard maps in terms of PGA and SA(0.1, 0.2, 0.5, 1.0 and 2.0 s) and coefficient of variation (COV) for the 475-year return period are shown. Subsequent analysis is focused on three sites of the province, namely, the cities of Murcia, Lorca and Cartagena, which are important industrial and tourism centres. Results at these sites have been analysed to evaluate the influence of the different input options. The most important factor affecting the results is the choice of the attenuation relationship, whereas the influence of the selected seismic source zonings appears strongly site dependant. Finally, we have performed an analysis of source contribution to hazard at each of these cities to provide preliminary guidance in devising specific risk scenarios. We have found that local source zones control the hazard for PGA and SA( T ≤ 1.0 s), although contribution from specific fault sources and long-distance north Algerian sources becomes significant from SA(0.5 s) onwards.
Up-to-date Probabilistic Earthquake Hazard Maps for Egypt
NASA Astrophysics Data System (ADS)
Gaber, Hanan; El-Hadidy, Mahmoud; Badawy, Ahmed
2018-04-01
An up-to-date earthquake hazard analysis has been performed in Egypt using a probabilistic seismic hazard approach. Through the current study, we use a complete and homogenous earthquake catalog covering the time period between 2200 BC and 2015 AD. Three seismotectonic models representing the seismic activity in and around Egypt are used. A logic-tree framework is applied to allow for the epistemic uncertainty in the declustering parameters, minimum magnitude, seismotectonic setting and ground-motion prediction equations. The hazard analysis is performed for a grid of 0.5° × 0.5° in terms of types of rock site for the peak ground acceleration (PGA) and spectral acceleration at 0.2-, 0.5-, 1.0- and 2.0-s periods. The hazard is estimated for three return periods (72, 475 and 2475 years) corresponding to 50, 10 and 2% probability of exceedance in 50 years. The uniform hazard spectra for the cities of Cairo, Alexandria, Aswan and Nuwbia are constructed. The hazard maps show that the highest ground acceleration values are expected in the northeastern part of Egypt around the Gulf of Aqaba (PGA up to 0.4 g for return period 475 years) and in south Egypt around the city of Aswan (PGA up to 0.2 g for return period 475 years). The Western Desert of Egypt is characterized by the lowest level of hazard (PGA lower than 0.1 g for return period 475 years).
Formalizing Probabilistic Safety Claims
NASA Technical Reports Server (NTRS)
Herencia-Zapana, Heber; Hagen, George E.; Narkawicz, Anthony J.
2011-01-01
A safety claim for a system is a statement that the system, which is subject to hazardous conditions, satisfies a given set of properties. Following work by John Rushby and Bev Littlewood, this paper presents a mathematical framework that can be used to state and formally prove probabilistic safety claims. It also enables hazardous conditions, their uncertainties, and their interactions to be integrated into the safety claim. This framework provides a formal description of the probabilistic composition of an arbitrary number of hazardous conditions and their effects on system behavior. An example is given of a probabilistic safety claim for a conflict detection algorithm for aircraft in a 2D airspace. The motivation for developing this mathematical framework is that it can be used in an automated theorem prover to formally verify safety claims.
A Probabilistic Tsunami Hazard Assessment Methodology and Its Application to Crescent City, CA
NASA Astrophysics Data System (ADS)
Gonzalez, F. I.; Leveque, R. J.; Waagan, K.; Adams, L.; Lin, G.
2012-12-01
A PTHA methodology, based in large part on Probabilistic Seismic Hazard Assessment methods (e.g., Cornell, 1968; SSHAC, 1997; Geist and Parsons, 2005), was previously applied to Seaside, OR (Gonzalez, et al., 2009). This initial version of the method has been updated to include: a revised method to estimate tidal uncertainty; an improved method for generating stochastic realizations to estimate slip distribution uncertainty (Mai and Beroza, 2002; Blair, et al., 2011); additional near-field sources in the Cascadia Subduction Zone, based on the work of Goldfinger, et al. (2012); far-field sources in Japan, based on information updated since the 3 March 2011 Tohoku tsunami (Japan Earthquake Research Committee, 2011). The GeoClaw tsunami model (Berger, et. al, 2011) is used to simulate generation, propagation and inundation. We will discuss this revised PTHA methodology and the results of its application to Crescent City, CA. Berger, M.J., D. L. George, R. J. LeVeque, and K. T. Mandli, The GeoClaw software for depth-averaged flows with adaptive refinement, Adv. Water Res. 34 (2011), pp. 1195-1206. Blair, J.L., McCrory, P.A., Oppenheimer, D.H., and Waldhauser, F. (2011): A Geo-referenced 3D model of the Juan de Fuca Slab and associated seismicity: U.S. Geological Survey Data Series 633, v.1.0, available at http://pubs.usgs.gov/ds/633/. Cornell, C. A. (1968): Engineering seismic risk analysis, Bull. Seismol. Soc. Am., 58, 1583-1606. Geist, E. L., and T. Parsons (2005): Probabilistic Analysis of Tsunami Hazards, Nat. Hazards, 37 (3), 277-314. Goldfinger, C., Nelson, C.H., Morey, A.E., Johnson, J.E., Patton, J.R., Karabanov, E., Gutiérrez-Pastor, J., Eriksson, A.T., Gràcia, E., Dunhill, G., Enkin, R.J., Dallimore, A., and Vallier, T. (2012): Turbidite event history—Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone: U.S. Geological Survey Professional Paper 1661-F, 170 p. (Available at http://pubs.usgs.gov/pp/pp1661f/). González, F.I., E.L. Geist, B. Jaffe, U. Kânoglu, H. Mofjeld, C.E. Synolakis, V.V Titov, D. Arcas, D. Bellomo, D. Carlton, T. Horning, J. Johnson, J. Newman, T. Parsons, R. Peters, C. Peterson, G .Priest, A. Venturato, J. Weber, F. Wong, and A. Yalciner (2009): Probabilistic Tsunami Hazard Assessment at Seaside, Oregon, for Near- and Far-Field Seismic Sources, J. Geophys. Res., 114, C11023, doi:10.1029/2008JC005132. Japan Earthquake Research Committee, (2011): http://www.jishin.go.jp/main/p_hyoka02.htm Mai, P. M., and G. C. Beroza (2002): A spatial random field model to characterize complexity in earthquake slip, J. Geophys. Res., 107(B11), 2308, doi:10.1029/2001JB000588. SSHAC (Senior Seismic Hazard Analysis Committee) (1997): Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts, Main Report Rep. NUREG/CR-6372 UCRL-ID-122160 Vol. 1, 256 pp, U.S. Nuclear Regulatory Commission.
Seismic hazards in Thailand: a compilation and updated probabilistic analysis
NASA Astrophysics Data System (ADS)
Pailoplee, Santi; Charusiri, Punya
2016-06-01
A probabilistic seismic hazard analysis (PSHA) for Thailand was performed and compared to those of previous works. This PSHA was based upon (1) the most up-to-date paleoseismological data (slip rates), (2) the seismic source zones, (3) the seismicity parameters ( a and b values), and (4) the strong ground-motion attenuation models suggested as being suitable models for Thailand. For the PSHA mapping, both the ground shaking and probability of exceedance (POE) were analyzed and mapped using various methods of presentation. In addition, site-specific PSHAs were demonstrated for ten major provinces within Thailand. For instance, a 2 and 10 % POE in the next 50 years of a 0.1-0.4 g and 0.1-0.2 g ground shaking, respectively, was found for western Thailand, defining this area as the most earthquake-prone region evaluated in Thailand. In a comparison between the ten selected specific provinces within Thailand, the Kanchanaburi and Tak provinces had comparatively high seismic hazards, and therefore, effective mitigation plans for these areas should be made. Although Bangkok was defined as being within a low seismic hazard in this PSHA, a further study of seismic wave amplification due to the soft soil beneath Bangkok is required.
Probabilistic earthquake hazard analysis for Cairo, Egypt
NASA Astrophysics Data System (ADS)
Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan
2016-04-01
Cairo is the capital of Egypt and the largest city in the Arab world and Africa, and the sixteenth largest metropolitan area in the world. It was founded in the tenth century (969 ad) and is 1046 years old. It has long been a center of the region's political and cultural life. Therefore, the earthquake risk assessment for Cairo has a great importance. The present work aims to analysis the earthquake hazard of Cairo as a key input's element for the risk assessment. The regional seismotectonics setting shows that Cairo could be affected by both far- and near-field seismic sources. The seismic hazard of Cairo has been estimated using the probabilistic seismic hazard approach. The logic tree frame work was used during the calculations. Epistemic uncertainties were considered into account by using alternative seismotectonics models and alternative ground motion prediction equations. Seismic hazard values have been estimated within a grid of 0.1° × 0.1 ° spacing for all of Cairo's districts at different spectral periods and four return periods (224, 615, 1230, and 4745 years). Moreover, the uniform hazard spectra have been calculated at the same return periods. The pattern of the contour maps show that the highest values of the peak ground acceleration is concentrated in the eastern zone's districts (e.g., El Nozha) and the lowest values at the northern and western zone's districts (e.g., El Sharabiya and El Khalifa).
NASA Astrophysics Data System (ADS)
Panzera, Francesco; Lombardo, Giuseppe; Rigano, Rosaria
2010-05-01
The seismic hazard assessment (SHA) can be performed using either Deterministic or Probabilistic approaches. In present study a probabilistic analysis was carried out for the Catania and Siracusa towns using two different procedures: the 'site' (Albarello and Mucciarelli, 2002) and the 'seismotectonic' (Cornell 1968; Esteva, 1967) methodologies. The SASHA code (D'Amico and Albarello, 2007) was used to calculate seismic hazard through the 'site' approach, whereas the CRISIS2007 code (Ordaz et al., 2007) was adopted in the Esteva-Cornell procedure. According to current international conventions for PSHA (SSHAC, 1997), a logic tree approach was followed to consider and reduce the epistemic uncertainties, for both seismotectonic and site methods. The code SASHA handles the intensity data taking into account the macroseismic information of past earthquakes. CRISIS2007 code needs, as input elements, a seismic catalogue tested for completeness, a seismogenetic zonation and ground motion predicting equations. Data concerning the characterization of regional seismic sources and ground motion attenuation properties were taken from the literature. Special care was devoted to define source zone models, taking into account the most recent studies on regional seismotectonic features and, in particular, the possibility of considering the Malta escarpment as a potential source. The combined use of the above mentioned approaches allowed us to obtain useful elements to define the site seismic hazard in Catania and Siracusa. The results point out that the choice of the probabilistic model plays a fundamental role. It is indeed observed that when the site intensity data are used, the town of Catania shows hazard values higher than the ones found for Siracusa, for each considered return period. On the contrary, when the Esteva-Cornell method is used, Siracusa urban area shows higher hazard than Catania, for return periods greater than one hundred years. The higher hazard observed, through the site approach, for Catania area can be interpreted in terms of greater damage historically observed at this town and its smaller distance from the seismogenic structures. On the other hand, the higher level of hazard found for Siracusa, throughout the Esteva-Cornell approach, could be a consequence of the features of such method which spreads out the intensities over a wide area. However, in SHA the use of a combined approach is recommended for a mutual validation of obtained results and any choice between the two approaches is strictly linked to the knowledge of the local seismotectonic features. References Albarello D. and Mucciarelli M.; 2002: Seismic hazard estimates using ill?defined macroseismic data at site. Pure Appl. Geophys., 159, 1289?1304. Cornell C.A.; 1968: Engineering seismic risk analysis. Bull. Seism. Soc. Am., 58(5), 1583-1606. D'Amico V. and Albarello D.; 2007: Codice per il calcolo della pericolosità sismica da dati di sito (freeware). Progetto DPC-INGV S1, http://esse1.mi.ingv.it/d12.html Esteva L.; 1967: Criterios para la construcción de espectros para diseño sísmico. Proceedings of XII Jornadas Sudamericanas de Ingeniería Estructural y III Simposio Panamericano de Estructuras, Caracas, 1967. Published later in Boletín del Instituto de Materiales y Modelos Estructurales, Universidad Central de Venezuela, No. 19. Ordaz M., Aguilar A. and Arboleda J.; 2007: CRISIS2007, Program for computing seismic hazard. Version 5.4, Mexico City: UNAM. SSHAC (Senior Seismic Hazard Analysis Committee); 1997: Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts. NUREG/CR-6372.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sezen, Halil; Aldemir, Tunc; Denning, R.
Probabilistic risk assessment of nuclear power plants initially focused on events initiated by internal faults at the plant, rather than external hazards including earthquakes and flooding. Although the importance of external hazards risk analysis is now well recognized, the methods for analyzing low probability external hazards rely heavily on subjective judgment of specialists, often resulting in substantial conservatism. This research developed a framework to integrate the risk of seismic and flooding events using realistic structural models and simulation of response of nuclear structures. The results of four application case studies are presented.
NASA Astrophysics Data System (ADS)
Kukovica, J.; Molnar, S.; Ghofrani, H.
2017-12-01
The Leech River fault is situated on Vancouver Island near the city of Victoria, British Columbia, Canada. The 60km transpressional reverse fault zone runs east to west along the southern tip of Vancouver Island, dividing the lithologic units of Jurassic-Cretaceous Leech River Complex schists to the north and Eocene Metchosin Formation basalts to the south. This fault system poses a considerable hazard due to its proximity to Victoria and 3 major hydroelectric dams. The Canadian seismic hazard model for the 2015 National Building Code of Canada (NBCC) considered the fault system to be inactive. However, recent paleoseismic evidence suggests there to be at least 2 surface-rupturing events to have exceeded a moment magnitude (M) of 6.5 within the last 15,000 years (Morell et al. 2017). We perform a Probabilistic Seismic Hazard Analysis (PSHA) for the city of Victoria with consideration of the Leech River fault as an active source. A PSHA for Victoria which replicates the 2015 NBCC estimates is accomplished to calibrate our PSHA procedure. The same seismic source zones, magnitude recurrence parameters, and Ground Motion Prediction Equations (GMPEs) are used. We replicate the uniform hazard spectrum for a probability of exceedance of 2% in 50 years for a 500 km radial area around Victoria. An active Leech River fault zone is then added; known length and dip. We are determining magnitude recurrence parameters based on a Gutenberg-Richter relationship for the Leech River fault from various catalogues of the recorded seismicity (M 2-3) within the fault's vicinity and the proposed paleoseismic events. We seek to understand whether inclusion of an active Leech River fault source will significantly increase the probabilistic seismic hazard for Victoria. Morell et al. 2017. Quaternary rupture of a crustal fault beneath Victoria, British Columbia, Canada. GSA Today, 27, doi: 10.1130/GSATG291A.1
New ShakeMaps for Georgia Resulting from Collaboration with EMME
NASA Astrophysics Data System (ADS)
Kvavadze, N.; Tsereteli, N. S.; Varazanashvili, O.; Alania, V.
2015-12-01
Correct assessment of probabilistic seismic hazard and risks maps are first step for advance planning and action to reduce seismic risk. Seismic hazard maps for Georgia were calculated based on modern approach that was developed in the frame of EMME (Earthquake Modl for Middle east region) project. EMME was one of GEM's successful endeavors at regional level. With EMME and GEM assistance, regional models were analyzed to identify the information and additional work needed for the preparation national hazard models. Probabilistic seismic hazard map (PSH) provides the critical bases for improved building code and construction. The most serious deficiency in PSH assessment for the territory of Georgia is the lack of high-quality ground motion data. Due to this an initial hybrid empirical ground motion model is developed for PGA and SA at selected periods. An application of these coefficients for ground motion models have been used in probabilistic seismic hazard assessment. Obtained results of seismic hazard maps show evidence that there were gaps in seismic hazard assessment and the present normative seismic hazard map needed a careful recalculation.
Quantitative risk analysis of oil storage facilities in seismic areas.
Fabbrocino, Giovanni; Iervolino, Iunio; Orlando, Francesca; Salzano, Ernesto
2005-08-31
Quantitative risk analysis (QRA) of industrial facilities has to take into account multiple hazards threatening critical equipment. Nevertheless, engineering procedures able to evaluate quantitatively the effect of seismic action are not well established. Indeed, relevant industrial accidents may be triggered by loss of containment following ground shaking or other relevant natural hazards, either directly or through cascade effects ('domino effects'). The issue of integrating structural seismic risk into quantitative probabilistic seismic risk analysis (QpsRA) is addressed in this paper by a representative study case regarding an oil storage plant with a number of atmospheric steel tanks containing flammable substances. Empirical seismic fragility curves and probit functions, properly defined both for building-like and non building-like industrial components, have been crossed with outcomes of probabilistic seismic hazard analysis (PSHA) for a test site located in south Italy. Once the seismic failure probabilities have been quantified, consequence analysis has been performed for those events which may be triggered by the loss of containment following seismic action. Results are combined by means of a specific developed code in terms of local risk contour plots, i.e. the contour line for the probability of fatal injures at any point (x, y) in the analysed area. Finally, a comparison with QRA obtained by considering only process-related top events is reported for reference.
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Sandri, Laura; Costa, Antonio; Selva, Jacopo
2014-05-01
Campi Flegrei (CF) is a large volcanic field located west of the Gulf of Naples, characterized by a wide and almost circular caldera which is partially submerged beneath the Gulf of Pozzuoli. It is known that the magma-water interaction is a key element to determine the character of submarine eruptions and their impact on the surrounding areas, but this phenomenon is still not well understood and it is rarely considered in hazard assessment. The aim of the present work is to present a preliminary study of the effect of the sea on the tephra fall hazard from CF on the municipality of Naples, by introducing a variability in the probability of tephra production according to the eruptive scale (defined on the basis of the erupted volume) and the depth of the opening submerged vents. Four different Probabilistic Volcanic Hazard Assessment (PVHA) models have been defined through the application of the model BET_VH at CF, by accounting for different modeling procedures and assumptions for the submerged part of the caldera. In particular, we take into account: 1) the effect of the sea as null, i.e. as if the water were not present; 2) the effect of the sea as a cap that totally blocks the explosivity of eruptions and consequently the tephra production; 3) an ensemble model between the two models described at the previous points 1) and 2); 4) a variable probability of tephra production depending on the depth of the submerged vent. The PVHA models are then input to pyPHaz, a tool developed and designed at INGV to visualize, analyze and merge into ensemble models PVHA's results and, potentially, any other kind of probabilistic hazard assessment, both natural and anthropic, in order to evaluate the importance of considering a variability among subaerial and submerged vents on tephra fallout hazard from CF in Naples. The analysis is preliminary and does not pretend to be exhaustive, but on one hand it represents a starting point for future works; on the other hand, it is a good case study to show the potentiality of the pyPHaz tool that, thanks to a dedicated Graphical User Interface (GUI), allows to interactively manage and visualize results of probabilistic hazards (hazard curves together with probability and hazard maps for different levels of uncertainties), and to compare or merge different hazard models producing ensemble models. This work has been developed in the framework of two Italian projects, "ByMuR (Bayesian Multi-Risk Assessment: a case study for natural risks in the city of Naples)" funded by the Italian Ministry of Education, Universities and Research (MIUR), and "V1: Probabilistic Volcanic Hazard Assessments" funded by the Italian Department of Civil Protection (DPC).
Mean and modal ϵ in the deaggregation of probabilistic ground motion
Harmsen, Stephen C.
2001-01-01
Mean and modal ϵ exhibit a wide variation geographically for any specified PE. Modal ϵ for the 2% in 50 yr PE exceeds 2 near the most active western California faults, is less than –1 near some less active faults of the western United States (principally in the Basin and Range), and may be less than 0 in areal fault zones of the central and eastern United States (CEUS). This geographic variation is useful for comparing probabilistic ground motions with ground motions from scenario earthquakes on dominating faults, often used in seismic-resistant provisions of building codes. An interactive seismic-hazard deaggregation menu item has been added to the USGS probabilistic seismic-hazard analysis Web site, http://geohazards.cr.usgs.gov/eq/, allowing visitors to compute mean and modal distance, magnitude, and ϵ corresponding to ground motions having mean return times from 250 to 5000 yr for any site in the United States.
First USGS urban seismic hazard maps predict the effects of soils
Cramer, C.H.; Gomberg, J.S.; Schweig, E.S.; Waldron, B.A.; Tucker, K.
2006-01-01
Probabilistic and scenario urban seismic hazard maps have been produced for Memphis, Shelby County, Tennessee covering a six-quadrangle area of the city. The nine probabilistic maps are for peak ground acceleration and 0.2 s and 1.0 s spectral acceleration and for 10%, 5%, and 2% probability of being exceeded in 50 years. Six scenario maps for these three ground motions have also been generated for both an M7.7 and M6.2 on the southwest arm of the New Madrid seismic zone ending at Marked Tree, Arkansas. All maps include the effect of local geology. Relative to the national seismic hazard maps, the effect of the thick sediments beneath Memphis is to decrease 0.2 s probabilistic ground motions by 0-30% and increase 1.0 s probabilistic ground motions by ???100%. Probabilistic peak ground accelerations remain at levels similar to the national maps, although the ground motion gradient across Shelby County is reduced and ground motions are more uniform within the county. The M7.7 scenario maps show ground motions similar to the 5%-in-50-year probabilistic maps. As an effect of local geology, both M7.7 and M6.2 scenario maps show a more uniform seismic ground-motion hazard across Shelby County than scenario maps with constant site conditions (i.e., NEHRP B/C boundary).
A probabilistic estimate of maximum acceleration in rock in the contiguous United States
Algermissen, Sylvester Theodore; Perkins, David M.
1976-01-01
This paper presents a probabilistic estimate of the maximum ground acceleration to be expected from earthquakes occurring in the contiguous United States. It is based primarily upon the historic seismic record which ranges from very incomplete before 1930 to moderately complete after 1960. Geologic data, primarily distribution of faults, have been employed only to a minor extent, because most such data have not been interpreted yet with earthquake hazard evaluation in mind.The map provides a preliminary estimate of the relative hazard in various parts of the country. The report provides a method for evaluating the relative importance of the many parameters and assumptions in hazard analysis. The map and methods of evaluation described reflect the current state of understanding and are intended to be useful for engineering purposes in reducing the effects of earthquakes on buildings and other structures.Studies are underway on improved methods for evaluating the relativ( earthquake hazard of different regions. Comments on this paper are invited to help guide future research and revisions of the accompanying map.The earthquake hazard in the United States has been estimated in a variety of ways since the initial effort by Ulrich (see Roberts and Ulrich, 1950). In general, the earlier maps provided an estimate of the severity of ground shaking or damage but the frequency of occurrence of the shaking or damage was not given. Ulrich's map showed the distribution of expected damage in terms of no damage (zone 0), minor damage (zone 1), moderate damage (zone 2), and major damage (zone 3). The zones were not defined further and the frequency of occurrence of damage was not suggested. Richter (1959) and Algermissen (1969) estimated the ground motion in terms of maximum Modified Mercalli intensity. Richter used the terms "occasional" and "frequent" to characterize intensity IX shaking and Algermissen included recurrence curves for various parts of the country in the paper accompanying his map.The first probabilistic hazard maps covering portions of the United States were by Milne and Davenport (1969a). Recently, Wiggins, Hirshberg and Bronowicki (1974) prepared a probabilistic map of maximum particle velocity and Modified Mercalli intensity for the entire United States. The maps are based on an analysis of the historical seismicity. In general, geological data were not incorporated into the development of the maps.
230Th/U ages Supporting Hanford Site-Wide Probabilistic Seismic Hazard Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paces, James B.
This product represents a USGS Administrative Report that discusses samples and methods used to conduct uranium-series isotope analyses and resulting ages and initial 234U/238U activity ratios of pedogenic cements developed in several different surfaces in the Hanford area middle to late Pleistocene. Samples were collected and dated to provide calibration of soil development in surface deposits that are being used in the Hanford Site-Wide probabilistic seismic hazard analysis conducted by AMEC. The report includes description of sample locations and physical characteristics, sample preparation, chemical processing and mass spectrometry, analytical results, and calculated ages for individual sites. Ages of innermost rindsmore » on a number of samples from five sites in eastern Washington are consistent with a range of minimum depositional ages from 17 ka for cataclysmic flood deposits to greater than 500 ka for alluvium at several sites.« less
230Th/U ages Supporting Hanford Site‐Wide Probabilistic Seismic Hazard Analysis
Paces, James B.
2014-01-01
This product represents a USGS Administrative Report that discusses samples and methods used to conduct uranium-series isotope analyses and resulting ages and initial 234U/238U activity ratios of pedogenic cements developed in several different surfaces in the Hanford area middle to late Pleistocene. Samples were collected and dated to provide calibration of soil development in surface deposits that are being used in the Hanford Site-Wide probabilistic seismic hazard analysis conducted by AMEC. The report includes description of sample locations and physical characteristics, sample preparation, chemical processing and mass spectrometry, analytical results, and calculated ages for individual sites. Ages of innermost rinds on a number of samples from five sites in eastern Washington are consistent with a range of minimum depositional ages from 17 ka for cataclysmic flood deposits to greater than 500 ka for alluvium at several sites.
Probabilistic performance-based design for high performance control systems
NASA Astrophysics Data System (ADS)
Micheli, Laura; Cao, Liang; Gong, Yongqiang; Cancelli, Alessandro; Laflamme, Simon; Alipour, Alice
2017-04-01
High performance control systems (HPCS) are advanced damping systems capable of high damping performance over a wide frequency bandwidth, ideal for mitigation of multi-hazards. They include active, semi-active, and hybrid damping systems. However, HPCS are more expensive than typical passive mitigation systems, rely on power and hardware (e.g., sensors, actuators) to operate, and require maintenance. In this paper, a life cycle cost analysis (LCA) approach is proposed to estimate the economic benefit these systems over the entire life of the structure. The novelty resides in the life cycle cost analysis in the performance based design (PBD) tailored to multi-level wind hazards. This yields a probabilistic performance-based design approach for HPCS. Numerical simulations are conducted on a building located in Boston, MA. LCA are conducted for passive control systems and HPCS, and the concept of controller robustness is demonstrated. Results highlight the promise of the proposed performance-based design procedure.
NASA Astrophysics Data System (ADS)
Weatherill, Graeme; Burton, Paul W.
2010-09-01
The Aegean is the most seismically active and tectonically complex region in Europe. Damaging earthquakes have occurred here throughout recorded history, often resulting in considerable loss of life. The Monte Carlo method of probabilistic seismic hazard analysis (PSHA) is used to determine the level of ground motion likely to be exceeded in a given time period. Multiple random simulations of seismicity are generated to calculate, directly, the ground motion for a given site. Within the seismic hazard analysis we explore the impact of different seismic source models, incorporating both uniform zones and distributed seismicity. A new, simplified, seismic source model, derived from seismotectonic interpretation, is presented for the Aegean region. This is combined into the epistemic uncertainty analysis alongside existing source models for the region, and models derived by a K-means cluster analysis approach. Seismic source models derived using the K-means approach offer a degree of objectivity and reproducibility into the otherwise subjective approach of delineating seismic sources using expert judgment. Similar review and analysis is undertaken for the selection of peak ground acceleration (PGA) attenuation models, incorporating into the epistemic analysis Greek-specific models, European models and a Next Generation Attenuation model. Hazard maps for PGA on a "rock" site with a 10% probability of being exceeded in 50 years are produced and different source and attenuation models are compared. These indicate that Greek-specific attenuation models, with their smaller aleatory variability terms, produce lower PGA hazard, whilst recent European models and Next Generation Attenuation (NGA) model produce similar results. The Monte Carlo method is extended further to assimilate epistemic uncertainty into the hazard calculation, thus integrating across several appropriate source and PGA attenuation models. Site condition and fault-type are also integrated into the hazard mapping calculations. These hazard maps are in general agreement with previous maps for the Aegean, recognising the highest hazard in the Ionian Islands, Gulf of Corinth and Hellenic Arc. Peak Ground Accelerations for some sites in these regions reach as high as 500-600 cm s -2 using European/NGA attenuation models, and 400-500 cm s -2 using Greek attenuation models.
Long-term multi-hazard assessment for El Misti volcano (Peru)
NASA Astrophysics Data System (ADS)
Sandri, Laura; Thouret, Jean-Claude; Constantinescu, Robert; Biass, Sébastien; Tonini, Roberto
2014-02-01
We propose a long-term probabilistic multi-hazard assessment for El Misti Volcano, a composite cone located <20 km from Arequipa. The second largest Peruvian city is a rapidly expanding economic centre and is classified by UNESCO as World Heritage. We apply the Bayesian Event Tree code for Volcanic Hazard (BET_VH) to produce probabilistic hazard maps for the predominant volcanic phenomena that may affect c.900,000 people living around the volcano. The methodology accounts for the natural variability displayed by volcanoes in their eruptive behaviour, such as different types/sizes of eruptions and possible vent locations. For this purpose, we treat probabilistically several model runs for some of the main hazardous phenomena (lahars, pyroclastic density currents (PDCs), tephra fall and ballistic ejecta) and data from past eruptions at El Misti (tephra fall, PDCs and lahars) and at other volcanoes (PDCs). The hazard maps, although neglecting possible interactions among phenomena or cascade effects, have been produced with a homogeneous method and refer to a common time window of 1 year. The probability maps reveal that only the north and east suburbs of Arequipa are exposed to all volcanic threats except for ballistic ejecta, which are limited to the uninhabited but touristic summit cone. The probability for pyroclastic density currents reaching recently expanding urban areas and the city along ravines is around 0.05 %/year, similar to the probability obtained for roof-critical tephra loading during the rainy season. Lahars represent by far the most probable threat (around 10 %/year) because at least four radial drainage channels can convey them approximately 20 km away from the volcano across the entire city area in heavy rain episodes, even without eruption. The Río Chili Valley represents the major concern to city safety owing to the probable cascading effect of combined threats: PDCs and rockslides, dammed lake break-outs and subsequent lahars or floods. Although this study does not intend to replace the current El Misti hazard map, the quantitative results of this probabilistic multi-hazard assessment can be incorporated into a multi-risk analysis, to support decision makers in any future improvement of the current hazard evaluation, such as further land-use planning and possible emergency management.
Probabilistic seismic hazard analysis (PSHA) for Ethiopia and the neighboring region
NASA Astrophysics Data System (ADS)
Ayele, Atalay
2017-10-01
Seismic hazard calculation is carried out for the Horn of Africa region (0°-20° N and 30°-50°E) based on the probabilistic seismic hazard analysis (PSHA) method. The earthquakes catalogue data obtained from different sources were compiled, homogenized to Mw magnitude scale and declustered to remove the dependent events as required by Poisson earthquake source model. The seismotectonic map of the study area that avails from recent studies is used for area sources zonation. For assessing the seismic hazard, the study area was divided into small grids of size 0.5° × 0.5°, and the hazard parameters were calculated at the center of each of these grid cells by considering contributions from all seismic sources. Peak Ground Acceleration (PGA) corresponding to 10% and 2% probability of exceedance in 50 years were calculated for all the grid points using generic rock site with Vs = 760 m/s. Obtained values vary from 0.0 to 0.18 g and 0.0-0.35 g for 475 and 2475 return periods, respectively. The corresponding contour maps showing the spatial variation of PGA values for the two return periods are presented here. Uniform hazard response spectrum (UHRS) for 10% and 2% probability of exceedance in 50 years and hazard curves for PGA and 0.2 s spectral acceleration (Sa) all at rock site are developed for the city of Addis Ababa. The hazard map of this study corresponding to the 475 return periods has already been used to update and produce the 3rd generation building code of Ethiopia.
Impacts of potential seismic landslides on lifeline corridors.
DOT National Transportation Integrated Search
2015-02-01
This report presents a fully probabilistic method for regional seismically induced landslide hazard analysis and : mapping. The method considers the most current predictions for strong ground motions and seismic sources : through use of the U.S.G.S. ...
Stepp, J.C.; Wong, I.; Whitney, J.; Quittmeyer, R.; Abrahamson, N.; Toro, G.; Young, S.R.; Coppersmith, K.; Savy, J.; Sullivan, T.
2001-01-01
Probabilistic seismic hazard analyses were conducted to estimate both ground motion and fault displacement hazards at the potential geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. The study is believed to be the largest and most comprehensive analyses ever conducted for ground-shaking hazard and is a first-of-a-kind assessment of probabilistic fault displacement hazard. The major emphasis of the study was on the quantification of epistemic uncertainty. Six teams of three experts performed seismic source and fault displacement evaluations, and seven individual experts provided ground motion evaluations. State-of-the-practice expert elicitation processes involving structured workshops, consensus identification of parameters and issues to be evaluated, common sharing of data and information, and open exchanges about the basis for preliminary interpretations were implemented. Ground-shaking hazard was computed for a hypothetical rock outcrop at -300 m, the depth of the potential waste emplacement drifts, at the designated design annual exceedance probabilities of 10-3 and 10-4. The fault displacement hazard was calculated at the design annual exceedance probabilities of 10-4 and 10-5.
NASA Astrophysics Data System (ADS)
Wang, Zhenming; Shi, Baoping; Kiefer, John D.; Woolery, Edward W.
2004-06-01
Musson's comments on our article, ``Communicating with uncertainty: A critical issue with probabilistic seismic hazard analysis'' are an example of myths and misunderstandings. We did not say that probabilistic seismic hazard analysis (PSHA) is a bad method, but we did say that it has some limitations that have significant implications. Our response to these comments follows. There is no consensus on exactly how to select seismological parameters and to assign weights in PSHA. This was one of the conclusions reached by a senior seismic hazard analysis committee [SSHAC, 1997] that included C. A. Cornell, founder of the PSHA methodology. The SSHAC report was reviewed by a panel of the National Research Council and was well accepted by seismologists and engineers. As an example of the lack of consensus, Toro and Silva [2001] produced seismic hazard maps for the central United States region that are quite different from those produced by Frankel et al. [2002] because they used different input seismological parameters and weights (see Table 1). We disagree with Musson's conclusion that ``because a method may be applied badly on one occasion does not mean the method itself is bad.'' We do not say that the method is poor, but rather that those who use PSHA need to document their inputs and communicate them fully to the users. It seems that Musson is trying to create myth by suggesting his own methods should be used.
Probabilistic Volcanic Hazard and Risk Assessment
NASA Astrophysics Data System (ADS)
Marzocchi, W.; Neri, A.; Newhall, C. G.; Papale, P.
2007-08-01
Quantifying Long- and Short-Term Volcanic Hazard: Building Up a Common Strategy for Italian Volcanoes, Erice Italy, 8 November 2006 The term ``hazard'' can lead to some misunderstanding. In English, hazard has the generic meaning ``potential source of danger,'' but for more than 30 years [e.g., Fournier d'Albe, 1979], hazard has been also used in a more quantitative way, that reads, ``the probability of a certain hazardous event in a specific time-space window.'' However, many volcanologists still use ``hazard'' and ``volcanic hazard'' in purely descriptive and subjective ways. A recent meeting held in November 2006 at Erice, Italy, entitled ``Quantifying Long- and Short-Term Volcanic Hazard: Building up a Common Strategy for Italian Volcanoes'' (http://www.bo.ingv.it/erice2006) concluded that a more suitable term for the estimation of quantitative hazard is ``probabilistic volcanic hazard assessment'' (PVHA).
NASA Astrophysics Data System (ADS)
mouloud, Hamidatou
2016-04-01
The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.
Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes.
Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto
2016-04-12
Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for.
Probabilistic Tsunami Hazard Assessment: the Seaside, Oregon Pilot Study
NASA Astrophysics Data System (ADS)
Gonzalez, F. I.; Geist, E. L.; Synolakis, C.; Titov, V. V.
2004-12-01
A pilot study of Seaside, Oregon is underway, to develop methodologies for probabilistic tsunami hazard assessments that can be incorporated into Flood Insurance Rate Maps (FIRMs) developed by FEMA's National Flood Insurance Program (NFIP). Current NFIP guidelines for tsunami hazard assessment rely on the science, technology and methodologies developed in the 1970s; although generally regarded as groundbreaking and state-of-the-art for its time, this approach is now superseded by modern methods that reflect substantial advances in tsunami research achieved in the last two decades. In particular, post-1990 technical advances include: improvements in tsunami source specification; improved tsunami inundation models; better computational grids by virtue of improved bathymetric and topographic databases; a larger database of long-term paleoseismic and paleotsunami records and short-term, historical earthquake and tsunami records that can be exploited to develop improved probabilistic methodologies; better understanding of earthquake recurrence and probability models. The NOAA-led U.S. National Tsunami Hazard Mitigation Program (NTHMP), in partnership with FEMA, USGS, NSF and Emergency Management and Geotechnical agencies of the five Pacific States, incorporates these advances into site-specific tsunami hazard assessments for coastal communities in Alaska, California, Hawaii, Oregon and Washington. NTHMP hazard assessment efforts currently focus on developing deterministic, "credible worst-case" scenarios that provide valuable guidance for hazard mitigation and emergency management. The NFIP focus, on the other hand, is on actuarial needs that require probabilistic hazard assessments such as those that characterize 100- and 500-year flooding events. There are clearly overlaps in NFIP and NTHMP objectives. NTHMP worst-case scenario assessments that include an estimated probability of occurrence could benefit the NFIP; NFIP probabilistic assessments of 100- and 500-yr events could benefit the NTHMP. The joint NFIP/NTHMP pilot study at Seaside, Oregon is organized into three closely related components: Probabilistic, Modeling, and Impact studies. Probabilistic studies (Geist, et al., this session) are led by the USGS and include the specification of near- and far-field seismic tsunami sources and their associated probabilities. Modeling studies (Titov, et al., this session) are led by NOAA and include the development and testing of a Seaside tsunami inundation model and an associated database of computed wave height and flow velocity fields. Impact studies (Synolakis, et al., this session) are led by USC and include the computation and analyses of indices for the categorization of hazard zones. The results of each component study will be integrated to produce a Seaside tsunami hazard map. This presentation will provide a brief overview of the project and an update on progress, while the above-referenced companion presentations will provide details on the methods used and the preliminary results obtained by each project component.
Probabilistic versus deterministic hazard assessment in liquefaction susceptible zones
NASA Astrophysics Data System (ADS)
Daminelli, Rosastella; Gerosa, Daniele; Marcellini, Alberto; Tento, Alberto
2015-04-01
Probabilistic seismic hazard assessment (PSHA), usually adopted in the framework of seismic codes redaction, is based on Poissonian description of the temporal occurrence, negative exponential distribution of magnitude and attenuation relationship with log-normal distribution of PGA or response spectrum. The main positive aspect of this approach stems into the fact that is presently a standard for the majority of countries, but there are weak points in particular regarding the physical description of the earthquake phenomenon. Factors like site effects, source characteristics like duration of the strong motion and directivity that could significantly influence the expected motion at the site are not taken into account by PSHA. Deterministic models can better evaluate the ground motion at a site from a physical point of view, but its prediction reliability depends on the degree of knowledge of the source, wave propagation and soil parameters. We compare these two approaches in selected sites affected by the May 2012 Emilia-Romagna and Lombardia earthquake, that caused widespread liquefaction phenomena unusually for magnitude less than 6. We focus on sites liquefiable because of their soil mechanical parameters and water table level. Our analysis shows that the choice between deterministic and probabilistic hazard analysis is strongly dependent on site conditions. The looser the soil and the higher the liquefaction potential, the more suitable is the deterministic approach. Source characteristics, in particular the duration of strong ground motion, have long since recognized as relevant to induce liquefaction; unfortunately a quantitative prediction of these parameters appears very unlikely, dramatically reducing the possibility of their adoption in hazard assessment. Last but not least, the economic factors are relevant in the choice of the approach. The case history of 2012 Emilia-Romagna and Lombardia earthquake, with an officially estimated cost of 6 billions Euros, shows that geological and geophysical investigations necessary to assess a reliable deterministic hazard evaluation are largely justified.
Probabilistic Flood Maps to support decision-making: Mapping the Value of Information
NASA Astrophysics Data System (ADS)
Alfonso, L.; Mukolwe, M. M.; Di Baldassarre, G.
2016-02-01
Floods are one of the most frequent and disruptive natural hazards that affect man. Annually, significant flood damage is documented worldwide. Flood mapping is a common preimpact flood hazard mitigation measure, for which advanced methods and tools (such as flood inundation models) are used to estimate potential flood extent maps that are used in spatial planning. However, these tools are affected, largely to an unknown degree, by both epistemic and aleatory uncertainty. Over the past few years, advances in uncertainty analysis with respect to flood inundation modeling show that it is appropriate to adopt Probabilistic Flood Maps (PFM) to account for uncertainty. However, the following question arises; how can probabilistic flood hazard information be incorporated into spatial planning? Thus, a consistent framework to incorporate PFMs into the decision-making is required. In this paper, a novel methodology based on Decision-Making under Uncertainty theories, in particular Value of Information (VOI) is proposed. Specifically, the methodology entails the use of a PFM to generate a VOI map, which highlights floodplain locations where additional information is valuable with respect to available floodplain management actions and their potential consequences. The methodology is illustrated with a simplified example and also applied to a real case study in the South of France, where a VOI map is analyzed on the basis of historical land use change decisions over a period of 26 years. Results show that uncertain flood hazard information encapsulated in PFMs can aid decision-making in floodplain planning.
Earthquake Hazard Mitigation Using a Systems Analysis Approach to Risk Assessment
NASA Astrophysics Data System (ADS)
Legg, M.; Eguchi, R. T.
2015-12-01
The earthquake hazard mitigation goal is to reduce losses due to severe natural events. The first step is to conduct a Seismic Risk Assessment consisting of 1) hazard estimation, 2) vulnerability analysis, 3) exposure compilation. Seismic hazards include ground deformation, shaking, and inundation. The hazard estimation may be probabilistic or deterministic. Probabilistic Seismic Hazard Assessment (PSHA) is generally applied to site-specific Risk assessments, but may involve large areas as in a National Seismic Hazard Mapping program. Deterministic hazard assessments are needed for geographically distributed exposure such as lifelines (infrastructure), but may be important for large communities. Vulnerability evaluation includes quantification of fragility for construction or components including personnel. Exposure represents the existing or planned construction, facilities, infrastructure, and population in the affected area. Risk (expected loss) is the product of the quantified hazard, vulnerability (damage algorithm), and exposure which may be used to prepare emergency response plans, retrofit existing construction, or use community planning to avoid hazards. The risk estimate provides data needed to acquire earthquake insurance to assist with effective recovery following a severe event. Earthquake Scenarios used in Deterministic Risk Assessments provide detailed information on where hazards may be most severe, what system components are most susceptible to failure, and to evaluate the combined effects of a severe earthquake to the whole system or community. Casualties (injuries and death) have been the primary factor in defining building codes for seismic-resistant construction. Economic losses may be equally significant factors that can influence proactive hazard mitigation. Large urban earthquakes may produce catastrophic losses due to a cascading of effects often missed in PSHA. Economic collapse may ensue if damaged workplaces, disruption of utilities, and resultant loss of income produces widespread default on payments. With increased computational power and more complete inventories of exposure, Monte Carlo methods may provide more accurate estimation of severe losses and the opportunity to increase resilience of vulnerable systems and communities.
NASA Astrophysics Data System (ADS)
Anderson, E. R.; Griffin, R.; Markert, K. N.
2017-12-01
Scientists, practitioners, policymakers, and citizen groups, share a role in ensuring "that all sectors have access to, understand and can use scientific information for better informed decision-making" (Sendai Framework 2015-2030). When it comes to understanding hazards and exposure, inventories on disaster events are often limited. Thus, there are many opportunities for citizen scientists to engage in improving the collective understanding—and ultimately reduction—of disaster risk. Landslides are very difficult to forecast on spatial and temporal scales meaningful for early warning and evacuation. Heuristic hazard mapping methods are very common in regional hazard zonation and rely on expert knowledge of previous events and local conditions, but they often lack a temporal component. As new data analysis packages are becoming more open and accessible, probabilistic approaches that consider high resolution spatial and temporal dimensions are becoming more common, but this is only possible when rich inventories of landslide events exist. The work presented offers a proof of concept on incorporating crowd-sourced data to improve landslide hazard model performance. Starting with a national inventory of 90 catalogued landslides in El Salvador for a study period of 1998 to 2011, we simulate the addition of over 600 additional crowd-sourced landslide events that would have been identified through human interpretation of high resolution imagery in the Google Earth time slider feature. There is a noticeable improvement in performance statistics between static heuristic hazard models and probabilistic models that incorporate the events identified by the "crowd." Such a dynamic incorporation of crowd-sourced data on hazard events is not so far-fetched. Given the engagement of "local observers" in El Salvador who augment in situ hydro-meteorological measurements, the growing access to Earth observation data to the lay person, and immense interest behind connecting citizen scientists to remote sensing data through hackathons such as the NASA Space Apps Challenges, we envision a much more dynamic, collective understanding of landslide hazards. Here we present a better scenario of what we could have known had data from the crowd been incorporated into probabilistic hazard models on a regular basis.
Baum, Rex L.; Miyagi, Toyohiko; Lee, Saro; Trofymchuk, Oleksandr M
2014-01-01
Twenty papers were accepted into the session on landslide hazard mapping for oral presentation. The papers presented susceptibility and hazard analysis based on approaches ranging from field-based assessments to statistically based models to assessments that combined hydromechanical and probabilistic components. Many of the studies have taken advantage of increasing availability of remotely sensed data and nearly all relied on Geographic Information Systems to organize and analyze spatial data. The studies used a range of methods for assessing performance and validating hazard and susceptibility models. A few of the studies presented in this session also included some element of landslide risk assessment. This collection of papers clearly demonstrates that a wide range of approaches can lead to useful assessments of landslide susceptibility and hazard.
Site-specific seismic probabilistic tsunami hazard analysis: performances and potential applications
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Volpe, Manuela; Lorito, Stefano; Selva, Jacopo; Orefice, Simone; Graziani, Laura; Brizuela, Beatriz; Smedile, Alessandra; Romano, Fabrizio; De Martini, Paolo Marco; Maramai, Alessandra; Piatanesi, Alessio; Pantosti, Daniela
2017-04-01
Seismic Probabilistic Tsunami Hazard Analysis (SPTHA) provides probabilities to exceed different thresholds of tsunami hazard intensity, at a specific site or region and in a given time span, for tsunamis caused by seismic sources. Results obtained by SPTHA (i.e., probabilistic hazard curves and inundation maps) represent a very important input to risk analyses and land use planning. However, the large variability of source parameters implies the definition of a huge number of potential tsunami scenarios, whose omission could lead to a biased analysis. Moreover, tsunami propagation from source to target requires the use of very expensive numerical simulations. At regional scale, the computational cost can be reduced using assumptions on the tsunami modeling (i.e., neglecting non-linear effects, using coarse topo-bathymetric meshes, empirically extrapolating maximum wave heights on the coast). On the other hand, moving to local scale, a much higher resolution is required and such assumptions drop out, since detailed inundation maps require significantly greater computational resources. In this work we apply a multi-step method to perform a site-specific SPTHA which can be summarized in the following steps: i) to perform a regional hazard assessment to account for both the aleatory and epistemic uncertainties of the seismic source, by combining the use of an event tree and an ensemble modeling technique; ii) to apply a filtering procedure which use a cluster analysis to define a significantly reduced number of representative scenarios contributing to the hazard of a specific target site; iii) to perform high resolution numerical simulations only for these representative scenarios and for a subset of near field sources placed in very shallow waters and/or whose coseismic displacements induce ground uplift or subsidence at the target. The method is applied to three target areas in the Mediterranean located around the cities of Milazzo (Italy), Thessaloniki (Greece) and Siracusa (Italy). The latter target analysis is enriched by the use of local observed tsunami data, both geological and historical. Indeed, tsunami data-sets available for Siracusa are particularly rich with respect to the scarce and heterogeneous data-sets usually available elsewhere. Therefore, they can represent a further valuable source of information to benchmark and strengthen the results of such kind of studies. The work is funded by the Italian Flagship Project RITMARE, the two EC FP7 ASTARTE (Grant agreement 603839) and STREST (Grant agreement 603389) projects, the TSUMAPS-NEAM (Grant agreement ECHO/SUB/2015/718568/PREV26) project and the INGV-DPC Agreement.
Probability-Based Design Criteria of the ASCE 7 Tsunami Loads and Effects Provisions (Invited)
NASA Astrophysics Data System (ADS)
Chock, G.
2013-12-01
Mitigation of tsunami risk requires a combination of emergency preparedness for evacuation in addition to providing structural resilience of critical facilities, infrastructure, and key resources necessary for immediate response and economic and social recovery. Critical facilities would include emergency response, medical, tsunami refuges and shelters, ports and harbors, lifelines, transportation, telecommunications, power, financial institutions, and major industrial/commercial facilities. The Tsunami Loads and Effects Subcommittee of the ASCE/SEI 7 Standards Committee is developing a proposed new Chapter 6 - Tsunami Loads and Effects for the 2016 edition of the ASCE 7 Standard. ASCE 7 provides the minimum design loads and requirements for structures subject to building codes such as the International Building Code utilized in the USA. In this paper we will provide a review emphasizing the intent of these new code provisions and explain the design methodology. The ASCE 7 provisions for Tsunami Loads and Effects enables a set of analysis and design methodologies that are consistent with performance-based engineering based on probabilistic criteria. . The ASCE 7 Tsunami Loads and Effects chapter will be initially applicable only to the states of Alaska, Washington, Oregon, California, and Hawaii. Ground shaking effects and subsidence from a preceding local offshore Maximum Considered Earthquake will also be considered prior to tsunami arrival for Alaska and states in the Pacific Northwest regions governed by nearby offshore subduction earthquakes. For national tsunami design provisions to achieve a consistent reliability standard of structural performance for community resilience, a new generation of tsunami inundation hazard maps for design is required. The lesson of recent tsunami is that historical records alone do not provide a sufficient measure of the potential heights of future tsunamis. Engineering design must consider the occurrence of events greater than scenarios in the historical record, and should properly be based on the underlying seismicity of subduction zones. Therefore, Probabilistic Tsunami Hazard Analysis (PTHA) consistent with source seismicity must be performed in addition to consideration of historical event scenarios. A method of Probabilistic Tsunami Hazard Analysis has been established that is generally consistent with Probabilistic Seismic Hazard Analysis in the treatment of uncertainty. These new tsunami design zone maps will define the coastal zones where structures of greater importance would be designed for tsunami resistance and community resilience. Structural member acceptability criteria will be based on performance objectives for a 2,500-year Maximum Considered Tsunami. The approach developed by the ASCE Tsunami Loads and Effects Subcommittee of the ASCE 7 Standard would result in the first national unification of tsunami hazard criteria for design codes reflecting the modern approach of Performance-Based Engineering.
Mousavi, S. Mostafa; Beroza, Gregory C.; Hoover, Susan M.
2018-01-01
Probabilistic seismic hazard analysis (PSHA) characterizes ground-motion hazard from earthquakes. Typically, the time horizon of a PSHA forecast is long, but in response to induced seismicity related to hydrocarbon development, the USGS developed one-year PSHA models. In this paper, we present a display of the variability in USGS hazard curves due to epistemic uncertainty in its informed submodel using a simple bootstrapping approach. We find that variability is highest in low-seismicity areas. On the other hand, areas of high seismic hazard, such as the New Madrid seismic zone or Oklahoma, exhibit relatively lower variability simply because of more available data and a better understanding of the seismicity. Comparing areas of high hazard, New Madrid, which has a history of large naturally occurring earthquakes, has lower forecast variability than Oklahoma, where the hazard is driven mainly by suspected induced earthquakes since 2009. Overall, the mean hazard obtained from bootstrapping is close to the published model, and variability increased in the 2017 one-year model relative to the 2016 model. Comparing the relative variations caused by individual logic-tree branches, we find that the highest hazard variation (as measured by the 95% confidence interval of bootstrapping samples) in the final model is associated with different ground-motion models and maximum magnitudes used in the logic tree, while the variability due to the smoothing distance is minimal. It should be pointed out that this study is not looking at the uncertainty in the hazard in general, but only as it is represented in the USGS one-year models.
Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis
2013-09-01
During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modelingmore » and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.« less
Probabilistic Approaches for Multi-Hazard Risk Assessment of Structures and Systems
NASA Astrophysics Data System (ADS)
Kwag, Shinyoung
Performance assessment of structures, systems, and components for multi-hazard scenarios has received significant attention in recent years. However, the concept of multi-hazard analysis is quite broad in nature and the focus of existing literature varies across a wide range of problems. In some cases, such studies focus on hazards that either occur simultaneously or are closely correlated with each other. For example, seismically induced flooding or seismically induced fires. In other cases, multi-hazard studies relate to hazards that are not dependent or correlated but have strong likelihood of occurrence at different times during the lifetime of a structure. The current approaches for risk assessment need enhancement to account for multi-hazard risks. It must be able to account for uncertainty propagation in a systems-level analysis, consider correlation among events or failure modes, and allow integration of newly available information from continually evolving simulation models, experimental observations, and field measurements. This dissertation presents a detailed study that proposes enhancements by incorporating Bayesian networks and Bayesian updating within a performance-based probabilistic framework. The performance-based framework allows propagation of risk as well as uncertainties in the risk estimates within a systems analysis. Unlike conventional risk assessment techniques such as a fault-tree analysis, a Bayesian network can account for statistical dependencies and correlations among events/hazards. The proposed approach is extended to develop a risk-informed framework for quantitative validation and verification of high fidelity system-level simulation tools. Validation of such simulations can be quite formidable within the context of a multi-hazard risk assessment in nuclear power plants. The efficiency of this approach lies in identification of critical events, components, and systems that contribute to the overall risk. Validation of any event or component on the critical path is relatively more important in a risk-informed environment. Significance of multi-hazard risk is also illustrated for uncorrelated hazards of earthquakes and high winds which may result in competing design objectives. It is also illustrated that the number of computationally intensive nonlinear simulations needed in performance-based risk assessment for external hazards can be significantly reduced by using the power of Bayesian updating in conjunction with the concept of equivalent limit-state.
Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes
Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto
2016-01-01
Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for. PMID:27067389
Empirical Data Fusion for Convective Weather Hazard Nowcasting
NASA Astrophysics Data System (ADS)
Williams, J.; Ahijevych, D.; Steiner, M.; Dettling, S.
2009-09-01
This paper describes a statistical analysis approach to developing an automated convective weather hazard nowcast system suitable for use by aviation users in strategic route planning and air traffic management. The analysis makes use of numerical weather prediction model fields and radar, satellite, and lightning observations and derived features along with observed thunderstorm evolution data, which are aligned using radar-derived motion vectors. Using a dataset collected during the summers of 2007 and 2008 over the eastern U.S., the predictive contributions of the various potential predictor fields are analyzed for various spatial scales, lead-times and scenarios using a technique called random forests (RFs). A minimal, skillful set of predictors is selected for each scenario requiring distinct forecast logic, and RFs are used to construct an empirical probabilistic model for each. The resulting data fusion system, which ran in real-time at the National Center for Atmospheric Research during the summer of 2009, produces probabilistic and deterministic nowcasts of the convective weather hazard and assessments of the prediction uncertainty. The nowcasts' performance and results for several case studies are presented to demonstrate the value of this approach. This research has been funded by the U.S. Federal Aviation Administration to support the development of the Consolidated Storm Prediction for Aviation (CoSPA) system, which is intended to provide convective hazard nowcasts and forecasts for the U.S. Next Generation Air Transportation System (NextGen).
Numerical and Probabilistic Analysis of Asteroid and Comet Impact Hazard Mitigation
2010-09-01
object on Jupiter are reminders and warning signals that we should take seriously. The extinction of the dinosaurs has been attributed to the impact of a...experimentally determined absorption patterns. These energy deposition processes are independent, so a piecemeal approach is physically reasonable . We
A global probabilistic tsunami hazard assessment from earthquake sources
Davies, Gareth; Griffin, Jonathan; Lovholt, Finn; Glimsdal, Sylfest; Harbitz, Carl; Thio, Hong Kie; Lorito, Stefano; Basili, Roberto; Selva, Jacopo; Geist, Eric L.; Baptista, Maria Ana
2017-01-01
Large tsunamis occur infrequently but have the capacity to cause enormous numbers of casualties, damage to the built environment and critical infrastructure, and economic losses. A sound understanding of tsunami hazard is required to underpin management of these risks, and while tsunami hazard assessments are typically conducted at regional or local scales, globally consistent assessments are required to support international disaster risk reduction efforts, and can serve as a reference for local and regional studies. This study presents a global-scale probabilistic tsunami hazard assessment (PTHA), extending previous global-scale assessments based largely on scenario analysis. Only earthquake sources are considered, as they represent about 80% of the recorded damaging tsunami events. Globally extensive estimates of tsunami run-up height are derived at various exceedance rates, and the associated uncertainties are quantified. Epistemic uncertainties in the exceedance rates of large earthquakes often lead to large uncertainties in tsunami run-up. Deviations between modelled tsunami run-up and event observations are quantified, and found to be larger than suggested in previous studies. Accounting for these deviations in PTHA is important, as it leads to a pronounced increase in predicted tsunami run-up for a given exceedance rate.
NASA Astrophysics Data System (ADS)
Neri, Augusto; Bevilacqua, Andrea; Esposti Ongaro, Tomaso; Isaia, Roberto; Aspinall, Willy P.; Bisson, Marina; Flandoli, Franco; Baxter, Peter J.; Bertagnini, Antonella; Iannuzzi, Enrico; Orsucci, Simone; Pistolesi, Marco; Rosi, Mauro; Vitale, Stefano
2015-04-01
Campi Flegrei (CF) is an example of an active caldera containing densely populated settlements at very high risk of pyroclastic density currents (PDCs). We present here an innovative method for assessing background spatial PDC hazard in a caldera setting with probabilistic invasion maps conditional on the occurrence of an explosive event. The method encompasses the probabilistic assessment of potential vent opening positions, derived in the companion paper, combined with inferences about the spatial density distribution of PDC invasion areas from a simplified flow model, informed by reconstruction of deposits from eruptions in the last 15 ka. The flow model describes the PDC kinematics and accounts for main effects of topography on flow propagation. Structured expert elicitation is used to incorporate certain sources of epistemic uncertainty, and a Monte Carlo approach is adopted to produce a set of probabilistic hazard maps for the whole CF area. Our findings show that, in case of eruption, almost the entire caldera is exposed to invasion with a mean probability of at least 5%, with peaks greater than 50% in some central areas. Some areas outside the caldera are also exposed to this danger, with mean probabilities of invasion of the order of 5-10%. Our analysis suggests that these probability estimates have location-specific uncertainties which can be substantial. The results prove to be robust with respect to alternative elicitation models and allow the influence on hazard mapping of different sources of uncertainty, and of theoretical and numerical assumptions, to be quantified.
A Unified Probabilistic Framework for Dose-Response Assessment of Human Health Effects.
Chiu, Weihsueh A; Slob, Wout
2015-12-01
When chemical health hazards have been identified, probabilistic dose-response assessment ("hazard characterization") quantifies uncertainty and/or variability in toxicity as a function of human exposure. Existing probabilistic approaches differ for different types of endpoints or modes-of-action, lacking a unifying framework. We developed a unified framework for probabilistic dose-response assessment. We established a framework based on four principles: a) individual and population dose responses are distinct; b) dose-response relationships for all (including quantal) endpoints can be recast as relating to an underlying continuous measure of response at the individual level; c) for effects relevant to humans, "effect metrics" can be specified to define "toxicologically equivalent" sizes for this underlying individual response; and d) dose-response assessment requires making adjustments and accounting for uncertainty and variability. We then derived a step-by-step probabilistic approach for dose-response assessment of animal toxicology data similar to how nonprobabilistic reference doses are derived, illustrating the approach with example non-cancer and cancer datasets. Probabilistically derived exposure limits are based on estimating a "target human dose" (HDMI), which requires risk management-informed choices for the magnitude (M) of individual effect being protected against, the remaining incidence (I) of individuals with effects ≥ M in the population, and the percent confidence. In the example datasets, probabilistically derived 90% confidence intervals for HDMI values span a 40- to 60-fold range, where I = 1% of the population experiences ≥ M = 1%-10% effect sizes. Although some implementation challenges remain, this unified probabilistic framework can provide substantially more complete and transparent characterization of chemical hazards and support better-informed risk management decisions.
Seismic Hazard analysis of Adjaria Region in Georgia
NASA Astrophysics Data System (ADS)
Jorjiashvili, Nato; Elashvili, Mikheil
2014-05-01
The most commonly used approach to determining seismic-design loads for engineering projects is probabilistic seismic-hazard analysis (PSHA). The primary output from a PSHA is a hazard curve showing the variation of a selected ground-motion parameter, such as peak ground acceleration (PGA) or spectral acceleration (SA), against the annual frequency of exceedance (or its reciprocal, return period). The design value is the ground-motion level that corresponds to a preselected design return period. For many engineering projects, such as standard buildings and typical bridges, the seismic loading is taken from the appropriate seismic-design code, the basis of which is usually a PSHA. For more important engineering projects— where the consequences of failure are more serious, such as dams and chemical plants—it is more usual to obtain the seismic-design loads from a site-specific PSHA, in general, using much longer return periods than those governing code based design. Calculation of Probabilistic Seismic Hazard was performed using Software CRISIS2007 by Ordaz, M., Aguilar, A., and Arboleda, J., Instituto de Ingeniería, UNAM, Mexico. CRISIS implements a classical probabilistic seismic hazard methodology where seismic sources can be modelled as points, lines and areas. In the case of area sources, the software offers an integration procedure that takes advantage of a triangulation algorithm used for seismic source discretization. This solution improves calculation efficiency while maintaining a reliable description of source geometry and seismicity. Additionally, supplementary filters (e.g. fix a sitesource distance that excludes from calculation sources at great distance) allow the program to balance precision and efficiency during hazard calculation. Earthquake temporal occurrence is assumed to follow a Poisson process, and the code facilitates two types of MFDs: a truncated exponential Gutenberg-Richter [1944] magnitude distribution and a characteristic magnitude distribution [Youngs and Coppersmith, 1985]. Notably, the software can deal with uncertainty in the seismicity input parameters such as maximum magnitude value. CRISIS offers a set of built-in GMPEs, as well as the possibility of defining new ones by providing information in a tabular format. Our study shows that in case of Ajaristkali HPP study area, significant contribution to Seismic Hazard comes from local sources with quite low Mmax values, thus these two attenuation lows give us quite different PGA and SA values.
Probabilistic short-term volcanic hazard in phases of unrest: A case study for tephra fallout
NASA Astrophysics Data System (ADS)
Selva, Jacopo; Costa, Antonio; Sandri, Laura; Macedonio, Giovanni; Marzocchi, Warner
2014-12-01
During volcanic crises, volcanologists estimate the impact of possible imminent eruptions usually through deterministic modeling of the effects of one or a few preestablished scenarios. Despite such an approach may bring an important information to the decision makers, the sole use of deterministic scenarios does not allow scientists to properly take into consideration all uncertainties, and it cannot be used to assess quantitatively the risk because the latter unavoidably requires a probabilistic approach. We present a model based on the concept of Bayesian event tree (hereinafter named BET_VH_ST, standing for Bayesian event tree for short-term volcanic hazard), for short-term near-real-time probabilistic volcanic hazard analysis formulated for any potential hazardous phenomenon accompanying an eruption. The specific goal of BET_VH_ST is to produce a quantitative assessment of the probability of exceedance of any potential level of intensity for a given volcanic hazard due to eruptions within restricted time windows (hours to days) in any area surrounding the volcano, accounting for all natural and epistemic uncertainties. BET_VH_ST properly assesses the conditional probability at each level of the event tree accounting for any relevant information derived from the monitoring system, theoretical models, and the past history of the volcano, propagating any relevant epistemic uncertainty underlying these assessments. As an application example of the model, we apply BET_VH_ST to assess short-term volcanic hazard related to tephra loading during Major Emergency Simulation Exercise, a major exercise at Mount Vesuvius that took place from 19 to 23 October 2006, consisting in a blind simulation of Vesuvius reactivation, from the early warning phase up to the final eruption, including the evacuation of a sample of about 2000 people from the area at risk. The results show that BET_VH_ST is able to produce short-term forecasts of the impact of tephra fall during a rapidly evolving crisis, accurately accounting for and propagating all uncertainties and enabling rational decision making under uncertainty.
Agent-based simulation for human-induced hazard analysis.
Bulleit, William M; Drewek, Matthew W
2011-02-01
Terrorism could be treated as a hazard for design purposes. For instance, the terrorist hazard could be analyzed in a manner similar to the way that seismic hazard is handled. No matter how terrorism is dealt with in the design of systems, the need for predictions of the frequency and magnitude of the hazard will be required. And, if the human-induced hazard is to be designed for in a manner analogous to natural hazards, then the predictions should be probabilistic in nature. The model described in this article is a prototype model that used agent-based modeling (ABM) to analyze terrorist attacks. The basic approach in this article of using ABM to model human-induced hazards has been preliminarily validated in the sense that the attack magnitudes seem to be power-law distributed and attacks occur mostly in regions where high levels of wealth pass through, such as transit routes and markets. The model developed in this study indicates that ABM is a viable approach to modeling socioeconomic-based infrastructure systems for engineering design to deal with human-induced hazards. © 2010 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Yugsi Molina, F. X.; Oppikofer, T.; Fischer, L.; Hermanns, R. L.; Taurisano, A.
2012-04-01
Traditional techniques to assess rockfall hazard are partially based on probabilistic analysis. Stochastic methods has been used for run-out analysis of rock blocks to estimate the trajectories that a detached block will follow during its fall until it stops due to kinetic energy loss. However, the selection of rockfall source areas is usually defined either by multivariate analysis or by field observations. For either case, a physically based approach is not used for the source area detection. We present an example of rockfall hazard assessment that integrates a probabilistic rockfall run-out analysis with a stochastic assessment of the rockfall source areas using kinematic stability analysis in a GIS environment. The method has been tested for a steep more than 200 m high rock wall, located in the municipality of Norddal (Møre og Romsdal county, Norway), where a large number of people are either exposed to snow avalanches, rockfalls, or debris flows. The area was selected following the recently published hazard mapping plan of Norway. The cliff is formed by medium to coarse-grained quartz-dioritic to granitic gneisses of Proterozoic age. Scree deposits product of recent rockfall activity are found at the bottom of the rock wall. Large blocks can be found several tens of meters away from the cliff in Sylte, the main locality in the Norddal municipality. Structural characterization of the rock wall was done using terrestrial laser scanning (TLS) point clouds in the software Coltop3D (www.terranum.ch), and results were validated with field data. Orientation data sets from the structural characterization were analyzed separately to assess best-fit probability density functions (PDF) for both dip angle and dip direction angle of each discontinuity set. A GIS-based stochastic kinematic analysis was then carried out using the discontinuity set orientations and the friction angle as random variables. An airborne laser scanning digital elevation model (ALS-DEM) with 1 m resolution was used for the analysis. Three failure mechanisms were analyzed: planar and wedge sliding, as well as toppling. Based on this kinematic analysis, areas where failure is feasible were used as source areas for run out analysis using Rockyfor3D v. 4.1 (www.ecorisq.org). The software calculates trajectories of single falling blocks in three dimensions using physically based algorithms developed under a stochastic approach. The ALS-DEM was down-scaled to 5 m resolution to optimize processing time. Results were compared with run-out simulations using Rockyfor3D with the whole rock wall as source area, and with maps of deposits generated from field observations and aerial photo interpretation. The results product of our implementation show a better correlation with field observations, and help to produce more accurate rock fall hazard assessment maps by a better definition of the source areas. It reduces the time processing for the analysis as well. The findings presented in this contribution are part of an effort to produce guidelines for natural hazard mapping in Norway. Guidelines will be used in upcoming years for hazard mapping in areas where larger groups of population are exposed to mass movements from steep slopes.
A methodology for post-mainshock probabilistic assessment of building collapse risk
Luco, N.; Gerstenberger, M.C.; Uma, S.R.; Ryu, H.; Liel, A.B.; Raghunandan, M.
2011-01-01
This paper presents a methodology for post-earthquake probabilistic risk (of damage) assessment that we propose in order to develop a computational tool for automatic or semi-automatic assessment. The methodology utilizes the same so-called risk integral which can be used for pre-earthquake probabilistic assessment. The risk integral couples (i) ground motion hazard information for the location of a structure of interest with (ii) knowledge of the fragility of the structure with respect to potential ground motion intensities. In the proposed post-mainshock methodology, the ground motion hazard component of the risk integral is adapted to account for aftershocks which are deliberately excluded from typical pre-earthquake hazard assessments and which decrease in frequency with the time elapsed since the mainshock. Correspondingly, the structural fragility component is adapted to account for any damage caused by the mainshock, as well as any uncertainty in the extent of this damage. The result of the adapted risk integral is a fully-probabilistic quantification of post-mainshock seismic risk that can inform emergency response mobilization, inspection prioritization, and re-occupancy decisions.
Development/Modernization of an Advanced Non-Light Water Reactor Probabilistic Risk Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henneke, Dennis W.; Robinson, James
In 2015, GE Hitachi Nuclear Energy (GEH) teamed with Argonne National Laboratory (Argonne) to perform Research and Development (R&D) of next-generation Probabilistic Risk Assessment (PRA) methodologies for the modernization of an advanced non-Light Water Reactor (non-LWR) PRA. This effort built upon a PRA developed in the early 1990s for GEH’s Power Reactor Inherently Safe Module (PRISM) Sodium Fast Reactor (SFR). The work had four main tasks: internal events development modeling the risk from the reactor for hazards occurring at-power internal to the plant; an all hazards scoping review to analyze the risk at a high level from external hazards suchmore » as earthquakes and high winds; an all modes scoping review to understand the risk at a high level from operating modes other than at-power; and risk insights to integrate the results from each of the three phases above. To achieve these objectives, GEH and Argonne used and adapted proven PRA methodologies and techniques to build a modern non-LWR all hazards/all modes PRA. The teams also advanced non-LWR PRA methodologies, which is an important outcome from this work. This report summarizes the project outcomes in two major phases. The first phase presents the methodologies developed for non-LWR PRAs. The methodologies are grouped by scope, from Internal Events At-Power (IEAP) to hazards analysis to modes analysis. The second phase presents details of the PRISM PRA model which was developed as a validation of the non-LWR methodologies. The PRISM PRA was performed in detail for IEAP, and at a broader level for hazards and modes. In addition to contributing methodologies, this project developed risk insights applicable to non-LWR PRA, including focus-areas for future R&D, and conclusions about the PRISM design.« less
A Unified Probabilistic Framework for Dose–Response Assessment of Human Health Effects
Slob, Wout
2015-01-01
Background When chemical health hazards have been identified, probabilistic dose–response assessment (“hazard characterization”) quantifies uncertainty and/or variability in toxicity as a function of human exposure. Existing probabilistic approaches differ for different types of endpoints or modes-of-action, lacking a unifying framework. Objectives We developed a unified framework for probabilistic dose–response assessment. Methods We established a framework based on four principles: a) individual and population dose responses are distinct; b) dose–response relationships for all (including quantal) endpoints can be recast as relating to an underlying continuous measure of response at the individual level; c) for effects relevant to humans, “effect metrics” can be specified to define “toxicologically equivalent” sizes for this underlying individual response; and d) dose–response assessment requires making adjustments and accounting for uncertainty and variability. We then derived a step-by-step probabilistic approach for dose–response assessment of animal toxicology data similar to how nonprobabilistic reference doses are derived, illustrating the approach with example non-cancer and cancer datasets. Results Probabilistically derived exposure limits are based on estimating a “target human dose” (HDMI), which requires risk management–informed choices for the magnitude (M) of individual effect being protected against, the remaining incidence (I) of individuals with effects ≥ M in the population, and the percent confidence. In the example datasets, probabilistically derived 90% confidence intervals for HDMI values span a 40- to 60-fold range, where I = 1% of the population experiences ≥ M = 1%–10% effect sizes. Conclusions Although some implementation challenges remain, this unified probabilistic framework can provide substantially more complete and transparent characterization of chemical hazards and support better-informed risk management decisions. Citation Chiu WA, Slob W. 2015. A unified probabilistic framework for dose–response assessment of human health effects. Environ Health Perspect 123:1241–1254; http://dx.doi.org/10.1289/ehp.1409385 PMID:26006063
SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Suzette Jackson; Coppersmith, Ryan; Coppersmith, Kevin
A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the newmore » methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.« less
Dominant seismic sources for the cities in South Sumatra
NASA Astrophysics Data System (ADS)
Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya
2017-07-01
Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.
Probabilistic TSUnami Hazard MAPS for the NEAM Region: The TSUMAPS-NEAM Project
NASA Astrophysics Data System (ADS)
Basili, R.; Babeyko, A. Y.; Baptista, M. A.; Ben Abdallah, S.; Canals, M.; El Mouraouah, A.; Harbitz, C. B.; Ibenbrahim, A.; Lastras, G.; Lorito, S.; Løvholt, F.; Matias, L. M.; Omira, R.; Papadopoulos, G. A.; Pekcan, O.; Nmiri, A.; Selva, J.; Yalciner, A. C.
2016-12-01
As global awareness of tsunami hazard and risk grows, the North-East Atlantic, the Mediterranean, and connected Seas (NEAM) region still lacks a thorough probabilistic tsunami hazard assessment. The TSUMAPS-NEAM project aims to fill this gap in the NEAM region by 1) producing the first region-wide long-term homogenous Probabilistic Tsunami Hazard Assessment (PTHA) from earthquake sources, and by 2) triggering a common tsunami risk management strategy. The specific objectives of the project are tackled by the following four consecutive actions: 1) Conduct a state-of-the-art, standardized, and updatable PTHA with full uncertainty treatment; 2) Review the entire process with international experts; 3) Produce the PTHA database, with documentation of the entire hazard assessment process; and 4) Publicize the results through an awareness raising and education phase, and a capacity building phase. This presentation will illustrate the project layout, summarize its current status of advancement and prospective results, and outline its connections with similar initiatives in the international context. The TSUMAPS-NEAM Project (http://www.tsumaps-neam.eu/) is co-financed by the European Union Civil Protection Mechanism, Agreement Number: ECHO/SUB/2015/718568/PREV26.
Probabilistic TSUnami Hazard MAPS for the NEAM Region: The TSUMAPS-NEAM Project
NASA Astrophysics Data System (ADS)
Basili, Roberto; Babeyko, Andrey Y.; Hoechner, Andreas; Baptista, Maria Ana; Ben Abdallah, Samir; Canals, Miquel; El Mouraouah, Azelarab; Bonnevie Harbitz, Carl; Ibenbrahim, Aomar; Lastras, Galderic; Lorito, Stefano; Løvholt, Finn; Matias, Luis Manuel; Omira, Rachid; Papadopoulos, Gerassimos A.; Pekcan, Onur; Nmiri, Abdelwaheb; Selva, Jacopo; Yalciner, Ahmet C.; Thio, Hong K.
2017-04-01
As global awareness of tsunami hazard and risk grows, the North-East Atlantic, the Mediterranean, and connected Seas (NEAM) region still lacks a thorough probabilistic tsunami hazard assessment. The TSUMAPS-NEAM project aims to fill this gap in the NEAM region by 1) producing the first region-wide long-term homogenous Probabilistic Tsunami Hazard Assessment (PTHA) from earthquake sources, and by 2) triggering a common tsunami risk management strategy. The specific objectives of the project are tackled by the following four consecutive actions: 1) Conduct a state-of-the-art, standardized, and updatable PTHA with full uncertainty treatment; 2) Review the entire process with international experts; 3) Produce the PTHA database, with documentation of the entire hazard assessment process; and 4) Publicize the results through an awareness raising and education phase, and a capacity building phase. This presentation will illustrate the project layout, summarize its current status of advancement including the firs preliminary release of the assessment, and outline its connections with similar initiatives in the international context. The TSUMAPS-NEAM Project (http://www.tsumaps-neam.eu/) is co-financed by the European Union Civil Protection Mechanism, Agreement Number: ECHO/SUB/2015/718568/PREV26.
Probabilistic assessment of wildfire hazard and municipal watershed exposure
Joe Scott; Don Helmbrecht; Matthew P. Thompson; David E. Calkin; Kate Marcille
2012-01-01
The occurrence of wildfires within municipal watersheds can result in significant impacts to water quality and ultimately human health and safety. In this paper, we illustrate the application of geospatial analysis and burn probability modeling to assess the exposure of municipal watersheds to wildfire. Our assessment of wildfire exposure consists of two primary...
Landslide hazard analysis for pipelines: The case of the Simonette river crossing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grivas, D.A.; Schultz, B.C.; O`Neil, G.
1995-12-31
The overall objective of this study is to develop a probabilistic methodology to analyze landslide hazards and their effects on the safety of buried pipelines. The methodology incorporates a range of models that can accommodate differences in the ground movement modes and the amount and type of information available at various site locations. Two movement modes are considered, namely (a) instantaneous (catastrophic) slides, and (b) gradual ground movement which may result in cumulative displacements over the pipeline design life (30--40 years) that are in excess of allowable values. Probabilistic analysis is applied in each case to address the uncertainties associatedmore » with important factors that control slope stability. Availability of information ranges from relatively well studied, instrumented installations to cases where data is limited to what can be derived from topographic and geologic maps. The methodology distinguishes between procedures applied where there is little information and those that can be used when relatively extensive data is available. important aspects of the methodology are illustrated in a case study involving a pipeline located in Northern Alberta, Canada, in the Simonette river valley.« less
NASA Astrophysics Data System (ADS)
Spence, C. M.; Brown, C.; Doss-Gollin, J.
2016-12-01
Climate model projections are commonly used for water resources management and planning under nonstationarity, but they do not reliably reproduce intense short-term precipitation and are instead more skilled at broader spatial scales. To provide a credible estimate of flood trend that reflects climate uncertainty, we present a framework that exploits the connections between synoptic-scale oceanic and atmospheric patterns and local-scale flood-producing meteorological events to develop long-term flood hazard projections. We demonstrate the method for the Iowa River, where high flow episodes have been found to correlate with tropical moisture exports that are associated with a pressure dipole across the eastern continental United States We characterize the relationship between flooding on the Iowa River and this pressure dipole through a nonstationary Pareto-Poisson peaks-over-threshold probability distribution estimated based on the historic record. We then combine the results of a trend analysis of dipole index in the historic record with the results of a trend analysis of the dipole index as simulated by General Circulation Models (GCMs) under climate change conditions through a Bayesian framework. The resulting nonstationary posterior distribution of dipole index, combined with the dipole-conditioned peaks-over-threshold flood frequency model, connects local flood hazard to changes in large-scale atmospheric pressure and circulation patterns that are related to flooding in a process-driven framework. The Iowa River example demonstrates that the resulting nonstationary, probabilistic flood hazard projection may be used to inform risk-based flood adaptation decisions.
Initiating Event Analysis of a Lithium Fluoride Thorium Reactor
NASA Astrophysics Data System (ADS)
Geraci, Nicholas Charles
The primary purpose of this study is to perform an Initiating Event Analysis for a Lithium Fluoride Thorium Reactor (LFTR) as the first step of a Probabilistic Safety Assessment (PSA). The major objective of the research is to compile a list of key initiating events capable of resulting in failure of safety systems and release of radioactive material from the LFTR. Due to the complex interactions between engineering design, component reliability and human reliability, probabilistic safety assessments are most useful when the scope is limited to a single reactor plant. Thus, this thesis will study the LFTR design proposed by Flibe Energy. An October 2015 Electric Power Research Institute report on the Flibe Energy LFTR asked "what-if?" questions of subject matter experts and compiled a list of key hazards with the most significant consequences to the safety or integrity of the LFTR. The potential exists for unforeseen hazards to pose additional risk for the LFTR, but the scope of this thesis is limited to evaluation of those key hazards already identified by Flibe Energy. These key hazards are the starting point for the Initiating Event Analysis performed in this thesis. Engineering evaluation and technical study of the plant using a literature review and comparison to reference technology revealed four hazards with high potential to cause reactor core damage. To determine the initiating events resulting in realization of these four hazards, reference was made to previous PSAs and existing NRC and EPRI initiating event lists. Finally, fault tree and event tree analyses were conducted, completing the logical classification of initiating events. Results are qualitative as opposed to quantitative due to the early stages of system design descriptions and lack of operating experience or data for the LFTR. In summary, this thesis analyzes initiating events using previous research and inductive and deductive reasoning through traditional risk management techniques to arrive at a list of key initiating events that can be used to address vulnerabilities during the design phases of LFTR development.
NASA Astrophysics Data System (ADS)
Rahman, M. Moklesur; Bai, Ling; Khan, Nangyal Ghani; Li, Guohui
2018-02-01
The Himalayan-Tibetan region has a long history of devastating earthquakes with wide-spread casualties and socio-economic damages. Here, we conduct the probabilistic seismic hazard analysis by incorporating the incomplete historical earthquake records along with the instrumental earthquake catalogs for the Himalayan-Tibetan region. Historical earthquake records back to more than 1000 years ago and an updated, homogenized and declustered instrumental earthquake catalog since 1906 are utilized. The essential seismicity parameters, namely, the mean seismicity rate γ, the Gutenberg-Richter b value, and the maximum expected magnitude M max are estimated using the maximum likelihood algorithm assuming the incompleteness of the catalog. To compute the hazard value, three seismogenic source models (smoothed gridded, linear, and areal sources) and two sets of ground motion prediction equations are combined by means of a logic tree on accounting the epistemic uncertainties. The peak ground acceleration (PGA) and spectral acceleration (SA) at 0.2 and 1.0 s are predicted for 2 and 10% probabilities of exceedance over 50 years assuming bedrock condition. The resulting PGA and SA maps show a significant spatio-temporal variation in the hazard values. In general, hazard value is found to be much higher than the previous studies for regions, where great earthquakes have actually occurred. The use of the historical and instrumental earthquake catalogs in combination of multiple seismogenic source models provides better seismic hazard constraints for the Himalayan-Tibetan region.
Probabilistic Hazard Estimation at a Densely Urbanised Area: the Neaples Volcanoes
NASA Astrophysics Data System (ADS)
de Natale, G.; Mastrolorenzo, G.; Panizza, A.; Pappalardo, L.; Claudia, T.
2005-12-01
The Neaples volcanic area (Southern Italy), including Vesuvius, Campi Flegrei caldera and Ischia island, is the highest risk one in the World, where more than 2 million people live within about 10 km from an active volcanic vent. Such an extreme risk calls for accurate methodologies aimed to quantify it, in a probabilistic way, considering all the available volcanological information as well as modelling results. In fact, simple hazard maps based on the observation of deposits from past eruptions have the major problem that eruptive history generally samples a very limited number of possible outcomes, thus resulting almost meaningless to get the event probability in the area. This work describes a methodology making the best use (from a Bayesian point of view) of volcanological data and modelling results, to compute probabilistic hazard maps from multi-vent explosive eruptions. The method, which follows an approach recently developed by the same authors for pyroclastic flows hazard, has been here improved and extended to compute also fall-out hazard. The application of the method to the Neapolitan volcanic area, including the densely populated city of Naples, allows, for the first time, to get a global picture of the areal distribution for the main hazards from multi-vent explosive eruptions. From a joint consideration of the hazard contributions from all the three volcanic areas, new insight on the volcanic hazard distribution emerges, which will have strong implications for urban and emergency planning in the area.
Akinci, A.; Galadini, F.; Pantosti, D.; Petersen, M.; Malagnini, L.; Perkins, D.
2009-01-01
We produce probabilistic seismic-hazard assessments for the central Apennines, Italy, using time-dependent models that are characterized using a Brownian passage time recurrence model. Using aperiodicity parameters, ?? of 0.3, 0.5, and 0.7, we examine the sensitivity of the probabilistic ground motion and its deaggregation to these parameters. For the seismic source model we incorporate both smoothed historical seismicity over the area and geological information on faults. We use the maximum magnitude model for the fault sources together with a uniform probability of rupture along the fault (floating fault model) to model fictitious faults to account for earthquakes that cannot be correlated with known geologic structural segmentation.
Development of optimization-based probabilistic earthquake scenarios for the city of Tehran
NASA Astrophysics Data System (ADS)
Zolfaghari, M. R.; Peyghaleh, E.
2016-01-01
This paper presents the methodology and practical example for the application of optimization process to select earthquake scenarios which best represent probabilistic earthquake hazard in a given region. The method is based on simulation of a large dataset of potential earthquakes, representing the long-term seismotectonic characteristics in a given region. The simulation process uses Monte-Carlo simulation and regional seismogenic source parameters to generate a synthetic earthquake catalogue consisting of a large number of earthquakes, each characterized with magnitude, location, focal depth and fault characteristics. Such catalogue provides full distributions of events in time, space and size; however, demands large computation power when is used for risk assessment, particularly when other sources of uncertainties are involved in the process. To reduce the number of selected earthquake scenarios, a mixed-integer linear program formulation is developed in this study. This approach results in reduced set of optimization-based probabilistic earthquake scenario, while maintaining shape of hazard curves and full probabilistic picture by minimizing the error between hazard curves driven by full and reduced sets of synthetic earthquake scenarios. To test the model, the regional seismotectonic and seismogenic characteristics of northern Iran are used to simulate a set of 10,000-year worth of events consisting of some 84,000 earthquakes. The optimization model is then performed multiple times with various input data, taking into account probabilistic seismic hazard for Tehran city as the main constrains. The sensitivity of the selected scenarios to the user-specified site/return period error-weight is also assessed. The methodology could enhance run time process for full probabilistic earthquake studies like seismic hazard and risk assessment. The reduced set is the representative of the contributions of all possible earthquakes; however, it requires far less computation power. The authors have used this approach for risk assessment towards identification of effectiveness-profitability of risk mitigation measures, using optimization model for resource allocation. Based on the error-computation trade-off, 62-earthquake scenarios are chosen to be used for this purpose.
Probabilistic Seismic Hazard Assessment for Northeast India Region
NASA Astrophysics Data System (ADS)
Das, Ranjit; Sharma, M. L.; Wason, H. R.
2016-08-01
Northeast India bounded by latitudes 20°-30°N and longitudes 87°-98°E is one of the most seismically active areas in the world. This region has experienced several moderate-to-large-sized earthquakes, including the 12 June, 1897 Shillong earthquake ( M w 8.1) and the 15 August, 1950 Assam earthquake ( M w 8.7) which caused loss of human lives and significant damages to buildings highlighting the importance of seismic hazard assessment for the region. Probabilistic seismic hazard assessment of the region has been carried out using a unified moment magnitude catalog prepared by an improved General Orthogonal Regression methodology (Geophys J Int, 190:1091-1096, 2012; Probabilistic seismic hazard assessment of Northeast India region, Ph.D. Thesis, Department of Earthquake Engineering, IIT Roorkee, Roorkee, 2013) with events compiled from various databases (ISC, NEIC,GCMT, IMD) and other available catalogs. The study area has been subdivided into nine seismogenic source zones to account for local variation in tectonics and seismicity characteristics. The seismicity parameters are estimated for each of these source zones, which are input variables into seismic hazard estimation of a region. The seismic hazard analysis of the study region has been performed by dividing the area into grids of size 0.1° × 0.1°. Peak ground acceleration (PGA) and spectral acceleration ( S a) values (for periods of 0.2 and 1 s) have been evaluated at bedrock level corresponding to probability of exceedance (PE) of 50, 20, 10, 2 and 0.5 % in 50 years. These exceedance values correspond to return periods of 100, 225, 475, 2475, and 10,000 years, respectively. The seismic hazard maps have been prepared at the bedrock level, and it is observed that the seismic hazard estimates show a significant local variation in contrast to the uniform hazard value suggested by the Indian standard seismic code [Indian standard, criteria for earthquake-resistant design of structures, fifth edition, Part-I. Bureau of Indian Standards, New Delhi, 2002]. Not only holistic treatment of earthquake catalog and seismogenic zones has been performed, but also higher resolution in spatial distribution could be achieved. The COV maps have been provided with the strong ground-motion maps under various conditions to show the confidence in the results obtained. Results obtained in the present study would be helpful for risk assessment and other disaster mitigation-related studies.
SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Suzette; Coppersmith, Ryan; Coppersmith, Kevin
A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-riskmore » informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.« less
The Spatial Assessment of the Current Seismic Hazard State for Hard Rock Underground Mines
NASA Astrophysics Data System (ADS)
Wesseloo, Johan
2018-06-01
Mining-induced seismic hazard assessment is an important component in the management of safety and financial risk in mines. As the seismic hazard is a response to the mining activity, it is non-stationary and variable both in space and time. This paper presents an approach for implementing a probabilistic seismic hazard assessment to assess the current hazard state of a mine. Each of the components of the probabilistic seismic hazard assessment is considered within the context of hard rock underground mines. The focus of this paper is the assessment of the in-mine hazard distribution and does not consider the hazard to nearby public or structures. A rating system and methodologies to present hazard maps, for the purpose of communicating to different stakeholders in the mine, i.e. mine managers, technical personnel and the work force, are developed. The approach allows one to update the assessment with relative ease and within short time periods as new data become available, enabling the monitoring of the spatial and temporal change in the seismic hazard.
BYMUR software: a free and open source tool for quantifying and visualizing multi-risk analyses
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Selva, Jacopo
2013-04-01
The BYMUR software aims to provide an easy-to-use open source tool for both computing multi-risk and managing/visualizing/comparing all the inputs (e.g. hazard, fragilities and exposure) as well as the corresponding results (e.g. risk curves, risk indexes). For all inputs, a complete management of inter-model epistemic uncertainty is considered. The BYMUR software will be one of the final products provided by the homonymous ByMuR project (http://bymur.bo.ingv.it/) funded by Italian Ministry of Education, Universities and Research (MIUR), focused to (i) provide a quantitative and objective general method for a comprehensive long-term multi-risk analysis in a given area, accounting for inter-model epistemic uncertainty through Bayesian methodologies, and (ii) apply the methodology to seismic, volcanic and tsunami risks in Naples (Italy). More specifically, the BYMUR software will be able to separately account for the probabilistic hazard assessment of different kind of hazardous phenomena, the relative (time-dependent/independent) vulnerabilities and exposure data, and their possible (predefined) interactions: the software will analyze these inputs and will use them to estimate both single- and multi- risk associated to a specific target area. In addition, it will be possible to connect the software to further tools (e.g., a full hazard analysis), allowing a dynamic I/O of results. The use of Python programming language guarantees that the final software will be open source and platform independent. Moreover, thanks to the integration of some most popular and rich-featured Python scientific modules (Numpy, Matplotlib, Scipy) with the wxPython graphical user toolkit, the final tool will be equipped with a comprehensive Graphical User Interface (GUI) able to control and visualize (in the form of tables, maps and/or plots) any stage of the multi-risk analysis. The additional features of importing/exporting data in MySQL databases and/or standard XML formats (for instance, the global standards defined in the frame of GEM project for seismic hazard and risk) will grant the interoperability with other FOSS software and tools and, at the same time, to be on hand of the geo-scientific community. An already available example of connection is represented by the BET_VH(**) tool, which probabilistic volcanic hazard outputs will be used as input for BYMUR. Finally, the prototype version of BYMUR will be used for the case study of the municipality of Naples, by considering three different natural hazards (volcanic eruptions, earthquakes and tsunamis) and by assessing the consequent long-term risk evaluation. (**)BET_VH (Bayesian Event Tree for Volcanic Hazard) is probabilistic tool for long-term volcanic hazard assessment, recently re-designed and adjusted to be run on the Vhub cyber-infrastructure, a free web-based collaborative tool in volcanology research (see http://vhub.org/resources/betvh).
Probabilistic seismic hazard assessment of the Eastern and Central groups of the Azores - Portugal
NASA Astrophysics Data System (ADS)
Fontiela, João; Bezzeghoud, Mourad; Rosset, Philippe; Borges, José; Rodrigues, Francisco; Caldeira, Bento
2017-04-01
Azores islands of the Eastern and Central groups are located at the triple junction of the American, Eurasian and Nubian plates inducing a large number of low magnitude earthquakes. Since its settlement in the 15th century, 33 earthquakes with intensity ≥ VII have caused severe damage and high death toll. The most severe ones occurred in 1522 at São Miguel Island with a maximum MM intensity of X; in 1614 at Terceira Island (X) in 1757 at São Jorge Island (XI); 1852 at São Miguel Island (VIII); 1926 at Faial Island (Mb 5.3-5.9); in 1980 at Terceira Island (Mw7.1) and in 1998 at Faial Island (Mw6.2). The analysis of the Probabilistic Seismic Hazard Assessment (PSHA) were carried out using the classical Cornell-McGuire approach using seismogenic zones recently defined by Fontiela et al. (2014). We create a new earthquake catalogue merging local and global datasets with a large time span (1522 - 2016) to calculate recurrence times and maximum magnitudes. In order to reduce the epistemic uncertainties, we test several ground motion prediction equations in agreement with the geological heterogeneities typical of young volcanic islands. Probabilistic seismic hazard maps are proposed for 475 and 975 years returns periods as well as hazard curves and uniform hazard spectra for the main cities. REFERENCES: Fontiela, J. et al., 2014. Azores seismogenic zones. Comunicações Geológicas, 101(1), pp.351-354. ACKNOWLEDGMENTS: João Fontiela is supported by grant M3.1.2/F/060/2011 of Regional Science Fund of the Regional Government Azores and this study is co-funded by the European Union through the European fund of Regional Development, framed in COMPETE 2020 (Operational Competitiveness Programme and Internationalization) through the ICT project (UID/GEO/04683/2013) with the reference POCI-01-0145-FEDER-007690.
NASA Astrophysics Data System (ADS)
Biass, Sébastien; Falcone, Jean-Luc; Bonadonna, Costanza; Di Traglia, Federico; Pistolesi, Marco; Rosi, Mauro; Lestuzzi, Pierino
2016-10-01
We present a probabilistic approach to quantify the hazard posed by volcanic ballistic projectiles (VBP) and their potential impact on the built environment. A model named Great Balls of Fire (GBF) is introduced to describe ballistic trajectories of VBPs accounting for a variable drag coefficient and topography. It relies on input parameters easily identifiable in the field and is designed to model large numbers of VBPs stochastically. Associated functions come with the GBF code to post-process model outputs into a comprehensive probabilistic hazard assessment for VBP impacts. Outcomes include probability maps to exceed given thresholds of kinetic energies at impact, hazard curves and probabilistic isoenergy maps. Probabilities are calculated either on equally-sized pixels or zones of interest. The approach is calibrated, validated and applied to La Fossa volcano, Vulcano Island (Italy). We constructed a generic eruption scenario based on stratigraphic studies and numerical inversions of the 1888-1890 long-lasting Vulcanian cycle of La Fossa. Results suggest a ~ 10- 2% probability of occurrence of VBP impacts with kinetic energies ≤ 104 J at the touristic locality of Porto. In parallel, the vulnerability to roof perforation was estimated by combining field observations and published literature, allowing for a first estimate of the potential impact of VBPs during future Vulcanian eruptions. Results indicate a high physical vulnerability to the VBP hazard, and, consequently, half of the building stock having a ≥ 2.5 × 10- 3% probability of roof perforation.
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Sandri, Laura; Anne Thompson, Mary
2015-06-01
PyBetVH is a completely new, free, open-source and cross-platform software implementation of the Bayesian Event Tree for Volcanic Hazard (BET_VH), a tool for estimating the probability of any magmatic hazardous phenomenon occurring in a selected time frame, accounting for all the uncertainties. New capabilities of this implementation include the ability to calculate hazard curves which describe the distribution of the exceedance probability as a function of intensity (e.g., tephra load) on a grid of points covering the target area. The computed hazard curves are (i) absolute (accounting for the probability of eruption in a given time frame, and for all the possible vent locations and eruptive sizes) and (ii) Bayesian (computed at different percentiles, in order to quantify the epistemic uncertainty). Such curves allow representation of the full information contained in the probabilistic volcanic hazard assessment (PVHA) and are well suited to become a main input to quantitative risk analyses. PyBetVH allows for interactive visualization of both the computed hazard curves, and the corresponding Bayesian hazard/probability maps. PyBetVH is designed to minimize the efforts of end users, making PVHA results accessible to people who may be less experienced in probabilistic methodologies, e.g. decision makers. The broad compatibility of Python language has also allowed PyBetVH to be installed on the VHub cyber-infrastructure, where it can be run online or downloaded at no cost. PyBetVH can be used to assess any type of magmatic hazard from any volcano. Here we illustrate how to perform a PVHA through PyBetVH using the example of analyzing tephra fallout from the Okataina Volcanic Centre (OVC), New Zealand, and highlight the range of outputs that the tool can generate.
Analysis of flood hazard under consideration of dike breaches
NASA Astrophysics Data System (ADS)
Vorogushyn, S.; Apel, H.; Lindenschmidt, K.-E.; Merz, B.
2009-04-01
The study focuses on the development and application of a new modelling system which allows a comprehensive flood hazard assessment along diked river reaches under consideration of dike failures. The proposed Inundation Hazard Assessment Model (IHAM) represents a hybrid probabilistic-deterministic model. It comprises three models interactively coupled at runtime. These are: (1) 1D unsteady hydrodynamic model of river channel and floodplain flow between dikes, (2) probabilistic dike breach model which determines possible dike breach locations, breach widths and breach outflow discharges, and (3) 2D raster-based diffusion wave storage cell model of the hinterland areas behind the dikes. Due to the unsteady nature of the 1D and 2D coupled models, the dependence between hydraulic load at various locations along the reach is explicitly considered. The probabilistic dike breach model describes dike failures due to three failure mechanisms: overtopping, piping and slope instability caused by the seepage flow through the dike core (micro-instability). Dike failures for each mechanism are simulated based on fragility functions. The probability of breach is conditioned by the uncertainty in geometrical and geotechnical dike parameters. The 2D storage cell model driven by the breach outflow boundary conditions computes an extended spectrum of flood intensity indicators such as water depth, flow velocity, impulse, inundation duration and rate of water rise. IHAM is embedded in a Monte Carlo simulation in order to account for the natural variability of the flood generation processes reflected in the form of input hydrographs and for the randomness of dike failures given by breach locations, times and widths. The scenario calculations for the developed synthetic input hydrographs for the main river and tributary were carried out for floods with return periods of T = 100; 200; 500; 1000 a. Based on the modelling results, probabilistic dike hazard maps could be generated that indicate the failure probability of each discretised dike section for every scenario magnitude. Besides the binary inundation patterns that indicate the probability of raster cells being inundated, IHAM generates probabilistic flood hazard maps. These maps display spatial patterns of the considered flood intensity indicators and their associated return periods. The probabilistic nature of IHAM allows for the generation of percentile flood hazard maps that indicate the median and uncertainty bounds of the flood intensity indicators. The uncertainty results from the natural variability of the flow hydrographs and randomness of dike breach processes. The same uncertainty sources determine the uncertainty in the flow hydrographs along the study reach. The simulations showed that the dike breach stochasticity has an increasing impact on hydrograph uncertainty in downstream direction. Whereas in the upstream part of the reach the hydrograph uncertainty is mainly stipulated by the variability of the flood wave form, the dike failures strongly shape the uncertainty boundaries in the downstream part of the reach. Finally, scenarios of polder deployment for the extreme floods with T = 200; 500; 1000 a were simulated with IHAM. The results indicate a rather weak reduction of the mean and median flow hydrographs in the river channel. However, the capping of the flow peaks resulted in a considerable reduction of the overtopping failures downstream of the polder with a simultaneous slight increase of the piping and slope micro-instability frequencies explained by a more durable average impoundment. The developed IHAM simulation system represents a new scientific tool for studying fluvial inundation dynamics under extreme conditions incorporating effects of technical flood protection measures. With its major outputs in form of novel probabilistic inundation and dike hazard maps, the IHAM system has a high practical value for decision support in flood management.
Deaggregation of Probabilistic Ground Motions in the Central and Eastern United States
Harmsen, S.; Perkins, D.; Frankel, A.
1999-01-01
Probabilistic seismic hazard analysis (PSHA) is a technique for estimating the annual rate of exceedance of a specified ground motion at a site due to known and suspected earthquake sources. The relative contributions of the various sources to the total seismic hazard are determined as a function of their occurrence rates and their ground-motion potential. The separation of the exceedance contributions into bins whose base dimensions are magnitude and distance is called deaggregation. We have deaggregated the hazard analyses for the new USGS national probabilistic ground-motion hazard maps (Frankel et al., 1996). For points on a 0.2?? grid in the central and eastern United States (CEUS), we show color maps of the geographical variation of mean and modal magnitudes (M??, M??) and distances (D??, D??) for ground motions having a 2% chance of exceedance in 50 years. These maps are displayed for peak horizontal acceleration and for spectral response accelerations of 0.2, 0.3, and 1.0 sec. We tabulate M??, D??, M??, and D?? for 49 CEUS cities for 0.2- and 1.0-sec response. Thus, these maps and tables are PSHA-derived estimates of the potential earthquakes that dominate seismic hazard at short and intermediate periods in the CEUS. The contribution to hazard of the New Madrid and Charleston sources dominates over much of the CEUS; for 0.2-sec response, over 40% of the area; for 1.0-sec response, over 80% of the area. For 0.2-sec response, D?? ranges from 20 to 200 km, for 1.0 sec, 30 to 600 km. For sites influenced by New Madrid or Charleston, D is less than the distance to these sources, and M?? is less than the characteristic magnitude of these sources, because averaging takes into account the effect of smaller magnitude and closer sources. On the other hand, D?? is directly the distance to New Madrid or Charleston and M?? for 0.2- and 1.0-sec response corresponds to the dominating source over much of the CEUS. For some cities in the North Atlantic states, short-period seismic hazard is apt to be controlled by local seismicity, whereas intermediate period (1.0 sec) hazard is commonly controlled by regional seismicity, such as that of the Charlevoix seismic zone.
GIS data for the Seaside, Oregon, Tsunami Pilot Study to modernize FEMA flood hazard maps
Wong, Florence L.; Venturato, Angie J.; Geist, Eric L.
2007-01-01
A Tsunami Pilot Study was conducted for the area surrounding the coastal town of Seaside, Oregon, as part of the Federal Emergency Management's (FEMA) Flood Insurance Rate Map Modernization Program (Tsunami Pilot Study Working Group, 2006). The Cascadia subduction zone extends from Cape Mendocino, California, to Vancouver Island, Canada. The Seaside area was chosen because it is typical of many coastal communities subject to tsunamis generated by far- and near-field (Cascadia) earthquakes. Two goals of the pilot study were to develop probabilistic 100-year and 500-year tsunami inundation maps using Probabilistic Tsunami Hazard Analysis (PTHA) and to provide recommendations for improving tsunami hazard assessment guidelines for FEMA and state and local agencies. The study was an interagency effort by the National Oceanic and Atmospheric Administration, U.S. Geological Survey, and FEMA, in collaboration with the University of Southern California, Middle East Technical University, Portland State University, Horning Geoscience, Northwest Hydraulics Consultants, and the Oregon Department of Geological and Mineral Industries. The pilot study model data and results are published separately as a geographic information systems (GIS) data report (Wong and others, 2006). The flood maps and GIS data are briefly described here.
A PROBABILISTIC MODELING FRAMEWORK FOR PREDICTING POPULATION EXPOSURES TO BENZENE
The US Environmental Protection Agency (EPA) is modifying their probabilistic Stochastic Human Exposure Dose Simulation (SHEDS) model to assess aggregate exposures to air toxics. Air toxics include urban Hazardous Air Pollutants (HAPS) such as benzene from mobile sources, part...
Seismic hazard assessment: Issues and alternatives
Wang, Z.
2011-01-01
Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yilmaz, Şeyda, E-mail: seydayilmaz@ktu.edu.tr; Bayrak, Erdem, E-mail: erdmbyrk@gmail.com; Bayrak, Yusuf, E-mail: bayrak@ktu.edu.tr
In this study we examined and compared the three different probabilistic distribution methods for determining the best suitable model in probabilistic assessment of earthquake hazards. We analyzed a reliable homogeneous earthquake catalogue between a time period 1900-2015 for magnitude M ≥ 6.0 and estimated the probabilistic seismic hazard in the North Anatolian Fault zone (39°-41° N 30°-40° E) using three distribution methods namely Weibull distribution, Frechet distribution and three-parameter Weibull distribution. The distribution parameters suitability was evaluated Kolmogorov-Smirnov (K-S) goodness-of-fit test. We also compared the estimated cumulative probability and the conditional probabilities of occurrence of earthquakes for different elapsed timemore » using these three distribution methods. We used Easyfit and Matlab software to calculate these distribution parameters and plotted the conditional probability curves. We concluded that the Weibull distribution method was the most suitable than other distribution methods in this region.« less
Preliminary Earthquake Hazard Map of Afghanistan
Boyd, Oliver S.; Mueller, Charles S.; Rukstales, Kenneth S.
2007-01-01
Introduction Earthquakes represent a serious threat to the people and institutions of Afghanistan. As part of a United States Agency for International Development (USAID) effort to assess the resource potential and seismic hazards of Afghanistan, the Seismic Hazard Mapping group of the United States Geological Survey (USGS) has prepared a series of probabilistic seismic hazard maps that help quantify the expected frequency and strength of ground shaking nationwide. To construct the maps, we do a complete hazard analysis for each of ~35,000 sites in the study area. We use a probabilistic methodology that accounts for all potential seismic sources and their rates of earthquake activity, and we incorporate modeling uncertainty by using logic trees for source and ground-motion parameters. See the Appendix for an explanation of probabilistic seismic hazard analysis and discussion of seismic risk. Afghanistan occupies a southward-projecting, relatively stable promontory of the Eurasian tectonic plate (Ambraseys and Bilham, 2003; Wheeler and others, 2005). Active plate boundaries, however, surround Afghanistan on the west, south, and east. To the west, the Arabian plate moves northward relative to Eurasia at about 3 cm/yr. The active plate boundary trends northwestward through the Zagros region of southwestern Iran. Deformation is accommodated throughout the territory of Iran; major structures include several north-south-trending, right-lateral strike-slip fault systems in the east and, farther to the north, a series of east-west-trending reverse- and strike-slip faults. This deformation apparently does not cross the border into relatively stable western Afghanistan. In the east, the Indian plate moves northward relative to Eurasia at a rate of about 4 cm/yr. A broad, transpressional plate-boundary zone extends into eastern Afghanistan, trending southwestward from the Hindu Kush in northeast Afghanistan, through Kabul, and along the Afghanistan-Pakistan border. Deformation here is expressed as a belt of major, north-northeast-trending, left-lateral strike-slip faults and abundant seismicity. The seismicity intensifies farther to the northeast and includes a prominent zone of deep earthquakes associated with northward subduction of the Indian plate beneath Eurasia that extends beneath the Hindu Kush and Pamirs Mountains. Production of the seismic hazard maps is challenging because the geological and seismological data required to produce a seismic hazard model are limited. The data that are available for this project include historical seismicity and poorly constrained slip rates on only a few of the many active faults in the country. Much of the hazard is derived from a new catalog of historical earthquakes: from 1964 to the present, with magnitude equal to or greater than about 4.5, and with depth between 0 and 250 kilometers. We also include four specific faults in the model: the Chaman fault with an assigned slip rate of 10 mm/yr, the Central Badakhshan fault with an assigned slip rate of 12 mm/yr, the Darvaz fault with an assigned slip rate of 7 mm/yr, and the Hari Rud fault with an assigned slip rate of 2 mm/yr. For these faults and for shallow seismicity less than 50 km deep, we incorporate published ground-motion estimates from tectonically active regions of western North America, Europe, and the Middle East. Ground-motion estimates for deeper seismicity are derived from data in subduction environments. We apply estimates derived for tectonic regions where subduction is the main tectonic process for intermediate-depth seismicity between 50- and 250-km depth. Within the framework of these limitations, we have developed a preliminary probabilistic seismic-hazard assessment of Afghanistan, the type of analysis that underpins the seismic components of modern building codes in the United States. The assessment includes maps of estimated peak ground-acceleration (PGA), 0.2-second spectral acceleration (SA), and 1.0-secon
NASA Astrophysics Data System (ADS)
Callaghan, S.; Maechling, P. J.; Juve, G.; Vahi, K.; Deelman, E.; Jordan, T. H.
2015-12-01
The CyberShake computational platform, developed by the Southern California Earthquake Center (SCEC), is an integrated collection of scientific software and middleware that performs 3D physics-based probabilistic seismic hazard analysis (PSHA) for Southern California. CyberShake integrates large-scale and high-throughput research codes to produce probabilistic seismic hazard curves for individual locations of interest and hazard maps for an entire region. A recent CyberShake calculation produced about 500,000 two-component seismograms for each of 336 locations, resulting in over 300 million synthetic seismograms in a Los Angeles-area probabilistic seismic hazard model. CyberShake calculations require a series of scientific software programs. Early computational stages produce data used as inputs by later stages, so we describe CyberShake calculations using a workflow definition language. Scientific workflow tools automate and manage the input and output data and enable remote job execution on large-scale HPC systems. To satisfy the requests of broad impact users of CyberShake data, such as seismologists, utility companies, and building code engineers, we successfully completed CyberShake Study 15.4 in April and May 2015, calculating a 1 Hz urban seismic hazard map for Los Angeles. We distributed the calculation between the NSF Track 1 system NCSA Blue Waters, the DOE Leadership-class system OLCF Titan, and USC's Center for High Performance Computing. This study ran for over 5 weeks, burning about 1.1 million node-hours and producing over half a petabyte of data. The CyberShake Study 15.4 results doubled the maximum simulated seismic frequency from 0.5 Hz to 1.0 Hz as compared to previous studies, representing a factor of 16 increase in computational complexity. We will describe how our workflow tools supported splitting the calculation across multiple systems. We will explain how we modified CyberShake software components, including GPU implementations and migrating from file-based communication to MPI messaging, to greatly reduce the I/O demands and node-hour requirements of CyberShake. We will also present performance metrics from CyberShake Study 15.4, and discuss challenges that producers of Big Data on open-science HPC resources face moving forward.
Global link between deformation and volcanic eruption quantified by satellite imagery
Biggs, J.; Ebmeier, S. K.; Aspinall, W. P.; Lu, Z.; Pritchard, M. E.; Sparks, R. S. J.; Mather, T. A.
2014-01-01
A key challenge for volcanological science and hazard management is that few of the world’s volcanoes are effectively monitored. Satellite imagery covers volcanoes globally throughout their eruptive cycles, independent of ground-based monitoring, providing a multidecadal archive suitable for probabilistic analysis linking deformation with eruption. Here we show that, of the 198 volcanoes systematically observed for the past 18 years, 54 deformed, of which 25 also erupted. For assessing eruption potential, this high proportion of deforming volcanoes that also erupted (46%), together with the proportion of non-deforming volcanoes that did not erupt (94%), jointly represent indicators with ‘strong’ evidential worth. Using a larger catalogue of 540 volcanoes observed for 3 years, we demonstrate how this eruption–deformation relationship is influenced by tectonic, petrological and volcanic factors. Satellite technology is rapidly evolving and routine monitoring of the deformation status of all volcanoes from space is anticipated, meaning probabilistic approaches will increasingly inform hazard decisions and strategic development. PMID:24699342
Global link between deformation and volcanic eruption quantified by satellite imagery.
Biggs, J; Ebmeier, S K; Aspinall, W P; Lu, Z; Pritchard, M E; Sparks, R S J; Mather, T A
2014-04-03
A key challenge for volcanological science and hazard management is that few of the world's volcanoes are effectively monitored. Satellite imagery covers volcanoes globally throughout their eruptive cycles, independent of ground-based monitoring, providing a multidecadal archive suitable for probabilistic analysis linking deformation with eruption. Here we show that, of the 198 volcanoes systematically observed for the past 18 years, 54 deformed, of which 25 also erupted. For assessing eruption potential, this high proportion of deforming volcanoes that also erupted (46%), together with the proportion of non-deforming volcanoes that did not erupt (94%), jointly represent indicators with 'strong' evidential worth. Using a larger catalogue of 540 volcanoes observed for 3 years, we demonstrate how this eruption-deformation relationship is influenced by tectonic, petrological and volcanic factors. Satellite technology is rapidly evolving and routine monitoring of the deformation status of all volcanoes from space is anticipated, meaning probabilistic approaches will increasingly inform hazard decisions and strategic development.
A comprehensive Probabilistic Tsunami Hazard Assessment for the city of Naples (Italy)
NASA Astrophysics Data System (ADS)
Anita, G.; Tonini, R.; Selva, J.; Sandri, L.; Pierdominici, S.; Faenza, L.; Zaccarelli, L.
2012-12-01
A comprehensive Probabilistic Tsunami Hazard Assessment (PTHA) should consider different tsunamigenic sources (seismic events, slide failures, volcanic eruptions) to calculate the hazard on given target sites. This implies a multi-disciplinary analysis of all natural tsunamigenic sources, in a multi-hazard/risk framework, which considers also the effects of interaction/cascade events. Our approach shows the ongoing effort to analyze the comprehensive PTHA for the city of Naples (Italy) including all types of sources located in the Tyrrhenian Sea, as developed within the Italian project ByMuR (Bayesian Multi-Risk Assessment). The project combines a multi-hazard/risk approach to treat the interactions among different hazards, and a Bayesian approach to handle the uncertainties. The natural potential tsunamigenic sources analyzed are: 1) submarine seismic sources located on active faults in the Tyrrhenian Sea and close to the Southern Italian shore line (also we consider the effects of the inshore seismic sources and the associated active faults which we provide their rapture properties), 2) mass failures and collapses around the target area (spatially identified on the basis of their propensity to failure), and 3) volcanic sources mainly identified by pyroclastic flows and collapses from the volcanoes in the Neapolitan area (Vesuvius, Campi Flegrei and Ischia). All these natural sources are here preliminary analyzed and combined, in order to provide a complete picture of a PTHA for the city of Naples. In addition, the treatment of interaction/cascade effects is formally discussed in the case of significant temporary variations in the short-term PTHA due to an earthquake.
NASA Astrophysics Data System (ADS)
Raimond, Emmanuel; Decker, Kurt; Guigueno, Yves; Klug, Joakim; Loeffler, Horst
2015-04-01
The Fukushima nuclear accident in Japan resulted from the combination of two correlated extreme external events (earthquake and tsunami). The consequences, in particular flooding, went beyond what was considered in the initial engineering design design of nuclear power plants (NPPs). Such situations can in theory be identified using probabilistic safety assessment (PSA) methodology. PSA results may then lead industry (system suppliers and utilities) or Safety Authorities to take appropriate decisions to reinforce the defence-in-depth of the NPP for low probability event but high amplitude consequences. In reality, the development of such PSA remains a challenging task. Definitions of the design basis of NPPs, for example, require data on events with occurrence probabilities not higher than 10-4 per year. Today, even lower probabilities, down to 10-8, are expected and typically used for probabilistic safety analyses (PSA) of NPPs and the examination of so-called design extension conditions. Modelling the combinations of natural or man-made hazards that can affect a NPP and affecting some meaningful probability of occurrence seems to be difficult. The European project ASAMPSAE (www.asampsa.eu) gathers more than 30 organizations (industry, research, safety control) from Europe, US and Japan and aims at identifying some meaningful practices to extend the scope and the quality of the existing probabilistic safety analysis developed for nuclear power plants. It offers a framework to discuss, at a technical level, how "extended PSA" can be developed efficiently and be used to verify if the robustness of Nuclear Power Plants (NPPs) in their environment is sufficient. The paper will present the objectives of this project, some first lessons and introduce which type of guidance is being developed. It will explain the need of expertise from geosciences to support the nuclear safety assessment in the different area (seismotectonic, hydrological, meteorological and biological hazards, …).
NASA Astrophysics Data System (ADS)
Tonini, R.; Anita, G.
2011-12-01
In both worldwide and regional historical catalogues, most of the tsunamis are caused by earthquakes and a minor percentage is represented by all the other non-seismic sources. On the other hand, tsunami hazard and risk studies are often applied to very specific areas, where this global trend can be different or even inverted, depending on the kind of potential tsunamigenic sources which characterize the case study. So far, few probabilistic approaches consider the contribution of landslides and/or phenomena derived by volcanic activity, i.e. pyroclastic flows and flank collapses, as predominant in the PTHA, also because of the difficulties to estimate the correspondent recurrence time. These considerations are valid, for example, for the city of Naples, Italy, which is surrounded by a complex active volcanic system (Vesuvio, Campi Flegrei, Ischia) that presents a significant number of potential tsunami sources of non-seismic origin compared to the seismic ones. In this work we present the preliminary results of a probabilistic multi-source tsunami hazard assessment applied to Naples. The method to estimate the uncertainties will be based on Bayesian inference. This is the first step towards a more comprehensive task which will provide a tsunami risk quantification for this town in the frame of the Italian national project ByMuR (http://bymur.bo.ingv.it). This three years long ongoing project has the final objective of developing a Bayesian multi-risk methodology to quantify the risk related to different natural hazards (volcanoes, earthquakes and tsunamis) applied to the city of Naples.
Cramer, C.H.
2006-01-01
The Mississippi embayment, located in the central United States, and its thick deposits of sediments (over 1 km in places) have a large effect on earthquake ground motions. Several previous studies have addressed how these thick sediments might modify probabilistic seismic-hazard maps. The high seismic hazard associated with the New Madrid seismic zone makes it particularly important to quantify the uncertainty in modeling site amplification to better represent earthquake hazard in seismic-hazard maps. The methodology of the Memphis urban seismic-hazard-mapping project (Cramer et al., 2004) is combined with the reference profile approach of Toro and Silva (2001) to better estimate seismic hazard in the Mississippi embayment. Improvements over previous approaches include using the 2002 national seismic-hazard model, fully probabilistic hazard calculations, calibration of site amplification with improved nonlinear soil-response estimates, and estimates of uncertainty. Comparisons are made with the results of several previous studies, and estimates of uncertainty inherent in site-amplification modeling for the upper Mississippi embayment are developed. I present new seismic-hazard maps for the upper Mississippi embayment with the effects of site geology incorporating these uncertainties.
A spatio-temporal model for probabilistic seismic hazard zonation of Tehran
NASA Astrophysics Data System (ADS)
Hashemi, Mahdi; Alesheikh, Ali Asghar; Zolfaghari, Mohammad Reza
2013-08-01
A precondition for all disaster management steps, building damage prediction, and construction code developments is a hazard assessment that shows the exceedance probabilities of different ground motion levels at a site considering different near- and far-field earthquake sources. The seismic sources are usually categorized as time-independent area sources and time-dependent fault sources. While the earlier incorporates the small and medium events, the later takes into account only the large characteristic earthquakes. In this article, a probabilistic approach is proposed to aggregate the effects of time-dependent and time-independent sources on seismic hazard. The methodology is then applied to generate three probabilistic seismic hazard maps of Tehran for 10%, 5%, and 2% exceedance probabilities in 50 years. The results indicate an increase in peak ground acceleration (PGA) values toward the southeastern part of the study area and the PGA variations are mostly controlled by the shear wave velocities across the city. In addition, the implementation of the methodology takes advantage of GIS capabilities especially raster-based analyses and representations. During the estimation of the PGA exceedance rates, the emphasis has been placed on incorporating the effects of different attenuation relationships and seismic source models by using a logic tree.
NASA Astrophysics Data System (ADS)
Novikova, Tatyana; Babeyko, Andrey; Papadopoulos, Gerassimos
2017-04-01
Greece and adjacent coastal areas are characterized by a high population exposure to tsunami hazard. The Hellenic Arc is the most active geotectonic structure for the generation of earthquakes and tsunamis. We performed probabilistic tsunami hazard assessment for selected locations of Greek coastlines which are the forecasting points officially used in the tsunami warning operations by the Hellenic National Tsunami Warning Center and the NEAMTWS/IOC/UNESCO. In our analysis we considered seismic sources for tsunami generation along the western, central and eastern segments of the Hellenic Arc. We first created a synthetic catalog as long as 10,000 years for all the significant earthquakes with magnitudes in the range from 6.0 to 8.5, the real events being included in this catalog. For each event included in the synthetic catalog a tsunami was generated and propagated using Boussinesq model. The probability of occurrence for each event was determined by Gutenberg-Richter magnitude-frequency distribution. The results of our study are expressed as hazard curves and hazard maps. The hazard curves were obtained for the selected sites and present the annual probability of exceedance as a function of pick coastal tsunami amplitude. Hazard maps represent the distribution of peak coastal tsunami amplitudes corresponding to a fixed annual probability. In such forms our results can be easily compared to the ones obtained in other studies and further employed for the development of tsunami risk management plans. This research is a contribution to the EU-FP7 tsunami research project ASTARTE (Assessment, Strategy And Risk Reduction for Tsunamis in Europe), grant agreement no: 603839, 2013-10-30.
Uncertainties in evaluation of hazard and seismic risk
NASA Astrophysics Data System (ADS)
Marmureanu, Gheorghe; Marmureanu, Alexandru; Ortanza Cioflan, Carmen; Manea, Elena-Florinela
2015-04-01
Two methods are commonly used for seismic hazard assessment: probabilistic (PSHA) and deterministic(DSHA) seismic hazard analysis.Selection of a ground motion for engineering design requires a clear understanding of seismic hazard and risk among stakeholders, seismologists and engineers. What is wrong with traditional PSHA or DSHA ? PSHA common used in engineering is using four assumptions developed by Cornell in 1968:(1)-Constant-in-time average occurrence rate of earthquakes; (2)-Single point source; (3).Variability of ground motion at a site is independent;(4)-Poisson(or "memory - less") behavior of earthquake occurrences. It is a probabilistic method and "when the causality dies, its place is taken by probability, prestigious term meant to define the inability of us to predict the course of nature"(Nils Bohr). DSHA method was used for the original design of Fukushima Daichii, but Japanese authorities moved to probabilistic assessment methods and the probability of exceeding of the design basis acceleration was expected to be 10-4-10-6 . It was exceeded and it was a violation of the principles of deterministic hazard analysis (ignoring historical events)(Klügel,J,U, EGU,2014, ISSO). PSHA was developed from mathematical statistics and is not based on earthquake science(invalid physical models- point source and Poisson distribution; invalid mathematics; misinterpretation of annual probability of exceeding or return period etc.) and become a pure numerical "creation" (Wang, PAGEOPH.168(2011),11-25). An uncertainty which is a key component for seismic hazard assessment including both PSHA and DSHA is the ground motion attenuation relationship or the so-called ground motion prediction equation (GMPE) which describes a relationship between a ground motion parameter (i.e., PGA,MMI etc.), earthquake magnitude M, source to site distance R, and an uncertainty. So far, no one is taking into consideration strong nonlinear behavior of soils during of strong earthquakes. But, how many cities, villages, metropolitan areas etc. in seismic regions are constructed on rock? Most of them are located on soil deposits? A soil is of basic type sand or gravel (termed coarse soils), silt or clay (termed fine soils) etc. The effect on nonlinearity is very large. For example, if we maintain the same spectral amplification factor (SAF=5.8942) as for relatively strong earthquake on May 3,1990(MW=6.4),then at Bacǎu seismic station for Vrancea earthquake on May 30,1990 (MW =6.9) the peak acceleration has to be a*max =0.154g and the actual recorded was only, amax =0.135g(-14.16%). Also, for Vrancea earthquake on August 30,1986(MW=7.1),the peak acceleration has to be a*max = 0.107g instead of real value recorded of 0.0736 g(- 45.57%). There are many data for more than 60 seismic stations. There is a strong nonlinear dependence of SAF with earthquake magnitude in each site. The authors are coming with an alternative approach called "real spectral amplification factors" instead of GMPE for all extra-Carpathian area where all cities and villages are located on soil deposits. Key words: Probabilistic Seismic Hazard; Uncertainties; Nonlinear seismology; Spectral amplification factors(SAF).
NASA Astrophysics Data System (ADS)
Biass, Sebastien; Bonadonna, Costanza; di Traglia, Federico; Pistolesi, Marco; Rosi, Mauro; Lestuzzi, Pierino
2016-05-01
A first probabilistic scenario-based hazard assessment for tephra fallout is presented for La Fossa volcano (Vulcano Island, Italy) and subsequently used to assess the impact on the built environment. Eruption scenarios are based upon the stratigraphy produced by the last 1000 years of activity at Vulcano and include long-lasting Vulcanian and sub-Plinian eruptions. A new method is proposed to quantify the evolution through time of the hazard associated with pulsatory Vulcanian eruptions lasting from weeks to years, and the increase in hazard related to typical rainfall events around Sicily is also accounted for. The impact assessment on the roofs is performed by combining a field characterization of the buildings with the composite European vulnerability curves for typical roofing stocks. Results show that a sub-Plinian eruption of VEI 2 is not likely to affect buildings, whereas a sub-Plinian eruption of VEI 3 results in 90 % of the building stock having a ≥12 % probability of collapse. The hazard related to long-lasting Vulcanian eruptions evolves through time, and our analysis shows that the town of Il Piano, located downwind of the preferential wind patterns, is likely to reach critical tephra accumulations for roof collapse 5-9 months after the onset of the eruption. If no cleaning measures are taken, half of the building stock has a probability >20 % of suffering roof collapse.
NASA Astrophysics Data System (ADS)
Avital, Matan; Kamai, Ronnie; Davis, Michael; Dor, Ory
2018-02-01
We present a full probabilistic seismic hazard analysis (PSHA) sensitivity analysis for two sites in southern Israel - one in the near field of a major fault system and one farther away. The PSHA analysis is conducted for alternative source representations, using alternative model parameters for the main seismic sources, such as slip rate and Mmax, among others. The analysis also considers the effect of the ground motion prediction equation (GMPE) on the hazard results. In this way, the two types of epistemic uncertainty - modelling uncertainty and parametric uncertainty - are treated and addressed. We quantify the uncertainty propagation by testing its influence on the final calculated hazard, such that the controlling knowledge gaps are identified and can be treated in future studies. We find that current practice in Israel, as represented by the current version of the building code, grossly underestimates the hazard, by approximately 40 % in short return periods (e.g. 10 % in 50 years) and by as much as 150 % in long return periods (e.g. 10E-5). The analysis shows that this underestimation is most probably due to a combination of factors, including source definitions as well as the GMPE used for analysis.
Application of a time probabilistic approach to seismic landslide hazard estimates in Iran
NASA Astrophysics Data System (ADS)
Rajabi, A. M.; Del Gaudio, V.; Capolongo, D.; Khamehchiyan, M.; Mahdavifar, M. R.
2009-04-01
Iran is a country located in a tectonic active belt and is prone to earthquake and related phenomena. In the recent years, several earthquakes caused many fatalities and damages to facilities, e.g. the Manjil (1990), Avaj (2002), Bam (2003) and Firuzabad-e-Kojur (2004) earthquakes. These earthquakes generated many landslides. For instance, catastrophic landslides triggered by the Manjil Earthquake (Ms = 7.7) in 1990 buried the village of Fatalak, killed more than 130 peoples and cut many important road and other lifelines, resulting in major economic disruption. In general, earthquakes in Iran have been concentrated in two major zones with different seismicity characteristics: one is the region of Alborz and Central Iran and the other is the Zagros Orogenic Belt. Understanding where seismically induced landslides are most likely to occur is crucial in reducing property damage and loss of life in future earthquakes. For this purpose a time probabilistic approach for earthquake-induced landslide hazard at regional scale, proposed by Del Gaudio et al. (2003), has been applied to the whole Iranian territory to provide the basis of hazard estimates. This method consists in evaluating the recurrence of seismically induced slope failure conditions inferred from the Newmark's model. First, by adopting Arias Intensity to quantify seismic shaking and using different Arias attenuation relations for Alborz - Central Iran and Zagros regions, well-established methods of seismic hazard assessment, based on the Cornell (1968) method, were employed to obtain the occurrence probabilities for different levels of seismic shaking in a time interval of interest (50 year). Then, following Jibson (1998), empirical formulae specifically developed for Alborz - Central Iran and Zagros, were used to represent, according to the Newmark's model, the relation linking Newmark's displacement Dn to Arias intensity Ia and to slope critical acceleration ac. These formulae were employed to evaluate the slope critical acceleration (Ac)x for which a prefixed probability exists that seismic shaking would result in a Dn value equal to a threshold x whose exceedence would cause landslide triggering. The obtained ac values represent the minimum slope resistance required to keep the probability of seismic-landslide triggering within the prefixed value. In particular we calculated the spatial distribution of (Ac)x for x thresholds of 10 and 2 cm in order to represent triggering conditions for coherent slides (e.g., slumps, block slides, slow earth flows) and disrupted slides (e.g., rock falls, rock slides, rock avalanches), respectively. Then we produced a probabilistic national map that shows the spatial distribution of (Ac)10 and (Ac)2, for a 10% probability of exceedence in 50 year, which is a significant level of hazard equal to that commonly used for building codes. The spatial distribution of the calculated (Ac)xvalues can be compared with the in situ actual ac values of specific slopes to estimate whether these slopes have a significant probability of failing under seismic action in the future. As example of possible application of this kind of time probabilistic map to hazard estimates, we compared the values obtained for the Manjil region with a GIS map providing spatial distribution of estimated ac values in the same region. The spatial distribution of slopes characterized by ac < (Ac)10 was then compared with the spatial distribution of the major landslides of coherent type triggered by the Manjil earthquake. This comparison provides indications on potential, problems and limits of the experimented approach for the study area. References Cornell, C.A., 1968: Engineering seismic risk analysis, Bull. Seism. Soc. Am., 58, 1583-1606. Del Gaudio V., Wasowski J., & Pierri P., 2003: An approach to time probabilistic evaluation of seismically-induced landslide hazard. Bull Seism. Soc. Am., 93, 557-569. Jibson, R.W., E.L. Harp and J.A. Michael, 1998: A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California, area, U.S. Geological Survey Open-File Report 98-113, Golden, Colorado, 17 pp.
NASA Astrophysics Data System (ADS)
Barani, S.; Mascandola, C.; Massa, M.; Spallarossa, D.
2017-12-01
The recent Emilia seismic sequence (Northern Italy) occurred at the end of the first half of 2012 with main shock of Mw6.1 highlighted the importance of studying site effects in the Po Plain, the larger and deeper sedimentary basin in Italy. As has long been known, long-period amplification related to deep sedimentary basins can significantly affect the characteristics of the ground-motion induced by strong earthquakes. It follows that the effects of deep sedimentary deposits on ground shaking require special attention during the definition of the design seismic action. The work presented here analyzes the impact of deep-soil discontinuities on ground-motion amplification, with particular focus on long-period probabilistic seismic-hazard assessment. The study focuses on the site of Castelleone, where a seismic station of the Italian National Seismic Network has been recording since 2009. Our study includes both experimental and numerical site response analyses. Specifically, extensive active and passive geophysical measurements were carried out in order to define a detailed shear-wave velocity (VS) model to be used in the numerical analyses. These latter are needed to assess the site-specific ground-motion hazard. Besides classical seismic refraction profiles and multichannel analysis of surface waves, we analyzed ambient vibration measurements in both single and array configurations. The VS profile was determined via joint inversion of the experimental phase-velocity dispersion curve with the ellipticity curve derived from horizontal-to-vertical spectral ratios. The profile shows two main discontinuities at depths of around 160 and 1350 m, respectively. The probabilistic site-specific hazard was assessed in terms of both spectral acceleration and displacement. A partially non-ergodic approach was adopted. We have found that the spectral acceleration hazard is barely sensitive to long-period (up to 10 s) amplification related to the deeper discontinuity whereas the displacement hazard is strongly affected. Our results show that neglecting the effects of the deeper discontinuity implies an underestimation of the hazard of up to about 49% for a mean return period (MRP) of 475 years and 57% for an MRP of 2475 years, with possible consequences on the design of very tall buildings and large bridges.
Development of Probabilistic Flood Inundation Mapping For Flooding Induced by Dam Failure
NASA Astrophysics Data System (ADS)
Tsai, C.; Yeh, J. J. J.
2017-12-01
A primary function of flood inundation mapping is to forecast flood hazards and assess potential losses. However, uncertainties limit the reliability of inundation hazard assessments. Major sources of uncertainty should be taken into consideration by an optimal flood management strategy. This study focuses on the 20km reach downstream of the Shihmen Reservoir in Taiwan. A dam failure induced flood herein provides the upstream boundary conditions of flood routing. The two major sources of uncertainty that are considered in the hydraulic model and the flood inundation mapping herein are uncertainties in the dam break model and uncertainty of the roughness coefficient. The perturbance moment method is applied to a dam break model and the hydro system model to develop probabilistic flood inundation mapping. Various numbers of uncertain variables can be considered in these models and the variability of outputs can be quantified. The probabilistic flood inundation mapping for dam break induced floods can be developed with consideration of the variability of output using a commonly used HEC-RAS model. Different probabilistic flood inundation mappings are discussed and compared. Probabilistic flood inundation mappings are hoped to provide new physical insights in support of the evaluation of concerning reservoir flooded areas.
Probabilistic assessment of landslide tsunami hazard for the northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Pampell-Manis, A.; Horrillo, J.; Shigihara, Y.; Parambath, L.
2016-01-01
The devastating consequences of recent tsunamis affecting Indonesia and Japan have prompted a scientific response to better assess unexpected tsunami hazards. Although much uncertainty exists regarding the recurrence of large-scale tsunami events in the Gulf of Mexico (GoM), geological evidence indicates that a tsunami is possible and would most likely come from a submarine landslide triggered by an earthquake. This study customizes for the GoM a first-order probabilistic landslide tsunami hazard assessment. Monte Carlo Simulation (MCS) is employed to determine landslide configurations based on distributions obtained from observational submarine mass failure (SMF) data. Our MCS approach incorporates a Cholesky decomposition method for correlated landslide size parameters to capture correlations seen in the data as well as uncertainty inherent in these events. Slope stability analyses are performed using landslide and sediment properties and regional seismic loading to determine landslide configurations which fail and produce a tsunami. The probability of each tsunamigenic failure is calculated based on the joint probability of slope failure and probability of the triggering earthquake. We are thus able to estimate sizes and return periods for probabilistic maximum credible landslide scenarios. We find that the Cholesky decomposition approach generates landslide parameter distributions that retain the trends seen in observational data, improving the statistical validity and relevancy of the MCS technique in the context of landslide tsunami hazard assessment. Estimated return periods suggest that probabilistic maximum credible SMF events in the north and northwest GoM have a recurrence of 5000-8000 years, in agreement with age dates of observed deposits.
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Selva, Jacopo; Costa, Antonio; Sandri, Laura
2014-05-01
Probabilistic Hazard Assessment (PHA) is becoming an essential tool for risk mitigation policies, since it allows to quantify the hazard due to hazardous phenomena and, differently from the deterministic approach, it accounts for both aleatory and epistemic uncertainties. On the other hand, one of the main disadvantages of PHA methods is that their results are not easy to understand and interpret by people who are not specialist in probabilistic tools. For scientists, this leads to the issue of providing tools that can be easily used and understood by decision makers (i.e., risk managers or local authorities). The work here presented fits into the problem of simplifying the transfer between scientific knowledge and land protection policies, by providing an interface between scientists, who produce PHA's results, and decision makers, who use PHA's results for risk analyses. In this framework we present pyPHaz, an open tool developed and designed to visualize and analyze PHA results due to one or more phenomena affecting a specific area of interest. The software implementation has been fully developed with the free and open-source Python programming language and some featured Python-based libraries and modules. The pyPHaz tool allows to visualize the Hazard Curves (HC) calculated in a selected target area together with different levels of uncertainty (mean and percentiles) on maps that can be interactively created and modified by the user, thanks to a dedicated Graphical User Interface (GUI). Moreover, the tool can be used to compare the results of different PHA models and to merge them, by creating ensemble models. The pyPHaz software has been designed with the features of storing and accessing all the data through a MySQL database and of being able to read as input the XML-based standard file formats defined in the frame of GEM (Global Earthquake Model). This format model is easy to extend also to any other kind of hazard, as it will be shown in the applications here used as examples of the pyPHaz potentialities, that are focused on a Probabilistic Volcanic Hazard Assessment (PVHA) for tephra dispersal and fallout applied to the municipality of Naples.
Frankel, Arthur D.; Stephenson, William J.; Carver, David L.; Williams, Robert A.; Odum, Jack K.; Rhea, Susan
2007-01-01
This report presents probabilistic seismic hazard maps for Seattle, Washington, based on over 500 3D simulations of ground motions from scenario earthquakes. These maps include 3D sedimentary basin effects and rupture directivity. Nonlinear site response for soft-soil sites of fill and alluvium was also applied in the maps. The report describes the methodology for incorporating source and site dependent amplification factors into a probabilistic seismic hazard calculation. 3D simulations were conducted for the various earthquake sources that can affect Seattle: Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep earthquakes. The maps presented in this document used essentially the same set of faults and distributed-earthquake sources as in the 2002 national seismic hazard maps. The 3D velocity model utilized in the simulations was validated by modeling the amplitudes and waveforms of observed seismograms from five earthquakes in the region, including the 2001 M6.8 Nisqually earthquake. The probabilistic seismic hazard maps presented here depict 1 Hz response spectral accelerations with 10%, 5%, and 2% probabilities of exceedance in 50 years. The maps are based on determinations of seismic hazard for 7236 sites with a spacing of 280 m. The maps show that the most hazardous locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and along the inferred trace of the frontal fault of the Seattle fault zone. The next highest hazard is typically found for soft-soil sites in the Duwamish Valley south of the Seattle basin. In general, stiff-soil sites in the Seattle basin exhibit higher hazard than stiff-soil sites outside the basin. Sites with shallow bedrock outside the Seattle basin have the lowest estimated hazard for this frequency band.
NASA Astrophysics Data System (ADS)
Mastrolorenzo, G.; Pappalardo, L.; Troise, C.; Panizza, A.; de Natale, G.
2005-05-01
Integrated volcanological-probabilistic approaches has been used in order to simulate pyroclastic density currents and fallout and produce hazard maps for Campi Flegrei and Somma Vesuvius areas. On the basis of the analyses of all types of pyroclastic flows, surges, secondary pyroclastic density currents and fallout events occurred in the volcanological history of the two volcanic areas and the evaluation of probability for each type of events, matrixs of input parameters for a numerical simulation have been performed. The multi-dimensional input matrixs include the main controlling parameters of the pyroclasts transport and deposition dispersion, as well as the set of possible eruptive vents used in the simulation program. Probabilistic hazard maps provide of each points of campanian area, the yearly probability to be interested by a given event with a given intensity and resulting demage. Probability of a few events in one thousand years are typical of most areas around the volcanoes whitin a range of ca 10 km, including Neaples. Results provide constrains for the emergency plans in Neapolitan area.
NASA Astrophysics Data System (ADS)
Tang, Zhongqian; Zhang, Hua; Yi, Shanzhen; Xiao, Yangfan
2018-03-01
GIS-based multi-criteria decision analysis (MCDA) is increasingly used to support flood risk assessment. However, conventional GIS-MCDA methods fail to adequately represent spatial variability and are accompanied with considerable uncertainty. It is, thus, important to incorporate spatial variability and uncertainty into GIS-based decision analysis procedures. This research develops a spatially explicit, probabilistic GIS-MCDA approach for the delineation of potentially flood susceptible areas. The approach integrates the probabilistic and the local ordered weighted averaging (OWA) methods via Monte Carlo simulation, to take into account the uncertainty related to criteria weights, spatial heterogeneity of preferences and the risk attitude of the analyst. The approach is applied to a pilot study for the Gucheng County, central China, heavily affected by the hazardous 2012 flood. A GIS database of six geomorphological and hydrometeorological factors for the evaluation of susceptibility was created. Moreover, uncertainty and sensitivity analysis were performed to investigate the robustness of the model. The results indicate that the ensemble method improves the robustness of the model outcomes with respect to variation in criteria weights and identifies which criteria weights are most responsible for the variability of model outcomes. Therefore, the proposed approach is an improvement over the conventional deterministic method and can provides a more rational, objective and unbiased tool for flood susceptibility evaluation.
Probabilistic Seismic Risk Model for Western Balkans
NASA Astrophysics Data System (ADS)
Stejskal, Vladimir; Lorenzo, Francisco; Pousse, Guillaume; Radovanovic, Slavica; Pekevski, Lazo; Dojcinovski, Dragi; Lokin, Petar; Petronijevic, Mira; Sipka, Vesna
2010-05-01
A probabilistic seismic risk model for insurance and reinsurance purposes is presented for an area of Western Balkans, covering former Yugoslavia and Albania. This territory experienced many severe earthquakes during past centuries producing significant damage to many population centres in the region. The highest hazard is related to external Dinarides, namely to the collision zone of the Adriatic plate. The model is based on a unified catalogue for the region and a seismic source model consisting of more than 30 zones covering all the three main structural units - Southern Alps, Dinarides and the south-western margin of the Pannonian Basin. A probabilistic methodology using Monte Carlo simulation was applied to generate the hazard component of the model. Unique set of damage functions based on both loss experience and engineering assessments is used to convert the modelled ground motion severity into the monetary loss.
NASA Astrophysics Data System (ADS)
Hoechner, Andreas; Babeyko, Andrey Y.; Zamora, Natalia
2016-06-01
Despite having been rather seismically quiescent for the last decades, the Makran subduction zone is capable of hosting destructive earthquakes and tsunami. In particular, the well-known thrust event in 1945 (Balochistan earthquake) led to about 4000 casualties. Nowadays, the coastal regions are more densely populated and vulnerable to similar events. Furthermore, some recent publications discuss rare but significantly larger events at the Makran subduction zone as possible scenarios. We analyze the instrumental and historical seismicity at the subduction plate interface and generate various synthetic earthquake catalogs spanning 300 000 years with varying magnitude-frequency relations. For every event in the catalogs we compute estimated tsunami heights and present the resulting tsunami hazard along the coasts of Pakistan, Iran and Oman in the form of probabilistic tsunami hazard curves. We show how the hazard results depend on variation of the Gutenberg-Richter parameters and especially maximum magnitude assumption.
NASA Astrophysics Data System (ADS)
Hoechner, A.; Babeyko, A. Y.; Zamora, N.
2015-09-01
Despite having been rather seismically quiescent for the last decades, the Makran subduction zone is capable of hosting destructive earthquakes and tsunami. In particular, the well-known thrust event in 1945 (Balochistan earthquake) led to about 4000 casualties. Nowadays, the coastal regions are more densely populated and vulnerable to similar events. Furthermore, some recent publications discuss rare but significantly larger events at the Makran subduction zone as possible scenarios. We analyze the instrumental and historical seismicity at the subduction plate interface and generate various synthetic earthquake catalogs spanning 300 000 years with varying magnitude-frequency relations. For every event in the catalogs we compute estimated tsunami heights and present the resulting tsunami hazard along the coasts of Pakistan, Iran and Oman in the form of probabilistic tsunami hazard curves. We show how the hazard results depend on variation of the Gutenberg-Richter parameters and especially maximum magnitude assumption.
Probabilistic seismic hazard zonation for the Cuban building code update
NASA Astrophysics Data System (ADS)
Garcia, J.; Llanes-Buron, C.
2013-05-01
A probabilistic seismic hazard assessment has been performed in response to a revision and update of the Cuban building code (NC-46-99) for earthquake-resistant building construction. The hazard assessment have been done according to the standard probabilistic approach (Cornell, 1968) and importing the procedures adopted by other nations dealing with the problem of revising and updating theirs national building codes. Problems of earthquake catalogue treatment, attenuation of peak and spectral ground acceleration, as well as seismic source definition have been rigorously analyzed and a logic-tree approach was used to represent the inevitable uncertainties encountered through the whole seismic hazard estimation process. The seismic zonation proposed here, is formed by a map where it is reflected the behaviour of the spectral acceleration values for short (0.2 seconds) and large (1.0 seconds) periods on rock conditions with a 1642 -year return period, which being considered as maximum credible earthquake (ASCE 07-05). In addition, other three design levels are proposed (severe earthquake: with a 808 -year return period, ordinary earthquake: with a 475 -year return period and minimum earthquake: with a 225 -year return period). The seismic zonation proposed here fulfils the international standards (IBC-ICC) as well as the world tendencies in this thematic.
Probabilistic seismic vulnerability and risk assessment of stone masonry structures
NASA Astrophysics Data System (ADS)
Abo El Ezz, Ahmad
Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for conducting rapid vulnerability assessment of stone masonry buildings. With modification of input structural parameters, it can be adapted and applied to any other building class. A sensitivity analysis of the seismic vulnerability modelling is conducted to quantify the uncertainties associated with each of the input parameters. The proposed methodology was validated for a scenario-based seismic risk assessment of existing buildings in Old Quebec City. The procedure for hazard compatible vulnerability modelling was used to develop seismic fragility functions in terms of spectral acceleration representative of the inventoried buildings. A total of 1220 buildings were considered. The assessment was performed for a scenario event of magnitude 6.2 at distance 15km with a probability of exceedance of 2% in 50 years. The study showed that most of the expected damage is concentrated in the old brick and stone masonry buildings.
NASA Astrophysics Data System (ADS)
Mert, A.
2016-12-01
The main motivation of this study is the impending occurrence of a catastrophic earthquake along the Prince Island Fault (PIF) in Marmara Sea and the disaster risk around Marmara region, especially in İstanbul. This study provides the results of a physically-based Probabilistic Seismic Hazard Analysis (PSHA) methodology, using broad-band strong ground motion simulations, for sites within the Marmara region, Turkey, due to possible large earthquakes throughout the PIF segments in the Marmara Sea. The methodology is called physically-based because it depends on the physical processes of earthquake rupture and wave propagation to simulate earthquake ground motion time histories. We include the effects of all considerable magnitude earthquakes. To generate the high frequency (0.5-20 Hz) part of the broadband earthquake simulation, the real small magnitude earthquakes recorded by local seismic array are used as an Empirical Green's Functions (EGF). For the frequencies below 0.5 Hz the simulations are obtained using by Synthetic Green's Functions (SGF) which are synthetic seismograms calculated by an explicit 2D/3D elastic finite difference wave propagation routine. Using by a range of rupture scenarios for all considerable magnitude earthquakes throughout the PIF segments we provide a hazard calculation for frequencies 0.1-20 Hz. Physically based PSHA used here follows the same procedure of conventional PSHA except that conventional PSHA utilizes point sources or a series of point sources to represent earthquakes and this approach utilizes full rupture of earthquakes along faults. Further, conventional PSHA predicts ground-motion parameters using by empirical attenuation relationships, whereas this approach calculates synthetic seismograms for all magnitude earthquakes to obtain ground-motion parameters. PSHA results are produced for 2%, 10% and 50% hazards for all studied sites in Marmara Region.
Physical limits on ground motion at Yucca Mountain
Andrews, D.J.; Hanks, T.C.; Whitney, J.W.
2007-01-01
Physical limits on possible maximum ground motion at Yucca Mountain, Nevada, the designated site of a high-level radioactive waste repository, are set by the shear stress available in the seismogenic depth of the crust and by limits on stress change that can propagate through the medium. We find in dynamic deterministic 2D calculations that maximum possible horizontal peak ground velocity (PGV) at the underground repository site is 3.6 m/sec, which is smaller than the mean PGV predicted by the probabilistic seismic hazard analysis (PSHA) at annual exceedance probabilities less than 10-6 per year. The physical limit on vertical PGV, 5.7 m/sec, arises from supershear rupture and is larger than that from the PSHA down to 10-8 per year. In addition to these physical limits, we also calculate the maximum ground motion subject to the constraint of known fault slip at the surface, as inferred from paleoseismic studies. Using a published probabilistic fault displacement hazard curve, these calculations provide a probabilistic hazard curve for horizontal PGV that is lower than that from the PSHA. In all cases the maximum ground motion at the repository site is found by maximizing constructive interference of signals from the rupture front, for physically realizable rupture velocity, from all parts of the fault. Vertical PGV is maximized for ruptures propagating near the P-wave speed, and horizontal PGV is maximized for ruptures propagating near the Rayleigh-wave speed. Yielding in shear with a Mohr-Coulomb yield condition reduces ground motion only a modest amount in events with supershear rupture velocity, because ground motion consists primarily of P waves in that case. The possibility of compaction of the porous unsaturated tuffs at the higher ground-motion levels is another attenuating mechanism that needs to be investigated.
NASA Astrophysics Data System (ADS)
Selva, Jacopo; Costa, Antonio; Sandri, Laura; Rouwet, Dmtri; Tonini, Roberto; Macedonio, Giovanni; Marzocchi, Warner
2015-04-01
Probabilistic Volcanic Hazard Assessment (PVHA) represents the most complete scientific contribution for planning rational strategies aimed at mitigating the risk posed by volcanic activity at different time scales. The definition of the space-time window for PVHA is related to the kind of risk mitigation actions that are under consideration. Short temporal intervals (days to weeks) are important for short-term risk mitigation actions like the evacuation of a volcanic area. During volcanic unrest episodes or eruptions, it is of primary importance to produce short-term tephra fallout forecast, and frequently update it to account for the rapidly evolving situation. This information is obviously crucial for crisis management, since tephra may heavily affect building stability, public health, transportations and evacuation routes (airports, trains, road traffic) and lifelines (electric power supply). In this study, we propose a methodology named BET_VHst (Selva et al. 2014) for short-term PVHA of volcanic tephra dispersal based on automatic interpretation of measures from the monitoring system and physical models of tephra dispersal from all possible vent positions and eruptive sizes based on frequently updated meteorological forecasts. The large uncertainty at all the steps required for the analysis, both aleatory and epistemic, is treated by means of Bayesian inference and statistical mixing of long- and short-term analyses. The BET_VHst model is here presented through its implementation during two exercises organized for volcanoes in the Neapolitan area: MESIMEX for Mt. Vesuvius, and VUELCO for Campi Flegrei. References Selva J., Costa A., Sandri L., Macedonio G., Marzocchi W. (2014) Probabilistic short-term volcanic hazard in phases of unrest: a case study for tephra fallout, J. Geophys. Res., 119, doi: 10.1002/2014JB011252
Maps Showing Seismic Landslide Hazards in Anchorage, Alaska
Jibson, Randall W.; Michael, John A.
2009-01-01
The devastating landslides that accompanied the great 1964 Alaska earthquake showed that seismically triggered landslides are one of the greatest geologic hazards in Anchorage. Maps quantifying seismic landslide hazards are therefore important for planning, zoning, and emergency-response preparation. The accompanying maps portray seismic landslide hazards for the following conditions: (1) deep, translational landslides, which occur only during great subduction-zone earthquakes that have return periods of =~300-900 yr; (2) shallow landslides for a peak ground acceleration (PGA) of 0.69 g, which has a return period of 2,475 yr, or a 2 percent probability of exceedance in 50 yr; and (3) shallow landslides for a PGA of 0.43 g, which has a return period of 475 yr, or a 10 percent probability of exceedance in 50 yr. Deep, translational landslide hazard zones were delineated based on previous studies of such landslides, with some modifications based on field observations of locations of deep landslides. Shallow-landslide hazards were delineated using a Newmark-type displacement analysis for the two probabilistic ground motions modeled.
Maps showing seismic landslide hazards in Anchorage, Alaska
Jibson, Randall W.
2014-01-01
The devastating landslides that accompanied the great 1964 Alaska earthquake showed that seismically triggered landslides are one of the greatest geologic hazards in Anchorage. Maps quantifying seismic landslide hazards are therefore important for planning, zoning, and emergency-response preparation. The accompanying maps portray seismic landslide hazards for the following conditions: (1) deep, translational landslides, which occur only during great subduction-zone earthquakes that have return periods of =300-900 yr; (2) shallow landslides for a peak ground acceleration (PGA) of 0.69 g, which has a return period of 2,475 yr, or a 2 percent probability of exceedance in 50 yr; and (3) shallow landslides for a PGA of 0.43 g, which has a return period of 475 yr, or a 10 percent probability of exceedance in 50 yr. Deep, translational landslide hazards were delineated based on previous studies of such landslides, with some modifications based on field observations of locations of deep landslides. Shallow-landslide hazards were delineated using a Newmark-type displacement analysis for the two probabilistic ground motions modeled.
Proposal of a method for evaluating tsunami risk using response-surface methodology
NASA Astrophysics Data System (ADS)
Fukutani, Y.
2017-12-01
Information on probabilistic tsunami inundation hazards is needed to define and evaluate tsunami risk. Several methods for calculating these hazards have been proposed (e.g. Løvholt et al. (2012), Thio (2012), Fukutani et al. (2014), Goda et al. (2015)). However, these methods are inefficient, and their calculation cost is high, since they require multiple tsunami numerical simulations, therefore lacking versatility. In this study, we proposed a simpler method for tsunami risk evaluation using response-surface methodology. Kotani et al. (2016) proposed an evaluation method for the probabilistic distribution of tsunami wave-height using a response-surface methodology. We expanded their study and developed a probabilistic distribution of tsunami inundation depth. We set the depth (x1) and the slip (x2) of an earthquake fault as explanatory variables and tsunami inundation depth (y) as an object variable. Subsequently, tsunami risk could be evaluated by conducting a Monte Carlo simulation, assuming that the generation probability of an earthquake follows a Poisson distribution, the probability distribution of tsunami inundation depth follows the distribution derived from a response-surface, and the damage probability of a target follows a log normal distribution. We applied the proposed method to a wood building located on the coast of Tokyo Bay. We implemented a regression analysis based on the results of 25 tsunami numerical calculations and developed a response-surface, which was defined as y=ax1+bx2+c (a:0.2615, b:3.1763, c=-1.1802). We assumed proper probabilistic distribution for earthquake generation, inundation height, and vulnerability. Based on these probabilistic distributions, we conducted Monte Carlo simulations of 1,000,000 years. We clarified that the expected damage probability of the studied wood building is 22.5%, assuming that an earthquake occurs. The proposed method is therefore a useful and simple way to evaluate tsunami risk using a response-surface and Monte Carlo simulation without conducting multiple tsunami numerical simulations.
NASA Astrophysics Data System (ADS)
Li, Hongwei; Yuan, Ye; Xu, Zhiguo; Wang, Zongchen; Wang, Juncheng; Wang, Peitao; Gao, Yi; Hou, Jingming; Shan, Di
2017-06-01
The South China Sea (SCS) and its adjacent small basins including Sulu Sea and Celebes Sea are commonly identified as tsunami-prone region by its historical records on seismicity and tsunamis. However, quantification of tsunami hazard in the SCS region remained an intractable issue due to highly complex tectonic setting and multiple seismic sources within and surrounding this area. Probabilistic Tsunami Hazard Assessment (PTHA) is performed in the present study to evaluate tsunami hazard in the SCS region based on a brief review on seismological and tsunami records. 5 regional and local potential tsunami sources are tentatively identified, and earthquake catalogs are generated using Monte Carlo simulation following the Tapered Gutenberg-Richter relationship for each zone. Considering a lack of consensus on magnitude upper bound on each seismic source, as well as its critical role in PTHA, the major concern of the present study is to define the upper and lower limits of tsunami hazard in the SCS region comprehensively by adopting different corner magnitudes that could be derived by multiple principles and approaches, including TGR regression of historical catalog, fault-length scaling, tectonic and seismic moment balance, and repetition of historical largest event. The results show that tsunami hazard in the SCS and adjoining basins is subject to large variations when adopting different corner magnitudes, with the upper bounds 2-6 times of the lower. The probabilistic tsunami hazard maps for specified return periods reveal much higher threat from Cotabato Trench and Sulawesi Trench in the Celebes Sea, whereas tsunami hazard received by the coasts of the SCS and Sulu Sea is relatively moderate, yet non-negligible. By combining empirical method with numerical study of historical tsunami events, the present PTHA results are tentatively validated. The correspondence lends confidence to our study. Considering the proximity of major sources to population-laden cities around the SCS region, the tsunami hazard and risk should be further highlighted in the future.
NASA Astrophysics Data System (ADS)
Runge, Melody G.; Bebbington, Mark S.; Cronin, Shane J.; Lindsay, Jan M.; Moufti, Mohammed R.
2016-02-01
During probabilistic volcanic hazard analysis of volcanic fields, a greater variety of spatial data on crustal features should help improve forecasts of future vent locations. Without further examination, however, geophysical estimations of crustal or other features may be non-informative. Here, we present a new, robust, non-parametric method to quantitatively determine the existence of any relationship between natural phenomena (e.g., volcanic eruptions) and a variety of geophysical data. This provides a new validation tool for incorporating a range of potentially hazard-diagnostic observable data into recurrence rate estimates and hazard analyses. Through this study it is shown that the location of Cenozoic volcanic fields across the Arabian Shield appear to be related to locations of major and minor faults, at higher elevations, and regions where gravity anomaly values were between - 125 mGal and 0 mGal. These findings support earlier hypotheses that the western shield uplift was related to Cenozoic volcanism. At the harrat (volcanic field)-scale, higher vent density regions are related to both elevation and gravity anomaly values. A by-product of this work is the collection of existing data on the volcanism across Saudi Arabia, with all vent locations provided herein, as well as updated maps for Harrats Kura, Khaybar, Ithnayn, Kishb, and Rahat. This work also highlights the potential dangers of assuming relationships between observed data and the occurrence of a natural phenomenon without quantitative assessment or proper consideration of the effects of data resolution.
NASA Astrophysics Data System (ADS)
Bydlon, S. A.; Beroza, G. C.
2015-12-01
Recent debate on the efficacy of Probabilistic Seismic Hazard Analysis (PSHA), and the utility of hazard maps (i.e. Stein et al., 2011; Hanks et al., 2012), has prompted a need for validation of such maps using recorded strong ground motion data. Unfortunately, strong motion records are limited spatially and temporally relative to the area and time windows hazard maps encompass. We develop a framework to test the predictive powers of PSHA maps that is flexible with respect to a map's specified probability of exceedance and time window, and the strong motion receiver coverage. Using a combination of recorded and interpolated strong motion records produced through the ShakeMap environment, we compile a record of ground motion intensity measures for California from 2002-present. We use this information to perform an area-based test of California PSHA maps inspired by the work of Ward (1995). Though this framework is flexible in that it can be applied to seismically active areas where ShakeMap-like ground shaking interpolations have or can be produced, this testing procedure is limited by the relatively short lifetime of strong motion recordings and by the desire to only test with data collected after the development of the PSHA map under scrutiny. To account for this, we use the assumption that PSHA maps are time independent to adapt the testing procedure for periods of recorded data shorter than the lifetime of a map. We note that accuracy of this testing procedure will only improve as more data is collected, or as the time-horizon of interest is reduced, as has been proposed for maps of areas experiencing induced seismicity. We believe that this procedure can be used to determine whether PSHA maps are accurately portraying seismic hazard and whether discrepancies are localized or systemic.
Landslide hazard assessment of the Black sea coastline (Caucasus, Russia) via drones
NASA Astrophysics Data System (ADS)
Kazeev, Andrey; Postoev, German; Fedotova, Ksenia
2017-04-01
Landslide hazard assessment of slopes of Sochi was performed along the railway between the cities Tuapse and Adler (total length 103 km). The railway passes through the territory with active development of hazardous geological processes such as landslides, rock falls and debris-flows. By the beginning of 2016, 36 landslide sites were discovered along the railway (total length 34 km), 48 rock-fall sites (length 31 km), and 5 debris-flow sites (length 0.14 km). In recent years the intensification of deformations was observed. For instance, during previous 10 years (1996¬¬-2005) 28 sudden deformations occurred due to slope processes, which caused interruptions in traffic. And in the present decade (2006-2015), 72 deformations were recorded. High landslide activity and economic loss determined the necessity of complex investigations of engineering geological conditions of landslides development and causes of its intensification. The protection strategy development was needed to minimize negative consequences. Thus, the investigations of landslide situation along the railway "Tuapse - Adler" included the categorization of landslide sites by level of hazard, with risk assessment based on numerical criteria. Preliminary evaluation of landslide hazard for the railway was conducted via the analysis of archived engineering-geological documents. 13 of 36 landslide sites (total length 13 km) were selected, reflecting the variety and peculiarities of landslide displacements on slopes (both active and inactive sites). Visual field observations of landslide slopes using drone "DJI Phantom 4" were completed during the second stage of this investigation. High-resolution photographs of landslide cirques, cracks, scarp walls, vegetation features were obtained via drone, which would have been impossible to obtain from the ground in conditions of dense subtropical vegetation cover. Possible approaches to the landslide activity and hazard assessment were evaluated: slope stability analysis, geophysical monitoring methods, analysis of critical deformations and critical velocities of displacement, the analysis of changes of conditions of landslide development during its displacement, as well as scoring approaches to landslide hazard and risk assessment. As the result, the method of probabilistic estimation of landslide activity and hazard has been proposed, based on selection and analysis of main factors, influencing landslide displacements. Slope steepness, landslide thickness, slope length, bedrock dip, slope relief, cracks, vegetation patterns and other factors were used for assessment of activity of landslide sites. The investigation was based on the proposed probabilistic method of assessment of landslide activity and hazard. The considered landslide sites were ranked by the rate of activity as inactive, potentially active and active. The most active sites were used to identify potentially the most hazardous sites. Furthermore, the following factors were additionally considered: the damage of railroad facilities due to landslide, landslide activity, thickness of landslide at the toe of the slope, bedrock stratification, the conditions for the cirque development, the position of the sliding surface relatively to the railway, the involvement of bedrock into displaced mass. As the result, the investigated railroad sites were divided into three categories: non-hazardous, potentially hazardous and hazardous. The research was supported by Russian Scientific Foundation (Project № 16-17-00125).
Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin L.; Bolisetti, Chandu; Veeraraghavan, Swetha
Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporatesmore » deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.« less
Hunt, James; Birch, Gavin; Warne, Michael St J
2010-05-01
Groundwater contaminated with volatile chlorinated hydrocarbons (VCHs) was identified as discharging to Penrhyn Estuary, an intertidal embayment of Botany Bay, New South Wales, Australia. A screening-level hazard assessment of surface water in Penrhyn Estuary identified an unacceptable hazard to marine organisms posed by VCHs. Given the limitations of hazard assessments, the present study conducted a higher-tier, quantitative probabilistic risk assessment using the joint probability curve (JPC) method that accounted for variability in exposure and toxicity profiles to quantify risk (delta). Risk was assessed for 24 scenarios, including four areas of the estuary based on three exposure scenarios (low tide, high tide, and both low and high tides) and two toxicity scenarios (chronic no-observed-effect concentrations [NOEC] and 50% effect concentrations [EC50]). Risk (delta) was greater at low tide than at high tide and varied throughout the tidal cycle. Spatial distributions of risk in the estuary were similar using both NOEC and EC50 data. The exposure scenario including data combined from both tides was considered the most accurate representation of the ecological risk in the estuary. When assessing risk using data across both tides, the greatest risk was identified in the Springvale tributary (delta=25%)-closest to the source area-followed by the inner estuary (delta=4%) and the Floodvale tributary (delta=2%), with the lowest risk in the outer estuary (delta=0.1%), farthest from the source area. Going from the screening level ecological risk assessment (ERA) to the probabilistic ERA changed the risk from unacceptable to acceptable in 50% of exposure scenarios in two of the four areas within the estuary. The probabilistic ERA provided a more realistic assessment of risk than the screening-level hazard assessment. Copyright (c) 2010 SETAC.
Hanks, Thomas C.; Beroza, Gregory C.; Toda, Shinji
2012-01-01
In a recent Opinion piece in these pages, Stein et al. (2011) offer a remarkable indictment of the methods, models, and results of probabilistic seismic hazard analysis (PSHA). The principal object of their concern is the PSHA map for Japan released by the Japan Headquarters for Earthquake Research Promotion (HERP), which is reproduced by Stein et al. (2011) as their Figure 1 and also here as our Figure 1. It shows the probability of exceedance (also referred to as the “hazard”) of the Japan Meteorological Agency (JMA) intensity 6–lower (JMA 6–) in Japan for the 30-year period beginning in January 2010. JMA 6– is an earthquake-damage intensity measure that is associated with fairly strong ground motion that can be damaging to well-built structures and is potentially destructive to poor construction (HERP, 2005, appendix 5). Reiterating Geller (2011, p. 408), Stein et al. (2011, p. 623) have this to say about Figure 1: The regions assessed as most dangerous are the zones of three hypothetical “scenario earthquakes” (Tokai, Tonankai, and Nankai; see map). However, since 1979, earthquakes that caused 10 or more fatalities in Japan actually occurred in places assigned a relatively low probability. This discrepancy—the latest in a string of negative results for the characteristic model and its cousin the seismic-gap model—strongly suggest that the hazard map and the methods used to produce it are flawed and should be discarded. Given the central role that PSHA now plays in seismic risk analysis, performance-based engineering, and design-basis ground motions, discarding PSHA would have important consequences. We are not persuaded by the arguments of Geller (2011) and Stein et al. (2011) for doing so because important misunderstandings about PSHA seem to have conditioned them. In the quotation above, for example, they have confused important differences between earthquake-occurrence observations and ground-motion hazard calculations.
Seismic risk assessment and application in the central United States
Wang, Z.
2011-01-01
Seismic risk is a somewhat subjective, but important, concept in earthquake engineering and other related decision-making. Another important concept that is closely related to seismic risk is seismic hazard. Although seismic hazard and seismic risk have often been used interchangeably, they are fundamentally different: seismic hazard describes the natural phenomenon or physical property of an earthquake, whereas seismic risk describes the probability of loss or damage that could be caused by a seismic hazard. The distinction between seismic hazard and seismic risk is of practical significance because measures for seismic hazard mitigation may differ from those for seismic risk reduction. Seismic risk assessment is a complicated process and starts with seismic hazard assessment. Although probabilistic seismic hazard analysis (PSHA) is the most widely used method for seismic hazard assessment, recent studies have found that PSHA is not scientifically valid. Use of PSHA will lead to (1) artifact estimates of seismic risk, (2) misleading use of the annual probability of exccedance (i.e., the probability of exceedance in one year) as a frequency (per year), and (3) numerical creation of extremely high ground motion. An alternative approach, which is similar to those used for flood and wind hazard assessments, has been proposed. ?? 2011 ASCE.
Logistic regression applied to natural hazards: rare event logistic regression with replications
NASA Astrophysics Data System (ADS)
Guns, M.; Vanacker, V.
2012-06-01
Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.
Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge
NASA Technical Reports Server (NTRS)
Yap, Keng C.
2010-01-01
This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.
Bivariate drought frequency analysis using the copula method
NASA Astrophysics Data System (ADS)
Mirabbasi, Rasoul; Fakheri-Fard, Ahmad; Dinpashoh, Yagob
2012-04-01
Droughts are major natural hazards with significant environmental and economic impacts. In this study, two-dimensional copulas were applied to the analysis of the meteorological drought characteristics of the Sharafkhaneh gauge station, located in the northwest of Iran. Two major drought characteristics, duration and severity, as defined by the standardized precipitation index, were abstracted from observed drought events. Since drought duration and severity exhibited a significant correlation and since they were modeled using different distributions, copulas were used to construct the joint distribution function of the drought characteristics. The parameter of copulas was estimated using the method of the Inference Function for Margins. Several copulas were tested in order to determine the best data fit. According to the error analysis and the tail dependence coefficient, the Galambos copula provided the best fit for the observed drought data. Some bivariate probabilistic properties of droughts, based on the derived copula-based joint distribution, were also investigated. These probabilistic properties can provide useful information for water resource planning and management.
Field, E.H.; Petersen, M.D.
2000-01-01
We evaluate the implications of several attenuation relationships, including three customized for southern California, in terms of accounting for site effects in probabilistic seismic hazard studies. The analysis is carried out at 43 sites along a profile spanning the Los Angeles basin with respect to peak acceleration, and 0.3-, 1.0-, and 3.0-sec response spectral acceleration values that have a 10% chance of being exceeded in 50 years. The variability among currently viable attenuation relationships (espistemic uncertainty) is an approximate factor of 2. Biases between several commonly used attenuation relationships and southern California strong-motion data imply hazard differences that exceed 10%. However, correcting each relationship for the southern California bias does not necessarily bring hazard estimates into better agreement. A detailed subclassification of site types (beyond rock versus soil) is found to be both justified by data and to make important distinctions in terms of hazard levels. A basin depth effect is also shown to be important, implying a difference of up to a factor of 2 in ground motion between the deepest and shallowest parts of the Los Angeles basin. In fact, for peak acceleration, the basin-depth effect is even more influential than the surface site condition. Questions remain, however, whether basin depth is a proxy for some other site attribute such as distance from the basin edge. The reduction in prediction error (sigma) produced by applying detailed site and/or basin-depth corrections does not have an important influence on the hazard. In fact, the sigma reduction is less than epistemic uncertainties on sigma itself. Due to data limitations, it is impossible to determine which attenuation relationship is best. However, our results do indicate which site conditions seem most influential. This information should prove useful to those developing or updating attenuation relationships and to those attempting to make more refined estimates of hazard in the near future.
Probabilistic seismic hazard assessment for northern Southeast Asia
NASA Astrophysics Data System (ADS)
Chan, C. H.; Wang, Y.; Kosuwan, S.; Nguyen, M. L.; Shi, X.; Sieh, K.
2016-12-01
We assess seismic hazard for northern Southeast Asia through constructing an earthquake and fault database, conducting a series of ground-shaking scenarios and proposing regional seismic hazard maps. Our earthquake database contains earthquake parameters from global and local seismic catalogues, including the ISC, ISC-GEM, the global ANSS Comprehensive Catalogues, Seismological Bureau, Thai Meteorological Department, Thailand, and Institute of Geophysics Vietnam Academy of Science and Technology, Vietnam. To harmonize the earthquake parameters from various catalogue sources, we remove duplicate events and unify magnitudes into the same scale. Our active fault database include active fault data from previous studies, e.g. the active fault parameters determined by Wang et al. (2014), Department of Mineral Resources, Thailand, and Institute of Geophysics, Vietnam Academy of Science and Technology, Vietnam. Based on the parameters from analysis of the databases (i.e., the Gutenberg-Richter relationship, slip rate, maximum magnitude and time elapsed of last events), we determined the earthquake recurrence models of seismogenic sources. To evaluate the ground shaking behaviours in different tectonic regimes, we conducted a series of tests by matching the felt intensities of historical earthquakes to the modelled ground motions using ground motion prediction equations (GMPEs). By incorporating the best-fitting GMPEs and site conditions, we utilized site effect and assessed probabilistic seismic hazard. The highest seismic hazard is in the region close to the Sagaing Fault, which cuts through some major cities in central Myanmar. The northern segment of Sunda megathrust, which could potentially cause M8-class earthquake, brings significant hazard along the Western Coast of Myanmar and eastern Bangladesh. Besides, we conclude a notable hazard level in northern Vietnam and the boundary between Myanmar, Thailand and Laos, due to a series of strike-slip faults, which could potentially cause moderate-large earthquakes. Note that although much of the region has a low probability of damaging shaking, low-probability events have resulted in much destruction recently in SE Asia (e.g. 2008 Wenchuan, 2015 Sabah earthquakes).
Probabilistic seismic hazard characterization and design parameters for the Pantex Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernreuter, D. L.; Foxall, W.; Savy, J. B.
1998-10-19
The Hazards Mitigation Center at Lawrence Livermore National Laboratory (LLNL) updated the seismic hazard and design parameters at the Pantex Plant. The probabilistic seismic hazard (PSH) estimates were first updated using the latest available data and knowledge from LLNL (1993, 1998), Frankel et al. (1996), and other relevant recent studies from several consulting companies. Special attention was given to account for the local seismicity and for the system of potentially active faults associated with the Amarillo-Wichita uplift. Aleatory (random) uncertainty was estimated from the available data and the epistemic (knowledge) uncertainty was taken from results of similar studies. Special attentionmore » was given to soil amplification factors for the site. Horizontal Peak Ground Acceleration (PGA) and 5% damped uniform hazard spectra were calculated for six return periods (100 yr., 500 yr., 1000 yr., 2000 yr., 10,000 yr., and 100,000 yr.). The design parameters were calculated following DOE standards (DOE-STD-1022 to 1024). Response spectra for design or evaluation of Performance Category 1 through 4 structures, systems, and components are presented.« less
Source processes for the probabilistic assessment of tsunami hazards
Geist, Eric L.; Lynett, Patrick J.
2014-01-01
The importance of tsunami hazard assessment has increased in recent years as a result of catastrophic consequences from events such as the 2004 Indian Ocean and 2011 Japan tsunamis. In particular, probabilistic tsunami hazard assessment (PTHA) methods have been emphasized to include all possible ways a tsunami could be generated. Owing to the scarcity of tsunami observations, a computational approach is used to define the hazard. This approach includes all relevant sources that may cause a tsunami to impact a site and all quantifiable uncertainty. Although only earthquakes were initially considered for PTHA, recent efforts have also attempted to include landslide tsunami sources. Including these sources into PTHA is considerably more difficult because of a general lack of information on relating landslide area and volume to mean return period. The large variety of failure types and rheologies associated with submarine landslides translates to considerable uncertainty in determining the efficiency of tsunami generation. Resolution of these and several other outstanding problems are described that will further advance PTHA methodologies leading to a more accurate understanding of tsunami hazard.
Saari, Gavin N; Scott, W Casan; Brooks, Bryan W
2017-12-01
As an urban water cycle is increasingly realized, aquatic systems are influenced by sewage and wastewater effluent discharges of variable quality. Such urbanization results in exposures of non-target aquatic organisms to medicines and other contaminants. In the present study, we performed a unique global hazard assessment of calcium channel blockers (CCB) in multiple environmental matrices. Effluent and freshwater observations were primarily from North America (62% and 76%, respectively) and Europe (21% and 10%, respectively) with limited-to-no information from rapidly urbanizing regions of developing countries in Asia-Pacific, South America, and Africa. Only 9% and 18% of occurrence data were from influent sewage and marine systems, though developing countries routinely discharge poorly treated wastewater to heavily populated coastal regions. Probabilistic environmental exposure distribution (EED) 5th and 95th percentiles for all CCBs were 1.5 and 309.1 ng/L in influent, 5.0 and 448.7 ng/L for effluent, 1.3 and 202.3 ng/L in freshwater, and 0.17 and 12.9 ng/L in saltwater, respectively. Unfortunately, global hazards and risks of CCBs to non-target organisms remain poorly understood, particularly for sublethal exposures. Thus, therapeutic hazard values (THV) were calculated and employed during probabilistic hazard assessments with EEDs when sufficient data was available. Amlodipine and verapamil in effluents and freshwater systems exceeded THVs 28% of the time, highlighting the need to understand ecological consequences of these CCBs. This global scanning approach demonstrated the utility of global assessments to identify specific CCBs, chemical mixtures with common mechanisms of action, and geographic locations for which environmental assessment efforts appear warranted. Copyright © 2017 Elsevier Ltd. All rights reserved.
A PROBABILISTIC METHOD FOR ESTIMATING MONITORING POINT DENSITY FOR CONTAINMENT SYSTEM LEAK DETECTION
The use of physical and hydraulic containment systems for the isolation of contaminated ground water and aquifer materials ssociated with hazardous waste sites has increased during the last decade. The existing methodologies for monitoring and evaluating leakage from hazardous w...
Evaluation of seismic hazard at the northwestern part of Egypt
NASA Astrophysics Data System (ADS)
Ezzelarab, M.; Shokry, M. M. F.; Mohamed, A. M. E.; Helal, A. M. A.; Mohamed, Abuoelela A.; El-Hadidy, M. S.
2016-01-01
The objective of this study is to evaluate the seismic hazard at the northwestern Egypt using the probabilistic seismic hazard assessment approach. The Probabilistic approach was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. The doubly-truncated exponential model was adopted for calculations of the recurrence parameters. Ground-motion prediction equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 0.2° × 0.2° covering the study area, seismic hazard curves for every node were calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to six spectral periods (0.1, 0.2, 0.3, 1.0, 2.0 and 3.0 s) for return periods of 72, 475 and 2475 years. The unified hazard spectra of two selected rock sites at Alexandria and Mersa Matruh Cities were provided. Finally, the hazard curves were de-aggregated to determine the sources that contribute most of hazard level of 10% probability of exceedance in 50 years for the mentioned selected sites.
Probabilistic seismic hazard assessment of southern part of Ghana
NASA Astrophysics Data System (ADS)
Ahulu, Sylvanus T.; Danuor, Sylvester Kojo; Asiedu, Daniel K.
2018-05-01
This paper presents a seismic hazard map for the southern part of Ghana prepared using the probabilistic approach, and seismic hazard assessment results for six cities. The seismic hazard map was prepared for 10% probability of exceedance for peak ground acceleration in 50 years. The input parameters used for the computations of hazard were obtained using data from a catalogue that was compiled and homogenised to moment magnitude (Mw). The catalogue covered a period of over a century (1615-2009). The hazard assessment is based on the Poisson model for earthquake occurrence, and hence, dependent events were identified and removed from the catalogue. The following attenuation relations were adopted and used in this study—Allen (for south and eastern Australia), Silva et al. (for Central and eastern North America), Campbell and Bozorgnia (for worldwide active-shallow-crust regions) and Chiou and Youngs (for worldwide active-shallow-crust regions). Logic-tree formalism was used to account for possible uncertainties associated with the attenuation relationships. OpenQuake software package was used for the hazard calculation. The highest level of seismic hazard is found in the Accra and Tema seismic zones, with estimated peak ground acceleration close to 0.2 g. The level of the seismic hazard in the southern part of Ghana diminishes with distance away from the Accra/Tema region to a value of 0.05 g at a distance of about 140 km.
Assessment of Uncertainties Related to Seismic Hazard Using Fuzzy Analysis
NASA Astrophysics Data System (ADS)
Jorjiashvili, N.; Yokoi, T.; Javakhishvili, Z.
2013-05-01
Seismic hazard analysis in last few decades has been become very important issue. Recently, new technologies and available data have been improved that helped many scientists to understand where and why earthquakes happen, physics of earthquakes, etc. They have begun to understand the role of uncertainty in Seismic hazard analysis. However, there is still significant problem how to handle existing uncertainty. The same lack of information causes difficulties to quantify uncertainty accurately. Usually attenuation curves are obtained in statistical way: regression analysis. Statistical and probabilistic analysis show overlapped results for the site coefficients. This overlapping takes place not only at the border between two neighboring classes, but also among more than three classes. Although the analysis starts from classifying sites using the geological terms, these site coefficients are not classified at all. In the present study, this problem is solved using Fuzzy set theory. Using membership functions the ambiguities at the border between neighboring classes can be avoided. Fuzzy set theory is performed for southern California by conventional way. In this study standard deviations that show variations between each site class obtained by Fuzzy set theory and classical way are compared. Results on this analysis show that when we have insufficient data for hazard assessment site classification based on Fuzzy set theory shows values of standard deviations less than obtained by classical way which is direct proof of less uncertainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, R.P.; Short, S.A.; McDonald, J.R.
1990-06-01
The Department of Energy (DOE) and the DOE Natural Phenomena Hazards Panel have developed uniform design and evaluation guidelines for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of the guidelines is to assure that DOE facilities can withstand the effects of natural phenomena such as earthquakes, extreme winds, tornadoes, and flooding. The guidelines apply to both new facilities (design) and existing facilities (evaluation, modification, and upgrading). The intended audience is primarily the civil/structural or mechanical engineers conducting the design or evaluation of DOE facilities. The likelihood of occurrence of natural phenomena hazards atmore » each DOE site has been evaluated by the DOE Natural Phenomena Hazard Program. Probabilistic hazard models are available for earthquake, extreme wind/tornado, and flood. Alternatively, site organizations are encouraged to develop site-specific hazard models utilizing the most recent information and techniques available. In this document, performance goals and natural hazard levels are expressed in probabilistic terms, and design and evaluation procedures are presented in deterministic terms. Design/evaluation procedures conform closely to common standard practices so that the procedures will be easily understood by most engineers. Performance goals are expressed in terms of structure or equipment damage to the extent that: (1) the facility cannot function; (2) the facility would need to be replaced; or (3) personnel are endangered. 82 refs., 12 figs., 18 tabs.« less
Probabilistic seismic hazard at the archaeological site of Gol Gumbaz in Vijayapura, south India
NASA Astrophysics Data System (ADS)
Patil, Shivakumar G.; Menon, Arun; Dodagoudar, G. R.
2018-03-01
Probabilistic seismic hazard analysis (PSHA) is carried out for the archaeological site of Vijayapura in south India in order to obtain hazard consistent seismic input ground-motions for seismic risk assessment and design of seismic protection measures for monuments, where warranted. For this purpose the standard Cornell-McGuire approach, based on seismogenic zones with uniformly distributed seismicity is employed. The main features of this study are the usage of an updated and unified seismic catalogue based on moment magnitude, new seismogenic source models and recent ground motion prediction equations (GMPEs) in logic tree framework. Seismic hazard at the site is evaluated for level and rock site condition with 10% and 2% probabilities of exceedance in 50 years, and the corresponding peak ground accelerations (PGAs) are 0.074 and 0.142 g, respectively. In addition, the uniform hazard spectra (UHS) of the site are compared to the Indian code-defined spectrum. Comparisons are also made with results from National Disaster Management Authority (NDMA 2010), in terms of PGA and pseudo spectral accelerations (PSAs) at T = 0.2, 0.5, 1.0 and 1.25 s for 475- and 2475-yr return periods. Results of the present study are in good agreement with the PGA calculated from isoseismal map of the Killari earthquake, {M}w = 6.4 (1993). Disaggregation of PSHA results for the PGA and spectral acceleration ({S}a) at 0.5 s, displays the controlling scenario earthquake for the study region as low to moderate magnitude with the source being at a short distance from the study site. Deterministic seismic hazard (DSHA) is also carried out by taking into account three scenario earthquakes. The UHS corresponding to 475-yr return period (RP) is used to define the target spectrum and accordingly, the spectrum-compatible natural accelerograms are selected from the suite of recorded accelerograms.
Probabilistic seismic hazard study based on active fault and finite element geodynamic models
NASA Astrophysics Data System (ADS)
Kastelic, Vanja; Carafa, Michele M. C.; Visini, Francesco
2016-04-01
We present a probabilistic seismic hazard analysis (PSHA) that is exclusively based on active faults and geodynamic finite element input models whereas seismic catalogues were used only in a posterior comparison. We applied the developed model in the External Dinarides, a slow deforming thrust-and-fold belt at the contact between Adria and Eurasia.. is the Our method consists of establishing s two earthquake rupture forecast models: (i) a geological active fault input (GEO) model and, (ii) a finite element (FEM) model. The GEO model is based on active fault database that provides information on fault location and its geometric and kinematic parameters together with estimations on its slip rate. By default in this model all deformation is set to be released along the active faults. The FEM model is based on a numerical geodynamic model developed for the region of study. In this model the deformation is, besides along the active faults, released also in the volumetric continuum elements. From both models we calculated their corresponding activity rates, its earthquake rates and their final expected peak ground accelerations. We investigated both the source model and the earthquake model uncertainties by varying the main active fault and earthquake rate calculation parameters through constructing corresponding branches of the seismic hazard logic tree. Hazard maps and UHS curves have been produced for horizontal ground motion on bedrock conditions VS 30 ≥ 800 m/s), thereby not considering local site amplification effects. The hazard was computed over a 0.2° spaced grid considering 648 branches of the logic tree and the mean value of 10% probability of exceedance in 50 years hazard level, while the 5th and 95th percentiles were also computed to investigate the model limits. We conducted a sensitivity analysis to control which of the input parameters influence the final hazard results in which measure. The results of such comparison evidence the deformation model and with their internal variability together with the choice of the ground motion prediction equations (GMPEs) are the most influencing parameter. Both of these parameters have significan affect on the hazard results. Thus having good knowledge of the existence of active faults and their geometric and activity characteristics is of key importance. We also show that PSHA models based exclusively on active faults and geodynamic inputs, which are thus not dependent on past earthquake occurrences, provide a valid method for seismic hazard calculation.
Develop Probabilistic Tsunami Design Maps for ASCE 7
NASA Astrophysics Data System (ADS)
Wei, Y.; Thio, H. K.; Chock, G.; Titov, V. V.
2014-12-01
A national standard for engineering design for tsunami effects has not existed before and this significant risk is mostly ignored in engineering design. The American Society of Civil Engineers (ASCE) 7 Tsunami Loads and Effects Subcommittee is completing a chapter for the 2016 edition of ASCE/SEI 7 Standard. Chapter 6, Tsunami Loads and Effects, would become the first national tsunami design provisions. These provisions will apply to essential facilities and critical infrastructure. This standard for tsunami loads and effects will apply to designs as part of the tsunami preparedness. The provisions will have significance as the post-tsunami recovery tool, to plan and evaluate for reconstruction. Maps of 2,500-year probabilistic tsunami inundation for Alaska, Washington, Oregon, California, and Hawaii need to be developed for use with the ASCE design provisions. These new tsunami design zone maps will define the coastal zones where structures of greater importance would be designed for tsunami resistance and community resilience. The NOAA Center for Tsunami Research (NCTR) has developed 75 tsunami inundation models as part of the operational tsunami model forecast capability for the U.S. coastline. NCTR, UW, and URS are collaborating with ASCE to develop the 2,500-year tsunami design maps for the Pacific states using these tsunami models. This ensures the probabilistic criteria are established in ASCE's tsunami design maps. URS established a Probabilistic Tsunami Hazard Assessment approach consisting of a large amount of tsunami scenarios that include both epistemic uncertainty and aleatory variability (Thio et al., 2010). Their study provides 2,500-year offshore tsunami heights at the 100-m water depth, along with the disaggregated earthquake sources. NOAA's tsunami models are used to identify a group of sources that produce these 2,500-year tsunami heights. The tsunami inundation limits and runup heights derived from these sources establish the tsunami design map for the study site. ASCE's Energy Grad Line Analysis then uses these modeling constraints to derive hydrodynamic forces for structures within the tsunami design zone. The probabilistic tsunami design maps will be validated by comparison to state inundation maps under the coordination of the National Tsunami Hazard Mitigation Program.
NASA Astrophysics Data System (ADS)
Yilmaz, Zeynep
Typically, the vertical component of the ground motion is not considered explicitly in seismic design of bridges, but in some cases the vertical component can have a significant effect on the structural response. The key question of when the vertical component should be incorporated in design is answered by the probabilistic seismic hazard assessment study incorporating the probabilistic seismic demand models and ground motion models. Nonlinear simulation models with varying configurations of an existing bridge in California were considered in the analytical study. The simulation models were subjected to the set of selected ground motions in two stages: at first, only horizontal components of the motion were applied; while in the second stage the structures were subjected to both horizontal and vertical components applied simultaneously and the ground motions that produced the largest adverse effects on the bridge system were identified. Moment demand in the mid-span and at the support of the longitudinal girder and the axial force demand in the column are found to be significantly affected by the vertical excitations. These response parameters can be modeled using simple ground motion parameters such as horizontal spectral acceleration and vertical spectral acceleration within 5% to 30% error margin depending on the type of the parameter and the period of the structure. For a complete hazard assessment, both of these ground motion parameters explaining the structural behavior should also be modeled. For the horizontal spectral acceleration, Abrahamson and Silva (2008) model was used within many available standard model. A new NGA vertical ground motion model consistent with the horizontal model was constructed. These models are combined in a vector probabilistic seismic hazard analyses. Series of hazard curves developed and presented for different locations in Bay Area for soil site conditions to provide a roadmap for the prediction of these features for future earthquakes. Findings from this study will contribute to the development of revised guidelines to address vertical ground motion effects, particularly in the near fault regions, in the seismic design of highway bridges.
Tectonic models for Yucca Mountain, Nevada
O'Leary, Dennis W.
2006-01-01
Performance of a high-level nuclear waste repository at Yucca Mountain hinges partly on long-term structural stability of the mountain, its susceptibility to tectonic disruption that includes fault displacement, seismic ground motion, and igneous intrusion. Because of the uncertainty involved with long-term (10,000 yr minimum) prediction of tectonic events (e.g., earthquakes) and the incomplete understanding of the history of strain and its mechanisms in the Yucca Mountain region, a tectonic model is needed. A tectonic model should represent the structural assemblage of the mountain in its tectonic setting and account for that assemblage through a history of deformation in which all of the observed deformation features are linked in time and space. Four major types of tectonic models have been proposed for Yucca Mountain: a caldera model; simple shear (detachment fault) models; pure shear (planar fault) models; and lateral shear models. Most of the models seek to explain local features in the context of well-accepted regional deformation mechanisms. Evaluation of the models in light of site characterization shows that none of them completely accounts for all the known tectonic features of Yucca Mountain or is fully compatible with the deformation history. The Yucca Mountain project does not endorse a preferred tectonic model. However, most experts involved in the probabilistic volcanic hazards analysis and the probabilistic seismic hazards analysis preferred a planar fault type model. ?? 2007 Geological Society of America. All rights reserved.
Dall'Osso, F.; Dominey-Howes, D.; Moore, C.; Summerhayes, S.; Withycombe, G.
2014-01-01
Approximately 85% of Australia's population live along the coastal fringe, an area with high exposure to extreme inundations such as tsunamis. However, to date, no Probabilistic Tsunami Hazard Assessments (PTHA) that include inundation have been published for Australia. This limits the development of appropriate risk reduction measures by decision and policy makers. We describe our PTHA undertaken for the Sydney metropolitan area. Using the NOAA NCTR model MOST (Method for Splitting Tsunamis), we simulate 36 earthquake-generated tsunamis with annual probabilities of 1:100, 1:1,000 and 1:10,000, occurring under present and future predicted sea level conditions. For each tsunami scenario we generate a high-resolution inundation map of the maximum water level and flow velocity, and we calculate the exposure of buildings and critical infrastructure. Results indicate that exposure to earthquake-generated tsunamis is relatively low for present events, but increases significantly with higher sea level conditions. The probabilistic approach allowed us to undertake a comparison with an existing storm surge hazard assessment. Interestingly, the exposure to all the simulated tsunamis is significantly lower than that for the 1:100 storm surge scenarios, under the same initial sea level conditions. The results have significant implications for multi-risk and emergency management in Sydney. PMID:25492514
Dall'Osso, F; Dominey-Howes, D; Moore, C; Summerhayes, S; Withycombe, G
2014-12-10
Approximately 85% of Australia's population live along the coastal fringe, an area with high exposure to extreme inundations such as tsunamis. However, to date, no Probabilistic Tsunami Hazard Assessments (PTHA) that include inundation have been published for Australia. This limits the development of appropriate risk reduction measures by decision and policy makers. We describe our PTHA undertaken for the Sydney metropolitan area. Using the NOAA NCTR model MOST (Method for Splitting Tsunamis), we simulate 36 earthquake-generated tsunamis with annual probabilities of 1:100, 1:1,000 and 1:10,000, occurring under present and future predicted sea level conditions. For each tsunami scenario we generate a high-resolution inundation map of the maximum water level and flow velocity, and we calculate the exposure of buildings and critical infrastructure. Results indicate that exposure to earthquake-generated tsunamis is relatively low for present events, but increases significantly with higher sea level conditions. The probabilistic approach allowed us to undertake a comparison with an existing storm surge hazard assessment. Interestingly, the exposure to all the simulated tsunamis is significantly lower than that for the 1:100 storm surge scenarios, under the same initial sea level conditions. The results have significant implications for multi-risk and emergency management in Sydney.
NASA Astrophysics Data System (ADS)
Selva, Jacopo; Lorito, Stefano; Basili, Roberto; Tonini, Roberto; Tiberti, Mara Monica; Romano, Fabrizio; Perfetti, Paolo; Volpe, Manuela
2017-04-01
Most of the SPTHA studies and applications rely on several working assumptions: i) the - mostly offshore - tsunamigenic faults are sufficiently well known; ii) the subduction zone earthquakes dominate the hazard; iii) and their location and geometry is sufficiently well constrained. Hence, a probabilistic model is constructed as regards the magnitude-frequency distribution and sometimes the slip distribution of earthquakes occurring on assumed known faults. Then, tsunami scenarios are usually constructed for all earthquakes location, sizes, and slip distributions included in the probabilistic model, through deterministic numerical modelling of tsunami generation, propagation and impact on realistic bathymetries. Here, we adopt a different approach (Selva et al., GJI, 2016) that releases some of the above assumptions, considering that i) also non-subduction earthquakes may contribute significantly to SPTHA, depending on the local tectonic context; ii) that not all the offshore faults are known or sufficiently well constrained; iii) and that the faulting mechanism of future earthquakes cannot be considered strictly predictable. This approach uses as much as possible information from known faults which, depending on the amount of available information and on the local tectonic complexity, among other things, are either modelled as Predominant Seismicity (PS) or as Background Seismicity (BS). PS is used when it is possible to assume sufficiently known geometry and mechanism (e.g. for the main subduction zones). Conversely, within the BS approach information on faults is merged with that on past seismicity, dominant stress regime, and tectonic characterisation, to determine a probability density function for the faulting mechanism. To illustrate the methodology and its impact on the hazard estimates, we present an application in the NEAM region (Northeast Atlantic, Mediterranean and connected seas), initially designed during the ASTARTE project and now applied for the regional-scale SPTHA in the TSUMAPS-NEAM project funded by DG-ECHO.
NASA Astrophysics Data System (ADS)
Mert, Aydin; Fahjan, Yasin M.; Hutchings, Lawrence J.; Pınar, Ali
2016-08-01
The main motivation for this study was the impending occurrence of a catastrophic earthquake along the Prince Island Fault (PIF) in the Marmara Sea and the disaster risk around the Marmara region, especially in Istanbul. This study provides the results of a physically based probabilistic seismic hazard analysis (PSHA) methodology, using broadband strong ground motion simulations, for sites within the Marmara region, Turkey, that may be vulnerable to possible large earthquakes throughout the PIF segments in the Marmara Sea. The methodology is called physically based because it depends on the physical processes of earthquake rupture and wave propagation to simulate earthquake ground motion time histories. We included the effects of all considerable-magnitude earthquakes. To generate the high-frequency (0.5-20 Hz) part of the broadband earthquake simulation, real, small-magnitude earthquakes recorded by a local seismic array were used as empirical Green's functions. For the frequencies below 0.5 Hz, the simulations were obtained by using synthetic Green's functions, which are synthetic seismograms calculated by an explicit 2D /3D elastic finite difference wave propagation routine. By using a range of rupture scenarios for all considerable-magnitude earthquakes throughout the PIF segments, we produced a hazard calculation for frequencies of 0.1-20 Hz. The physically based PSHA used here followed the same procedure as conventional PSHA, except that conventional PSHA utilizes point sources or a series of point sources to represent earthquakes, and this approach utilizes the full rupture of earthquakes along faults. Furthermore, conventional PSHA predicts ground motion parameters by using empirical attenuation relationships, whereas this approach calculates synthetic seismograms for all magnitudes of earthquakes to obtain ground motion parameters. PSHA results were produced for 2, 10, and 50 % hazards for all sites studied in the Marmara region.
NASA Astrophysics Data System (ADS)
Juarez, A. M.; Kibler, K. M.; Sayama, T.; Ohara, M.
2016-12-01
Flood management decision-making is often supported by risk assessment, which may overlook the role of coping capacity and the potential benefits derived from direct use of flood-prone land. Alternatively, risk-benefit analysis can support floodplain management to yield maximum socio-ecological benefits for the minimum flood risk. We evaluate flood risk-probabilistic benefit tradeoffs of livelihood practices compatible with direct human use of flood-prone land (agriculture/wild fisheries) and nature conservation (wild fisheries only) in Candaba, Philippines. Located north-west to Metro Manila, Candaba area is a multi-functional landscape that provides a temporally-variable mix of possible land uses, benefits and ecosystem services of local and regional value. To characterize inundation from 1.3- to 100-year recurrence intervals we couple frequency analysis with rainfall-runoff-inundation modelling and remotely-sensed data. By combining simulated probabilistic floods with both damage and benefit functions (e.g. fish capture and rice yield with flood intensity) we estimate potential damages and benefits over varying probabilistic flood hazards. We find that although direct human uses of flood-prone land are associated with damages, for all the investigated magnitudes of flood events with different frequencies, the probabilistic benefits ( 91 million) exceed risks by a large margin ( 33 million). Even considering risk, probabilistic livelihood benefits of direct human uses far exceed benefits provided by scenarios that exclude direct "risky" human uses (difference of 85 million). In addition, we find that individual coping strategies, such as adapting crop planting periods to the flood pulse or fishing rather than cultivating rice in the wet season, minimize flood losses ( 6 million) while allowing for valuable livelihood benefits ($ 125 million) in flood-prone land. Analysis of societal benefits and local capacities to cope with regular floods demonstrate the relevance of accounting for the full range of flood events and their relation to both potential damages and benefits in risk assessments. Management measures may thus be designed to reflect local contexts and support benefits of natural hydrologic processes, while minimizing flood damage.
Bates, Matthew E; Keisler, Jeffrey M; Zussblatt, Niels P; Plourde, Kenton J; Wender, Ben A; Linkov, Igor
2016-02-01
Risk research for nanomaterials is currently prioritized by means of expert workshops and other deliberative processes. However, analytical techniques that quantify and compare alternative research investments are increasingly recommended. Here, we apply value of information and portfolio decision analysis-methods commonly applied in financial and operations management-to prioritize risk research for multiwalled carbon nanotubes and nanoparticulate silver and titanium dioxide. We modify the widely accepted CB Nanotool hazard evaluation framework, which combines nano- and bulk-material properties into a hazard score, to operate probabilistically with uncertain inputs. Literature is reviewed to develop uncertain estimates for each input parameter, and a Monte Carlo simulation is applied to assess how different research strategies can improve hazard classification. The relative cost of each research experiment is elicited from experts, which enables identification of efficient research portfolios-combinations of experiments that lead to the greatest improvement in hazard classification at the lowest cost. Nanoparticle shape, diameter, solubility and surface reactivity were most frequently identified within efficient portfolios in our results.
Seismic hazard evaluation of the Oman India pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, K.W.; Thenhaus, P.C.; Mullee, J.E.
1996-12-31
The proposed Oman India pipeline will traverse approximately 1,135 km of the northern Arabian Sea floor and adjacent continental shelves at depths of over 3 km on its route from Ra`s al Jifan, Oman, to Rapar Gadhwali, India. The western part of the route crosses active faults that form the transform boundary between the Arabian and Indian tectonic plates. The eastern terminus of the route lies in the vicinity of the great (M {approximately} 8) 1829 Kutch, India earthquake. A probabilistic seismic hazard analysis was used to estimate the values of peak ground acceleration (PGA) with return periods of 200,more » 500 and 1,000 years at selected locations along the pipeline route and the submarine Indus Canyon -- a possible source of large turbidity flows. The results defined the ground-shaking hazard along the pipeline route and Indus Canyon for evaluation of risks to the pipeline from potential earthquake-induced geologic hazards such as liquefaction, slope instability, and turbidity flows. 44 refs.« less
NASA Astrophysics Data System (ADS)
Baklanov, A.; Mahura, A.; Sørensen, J. H.
2003-06-01
There are objects with some periods of higher than normal levels of risk of accidental atmospheric releases (nuclear, chemical, biological, etc.). Such accidents or events may occur due to natural hazards, human errors, terror acts, and during transportation of waste or various operations at high risk. A methodology for risk assessment is suggested and it includes two approaches: 1) probabilistic analysis of possible atmospheric transport patterns using long-term trajectory and dispersion modelling, and 2) forecast and evaluation of possible contamination and consequences for the environment and population using operational dispersion modelling. The first approach could be applied during the preparation stage, and the second - during the operation stage. The suggested methodology is applied on an example of the most important phases (lifting, transportation, and decommissioning) of the ``Kursk" nuclear submarine operation. It is found that the temporal variability of several probabilistic indicators (fast transport probability fields, maximum reaching distance, maximum possible impact zone, and average integral concentration of 137Cs) showed that the fall of 2001 was the most appropriate time for the beginning of the operation. These indicators allowed to identify the hypothetically impacted geographical regions and territories. In cases of atmospheric transport toward the most populated areas, the forecasts of possible consequences during phases of the high and medium potential risk levels based on a unit hypothetical release (e.g. 1 Bq) are performed. The analysis showed that the possible deposition fractions of 10-11 (Bq/m2) over the Kola Peninsula, and 10-12 - 10-13 (Bq/m2) for the remote areas of the Scandinavia and Northwest Russia could be observed. The suggested methodology may be used successfully for any potentially dangerous object involving risk of atmospheric release of hazardous materials of nuclear, chemical or biological nature.
NASA Astrophysics Data System (ADS)
Baklanov, A.; Mahura, A.; Sørensen, J. H.
2003-03-01
There are objects with some periods of higher than normal levels of risk of accidental atmospheric releases (nuclear, chemical, biological, etc.). Such accidents or events may occur due to natural hazards, human errors, terror acts, and during transportation of waste or various operations at high risk. A methodology for risk assessment is suggested and it includes two approaches: 1) probabilistic analysis of possible atmospheric transport patterns using long-term trajectory and dispersion modelling, and 2) forecast and evaluation of possible contamination and consequences for the environment and population using operational dispersion modelling. The first approach could be applied during the preparation stage, and the second - during the operation stage. The suggested methodology is applied on an example of the most important phases (lifting, transportation, and decommissioning) of the "Kursk" nuclear submarine operation. It is found that the temporal variability of several probabilistic indicators (fast transport probability fields, maximum reaching distance, maximum possible impact zone, and average integral concentration of 137Cs) showed that the fall of 2001 was the most appropriate time for the beginning of the operation. These indicators allowed to identify the hypothetically impacted geographical regions and territories. In cases of atmospheric transport toward the most populated areas, the forecasts of possible consequences during phases of the high and medium potential risk levels based on a unit hypothetical release are performed. The analysis showed that the possible deposition fractions of 1011 over the Kola Peninsula, and 10-12 - 10-13 for the remote areas of the Scandinavia and Northwest Russia could be observed. The suggested methodology may be used successfully for any potentially dangerous object involving risk of atmospheric release of hazardous materials of nuclear, chemical or biological nature.
NASA Astrophysics Data System (ADS)
Zamora, N.; Hoechner, A.; Babeyko, A. Y.
2014-12-01
Iran and Pakistan are countries frequently affected by destructive earthquakes, as for instance, the magnitude 6.6 Bam earthquake in 2003 in Iran with about 30 000 casualties, or the magnitude 7.6 Kashmir earthquake 2005 in Pakistan with about 80'000 casualties. Both events took place inland, but in terms of magnitude, even significantly larger events can be expected to happen offshore, at the Makran subduction zone. This small subduction zone is seismically rather quiescent, nevertheless a tsunami caused by a thrust event in 1945 (Balochistan earthquake) led to about 4000 casualties. Nowadays, the coastal regions are more densely populated and vulnerable to similar events. Furthermore, some recent publications discuss the possiblity of rather rare huge magnitude 9 events at the Makran subduction zone. We analyze the seismicity at the subduction plate interface and generate various synthetic earthquake catalogs spanning 100000 years. All the events are projected onto the plate interface using scaling relations and a tsunami model is run for every scenario. The tsunami hazard along the coast is computed and presented in the form of annual probability of exceedance, probabilistic tsunami height for different time periods and other measures. We show how the hazard reacts to variation of the Gutenberg-Richter parameters and maximum magnitudes.We model the historic Balochistan event and its effect in terms of coastal wave heights. Finally, we show how an effective tsunami early warning could be achieved by using an array of high-precision real-time GNSS (Global Navigation Satellite System) receivers along the coast by applying it to the 1945 event and by performing a sensitivity analysis.
Quantification of source uncertainties in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA)
NASA Astrophysics Data System (ADS)
Selva, J.; Tonini, R.; Molinari, I.; Tiberti, M. M.; Romano, F.; Grezio, A.; Melini, D.; Piatanesi, A.; Basili, R.; Lorito, S.
2016-06-01
We propose a procedure for uncertainty quantification in Probabilistic Tsunami Hazard Analysis (PTHA), with a special emphasis on the uncertainty related to statistical modelling of the earthquake source in Seismic PTHA (SPTHA), and on the separate treatment of subduction and crustal earthquakes (treated as background seismicity). An event tree approach and ensemble modelling are used in spite of more classical approaches, such as the hazard integral and the logic tree. This procedure consists of four steps: (1) exploration of aleatory uncertainty through an event tree, with alternative implementations for exploring epistemic uncertainty; (2) numerical computation of tsunami generation and propagation up to a given offshore isobath; (3) (optional) site-specific quantification of inundation; (4) simultaneous quantification of aleatory and epistemic uncertainty through ensemble modelling. The proposed procedure is general and independent of the kind of tsunami source considered; however, we implement step 1, the event tree, specifically for SPTHA, focusing on seismic source uncertainty. To exemplify the procedure, we develop a case study considering seismic sources in the Ionian Sea (central-eastern Mediterranean Sea), using the coasts of Southern Italy as a target zone. The results show that an efficient and complete quantification of all the uncertainties is feasible even when treating a large number of potential sources and a large set of alternative model formulations. We also find that (i) treating separately subduction and background (crustal) earthquakes allows for optimal use of available information and for avoiding significant biases; (ii) both subduction interface and crustal faults contribute to the SPTHA, with different proportions that depend on source-target position and tsunami intensity; (iii) the proposed framework allows sensitivity and deaggregation analyses, demonstrating the applicability of the method for operational assessments.
A time-dependent probabilistic seismic-hazard model for California
Cramer, C.H.; Petersen, M.D.; Cao, T.; Toppozada, Tousson R.; Reichle, M.
2000-01-01
For the purpose of sensitivity testing and illuminating nonconsensus components of time-dependent models, the California Department of Conservation, Division of Mines and Geology (CDMG) has assembled a time-dependent version of its statewide probabilistic seismic hazard (PSH) model for California. The model incorporates available consensus information from within the earth-science community, except for a few faults or fault segments where consensus information is not available. For these latter faults, published information has been incorporated into the model. As in the 1996 CDMG/U.S. Geological Survey (USGS) model, the time-dependent models incorporate three multisegment ruptures: a 1906, an 1857, and a southern San Andreas earthquake. Sensitivity tests are presented to show the effect on hazard and expected damage estimates of (1) intrinsic (aleatory) sigma, (2) multisegment (cascade) vs. independent segment (no cascade) ruptures, and (3) time-dependence vs. time-independence. Results indicate that (1) differences in hazard and expected damage estimates between time-dependent and independent models increase with decreasing intrinsic sigma, (2) differences in hazard and expected damage estimates between full cascading and not cascading are insensitive to intrinsic sigma, (3) differences in hazard increase with increasing return period (decreasing probability of occurrence), and (4) differences in moment-rate budgets increase with decreasing intrinsic sigma and with the degree of cascading, but are within the expected uncertainty in PSH time-dependent modeling and do not always significantly affect hazard and expected damage estimates.
A New Insight into Probabilistic Seismic Hazard Analysis for Central India
NASA Astrophysics Data System (ADS)
Mandal, H. S.; Shukla, A. K.; Khan, P. K.; Mishra, O. P.
2013-12-01
The Son-Narmada-Tapti lineament and its surroundings of Central India (CI) is the second most important tectonic regime following the converging margin along Himalayas-Myanmar-Andaman of the Indian sub-continent, which attracted several geoscientists to assess its seismic hazard potential. Our study area, a part of CI, is bounded between latitudes 18°-26°N and longitudes 73°-83°E, representing a stable part of Peninsular India. Past damaging moderate magnitude earthquakes as well as continuing microseismicity in the area provided enough data for seismological study. Our estimates based on regional Gutenberg-Richter relationship showed lower b values (i.e., between 0.68 and 0.76) from the average for the study area. The Probabilistic Seismic Hazard Analysis carried out over the area with a radius of ~300 km encircling Bhopal yielded a conspicuous relationship between earthquake return period ( T) and peak ground acceleration (PGA). Analyses of T and PGA shows that PGA value at bedrock varies from 0.08 to 0.15 g for 10 % ( T = 475 years) and 2 % ( T = 2,475 years) probabilities exceeding 50 years, respectively. We establish the empirical relationships and between zero period acceleration (ZPA) and shear wave velocity up to a depth of 30 m [ V s (30)] for the two different return periods. These demonstrate that the ZPA values decrease with increasing shear wave velocity, suggesting a diagnostic indicator for designing the structures at a specific site of interest. The predictive designed response spectra generated at a site for periods up to 4.0 s at 10 and 2 % probability of exceedance of ground motion for 50 years can be used for designing duration dependent structures of variable vertical dimension. We infer that this concept of assimilating uniform hazard response spectra and predictive design at 10 and 2 % probability of exceedance in 50 years at 5 % damping at bedrocks of different categories may offer potential inputs for designing earthquake resistant structures of variable dimensions for the CI region under the National Earthquake Hazard Reduction Program for India.
Seismic hazard analysis for Jayapura city, Papua
NASA Astrophysics Data System (ADS)
Robiana, R.; Cipta, A.
2015-04-01
Jayapura city had destructive earthquake which occurred on June 25, 1976 with the maximum intensity VII MMI scale. Probabilistic methods are used to determine the earthquake hazard by considering all possible earthquakes that can occur in this region. Earthquake source models using three types of source models are subduction model; comes from the New Guinea Trench subduction zone (North Papuan Thrust), fault models; derived from fault Yapen, TareraAiduna, Wamena, Memberamo, Waipago, Jayapura, and Jayawijaya, and 7 background models to accommodate unknown earthquakes. Amplification factor using geomorphological approaches are corrected by the measurement data. This data is related to rock type and depth of soft soil. Site class in Jayapura city can be grouped into classes B, C, D and E, with the amplification between 0.5 - 6. Hazard maps are presented with a 10% probability of earthquake occurrence within a period of 500 years for the dominant periods of 0.0, 0.2, and 1.0 seconds.
Modeling the Risk of Fire/Explosion Due to Oxidizer/Fuel Leaks in the Ares I Interstage
NASA Technical Reports Server (NTRS)
Ring, Robert W.; Stott, James E.; Hales, Christy
2008-01-01
A significant flight hazard associated with liquid propellants, such as those used in the upper stage of NASA's new Ares I launch vehicle, is the possibility of leakage of hazardous fluids resulting in a catastrophic fire/explosion. The enclosed and vented interstage of the Ares I contains numerous oxidizer and fuel supply lines as well as ignition sources. The potential for fire/explosion due to leaks during ascent depends on the relative concentrations of hazardous and inert fluids within the interstage along with other variables such as pressure, temperature, leak rates, and fluid outgasing rates. This analysis improves on previous NASA Probabilistic Risk Assessment (PRA) estimates of the probability of deflagration, in which many of the variables pertinent to the problem were not explicitly modeled as a function of time. This paper presents the modeling methodology developed to analyze these risks.
NASA Astrophysics Data System (ADS)
Apel, H.; Trepat, O. M.; Hung, N. N.; Chinh, D. T.; Merz, B.; Dung, N. V.
2015-08-01
Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas, and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either fluvial or pluvial flood hazard, studies of combined fluvial and pluvial flood hazard are hardly available. Thus this study aims at the analysis of fluvial and pluvial flood hazard individually, but also at developing a method for the analysis of combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as example. In this tropical environment the annual monsoon triggered floods of the Mekong River can coincide with heavy local convective precipitation events causing both fluvial and pluvial flooding at the same time. Fluvial flood hazard was estimated with a copula based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. Pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data, and a stochastic rain storm generator. Inundation was simulated by a 2-dimensional hydrodynamic model implemented on a Graphical Processor Unit (GPU) for time-efficient flood propagation modelling. All hazards - fluvial, pluvial and combined - were accompanied by an uncertainty estimation considering the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and ways for their usage in flood risk management are outlined.
Sensemaking of patient safety risks and hazards.
Battles, James B; Dixon, Nancy M; Borotkanics, Robert J; Rabin-Fastmen, Barbara; Kaplan, Harold S
2006-08-01
In order for organizations to become learning organizations, they must make sense of their environment and learn from safety events. Sensemaking, as described by Weick (1995), literally means making sense of events. The ultimate goal of sensemaking is to build the understanding that can inform and direct actions to eliminate risk and hazards that are a threat to patient safety. True sensemaking in patient safety must use both retrospective and prospective approach to learning. Sensemaking is as an essential part of the design process leading to risk informed design. Sensemaking serves as a conceptual framework to bring together well established approaches to assessment of risk and hazards: (1) at the single event level using root cause analysis (RCA), (2) at the processes level using failure modes effects analysis (FMEA) and (3) at the system level using probabilistic risk assessment (PRA). The results of these separate or combined approaches are most effective when end users in conversation-based meetings add their expertise and knowledge to the data produced by the RCA, FMEA, and/or PRA in order to make sense of the risks and hazards. Without ownership engendered by such conversations, the possibility of effective action to eliminate or minimize them is greatly reduced.
Sensemaking of Patient Safety Risks and Hazards
Battles, James B; Dixon, Nancy M; Borotkanics, Robert J; Rabin-Fastmen, Barbara; Kaplan, Harold S
2006-01-01
In order for organizations to become learning organizations, they must make sense of their environment and learn from safety events. Sensemaking, as described by Weick (1995), literally means making sense of events. The ultimate goal of sensemaking is to build the understanding that can inform and direct actions to eliminate risk and hazards that are a threat to patient safety. True sensemaking in patient safety must use both retrospective and prospective approach to learning. Sensemaking is as an essential part of the design process leading to risk informed design. Sensemaking serves as a conceptual framework to bring together well established approaches to assessment of risk and hazards: (1) at the single event level using root cause analysis (RCA), (2) at the processes level using failure modes effects analysis (FMEA) and (3) at the system level using probabilistic risk assessment (PRA). The results of these separate or combined approaches are most effective when end users in conversation-based meetings add their expertise and knowledge to the data produced by the RCA, FMEA, and/or PRA in order to make sense of the risks and hazards. Without ownership engendered by such conversations, the possibility of effective action to eliminate or minimize them is greatly reduced. PMID:16898979
Wind/tornado design criteria, development to achieve required probabilistic performance goals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, D.S.
1991-06-01
This paper describes the strategy for developing new design criteria for a critical facility to withstand loading induced by the wind/tornado hazard. The proposed design requirements for resisting wind/tornado loads are based on probabilistic performance goals. The proposed design criteria were prepared by a Working Group consisting of six experts in wind/tornado engineering and meteorology. Utilizing their best technical knowledge and judgment in the wind/tornado field, they met and discussed the methodologies and reviewed available data. A review of the available wind/tornado hazard model for the site, structural response evaluation methods, and conservative acceptance criteria lead to proposed design criteriamore » that has a high probability of achieving the required performance goals.« less
Wind/tornado design criteria, development to achieve required probabilistic performance goals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, D.S.
This paper describes the strategy for developing new design criteria for a critical facility to withstand loading induced by the wind/tornado hazard. The proposed design requirements for resisting wind/tornado loads are based on probabilistic performance goals. The proposed design criteria were prepared by a Working Group consisting of six experts in wind/tornado engineering and meteorology. Utilizing their best technical knowledge and judgment in the wind/tornado field, they met and discussed the methodologies and reviewed available data. A review of the available wind/tornado hazard model for the site, structural response evaluation methods, and conservative acceptance criteria lead to proposed design criteriamore » that has a high probability of achieving the required performance goals.« less
SCEC Earthquake System Science Using High Performance Computing
NASA Astrophysics Data System (ADS)
Maechling, P. J.; Jordan, T. H.; Archuleta, R.; Beroza, G.; Bielak, J.; Chen, P.; Cui, Y.; Day, S.; Deelman, E.; Graves, R. W.; Minster, J. B.; Olsen, K. B.
2008-12-01
The SCEC Community Modeling Environment (SCEC/CME) collaboration performs basic scientific research using high performance computing with the goal of developing a predictive understanding of earthquake processes and seismic hazards in California. SCEC/CME research areas including dynamic rupture modeling, wave propagation modeling, probabilistic seismic hazard analysis (PSHA), and full 3D tomography. SCEC/CME computational capabilities are organized around the development and application of robust, re- usable, well-validated simulation systems we call computational platforms. The SCEC earthquake system science research program includes a wide range of numerical modeling efforts and we continue to extend our numerical modeling codes to include more realistic physics and to run at higher and higher resolution. During this year, the SCEC/USGS OpenSHA PSHA computational platform was used to calculate PSHA hazard curves and hazard maps using the new UCERF2.0 ERF and new 2008 attenuation relationships. Three SCEC/CME modeling groups ran 1Hz ShakeOut simulations using different codes and computer systems and carefully compared the results. The DynaShake Platform was used to calculate several dynamic rupture-based source descriptions equivalent in magnitude and final surface slip to the ShakeOut 1.2 kinematic source description. A SCEC/CME modeler produced 10Hz synthetic seismograms for the ShakeOut 1.2 scenario rupture by combining 1Hz deterministic simulation results with 10Hz stochastic seismograms. SCEC/CME modelers ran an ensemble of seven ShakeOut-D simulations to investigate the variability of ground motions produced by dynamic rupture-based source descriptions. The CyberShake Platform was used to calculate more than 15 new probabilistic seismic hazard analysis (PSHA) hazard curves using full 3D waveform modeling and the new UCERF2.0 ERF. The SCEC/CME group has also produced significant computer science results this year. Large-scale SCEC/CME high performance codes were run on NSF TeraGrid sites including simulations that use the full PSC Big Ben supercomputer (4096 cores) and simulations that ran on more than 10K cores at TACC Ranger. The SCEC/CME group used scientific workflow tools and grid-computing to run more than 1.5 million jobs at NCSA for the CyberShake project. Visualizations produced by a SCEC/CME researcher of the 10Hz ShakeOut 1.2 scenario simulation data were used by USGS in ShakeOut publications and public outreach efforts. OpenSHA was ported onto an NSF supercomputer and was used to produce very high resolution hazard PSHA maps that contained more than 1.6 million hazard curves.
Deelman, E.; Callaghan, S.; Field, E.; Francoeur, H.; Graves, R.; Gupta, N.; Gupta, V.; Jordan, T.H.; Kesselman, C.; Maechling, P.; Mehringer, J.; Mehta, G.; Okaya, D.; Vahi, K.; Zhao, L.
2006-01-01
This paper discusses the process of building an environment where large-scale, complex, scientific analysis can be scheduled onto a heterogeneous collection of computational and storage resources. The example application is the Southern California Earthquake Center (SCEC) CyberShake project, an analysis designed to compute probabilistic seismic hazard curves for sites in the Los Angeles area. We explain which software tools were used to build to the system, describe their functionality and interactions. We show the results of running the CyberShake analysis that included over 250,000 jobs using resources available through SCEC and the TeraGrid. ?? 2006 IEEE.
Towards a probabilistic tsunami hazard analysis for the Gulf of Cadiz
NASA Astrophysics Data System (ADS)
Løvholt, Finn; Urgeles, Roger
2017-04-01
Landslides and volcanic flank collapses constitute a significant portion of all known tsunami sources, and they are less constrained geographically than earthquakes as they are not tied to large fault zones. While landslides have mostly produced local tsunamis historically, prehistoric evidence show that landslides can also produce ocean wide tsunamis. Because the landslide induced tsunami probability is more difficult to quantify than the one induced by earthquakes, our understanding of the landslide tsunami hazard is less understood. To improve our understanding and methodologies to deal with this hazard, we here present results and methods for a preliminary landslide probabilistic tsunami hazard assessment (LPTHA) for the Gulf of Cadiz for submerged landslides. The present literature on LPTHA is sparse, and studies have so far been separated into two groups, the first based on observed magnitude frequency distributions (MFD's), the second based on simplified geotechnical slope stability analysis. We argue that the MFD based approach is best suited when a sufficient amount of data covering a wide range of volumes is available, although uncertainties in the dating of the landslides often represent a potential large source of bias. To this end, the relatively rich availability of landslide data in the Gulf of Cadiz makes this area suitable for developing and testing LPTHA models. In the presentation, we will first explore the landslide data and statistics, including different spatial factors such as slope versus volume relationships, faults etc. Examples of how random realizations can be used to distribute tsunami source over the study area will be demonstrated. Furthermore, computational strategies for simulating both the landslide and the tsunami generation in a simplified way will be described. To this end, we use depth averaged viscoplastic landslide model coupled to the numerical tsunami model to represent a set of idealized tsunami sources, which are in turn put into a regional tsunami model for computing the tsunami propagation. We devote attention to discussing the epistemic uncertainty and sensitivity of the landslide input parameters, and how these may affect the hazard assessment. As the full variability of the landslide parameters cannot be endured, we show that there is a considerable challenge related to the multiple landslide parameter variability. Finally, we discuss some logical next steps in the analysis, as well as possible sources of error.
The effect of directivity in a PSHA framework
NASA Astrophysics Data System (ADS)
Spagnuolo, E.; Herrero, A.; Cultrera, G.
2012-09-01
We propose a method to introduce a refined representation of the ground motion in the framework of the Probabilistic Seismic Hazard Analysis (PSHA). This study is especially oriented to the incorporation of a priori information about source parameters, by focusing on the directivity effect and its influence on seismic hazard maps. Two strategies have been followed. One considers the seismic source as an extended source, and it is valid when the PSHA seismogenetic sources are represented as fault segments. We show that the incorporation of variables related to the directivity effect can lead to variations up to 20 per cent of the hazard level in case of dip-slip faults with uniform distribution of hypocentre location, in terms of spectral acceleration response at 5 s, exceeding probability of 10 per cent in 50 yr. The second one concerns the more general problem of the seismogenetic areas, where each point is a seismogenetic source having the same chance of enucleate a seismic event. In our proposition the point source is associated to the rupture-related parameters, defined using a statistical description. As an example, we consider a source point of an area characterized by strike-slip faulting style. With the introduction of the directivity correction the modulation of the hazard map reaches values up to 100 per cent (for strike-slip, unilateral faults). The introduction of directivity does not increase uniformly the hazard level, but acts more like a redistribution of the estimation that is consistent with the fault orientation. A general increase appears only when no a priori information is available. However, nowadays good a priori knowledge exists on style of faulting, dip and orientation of faults associated to the majority of the seismogenetic zones of the present seismic hazard maps. The percentage of variation obtained is strongly dependent on the type of model chosen to represent analytically the directivity effect. Therefore, it is our aim to emphasize more on the methodology following which, all the information collected may be easily converted to obtain a more comprehensive and meaningful probabilistic seismic hazard formulation.
A performance-based approach to landslide risk analysis
NASA Astrophysics Data System (ADS)
Romeo, R. W.
2009-04-01
An approach for the risk assessment based on a probabilistic analysis of the performance of structures threatened by landslides is shown and discussed. The risk is a possible loss due to the occurrence of a potentially damaging event. Analytically the risk is the probability convolution of hazard, which defines the frequency of occurrence of the event (i.e., the demand), and fragility that defines the capacity of the system to withstand the event given its characteristics (i.e., severity) and those of the exposed goods (vulnerability), that is: Risk=p(D>=d|S,V) The inequality sets a damage (or loss) threshold beyond which the system's performance is no longer met. Therefore a consistent approach to risk assessment should: 1) adopt a probabilistic model which takes into account all the uncertainties of the involved variables (capacity and demand), 2) follow a performance approach based on given loss or damage thresholds. The proposed method belongs to the category of the semi-empirical ones: the theoretical component is given by the probabilistic capacity-demand model; the empirical component is given by the observed statistical behaviour of structures damaged by landslides. Two landslide properties alone are required: the area-extent and the type (or kinematism). All other properties required to determine the severity of landslides (such as depth, speed and frequency) are derived via probabilistic methods. The severity (or intensity) of landslides, in terms of kinetic energy, is the demand of resistance; the resistance capacity is given by the cumulative distribution functions of the limit state performance (fragility functions) assessed via damage surveys and cards compilation. The investigated limit states are aesthetic (of nominal concern alone), functional (interruption of service) and structural (economic and social losses). The damage probability is the probabilistic convolution of hazard (the probability mass function of the frequency of occurrence of given severities) and vulnerability (the probability of a limit state performance be reached, given a certain severity). Then, for each landslide all the exposed goods (structures and infrastructures) within the landslide area and within a buffer (representative of the maximum extension of a landslide given a reactivation), are counted. The risk is the product of the damage probability and the ratio of the exposed goods of each landslide to the whole assets exposed to the same type of landslides. Since the risk is computed numerically and by the same procedure applied to all landslides, it is free from any subjective assessment such as those implied in the qualitative methods.
Seismic hazard assessment for Guam and the Northern Mariana Islands
Mueller, Charles S.; Haller, Kathleen M.; Luco, Nicholas; Petersen, Mark D.; Frankel, Arthur D.
2012-01-01
We present the results of a new probabilistic seismic hazard assessment for Guam and the Northern Mariana Islands. The Mariana island arc has formed in response to northwestward subduction of the Pacific plate beneath the Philippine Sea plate, and this process controls seismic activity in the region. Historical seismicity, the Mariana megathrust, and two crustal faults on Guam were modeled as seismic sources, and ground motions were estimated by using published relations for a firm-rock site condition. Maps of peak ground acceleration, 0.2-second spectral acceleration for 5 percent critical damping, and 1.0-second spectral acceleration for 5 percent critical damping were computed for exceedance probabilities of 2 percent and 10 percent in 50 years. For 2 percent probability of exceedance in 50 years, probabilistic peak ground acceleration is 0.94 gravitational acceleration at Guam and 0.57 gravitational acceleration at Saipan, 0.2-second spectral acceleration is 2.86 gravitational acceleration at Guam and 1.75 gravitational acceleration at Saipan, and 1.0-second spectral acceleration is 0.61 gravitational acceleration at Guam and 0.37 gravitational acceleration at Saipan. For 10 percent probability of exceedance in 50 years, probabilistic peak ground acceleration is 0.49 gravitational acceleration at Guam and 0.29 gravitational acceleration at Saipan, 0.2-second spectral acceleration is 1.43 gravitational acceleration at Guam and 0.83 gravitational acceleration at Saipan, and 1.0-second spectral acceleration is 0.30 gravitational acceleration at Guam and 0.18 gravitational acceleration at Saipan. The dominant hazard source at the islands is upper Benioff-zone seismicity (depth 40–160 kilometers). The large probabilistic ground motions reflect the strong concentrations of this activity below the arc, especially near Guam.
Muis, Sanne; Güneralp, Burak; Jongman, Brenden; Aerts, Jeroen C J H; Ward, Philip J
2015-12-15
An accurate understanding of flood risk and its drivers is crucial for effective risk management. Detailed risk projections, including uncertainties, are however rarely available, particularly in developing countries. This paper presents a method that integrates recent advances in global-scale modeling of flood hazard and land change, which enables the probabilistic analysis of future trends in national-scale flood risk. We demonstrate its application to Indonesia. We develop 1000 spatially-explicit projections of urban expansion from 2000 to 2030 that account for uncertainty associated with population and economic growth projections, as well as uncertainty in where urban land change may occur. The projections show that the urban extent increases by 215%-357% (5th and 95th percentiles). Urban expansion is particularly rapid on Java, which accounts for 79% of the national increase. From 2000 to 2030, increases in exposure will elevate flood risk by, on average, 76% and 120% for river and coastal floods. While sea level rise will further increase the exposure-induced trend by 19%-37%, the response of river floods to climate change is highly uncertain. However, as urban expansion is the main driver of future risk, the implementation of adaptation measures is increasingly urgent, regardless of the wide uncertainty in climate projections. Using probabilistic urban projections, we show that spatial planning can be a very effective adaptation strategy. Our study emphasizes that global data can be used successfully for probabilistic risk assessment in data-scarce countries. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mastrolorenzo, G.; Pappalardo, L.; de Natale, G.; Troise, C.; Rossano, S.; Panizza, A.
2009-04-01
Probabilistic approaches based on available volcanological data from real eruptions of Campi Flegrei and Somma-Vesuvius, are assembled in a comprehensive assessment of volcanic hazards at the Neapolitan area. This allows to compare the volcanic hazards related to the different types of events, which can be used for evaluating the conditional probability of flows and falls hazard in case of a volcanic crisis. Hazard maps are presented, based on a rather complete set of numerical simulations, produced using field and laboratory data as input parameters relative to a large range (VEI 1 to 5) of fallout and pyroclastic-flow events and their relative occurrence. The results allow us to quantitatively evaluate and compare the hazard related to pyroclastic fallout and density currents (PDCs) at the Neapolitan volcanoes and their surroundings, including the city of Naples. Due to its position between the two volcanic areas, the city of Naples is particularly exposed to volcanic risk from VEI>2 eruptions, as recorded in the local volcanic succession. Because dominant wind directions, the area of Naples is particularly prone to fallout hazard from Campi Flegrei caldera eruptions in the VEI range 2-5. The hazard from PDCs decreases roughly radially with distance from the eruptive vents and is strongly controlled by the topographic heights. Campi Flegrei eruptions are particularly hazardous for Naples, although the Camaldoli and Posillipo hills produce an effective barrier to propagation to the very central part of Naples. PDCs from Vesuvius eruptions with VEI>4 can cover the city of Naples, whereas even VEI>3 eruptions have a moderate fallout hazard there.
Probabilistic Seismic Hazard Assessment of the Chiapas State (SE Mexico)
NASA Astrophysics Data System (ADS)
Rodríguez-Lomelí, Anabel Georgina; García-Mayordomo, Julián
2015-04-01
The Chiapas State, in southeastern Mexico, is a very active seismic region due to the interaction of three tectonic plates: Northamerica, Cocos and Caribe. We present a probabilistic seismic hazard assessment (PSHA) specifically performed to evaluate seismic hazard in the Chiapas state. The PSHA was based on a composited seismic catalogue homogenized to Mw and was used a logic tree procedure for the consideration of different seismogenic source models and ground motion prediction equations (GMPEs). The results were obtained in terms of peak ground acceleration as well as spectral accelerations. The earthquake catalogue was compiled from the International Seismological Center and the Servicio Sismológico Nacional de México sources. Two different seismogenic source zones (SSZ) models were devised based on a revision of the tectonics of the region and the available geomorphological and geological maps. The SSZ were finally defined by the analysis of geophysical data, resulting two main different SSZ models. The Gutenberg-Richter parameters for each SSZ were calculated from the declustered and homogenized catalogue, while the maximum expected earthquake was assessed from both the catalogue and geological criteria. Several worldwide and regional GMPEs for subduction and crustal zones were revised. For each SSZ model we considered four possible combinations of GMPEs. Finally, hazard was calculated in terms of PGA and SA for 500-, 1000-, and 2500-years return periods for each branch of the logic tree using the CRISIS2007 software. The final hazard maps represent the mean values obtained from the two seismogenic and four attenuation models considered in the logic tree. For the three return periods analyzed, the maps locate the most hazardous areas in the Chiapas Central Pacific Zone, the Pacific Coastal Plain and in the Motagua and Polochic Fault Zone; intermediate hazard values in the Chiapas Batholith Zone and in the Strike-Slip Faults Province. The hazard decreases towards the northeast across the Reverse Faults Province and up to Yucatan Platform, where the lowest values are reached. We also produced uniform hazard spectra (UHS) for the three main cities of Chiapas. Tapachula city presents the highest spectral accelerations, while Tuxtla Gutierrez and San Cristobal de las Casas cities show similar values. We conclude that seismic hazard in Chiapas is chiefly controlled by the subduction of the Cocos beneath Northamerica and Caribe tectonic plates, that makes the coastal areas the most hazardous. Additionally, the Motagua and Polochic Fault Zones are also important, increasing the hazard particularly in southeastern Chiapas.
Probabilistic Seismic Hazard Assessment for Iraq
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onur, Tuna; Gok, Rengin; Abdulnaby, Wathiq
Probabilistic Seismic Hazard Assessments (PSHA) form the basis for most contemporary seismic provisions in building codes around the world. The current building code of Iraq was published in 1997. An update to this edition is in the process of being released. However, there are no national PSHA studies in Iraq for the new building code to refer to for seismic loading in terms of spectral accelerations. As an interim solution, the new draft building code was considering to refer to PSHA results produced in the late 1990s as part of the Global Seismic Hazard Assessment Program (GSHAP; Giardini et al.,more » 1999). However these results are: a) more than 15 years outdated, b) PGA-based only, necessitating rough conversion factors to calculate spectral accelerations at 0.3s and 1.0s for seismic design, and c) at a probability level of 10% chance of exceedance in 50 years, not the 2% that the building code requires. Hence there is a pressing need for a new, updated PSHA for Iraq.« less
Probabilistic Surface Characterization for Safe Landing Hazard Detection and Avoidance (HDA)
NASA Technical Reports Server (NTRS)
Johnson, Andrew E. (Inventor); Ivanov, Tonislav I. (Inventor); Huertas, Andres (Inventor)
2015-01-01
Apparatuses, systems, computer programs and methods for performing hazard detection and avoidance for landing vehicles are provided. Hazard assessment takes into consideration the geometry of the lander. Safety probabilities are computed for a plurality of pixels in a digital elevation map. The safety probabilities are combined for pixels associated with one or more aim points and orientations. A worst case probability value is assigned to each of the one or more aim points and orientations.
NASA Astrophysics Data System (ADS)
Mastrolorenzo, G.; Pappalardo, L.; Troise, C.; Panizza, A.; de Natale, G.
2008-07-01
Tephra fall is a relevant hazard of Campi Flegrei caldera (Southern Italy), due to the high vulnerability of Naples metropolitan area to such an event. Here, tephra derive from magmatic as well as phreatomagmatic activity. On the basis of both new and literature data on known, past eruptions (Volcanic Explosivity Index (VEI), grain size parameters, velocity at the vent, column heights and erupted mass), and factors controlling tephra dispersion (wind velocity and direction), 2D numerical simulations of fallout dispersion and deposition have been performed for a large number of case events. A bayesian inversion has been applied to retrieve the best values of critical parameters (e.g., vertical mass distribution, diffusion coefficients, velocity at the vent), not directly inferable by volcanological study. Simulations are run in parallel on multiple processors to allow a fully probabilistic analysis, on a very large catalogue preserving the statistical proprieties of past eruptive history. Using simulation results, hazard maps have been computed for different scenarios: upper limit scenario (worst-expected scenario), eruption-range scenario, and whole-eruption scenario. Results indicate that although high hazard characterizes the Campi Flegrei caldera, the territory to the east of the caldera center, including the whole district of Naples, is exposed to high hazard values due to the dominant westerly winds. Consistently with the stratigraphic evidence of nature of past eruptions, our numerical simulations reveal that even in the case of a subplinian eruption (VEI = 3), Naples is exposed to tephra fall thicknesses of some decimeters, thereby exceeding the critical limit for roof collapse. Because of the total number of people living in Campi Flegrei and the city of Naples (ca. two million of inhabitants), the tephra fallout risk related to a plinian eruption of Campi Flegrei largely matches or exceeds the risk related to a similar eruption at Vesuvius.
New strong motion network in Georgia: basis for specifying seismic hazard
NASA Astrophysics Data System (ADS)
Kvavadze, N.; Tsereteli, N. S.
2017-12-01
Risk created by hazardous natural events is closely related to sustainable development of the society. Global observations have confirmed tendency of growing losses resulting from natural disasters, one of the most dangerous and destructive if which are earthquakes. Georgia is located in seismically active region. So, it is imperative to evaluate probabilistic seismic hazard and seismic risk with proper accuracy. National network of Georgia includes 35 station all of which are seismometers. There are significant gaps in strong motion recordings, which essential for seismic hazard assessment. To gather more accelerometer recordings, we have built a strong motion network distributed on the territory of Georgia. The network includes 6 stations for now, with Basalt 4x datalogger and strong motion sensor Episensor ES-T. For each site, Vs30 and soil resonance frequencies have been measured. Since all but one station (Tabakhmelam near Tbilisi), are located far from power and internet lines special system was created for instrument operation. Solar power is used to supply the system with electricity and GSM/LTE modems for internet access. VPN tunnel was set up using Raspberry pi, for two-way communication with stations. Tabakhmela station is located on grounds of Ionosphere Observatory, TSU and is used as a hub for the network. This location also includes a broadband seismometer and VLF electromagnetic waves observation antenna, for possible earthquake precursor studies. On server, located in Tabakhmela, the continues data is collected from all the stations, for later use. The recordings later will be used in different seismological and engineering problems, namely selecting and creating GMPE model for Caucasus, for probabilistic seismic hazard and seismic risk evaluation. These stations are a start and in the future expansion of strong motion network is planned. Along with this, electromagnetic wave observations will continue and additional antennas will be implemented with strong motion sensors and possible earthquake precursors will be studied using complex methods of observation and data analysis.
A Probabilistic Risk Assessment of Groundwater-Related Risks at Excavation Sites
NASA Astrophysics Data System (ADS)
Jurado, A.; de Gaspari, F.; Vilarrasa, V.; Sanchez-Vila, X.; Fernandez-Garcia, D.; Tartakovsky, D. M.; Bolster, D.
2010-12-01
Excavation sites such as those associated with the construction of subway lines, railways and highway tunnels are hazardous places, posing risks to workers, machinery and surrounding buildings. Many of these risks can be groundwater related. In this work we develop a general framework based on a probabilistic risk assessment (PRA) to quantify such risks. This approach is compatible with standard PRA practices and it employs many well-developed risk analysis tools, such as fault trees. The novelty and computational challenges of the proposed approach stem from the reliance on stochastic differential equations, rather than reliability databases, to compute the probabilities of basic events. The general framework is applied to a specific case study in Spain. It is used to estimate and minimize risks for a potential construction site of an underground station for the new subway line in the Barcelona metropolitan area.
Probabilistic Seismic Hazard Maps for Ecuador
NASA Astrophysics Data System (ADS)
Mariniere, J.; Beauval, C.; Yepes, H. A.; Laurence, A.; Nocquet, J. M.; Alvarado, A. P.; Baize, S.; Aguilar, J.; Singaucho, J. C.; Jomard, H.
2017-12-01
A probabilistic seismic hazard study is led for Ecuador, a country facing a high seismic hazard, both from megathrust subduction earthquakes and shallow crustal moderate to large earthquakes. Building on the knowledge produced in the last years in historical seismicity, earthquake catalogs, active tectonics, geodynamics, and geodesy, several alternative earthquake recurrence models are developed. An area source model is first proposed, based on the seismogenic crustal and inslab sources defined in Yepes et al. (2016). A slightly different segmentation is proposed for the subduction interface, with respect to Yepes et al. (2016). Three earthquake catalogs are used to account for the numerous uncertainties in the modeling of frequency-magnitude distributions. The hazard maps obtained highlight several source zones enclosing fault systems that exhibit low seismic activity, not representative of the geological and/or geodetical slip rates. Consequently, a fault model is derived, including faults with an earthquake recurrence model inferred from geological and/or geodetical slip rate estimates. The geodetical slip rates on the set of simplified faults are estimated from a GPS horizontal velocity field (Nocquet et al. 2014). Assumptions on the aseismic component of the deformation are required. Combining these alternative earthquake models in a logic tree, and using a set of selected ground-motion prediction equations adapted to Ecuador's different tectonic contexts, a mean hazard map is obtained. Hazard maps corresponding to the percentiles 16 and 84% are also derived, highlighting the zones where uncertainties on the hazard are highest.
Decision Analysis Tools for Volcano Observatories
NASA Astrophysics Data System (ADS)
Hincks, T. H.; Aspinall, W.; Woo, G.
2005-12-01
Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.
Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge
NASA Technical Reports Server (NTRS)
Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.
2011-01-01
A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.
Probabilistic Risk Assessment Process for High-Power Laser Operations in Outdoor Environments
2016-01-01
avionics data bus. In the case of a UAS-mounted laser system, the control path will additionally include a radio or satellite communications link. A remote...JBSA Fort Sam Houston, TX 78234 711 HPW/RHDO 11 . SPONSOR’S/MONITOR’S REPORT NUMBER(S) AFRL-RH-FS-JA-2015...hazard assessment pur- poses is not widespread within the laser safety community . The aim of this paper is to outline the basis of the probabilistic
Identification of failure type in corroded pipelines: a bayesian probabilistic approach.
Breton, T; Sanchez-Gheno, J C; Alamilla, J L; Alvarez-Ramirez, J
2010-07-15
Spillover of hazardous materials from transport pipelines can lead to catastrophic events with serious and dangerous environmental impact, potential fire events and human fatalities. The problem is more serious for large pipelines when the construction material is under environmental corrosion conditions, as in the petroleum and gas industries. In this way, predictive models can provide a suitable framework for risk evaluation, maintenance policies and substitution procedure design that should be oriented to reduce increased hazards. This work proposes a bayesian probabilistic approach to identify and predict the type of failure (leakage or rupture) for steel pipelines under realistic corroding conditions. In the first step of the modeling process, the mechanical performance of the pipe is considered for establishing conditions under which either leakage or rupture failure can occur. In the second step, experimental burst tests are used to introduce a mean probabilistic boundary defining a region where the type of failure is uncertain. In the boundary vicinity, the failure discrimination is carried out with a probabilistic model where the events are considered as random variables. In turn, the model parameters are estimated with available experimental data and contrasted with a real catastrophic event, showing good discrimination capacity. The results are discussed in terms of policies oriented to inspection and maintenance of large-size pipelines in the oil and gas industry. 2010 Elsevier B.V. All rights reserved.
Lindsay A. Chiono; Danny L. Fry; Brandon M. Collins; Andrea H. Chatfield; Scott L. Stephens
2017-01-01
Forest managers are challenged with meeting numerous demands that often include wildlife habitat and carbon (C) sequestration. We used a probabilistic framework of wildfire occurrence to (1) estimate the potential for fuel treatments to reduce fire risk and hazard across the landscape and within protected California spotted owl (Strix occidentalis...
Seismic Hazard Assessment of Tehran Based on Arias Intensity
NASA Astrophysics Data System (ADS)
Amiri, G. Ghodrati; Mahmoodi, H.; Amrei, S. A. Razavian
2008-07-01
In this paper probabilistic seismic hazard assessment of Tehran for Arias intensity parameter is done. Tehran is capital and most populated city of Iran. From economical, political and social points of view, Tehran is the most significant city of Iran. Since in the previous centuries, catastrophic earthquakes have occurred in Tehran and its vicinity, probabilistic seismic hazard assessment of this city for Arias intensity parameter is useful. Iso-intensity contour lines maps of Tehran on the basis of different attenuation relationships for different earthquake periods are plotted. Maps of iso-intensity points in the Tehran region are presented using proportional attenuation relationships for rock and soil beds for 2 hazard levels of 10% and 2% in 50 years. Seismicity parameters on the basis of historical and instrumental earthquakes for a time period that initiate from 4th century BC and ends in the present time are calculated using Tow methods. For calculation of seismicity parameters, the earthquake catalogue with a radius of 200 km around Tehran has been used. SEISRISKIII Software has been employed. Effects of different parameters such as seismicity parameters, length of fault rupture relationships and attenuation relationships are considered using Logic Tree.
A probabilistic tornado wind hazard model for the continental United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Q; Kimball, J; Mensing, R
A probabilistic tornado wind hazard model for the continental United States (CONUS) is described. The model incorporates both aleatory (random) and epistemic uncertainties associated with quantifying the tornado wind hazard parameters. The temporal occurrences of tornadoes within the continental United States (CONUS) is assumed to be a Poisson process. A spatial distribution of tornado touchdown locations is developed empirically based on the observed historical events within the CONUS. The hazard model is an aerial probability model that takes into consideration the size and orientation of the facility, the length and width of the tornado damage area (idealized as a rectanglemore » and dependent on the tornado intensity scale), wind speed variation within the damage area, tornado intensity classification errors (i.e.,errors in assigning a Fujita intensity scale based on surveyed damage), and the tornado path direction. Epistemic uncertainties in describing the distributions of the aleatory variables are accounted for by using more than one distribution model to describe aleatory variations. The epistemic uncertainties are based on inputs from a panel of experts. A computer program, TORNADO, has been developed incorporating this model; features of this program are also presented.« less
Seismic Hazard Assessment of Tehran Based on Arias Intensity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amiri, G. Ghodrati; Mahmoodi, H.; Amrei, S. A. Razavian
2008-07-08
In this paper probabilistic seismic hazard assessment of Tehran for Arias intensity parameter is done. Tehran is capital and most populated city of Iran. From economical, political and social points of view, Tehran is the most significant city of Iran. Since in the previous centuries, catastrophic earthquakes have occurred in Tehran and its vicinity, probabilistic seismic hazard assessment of this city for Arias intensity parameter is useful. Iso-intensity contour lines maps of Tehran on the basis of different attenuation relationships for different earthquake periods are plotted. Maps of iso-intensity points in the Tehran region are presented using proportional attenuation relationshipsmore » for rock and soil beds for 2 hazard levels of 10% and 2% in 50 years. Seismicity parameters on the basis of historical and instrumental earthquakes for a time period that initiate from 4th century BC and ends in the present time are calculated using Tow methods. For calculation of seismicity parameters, the earthquake catalogue with a radius of 200 km around Tehran has been used. SEISRISKIII Software has been employed. Effects of different parameters such as seismicity parameters, length of fault rupture relationships and attenuation relationships are considered using Logic Tree.« less
Landslide Hazard Probability Derived from Inherent and Dynamic Determinants
NASA Astrophysics Data System (ADS)
Strauch, Ronda; Istanbulluoglu, Erkan
2016-04-01
Landslide hazard research has typically been conducted independently from hydroclimate research. We unify these two lines of research to provide regional scale landslide hazard information for risk assessments and resource management decision-making. Our approach combines an empirical inherent landslide probability with a numerical dynamic probability, generated by combining routed recharge from the Variable Infiltration Capacity (VIC) macro-scale land surface hydrologic model with a finer resolution probabilistic slope stability model run in a Monte Carlo simulation. Landslide hazard mapping is advanced by adjusting the dynamic model of stability with an empirically-based scalar representing the inherent stability of the landscape, creating a probabilistic quantitative measure of geohazard prediction at a 30-m resolution. Climatology, soil, and topography control the dynamic nature of hillslope stability and the empirical information further improves the discriminating ability of the integrated model. This work will aid resource management decision-making in current and future landscape and climatic conditions. The approach is applied as a case study in North Cascade National Park Complex, a rugged terrain with nearly 2,700 m (9,000 ft) of vertical relief, covering 2757 sq km (1064 sq mi) in northern Washington State, U.S.A.
NASA Astrophysics Data System (ADS)
Berge-Thierry, C.; Hollender, F.; Guyonnet-Benaize, C.; Baumont, D.; Ameri, G.; Bollinger, L.
2017-09-01
Seismic analysis in the context of nuclear safety in France is currently guided by a pure deterministic approach based on Basic Safety Rule ( Règle Fondamentale de Sûreté) RFS 2001-01 for seismic hazard assessment, and on the ASN/2/01 Guide that provides design rules for nuclear civil engineering structures. After the 2011 Tohohu earthquake, nuclear operators worldwide were asked to estimate the ability of their facilities to sustain extreme seismic loads. The French licensees then defined the `hard core seismic levels', which are higher than those considered for design or re-assessment of the safety of a facility. These were initially established on a deterministic basis, and they have been finally justified through state-of-the-art probabilistic seismic hazard assessments. The appreciation and propagation of uncertainties when assessing seismic hazard in France have changed considerably over the past 15 years. This evolution provided the motivation for the present article, the objectives of which are threefold: (1) to provide a description of the current practices in France to assess seismic hazard in terms of nuclear safety; (2) to discuss and highlight the sources of uncertainties and their treatment; and (3) to use a specific case study to illustrate how extended source modeling can help to constrain the key assumptions or parameters that impact upon seismic hazard assessment. This article discusses in particular seismic source characterization, strong ground motion prediction, and maximal magnitude constraints, according to the practice of the French Atomic Energy Commission. Due to increases in strong motion databases in terms of the number and quality of the records in their metadata and the uncertainty characterization, several recently published empirical ground motion prediction models are eligible for seismic hazard assessment in France. We show that propagation of epistemic and aleatory uncertainties is feasible in a deterministic approach, as in a probabilistic way. Assessment of seismic hazard in France in the framework of the safety of nuclear facilities should consider these recent advances. In this sense, the opening of discussions with all of the stakeholders in France to update the reference documents (i.e., RFS 2001-01; ASN/2/01 Guide) appears appropriate in the short term.
NASA Astrophysics Data System (ADS)
Sandri, Laura; Jolly, Gill; Lindsay, Jan; Howe, Tracy; Marzocchi, Warner
2010-05-01
One of the main challenges of modern volcanology is to provide the public with robust and useful information for decision-making in land-use planning and in emergency management. From the scientific point of view, this translates into reliable and quantitative long- and short-term volcanic hazard assessment and eruption forecasting. Because of the complexity in characterizing volcanic events, and of the natural variability of volcanic processes, a probabilistic approach is more suitable than deterministic modeling. In recent years, two probabilistic codes have been developed for quantitative short- and long-term eruption forecasting (BET_EF) and volcanic hazard assessment (BET_VH). Both of them are based on a Bayesian Event Tree, in which volcanic events are seen as a chain of logical steps of increasing detail. At each node of the tree, the probability is computed by taking into account different sources of information, such as geological and volcanological models, past occurrences, expert opinion and numerical modeling of volcanic phenomena. Since it is a Bayesian tool, the output probability is not a single number, but a probability distribution accounting for aleatory and epistemic uncertainty. In this study, we apply BET_VH in order to quantify the long-term volcanic hazard due to base surge invasion in the region around Auckland, New Zealand's most populous city. Here, small basaltic eruptions from monogenetic cones pose a considerable risk to the city in case of phreatomagmatic activity: evidence for base surges are not uncommon in deposits from past events. Currently, we are particularly focussing on the scenario simulated during Exercise Ruaumoko, a national disaster exercise based on the build-up to an eruption in the Auckland Volcanic Field. Based on recent papers by Marzocchi and Woo, we suggest a possible quantitative strategy to link probabilistic scientific output and Boolean decision making. It is based on cost-benefit analysis, in which all costs and benefits of mitigation actions have to be evaluated and compared, weighting them with the probability of occurrence of a specific threatening volcanic event. An action should be taken when the benefit of that action outweighs the costs. It is worth remarking that this strategy does not guarantee to recommend a decision that we would have taken with the benefit of hindsight. However, this strategy will be successful over the long-tem. Furthermore, it has the overwhelming advantage of providing a quantitative decision rule that is set before any emergency, and thus it will be justifiable at any stage of the process. In our present application, we are trying to set up a cost-benefit scheme for the call of an evacuation to protect people in the Auckland Volcanic Field against base surge invasion. Considering the heterogeneity of the urban environment and the size of the region at risk, we propose a cost-benefit scheme that is space dependent, to take into account higher costs when an eruption threatens sensible sites for the city and/or the nation, such as the international airport or the harbour. Finally, we compare our findings with the present Contingency Plan for Auckland.
USGS National Seismic Hazard Maps
Frankel, A.D.; Mueller, C.S.; Barnhard, T.P.; Leyendecker, E.V.; Wesson, R.L.; Harmsen, S.C.; Klein, F.W.; Perkins, D.M.; Dickman, N.C.; Hanson, S.L.; Hopper, M.G.
2000-01-01
The U.S. Geological Survey (USGS) recently completed new probabilistic seismic hazard maps for the United States, including Alaska and Hawaii. These hazard maps form the basis of the probabilistic component of the design maps used in the 1997 edition of the NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, prepared by the Building Seismic Safety Council arid published by FEMA. The hazard maps depict peak horizontal ground acceleration and spectral response at 0.2, 0.3, and 1.0 sec periods, with 10%, 5%, and 2% probabilities of exceedance in 50 years, corresponding to return times of about 500, 1000, and 2500 years, respectively. In this paper we outline the methodology used to construct the hazard maps. There are three basic components to the maps. First, we use spatially smoothed historic seismicity as one portion of the hazard calculation. In this model, we apply the general observation that moderate and large earthquakes tend to occur near areas of previous small or moderate events, with some notable exceptions. Second, we consider large background source zones based on broad geologic criteria to quantify hazard in areas with little or no historic seismicity, but with the potential for generating large events. Third, we include the hazard from specific fault sources. We use about 450 faults in the western United States (WUS) and derive recurrence times from either geologic slip rates or the dating of pre-historic earthquakes from trenching of faults or other paleoseismic methods. Recurrence estimates for large earthquakes in New Madrid and Charleston, South Carolina, were taken from recent paleoliquefaction studies. We used logic trees to incorporate different seismicity models, fault recurrence models, Cascadia great earthquake scenarios, and ground-motion attenuation relations. We present disaggregation plots showing the contribution to hazard at four cities from potential earthquakes with various magnitudes and distances.
NASA Astrophysics Data System (ADS)
Mueller, Christof; Power, William; Fraser, Stuart; Wang, Xiaoming
2013-04-01
Probabilistic Tsunami Hazard Assessment (PTHA) is conceptually closely related to Probabilistic Seismic Hazard Assessment (PSHA). The main difference is that PTHA needs to simulate propagation of tsunami waves through the ocean and cannot rely on attenuation relationships, which makes PTHA computationally more expensive. The wave propagation process can be assumed to be linear as long as water depth is much larger than the wave amplitude of the tsunami. Beyond this limit a non-linear scheme has to be employed with significantly higher algorithmic run times. PTHA considering far-field tsunami sources typically uses unit source simulations, and relies on the linearity of the process by later scaling and combining the wave fields of individual simulations to represent the intended earthquake magnitude and rupture area. Probabilistic assessments are typically made for locations offshore but close to the coast. Inundation is calculated only for significantly contributing events (de-aggregation). For local and regional tsunami it has been demonstrated that earthquake rupture complexity has a significant effect on the tsunami amplitude distribution offshore and also on inundation. In this case PTHA has to take variable slip distributions and non-linearity into account. A unit source approach cannot easily be applied. Rupture complexity is seen as an aleatory uncertainty and can be incorporated directly into the rate calculation. We have developed a framework that manages the large number of simulations required for local PTHA. As an initial case study the effect of rupture complexity on tsunami inundation and the statistics of the distribution of wave heights have been investigated for plate-interface earthquakes in the Hawke's Bay region in New Zealand. Assessing the probability that water levels will be in excess of a certain threshold requires the calculation of empirical cumulative distribution functions (ECDF). We compare our results with traditional estimates for tsunami inundation simulations that do not consider rupture complexity. De-aggregation based on moment magnitude alone might not be appropriate, because the hazard posed by any individual event can be underestimated locally if rupture complexity is ignored.
Wang, Z.
2007-01-01
Although the causes of large intraplate earthquakes are still not fully understood, they pose certain hazard and risk to societies. Estimating hazard and risk in these regions is difficult because of lack of earthquake records. The New Madrid seismic zone is one such region where large and rare intraplate earthquakes (M = 7.0 or greater) pose significant hazard and risk. Many different definitions of hazard and risk have been used, and the resulting estimates differ dramatically. In this paper, seismic hazard is defined as the natural phenomenon generated by earthquakes, such as ground motion, and is quantified by two parameters: a level of hazard and its occurrence frequency or mean recurrence interval; seismic risk is defined as the probability of occurrence of a specific level of seismic hazard over a certain time and is quantified by three parameters: probability, a level of hazard, and exposure time. Probabilistic seismic hazard analysis (PSHA), a commonly used method for estimating seismic hazard and risk, derives a relationship between a ground motion parameter and its return period (hazard curve). The return period is not an independent temporal parameter but a mathematical extrapolation of the recurrence interval of earthquakes and the uncertainty of ground motion. Therefore, it is difficult to understand and use PSHA. A new method is proposed and applied here for estimating seismic hazard in the New Madrid seismic zone. This method provides hazard estimates that are consistent with the state of our knowledge and can be easily applied to other intraplate regions. ?? 2007 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Feng, X.; Shen, S.
2014-12-01
The US coastline, over the past few years, has been overwhelmed by major storms including Hurricane Katrina (2005), Ike (2008), Irene (2011), and Sandy (2012). Supported by a growing and extensive body of evidence, a majority of research agrees hurricane activities have been enhanced due to climate change. However, the precise prediction of hurricane induced inundation remains a challenge. This study proposed a probabilistic inundation map based on a Statistically Modeled Storm Database (SMSD) to assess the probabilistic coastal inundation risk of Southwest Florida for near-future (20 years) scenario considering climate change. This map was processed through a Joint Probability Method with Optimal-Sampling (JPM-OS), developed by Condon and Sheng in 2012, and accompanied by a high resolution storm surge modeling system CH3D-SSMS. The probabilistic inundation map shows a 25.5-31.2% increase in spatially averaged inundation height compared to an inundation map of present-day scenario. To estimate climate change impacts on coastal communities, socioeconomic analyses were conducted using both the SMSD based probabilistic inundation map and the present-day inundation map. Combined with 2010 census data and 2012 parcel data from Florida Geographic Data Library, the differences of economic loss between the near-future and present day scenarios were used to generate an economic exposure map at census block group level to reflect coastal communities' exposure to climate change. The results show that climate change induced inundation increase has significant economic impacts. Moreover, the impacts are not equally distributed among different social groups considering their social vulnerability to hazards. Social vulnerability index at census block group level were obtained from Hazards and Vulnerability Research Institute. The demographic and economic variables in the index represent a community's adaptability to hazards. Local Moran's I was calculated to identify the clusters of highly exposed and vulnerable communities. The economic-exposure cluster map was overlapped with social-vulnerability cluster map to identify communities with low adaptive capability but high exposure. The result provides decision makers an intuitive tool to identify most susceptible communities for adaptation.
Mueller, C.S.
2010-01-01
I analyze the sensitivity of seismic-hazard estimates in the central and eastern United States (CEUS) to maximum magnitude (mmax) by exercising the U.S. Geological Survey (USGS) probabilistic hazard model with several mmax alternatives. Seismicity-based sources control the hazard in most of the CEUS, but data seldom provide an objective basis for estimating mmax. The USGS uses preferred mmax values of moment magnitude 7.0 and 7.5 for the CEUS craton and extended margin, respectively, derived from data in stable continental regions worldwide. Other approaches, for example analysis of local seismicity or judgment about a source's seismogenic potential, often lead to much smaller mmax. Alternative models span the mmax ranges from the 1980s Electric Power Research Institute/Seismicity Owners Group (EPRI/SOG) analysis. Results are presented as haz-ard ratios relative to the USGS national seismic hazard maps. One alternative model specifies mmax equal to moment magnitude 5.0 and 5.5 for the craton and margin, respectively, similar to EPRI/SOG for some sources. For 2% probability of exceedance in 50 years (about 0.0004 annual probability), the strong mmax truncation produces hazard ratios equal to 0.35-0.60 for 0.2-sec spectral acceleration, and 0.15-0.35 for 1.0-sec spectral acceleration. Hazard-controlling earthquakes interact with mmax in complex ways. There is a relatively weak dependence on probability level: hazardratios increase 0-15% for 0.002 annual exceedance probability and decrease 5-25% for 0.00001 annual exceedance probability. Although differences at some sites are tempered when faults are added, mmax clearly accounts for some of the discrepancies that are seen in comparisons between USGS-based and EPRI/SOG-based hazard results.
Seismic hazard assessment of Syria using seismicity, DEM, slope, active tectonic and GIS
NASA Astrophysics Data System (ADS)
Ahmad, Raed; Adris, Ahmad; Singh, Ramesh
2016-07-01
In the present work, we discuss the use of an integrated remote sensing and Geographical Information System (GIS) techniques for evaluation of seismic hazard areas in Syria. The present study is the first time effort to create seismic hazard map with the help of GIS. In the proposed approach, we have used Aster satellite data, digital elevation data (30 m resolution), earthquake data, and active tectonic maps. Many important factors for evaluation of seismic hazard were identified and corresponding thematic data layers (past earthquake epicenters, active faults, digital elevation model, and slope) were generated. A numerical rating scheme has been developed for spatial data analysis using GIS to identify ranking of parameters to be included in the evaluation of seismic hazard. The resulting earthquake potential map delineates the area into different relative susceptibility classes: high, moderate, low and very low. The potential earthquake map was validated by correlating the obtained different classes with the local probability that produced using conventional analysis of observed earthquakes. Using earthquake data of Syria and the peak ground acceleration (PGA) data is introduced to the model to develop final seismic hazard map based on Gutenberg-Richter (a and b values) parameters and using the concepts of local probability and recurrence time. The application of the proposed technique in Syrian region indicates that this method provides good estimate of seismic hazard map compared to those developed from traditional techniques (Deterministic (DSHA) and probabilistic seismic hazard (PSHA). For the first time we have used numerous parameters using remote sensing and GIS in preparation of seismic hazard map which is found to be very realistic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.
2010-09-01
The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.
A first hazard analysis of the Harrat Ash Shamah volcanic field, Syria-Jordan Borderline
NASA Astrophysics Data System (ADS)
Cagnan, Zehra; Akkar, Sinan; Moghimi, Saed
2017-04-01
The northernmost part of the Saudi Cenozoic Volcanic Fields, the 100,000 km2 Harrat Ash Shamah has hosted some of the most recent volcanic eruptions along the Syria-Jordan borderline. With rapid growth of the cities in this region, exposure to any potential renewed volcanism increased considerably. We present here a first-order probabilistic hazard analysis related to new vent formation and subsequent lava flow from Harrat Ash Shamah. The 733 visible eruption vent sites were utilized to develop a probability density function for new eruption sites using Gaussian kernel smoothing. This revealed a NNW striking zone of high spatial hazard surrounding the cities Amman and Irbid in Jordan. The temporal eruption recurrence rate is estimated to be approximately one vent per 3500 years, but the temporal record of the field is so poorly constrained that the lower and upper bounds for the recurrence interval are 17,700 yrs and 70 yrs, respectively. A Poisson temporal model is employed within the scope of this study. In order to treat the uncertainties associated with the spatio-temporal models as well as size of the area affected by the lava flow, the logic tree approach is adopted. For the Syria-Jordan borderline, the spatial variation of volcanic hazard is computed as well as uncertainty associated with these estimates.
Probabilistic structural analysis methods for space propulsion system components
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1986-01-01
The development of a three-dimensional inelastic analysis methodology for the Space Shuttle main engine (SSME) structural components is described. The methodology is composed of: (1) composite load spectra, (2) probabilistic structural analysis methods, (3) the probabilistic finite element theory, and (4) probabilistic structural analysis. The methodology has led to significant technical progress in several important aspects of probabilistic structural analysis. The program and accomplishments to date are summarized.
Potential Impacts of Accelerated Climate Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, L. R.; Vail, L. W.
2016-05-31
This research project is part of the U.S. Nuclear Regulatory Commission’s (NRC’s) Probabilistic Flood Hazard Assessment (PFHA) Research plan in support of developing a risk-informed licensing framework for flood hazards and design standards at proposed new facilities and significance determination tools for evaluating potential deficiencies related to flood protection at operating facilities. The PFHA plan aims to build upon recent advances in deterministic, probabilistic, and statistical modeling of extreme precipitation events to develop regulatory tools and guidance for NRC staff with regard to PFHA for nuclear facilities. The tools and guidance developed under the PFHA plan will support and enhancemore » NRC’s capacity to perform thorough and efficient reviews of license applications and license amendment requests. They will also support risk-informed significance determination of inspection findings, unusual events, and other oversight activities.« less
Mapping flood hazards under uncertainty through probabilistic flood inundation maps
NASA Astrophysics Data System (ADS)
Stephens, T.; Bledsoe, B. P.; Miller, A. J.; Lee, G.
2017-12-01
Changing precipitation, rapid urbanization, and population growth interact to create unprecedented challenges for flood mitigation and management. Standard methods for estimating risk from flood inundation maps generally involve simulations of floodplain hydraulics for an established regulatory discharge of specified frequency. Hydraulic model results are then geospatially mapped and depicted as a discrete boundary of flood extents and a binary representation of the probability of inundation (in or out) that is assumed constant over a project's lifetime. Consequently, existing methods utilized to define flood hazards and assess risk management are hindered by deterministic approaches that assume stationarity in a nonstationary world, failing to account for spatio-temporal variability of climate and land use as they translate to hydraulic models. This presentation outlines novel techniques for portraying flood hazards and the results of multiple flood inundation maps spanning hydroclimatic regions. Flood inundation maps generated through modeling of floodplain hydraulics are probabilistic reflecting uncertainty quantified through Monte-Carlo analyses of model inputs and parameters under current and future scenarios. The likelihood of inundation and range of variability in flood extents resulting from Monte-Carlo simulations are then compared with deterministic evaluations of flood hazards from current regulatory flood hazard maps. By facilitating alternative approaches of portraying flood hazards, the novel techniques described in this presentation can contribute to a shifting paradigm in flood management that acknowledges the inherent uncertainty in model estimates and the nonstationary behavior of land use and climate.
Wang, Yan; Nowack, Bernd
2018-05-01
Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al 2 O 3 , nano-SiO 2 , nano iron oxides, nano-CeO 2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots < nano-CeO 2 < nano iron oxides < nano-Al 2 O 3 < nano-SiO 2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al 2 O 3 > nano-SiO 2 > nano iron oxides > nano-CeO 2 > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC. © 2018 SETAC.
Global assessment of human losses due to earthquakes
Silva, Vitor; Jaiswal, Kishor; Weatherill, Graeme; Crowley, Helen
2014-01-01
Current studies have demonstrated a sharp increase in human losses due to earthquakes. These alarming levels of casualties suggest the need for large-scale investment in seismic risk mitigation, which, in turn, requires an adequate understanding of the extent of the losses, and location of the most affected regions. Recent developments in global and uniform datasets such as instrumental and historical earthquake catalogues, population spatial distribution and country-based vulnerability functions, have opened an unprecedented possibility for a reliable assessment of earthquake consequences at a global scale. In this study, a uniform probabilistic seismic hazard assessment (PSHA) model was employed to derive a set of global seismic hazard curves, using the open-source software OpenQuake for seismic hazard and risk analysis. These results were combined with a collection of empirical fatality vulnerability functions and a population dataset to calculate average annual human losses at the country level. The results from this study highlight the regions/countries in the world with a higher seismic risk, and thus where risk reduction measures should be prioritized.
Seismic hazard analysis for Jayapura city, Papua
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robiana, R., E-mail: robiana-geo104@yahoo.com; Cipta, A.
Jayapura city had destructive earthquake which occurred on June 25, 1976 with the maximum intensity VII MMI scale. Probabilistic methods are used to determine the earthquake hazard by considering all possible earthquakes that can occur in this region. Earthquake source models using three types of source models are subduction model; comes from the New Guinea Trench subduction zone (North Papuan Thrust), fault models; derived from fault Yapen, TareraAiduna, Wamena, Memberamo, Waipago, Jayapura, and Jayawijaya, and 7 background models to accommodate unknown earthquakes. Amplification factor using geomorphological approaches are corrected by the measurement data. This data is related to rock typemore » and depth of soft soil. Site class in Jayapura city can be grouped into classes B, C, D and E, with the amplification between 0.5 – 6. Hazard maps are presented with a 10% probability of earthquake occurrence within a period of 500 years for the dominant periods of 0.0, 0.2, and 1.0 seconds.« less
Probabilistic seismic hazard assessment for the two layer fault system of Antalya (SW Turkey) area
NASA Astrophysics Data System (ADS)
Dipova, Nihat; Cangir, Bülent
2017-09-01
Southwest Turkey, along Mediterranean coast, is prone to large earthquakes resulting from subduction of the African plate under the Eurasian plate and shallow crustal faults. Maximum observed magnitude of subduction earthquakes is Mw = 6.5 whereas that of crustal earthquakes is Mw = 6.6. Crustal earthquakes are sourced from faults which are related with Isparta Angle and Cyprus Arc tectonic structures. The primary goal of this study is to assess seismic hazard for Antalya area (SW Turkey) using a probabilistic approach. A new earthquake catalog for Antalya area, with unified moment magnitude scale, was prepared in the scope of the study. Seismicity of the area has been evaluated by the Gutenberg-Richter recurrence relationship. For hazard computation, CRISIS2007 software was used following the standard Cornell-McGuire methodology. Attenuation model developed by Youngs et al. Seismol Res Lett 68(1):58-73, (1997) was used for deep subduction earthquakes and Chiou and Youngs Earthq Spectra 24(1):173-215, (2008) model was used for shallow crustal earthquakes. A seismic hazard map was developed for peak ground acceleration and for rock ground with a hazard level of a 10% probability of exceedance in 50 years. Results of the study show that peak ground acceleration values on bedrock change between 0.215 and 0.23 g in the center of Antalya.
Revision of Time-Independent Probabilistic Seismic Hazard Maps for Alaska
Wesson, Robert L.; Boyd, Oliver S.; Mueller, Charles S.; Bufe, Charles G.; Frankel, Arthur D.; Petersen, Mark D.
2007-01-01
We present here time-independent probabilistic seismic hazard maps of Alaska and the Aleutians for peak ground acceleration (PGA) and 0.1, 0.2, 0.3, 0.5, 1.0 and 2.0 second spectral acceleration at probability levels of 2 percent in 50 years (annual probability of 0.000404), 5 percent in 50 years (annual probability of 0.001026) and 10 percent in 50 years (annual probability of 0.0021). These maps represent a revision of existing maps based on newly obtained data and assumptions reflecting best current judgments about methodology and approach. These maps have been prepared following the procedures and assumptions made in the preparation of the 2002 National Seismic Hazard Maps for the lower 48 States. A significant improvement relative to the 2002 methodology is the ability to include variable slip rate along a fault where appropriate. These maps incorporate new data, the responses to comments received at workshops held in Fairbanks and Anchorage, Alaska, in May, 2005, and comments received after draft maps were posted on the National Seismic Hazard Mapping Web Site. These maps will be proposed for adoption in future revisions to the International Building Code. In this documentation we describe the maps and in particular explain and justify changes that have been made relative to the 1999 maps. We are also preparing a series of experimental maps of time-dependent hazard that will be described in future documents.
Bonasia, Rosanna; Scaini, Chirara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau
2013-01-01
Popocatépetl is one of Mexico’s most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene–Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl’s reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the “Ochre Pumice” Plinian eruption (4965 14C yr BP). FALL3D model input eruptive parameters are constrained through an inversion method carried out with the semi-analytical HAZMAP model and are varied by sampling them using probability density functions. We analyze the influence of seasonal variations on ash dispersal and estimate the average persistence of critical ash concentrations at relevant locations and airports. This study assesses the impact that a Plinian eruption similar to the Ochre Pumice eruption would have on the main airports of Mexico and adjacent areas. The hazard maps presented here can support long-term planning that would help minimize the impacts of such an eruption on civil aviation.
NASA Astrophysics Data System (ADS)
Bonasia, Rosanna; Scaini, Chiara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau
2014-01-01
Popocatépetl is one of Mexico's most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl's reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the "Ochre Pumice" Plinian eruption (4965 14C yr BP). FALL3D model input eruptive parameters are constrained through an inversion method carried out with the semi-analytical HAZMAP model and are varied by sampling them using probability density functions. We analyze the influence of seasonal variations on ash dispersal and estimate the average persistence of critical ash concentrations at relevant locations and airports. This study assesses the impact that a Plinian eruption similar to the Ochre Pumice eruption would have on the main airports of Mexico and adjacent areas. The hazard maps presented here can support long-term planning that would help minimize the impacts of such an eruption on civil aviation.
NASA Astrophysics Data System (ADS)
Zolfaghari, Mohammad R.
2009-07-01
Recent achievements in computer and information technology have provided the necessary tools to extend the application of probabilistic seismic hazard mapping from its traditional engineering use to many other applications. Examples for such applications are risk mitigation, disaster management, post disaster recovery planning and catastrophe loss estimation and risk management. Due to the lack of proper knowledge with regard to factors controlling seismic hazards, there are always uncertainties associated with all steps involved in developing and using seismic hazard models. While some of these uncertainties can be controlled by more accurate and reliable input data, the majority of the data and assumptions used in seismic hazard studies remain with high uncertainties that contribute to the uncertainty of the final results. In this paper a new methodology for the assessment of seismic hazard is described. The proposed approach provides practical facility for better capture of spatial variations of seismological and tectonic characteristics, which allows better treatment of their uncertainties. In the proposed approach, GIS raster-based data models are used in order to model geographical features in a cell-based system. The cell-based source model proposed in this paper provides a framework for implementing many geographically referenced seismotectonic factors into seismic hazard modelling. Examples for such components are seismic source boundaries, rupture geometry, seismic activity rate, focal depth and the choice of attenuation functions. The proposed methodology provides improvements in several aspects of the standard analytical tools currently being used for assessment and mapping of regional seismic hazard. The proposed methodology makes the best use of the recent advancements in computer technology in both software and hardware. The proposed approach is well structured to be implemented using conventional GIS tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boissonnade, A; Hossain, Q; Kimball, J
Since the mid-l980's, assessment of the wind and tornado risks at the Department of Energy (DOE) high and moderate hazard facilities has been based on the straight wind/tornado hazard curves given in UCRL-53526 (Coats, 1985). These curves were developed using a methodology that utilized a model, developed by McDonald, for severe winds at sub-tornado wind speeds and a separate model, developed by Fujita, for tornado wind speeds. For DOE sites not covered in UCRL-53526, wind and tornado hazard assessments are based on the criteria outlined in DOE-STD-1023-95 (DOE, 1996), utilizing the methodology in UCRL-53526; Subsequent to the publication of UCRL53526,more » in a study sponsored by the Nuclear Regulatory Commission (NRC), the Pacific Northwest Laboratory developed tornado wind hazard curves for the contiguous United States, NUREG/CR-4461 (Ramsdell, 1986). Because of the different modeling assumptions and underlying data used to develop the tornado wind information, the wind speeds at specified exceedance levels, at a given location, based on the methodology in UCRL-53526, are different than those based on the methodology in NUREG/CR-4461. In 1997, Lawrence Livermore National Laboratory (LLNL) was funded by the DOE to review the current methodologies for characterizing tornado wind hazards and to develop a state-of-the-art wind/tornado characterization methodology based on probabilistic hazard assessment techniques and current historical wind data. This report describes the process of developing the methodology and the database of relevant tornado information needed to implement the methodology. It also presents the tornado wind hazard curves obtained from the application of the method to DOE sites throughout the contiguous United States.« less
Toward uniform probabilistic seismic hazard assessments for Southeast Asia
NASA Astrophysics Data System (ADS)
Chan, C. H.; Wang, Y.; Shi, X.; Ornthammarath, T.; Warnitchai, P.; Kosuwan, S.; Thant, M.; Nguyen, P. H.; Nguyen, L. M.; Solidum, R., Jr.; Irsyam, M.; Hidayati, S.; Sieh, K.
2017-12-01
Although most Southeast Asian countries have seismic hazard maps, various methodologies and quality result in appreciable mismatches at national boundaries. We aim to conduct a uniform assessment across the region by through standardized earthquake and fault databases, ground-shaking scenarios, and regional hazard maps. Our earthquake database contains earthquake parameters obtained from global and national seismic networks, harmonized by removal of duplicate events and the use of moment magnitude. Our active-fault database includes fault parameters from previous studies and from the databases implemented for national seismic hazard maps. Another crucial input for seismic hazard assessment is proper evaluation of ground-shaking attenuation. Since few ground-motion prediction equations (GMPEs) have used local observations from this region, we evaluated attenuation by comparison of instrumental observations and felt intensities for recent earthquakes with predicted ground shaking from published GMPEs. We then utilize the best-fitting GMPEs and site conditions into our seismic hazard assessments. Based on the database and proper GMPEs, we have constructed regional probabilistic seismic hazard maps. The assessment shows highest seismic hazard levels near those faults with high slip rates, including the Sagaing Fault in central Myanmar, the Sumatran Fault in Sumatra, the Palu-Koro, Matano and Lawanopo Faults in Sulawesi, and the Philippine Fault across several islands of the Philippines. In addition, our assessment demonstrates the important fact that regions with low earthquake probability may well have a higher aggregate probability of future earthquakes, since they encompass much larger areas than the areas of high probability. The significant irony then is that in areas of low to moderate probability, where building codes are usually to provide less seismic resilience, seismic risk is likely to be greater. Infrastructural damage in East Malaysia during the 2015 Sabah earthquake offers a case in point.
NASA Astrophysics Data System (ADS)
Cramer, C. H.; Dhar, M. S.
2017-12-01
The influence of deep sediment deposits of the Mississippi Embayment (ME) on the propagation of seismic waves is poorly understood and remains a major source of uncertainty for site response analysis. Many researchers have studied the effects of these deposits on seismic hazard of the area using available information at the time. In this study, we have used updated and newly available resources for seismic and liquefaction hazard analyses of the ME. We have developed an improved 3D geological model. Additionally, we used surface geological maps from Cupples and Van Arsdale (2013) to prepare liquefaction hazard maps. Both equivalent linear and nonlinear site response codes were used to develop site amplification distributions for use in generating hazard maps. The site amplification distributions are created using the Monte Carlo approach of Cramer et al. (2004, 2006) on a 0.1-degree grid. The 2014 National Seismic Hazard model and attenuation relations (Petersen et al., 2014) are used to prepare seismic hazard maps. Then liquefaction hazard maps are generated using liquefaction probability curves from Holzer (2011) and Cramer et al. (2015). Equivalent linear response (w/ increased precision, restricted nonlinear behavior with depth) shows similar hazard for the ME compared to nonlinear analysis (w/o pore pressure) results. At short periods nonlinear deamplification dominates the hazard, but at long periods resonance amplification dominates. The liquefaction hazard tends to be high in Holocene and late Pleistocene lowland sediments, even with lowered ground water levels, and low in Pleistocene loess of the uplands. Considering pore pressure effects in nonlinear site response analysis at a test site on the lowlands shows amplification of ground motion at short periods. PGA estimates from ME liquefaction and MMI observations are in the 0.25 to 0.4 g range. Our estimated M7.5 PGA hazard within 10 km of the fault can exceed this. Ground motion observations from liquefaction sites in New Zealand and Japan support PGAs below 0.4 g, except at sites within 20 km exhibiting pore-pressure induced acceleration spikes due to cyclic mobility where PGA ranges from 0.5 to 1.5 g. This study is being extended to more detailed seismic and liquefaction hazard studies in five western Tennessee counties under a five year grant from HUD.
Nadal, Martí; Kumar, Vikas; Schuhmacher, Marta; Domingo, José L
2008-04-01
Recently, we developed a GIS-Integrated Integral Risk Index (IRI) to assess human health risks in areas with presence of environmental pollutants. Contaminants were previously ranked by applying a self-organizing map (SOM) to their characteristics of persistence, bioaccumulation, and toxicity in order to obtain the Hazard Index (HI). In the present study, the original IRI was substantially improved by allowing the entrance of probabilistic data. A neuroprobabilistic HI was developed by combining SOM and Monte Carlo analysis. In general terms, the deterministic and probabilistic HIs followed a similar pattern: polychlorinated biphenyls (PCBs) and light polycyclic aromatic hydrocarbons (PAHs) were the pollutants showing the highest and lowest values of HI, respectively. However, the bioaccumulation value of heavy metals notably increased after considering a probability density function to explain the bioaccumulation factor. To check its applicability, a case study was investigated. The probabilistic integral risk was calculated in the chemical/petrochemical industrial area of Tarragona (Catalonia, Spain), where an environmental program has been carried out since 2002. The risk change between 2002 and 2005 was evaluated on the basis of probabilistic data of the levels of various pollutants in soils. The results indicated that the risk of the chemicals under study did not follow a homogeneous tendency. However, the current levels of pollution do not mean a relevant source of health risks for the local population. Moreover, the neuroprobabilistic HI seems to be an adequate tool to be taken into account in risk assessment processes.
Assessment and Control of Spacecraft Charging Risks on the International Space Station
NASA Technical Reports Server (NTRS)
Koontz, Steve; Valentine, Mark; Keeping, Thomas; Edeen, Marybeth; Spetch, William; Dalton, Penni
2004-01-01
The International Space Station (ISS) operates in the F2 region of Earth's ionosphere, orbiting at altitudes ranging from 350 to 450 km at an inclination of 51.6 degrees. The relatively dense, cool F2 ionospheric plasma suppresses surface charging processes much of the time, and the flux of relativistic electrons is low enough to preclude deep dielectric charging processes. The most important spacecraft charging processes in the ISS orbital environment are: 1) ISS electrical power system interactions with the F2 plasma, 2) magnetic induction processes resulting from flight through the geomagnetic field and, 3) charging processes that result from interaction with auroral electrons at high latitude. Recently, the continuing review and evaluation of putative ISS charging hazards required by the ISS Program Office revealed that ISS charging could produce an electrical shock hazard to the ISS crew during extravehicular activity (EVA). ISS charging risks are being evaluated in an ongoing measurement and analysis campaign. The results of ISS charging measurements are combined with a recently developed model of ISS charging (the Plasma Interaction Model) and an exhaustive analysis of historical ionospheric variability data (ISS Ionospheric Specification) to evaluate ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA combines estimates of the frequency of occurrence and severity of the charging hazards with estimates of the reliability of various hazard controls systems, as required by NASA s safety and risk management programs, to enable design and selection of a hazard control approach that minimizes overall programmatic and personnel risk. The PRA provides a quantitative methodology for incorporating the results of the ISS charging measurement and analysis campaigns into the necessary hazard reports, EVA procedures, and ISS flight rules required for operating ISS in a safe and productive manner.
NASA Astrophysics Data System (ADS)
Weatherill, Graeme; Garcia, Julio; Poggi, Valerio; Chen, Yen-Shin; Pagani, Marco
2016-04-01
The Global Earthquake Model (GEM) has, since its inception in 2009, made many contributions to the practice of seismic hazard modeling in different regions of the globe. The OpenQuake-engine (hereafter referred to simply as OpenQuake), GEM's open-source software for calculation of earthquake hazard and risk, has found application in many countries, spanning a diversity of tectonic environments. GEM itself has produced a database of national and regional seismic hazard models, harmonizing into OpenQuake's own definition the varied seismogenic sources found therein. The characterization of active faults in probabilistic seismic hazard analysis (PSHA) is at the centre of this process, motivating many of the developments in OpenQuake and presenting hazard modellers with the challenge of reconciling seismological, geological and geodetic information for the different regions of the world. Faced with these challenges, and from the experience gained in the process of harmonizing existing models of seismic hazard, four critical issues are addressed. The challenge GEM has faced in the development of software is how to define a representation of an active fault (both in terms of geometry and earthquake behaviour) that is sufficiently flexible to adapt to different tectonic conditions and levels of data completeness. By exploring the different fault typologies supported by OpenQuake we illustrate how seismic hazard calculations can, and do, take into account complexities such as geometrical irregularity of faults in the prediction of ground motion, highlighting some of the potential pitfalls and inconsistencies that can arise. This exploration leads to the second main challenge in active fault modeling, what elements of the fault source model impact most upon the hazard at a site, and when does this matter? Through a series of sensitivity studies we show how different configurations of fault geometry, and the corresponding characterisation of near-fault phenomena (including hanging wall and directivity effects) within modern ground motion prediction equations, can have an influence on the seismic hazard at a site. Yet we also illustrate the conditions under which these effects may be partially tempered when considering the full uncertainty in rupture behaviour within the fault system. The third challenge is the development of efficient means for representing both aleatory and epistemic uncertainties from active fault models in PSHA. In implementing state-of-the-art seismic hazard models into OpenQuake, such as those recently undertaken in California and Japan, new modeling techniques are needed that redefine how we treat interdependence of ruptures within the model (such as mutual exclusivity), and the propagation of uncertainties emerging from geology. Finally, we illustrate how OpenQuake, and GEM's additional toolkits for model preparation, can be applied to address long-standing issues in active fault modeling in PSHA. These include constraining the seismogenic coupling of a fault and the partitioning of seismic moment between the active fault surfaces and the surrounding seismogenic crust. We illustrate some of the possible roles that geodesy can play in the process, but highlight where this may introduce new uncertainties and potential biases into the seismic hazard process, and how these can be addressed.
NASA Astrophysics Data System (ADS)
Armand, P.; Brocheton, F.; Poulet, D.; Vendel, F.; Dubourg, V.; Yalamas, T.
2014-10-01
This paper is an original contribution to uncertainty quantification in atmospheric transport & dispersion (AT&D) at the local scale (1-10 km). It is proposed to account for the imprecise knowledge of the meteorological and release conditions in the case of an accidental hazardous atmospheric emission. The aim is to produce probabilistic risk maps instead of a deterministic toxic load map in order to help the stakeholders making their decisions. Due to the urge attached to such situations, the proposed methodology is able to produce such maps in a limited amount of time. It resorts to a Lagrangian particle dispersion model (LPDM) using wind fields interpolated from a pre-established database that collects the results from a computational fluid dynamics (CFD) model. This enables a decoupling of the CFD simulations from the dispersion analysis, thus a considerable saving of computational time. In order to make the Monte-Carlo-sampling-based estimation of the probability field even faster, it is also proposed to recourse to the use of a vector Gaussian process surrogate model together with high performance computing (HPC) resources. The Gaussian process (GP) surrogate modelling technique is coupled with a probabilistic principal component analysis (PCA) for reducing the number of GP predictors to fit, store and predict. The design of experiments (DOE) from which the surrogate model is built, is run over a cluster of PCs for making the total production time as short as possible. The use of GP predictors is validated by comparing the results produced by this technique with those obtained by crude Monte Carlo sampling.
Zeng, Yuehua
2018-01-01
The Uniform California Earthquake Rupture Forecast v.3 (UCERF3) model (Field et al., 2014) considers epistemic uncertainty in fault‐slip rate via the inclusion of multiple rate models based on geologic and/or geodetic data. However, these slip rates are commonly clustered about their mean value and do not reflect the broader distribution of possible rates and associated probabilities. Here, we consider both a double‐truncated 2σ Gaussian and a boxcar distribution of slip rates and use a Monte Carlo simulation to sample the entire range of the distribution for California fault‐slip rates. We compute the seismic hazard following the methodology and logic‐tree branch weights applied to the 2014 national seismic hazard model (NSHM) for the western U.S. region (Petersen et al., 2014, 2015). By applying a new approach developed in this study to the probabilistic seismic hazard analysis (PSHA) using precomputed rates of exceedance from each fault as a Green’s function, we reduce the computer time by about 10^5‐fold and apply it to the mean PSHA estimates with 1000 Monte Carlo samples of fault‐slip rates to compare with results calculated using only the mean or preferred slip rates. The difference in the mean probabilistic peak ground motion corresponding to a 2% in 50‐yr probability of exceedance is less than 1% on average over all of California for both the Gaussian and boxcar probability distributions for slip‐rate uncertainty but reaches about 18% in areas near faults compared with that calculated using the mean or preferred slip rates. The average uncertainties in 1σ peak ground‐motion level are 5.5% and 7.3% of the mean with the relative maximum uncertainties of 53% and 63% for the Gaussian and boxcar probability density function (PDF), respectively.
Dynamic Statistical Models for Pyroclastic Density Current Generation at Soufrière Hills Volcano
NASA Astrophysics Data System (ADS)
Wolpert, Robert L.; Spiller, Elaine T.; Calder, Eliza S.
2018-05-01
To mitigate volcanic hazards from pyroclastic density currents, volcanologists generate hazard maps that provide long-term forecasts of areas of potential impact. Several recent efforts in the field develop new statistical methods for application of flow models to generate fully probabilistic hazard maps that both account for, and quantify, uncertainty. However a limitation to the use of most statistical hazard models, and a key source of uncertainty within them, is the time-averaged nature of the datasets by which the volcanic activity is statistically characterized. Where the level, or directionality, of volcanic activity frequently changes, e.g. during protracted eruptive episodes, or at volcanoes that are classified as persistently active, it is not appropriate to make short term forecasts based on longer time-averaged metrics of the activity. Thus, here we build, fit and explore dynamic statistical models for the generation of pyroclastic density current from Soufrière Hills Volcano (SHV) on Montserrat including their respective collapse direction and flow volumes based on 1996-2008 flow datasets. The development of this approach allows for short-term behavioral changes to be taken into account in probabilistic volcanic hazard assessments. We show that collapses from the SHV lava dome follow a clear pattern, and that a series of smaller flows in a given direction often culminate in a larger collapse and thereafter directionality of the flows change. Such models enable short term forecasting (weeks to months) that can reflect evolving conditions such as dome and crater morphology changes and non-stationary eruptive behavior such as extrusion rate variations. For example, the probability of inundation of the Belham Valley in the first 180 days of a forecast period is about twice as high for lava domes facing Northwest toward that valley as it is for domes pointing East toward the Tar River Valley. As rich multi-parametric volcano monitoring dataset become increasingly available, eruption forecasting is becoming an increasingly viable and important research field. We demonstrate an approach to utilize such data in order to appropriately 'tune' probabilistic hazard assessments for pyroclastic flows. Our broader objective with development of this method is to help advance time-dependent volcanic hazard assessment, by bridging the
RiskScape: a new tool for comparing risk from natural hazards (Invited)
NASA Astrophysics Data System (ADS)
Stirling, M. W.; King, A.
2010-12-01
The Regional RiskScape is New Zealand’s joint venture between GNS Science & NIWA, and represents a comprehensive and easy-to-use tool for multi-hazard-based risk and impact analysis. It has basic GIS functionality, in that it has Import/Export functions to use with GIS software. Five natural hazards have been implemented in Riskscape to date: Flood (river), earthquake, volcano (ash), tsunami and wind storm. The software converts hazard exposure information into the likely impacts for a region, for example, damage and replacement costs, casualties, economic losses, disruption, and number of people affected. It therefore can be used to assist with risk management, land use planning, building codes and design, risk identification, prioritization of risk-reduction/mitigation, determination of “best use” risk-reduction investment, evacuation and contingency planning, awareness raising, public information, realistic scenarios for exercises, and hazard event response. Three geographically disparate pilot regions have been used to develop and triall Riskscape in New Zealand, and each region is exposed to a different mix of natural hazards. Future (phase II) development of Riskscape will include the following hazards: Landslides (both rainfall and earthquake triggered), storm surges, pyroclastic flows and lahars, and climate change effects. While Riskscape developments have thus far focussed on scenario-based risk, future developments will advance the software into providing probabilistic-based solutions.
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Barsotti, Sara; Sandri, Laura; Tumi Guðmundsson, Magnús
2015-04-01
Icelandic volcanism is largely dominated by basaltic magma. Nevertheless the presence of glaciers over many Icelandic volcanic systems results in frequent phreatomagmatic eruptions and associated tephra production, making explosive eruptions the most common type of volcanic activity. Jökulhlaups are commonly considered as major volcanic hazard in Iceland for their high frequency and potentially very devastating local impact. Tephra fallout is also frequent and can impact larger areas. It is driven by the wind direction that can change with both altitude and season, making impossible to predict a priori where the tephra will be deposited during the next eruptions. Most of the volcanic activity in Iceland occurs in the central eastern part, over 100 km to the east of the main population centre around the capital Reykjavík. Therefore, the hazard from tephra fallout in Reykjavík is expected to be smaller than for communities settled near the main volcanic systems. However, within the framework of quantitative hazard and risk analyses, less frequent and/or less intense phenomena should not be neglected, since their risk evaluation depends on the effects suffered by the selected target. This is particularly true if the target is highly vulnerable, as large urban areas or important infrastructures. In this work we present the preliminary analysis aiming to perform a Probabilistic Volcanic Hazard Assessment (PVHA) for tephra fallout focused on the target area which includes the municipality of Reykjavík and the Keflavík international airport. This approach reverts the more common perspective where the hazard analysis is focused on the source (the volcanic system) and it follows a multi-source approach: indeed, the idea is to quantify, homogeneously, the hazard due to the main hazardous volcanoes that could pose a tephra fallout threat for the municipality of Reykjavík and the Keflavík airport. PVHA for each volcanic system is calculated independently and the results from all the PVHAs can be combined at the end. This will allow to: 1) possibly add the contribution of new volcanic systems, 2) compare and hierarchically rank the tephra fallout risk among both all the considered volcanoes and, possibly, other kinds of risk, and 3) quantitatively assess the overall tephra fallout hazard over the target area. As practical application, we selected a first subset consisting of the five most hazardous volcanic systems for tephra fallout that could affect the selected target area. These are the ones with the highest number of eruptions in the last 1100 years (Katla, Hekla, Grímsvötn) and the ones located closest to the target area (Reykjanes and Snæfellsjökull). PVHA is computed using the PyBetVH tool (an improvement of the Bayesian Event Tree for Volcanic Hazard -BET_VH- model) and tephra dispersal is modelled by means of VOL-CALPUFF numerical code. Katla volcanic system is used as pilot case study because of its eruptive history and behaviour are well known and documented. We found that some considerations and results derived from the study of Katla could be general and applied to the other considered volcanoes and, more in general, to other Icelandic volcanic systems. The work was financially supported by the European Science Foundation (ESF), in the framework of the Research Networking Programme MeMoVolc.
Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners (Second Edition)
NASA Technical Reports Server (NTRS)
Stamatelatos,Michael; Dezfuli, Homayoon; Apostolakis, George; Everline, Chester; Guarro, Sergio; Mathias, Donovan; Mosleh, Ali; Paulos, Todd; Riha, David; Smith, Curtis;
2011-01-01
Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA's objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. NASA intends to use risk assessment in its programs and projects to support optimal management decision making for the improvement of safety and program performance. In addition to using quantitative/probabilistic risk assessment to improve safety and enhance the safety decision process, NASA has incorporated quantitative risk assessment into its system safety assessment process, which until now has relied primarily on a qualitative representation of risk. Also, NASA has recently adopted the Risk-Informed Decision Making (RIDM) process [1-1] as a valuable addition to supplement existing deterministic and experience-based engineering methods and tools. Over the years, NASA has been a leader in most of the technologies it has employed in its programs. One would think that PRA should be no exception. In fact, it would be natural for NASA to be a leader in PRA because, as a technology pioneer, NASA uses risk assessment and management implicitly or explicitly on a daily basis. NASA has probabilistic safety requirements (thresholds and goals) for crew transportation system missions to the International Space Station (ISS) [1-2]. NASA intends to have probabilistic requirements for any new human spaceflight transportation system acquisition. Methods to perform risk and reliability assessment in the early 1960s originated in U.S. aerospace and missile programs. Fault tree analysis (FTA) is an example. It would have been a reasonable extrapolation to expect that NASA would also become the world leader in the application of PRA. That was, however, not to happen. Early in the Apollo program, estimates of the probability for a successful roundtrip human mission to the moon yielded disappointingly low (and suspect) values and NASA became discouraged from further performing quantitative risk analyses until some two decades later when the methods were more refined, rigorous, and repeatable. Instead, NASA decided to rely primarily on the Hazard Analysis (HA) and Failure Modes and Effects Analysis (FMEA) methods for system safety assessment.
NASA Astrophysics Data System (ADS)
Wilson, R. I.; Eble, M. C.
2013-12-01
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is comprised of representatives from coastal states and federal agencies who, under the guidance of NOAA, work together to develop protocols and products to help communities prepare for and mitigate tsunami hazards. Within the NTHMP are several subcommittees responsible for complimentary aspects of tsunami assessment, mitigation, education, warning, and response. The Mapping and Modeling Subcommittee (MMS) is comprised of state and federal scientists who specialize in tsunami source characterization, numerical tsunami modeling, inundation map production, and warning forecasting. Until September 2012, much of the work of the MMS was authorized through the Tsunami Warning and Education Act, an Act that has since expired but the spirit of which is being adhered to in parallel with reauthorization efforts. Over the past several years, the MMS has developed guidance and best practices for states and territories to produce accurate and consistent tsunami inundation maps for community level evacuation planning, and has conducted benchmarking of numerical inundation models. Recent tsunami events have highlighted the need for other types of tsunami hazard analyses and products for improving evacuation planning, vertical evacuation, maritime planning, land-use planning, building construction, and warning forecasts. As the program responsible for producing accurate and consistent tsunami products nationally, the NTHMP-MMS is initiating a multi-year plan to accomplish the following: 1) Create and build on existing demonstration projects that explore new tsunami hazard analysis techniques and products, such as maps identifying areas of strong currents and potential damage within harbors as well as probabilistic tsunami hazard analysis for land-use planning. 2) Develop benchmarks for validating new numerical modeling techniques related to current velocities and landslide sources. 3) Generate guidance and protocols for the production and use of new tsunami hazard analysis products. 4) Identify multistate collaborations and funding partners interested in these new products. Application of these new products will improve the overall safety and resilience of coastal communities exposed to tsunami hazards.
On the Instability of Large Slopes in the Upstream of Wu River, Taiwan
NASA Astrophysics Data System (ADS)
Shou, Keh-Jian; Lin, Jia-Fei
2015-04-01
Considering the existence of various types of landslides (shallow and deep-seated) and the importance of protection targets (the landslide might affect a residential area, cut a road, isolate a village, etc.), this study aims to analyze the landslide susceptibility along the Lixing Industrial Road, i.e., Nantou County Road # 89, in the upstream of Wu River. Focusing on the selected typical large scale landslides, the data and information of the landslides were collected from the field and the government (including the local government, the Soil and Water Conservation Bureau, and the highway agencies). Based on the data of Li-DAR and the information from boreholes, the temporal behavior and the complex mechanism of large scale landslides were analyzed. To assess the spatial hazard of the landslides, probabilistic analysis was applied. The study of the landslide mechanism can help to understand the behavior of landslides in similar geologic conditions, and the results of hazard analysis can be applied for risk prevention and management in the study area.
Is probabilistic bias analysis approximately Bayesian?
MacLehose, Richard F.; Gustafson, Paul
2011-01-01
Case-control studies are particularly susceptible to differential exposure misclassification when exposure status is determined following incident case status. Probabilistic bias analysis methods have been developed as ways to adjust standard effect estimates based on the sensitivity and specificity of exposure misclassification. The iterative sampling method advocated in probabilistic bias analysis bears a distinct resemblance to a Bayesian adjustment; however, it is not identical. Furthermore, without a formal theoretical framework (Bayesian or frequentist), the results of a probabilistic bias analysis remain somewhat difficult to interpret. We describe, both theoretically and empirically, the extent to which probabilistic bias analysis can be viewed as approximately Bayesian. While the differences between probabilistic bias analysis and Bayesian approaches to misclassification can be substantial, these situations often involve unrealistic prior specifications and are relatively easy to detect. Outside of these special cases, probabilistic bias analysis and Bayesian approaches to exposure misclassification in case-control studies appear to perform equally well. PMID:22157311
Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer
2011-01-01
We have produced probabilistic seismic hazard maps of Haiti for peak ground acceleration and response spectral accelerations that include the hazard from the major crustal faults, subduction zones, and background earthquakes. The hazard from the Enriquillo-Plantain Garden, Septentrional, and Matheux-Neiba fault zones was estimated using fault slip rates determined from GPS measurements. The hazard from the subduction zones along the northern and southeastern coasts of Hispaniola was calculated from slip rates derived from GPS data and the overall plate motion. Hazard maps were made for a firm-rock site condition and for a grid of shallow shear-wave velocities estimated from topographic slope. The maps show substantial hazard throughout Haiti, with the highest hazard in Haiti along the Enriquillo-Plantain Garden and Septentrional fault zones. The Matheux-Neiba Fault exhibits high hazard in the maps for 2% probability of exceedance in 50 years, although its slip rate is poorly constrained.
NASA Astrophysics Data System (ADS)
Hirata, K.; Fujiwara, H.; Nakamura, H.; Osada, M.; Morikawa, N.; Kawai, S.; Ohsumi, T.; Aoi, S.; Yamamoto, N.; Matsuyama, H.; Toyama, N.; Kito, T.; Murashima, Y.; Murata, Y.; Inoue, T.; Saito, R.; Takayama, J.; Akiyama, S.; Korenaga, M.; Abe, Y.; Hashimoto, N.
2015-12-01
The Earthquake Research Committee(ERC)/HERP, Government of Japan (2013) revised their long-term evaluation of the forthcoming large earthquake along the Nankai Trough; the next earthquake is estimated M8 to 9 class, and the probability (P30) that the next earthquake will occur within the next 30 years (from Jan. 1, 2013) is 60% to 70%. In this study, we assess tsunami hazards (maximum coastal tsunami heights) in the near future, in terms of a probabilistic approach, from the next earthquake along Nankai Trough, on the basis of ERC(2013)'s report. The probabilistic tsunami hazard assessment that we applied is as follows; (1) Characterized earthquake fault models (CEFMs) are constructed on each of the 15 hypothetical source areas (HSA) that ERC(2013) showed. The characterization rule follows Toyama et al.(2015, JpGU). As results, we obtained total of 1441 CEFMs. (2) We calculate tsunamis due to CEFMs by solving nonlinear, finite-amplitude, long-wave equations with advection and bottom friction terms by finite-difference method. Run-up computation on land is included. (3) A time predictable model predicts the recurrent interval of the present seismic cycle is T=88.2 years (ERC,2013). We fix P30 = 67% by applying the renewal process based on BPT distribution with T and alpha=0.24 as its aperiodicity. (4) We divide the probability P30 into P30(i) for i-th subgroup consisting of the earthquakes occurring in each of 15 HSA by following a probability re-distribution concept (ERC,2014). Then each earthquake (CEFM) in i-th subgroup is assigned a probability P30(i)/N where N is the number of CEFMs in each sub-group. Note that such re-distribution concept of the probability is nothing but tentative because the present seismology cannot give deep knowledge enough to do it. Epistemic logic-tree approach may be required in future. (5) We synthesize a number of tsunami hazard curves at every evaluation points on coasts by integrating the information about 30 years occurrence probabilities P30(i) for all earthquakes (CEFMs) and calculated maximum coastal tsunami heights. In the synthesis, aleatory uncertainties relating to incompleteness of governing equations, CEFM modeling, bathymetry and topography data, etc, are modeled assuming a log-normal probabilistic distribution. Examples of tsunami hazard curves will be presented.
Hazard Assessment in a Big Data World
NASA Astrophysics Data System (ADS)
Kossobokov, Vladimir; Nekrasova, Anastasia
2017-04-01
Open data in a Big Data World provides unprecedented opportunities for enhancing scientific studies and better understanding of the Earth System. At the same time, it opens wide avenues for deceptive associations in inter- and transdisciplinary data misleading to erroneous predictions, which are unacceptable for implementation. Even the advanced tools of data analysis may lead to wrong assessments when inappropriately used to describe the phenomenon under consideration. A (self-) deceptive conclusion could be avoided by verification of candidate models in experiments on empirical data and in no other way. Seismology is not an exception. Moreover, seismic evidences accumulated to-date demonstrate clearly that most of the empirical relations commonly accepted in early history of instrumental seismology can be proved erroneous when subjected to objective hypothesis testing. In many cases of seismic hazard assessment (SHA), either probabilistic or deterministic, term-less or short-term, the claims of a high potential of a model forecasts are based on a flawed application of statistics and, therefore, are hardly suitable for communication to decision makers, which situation creates numerous deception points and resulted controversies. So far, most, if not all, the standard probabilistic methods to assess seismic hazard and associated risks are based on subjective, commonly unrealistic, and even erroneous assumptions about seismic recurrence and none of the proposed short-term precursory signals showed sufficient evidence to be used as a reliable precursor of catastrophic earthquakes. Accurate testing against real observations must be done in advance claiming seismically hazardous areas and/or times. The set of errors of the first and second kind in such a comparison permits evaluating the SHA method effectiveness and determining the optimal choice of parameters in regard to a user-defined cost-benefit function. The information obtained in testing experiments may supply us with realistic estimates of confidence and accuracy of SHA predictions. If proved reliable, but not necessarily perfect, forecast/prediction related recommendations on the level of risks in regard to engineering design, insurance, and emergency management can be used for efficient decision making.
Seismic Risk Assessment for the Kyrgyz Republic
NASA Astrophysics Data System (ADS)
Pittore, Massimiliano; Sousa, Luis; Grant, Damian; Fleming, Kevin; Parolai, Stefano; Fourniadis, Yannis; Free, Matthew; Moldobekov, Bolot; Takeuchi, Ko
2017-04-01
The Kyrgyz Republic is one of the most socially and economically dynamic countries in Central Asia, and one of the most endangered by earthquake hazard in the region. In order to support the government of the Kyrgyz Republic in the development of a country-level Disaster Risk Reduction strategy, a comprehensive seismic risk study has been developed with the support of the World Bank. As part of this project, state-of-the-art hazard, exposure and vulnerability models have been developed and combined into the assessment of direct physical and economic risk on residential, educational and transportation infrastructure. The seismic hazard has been modelled with three different approaches, in order to provide a comprehensive overview of the possible consequences. A probabilistic seismic hazard assessment (PSHA) approach has been used to quantitatively evaluate the distribution of expected ground shaking intensity, as constrained by the compiled earthquake catalogue and associated seismic source model. A set of specific seismic scenarios based on events generated from known fault systems have been also considered, in order to provide insight on the expected consequences in case of strong events in proximity of densely inhabited areas. Furthermore, long-span catalogues of events have been generated stochastically and employed in the probabilistic analysis of expected losses over the territory of the Kyrgyz Republic. Damage and risk estimates have been computed by using an exposure model recently developed for the country, combined with the assignment of suitable fragility/vulnerability models. The risk estimation has been carried out with spatial aggregation at the district (rayon) level. The obtained results confirm the high level of seismic risk throughout the country, also pinpointing the location of several risk hotspots, particularly in the southern districts, in correspondence with the Ferghana valley. The outcome of this project will further support the local decision makers in implementing specific prevention and mitigation measures that are consistent with a broad risk reduction strategy.
Safety design approach for external events in Japan sodium-cooled fast reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamano, H.; Kubo, S.; Tani, A.
2012-07-01
This paper describes a safety design approach for external events in the design study of Japan sodium-cooled fast reactor. An emphasis is introduction of a design extension external condition (DEEC). In addition to seismic design, other external events such as tsunami, strong wind, abnormal temperature, etc. were addressed in this study. From a wide variety of external events consisting of natural hazards and human-induced ones, a screening method was developed in terms of siting, consequence, frequency to select representative events. Design approaches for these events were categorized on the probabilistic, statistical and deterministic basis. External hazard conditions were considered mainlymore » for DEECs. In the probabilistic approach, the DEECs of earthquake, tsunami and strong wind were defined as 1/10 of exceedance probability of the external design bases. The other representative DEECs were also defined based on statistical or deterministic approaches. (authors)« less
Probabilistic Survivability Versus Time Modeling
NASA Technical Reports Server (NTRS)
Joyner, James J., Sr.
2016-01-01
This presentation documents Kennedy Space Center's Independent Assessment work completed on three assessments for the Ground Systems Development and Operations (GSDO) Program to assist the Chief Safety and Mission Assurance Officer during key programmatic reviews and provided the GSDO Program with analyses of how egress time affects the likelihood of astronaut and ground worker survival during an emergency. For each assessment, a team developed probability distributions for hazard scenarios to address statistical uncertainty, resulting in survivability plots over time. The first assessment developed a mathematical model of probabilistic survivability versus time to reach a safe location using an ideal Emergency Egress System at Launch Complex 39B (LC-39B); the second used the first model to evaluate and compare various egress systems under consideration at LC-39B. The third used a modified LC-39B model to determine if a specific hazard decreased survivability more rapidly than other events during flight hardware processing in Kennedy's Vehicle Assembly Building.
Kammerer, A.M.; ten Brink, Uri S.; Titov, V.V.
2017-01-01
In response to the 2004 Indian Ocean Tsunami, the United States Nuclear Regulatory Commission (US NRC) initiated a long-term research program to improve understanding of tsunami hazard levels for nuclear facilities in the United States. For this effort, the US NRC organized a collaborative research program with the United States Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA) with a goal of assessing tsunami hazard on the Atlantic and Gulf Coasts of the United States. Necessarily, the US NRC research program includes both seismic- and landslide-based tsunamigenic sources in both the near and the far fields. The inclusion of tsunamigenic landslides, an important category of sources that impact tsunami hazard levels for the Atlantic and Gulf Coasts is a key difference between this program and most other tsunami hazard assessment programs. The initial phase of this work consisted of collection, interpretation, and analysis of available offshore data, with significant effort focused on characterizing offshore near-field landslides and analyzing their tsunamigenic potential and properties. In the next phase of research, additional field investigations will be conducted in key locations of interest and additional analysis will be undertaken. Simultaneously, the MOST tsunami generation and propagation model used by NOAA will first be enhanced to include landslide-based initiation mechanisms and then will be used to investigate the impact of the tsunamigenic sources identified and characterized by the USGS. The potential for probabilistic tsunami hazard assessment will also be explore in the final phases of the program.
A probabilistic seismic risk assessment procedure for nuclear power plants: (I) Methodology
Huang, Y.-N.; Whittaker, A.S.; Luco, N.
2011-01-01
A new procedure for probabilistic seismic risk assessment of nuclear power plants (NPPs) is proposed. This procedure modifies the current procedures using tools developed recently for performance-based earthquake engineering of buildings. The proposed procedure uses (a) response-based fragility curves to represent the capacity of structural and nonstructural components of NPPs, (b) nonlinear response-history analysis to characterize the demands on those components, and (c) Monte Carlo simulations to determine the damage state of the components. The use of response-rather than ground-motion-based fragility curves enables the curves to be independent of seismic hazard and closely related to component capacity. The use of Monte Carlo procedure enables the correlation in the responses of components to be directly included in the risk assessment. An example of the methodology is presented in a companion paper to demonstrate its use and provide the technical basis for aspects of the methodology. ?? 2011 Published by Elsevier B.V.
Characterizing Wildfire Regimes and Risk in the USA
NASA Astrophysics Data System (ADS)
Malamud, B. D.; Millington, J. D.; Perry, G. L.
2004-12-01
Over the last decade, high profile wildfires have resulted in numerous fatalities and loss of infrastructure. Wildfires also have a significant impact on climate and ecosystems, with recent authors emphasizing the need for regional-level examinations of wildfire-regime dynamics and change, and the factors driving them. With implications for hazard management, climate studies, and ecosystem research, there is therefore significant interest in appropriate analysis of historical wildfire databases. Insightful studies using wildfire database statistics exist, but are often hampered by the low spatial and/or temporal resolution of their datasets. In this paper, we use a high-resolution dataset consisting of 88,855 USFS wildfires over the time period 1970--2000, and consider wildfire occurrence across the conterminous USA as a function of ecoregion (land units classified by climate, vegetation, and topography), ignition source (anthropogenic vs. lightning), and decade (1970--1979, 1980--1989, 1990--1999). We find that for the conterminous USA (a) wildfires exhibit robust frequency-area power-law behavior in 17 different ecoregions, (b) normalized power-law exponents may be used to compare the scaling of wildfire burned areas between regions, (c) power-law exponents change systematically from east to west, (d) wildfires in 75% of the conterminous USA (particularly the east) have higher power-law exponents for anthropogenic vs. lightning ignition sources, and (e) recurrence intervals for wildfires of a given burned area or larger for each ecoregion can be assessed, allowing for the classification of wildfire regimes for probabilistic hazard estimation in the same vein as is now used for earthquakes. By examining wildfire statistics in a spatially and temporally explicit manner, we are able to present resultant wildfire regime summary statistics and conclusions, along with a probabilistic hazard assessment of wildfire risk at the ecoregion division level across the conterminous USA.
Probabilistic Survivability Versus Time Modeling
NASA Technical Reports Server (NTRS)
Joyner, James J., Sr.
2015-01-01
This technical paper documents Kennedy Space Centers Independent Assessment team work completed on three assessments for the Ground Systems Development and Operations (GSDO) Program to assist the Chief Safety and Mission Assurance Officer (CSO) and GSDO management during key programmatic reviews. The assessments provided the GSDO Program with an analysis of how egress time affects the likelihood of astronaut and worker survival during an emergency. For each assessment, the team developed probability distributions for hazard scenarios to address statistical uncertainty, resulting in survivability plots over time. The first assessment developed a mathematical model of probabilistic survivability versus time to reach a safe location using an ideal Emergency Egress System at Launch Complex 39B (LC-39B); the second used the first model to evaluate and compare various egress systems under consideration at LC-39B. The third used a modified LC-39B model to determine if a specific hazard decreased survivability more rapidly than other events during flight hardware processing in Kennedys Vehicle Assembly Building (VAB).Based on the composite survivability versus time graphs from the first two assessments, there was a soft knee in the Figure of Merit graphs at eight minutes (ten minutes after egress ordered). Thus, the graphs illustrated to the decision makers that the final emergency egress design selected should have the capability of transporting the flight crew from the top of LC 39B to a safe location in eight minutes or less. Results for the third assessment were dominated by hazards that were classified as instantaneous in nature (e.g. stacking mishaps) and therefore had no effect on survivability vs time to egress the VAB. VAB emergency scenarios that degraded over time (e.g. fire) produced survivability vs time graphs that were line with aerospace industry norms.
Probabilistic structural analysis methods for select space propulsion system components
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Cruse, T. A.
1989-01-01
The Probabilistic Structural Analysis Methods (PSAM) project developed at the Southwest Research Institute integrates state-of-the-art structural analysis techniques with probability theory for the design and analysis of complex large-scale engineering structures. An advanced efficient software system (NESSUS) capable of performing complex probabilistic analysis has been developed. NESSUS contains a number of software components to perform probabilistic analysis of structures. These components include: an expert system, a probabilistic finite element code, a probabilistic boundary element code and a fast probability integrator. The NESSUS software system is shown. An expert system is included to capture and utilize PSAM knowledge and experience. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator (FPI). The expert system menu structure is summarized. The NESSUS system contains a state-of-the-art nonlinear probabilistic finite element code, NESSUS/FEM, to determine the structural response and sensitivities. A broad range of analysis capabilities and an extensive element library is present.
Ruffle, Betsy; Henderson, James; Murphy-Hagan, Clare; Kirkwood, Gemma; Wolf, Frederick; Edwards, Deborah A
2018-01-01
A probabilistic risk assessment (PRA) was performed to evaluate the range of potential baseline and postremedy health risks to fish consumers at the Portland Harbor Superfund Site (the "Site"). The analysis focused on risks of consuming fish resident to the Site containing polychlorinated biphenyls (PCBs), given that this exposure scenario and contaminant are the primary basis for US Environmental Protection Agency's (USEPA's) selected remedy per the January 2017 Record of Decision (ROD). The PRA used probability distributions fit to the same data sets used in the deterministic baseline human health risk assessment (BHHRA) as well as recent sediment and fish tissue data to evaluate the range and likelihood of current baseline cancer risks and noncancer hazards for anglers. Areas of elevated PCBs in sediment were identified on the basis of a geospatial evaluation of the surface sediment data, and the ranges of risks and hazards associated with pre- and postremedy conditions were calculated. The analysis showed that less active remediation (targeted to areas with the highest concentrations) compared to the remedial alternative selected by USEPA in the ROD can achieve USEPA's interim risk management benchmarks (cancer risk of 10 -4 and noncancer hazard index [HI] of 10) immediately postremediation for the vast majority of subsistence anglers that consume smallmouth bass (SMB) fillet tissue. In addition, the same targeted remedy achieves USEPA's long-term benchmarks (10 -5 and HI of 1) for the majority of recreational anglers. Additional sediment remediation would result in negligible additional risk reduction due to the influence of background. The PRA approach applied here provides a simple but adaptive framework for analysis of risks and remedial options focused on variability in exposures. It can be updated and refined with new data to evaluate and reduce uncertainty, improve understanding of the Site and target populations, and foster informed remedial decision making. Integr Environ Assess Manag 2018;14:63-78. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Towards a Proactive Risk Mitigation Strategy at La Fossa Volcano, Vulcano Island
NASA Astrophysics Data System (ADS)
Biass, S.; Gregg, C. E.; Frischknecht, C.; Falcone, J. L.; Lestuzzi, P.; di Traglia, F.; Rosi, M.; Bonadonna, C.
2014-12-01
A comprehensive risk assessment framework was built to develop proactive risk reduction measures for Vulcano Island, Italy. This framework includes identification of eruption scenarios; probabilistic hazard assessment, quantification of hazard impacts on the built environment, accessibility assessment on the island and risk perception study. Vulcano, a 21 km2 island with two primary communities host to 900 permanent residents and up to 10,000 visitors during summer, shows a strong dependency on the mainland for basic needs (water, energy) and relies on a ~2 month tourism season for its economy. The recent stratigraphy reveals a dominance of vulcanian and subplinian eruptions, producing a range of hazards acting at different time scales. We developed new methods to probabilistically quantify the hazard related to ballistics, lahars and tephra for all eruption styles. We also elaborated field- and GIS- based methods to assess the physical vulnerability of the built environment and created dynamic models of accessibility. Results outline the difference of hazard between short and long-lasting eruptions. A subplinian eruption has a 50% probability of impacting ~30% of the buildings within days after the eruption, but the year-long damage resulting from a long-lasting vulcanian eruption is similar if tephra is not removed from rooftops. Similarly, a subplinian eruption results in a volume of 7x105 m3 of material potentially remobilized into lahars soon after the eruption. Similar volumes are expected for a vulcanian activity over years, increasing the hazard of small lahars. Preferential lahar paths affect critical infrastructures lacking redundancy, such as the road network, communications systems, the island's only gas station, and access to the island's two evacuation ports. Such results from hazard, physical and systemic vulnerability help establish proactive volcanic risk mitigation strategies and may be applicable in other island settings.
A Probabilistic Typhoon Risk Model for Vietnam
NASA Astrophysics Data System (ADS)
Haseemkunju, A.; Smith, D. F.; Brolley, J. M.
2017-12-01
Annually, the coastal Provinces of low-lying Mekong River delta region in the southwest to the Red River Delta region in Northern Vietnam is exposed to severe wind and flood risk from landfalling typhoons. On average, about two to three tropical cyclones with a maximum sustained wind speed of >=34 knots make landfall along the Vietnam coast. Recently, Typhoon Wutip (2013) crossed Central Vietnam as a category 2 typhoon causing significant damage to properties. As tropical cyclone risk is expected to increase with increase in exposure and population growth along the coastal Provinces of Vietnam, insurance/reinsurance, and capital markets need a comprehensive probabilistic model to assess typhoon risk in Vietnam. In 2017, CoreLogic has expanded the geographical coverage of its basin-wide Western North Pacific probabilistic typhoon risk model to estimate the economic and insured losses from landfalling and by-passing tropical cyclones in Vietnam. The updated model is based on 71 years (1945-2015) of typhoon best-track data and 10,000 years of a basin-wide simulated stochastic tracks covering eight countries including Vietnam. The model is capable of estimating damage from wind, storm surge and rainfall flooding using vulnerability models, which relate typhoon hazard to building damageability. The hazard and loss models are validated against past historical typhoons affecting Vietnam. Notable typhoons causing significant damage in Vietnam are Lola (1993), Frankie (1996), Xangsane (2006), and Ketsana (2009). The central and northern coastal provinces of Vietnam are more vulnerable to wind and flood hazard, while typhoon risk in the southern provinces are relatively low.
Central US earthquake catalog for hazard maps of Memphis, Tennessee
Wheeler, R.L.; Mueller, C.S.
2001-01-01
An updated version of the catalog that was used for the current national probabilistic seismic-hazard maps would suffice for production of large-scale hazard maps of the Memphis urban area. Deaggregation maps provide guidance as to the area that a catalog for calculating Memphis hazard should cover. For the future, the Nuttli and local network catalogs could be examined for earthquakes not presently included in the catalog. Additional work on aftershock removal might reduce hazard uncertainty. Graphs of decadal and annual earthquake rates suggest completeness at and above magnitude 3 for the last three or four decades. Any additional work on completeness should consider the effects of rapid, local population changes during the Nation's westward expansion. ?? 2001 Elsevier Science B.V. All rights reserved.
Liu, Xiang; Saat, Mohd Rapik; Barkan, Christopher P L
2014-07-15
Railroads play a key role in the transportation of hazardous materials in North America. Rail transport differs from highway transport in several aspects, an important one being that rail transport involves trains in which many railcars carrying hazardous materials travel together. By contrast to truck accidents, it is possible that a train accident may involve multiple hazardous materials cars derailing and releasing contents with consequently greater potential impact on human health, property and the environment. In this paper, a probabilistic model is developed to estimate the probability distribution of the number of tank cars releasing contents in a train derailment. Principal operational characteristics considered include train length, derailment speed, accident cause, position of the first car derailed, number and placement of tank cars in a train and tank car safety design. The effect of train speed, tank car safety design and tank car positions in a train were evaluated regarding the number of cars that release their contents in a derailment. This research provides insights regarding the circumstances affecting multiple-tank-car release incidents and potential strategies to reduce their occurrences. The model can be incorporated into a larger risk management framework to enable better local, regional and national safety management of hazardous materials transportation by rail. Copyright © 2014 Elsevier B.V. All rights reserved.
Landslide hazard mapping with selected dominant factors: A study case of Penang Island, Malaysia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tay, Lea Tien; Alkhasawneh, Mutasem Sh.; Ngah, Umi Kalthum
Landslide is one of the destructive natural geohazards in Malaysia. In addition to rainfall as triggering factos for landslide in Malaysia, topographical and geological factors play important role in the landslide susceptibility analysis. Conventional topographic factors such as elevation, slope angle, slope aspect, plan curvature and profile curvature have been considered as landslide causative factors in many research works. However, other topographic factors such as diagonal length, surface area, surface roughness and rugosity have not been considered, especially for the research work in landslide hazard analysis in Malaysia. This paper presents landslide hazard mapping using Frequency Ratio (FR) and themore » study area is Penang Island of Malaysia. Frequency ratio approach is a variant of probabilistic method that is based on the observed relationships between the distribution of landslides and each landslide-causative factor. Landslide hazard map of Penang Island is produced by considering twenty-two (22) landslide causative factors. Among these twenty-two (22) factors, fourteen (14) factors are topographic factors. They are elevation, slope gradient, slope aspect, plan curvature, profile curvature, general curvature, tangential curvature, longitudinal curvature, cross section curvature, total curvature, diagonal length, surface area, surface roughness and rugosity. These topographic factors are extracted from the digital elevation model of Penang Island. The other eight (8) non-topographic factors considered are land cover, vegetation cover, distance from road, distance from stream, distance from fault line, geology, soil texture and rainfall precipitation. After considering all twenty-two factors for landslide hazard mapping, the analysis is repeated with fourteen dominant factors which are selected from the twenty-two factors. Landslide hazard map was segregated into four categories of risks, i.e. Highly hazardous area, Hazardous area, Moderately hazardous area and Not hazardous area. The maps was assessed using ROC (Rate of Curve) based on the area under the curve method (AUC). The result indicates an increase of accuracy from 77.76% (with all 22 factors) to 79.00% (with 14 dominant factors) in the prediction of landslide occurrence.« less
Hanson, Stanley L.; Perkins, David M.
1995-01-01
The construction of a probabilistic ground-motion hazard map for a region follows a sequence of analyses beginning with the selection of an earthquake catalog and ending with the mapping of calculated probabilistic ground-motion values (Hanson and others, 1992). An integral part of this process is the creation of sources used for the calculation of earthquake recurrence rates and ground motions. These sources consist of areas and lines that are representative of geologic or tectonic features and faults. After the design of the sources, it is necessary to arrange the coordinate points in a particular order compatible with the input format for the SEISRISK-III program (Bender and Perkins, 1987). Source zones are usually modeled as a point-rupture source. Where applicable, linear rupture sources are modeled with articulated lines, representing known faults, or a field of parallel lines, representing a generalized distribution of hypothetical faults. Based on the distribution of earthquakes throughout the individual source zones (or a collection of several sources), earthquake recurrence rates are computed for each of the sources, and a minimum and maximum magnitude is assigned. Over a period of time from 1978 to 1980 several conferences were held by the USGS to solicit information on regions of the United States for the purpose of creating source zones for computation of probabilistic ground motions (Thenhaus, 1983). As a result of these regional meetings and previous work in the Pacific Northwest, (Perkins and others, 1980), California continental shelf, (Thenhaus and others, 1980), and the Eastern outer continental shelf, (Perkins and others, 1979) a consensus set of source zones was agreed upon and subsequently used to produce a national ground motion hazard map for the United States (Algermissen and others, 1982). In this report and on the accompanying disk we provide a complete list of source areas and line sources as used for the 1982 and later 1990 seismic hazard maps for the conterminous U.S. and Alaska. These source zones are represented in the input form required for the hazard program SEISRISK-III, and they include the attenuation table and several other input parameter lines normally found at the beginning of an input data set for SEISRISK-III.
Risk Informed Design and Analysis Criteria for Nuclear Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salmon, Michael W.
2015-06-17
Target performance can be achieved by defining design basis ground motion from results of a probabilistic seismic hazards assessment, and introducing known levels of conservatism in the design above the DBE. ASCE 4, 43, DOE-STD-1020 defined the DBE at 4x10-4 and introduce only slight levels of conservatism in response. ASCE 4, 43, DOE-STD-1020 assume code capacities shoot for about 98% NEP. There is a need to have a uniform target (98% NEP) for code developers (ACI, AISC, etc.) to aim for. In considering strengthening options, one must also consider cost/risk reduction achieved.
NASA Astrophysics Data System (ADS)
Thompson, M. A.; Lindsay, J. M.; Gaillard, J.
2015-12-01
Globally, geological hazards are communicated using maps. In traditional hazard mapping practice, scientists analyse data about a hazard, and then display the results on a map for stakeholder and public use. However, this one-way, top-down approach to hazard communication is not necessarily effective or reliable. The messages which people take away will be dependent on the way in which they read, interpret, and understand the map, a facet of hazard communication which has been relatively unexplored. Decades of cartographic studies suggest that variables in the visual representation of data on maps, such as colour and symbology, can have a powerful effect on how people understand map content. In practice, however, there is little guidance or consistency in how hazard information is expressed and represented on maps. Accordingly, decisions are often made based on subjective preference, rather than research-backed principles. Here we present the results of a study in which we explore how hazard map design features can influence hazard map interpretation, and we propose a number of considerations for hazard map design. A series of hazard maps were generated, with each one showing the same probabilistic volcanic ashfall dataset, but using different verbal and visual variables (e.g., different colour schemes, data classifications, probabilistic formats). Following a short pilot study, these maps were used in an online survey of 110 stakeholders and scientists in New Zealand. Participants answered 30 open-ended and multiple choice questions about ashfall hazard based on the different maps. Results suggest that hazard map design can have a significant influence on the messages readers take away. For example, diverging colour schemes were associated with concepts of "risk" and decision-making more than sequential schemes, and participants made more precise estimates of hazard with isarithmic data classifications compared to binned or gradational shading. Based on such findings, we make a number of suggestions for communicating hazard using maps. Most importantly, we emphasise that multiple meanings may be taken away from a map, and this may have important implications in a crisis. We propose that engaging with map audiences in a two-way dialogue in times of peace may help prevent miscommunications in the event of a crisis.
NASA Astrophysics Data System (ADS)
Grunthal, Gottfried; Stromeyer, Dietrich; Bosse, Christian; Cotton, Fabrice; Bindi, Dino
2017-04-01
The seismic load parameters for the upcoming National Annex to the Eurocode 8 result from the reassessment of the seismic hazard supported by the German Institution for Civil Engineering . This 2016 version of hazard assessment for Germany as target area was based on a comprehensive involvement of all accessible uncertainties in models and parameters into the approach and the provision of a rational framework for facilitating the uncertainties in a transparent way. The developed seismic hazard model represents significant improvements; i.e. it is based on updated and extended databases, comprehensive ranges of models, robust methods and a selection of a set of ground motion prediction equations of their latest generation. The output specifications were designed according to the user oriented needs as suggested by two review teams supervising the entire project. In particular, seismic load parameters were calculated for rock conditions with a vS30 of 800 ms-1 for three hazard levels (10%, 5% and 2% probability of occurrence or exceedance within 50 years) in form of, e.g., uniform hazard spectra (UHS) based on 19 sprectral periods in the range of 0.01 - 3s, seismic hazard maps for spectral response accelerations for different spectral periods or for macroseismic intensities. The developed hazard model consists of a logic tree with 4040 end branches and essential innovations employed to capture epistemic uncertainties and aleatory variabilities. The computation scheme enables the sound calculation of the mean and any quantile of required seismic load parameters. Mean, median and 84th percentiles of load parameters were provided together with the full calculation model to clearly illustrate the uncertainties of such a probabilistic assessment for a region of a low-to-moderate level of seismicity. The regional variations of these uncertainties (e.g. ratios between the mean and median hazard estimations) were analyzed and discussed.
NASA Astrophysics Data System (ADS)
Strauch, R. L.; Istanbulluoglu, E.
2017-12-01
We develop a landslide hazard modeling approach that integrates a data-driven statistical model and a probabilistic process-based shallow landslide model for mapping probability of landslide initiation, transport, and deposition at regional scales. The empirical model integrates the influence of seven site attribute (SA) classes: elevation, slope, curvature, aspect, land use-land cover, lithology, and topographic wetness index, on over 1,600 observed landslides using a frequency ratio (FR) approach. A susceptibility index is calculated by adding FRs for each SA on a grid-cell basis. Using landslide observations we relate susceptibility index to an empirically-derived probability of landslide impact. This probability is combined with results from a physically-based model to produce an integrated probabilistic map. Slope was key in landslide initiation while deposition was linked to lithology and elevation. Vegetation transition from forest to alpine vegetation and barren land cover with lower root cohesion leads to higher frequency of initiation. Aspect effects are likely linked to differences in root cohesion and moisture controlled by solar insulation and snow. We demonstrate the model in the North Cascades of Washington, USA and identify locations of high and low probability of landslide impacts that can be used by land managers in their design, planning, and maintenance.
NASA Astrophysics Data System (ADS)
Mishra, H.; Karmakar, S.; Kumar, R.
2016-12-01
Risk assessment will not remain simple when it involves multiple uncertain variables. Uncertainties in risk assessment majorly results from (1) the lack of knowledge of input variable (mostly random), and (2) data obtained from expert judgment or subjective interpretation of available information (non-random). An integrated probabilistic-fuzzy health risk approach has been proposed for simultaneous treatment of random and non-random uncertainties associated with input parameters of health risk model. The LandSim 2.5, a landfill simulator, has been used to simulate the Turbhe landfill (Navi Mumbai, India) activities for various time horizons. Further the LandSim simulated six heavy metals concentration in ground water have been used in the health risk model. The water intake, exposure duration, exposure frequency, bioavailability and average time are treated as fuzzy variables, while the heavy metals concentration and body weight are considered as probabilistic variables. Identical alpha-cut and reliability level are considered for fuzzy and probabilistic variables respectively and further, uncertainty in non-carcinogenic human health risk is estimated using ten thousand Monte-Carlo simulations (MCS). This is the first effort in which all the health risk variables have been considered as non-deterministic for the estimation of uncertainty in risk output. The non-exceedance probability of Hazard Index (HI), summation of hazard quotients, of heavy metals of Co, Cu, Mn, Ni, Zn and Fe for male and female population have been quantified and found to be high (HI>1) for all the considered time horizon, which evidently shows possibility of adverse health effects on the population residing near Turbhe landfill.
NASA Astrophysics Data System (ADS)
Jiménez, A.; Posadas, A. M.
2006-09-01
Cellular automata are simple mathematical idealizations of natural systems and they supply useful models for many investigations in natural science. Examples include sandpile models, forest fire models, and slider block models used in seismology. In the present paper, they have been used for establishing temporal relations between the energy releases of the seismic events that occurred in neighboring parts of the crust. The catalogue is divided into time intervals, and the region is divided into cells which are declared active or inactive by means of a threshold energy release criterion. Thus, a pattern of active and inactive cells which evolves over time is determined. A stochastic cellular automaton is constructed starting with these patterns, in order to simulate their spatio-temporal evolution, by supposing a Moore's neighborhood interaction between the cells. The best model is chosen by maximizing the mutual information between the past and the future states. Finally, a Probabilistic Seismic Hazard Map is given for the different energy releases considered. The method has been applied to the Greece catalogue from 1900 to 1999. The Probabilistic Seismic Hazard Maps for energies corresponding to m = 4 and m = 5 are close to the real seismicity after the data in that area, and they correspond to a background seismicity in the whole area. This background seismicity seems to cover the whole area in periods of around 25-50 years. The optimum cell size is in agreement with other studies; for m > 6 the optimum area increases according to the threshold of clear spatial resolution, and the active cells are not so clustered. The results are coherent with other hazard studies in the zone and with the seismicity recorded after the data set, as well as provide an interaction model which points out the large scale nature of the earthquake occurrence.
Active Pharmaceutical Ingredients (APIs) are being detected with increasing frequency in aquatic systems associated with municipal effluent. APIs considered a Contaminant of Emerging Concern (CEC) -Little, if any, regulation considering aquatic systems -Effects on aquatic o...
Testing for ontological errors in probabilistic forecasting models of natural systems
Marzocchi, Warner; Jordan, Thomas H.
2014-01-01
Probabilistic forecasting models describe the aleatory variability of natural systems as well as our epistemic uncertainty about how the systems work. Testing a model against observations exposes ontological errors in the representation of a system and its uncertainties. We clarify several conceptual issues regarding the testing of probabilistic forecasting models for ontological errors: the ambiguity of the aleatory/epistemic dichotomy, the quantification of uncertainties as degrees of belief, the interplay between Bayesian and frequentist methods, and the scientific pathway for capturing predictability. We show that testability of the ontological null hypothesis derives from an experimental concept, external to the model, that identifies collections of data, observed and not yet observed, that are judged to be exchangeable when conditioned on a set of explanatory variables. These conditional exchangeability judgments specify observations with well-defined frequencies. Any model predicting these behaviors can thus be tested for ontological error by frequentist methods; e.g., using P values. In the forecasting problem, prior predictive model checking, rather than posterior predictive checking, is desirable because it provides more severe tests. We illustrate experimental concepts using examples from probabilistic seismic hazard analysis. Severe testing of a model under an appropriate set of experimental concepts is the key to model validation, in which we seek to know whether a model replicates the data-generating process well enough to be sufficiently reliable for some useful purpose, such as long-term seismic forecasting. Pessimistic views of system predictability fail to recognize the power of this methodology in separating predictable behaviors from those that are not. PMID:25097265
Recent developments of the NESSUS probabilistic structural analysis computer program
NASA Technical Reports Server (NTRS)
Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.
1992-01-01
The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.
Active Faults and Earthquake Hazards in the FY 79 Verification Sites - Nevada-Utah Siting Region.
1980-03-26
structures, such as shelters and command/control facilities, away from rup- ture hazards. Again, the probability of rupture, the effect of damage and ...accommodate an MCE, and less critical structures (such as the shelters ) designed for a probabilistically determined event, may have merit for the MX...B., and Eaton, G. P., eds., Cenozoic tectonics and regional geophysics of the western cordillera : Geol. Soc. Am. Mem. 152, p. 1-32. Stewart, J. H
Probabilistic Aeroelastic Analysis of Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, S. K.; Stefko, G. L.
2004-01-01
A probabilistic approach is described for aeroelastic analysis of turbomachinery blade rows. Blade rows with subsonic flow and blade rows with supersonic flow with subsonic leading edge are considered. To demonstrate the probabilistic approach, the flutter frequency, damping and forced response of a blade row representing a compressor geometry is considered. The analysis accounts for uncertainties in structural and aerodynamic design variables. The results are presented in the form of probabilistic density function (PDF) and sensitivity factors. For subsonic flow cascade, comparisons are also made with different probabilistic distributions, probabilistic methods, and Monte-Carlo simulation. The approach shows that the probabilistic approach provides a more realistic and systematic way to assess the effect of uncertainties in design variables on the aeroelastic instabilities and response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-09
This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last knowmore » occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL.« less
Identification of elements at risk for a credible tsunami event for Istanbul
NASA Astrophysics Data System (ADS)
Hancilar, U.
2012-01-01
Physical and social elements at risk are identified for a credible tsunami event for Istanbul. For this purpose, inundation maps resulting from probabilistic tsunami hazard analysis for a 10% probability of exceedance in 50 yr are utilised in combination with the geo-coded inventories of building stock, lifeline systems and demographic data. The built environment on Istanbul's shorelines that is exposed to tsunami inundation comprises residential, commercial, industrial, public (governmental/municipal, schools, hospitals, sports and religious), infrastructure (car parks, garages, fuel stations, electricity transformer buildings) and military buildings, as well as piers and ports, gas tanks and stations and other urban elements (e.g., recreational facilities). Along the Marmara Sea shore, Tuzla shipyards and important port and petrochemical facilities at Ambarlı are expected to be exposed to tsunami hazard. Significant lifeline systems of the city of Istanbul such as natural gas, electricity, telecommunication and sanitary and waste-water transmission, are also under the threat of tsunamis. In terms of social risk, it is estimated that there are about 32 000 inhabitants exposed to tsunami hazard.
Some aspects of risks and natural hazards in the rainfall variability space of Rwanda.
NASA Astrophysics Data System (ADS)
Nduwayezu, Emmanuel; Derron, Marc-Henri; Jaboyedoff, Michel; Penna, Ivanna; Kanevski, Mikhaïl
2014-05-01
Rwanda is facing challenges related to its dispersed population and their density. Risk assessment for natural disasters is becoming important in order to reduce the extent and damages of natural disasters. Rwanda is a country with a diversity of landscapes. Its mountains and marshes have been considered as a water reserve, a forest and grazing reserve by the population (currently around 11 million). Due to geologic and climate conditions, the country is subject of different natural processes, in particular hydrological events (flooding and also landslides), but also earthquakes and volcanism, which the communities have to live with in the western part. In the last years, population expansion for land by clearing of forests and draining marshes, seems to be acting as an aggravating factor. Therefore, a risk assessment for rainfall related hazards requires a deep understanding of the precipitation patterns. Based on satellite image interpretation, historical reports of events, and the analysis of rainfalls variability mapping and probabilistic analyses of events, the aim of this case study is to produce an overview and a preliminary assessment of the hazards scenario in Rwanda.
Probabilistic structural analysis of aerospace components using NESSUS
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Nagpal, Vinod K.; Chamis, Christos C.
1988-01-01
Probabilistic structural analysis of a Space Shuttle main engine turbopump blade is conducted using the computer code NESSUS (numerical evaluation of stochastic structures under stress). The goal of the analysis is to derive probabilistic characteristics of blade response given probabilistic descriptions of uncertainties in blade geometry, material properties, and temperature and pressure distributions. Probability densities are derived for critical blade responses. Risk assessment and failure life analysis is conducted assuming different failure models.
A Model for Generating Multi-hazard Scenarios
NASA Astrophysics Data System (ADS)
Lo Jacomo, A.; Han, D.; Champneys, A.
2017-12-01
Communities in mountain areas are often subject to risk from multiple hazards, such as earthquakes, landslides, and floods. Each hazard has its own different rate of onset, duration, and return period. Multiple hazards tend to complicate the combined risk due to their interactions. Prioritising interventions for minimising risk in this context is challenging. We developed a probabilistic multi-hazard model to help inform decision making in multi-hazard areas. The model is applied to a case study region in the Sichuan province in China, using information from satellite imagery and in-situ data. The model is not intended as a predictive model, but rather as a tool which takes stakeholder input and can be used to explore plausible hazard scenarios over time. By using a Monte Carlo framework and varrying uncertain parameters for each of the hazards, the model can be used to explore the effect of different mitigation interventions aimed at reducing the disaster risk within an uncertain hazard context.
Probabilistic Structural Analysis Program
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.
2010-01-01
NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.
Revealing the underlying drivers of disaster risk: a global analysis
NASA Astrophysics Data System (ADS)
Peduzzi, Pascal
2017-04-01
Disasters events are perfect examples of compound events. Disaster risk lies at the intersection of several independent components such as hazard, exposure and vulnerability. Understanding the weight of each component requires extensive standardisation. Here, I show how footprints of past disastrous events were generated using GIS modelling techniques and used for extracting population and economic exposures based on distribution models. Using past event losses, it was possible to identify and quantify a wide range of socio-politico-economic drivers associated with human vulnerability. The analysis was applied to about nine thousand individual past disastrous events covering earthquakes, floods and tropical cyclones. Using a multiple regression analysis on these individual events it was possible to quantify each risk component and assess how vulnerability is influenced by various hazard intensities. The results show that hazard intensity, exposure, poverty, governance as well as other underlying factors (e.g. remoteness) can explain the magnitude of past disasters. Analysis was also performed to highlight the role of future trends in population and climate change and how this may impacts exposure to tropical cyclones in the future. GIS models combined with statistical multiple regression analysis provided a powerful methodology to identify, quantify and model disaster risk taking into account its various components. The same methodology can be applied to various types of risk at local to global scale. This method was applied and developed for the Global Risk Analysis of the Global Assessment Report on Disaster Risk Reduction (GAR). It was first applied on mortality risk in GAR 2009 and GAR 2011. New models ranging from global assets exposure and global flood hazard models were also recently developed to improve the resolution of the risk analysis and applied through CAPRA software to provide probabilistic economic risk assessments such as Average Annual Losses (AAL) and Probable Maximum Losses (PML) in GAR 2013 and GAR 2015. In parallel similar methodologies were developed to highlitght the role of ecosystems for Climate Change Adaptation (CCA) and Disaster Risk Reduction (DRR). New developments may include slow hazards (such as e.g. soil degradation and droughts), natech hazards (by intersecting with georeferenced critical infrastructures) The various global hazard, exposure and risk models can be visualized and download through the PREVIEW Global Risk Data Platform.
Development of hazard-compatible building fragility and vulnerability models
Karaca, E.; Luco, N.
2008-01-01
We present a methodology for transforming the structural and non-structural fragility functions in HAZUS into a format that is compatible with conventional seismic hazard analysis information. The methodology makes use of the building capacity (or pushover) curves and related building parameters provided in HAZUS. Instead of the capacity spectrum method applied in HAZUS, building response is estimated by inelastic response history analysis of corresponding single-degree-of-freedom systems under a large number of earthquake records. Statistics of the building response are used with the damage state definitions from HAZUS to derive fragility models conditioned on spectral acceleration values. Using the developed fragility models for structural and nonstructural building components, with corresponding damage state loss ratios from HAZUS, we also derive building vulnerability models relating spectral acceleration to repair costs. Whereas in HAZUS the structural and nonstructural damage states are treated as if they are independent, our vulnerability models are derived assuming "complete" nonstructural damage whenever the structural damage state is complete. We show the effects of considering this dependence on the final vulnerability models. The use of spectral acceleration (at selected vibration periods) as the ground motion intensity parameter, coupled with the careful treatment of uncertainty, makes the new fragility and vulnerability models compatible with conventional seismic hazard curves and hence useful for extensions to probabilistic damage and loss assessment.
Frankland, Andrew; Roberts, Gloria; Holmes-Preston, Ellen; Perich, Tania; Levy, Florence; Lenroot, Rhoshel; Hadzi-Pavlovic, Dusan; Breakspear, Michael; Mitchell, Philip B
2017-11-07
Identifying clinical features that predict conversion to bipolar disorder (BD) in those at high familial risk (HR) would assist in identifying a more focused population for early intervention. In total 287 participants aged 12-30 (163 HR with a first-degree relative with BD and 124 controls (CONs)) were followed annually for a median of 5 years. We used the baseline presence of DSM-IV depressive, anxiety, behavioural and substance use disorders, as well as a constellation of specific depressive symptoms (as identified by the Probabilistic Approach to Bipolar Depression) to predict the subsequent development of hypo/manic episodes. At baseline, HR participants were significantly more likely to report ⩾4 Probabilistic features (40.4%) when depressed than CONs (6.7%; p < .05). Nineteen HR subjects later developed either threshold (n = 8; 4.9%) or subthreshold (n = 11; 6.7%) hypo/mania. The presence of ⩾4 Probabilistic features was associated with a seven-fold increase in the risk of 'conversion' to threshold BD (hazard ratio = 6.9, p < .05) above and beyond the fourteen-fold increase in risk related to major depressive episodes (MDEs) per se (hazard ratio = 13.9, p < .05). Individual depressive features predicting conversion were psychomotor retardation and ⩾5 MDEs. Behavioural disorders only predicted conversion to subthreshold BD (hazard ratio = 5.23, p < .01), while anxiety and substance disorders did not predict either threshold or subthreshold hypo/mania. This study suggests that specific depressive characteristics substantially increase the risk of young people at familial risk of BD going on to develop future hypo/manic episodes and may identify a more targeted HR population for the development of early intervention programs.
NASA Astrophysics Data System (ADS)
Selva, Jacopo; Scollo, Simona; Costa, Antonio; Brancato, Alfonso; Prestifilippo, Michele
2015-04-01
Tephra dispersal, even in small amounts, may heavily affect public health and critical infrastructures, such as airports, train and road networks, and electric power supply systems. Probabilistic Volcanic Hazard Assessment (PVHA) represents the most complete scientific contribution for planning rational strategies aimed at managing and mitigating the risk posed by activity during volcanic crises and during eruptions. Short-term PVHA (over time intervals in the order of hours to few days) must account for rapidly changing information coming from the monitoring system, as well as, updated wind forecast, and they must be accomplished in near-real-time. In addition, while during unrest the primary goal is to forecast potential eruptions, during eruptions it is also fundamental to correctly account for the real-time status of the eruption and of tephra dispersal, as well as its potential evolution in the short-term. Here, we present a preliminary application of BET_VHst model (Selva et al. 2014) for Mt. Etna. The model has its roots into present state deterministic procedure, and it deals with the large uncertainty that such procedures typically ignore, like uncertainty on the potential position of the vent and eruptive size, on the possible evolution of volcanological input during ongoing eruptions, as well as, on wind field. Uncertainty is treated by making use of Bayesian inference, alternative modeling procedures for tephra dispersal, and statistical mixing of long- and short-term analyses. References Selva J., Costa A., Sandri L., Macedonio G., Marzocchi W. (2014) Probabilistic short-term volcanic hazard in phases of unrest: a case study for tephra fallout, J. Geophys. Res., 119, doi: 10.1002/2014JB011252
NASA Technical Reports Server (NTRS)
Cruse, T. A.
1987-01-01
The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Burnside, O. H.; Wu, Y.-T.; Polch, E. Z.; Dias, J. B.
1988-01-01
The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.
NASA Technical Reports Server (NTRS)
Townsend, John S.; Peck, Jeff; Ayala, Samuel
2000-01-01
NASA has funded several major programs (the Probabilistic Structural Analysis Methods Project is an example) to develop probabilistic structural analysis methods and tools for engineers to apply in the design and assessment of aerospace hardware. A probabilistic finite element software code, known as Numerical Evaluation of Stochastic Structures Under Stress, is used to determine the reliability of a critical weld of the Space Shuttle solid rocket booster aft skirt. An external bracket modification to the aft skirt provides a comparison basis for examining the details of the probabilistic analysis and its contributions to the design process. Also, analysis findings are compared with measured Space Shuttle flight data.
NASA Astrophysics Data System (ADS)
Wei, Y.; Thomas, S.; Zhou, H.; Arcas, D.; Titov, V. V.
2017-12-01
The increasing potential tsunami hazards pose great challenges for infrastructures along the coastlines of the U.S. Pacific Northwest. Tsunami impact at a coastal site is usually assessed from deterministic scenarios based on 10,000 years of geological records in the Cascadia Subduction Zone (CSZ). Aside from these deterministic methods, the new ASCE 7-16 tsunami provisions provide engineering design criteria of tsunami loads on buildings based on a probabilistic approach. This work develops a site-specific model near Newport, OR using high-resolution grids, and compute tsunami inundation depth and velocities at the study site resulted from credible probabilistic and deterministic earthquake sources in the Cascadia Subduction Zone. Three Cascadia scenarios, two deterministic scenarios, XXL1 and L1, and a 2,500-yr probabilistic scenario compliant with the new ASCE 7-16 standard, are simulated using combination of a depth-averaged shallow water model for offshore propagation and a Boussinesq-type model for onshore inundation. We speculate on the methods and procedure to obtain the 2,500-year probabilistic scenario for Newport that is compliant with the ASCE 7-16 tsunami provisions. We provide details of model results, particularly the inundation depth and flow speed for a new building, which will also be designated as a tsunami vertical evacuation shelter, at Newport, Oregon. We show that the ASCE 7-16 consistent hazards are between those obtained from deterministic L1 and XXL1 scenarios, and the greatest impact on the building may come from later waves. As a further step, we utilize the inundation model results to numerically compute tracks of large vessels in the vicinity of the building site and estimate if these vessels will impact on the building site during the extreme XXL1 and ASCE 7-16 hazard-consistent scenarios. Two-step study is carried out first to study tracks of massless particles and then large vessels with assigned mass considering drag force, inertial force, ship grounding and mooring. The simulation results show that none of the large vessels will impact on the building site in all tested scenarios.
Petersen, M.D.; Dewey, J.; Hartzell, S.; Mueller, C.; Harmsen, S.; Frankel, A.D.; Rukstales, K.
2004-01-01
The ground motion hazard for Sumatra and the Malaysian peninsula is calculated in a probabilistic framework, using procedures developed for the US National Seismic Hazard Maps. We constructed regional earthquake source models and used standard published and modified attenuation equations to calculate peak ground acceleration at 2% and 10% probability of exceedance in 50 years for rock site conditions. We developed or modified earthquake catalogs and declustered these catalogs to include only independent earthquakes. The resulting catalogs were used to define four source zones that characterize earthquakes in four tectonic environments: subduction zone interface earthquakes, subduction zone deep intraslab earthquakes, strike-slip transform earthquakes, and intraplate earthquakes. The recurrence rates and sizes of historical earthquakes on known faults and across zones were also determined from this modified catalog. In addition to the source zones, our seismic source model considers two major faults that are known historically to generate large earthquakes: the Sumatran subduction zone and the Sumatran transform fault. Several published studies were used to describe earthquakes along these faults during historical and pre-historical time, as well as to identify segmentation models of faults. Peak horizontal ground accelerations were calculated using ground motion prediction relations that were developed from seismic data obtained from the crustal interplate environment, crustal intraplate environment, along the subduction zone interface, and from deep intraslab earthquakes. Most of these relations, however, have not been developed for large distances that are needed for calculating the hazard across the Malaysian peninsula, and none were developed for earthquake ground motions generated in an interplate tectonic environment that are propagated into an intraplate tectonic environment. For the interplate and intraplate crustal earthquakes, we have applied ground-motion prediction relations that are consistent with California (interplate) and India (intraplate) strong motion data that we collected for distances beyond 200 km. For the subduction zone equations, we recognized that the published relationships at large distances were not consistent with global earthquake data that we collected and modified the relations to be compatible with the global subduction zone ground motions. In this analysis, we have used alternative source and attenuation models and weighted them to account for our uncertainty in which model is most appropriate for Sumatra or for the Malaysian peninsula. The resulting peak horizontal ground accelerations for 2% probability of exceedance in 50 years range from over 100% g to about 10% g across Sumatra and generally less than 20% g across most of the Malaysian peninsula. The ground motions at 10% probability of exceedance in 50 years are typically about 60% of the ground motions derived for a hazard level at 2% probability of exceedance in 50 years. The largest contributors to hazard are from the Sumatran faults.
Fragility Analysis of Concrete Gravity Dams
NASA Astrophysics Data System (ADS)
Tekie, Paulos B.; Ellingwood, Bruce R.
2002-09-01
Concrete gravity dams are an important part ofthe nation's infrastructure. Many dams have been in service for over 50 years, during which time important advances in the methodologies for evaluation of natural phenomena hazards have caused the design-basis events to be revised upwards, in some cases significantly. Many existing dams fail to meet these revised safety criteria and structural rehabilitation to meet newly revised criteria may be costly and difficult. A probabilistic safety analysis (PSA) provides a rational safety assessment and decision-making tool managing the various sources of uncertainty that may impact dam performance. Fragility analysis, which depicts fl%e uncertainty in the safety margin above specified hazard levels, is a fundamental tool in a PSA. This study presents a methodology for developing fragilities of concrete gravity dams to assess their performance against hydrologic and seismic hazards. Models of varying degree of complexity and sophistication were considered and compared. The methodology is illustrated using the Bluestone Dam on the New River in West Virginia, which was designed in the late 1930's. The hydrologic fragilities showed that the Eluestone Dam is unlikely to become unstable at the revised probable maximum flood (PMF), but it is likely that there will be significant cracking at the heel ofthe dam. On the other hand, the seismic fragility analysis indicated that sliding is likely, if the dam were to be subjected to a maximum credible earthquake (MCE). Moreover, there will likely be tensile cracking at the neck of the dam at this level of seismic excitation. Probabilities of relatively severe limit states appear to be only marginally affected by extremely rare events (e.g. the PMF and MCE). Moreover, the risks posed by the extreme floods and earthquakes were not balanced for the Bluestone Dam, with seismic hazard posing a relatively higher risk.
NASA Astrophysics Data System (ADS)
Wilson, B.; Paradise, T. R.
2016-12-01
The influx of millions of Syrian refugees into Turkey has rapidly changed the population distribution along the Dead Sea Rift and East Anatolian Fault zones. In contrast to other countries in the Middle East where refugees are accommodated in camp environments, the majority of displaced individuals in Turkey are integrated into cities, towns, and villages—placing stress on urban settings and increasing potential exposure to strong shaking. Yet, displaced populations are not traditionally captured in data sources used in earthquake risk analysis or loss estimations. Accordingly, we present a district-level analysis assessing the spatial overlap of earthquake hazards and refugee locations in southeastern Turkey to determine how migration patterns are altering seismic risk in the region. Using migration estimates from the U.S. Humanitarian Information Unit, we create three district-level population scenarios that combine official population statistics, refugee camp populations, and low, median, and high bounds for integrated refugee populations. We perform probabilistic seismic hazard analysis alongside these population scenarios to map spatial variations in seismic risk between 2011 and late 2015. Our results show a significant relative southward increase of seismic risk for this period due to refugee migration. Additionally, we calculate earthquake fatalities for simulated earthquakes using a semi-empirical loss estimation technique to determine degree of under-estimation resulting from forgoing migration data in loss modeling. We find that including refugee populations increased casualties by 11-12% using median population estimates, and upwards of 20% using high population estimates. These results communicate the ongoing importance of placing environmental hazards in their appropriate regional and temporal context which unites physical, political, cultural, and socio-economic landscapes. Keywords: Earthquakes, Hazards, Loss-Estimation, Syrian Crisis, Migration, Refugees
A Robust Approach to Risk Assessment Based on Species Sensitivity Distributions.
Monti, Gianna S; Filzmoser, Peter; Deutsch, Roland C
2018-05-03
The guidelines for setting environmental quality standards are increasingly based on probabilistic risk assessment due to a growing general awareness of the need for probabilistic procedures. One of the commonly used tools in probabilistic risk assessment is the species sensitivity distribution (SSD), which represents the proportion of species affected belonging to a biological assemblage as a function of exposure to a specific toxicant. Our focus is on the inverse use of the SSD curve with the aim of estimating the concentration, HCp, of a toxic compound that is hazardous to p% of the biological community under study. Toward this end, we propose the use of robust statistical methods in order to take into account the presence of outliers or apparent skew in the data, which may occur without any ecological basis. A robust approach exploits the full neighborhood of a parametric model, enabling the analyst to account for the typical real-world deviations from ideal models. We examine two classic HCp estimation approaches and consider robust versions of these estimators. In addition, we also use data transformations in conjunction with robust estimation methods in case of heteroscedasticity. Different scenarios using real data sets as well as simulated data are presented in order to illustrate and compare the proposed approaches. These scenarios illustrate that the use of robust estimation methods enhances HCp estimation. © 2018 Society for Risk Analysis.
A Method to Assess Flux Hazards at CSP Plants to Reduce Avian Mortality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Clifford K.; Wendelin, Timothy; Horstman, Luke
A method to evaluate avian flux hazards at concentrating solar power plants (CSP) has been developed. A heat-transfer model has been coupled to simulations of the irradiance in the airspace above a CSP plant to determine the feather temperature along prescribed bird flight paths. Probabilistic modeling results show that the irradiance and assumed feather properties (thickness, absorptance, heat capacity) have the most significant impact on the simulated feather temperature, which can increase rapidly (hundreds of degrees Celsius in seconds) depending on the parameter values. The avian flux hazard model is being combined with a plant performance model to identify alternativemore » heliostat standby aiming strategies that minimize both avian flux hazards and negative impacts on plant performance.« less
A method to assess flux hazards at CSP plants to reduce avian mortality
NASA Astrophysics Data System (ADS)
Ho, Clifford K.; Wendelin, Timothy; Horstman, Luke; Yellowhair, Julius
2017-06-01
A method to evaluate avian flux hazards at concentrating solar power plants (CSP) has been developed. A heat-transfer model has been coupled to simulations of the irradiance in the airspace above a CSP plant to determine the feather temperature along prescribed bird flight paths. Probabilistic modeling results show that the irradiance and assumed feather properties (thickness, absorptance, heat capacity) have the most significant impact on the simulated feather temperature, which can increase rapidly (hundreds of degrees Celsius in seconds) depending on the parameter values. The avian flux hazard model is being combined with a plant performance model to identify alternative heliostat standby aiming strategies that minimize both avian flux hazards and negative impacts on plant performance.
The Psychology of Hazard Risk Perception
NASA Astrophysics Data System (ADS)
Thompson, K. F.
2012-12-01
A critical step in preparing for natural hazards is understanding the risk: what is the hazard, its likelihood and range of impacts, and what are the vulnerabilities of the community? Any hazard forecast naturally includes a degree of uncertainty, and often these uncertainties are expressed in terms of probabilities. There is often a strong understanding of probability among the physical scientists and emergency managers who create hazard forecasts and issue watches, warnings, and evacuation orders, and often such experts expect similar levels of risk fluency among the general public—indeed, the Working Group on California Earthquake Probabilities (WGCEP) states in the introduction to its earthquake rupture forecast maps that "In daily living, people are used to making decisions based on probabilities—from the flip of a coin (50% probability of heads) to weather forecasts (such as a 30% chance of rain) to the annual chance of being killed by lightning (about 0.0003%)." [1] However, cognitive psychologists have shown in numerous studies [see, e.g., 2-5] that the WGCEP's expectation of probability literacy is inaccurate. People neglect, distort, misjudge, or misuse probability information, even when given strong guidelines about the meaning of numerical or verbally stated probabilities [6]. Even the most ubiquitous of probabilistic information—weather forecasts—are systematically misinterpreted [7]. So while disaster risk analysis and assessment is undoubtedly a critical step in public preparedness and hazard mitigation plans, it is equally important that scientists and practitioners understand the common psychological barriers to accurate probability perception before they attempt to communicate hazard risks to the public. This paper discusses several common, systematic distortions in probability perception and use, including: the influence of personal experience on use of statistical information; temporal discounting and construal level theory; the effect of instrumentality on risk perception; and the impact of "false alarms" or "near misses." We conclude with practical recommendations for ways that risk communications may best be presented to avoid (or, in some cases, to capitalize on) these typical psychological hurdles to the understanding of risk. 1 http://www.scec.org/ucerf/ 2 Kahneman, D. & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, XLVII: 263-291. 3 Hau, R., Pleskac, T. J., Kiefer, J., & Hertwig, R. (2008). The Description/Experience Gap in Risky Choice: The Role of Sample Size and Experienced Probabilities. Journal of Behavioral Decision Making, 21: 493-518. 4 Lichtenstein, S., Slovic, P., Fischhoff, B., Layman, M., & Combs, B. (1978). Judged frequency of lethal events. JEP: Human Learning and Memory, 4, 551-578. 5 Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2006). The role of information sampling in risky choice. In K. Fiedler, & P. Juslin (Eds.), Information sampling and adaptive cognition. (pp. 75-91). New York: Cambridge U Press. 6 Budescu, DV, Weinberg, S & Wallsten, TS (1987). Decisions based on numerically and verbally expressed uncertainties. JEP: Human Perception and Performance, 14(2), 281-294. 7 Gigerenzer, G., Hertwig, R., Van Den Broek, E., Fasolo, B., & Katsikopoulos, K. V. (2005). "A 30% chance of rain tomorrow": How does the public understand probabilistic weather forecasts? Risk Analysis, 25(3), 623-629.
Probability hazard map for future vent opening at Etna volcano (Sicily, Italy).
NASA Astrophysics Data System (ADS)
Brancato, Alfonso; Tusa, Giuseppina; Coltelli, Mauro; Proietti, Cristina
2014-05-01
Mount Etna is a composite stratovolcano located along the Ionian coast of eastern Sicily. The frequent flank eruptions occurrence (at an interval of years, mostly concentrated along the NE, S and W rift zones) lead to a high volcanic hazard that, linked with intense urbanization, poses a high volcanic risk. A long-term volcanic hazard assessment, mainly based on the past behaviour of the Etna volcano, is the basic tool for the evaluation of this risk. Then, a reliable forecast where the next eruption will occur is needed. A computer-assisted analysis and probabilistic evaluations will provide the relative map, thus allowing identification of the areas prone to the highest hazard. Based on these grounds, the use of a code such BET_EF (Bayesian Event Tree_Eruption Forecasting) showed that a suitable analysis can be explored (Selva et al., 2012). Following an analysis we are performing, a total of 6886 point-vents referring to the last 4.0 ka of Etna flank activity, and spread over an area of 744 km2 (divided into N=2976 squared cell, with side of 500 m), allowed us to estimate a pdf by applying a Gaussian kernel. The probability values represent a complete set of outcomes mutually exclusive and the relative sum is normalized to one over the investigated area; then, the basic assumptions of a Dirichlet distribution (the prior distribution set in the BET_EF code (Marzocchi et al., 2004, 2008)) still hold. One fundamental parameter is the the equivalent number of data, that depicts our confidence on the best guess probability. The BET_EF code also works with a likelihood function. This is modelled by a Multinomial distribution, with parameters representing the number of vents in each cell and the total number of past data (i.e. the 6886 point-vents). Given the grid of N cells, the final posterior distribution will be evaluated by multiplying the a priori Dirichlet probability distribution with the past data in each cell through the likelihood. The probability hazard map shows a tendency to concentrate along the NE and S rifts, as well as Valle del Bove, increasing the difference in probability between these areas and the rest of the volcano edifice. It is worthy notice that a higher significance is still evident along the W rift, even if not comparable with the ones of the above mentioned areas. References Marzocchi W., Sandri L., Gasparini P., Newhall C. and Boschi E.; 2004: Quantifying probabilities of volcanic events: The example of volcanic hazard at Mount Vesuvius, J. Geophys. Res., 109, B11201, doi:10.1029/2004JB00315U. Marzocchi W., Sandri, L. and Selva, J.; 2008: BET_EF: a probabilistic tool for long- and short-term eruption forecasting, Bull. Volcanol., 70, 623 - 632, doi: 10.1007/s00445-007-0157-y. Selva J., Orsi G., Di Vito M.A., Marzocchi W. And Sandri L.; 2012: Probability hazard mapfor future vent opening atthe Campi Flegrei caldera, Italy, Bull. Volcanol., 74, 497 - 510, doi: 10.1007/s00445-011-0528-2.
NASA Astrophysics Data System (ADS)
Zosseder, K.; Post, J.; Steinmetz, T.; Wegscheider, S.; Strunz, G.
2009-04-01
Indonesia is located at one of the most active geological subduction zones in the world. Following the most recent seaquakes and their subsequent tsunamis in December 2004 and July 2006 it is expected that also in the near future tsunamis are likely to occur due to increased tectonic tensions leading to abrupt vertical seafloor alterations after a century of relative tectonic silence. To face this devastating threat tsunami hazard maps are very important as base for evacuation planning and mitigation strategies. In terms of a tsunami impact the hazard assessment is mostly covered by numerical modelling because the model results normally offer the most precise database for a hazard analysis as they include spatially distributed data and their influence to the hydraulic dynamics. Generally a model result gives a probability for the intensity distribution of a tsunami at the coast (or run up) and the spatial distribution of the maximum inundation area depending on the location and magnitude of the tsunami source used. The boundary condition of the source used for the model is mostly chosen by a worst case approach. Hence the location and magnitude which are likely to occur and which are assumed to generate the worst impact are used to predict the impact at a specific area. But for a tsunami hazard assessment covering a large coastal area, as it is demanded in the GITEWS (German Indonesian Tsunami Early Warning System) project in which the present work is embedded, this approach is not practicable because a lot of tsunami sources can cause an impact at the coast and must be considered. Thus a multi-scenario tsunami model approach is developed to provide a reliable hazard assessment covering large areas. For the Indonesian Early Warning System many tsunami scenarios were modelled by the Alfred Wegener Institute (AWI) at different probable tsunami sources and with different magnitudes along the Sunda Trench. Every modelled scenario delivers the spatial distribution of the inundation for a specific area, the wave height at coast at this area and the estimated times of arrival (ETAs) of the waves, caused by one tsunamigenic source with a specific magnitude. These parameters from the several scenarios can overlap each other along the coast and must be combined to get one comprehensive hazard assessment for all possible future tsunamis at the region under observation. The simplest way to derive the inundation probability along the coast using the multiscenario approach is to overlay all scenario inundation results and to determine how often a point on land will be significantly inundated from the various scenarios. But this does not take into account that the used tsunamigenic sources for the modeled scenarios have different likelihoods of causing a tsunami. Hence a statistical analysis of historical data and geophysical investigation results based on numerical modelling results is added to the hazard assessment, which clearly improves the significance of the hazard assessment. For this purpose the present method is developed and contains a complex logical combination of the diverse probabilities assessed like probability of occurrence for different earthquake magnitudes at different localities, probability of occurrence for a specific wave height at the coast and the probability for every point on land likely to get hit by a tsunami. The values are combined by a logical tree technique and quantified by statistical analysis of historical data and of the tsunami modelling results as mentioned before. This results in a tsunami inundation probability map covering the South West Coast of Indonesia which nevertheless shows a significant spatial diversity offering a good base for evacuation planning and mitigation strategies. Keywords: tsunami hazard assessment, tsunami modelling, probabilistic analysis, early warning
NASA Astrophysics Data System (ADS)
Jaquet, O.; Lantuéjoul, C.; Goto, J.
2017-10-01
Risk assessments in relation to the siting of potential deep geological repositories for radioactive wastes demand the estimation of long-term tectonic hazards such as volcanicity and rock deformation. Owing to their tectonic situation, such evaluations concern many industrial regions around the world. For sites near volcanically active regions, a prevailing source of uncertainty is related to volcanic hazard. For specific situations, in particular in relation to geological repository siting, the requirements for the assessment of volcanic and tectonic hazards have to be expanded to 1 million years. At such time scales, tectonic changes are likely to influence volcanic hazard and therefore a particular stochastic model needs to be developed for the estimation of volcanic hazard. The concepts and theoretical basis of the proposed model are given and a methodological illustration is provided using data from the Tohoku region of Japan.
Seismic hazard in the Intermountain West
Haller, Kathleen; Moschetti, Morgan P.; Mueller, Charles; Rezaeian, Sanaz; Petersen, Mark D.; Zeng, Yuehua
2015-01-01
The 2014 national seismic-hazard model for the conterminous United States incorporates new scientific results and important model adjustments. The current model includes updates to the historical catalog, which is spatially smoothed using both fixed-length and adaptive-length smoothing kernels. Fault-source characterization improved by adding faults, revising rates of activity, and incorporating new results from combined inversions of geologic and geodetic data. The update also includes a new suite of published ground motion models. Changes in probabilistic ground motion are generally less than 10% in most of the Intermountain West compared to the prior assessment, and ground-motion hazard in four Intermountain West cities illustrates the range and magnitude of change in the region. Seismic hazard at reference sites in Boise and Reno increased as much as 10%, whereas hazard in Salt Lake City decreased 5–6%. The largest change was in Las Vegas, where hazard increased 32–35%.
NASA Astrophysics Data System (ADS)
Caccavale, Mauro; Matano, Fabio; Sacchi, Marco; Mazzola, Salvatore; Somma, Renato; Troise, Claudia; De Natale, Giuseppe
2014-05-01
The Ischia island is a large, complex, partly submerged, active volcanic field located about 20 km east to the Campi Flegrei, a major active volcano-tectonic area near Naples. The island is morphologically characterized in its central part by the resurgent block of Mt. Epomeo, controlled by NW-SE and NE-SW trending fault systems, by mountain stream basin with high relief energy and by a heterogeneous coastline with alternation of beach and tuff/lava cliffs in a continuous reshape due to the weather and sea erosion. The volcano-tectonic process is a main factor for slope stability, as it produces seismic activity and generated steep slopes in volcanic deposits (lava, tuff, pumice and ash layers) characterized by variable strength. In the Campi Flegrei and surrounding areas the possible occurrence of a moderate/large seismic event represents a serious threat for the inhabitants, for the infrastructures as well as for the environment. The most relevant seismic sources for Ischia are represented by the Campi Flegrei caldera and a 5 km long fault located below the island north coast. However those sources are difficult to constrain. The first one due to the on-shore and off-shore extension not yet completely defined. The second characterized only by few large historical events is difficult to parameterize in the framework of probabilistic hazard approach. The high population density, the presence of many infrastructures and the more relevant archaeological sites associated with the natural and artistic values, makes this area a strategic natural laboratory to develop new methodologies. Moreover Ischia represents the only sector, in the Campi Flegrei area, with documented historical landslides originated by earthquake, allowing for the possibility of testing the adequacy and stability of the method. In the framework of the Italian project MON.I.C.A (infrastructural coastlines monitoring) an innovative and dedicated probabilistic methodology has been applied to identify the areas with higher susceptibility of landslide occurrence due to the seismic effect. The (PSLHA) combines the probability of exceedance maps for different GM parameters with the geological and geomorphological information, in terms of critical acceleration and dynamic stability factor. Generally the maps are evaluated for Peak Ground Acceleration, Velocity or Intensity, are well related with anthropic infrastructures (e.g. streets, building, etc.). Each ground motion parameter represents a different aspect in the hazard and has a different correlation with the generation of possible damages. Many works pointed out that other GM like Arias and Housner intensity and the absolute displacement could represent a better choice to analyse for example the cliffs stability. The selection of the GM parameter is of crucial importance to obtain the most useful hazard maps. However in the last decades different Ground Motion Prediction Equations for a new set of GM parameters have been published. Based on this information a series of landslide hazard maps can be produced. The new maps will lead to the identification of areas with highest probability of landslide induced by an earthquake. In a strategic site like Ischia this new methodologies will represent an innovative and advanced tool for the landslide hazard mitigation.
NASA Astrophysics Data System (ADS)
Chiessi, Vittorio; D'Orefice, Maurizio; Scarascia Mugnozza, Gabriele; Vitale, Valerio; Cannese, Christian
2010-07-01
This paper describes the results of a rockfall hazard assessment for the village of San Quirico (Abruzzo region, Italy) based on an engineering-geological model. After the collection of geological, geomechanical, and geomorphological data, the rockfall hazard assessment was performed based on two separate approaches: i) simulation of detachment of rock blocks and their downhill movement using a GIS; and ii) application of geostatistical techniques to the analysis of georeferenced observations of previously fallen blocks, in order to assess the probability of arrival of blocks due to potential future collapses. The results show that the trajectographic analysis is significantly influenced by the input parameters, with particular reference to the coefficients of restitution values. In order to solve this problem, the model was calibrated based on repeated field observations. The geostatistical approach is useful because it gives the best estimation of point-source phenomena such as rockfalls; however, the sensitivity of results to basic assumptions, e.g. assessment of variograms and choice of a threshold value, may be problematic. Consequently, interpolations derived from different variograms have been used and compared among them; hence, those showing the lowest errors were adopted. The data sets which were statistically analysed are relevant to both kinetic energy and surveyed rock blocks in the accumulation area. The obtained maps highlight areas susceptible to rock block arrivals, and show that the area accommodating the new settlement of S. Quirico Village has the highest level of hazard according to both probabilistic and deterministic methods.
Lee, Saro; Park, Inhye
2013-09-30
Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. Copyright © 2013. Published by Elsevier Ltd.
Lin, Ting; Harmsen, Stephen C.; Baker, Jack W.; Luco, Nicolas
2013-01-01
The conditional spectrum (CS) is a target spectrum (with conditional mean and conditional standard deviation) that links seismic hazard information with ground-motion selection for nonlinear dynamic analysis. Probabilistic seismic hazard analysis (PSHA) estimates the ground-motion hazard by incorporating the aleatory uncertainties in all earthquake scenarios and resulting ground motions, as well as the epistemic uncertainties in ground-motion prediction models (GMPMs) and seismic source models. Typical CS calculations to date are produced for a single earthquake scenario using a single GMPM, but more precise use requires consideration of at least multiple causal earthquakes and multiple GMPMs that are often considered in a PSHA computation. This paper presents the mathematics underlying these more precise CS calculations. Despite requiring more effort to compute than approximate calculations using a single causal earthquake and GMPM, the proposed approach produces an exact output that has a theoretical basis. To demonstrate the results of this approach and compare the exact and approximate calculations, several example calculations are performed for real sites in the western United States. The results also provide some insights regarding the circumstances under which approximate results are likely to closely match more exact results. To facilitate these more precise calculations for real applications, the exact CS calculations can now be performed for real sites in the United States using new deaggregation features in the U.S. Geological Survey hazard mapping tools. Details regarding this implementation are discussed in this paper.
NASA Astrophysics Data System (ADS)
Rohmer, Jeremy; Verdel, Thierry
2017-04-01
Uncertainty analysis is an unavoidable task of stability analysis of any geotechnical systems. Such analysis usually relies on the safety factor SF (if SF is below some specified threshold), the failure is possible). The objective of the stability analysis is then to estimate the failure probability P for SF to be below the specified threshold. When dealing with uncertainties, two facets should be considered as outlined by several authors in the domain of geotechnics, namely "aleatoric uncertainty" (also named "randomness" or "intrinsic variability") and "epistemic uncertainty" (i.e. when facing "vague, incomplete or imprecise information" such as limited databases and observations or "imperfect" modelling). The benefits of separating both facets of uncertainty can be seen from a risk management perspective because: - Aleatoric uncertainty, being a property of the system under study, cannot be reduced. However, practical actions can be taken to circumvent the potentially dangerous effects of such variability; - Epistemic uncertainty, being due to the incomplete/imprecise nature of available information, can be reduced by e.g., increasing the number of tests (lab or in site survey), improving the measurement methods or evaluating calculation procedure with model tests, confronting more information sources (expert opinions, data from literature, etc.). Uncertainty treatment in stability analysis usually restricts to the probabilistic framework to represent both facets of uncertainty. Yet, in the domain of geo-hazard assessments (like landslides, mine pillar collapse, rockfalls, etc.), the validity of this approach can be debatable. In the present communication, we propose to review the major criticisms available in the literature against the systematic use of probability in situations of high degree of uncertainty. On this basis, the feasibility of using a more flexible uncertainty representation tool is then investigated, namely Possibility distributions (e.g., Baudrit et al., 2007) for geo-hazard assessments. A graphical tool is then developed to explore: 1. the contribution of both types of uncertainty, aleatoric and epistemic; 2. the regions of the imprecise or random parameters which contribute the most to the imprecision on the failure probability P. The method is applied on two case studies (a mine pillar and a steep slope stability analysis, Rohmer and Verdel, 2014) to investigate the necessity for extra data acquisition on parameters whose imprecision can hardly be modelled by probabilities due to the scarcity of the available information (respectively the extraction ratio and the cliff geometry). References Baudrit, C., Couso, I., & Dubois, D. (2007). Joint propagation of probability and possibility in risk analysis: Towards a formal framework. International Journal of Approximate Reasoning, 45(1), 82-105. Rohmer, J., & Verdel, T. (2014). Joint exploration of regional importance of possibilistic and probabilistic uncertainty in stability analysis. Computers and Geotechnics, 61, 308-315.
NASA Technical Reports Server (NTRS)
Thacker, B. H.; Mcclung, R. C.; Millwater, H. R.
1990-01-01
An eigenvalue analysis of a typical space propulsion system turbopump blade is presented using an approximate probabilistic analysis methodology. The methodology was developed originally to investigate the feasibility of computing probabilistic structural response using closed-form approximate models. This paper extends the methodology to structures for which simple closed-form solutions do not exist. The finite element method will be used for this demonstration, but the concepts apply to any numerical method. The results agree with detailed analysis results and indicate the usefulness of using a probabilistic approximate analysis in determining efficient solution strategies.
Kammerer, A.M.; ten Brink, Uri S.; Twitchell, David C.; Geist, Eric L.; Chaytor, Jason D.; Locat, J.; Lee, H.J.; Buczkowski, Brian J.; Sansoucy, M.
2008-01-01
In response to the 2004 Indian Ocean Tsunami, the United States Nuclear Regulatory Commission (US NRC) initiated a long-term research program to improve understanding of tsunami hazard levels for nuclear facilities in the United States. For this effort, the US NRC organized a collaborative research program with the United States Geological Survey (USGS) and other key researchers for the purpose of assessing tsunami hazard on the Atlantic and Gulf Coasts of the United States. The initial phase of this work consisted principally of collection, interpretation, and analysis of available offshore data and information. Necessarily, the US NRC research program includes both seismic- and landslide-based tsunamigenic sources in both the near and the far fields. The inclusion of tsunamigenic landslides, an important category of sources that impact tsunami hazard levels for the Atlantic and Gulf Coasts over the long time periods of interest to the US NRC is a key difference between this program and most other tsunami hazard assessment programs. Although only a few years old, this program is already producing results that both support current US NRC activities and look toward the long-term goal of probabilistic tsunami hazard assessment. This paper provides a summary of results from several areas of current research. An overview of the broader US NRC research program is provided in a companion paper in this conference.
A look-ahead probabilistic contingency analysis framework incorporating smart sampling techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Etingov, Pavel V.; Ren, Huiying
2016-07-18
This paper describes a framework of incorporating smart sampling techniques in a probabilistic look-ahead contingency analysis application. The predictive probabilistic contingency analysis helps to reflect the impact of uncertainties caused by variable generation and load on potential violations of transmission limits.
Probabilistic Multi-Hazard Assessment of Dry Cask Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bencturk, Bora; Padgett, Jamie; Uddin, Rizwan
systems the concrete shall not only provide shielding but insures stability of the upright canister, facilitates anchoring, allows ventilation, and provides physical protection against theft, severe weather and natural (seismic) as well as man-made events (blast incidences). Given the need to remain functional for 40 years or even longer in case of interim storage, the concrete outerpack and the internal canister components need to be evaluated with regard to their long-term ability to perform their intended design functions. Just as evidenced by deteriorating concrete bridges, there are reported visible degradation mechanisms of dry storage systems especially when high corrosive environmentsmore » are considered in maritime locations. The degradation of reinforced concrete is caused by multiple physical and chemical mechanisms, which may be summarized under the heading of environmental aging. The underlying hygro-thermal transport processes are accelerated by irradiation effects, hence creep and shrinkage need to include the effect of chloride penetration, alkali aggregate reaction as well as corrosion of the reinforcing steel. In light of the above, the two main objectives of this project are to (1) develop a probabilistic multi-hazard assessment framework, and (2) through experimental and numerical research perform a comprehensive assessment under combined earthquake loads and aging induced deterioration, which will also provide data for the development and validation of the probabilistic framework.« less
Probabilistic structural analysis methods of hot engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hopkins, D. A.
1989-01-01
Development of probabilistic structural analysis methods for hot engine structures is a major activity at Lewis Research Center. Recent activities have focused on extending the methods to include the combined uncertainties in several factors on structural response. This paper briefly describes recent progress on composite load spectra models, probabilistic finite element structural analysis, and probabilistic strength degradation modeling. Progress is described in terms of fundamental concepts, computer code development, and representative numerical results.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... Staff Guidance on Implementation of a Seismic Margin Analysis for New Reactors Based on Probabilistic... Seismic Margin Analysis for New Reactors Based on Probabilistic Risk Assessment,'' (Agencywide Documents.../COL-ISG-020 ``Implementation of a Seismic Margin Analysis for New Reactors Based on Probabilistic Risk...
Integrated probabilistic risk assessment for nanoparticles: the case of nanosilica in food.
Jacobs, Rianne; van der Voet, Hilko; Ter Braak, Cajo J F
Insight into risks of nanotechnology and the use of nanoparticles is an essential condition for the social acceptance and safe use of nanotechnology. One of the problems with which the risk assessment of nanoparticles is faced is the lack of data, resulting in uncertainty in the risk assessment. We attempt to quantify some of this uncertainty by expanding a previous deterministic study on nanosilica (5-200 nm) in food into a fully integrated probabilistic risk assessment. We use the integrated probabilistic risk assessment method in which statistical distributions and bootstrap methods are used to quantify uncertainty and variability in the risk assessment. Due to the large amount of uncertainty present, this probabilistic method, which separates variability from uncertainty, contributed to a better understandable risk assessment. We found that quantifying the uncertainties did not increase the perceived risk relative to the outcome of the deterministic study. We pinpointed particular aspects of the hazard characterization that contributed most to the total uncertainty in the risk assessment, suggesting that further research would benefit most from obtaining more reliable data on those aspects.
Re-evaluation and updating of the seismic hazard of Lebanon
NASA Astrophysics Data System (ADS)
Huijer, Carla; Harajli, Mohamed; Sadek, Salah
2016-01-01
This paper presents the results of a study undertaken to evaluate the implications of the newly mapped offshore Mount Lebanon Thrust (MLT) fault system on the seismic hazard of Lebanon and the current seismic zoning and design parameters used by the local engineering community. This re-evaluation is critical, given that the MLT is located at close proximity to the major cities and economic centers of the country. The updated seismic hazard was assessed using probabilistic methods of analysis. The potential sources of seismic activities that affect Lebanon were integrated along with any/all newly established characteristics within an updated database which includes the newly mapped fault system. The earthquake recurrence relationships of these sources were developed from instrumental seismology data, historical records, and earlier studies undertaken to evaluate the seismic hazard of neighboring countries. Maps of peak ground acceleration contours, based on 10 % probability of exceedance in 50 years (as per Uniform Building Code (UBC) 1997), as well as 0.2 and 1 s peak spectral acceleration contours, based on 2 % probability of exceedance in 50 years (as per International Building Code (IBC) 2012), were also developed. Finally, spectral charts for the main coastal cities of Beirut, Tripoli, Jounieh, Byblos, Saida, and Tyre are provided for use by designers.
NASA Technical Reports Server (NTRS)
Townsend, J.; Meyers, C.; Ortega, R.; Peck, J.; Rheinfurth, M.; Weinstock, B.
1993-01-01
Probabilistic structural analyses and design methods are steadily gaining acceptance within the aerospace industry. The safety factor approach to design has long been the industry standard, and it is believed by many to be overly conservative and thus, costly. A probabilistic approach to design may offer substantial cost savings. This report summarizes several probabilistic approaches: the probabilistic failure analysis (PFA) methodology developed by Jet Propulsion Laboratory, fast probability integration (FPI) methods, the NESSUS finite element code, and response surface methods. Example problems are provided to help identify the advantages and disadvantages of each method.
Seismic hazard assessment of the cultural heritage sites: A case study in Cappadocia (Turkey)
NASA Astrophysics Data System (ADS)
Seyrek, Evren; Orhan, Ahmet; Dinçer, İsmail
2014-05-01
Turkey is one of the most seismically active regions in the world. Major earthquakes with the potential of threatening life and property occur frequently here. In the last decade, over 50,000 residents lost their lives, commonly as a result of building failures in seismic events. The Cappadocia region is one of the most important touristic sites in Turkey. At the same time, the region has been included to the Word Heritage List by UNESCO at 1985 due to its natural, historical and cultural values. The region is undesirably affected by several environmental conditions, which are subjected in many previous studies. But, there are limited studies about the seismic evaluation of the region. Some of the important historical and cultural heritage sites are: Goreme Open Air Museum, Uchisar Castle, Ortahisar Castle, Derinkuyu Underground City and Ihlara Valley. According to seismic hazard zonation map published by the Ministry of Reconstruction and Settlement these heritage sites fall in Zone III, Zone IV and Zone V. This map show peak ground acceleration or 10 percent probability of exceedance in 50 years for bedrock. In this connection, seismic hazard assessment of these heritage sites has to be evaluated. In this study, seismic hazard calculations are performed both deterministic and probabilistic approaches with local site conditions. A catalog of historical and instrumental earthquakes is prepared and used in this study. The seismic sources have been identified for seismic hazard assessment based on geological, seismological and geophysical information. Peak Ground Acceleration (PGA) at bed rock level is calculated for different seismic sources using available attenuation relationship formula applicable to Turkey. The result of the present study reveals that the seismic hazard at these sites is closely matching with the Seismic Zonation map published by the Ministry of Reconstruction and Settlement. Keywords: Seismic Hazard Assessment, Probabilistic Approach, Deterministic Approach, Historical Heritage, Cappadocia.
Evansville Area Earthquake Hazards Mapping Project (EAEHMP) - Progress Report, 2008
Boyd, Oliver S.; Haase, Jennifer L.; Moore, David W.
2009-01-01
Maps of surficial geology, deterministic and probabilistic seismic hazard, and liquefaction potential index have been prepared by various members of the Evansville Area Earthquake Hazard Mapping Project for seven quadrangles in the Evansville, Indiana, and Henderson, Kentucky, metropolitan areas. The surficial geologic maps feature 23 types of surficial geologic deposits, artificial fill, and undifferentiated bedrock outcrop and include alluvial and lake deposits of the Ohio River valley. Probabilistic and deterministic seismic hazard and liquefaction hazard mapping is made possible by drawing on a wealth of information including surficial geologic maps, water well logs, and in-situ testing profiles using the cone penetration test, standard penetration test, down-hole shear wave velocity tests, and seismic refraction tests. These data were compiled and collected with contributions from the Indiana Geological Survey, Kentucky Geological Survey, Illinois State Geological Survey, United States Geological Survey, and Purdue University. Hazard map products are in progress and are expected to be completed by the end of 2009, with a public roll out in early 2010. Preliminary results suggest that there is a 2 percent probability that peak ground accelerations of about 0.3 g will be exceeded in much of the study area within 50 years, which is similar to the 2002 USGS National Seismic Hazard Maps for a firm rock site value. Accelerations as high as 0.4-0.5 g may be exceeded along the edge of the Ohio River basin. Most of the region outside of the river basin has a low liquefaction potential index (LPI), where the probability that LPI is greater than 5 (that is, there is a high potential for liquefaction) for a M7.7 New Madrid type event is only 20-30 percent. Within the river basin, most of the region has high LPI, where the probability that LPI is greater than 5 for a New Madrid type event is 80-100 percent.
NASA Astrophysics Data System (ADS)
Nave, Rosella; Isaia, Roberto; Sandri, Laura; Cristiani, Chiara
2016-04-01
In the communication chain between scientists and decision makers (end users), scientific outputs, as maps, are a fundamental source of information on hazards zoning and the related at risk areas definition. Anyway the relationship between volcanic phenomena, their probability and potential impact can be complex and the geospatial information not easily decoded or understood by not experts even if decision makers. Focusing on volcanic hazard the goal of MED SUV WP6 Task 3 is to improve the communication efficacy of scientific outputs, to contribute in filling the gap between scientists and decision-makers. Campi Flegrei caldera, in Neapolitan area has been chosen as the pilot research area where to apply an evaluation/validation procedure to provide a robust evaluation of the volcanic maps and its validation resulting from end users response. The selected sample involved are decision makers and officials from Campanian Region Civil Protection and municipalities included in Campi Flegrei RED ZONE, the area exposed to risk from to pyroclastic currents hazard. Semi-structured interviews, with a sample of decision makers and civil protection officials have been conducted to acquire both quantitative and qualitative data. The tested maps have been: the official Campi Flegrei Caldera RED ZONE map, three maps produced by overlapping the Red Zone limit on Orthophoto, DTM and Contour map, as well as other maps included a probabilistic one, showing volcanological data used to border the Red Zone. The outcomes' analysis have assessed level of respondents' understanding of content as displayed, and their needs in representing the complex information embedded in volcanic hazard. The final output has been the development of a leaflet as "guidelines" that can support decision makers and officials in understanding volcanic hazard and risk maps, and also in using them as a communication tool in information program for the population at risk. The same evaluation /validation process has been applied also on the scientific output of MED-SUV WP6, as a tool for the short-term probabilistic volcanic hazard assessment. For the Campi Flegrei volcanic system, the expected tool has been implemented to compute hazard curves, hazard maps and probability maps for tephra fallout on a target grid covering the Campania region. This allows the end user to visualize the hazard from tephra fallout and its uncertainty. The response of end-users to such products will help to determine to what extent end-users understand them, find them useful, and match their requirements. In order to involve also Etna area in WP6 TASK 3 activities, a questionnaire developed in the VUELCO project (Volcanic Unrest in Europe and Latin America) has been proposed to Sicily Civil Protection officials having decision-making responsibility in case of volcanic unrest at Etna and Stromboli, to survey their opinions and requirements also in case of volcanic unrest
NASA Astrophysics Data System (ADS)
Herrero, Andre; Spagnuolo, Elena; Akinci, Aybige; Pucci, Stefano
2016-04-01
In the present study we attempted to improve the seismic hazard assessment taking into account possible sources of epistemic uncertainty and the azimuthal variability of the ground motions which, at a particular site, is significantly influenced by the rupture mechanism and the rupture direction relative to the site. As a study area we selected Marmara Region (Turkey), especially the city of Istanbul which is characterized by one of the highest levels of seismic risk in Europe and the Mediterranean region. The seismic hazard in the city is mainly associated with two active fault segments which are located at about 20-30 km south of Istanbul. In this perspective first we proposed a methodology to incorporate this new information such as nucleation point in a probabilistic seismic hazard analysis (PSHA) framework. Secondly we introduced information about those fault segments by focusing on the fault rupture characteristics which affect the azimuthal variations of the ground motion spatial distribution i.e. source directivity effect and its influence on the probabilistic seismic hazard analyses (PSHA). An analytical model developed by Spudich and Chiou (2008) is used as a corrective factor that modifies the Next Generation Attenuation (NGA, Power et al. 2008) ground motion predictive equations (GMPEs) introducing rupture related parameters that generally lump together into the term directivity effect. We used the GMPEs as derived by the Abrahamson and Silva (2008) and the Boore and Atkinson (2008); our results are given in terms of 10% probability of exceedance of PSHA (at several periods from 0.5 s to 10 s) in 50 years on rock site condition; the correction for directivity introduces a significant contribution to the percentage ratio between the seismic hazards computed using the directivity model respect to the seismic hazard standard practice. In particular, we benefited the dynamic simulation from a previous study (Aochi & Utrich, 2015) aimed at evaluating the seismic potential of the Marmara region to derive a statistical distribution for nucleation position. Our results suggest that accounting for rupture related parameters in a PSHA using deterministic information from dynamic models is feasible and in particular, the use of a non-uniform statistical distribution for nucleation position has serious consequences on the hazard assessment. Since the directivity effect is conditional on the nucleation position the hazard map changes with the assumptions made. A worst case scenario (both the faults are rupturing towards the city of Istanbul) predicts up to 25% change than the standard formulation at 2 sec and increases with longer periods. The former result is heavily different if a deterministically based nucleation position is assumed.
NASA Astrophysics Data System (ADS)
Apel, Heiko; Martínez Trepat, Oriol; Nghia Hung, Nguyen; Thi Chinh, Do; Merz, Bruno; Viet Dung, Nguyen
2016-04-01
Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either a fluvial or pluvial flood hazard, studies of a combined fluvial and pluvial flood hazard are hardly available. Thus this study aims to analyse a fluvial and a pluvial flood hazard individually, but also to develop a method for the analysis of a combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as an example. In this tropical environment the annual monsoon triggered floods of the Mekong River, which can coincide with heavy local convective precipitation events, causing both fluvial and pluvial flooding at the same time. The fluvial flood hazard was estimated with a copula-based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. The pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data and a stochastic rainstorm generator. Inundation for all flood scenarios was simulated by a 2-dimensional hydrodynamic model implemented on a Graphics Processing Unit (GPU) for time-efficient flood propagation modelling. The combined fluvial-pluvial flood scenarios were derived by adding rainstorms to the fluvial flood events during the highest fluvial water levels. The probabilities of occurrence of the combined events were determined assuming independence of the two flood types and taking the seasonality and probability of coincidence into account. All hazards - fluvial, pluvial and combined - were accompanied by an uncertainty estimation taking into account the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and their usage in flood risk management are outlined.
Probabilistic and deterministic evaluation of uncertainty in a local scale multi-risk analysis
NASA Astrophysics Data System (ADS)
Lari, S.; Frattini, P.; Crosta, G. B.
2009-04-01
We performed a probabilistic multi-risk analysis (QPRA) at the local scale for a 420 km2 area surrounding the town of Brescia (Northern Italy). We calculated the expected annual loss in terms of economical damage and life loss, for a set of risk scenarios of flood, earthquake and industrial accident with different occurrence probabilities and different intensities. The territorial unit used for the study was the census parcel, of variable area, for which a large amount of data was available. Due to the lack of information related to the evaluation of the hazards, to the value of the exposed elements (e.g., residential and industrial area, population, lifelines, sensitive elements as schools, hospitals) and to the process-specific vulnerability, and to a lack of knowledge of the processes (floods, industrial accidents, earthquakes), we assigned an uncertainty to the input variables of the analysis. For some variables an homogeneous uncertainty was assigned on the whole study area, as for instance for the number of buildings of various typologies, and for the event occurrence probability. In other cases, as for phenomena intensity (e.g.,depth of water during flood) and probability of impact, the uncertainty was defined in relation to the census parcel area. In fact assuming some variables homogeneously diffused or averaged on the census parcels, we introduce a larger error for larger parcels. We propagated the uncertainty in the analysis using three different models, describing the reliability of the output (risk) as a function of the uncertainty of the inputs (scenarios and vulnerability functions). We developed a probabilistic approach based on Monte Carlo simulation, and two deterministic models, namely First Order Second Moment (FOSM) and Point Estimate (PE). In general, similar values of expected losses are obtained with the three models. The uncertainty of the final risk value is in the three cases around the 30% of the expected value. Each of the models, nevertheless, requires different assumptions and computational efforts, and provides results with different level of detail.
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Sandri, Laura; Rouwet, Dmitri; Caudron, Corentin; Marzocchi, Warner; Suparjan
2016-07-01
Although most of volcanic hazard studies focus on magmatic eruptions, volcanic hazardous events can also occur when no migration of magma can be recognized. Examples are tectonic and hydrothermal unrest that may lead to phreatic eruptions. Recent events (e.g., Ontake eruption on September 2014) have demonstrated that phreatic eruptions are still hard to forecast, despite being potentially very hazardous. For these reasons, it is of paramount importance to identify indicators that define the condition of nonmagmatic unrest, in particular for hydrothermal systems. Often, this type of unrest is driven by movement of fluids, requiring alternative monitoring setups, beyond the classical seismic-geodetic-geochemical architectures. Here we present a new version of the probabilistic BET (Bayesian Event Tree) model, specifically developed to include the forecasting of nonmagmatic unrest and related hazards. The structure of the new event tree differs from the previous schemes by adding a specific branch to detail nonmagmatic unrest outcomes. A further goal of this work consists in providing a user-friendly, open-access, and straightforward tool to handle the probabilistic forecast and visualize the results as possible support during a volcanic crisis. The new event tree and tool are here applied to Kawah Ijen stratovolcano, Indonesia, as exemplificative application. In particular, the tool is set on the basis of monitoring data for the learning period 2000-2010, and is then blindly applied to the test period 2010-2012, during which significant unrest phases occurred.
From cyclone tracks to the costs of European winter storms: A probabilistic loss assessment model
NASA Astrophysics Data System (ADS)
Renggli, Dominik; Corti, Thierry; Reese, Stefan; Wueest, Marc; Viktor, Elisabeth; Zimmerli, Peter
2014-05-01
The quantitative assessment of the potential losses of European winter storms is essential for the economic viability of a global reinsurance company. For this purpose, reinsurance companies generally use probabilistic loss assessment models. This work presents an innovative approach to develop physically meaningful probabilistic events for Swiss Re's new European winter storm loss model. The meteorological hazard component of the new model is based on cyclone and windstorm tracks identified in the 20th Century Reanalysis data. The knowledge of the evolution of winter storms both in time and space allows the physically meaningful perturbation of properties of historical events (e.g. track, intensity). The perturbation includes a random element but also takes the local climatology and the evolution of the historical event into account. The low-resolution wind footprints taken from 20th Century Reanalysis are processed by a statistical-dynamical downscaling to generate high-resolution footprints of the historical and probabilistic winter storm events. Downscaling transfer functions are generated using ENSEMBLES regional climate model data. The result is a set of reliable probabilistic events representing thousands of years. The event set is then combined with country- and risk-specific vulnerability functions and detailed market- or client-specific exposure information to compute (re-)insurance risk premiums.
NASA Astrophysics Data System (ADS)
Sari, Dwi Ivayana; Budayasa, I. Ketut; Juniati, Dwi
2017-08-01
Formulation of mathematical learning goals now is not only oriented on cognitive product, but also leads to cognitive process, which is probabilistic thinking. Probabilistic thinking is needed by students to make a decision. Elementary school students are required to develop probabilistic thinking as foundation to learn probability at higher level. A framework of probabilistic thinking of students had been developed by using SOLO taxonomy, which consists of prestructural probabilistic thinking, unistructural probabilistic thinking, multistructural probabilistic thinking and relational probabilistic thinking. This study aimed to analyze of probability task completion based on taxonomy of probabilistic thinking. The subjects were two students of fifth grade; boy and girl. Subjects were selected by giving test of mathematical ability and then based on high math ability. Subjects were given probability tasks consisting of sample space, probability of an event and probability comparison. The data analysis consisted of categorization, reduction, interpretation and conclusion. Credibility of data used time triangulation. The results was level of boy's probabilistic thinking in completing probability tasks indicated multistructural probabilistic thinking, while level of girl's probabilistic thinking in completing probability tasks indicated unistructural probabilistic thinking. The results indicated that level of boy's probabilistic thinking was higher than level of girl's probabilistic thinking. The results could contribute to curriculum developer in developing probability learning goals for elementary school students. Indeed, teachers could teach probability with regarding gender difference.
NASA Astrophysics Data System (ADS)
Azzaro, Raffaele; Barberi, Graziella; D'Amico, Salvatore; Pace, Bruno; Peruzza, Laura; Tuvè, Tiziana
2017-11-01
The volcanic region of Mt. Etna (Sicily, Italy) represents a perfect lab for testing innovative approaches to seismic hazard assessment. This is largely due to the long record of historical and recent observations of seismic and tectonic phenomena, the high quality of various geophysical monitoring and particularly the rapid geodynamics clearly demonstrate some seismotectonic processes. We present here the model components and the procedures adopted for defining seismic sources to be used in a new generation of probabilistic seismic hazard assessment (PSHA), the first results and maps of which are presented in a companion paper, Peruzza et al. (2017). The sources include, with increasing complexity, seismic zones, individual faults and gridded point sources that are obtained by integrating geological field data with long and short earthquake datasets (the historical macroseismic catalogue, which covers about 3 centuries, and a high-quality instrumental location database for the last decades). The analysis of the frequency-magnitude distribution identifies two main fault systems within the volcanic complex featuring different seismic rates that are controlled essentially by volcano-tectonic processes. We discuss the variability of the mean occurrence times of major earthquakes along the main Etnean faults by using an historical approach and a purely geologic method. We derive a magnitude-size scaling relationship specifically for this volcanic area, which has been implemented into a recently developed software tool - FiSH (Pace et al., 2016) - that we use to calculate the characteristic magnitudes and the related mean recurrence times expected for each fault. Results suggest that for the Mt. Etna area, the traditional assumptions of uniform and Poissonian seismicity can be relaxed; a time-dependent fault-based modeling, joined with a 3-D imaging of volcano-tectonic sources depicted by the recent instrumental seismicity, can therefore be implemented in PSHA maps. They can be relevant for the retrofitting of the existing building stock and for driving risk reduction interventions. These analyses do not account for regional M > 6 seismogenic sources which dominate the hazard over long return times (≥ 500 years).
Are seismic hazard assessment errors and earthquake surprises unavoidable?
NASA Astrophysics Data System (ADS)
Kossobokov, Vladimir
2013-04-01
Why earthquake occurrences bring us so many surprises? The answer seems evident if we review the relationships that are commonly used to assess seismic hazard. The time-span of physically reliable Seismic History is yet a small portion of a rupture recurrence cycle at an earthquake-prone site, which makes premature any kind of reliable probabilistic statements about narrowly localized seismic hazard. Moreover, seismic evidences accumulated to-date demonstrate clearly that most of the empirical relations commonly accepted in the early history of instrumental seismology can be proved erroneous when testing statistical significance is applied. Seismic events, including mega-earthquakes, cluster displaying behaviors that are far from independent or periodic. Their distribution in space is possibly fractal, definitely, far from uniform even in a single segment of a fault zone. Such a situation contradicts generally accepted assumptions used for analytically tractable or computer simulations and complicates design of reliable methodologies for realistic earthquake hazard assessment, as well as search and definition of precursory behaviors to be used for forecast/prediction purposes. As a result, the conclusions drawn from such simulations and analyses can MISLEAD TO SCIENTIFICALLY GROUNDLESS APPLICATION, which is unwise and extremely dangerous in assessing expected societal risks and losses. For example, a systematic comparison of the GSHAP peak ground acceleration estimates with those related to actual strong earthquakes, unfortunately, discloses gross inadequacy of this "probabilistic" product, which appears UNACCEPTABLE FOR ANY KIND OF RESPONSIBLE SEISMIC RISK EVALUATION AND KNOWLEDGEABLE DISASTER PREVENTION. The self-evident shortcomings and failures of GSHAP appeals to all earthquake scientists and engineers for an urgent revision of the global seismic hazard maps from the first principles including background methodologies involved, such that there becomes: (a) a demonstrated and sufficient justification of hazard assessment protocols; (b) a more complete learning of the actual range of earthquake hazards to local communities and populations, and (c) a more ethically responsible control over how seismic hazard and seismic risk is implemented to protect public safety. It follows that the international project GEM is on the wrong track, if it continues to base seismic risk estimates on the standard method to assess seismic hazard. The situation is not hopeless and could be improved dramatically due to available geological, geomorphologic, seismic, and tectonic evidences and data combined with deterministic pattern recognition methodologies, specifically, when intending to PREDICT PREDICTABLE, but not the exact size, site, date, and probability of a target event. Understanding the complexity of non-linear dynamics of hierarchically organized systems of blocks-and-faults has led already to methodologies of neo-deterministic seismic hazard analysis and intermediate-term middle- to narrow-range earthquake prediction algorithms tested in real-time applications over the last decades. It proves that Contemporary Science can do a better job in disclosing Natural Hazards, assessing Risks, and delivering such info in advance extreme catastrophes, which are LOW PROBABILITY EVENTS THAT HAPPEN WITH CERTAINTY. Geoscientists must initiate shifting the minds of community from pessimistic disbelieve to optimistic challenging issues of neo-deterministic Hazard Predictability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin Leigh; Veeraraghavan, Swetha; Bolisetti, Chandrakanth
MASTODON has the capability to model stochastic nonlinear soil-structure interaction (NLSSI) in a dynamic probabilistic risk assessment framework. The NLSSI simulations include structural dynamics, time integration, dynamic porous media flow, nonlinear hysteretic soil constitutive models, geometric nonlinearities (gapping, sliding, and uplift). MASTODON is also the MOOSE based master application for dynamic PRA of external hazards.
Probabilistic structural analysis methods of hot engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hopkins, D. A.
1989-01-01
Development of probabilistic structural analysis methods for hot engine structures at Lewis Research Center is presented. Three elements of the research program are: (1) composite load spectra methodology; (2) probabilistic structural analysis methodology; and (3) probabilistic structural analysis application. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) turbine blade temperature, pressure, and torque of the space shuttle main engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; and (3) evaluation of the failure probability. Collectively, the results demonstrate that the structural durability of hot engine structural components can be effectively evaluated in a formal probabilistic/reliability framework.
Uncertainties in Earthquake Loss Analysis: A Case Study From Southern California
NASA Astrophysics Data System (ADS)
Mahdyiar, M.; Guin, J.
2005-12-01
Probabilistic earthquake hazard and loss analyses play important roles in many areas of risk management, including earthquake related public policy and insurance ratemaking. Rigorous loss estimation for portfolios of properties is difficult since there are various types of uncertainties in all aspects of modeling and analysis. It is the objective of this study to investigate the sensitivity of earthquake loss estimation to uncertainties in regional seismicity, earthquake source parameters, ground motions, and sites' spatial correlation on typical property portfolios in Southern California. Southern California is an attractive region for such a study because it has a large population concentration exposed to significant levels of seismic hazard. During the last decade, there have been several comprehensive studies of most regional faults and seismogenic sources. There have also been detailed studies on regional ground motion attenuations and regional and local site responses to ground motions. This information has been used by engineering seismologists to conduct regional seismic hazard and risk analysis on a routine basis. However, one of the more difficult tasks in such studies is the proper incorporation of uncertainties in the analysis. From the hazard side, there are uncertainties in the magnitudes, rates and mechanisms of the seismic sources and local site conditions and ground motion site amplifications. From the vulnerability side, there are considerable uncertainties in estimating the state of damage of buildings under different earthquake ground motions. From an analytical side, there are challenges in capturing the spatial correlation of ground motions and building damage, and integrating thousands of loss distribution curves with different degrees of correlation. In this paper we propose to address some of these issues by conducting loss analyses of a typical small portfolio in southern California, taking into consideration various source and ground motion uncertainties. The approach is designed to integrate loss distribution functions with different degrees of correlation for portfolio analysis. The analysis is based on USGS 2002 regional seismicity model.
Application of Gumbel I and Monte Carlo methods to assess seismic hazard in and around Pakistan
NASA Astrophysics Data System (ADS)
Rehman, Khaista; Burton, Paul W.; Weatherill, Graeme A.
2018-05-01
A proper assessment of seismic hazard is of considerable importance in order to achieve suitable building construction criteria. This paper presents probabilistic seismic hazard assessment in and around Pakistan (23° N-39° N; 59° E-80° E) in terms of peak ground acceleration (PGA). Ground motion is calculated in terms of PGA for a return period of 475 years using a seismogenic-free zone method of Gumbel's first asymptotic distribution of extreme values and Monte Carlo simulation. Appropriate attenuation relations of universal and local types have been used in this study. The results show that for many parts of Pakistan, the expected seismic hazard is relatively comparable with the level specified in the existing PGA maps.
A Proposed Probabilistic Extension of the Halpern and Pearl Definition of ‘Actual Cause’
2017-01-01
ABSTRACT Joseph Halpern and Judea Pearl ([2005]) draw upon structural equation models to develop an attractive analysis of ‘actual cause’. Their analysis is designed for the case of deterministic causation. I show that their account can be naturally extended to provide an elegant treatment of probabilistic causation. 1Introduction2Preemption3Structural Equation Models4The Halpern and Pearl Definition of ‘Actual Cause’5Preemption Again6The Probabilistic Case7Probabilistic Causal Models8A Proposed Probabilistic Extension of Halpern and Pearl’s Definition9Twardy and Korb’s Account10Probabilistic Fizzling11Conclusion PMID:29593362
Tools used by the insurance industry to assess risk from hydroclimatic extremes
NASA Astrophysics Data System (ADS)
Higgs, Stephanie; McMullan, Caroline
2016-04-01
Probabilistic catastrophe models are widely used within the insurance industry to assess and price the risk of natural hazards to individual residences through to portfolios of millions of properties. Over the relatively short period that catastrophe models have been available (almost 30 years), the insurance industry has built up a financial resilience to key natural hazards in certain areas (e.g. US tropical cyclone, European extra-tropical cyclone and flood). However, due the rapidly expanding global population and increase in wealth, together with uncertainties in the behaviour of meteorological phenomena introduced by climate change, the domain in which natural hazards impact society is growing. As a result, the insurance industry faces new challenges in assessing the risk and uncertainty from natural hazards. As a catastrophe modelling company, AIR Worldwide has a toolbox of options available to help the insurance industry assess extreme climatic events and their associated uncertainty. Here we discuss several of these tools: from helping analysts understand how uncertainty is inherently built in to probabilistic catastrophe models, to understanding alternative stochastic catalogs for tropical cyclone based on climate conditioning. Through the use of stochastic extreme disaster events such as those provided through AIR's catalogs or through the Lloyds of London marketplace (RDS's) to provide useful benchmarks for the loss probability exceedence and tail-at-risk metrics outputted from catastrophe models; to the visualisation of 1000+ year event footprints and hazard intensity maps. Ultimately the increased transparency of catastrophe models and flexibility of a software platform that allows for customisation of modelled and non-modelled risks will drive a greater understanding of extreme hydroclimatic events within the insurance industry.
NASA Astrophysics Data System (ADS)
Khalil, Amin E.; Abir, Ismail A.; Ginsos, Hanteh; Abdel Hafiez, Hesham E.; Khan, Sohail
2018-02-01
Sabah state in eastern Malaysia, unlike most of the other Malaysian states, is characterized by common seismological activity; generally an earthquake of moderate magnitude is experienced at an interval of roughly every 20 years, originating mainly from two major sources, either a local source (e.g. Ranau and Lahad Dato) or a regional source (e.g. Kalimantan and South Philippines subductions). The seismicity map of Sabah shows the presence of two zones of distinctive seismicity, these zones are near Ranau (near Kota Kinabalu) and Lahad Datu in the southeast of Sabah. The seismicity record of Ranau begins in 1991, according to the international seismicity bulletins (e.g. United States Geological Survey and the International Seismological Center), and this short record is not sufficient for seismic source characterization. Fortunately, active Quaternary fault systems are delineated in the area. Henceforth, the seismicity of the area is thus determined as line sources referring to these faults. Two main fault systems are believed to be the source of such activities; namely, the Mensaban fault zone and the Crocker fault zone in addition to some other faults in their vicinity. Seismic hazard assessments became a very important and needed study for the extensive developing projects in Sabah especially with the presence of earthquake activities. Probabilistic seismic hazard assessments are adopted for the present work since it can provide the probability of various ground motion levels during expected from future large earthquakes. The output results are presented in terms of spectral acceleration curves and uniform hazard curves for periods of 500, 1000 and 2500 years. Since this is the first time that a complete hazard study has been done for the area, the output will be a base and standard for any future strategic plans in the area.
NASA Astrophysics Data System (ADS)
Tierz, Pablo; Woodhouse, Mark; Phillips, Jeremy; Sandri, Laura; Selva, Jacopo; Marzocchi, Warner; Odbert, Henry
2017-04-01
Volcanoes are extremely complex physico-chemical systems where magma formed at depth breaks into the planet's surface resulting in major hazards from local to global scales. Volcano physics are dominated by non-linearities, and complicated spatio-temporal interrelationships which make volcanic hazards stochastic (i.e. not deterministic) by nature. In this context, probabilistic assessments are required to quantify the large uncertainties related to volcanic hazards. Moreover, volcanoes are typically multi-hazard environments where different hazardous processes can occur whether simultaneously or in succession. In particular, explosive volcanoes are able to accumulate, through tephra fallout and Pyroclastic Density Currents (PDCs), large amounts of pyroclastic material into the drainage basins surrounding the volcano. This addition of fresh particulate material alters the local/regional hydrogeological equilibrium and increases the frequency and magnitude of sediment-rich aqueous flows, commonly known as lahars. The initiation and volume of rain-triggered lahars may depend on: rainfall intensity and duration; antecedent rainfall; terrain slope; thickness, permeability and hydraulic diffusivity of the tephra deposit; etc. Quantifying these complex interrelationships (and their uncertainties), in a tractable manner, requires a structured but flexible probabilistic approach. A Bayesian Belief Network (BBN) is a directed acyclic graph that allows the representation of the joint probability distribution for a set of uncertain variables in a compact and efficient way, by exploiting unconditional and conditional independences between these variables. Once constructed and parametrized, the BBN uses Bayesian inference to perform causal (e.g. forecast) and/or evidential reasoning (e.g. explanation) about query variables, given some evidence. In this work, we illustrate how BBNs can be used to model the influence of several variables on the generation of rain-triggered lahars and, finally, assess the probability of occurrence of lahars of different volumes. The information utilized to parametrize the BBNs includes: (1) datasets of lahar observations; (2) numerical modelling of tephra fallout and PDCs; and (3) literature data. The BBN framework provides an opportunity to quantitatively combine these different types of evidence and use them to derive a rational approach to lahar forecasting. Lastly, we couple the BBN assessments with a shallow-water physical model for lahar propagation in order to attach probabilities to the simulated hazard footprints. We develop our methodology at Somma-Vesuvius (Italy), an explosive volcano prone to rain-triggered lahars or debris flows whether right after an eruption or during inter-eruptive periods. Accounting for the variability in tephra-fallout and dense-PDC propagation and the main geomorphological features of the catchments around Somma-Vesuvius, the areas most likely of forming medium-large lahars are the flanks of the volcano and the Sarno mountains towards the east.
Development of probabilistic multimedia multipathway computer codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, C.; LePoire, D.; Gnanapragasam, E.
2002-01-01
The deterministic multimedia dose/risk assessment codes RESRAD and RESRAD-BUILD have been widely used for many years for evaluation of sites contaminated with residual radioactive materials. The RESRAD code applies to the cleanup of sites (soils) and the RESRAD-BUILD code applies to the cleanup of buildings and structures. This work describes the procedure used to enhance the deterministic RESRAD and RESRAD-BUILD codes for probabilistic dose analysis. A six-step procedure was used in developing default parameter distributions and the probabilistic analysis modules. These six steps include (1) listing and categorizing parameters; (2) ranking parameters; (3) developing parameter distributions; (4) testing parameter distributionsmore » for probabilistic analysis; (5) developing probabilistic software modules; and (6) testing probabilistic modules and integrated codes. The procedures used can be applied to the development of other multimedia probabilistic codes. The probabilistic versions of RESRAD and RESRAD-BUILD codes provide tools for studying the uncertainty in dose assessment caused by uncertain input parameters. The parameter distribution data collected in this work can also be applied to other multimedia assessment tasks and multimedia computer codes.« less
NASA Astrophysics Data System (ADS)
Weigel, A. M.; Griffin, R.; Gallagher, D.
2015-12-01
Storm surge has enough destructive power to damage buildings and infrastructure, erode beaches, and threaten human life across large geographic areas, hence posing the greatest threat of all the hurricane hazards. The United States Gulf of Mexico has proven vulnerable to hurricanes as it has been hit by some of the most destructive hurricanes on record. With projected rises in sea level and increases in hurricane activity, there is a need to better understand the associated risks for disaster mitigation, preparedness, and response. GIS has become a critical tool in enhancing disaster planning, risk assessment, and emergency response by communicating spatial information through a multi-layer approach. However, there is a need for a near real-time method of identifying areas with a high risk of being impacted by storm surge. Research was conducted alongside Baron, a private industry weather enterprise, to facilitate automated modeling and visualization of storm surge inundation and vulnerability on a near real-time basis. This research successfully automated current flood hazard mapping techniques using a GIS framework written in a Python programming environment, and displayed resulting data through an Application Program Interface (API). Data used for this methodology included high resolution topography, NOAA Probabilistic Surge model outputs parsed from Rich Site Summary (RSS) feeds, and the NOAA Census tract level Social Vulnerability Index (SoVI). The development process required extensive data processing and management to provide high resolution visualizations of potential flooding and population vulnerability in a timely manner. The accuracy of the developed methodology was assessed using Hurricane Isaac as a case study, which through a USGS and NOAA partnership, contained ample data for statistical analysis. This research successfully created a fully automated, near real-time method for mapping high resolution storm surge inundation and vulnerability for the Gulf of Mexico, and improved the accuracy and resolution of the Probabilistic Storm Surge model.
Probabilistic Seismic Hazard Analysis for Georgia
NASA Astrophysics Data System (ADS)
Tsereteli, N. S.; Varazanashvili, O.; Sharia, T.; Arabidze, V.; Tibaldi, A.; Bonali, F. L. L.; Russo, E.; Pasquaré Mariotto, F.
2017-12-01
Nowadays, seismic hazard studies are developed in terms of the calculation of Peak Ground Acceleration (PGA), Spectral Acceleration (SA), Peak Ground Velocity (PGV) and other recorded parameters. In the frame of EMME project PSH were calculated for Georgia using GMPE based on selection criteria. In the frame of Project N 216758 (supported by Shota Rustaveli National Science Foundation (SRNF)) PSH maps were estimated using hybrid- empirical ground motion prediction equation developed for Georgia. Due to the paucity of seismically recorded information, in this work we focused our research on a more robust dataset related to macroseismic data,and attempted to calculate the probabilistic seismic hazard directly in terms of macroseismicintensity. For this reason, we started calculating new intensity prediction equations (IPEs)for Georgia taking into account different sets, belonging to the same new database, as well as distances from the seismic source.With respect to the seismic source, in order to improve the quality of the results, we have also hypothesized the size of faults from empirical relations, and calculated new IPEs also by considering Joyner-Boore and rupture distances in addition to epicentral and hypocentral distances. Finally, site conditions have been included as variables for IPEs calculation Regarding the database, we used a brand new revised set of macroseismic data and instrumental records for the significant earthquakes that struck Georgia between 1900 and 2002.Particularly, a large amount of research and documents related to macroseismic effects of individual earthquakes, stored in the archives of the Institute of Geophysics, were used as sources for the new macroseismic data. The latter are reported in the Medvedev-Sponheuer-Karnikmacroseismic scale (MSK64). For each earthquake the magnitude, the focal depth and the epicenter location are also reported. An online version of the database, with therelated metadata,has been produced for the 69 revised earthquakes and is available online (http://www.enguriproject.unimib.it/; .
NASA Astrophysics Data System (ADS)
Sutra, Emilie; Spada, Matteo; Burgherr, Peter
2016-04-01
While the exploitation of unconventional resources recently shows an extensive development, the stimulation techniques in use in this domain arouse growing public concerns. Often in the shadow of the disputed hydraulic fracturing process, the matrix acidizing is however a complementary or alternative procedure to enhance the reservoir connectivity. Although acidizing processes are widespread within the traditional hydrocarbons sources exploration, the matrix acidizing does not appear to be commonly used in unconventional hydrocarbons formations due to their low permeability. Nonetheless, this process has been recently applied to the Monterey formation, a shale oil play in California. These stimulation fluids are composed by various chemicals, what represents a matter of concern for public as well as for authorities. As a consequence, a risk assessment implying an exposure and toxicity analysis is needed. Focusing on site surface accidents, e.g., leak of a chemical from a storage tank, we develop in this study concentration scenarios for different exposure pathways to estimate the potential environmental risk associated with the use of specific hazardous substances in the matrix acidizing process for unconventional hydrocarbon reservoirs in the USA. Primary, information about the usage of different hazardous substances have been collected in order to extract the most frequently used chemicals. Afterwards, a probabilistic estimation of the environmental risk associated with the use of these chemicals is carried out by comparing the Predicted Environmental Concentrations (PEC) distribution with the Predicted No Effect Concentrations (PNEC) value. The latter is collected from a literature review, whereas the PEC is estimated as probability distribution concentrations in different environmental compartments (e.g., soil) built upon various predefined accident scenarios. By applying a probabilistic methodology for the concentrations, the level at which the used chemicals could become risky for the environment can be determined. Additionally, these concentration levels are converted into corresponding quantities of hazardous substances in order to discuss implications in terms of safety measures and policy decisions.
Risk in nuclear power plants due to natural hazard phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, S.C.
1995-12-01
For the safety of nuclear power plants, it is important to identify potential areas of vulnerabilities to internal as well as external events to which nuclear power plants are exposed. This paper summarizes the risk in nuclear power plants due to natural hazard phenomena such as earthquakes, winds and tornadoes, floods, etc. The reported results are based on a limited number of probabilistic risk assessments (PRAS) performed for a few of the operating nuclear power plants within the United States. The summary includes an importance ranking of various natural hazard phenomena based on their contribution to the plant risk alongmore » with insights observed from the PRA studies.« less
NASA Astrophysics Data System (ADS)
Volpe, M.; Selva, J.; Tonini, R.; Romano, F.; Lorito, S.; Brizuela, B.; Argyroudis, S.; Salzano, E.; Piatanesi, A.
2016-12-01
Seismic Probabilistic Tsunami Hazard Analysis (SPTHA) is a methodology to assess the exceedance probability for different thresholds of tsunami hazard intensity, at a specific site or region in a given time period, due to a seismic source. A large amount of high-resolution inundation simulations is typically required for taking into account the full variability of potential seismic sources and their slip distributions. Starting from regional SPTHA offshore results, the computational cost can be reduced by considering for inundation calculations only a subset of `important' scenarios. We here use a method based on an event tree for the treatment of the seismic source aleatory variability; a cluster analysis on the offshore results to define the important sources; epistemic uncertainty treatment through an ensemble modeling approach. We consider two target sites in the Mediterranean (Milazzo, Italy, and Thessaloniki, Greece) where coastal (non nuclear) critical infrastructures (CIs) are located. After performing a regional SPTHA covering the whole Mediterranean, for each target site, few hundreds of representative scenarios are filtered out of all the potential seismic sources and the tsunami inundation is explicitly modeled, obtaining a site-specific SPTHA, with a complete characterization of the tsunami hazard in terms of flow depth and velocity time histories. Moreover, we also explore the variability of SPTHA at the target site accounting for coseismic deformation (i.e. uplift or subsidence) due to near field sources located in very shallow water. The results are suitable and will be applied for subsequent multi-hazard risk analysis for the CIs. These applications have been developed in the framework of the Italian Flagship Project RITMARE, EC FP7 ASTARTE (Grant agreement 603839) and STREST (Grant agreement 603389) projects, and of the INGV-DPC Agreement.
Seismic Hazard Assessment at Esfaraen‒Bojnurd Railway, North‒East of Iran
NASA Astrophysics Data System (ADS)
Haerifard, S.; Jarahi, H.; Pourkermani, M.; Almasian, M.
2018-01-01
The objective of this study is to evaluate the seismic hazard at the Esfarayen-Bojnurd railway using the probabilistic seismic hazard assessment (PSHA) method. This method was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. Attenuation equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 1.2 × 1.2 km covering the study area, ground acceleration for every node was calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to return periods of 74, 475 and 2475 years.
Seismotectonic Map of Afghanistan and Adjacent Areas
Wheeler, Russell L.; Rukstales, Kenneth S.
2007-01-01
Introduction This map is part of an assessment of Afghanistan's geology, natural resources, and natural hazards. One of the natural hazards is from earthquake shaking. One of the tools required to address the shaking hazard is a probabilistic seismic-hazard map, which was made separately. The information on this seismotectonic map has been used in the design and computation of the hazard map. A seismotectonic map like this one shows geological, seismological, and other information that previously had been scattered among many sources. The compilation can show spatial relations that might not have been seen by comparing the original sources, and it can suggest hypotheses that might not have occurred to persons who studied those scattered sources. The main map shows faults and earthquakes of Afghanistan. Plate convergence drives the deformations that cause the earthquakes. Accordingly, smaller maps and text explain the modern plate-tectonic setting of Afghanistan and its evolution, and relate both to patterns of faults and earthquakes.
Probabilistic Design and Analysis Framework
NASA Technical Reports Server (NTRS)
Strack, William C.; Nagpal, Vinod K.
2010-01-01
PRODAF is a software package designed to aid analysts and designers in conducting probabilistic analysis of components and systems. PRODAF can integrate multiple analysis programs to ease the tedious process of conducting a complex analysis process that requires the use of multiple software packages. The work uses a commercial finite element analysis (FEA) program with modules from NESSUS to conduct a probabilistic analysis of a hypothetical turbine blade, disk, and shaft model. PRODAF applies the response surface method, at the component level, and extrapolates the component-level responses to the system level. Hypothetical components of a gas turbine engine are first deterministically modeled using FEA. Variations in selected geometrical dimensions and loading conditions are analyzed to determine the effects of the stress state within each component. Geometric variations include the cord length and height for the blade, inner radius, outer radius, and thickness, which are varied for the disk. Probabilistic analysis is carried out using developing software packages like System Uncertainty Analysis (SUA) and PRODAF. PRODAF was used with a commercial deterministic FEA program in conjunction with modules from the probabilistic analysis program, NESTEM, to perturb loads and geometries to provide a reliability and sensitivity analysis. PRODAF simplified the handling of data among the various programs involved, and will work with many commercial and opensource deterministic programs, probabilistic programs, or modules.
Probabilistic Structural Analysis Methods (PSAM) for Select Space Propulsion System Components
NASA Technical Reports Server (NTRS)
1999-01-01
Probabilistic Structural Analysis Methods (PSAM) are described for the probabilistic structural analysis of engine components for current and future space propulsion systems. Components for these systems are subjected to stochastic thermomechanical launch loads. Uncertainties or randomness also occurs in material properties, structural geometry, and boundary conditions. Material property stochasticity, such as in modulus of elasticity or yield strength, exists in every structure and is a consequence of variations in material composition and manufacturing processes. Procedures are outlined for computing the probabilistic structural response or reliability of the structural components. The response variables include static or dynamic deflections, strains, and stresses at one or several locations, natural frequencies, fatigue or creep life, etc. Sample cases illustrates how the PSAM methods and codes simulate input uncertainties and compute probabilistic response or reliability using a finite element model with probabilistic methods.
CRISIS2012: An Updated Tool to Compute Seismic Hazard
NASA Astrophysics Data System (ADS)
Ordaz, M.; Martinelli, F.; Meletti, C.; D'Amico, V.
2013-05-01
CRISIS is a computer tool for probabilistic seismic hazard analysis (PSHA), whose development started in the late 1980's at the Instituto de Ingeniería, UNAM, Mexico. It started circulating outside the Mexican borders at the beginning of the 1990's, when it was first distributed as part of SEISAN tools. Throughout the years, CRISIS has been used for seismic hazard studies in several countries in Latin America (Mexico, Guatemala, Belize, El Salvador, Honduras, Nicaragua, Costa Rica, Panama, Colombia, Venezuela, Ecuador, Peru, Argentina and Chile), and in many other countries of the World. CRISIS has always circulated free of charge for non-commercial applications. It is worth noting that CRISIS has been mainly written by people that are, at the same time, PSHA practitioners. Therefore, the development loop has been relatively short, and most of the modifications and improvements have been made to satisfy the needs of the developers themselves. CRISIS has evolved from a rather simple FORTRAN code to a relatively complex program with a friendly graphical interface, able to handle a variety of modeling possibilities for source geometries, seismicity descriptions and ground motion prediction models (GMPM). We will describe some of the improvements made for the newest version of the code: CRISIS 2012.These improvements, some of which were made in the frame of the Italian research project INGV-DPC S2 (http://nuovoprogettoesse2.stru.polimi.it/), funded by the Dipartimento della Protezione Civile (DPC; National Civil Protection Department), include: A wider variety of source geometries A wider variety of seismicity models, including the ability to handle non-Poissonian occurrence models and Poissonian smoothed-seismicity descriptions. Enhanced capabilities for using different kinds of GMPM: attenuation tables, built-in models and generalized attenuation models. In the case of built-in models, there is, by default, a set ready to use in CRISIS, but additional custom GMPMs may be freely developed and integrated without having to recompile the core code. Therefore, the users can build new external classes implementing custom GMPM modules by adhering to the programming-interface specification, which is delivered as part of the executable program. On the other hand, generalized attenuation models are non-parametric probabilistic descriptions of the ground motions produced by individual earthquakes with known magnitude and location. In the context of CRISIS, a generalized attenuation model is a collection of probabilistic footprints, one for each of the events considered in the analysis. Each footprint gives the geographical distribution of the intensities produced by this event. CRISIS permits now the inclusion of local site effects in hazard computations. Site effects are given to CRISIS in terms of amplification factors that depend on site location, period, and ground-motion level (in order to account for soil non-linearity). Enhanced capabilities to make logic-tree computations and to produce seismic disaggregation charts. A new presentation layer, developed for accessing the same functionalities of the desktop version via web (CRISISWeb). Examples will be presented and the program will be made available to all interested persons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ely, Geoffrey P.
2013-10-31
This project uses dynamic rupture simulations to investigate high-frequency seismic energy generation. The relevant phenomena (frictional breakdown, shear heating, effective normal-stress fluctuations, material damage, etc.) controlling rupture are strongly interacting and span many orders of magnitude in spatial scale, requiring highresolution simulations that couple disparate physical processes (e.g., elastodynamics, thermal weakening, pore-fluid transport, and heat conduction). Compounding the computational challenge, we know that natural faults are not planar, but instead have roughness that can be approximated by power laws potentially leading to large, multiscale fluctuations in normal stress. The capacity to perform 3D rupture simulations that couple these processes willmore » provide guidance for constructing appropriate source models for high-frequency ground motion simulations. The improved rupture models from our multi-scale dynamic rupture simulations will be used to conduct physicsbased (3D waveform modeling-based) probabilistic seismic hazard analysis (PSHA) for California. These calculation will provide numerous important seismic hazard results, including a state-wide extended earthquake rupture forecast with rupture variations for all significant events, a synthetic seismogram catalog for thousands of scenario events and more than 5000 physics-based seismic hazard curves for California.« less
Petersen, Mark D.; Mueller, Charles S.; Moschetti, Morgan P.; Hoover, Susan M.; Rubinstein, Justin L.; Llenos, Andrea L.; Michael, Andrew J.; Ellsworth, William L.; McGarr, Arthur F.; Holland, Austin A.; Anderson, John G.
2015-01-01
The U.S. Geological Survey National Seismic Hazard Model for the conterminous United States was updated in 2014 to account for new methods, input models, and data necessary for assessing the seismic ground shaking hazard from natural (tectonic) earthquakes. The U.S. Geological Survey National Seismic Hazard Model project uses probabilistic seismic hazard analysis to quantify the rate of exceedance for earthquake ground shaking (ground motion). For the 2014 National Seismic Hazard Model assessment, the seismic hazard from potentially induced earthquakes was intentionally not considered because we had not determined how to properly treat these earthquakes for the seismic hazard analysis. The phrases “potentially induced” and “induced” are used interchangeably in this report, however it is acknowledged that this classification is based on circumstantial evidence and scientific judgment. For the 2014 National Seismic Hazard Model update, the potentially induced earthquakes were removed from the NSHM’s earthquake catalog, and the documentation states that we would consider alternative models for including induced seismicity in a future version of the National Seismic Hazard Model. As part of the process of incorporating induced seismicity into the seismic hazard model, we evaluate the sensitivity of the seismic hazard from induced seismicity to five parts of the hazard model: (1) the earthquake catalog, (2) earthquake rates, (3) earthquake locations, (4) earthquake Mmax (maximum magnitude), and (5) earthquake ground motions. We describe alternative input models for each of the five parts that represent differences in scientific opinions on induced seismicity characteristics. In this report, however, we do not weight these input models to come up with a preferred final model. Instead, we present a sensitivity study showing uniform seismic hazard maps obtained by applying the alternative input models for induced seismicity. The final model will be released after further consideration of the reliability and scientific acceptability of each alternative input model. Forecasting the seismic hazard from induced earthquakes is fundamentally different from forecasting the seismic hazard for natural, tectonic earthquakes. This is because the spatio-temporal patterns of induced earthquakes are reliant on economic forces and public policy decisions regarding extraction and injection of fluids. As such, the rates of induced earthquakes are inherently variable and nonstationary. Therefore, we only make maps based on an annual rate of exceedance rather than the 50-year rates calculated for previous U.S. Geological Survey hazard maps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller
2012-01-31
This report describes a new seismic source characterization (SSC) model for the Central and Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to representmore » the center, body, and range of technically defensible interpretations of the available data, models, and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic source characterization and ground motion characterization. These two components are used to calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report provides a new seismic source model. Results and Findings The product of this report is a regional CEUS SSC model. This model includes consideration of an updated database, full assessment and incorporation of uncertainties, and the range of diverse technical interpretations from the larger technical community. The SSC model will be widely applicable to the entire CEUS, so this project uses a ground motion model that includes generic variations to allow for a range of representative site conditions (deep soil, shallow soil, hard rock). Hazard and sensitivity calculations were conducted at seven test sites representative of different CEUS hazard environments. Challenges and Objectives The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and who wish to use an updated SSC model. This model is based on a comprehensive and traceable process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model will be used to assess the present-day composite distribution for seismic sources along with their characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined Operating License Applications (COLAs). Applications, Values, and Use Development of a regional CEUS seismic source model will provide value to those who (1) have submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2) will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs to meet design and periodic review requirements for current and future nuclear facilities. This work replaces a previous study performed approximately 25 years ago. Since that study was completed, substantial work has been done to improve the understanding of seismic sources and their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of delays in new plant licensing due to more conservative interpretations in the existing and future literature. Perspective The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE), and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this purpose was composed of distinguished subject matter experts from industry, government, and academia. The resulting model is unique, and because this project has solicited input from the present-day larger technical community, it is not likely that there will be a need for significant revision for a number of years. See also Sponsors Perspective for more details. The goal of this project was to implement the CEUS SSC work plan for developing a regional CEUS SSC model. The work plan, formulated by the project manager and a technical integration team, consists of a series of tasks designed to meet the project objectives. This report was reviewed by a participatory peer review panel (PPRP), sponsor reviewers, the NRC, the U.S. Geological Survey, and other stakeholders. Comments from the PPRP and other reviewers were considered when preparing the report. The SSC model was completed at the end of 2011.« less
Anemia risk in relation to lead exposure in lead-related manufacturing.
Hsieh, Nan-Hung; Chung, Shun-Hui; Chen, Szu-Chieh; Chen, Wei-Yu; Cheng, Yi-Hsien; Lin, Yi-Jun; You, Su-Han; Liao, Chung-Min
2017-05-05
Lead-exposed workers may suffer adverse health effects under the currently regulated blood lead (BPb) levels. However, a probabilistic assessment about lead exposure-associated anemia risk is lacking. The goal of this study was to examine the association between lead exposure and anemia risk among factory workers in Taiwan. We first collated BPb and indicators of hematopoietic function data via health examination records that included 533 male and 218 female lead-exposed workers between 2012 and 2014. We used benchmark dose (BMD) modeling to estimate the critical effect doses for detection of abnormal indicators. A risk-based probabilistic model was used to characterize the potential hazard of lead poisoning for job-specific workers by hazard index (HI). We applied Bayesian decision analysis to determine whether BMD could be implicated as a suitable BPb standard. Our results indicated that HI for total lead-exposed workers was 0.78 (95% confidence interval: 0.50-1.26) with risk occurrence probability of 11.1%. The abnormal risk of anemia indicators for male and female workers could be reduced, respectively, by 67-77% and 86-95% by adopting the suggested BPb standards of 25 and 15 μg/dL. We conclude that cumulative exposure to lead in the workplace was significantly associated with anemia risk. This study suggests that current BPb standard needs to be better understood for the application of lead-exposed population protection in different scenarios to provide a novel standard for health management. Low-level lead exposure risk is an occupational and public health problem that should be paid more attention.
System Risk Assessment and Allocation in Conceptual Design
NASA Technical Reports Server (NTRS)
Mahadevan, Sankaran; Smith, Natasha L.; Zang, Thomas A. (Technical Monitor)
2003-01-01
As aerospace systems continue to evolve in addressing newer challenges in air and space transportation, there exists a heightened priority for significant improvement in system performance, cost effectiveness, reliability, and safety. Tools, which synthesize multidisciplinary integration, probabilistic analysis, and optimization, are needed to facilitate design decisions allowing trade-offs between cost and reliability. This study investigates tools for probabilistic analysis and probabilistic optimization in the multidisciplinary design of aerospace systems. A probabilistic optimization methodology is demonstrated for the low-fidelity design of a reusable launch vehicle at two levels, a global geometry design and a local tank design. Probabilistic analysis is performed on a high fidelity analysis of a Navy missile system. Furthermore, decoupling strategies are introduced to reduce the computational effort required for multidisciplinary systems with feedback coupling.
Probabilistic Structural Analysis Methods (PSAM) for select space propulsion systems components
NASA Technical Reports Server (NTRS)
1991-01-01
Summarized here is the technical effort and computer code developed during the five year duration of the program for probabilistic structural analysis methods. The summary includes a brief description of the computer code manuals and a detailed description of code validation demonstration cases for random vibrations of a discharge duct, probabilistic material nonlinearities of a liquid oxygen post, and probabilistic buckling of a transfer tube liner.
NASA Astrophysics Data System (ADS)
Montoya-Noguera, Silvana; Wang, Yu
2017-04-01
The Central and Eastern United States (CEUS) has experienced an abnormal increase in seismic activity, which is believed to be related to anthropogenic activities. The U.S. Geological Survey has acknowledged this situation and developed the CEUS 2016 1 year seismic hazard model using the catalog of 2015 by assuming stationary seismicity in that period. However, due to the nonstationary nature of induced seismicity, it is essential to identify change points for accurate probabilistic seismic hazard analysis (PSHA). We present a Bayesian procedure to identify the most probable change points in seismicity and define their respective seismic rates. It uses prior distributions in agreement with conventional PSHA and updates them with recent data to identify seismicity changes. It can determine the change points in a regional scale and may incorporate different types of information in an objective manner. It is first successfully tested with simulated data, and then it is used to evaluate Oklahoma's regional seismicity.
Bergen, Kristian J.; Shaw, John H.; Leon, Lorraine A.; Dolan, James F.; Pratt, Thomas L.; Ponti, Daniel J.; Morrow, Eric; Barrera, Wendy; Rhodes, Edward J.; Murari, Madhav K.; Owen, Lewis A.
2017-01-01
Slip rates represent the average displacement across a fault over time and are essential to estimating earthquake recurrence for proba-bilistic seismic hazard assessments. We demonstrate that the slip rate on the western segment of the Puente Hills blind thrust fault system, which is beneath downtown Los Angeles, California (USA), has accel-erated from ~0.22 mm/yr in the late Pleistocene to ~1.33 mm/yr in the Holocene. Our analysis is based on syntectonic strata derived from the Los Angeles River, which has continuously buried a fold scarp above the blind thrust. Slip on the fault beneath our field site began during the late-middle Pleistocene and progressively increased into the Holocene. This increase in rate implies that the magnitudes and/or the frequency of earthquakes on this fault segment have increased over time. This challenges the characteristic earthquake model and presents an evolving and potentially increasing seismic hazard to metropolitan Los Angeles.
NASA Astrophysics Data System (ADS)
Brooks, E. M.; Stein, S.; Spencer, B. D.; Salditch, L.; Petersen, M. D.; McNamara, D. E.
2017-12-01
Seismicity in the central United States has dramatically increased since 2008 due to the injection of wastewater produced by oil and gas extraction. In response, the USGS created a one-year probabilistic hazard model and map for 2016 to describe the increased hazard posed to the central and eastern United States. Using the intensity of shaking reported to the "Did You Feel It?" system during 2016, we assess the performance of this model. Assessing the performance of earthquake hazard maps for natural and induced seismicity is conceptually similar but has practical differences. Maps that have return periods of hundreds or thousands of years— as commonly used for natural seismicity— can be assessed using historical intensity data that also span hundreds or thousands of years. Several different features stand out when assessing the USGS 2016 seismic hazard model for the central and eastern United States from induced and natural earthquakes. First, the model can be assessed as a forecast in one year, because event rates are sufficiently high to permit evaluation with one year of data. Second, because these models are projections from the previous year thus implicitly assuming that fluid injection rates remain the same, misfit may reflect changes in human activity. Our results suggest that the model was very successful by the metric implicit in probabilistic hazard seismic assessment: namely, that the fraction of sites at which the maximum shaking exceeded the mapped value is comparable to that expected. The model also did well by a misfit metric that compares the spatial patterns of predicted and maximum observed shaking. This was true for both the central and eastern United States as a whole, and for the region within it with the highest amount of seismicity, Oklahoma and its surrounding area. The model performed least well in northern Texas, over-stating hazard, presumably because lower oil and gas prices and regulatory action reduced the water injection volume relative to the previous year. These results imply that such hazard maps have the potential to be valuable tools for policy makers and regulators in managing the seismic risks associated with unconventional oil and gas production.
Superposition-Based Analysis of First-Order Probabilistic Timed Automata
NASA Astrophysics Data System (ADS)
Fietzke, Arnaud; Hermanns, Holger; Weidenbach, Christoph
This paper discusses the analysis of first-order probabilistic timed automata (FPTA) by a combination of hierarchic first-order superposition-based theorem proving and probabilistic model checking. We develop the overall semantics of FPTAs and prove soundness and completeness of our method for reachability properties. Basically, we decompose FPTAs into their time plus first-order logic aspects on the one hand, and their probabilistic aspects on the other hand. Then we exploit the time plus first-order behavior by hierarchic superposition over linear arithmetic. The result of this analysis is the basis for the construction of a reachability equivalent (to the original FPTA) probabilistic timed automaton to which probabilistic model checking is finally applied. The hierarchic superposition calculus required for the analysis is sound and complete on the first-order formulas generated from FPTAs. It even works well in practice. We illustrate the potential behind it with a real-life DHCP protocol example, which we analyze by means of tool chain support.
Probabilistic Structural Analysis of the SRB Aft Skirt External Fitting Modification
NASA Technical Reports Server (NTRS)
Townsend, John S.; Peck, J.; Ayala, S.
1999-01-01
NASA has funded several major programs (the PSAM Project is an example) to develop Probabilistic Structural Analysis Methods and tools for engineers to apply in the design and assessment of aerospace hardware. A probabilistic finite element design tool, known as NESSUS, is used to determine the reliability of the Space Shuttle Solid Rocket Booster (SRB) aft skirt critical weld. An external bracket modification to the aft skirt provides a comparison basis for examining the details of the probabilistic analysis and its contributions to the design process.
PROBABILISTIC RISK ANALYSIS OF RADIOACTIVE WASTE DISPOSALS - a case study
NASA Astrophysics Data System (ADS)
Trinchero, P.; Delos, A.; Tartakovsky, D. M.; Fernandez-Garcia, D.; Bolster, D.; Dentz, M.; Sanchez-Vila, X.; Molinero, J.
2009-12-01
The storage of contaminant material in superficial or sub-superficial repositories, such as tailing piles for mine waste or disposal sites for low and intermediate nuclear waste, poses a potential threat for the surrounding biosphere. The minimization of these risks can be achieved by supporting decision-makers with quantitative tools capable to incorporate all source of uncertainty within a rigorous probabilistic framework. A case study is presented where we assess the risks associated to the superficial storage of hazardous waste close to a populated area. The intrinsic complexity of the problem, involving many events with different spatial and time scales and many uncertainty parameters is overcome by using a formal PRA (probabilistic risk assessment) procedure that allows decomposing the system into a number of key events. Hence, the failure of the system is directly linked to the potential contamination of one of the three main receptors: the underlying karst aquifer, a superficial stream that flows near the storage piles and a protection area surrounding a number of wells used for water supply. The minimal cut sets leading to the failure of the system are obtained by defining a fault-tree that incorporates different events including the failure of the engineered system (e.g. cover of the piles) and the failure of the geological barrier (e.g. clay layer that separates the bottom of the pile from the karst formation). Finally the probability of failure is quantitatively assessed combining individual independent or conditional probabilities that are computed numerically or borrowed from reliability database.
Setting the Stage for Harmonized Risk Assessment by Seismic Hazard Harmonization in Europe (SHARE)
NASA Astrophysics Data System (ADS)
Woessner, Jochen; Giardini, Domenico; SHARE Consortium
2010-05-01
Probabilistic seismic hazard assessment (PSHA) is arguably one of the most useful products that seismology can offer to society. PSHA characterizes the best available knowledge on the seismic hazard of a study area, ideally taking into account all sources of uncertainty. Results form the baseline for informed decision making, such as building codes or insurance rates and provide essential input to each risk assessment application. Several large scale national and international projects have recently been launched aimed at improving and harmonizing PSHA standards around the globe. SHARE (www.share-eu.org) is the European Commission funded project in the Framework Programme 7 (FP-7) that will create an updated, living seismic hazard model for the Euro-Mediterranean region. SHARE is a regional component of the Global Earthquake Model (GEM, www.globalquakemodel.org), a public/private partnership initiated and approved by the Global Science Forum of the OECD-GSF. GEM aims to be the uniform, independent and open access standard to calculate and communicate earthquake hazard and risk worldwide. SHARE itself will deliver measurable progress in all steps leading to a harmonized assessment of seismic hazard - in the definition of engineering requirements, in the collection of input data, in procedures for hazard assessment, and in engineering applications. SHARE scientists will create a unified framework and computational infrastructure for seismic hazard assessment and produce an integrated European probabilistic seismic hazard assessment (PSHA) model and specific scenario based modeling tools. The results will deliver long-lasting structural impact in areas of societal and economic relevance, they will serve as reference for the Eurocode 8 (EC8) application, and will provide homogeneous input for the correct seismic safety assessment for critical industry, such as the energy infrastructures and the re-insurance sector. SHARE will cover the whole European territory, the Maghreb countries in the Southern Mediterranean and Turkey in the Eastern Mediterranean. By strongly including the seismic engineering community, the project maintains a direct connection to the Eurocode 8 applications and the definition of the Nationally Determined Parameters, through the participation of the CEN/TC250/SC8 committee in the definition of the output specification requirements and in the hazard validation. SHARE will thus produce direct outputs for risk assessment. With this contribution, we focus on providing an overview of the goals and current achievement of the project.
Modelling multi-hazard hurricane damages on an urbanized coast with a Bayesian Network approach
van Verseveld, H.C.W.; Van Dongeren, A. R.; Plant, Nathaniel G.; Jäger, W.S.; den Heijer, C.
2015-01-01
Hurricane flood impacts to residential buildings in coastal zones are caused by a number of hazards, such as inundation, overflow currents, erosion, and wave attack. However, traditional hurricane damage models typically make use of stage-damage functions, where the stage is related to flooding depth only. Moreover, these models are deterministic and do not consider the large amount of uncertainty associated with both the processes themselves and with the predictions. This uncertainty becomes increasingly important when multiple hazards (flooding, wave attack, erosion, etc.) are considered simultaneously. This paper focusses on establishing relationships between observed damage and multiple hazard indicators in order to make better probabilistic predictions. The concept consists of (1) determining Local Hazard Indicators (LHIs) from a hindcasted storm with use of a nearshore morphodynamic model, XBeach, and (2) coupling these LHIs and building characteristics to the observed damages. We chose a Bayesian Network approach in order to make this coupling and used the LHIs ‘Inundation depth’, ‘Flow velocity’, ‘Wave attack’, and ‘Scour depth’ to represent flooding, current, wave impacts, and erosion related hazards.The coupled hazard model was tested against four thousand damage observations from a case site at the Rockaway Peninsula, NY, that was impacted by Hurricane Sandy in late October, 2012. The model was able to accurately distinguish ‘Minor damage’ from all other outcomes 95% of the time and could distinguish areas that were affected by the storm, but not severely damaged, 68% of the time. For the most heavily damaged buildings (‘Major Damage’ and ‘Destroyed’), projections of the expected damage underestimated the observed damage. The model demonstrated that including multiple hazards doubled the prediction skill, with Log-Likelihood Ratio test (a measure of improved accuracy and reduction in uncertainty) scores between 0.02 and 0.17 when only one hazard is considered and a score of 0.37 when multiple hazards are considered simultaneously. The LHIs with the most predictive skill were ‘Inundation depth’ and ‘Wave attack’. The Bayesian Network approach has several advantages over the market-standard stage-damage functions: the predictive capacity of multiple indicators can be combined; probabilistic predictions can be obtained, which include uncertainty; and quantitative as well as descriptive information can be used simultaneously.
Asteroid Impact Risk: Ground Hazard versus Impactor Size
NASA Technical Reports Server (NTRS)
Mathias, Donovan; Wheeler, Lorien; Dotson, Jessie; Aftosmis, Michael; Tarano, Ana
2017-01-01
We utilized a probabilistic asteroid impact risk (PAIR) model to stochastically assess the impact risk due to an ensemble population of Near-Earth Objects (NEOs). Concretely, we present the variation of risk with impactor size. Results suggest that large impactors dominate the average risk, even when only considering the subset of undiscovered NEOs.
NASA Astrophysics Data System (ADS)
Bartolini, Stefania; Sobradelo, Rosa; Martí, Joan
2016-08-01
Short-term hazard assessment is an important part of the volcanic management cycle, above all at the onset of an episode of volcanic agitation (unrest). For this reason, one of the main tasks of modern volcanology is to use monitoring data to identify and analyse precursory signals and so determine where and when an eruption might occur. This work follows from Sobradelo and Martí [Short-term volcanic hazard assessment through Bayesian inference: retrospective application to the Pinatubo 1991 volcanic crisis. Journal of Volcanology and Geothermal Research 290, 111, 2015] who defined the principle for a new methodology for conducting short-term hazard assessment in unrest volcanoes. Using the same case study, the eruption on Pinatubo (15 June 1991), this work introduces a new free Python tool, ST-HASSET, for implementing Sobradelo and Martí (2015) methodology in the time evolution of unrest indicators in the volcanic short-term hazard assessment. Moreover, this tool is designed for complementing long-term hazard assessment with continuous monitoring data when the volcano goes into unrest. It is based on Bayesian inference and transforms different pre-eruptive monitoring parameters into a common probabilistic scale for comparison among unrest episodes from the same volcano or from similar ones. This allows identifying common pre-eruptive behaviours and patterns. ST-HASSET is especially designed to assist experts and decision makers as a crisis unfolds, and allows detecting sudden changes in the activity of a volcano. Therefore, it makes an important contribution to the analysis and interpretation of relevant data for understanding the evolution of volcanic unrest.
NASA Astrophysics Data System (ADS)
Tierz, Pablo; Sandri, Laura; Costa, Antonio; Zaccarelli, Lucia; Di Vito, Mauro Antonio; Sulpizio, Roberto; Marzocchi, Warner
2016-11-01
Pyroclastic density currents (PDCs) are gravity-driven hot mixtures of gas and volcanic particles which can propagate at high speed and cover distances up to several tens of kilometers around a given volcano. Therefore, they pose a severe hazard to the surroundings of explosive volcanoes able to produce such phenomena. Despite this threat, probabilistic volcanic hazard assessment (PVHA) of PDCs is still in an early stage of development. PVHA is rooted in the quantification of the large uncertainties (aleatory and epistemic) which characterize volcanic hazard analyses. This quantification typically requires a big dataset of hazard footprints obtained from numerical simulations of the physical process. For PDCs, numerical models range from very sophisticated (not useful for PVHA because of their very long runtimes) to very simple models (criticized because of their highly simplified physics). We present here a systematic and robust validation testing of a simple PDC model, the energy cone (EC), to unravel whether it can be applied to PVHA of PDCs. Using past PDC deposits at Somma-Vesuvius and Campi Flegrei (Italy), we assess the ability of EC to capture the values and variability in some relevant variables for hazard assessment, i.e., area of PDC invasion and maximum runout. In terms of area of invasion, the highest Jaccard coefficients range from 0.33 to 0.86 which indicates an equal or better performance compared to other volcanic mass-flow models. The p values for the observed maximum runouts vary from 0.003 to 0.44. Finally, the frequencies of PDC arrival computed from the EC are similar to those determined from the spatial distribution of past PDC deposits, with high PDC-arrival frequencies over an ˜8-km radius from the crater area at Somma-Vesuvius and around the Astroni crater at Campi Flegrei. The insights derived from our validation tests seem to indicate that the EC is a suitable candidate to compute PVHA of PDCs.
Experimental Concepts for Testing Seismic Hazard Models
NASA Astrophysics Data System (ADS)
Marzocchi, W.; Jordan, T. H.
2015-12-01
Seismic hazard analysis is the primary interface through which useful information about earthquake rupture and wave propagation is delivered to society. To account for the randomness (aleatory variability) and limited knowledge (epistemic uncertainty) of these natural processes, seismologists must formulate and test hazard models using the concepts of probability. In this presentation, we will address the scientific objections that have been raised over the years against probabilistic seismic hazard analysis (PSHA). Owing to the paucity of observations, we must rely on expert opinion to quantify the epistemic uncertainties of PSHA models (e.g., in the weighting of individual models from logic-tree ensembles of plausible models). The main theoretical issue is a frequentist critique: subjectivity is immeasurable; ergo, PSHA models cannot be objectively tested against data; ergo, they are fundamentally unscientific. We have argued (PNAS, 111, 11973-11978) that the Bayesian subjectivity required for casting epistemic uncertainties can be bridged with the frequentist objectivity needed for pure significance testing through "experimental concepts." An experimental concept specifies collections of data, observed and not yet observed, that are judged to be exchangeable (i.e., with a joint distribution independent of the data ordering) when conditioned on a set of explanatory variables. We illustrate, through concrete examples, experimental concepts useful in the testing of PSHA models for ontological errors in the presence of aleatory variability and epistemic uncertainty. In particular, we describe experimental concepts that lead to exchangeable binary sequences that are statistically independent but not identically distributed, showing how the Bayesian concept of exchangeability generalizes the frequentist concept of experimental repeatability. We also address the issue of testing PSHA models using spatially correlated data.
Probabilistic Structural Analysis Theory Development
NASA Technical Reports Server (NTRS)
Burnside, O. H.
1985-01-01
The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.
Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components
NASA Technical Reports Server (NTRS)
1991-01-01
The fourth year of technical developments on the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) system for Probabilistic Structural Analysis Methods is summarized. The effort focused on the continued expansion of the Probabilistic Finite Element Method (PFEM) code, the implementation of the Probabilistic Boundary Element Method (PBEM), and the implementation of the Probabilistic Approximate Methods (PAppM) code. The principal focus for the PFEM code is the addition of a multilevel structural dynamics capability. The strategy includes probabilistic loads, treatment of material, geometry uncertainty, and full probabilistic variables. Enhancements are included for the Fast Probability Integration (FPI) algorithms and the addition of Monte Carlo simulation as an alternate. Work on the expert system and boundary element developments continues. The enhanced capability in the computer codes is validated by applications to a turbine blade and to an oxidizer duct.
Probabilistic eruption forecasting at short and long time scales
NASA Astrophysics Data System (ADS)
Marzocchi, Warner; Bebbington, Mark S.
2012-10-01
Any effective volcanic risk mitigation strategy requires a scientific assessment of the future evolution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic predictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all available information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to prioritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time-space-magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.
Modeling landslide recurrence in Seattle, Washington, USA
Salciarini, Diana; Godt, Jonathan W.; Savage, William Z.; Baum, Rex L.; Conversini, Pietro
2008-01-01
To manage the hazard associated with shallow landslides, decision makers need an understanding of where and when landslides may occur. A variety of approaches have been used to estimate the hazard from shallow, rainfall-triggered landslides, such as empirical rainfall threshold methods or probabilistic methods based on historical records. The wide availability of Geographic Information Systems (GIS) and digital topographic data has led to the development of analytic methods for landslide hazard estimation that couple steady-state hydrological models with slope stability calculations. Because these methods typically neglect the transient effects of infiltration on slope stability, results cannot be linked with historical or forecasted rainfall sequences. Estimates of the frequency of conditions likely to cause landslides are critical for quantitative risk and hazard assessments. We present results to demonstrate how a transient infiltration model coupled with an infinite slope stability calculation may be used to assess shallow landslide frequency in the City of Seattle, Washington, USA. A module called CRF (Critical RainFall) for estimating deterministic rainfall thresholds has been integrated in the TRIGRS (Transient Rainfall Infiltration and Grid-based Slope-Stability) model that combines a transient, one-dimensional analytic solution for pore-pressure response to rainfall infiltration with an infinite slope stability calculation. Input data for the extended model include topographic slope, colluvial thickness, initial water-table depth, material properties, and rainfall durations. This approach is combined with a statistical treatment of rainfall using a GEV (General Extreme Value) probabilistic distribution to produce maps showing the shallow landslide recurrence induced, on a spatially distributed basis, as a function of rainfall duration and hillslope characteristics.
Revision to flood hazard evaluation for the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, R.; Werth, D.
Requirements for the Natural Phenomena Hazard (NPH) mitigation for new and existing Department of Energy (DOE) facilities are outlined in DOE Order 420.1. This report examines the hazards posed by potential flooding and represents an update to two previous reports. The facility-specific probabilistic flood hazard curve is defined as the water elevation for each annual probability of precipitation occurrence (or inversely, the return period in years). New design hyetographs for both 6-hr and 24-hr precipitation distributions were used in conjunction with hydrological models of various basins within the Savannah River Site (SRS). For numerous locations of interest, peak flow dischargemore » and flood water elevation were determined. In all cases, the probability of flooding of these facilities for a 100,000 year precipitation event is negligible.« less
Assessment of global flood exposures - developing an appropriate approach
NASA Astrophysics Data System (ADS)
Millinship, Ian; Booth, Naomi
2015-04-01
Increasingly complex probabilistic catastrophe models have become the standard for quantitative flood risk assessments by re/insurance companies. On the one hand, probabilistic modelling of this nature is extremely useful; a large range of risk metrics can be output. However, they can be time consuming and computationally expensive to develop and run. Levels of uncertainty are persistently high despite, or perhaps because of, attempts to increase resolution and complexity. A cycle of dependency between modelling companies and re/insurers has developed whereby available models are purchased, models run, and both portfolio and model data 'improved' every year. This can lead to potential exposures in perils and territories that are not currently modelled being largely overlooked by companies, who may then face substantial and unexpected losses when large events occur in these areas. We present here an approach to assessing global flood exposures which reduces the scale and complexity of approach used and begins with the identification of hotspots where there is a significant exposure to flood risk. The method comprises four stages: i) compile consistent exposure information, ii) to apply reinsurance terms and conditions to calculate values exposed, iii) to assess the potential hazard using a global set of flood hazard maps, and iv) to identify potential risk 'hotspots' which include considerations of spatially and/or temporally clustered historical events, and local flood defences. This global exposure assessment is designed as a scoping exercise, and reveals areas or cities where the potential for accumulated loss is of significant interest to a reinsurance company, and for which there is no existing catastrophe model. These regions are then candidates for the development of deterministic scenarios, or probabilistic models. The key advantages of this approach will be discussed. These include simplicity and ability of business leaders to understand results, as well as ease and speed of analysis and the advantages this can offer in terms of monitoring changing exposures over time. Significantly, in many areas of the world, this increase in exposure is likely to have more of an impact on increasing catastrophe losses than potential anthropogenically driven changes in weather extremes.
Tsunamis: Global Exposure and Local Risk Analysis
NASA Astrophysics Data System (ADS)
Harbitz, C. B.; Løvholt, F.; Glimsdal, S.; Horspool, N.; Griffin, J.; Davies, G.; Frauenfelder, R.
2014-12-01
The 2004 Indian Ocean tsunami led to a better understanding of the likelihood of tsunami occurrence and potential tsunami inundation, and the Hyogo Framework for Action (HFA) was one direct result of this event. The United Nations International Strategy for Disaster Risk Reduction (UN-ISDR) adopted HFA in January 2005 in order to reduce disaster risk. As an instrument to compare the risk due to different natural hazards, an integrated worldwide study was implemented and published in several Global Assessment Reports (GAR) by UN-ISDR. The results of the global earthquake induced tsunami hazard and exposure analysis for a return period of 500 years are presented. Both deterministic and probabilistic methods (PTHA) are used. The resulting hazard levels for both methods are compared quantitatively for selected areas. The comparison demonstrates that the analysis is rather rough, which is expected for a study aiming at average trends on a country level across the globe. It is shown that populous Asian countries account for the largest absolute number of people living in tsunami prone areas, more than 50% of the total exposed people live in Japan. Smaller nations like Macao and the Maldives are among the most exposed by population count. Exposed nuclear power plants are limited to Japan, China, India, Taiwan, and USA. On the contrary, a local tsunami vulnerability and risk analysis applies information on population, building types, infrastructure, inundation, flow depth for a certain tsunami scenario with a corresponding return period combined with empirical data on tsunami damages and mortality. Results and validation of a GIS tsunami vulnerability and risk assessment model are presented. The GIS model is adapted for optimal use of data available for each study. Finally, the importance of including landslide sources in the tsunami analysis is also discussed.
NASA Astrophysics Data System (ADS)
Gülerce, Zeynep; Buğra Soyman, Kadir; Güner, Barış; Kaymakci, Nuretdin
2017-12-01
This contribution provides an updated planar seismic source characterization (SSC) model to be used in the probabilistic seismic hazard assessment (PSHA) for Istanbul. It defines planar rupture systems for the four main segments of the North Anatolian fault zone (NAFZ) that are critical for the PSHA of Istanbul: segments covering the rupture zones of the 1999 Kocaeli and Düzce earthquakes, central Marmara, and Ganos/Saros segments. In each rupture system, the source geometry is defined in terms of fault length, fault width, fault plane attitude, and segmentation points. Activity rates and the magnitude recurrence models for each rupture system are established by considering geological and geodetic constraints and are tested based on the observed seismicity that is associated with the rupture system. Uncertainty in the SSC model parameters (e.g., b value, maximum magnitude, slip rate, weights of the rupture scenarios) is considered, whereas the uncertainty in the fault geometry is not included in the logic tree. To acknowledge the effect of earthquakes that are not associated with the defined rupture systems on the hazard, a background zone is introduced and the seismicity rates in the background zone are calculated using smoothed-seismicity approach. The state-of-the-art SSC model presented here is the first fully documented and ready-to-use fault-based SSC model developed for the PSHA of Istanbul.
Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.
Application of Risk Assessment Tools in the Continuous Risk Management (CRM) Process
NASA Technical Reports Server (NTRS)
Ray, Paul S.
2002-01-01
Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) is currently implementing the Continuous Risk Management (CRM) Program developed by the Carnegie Mellon University and recommended by NASA as the Risk Management (RM) implementation approach. The four most frequently used risk assessment tools in the center are: (a) Failure Modes and Effects Analysis (FMEA), Hazard Analysis (HA), Fault Tree Analysis (FTA), and Probabilistic Risk Analysis (PRA). There are some guidelines for selecting the type of risk assessment tools during the project formulation phase of a project, but there is not enough guidance as to how to apply these tools in the Continuous Risk Management process (CRM). But the ways the safety and risk assessment tools are used make a significant difference in the effectiveness in the risk management function. Decisions regarding, what events are to be included in the analysis, to what level of details should the analysis be continued, make significant difference in the effectiveness of risk management program. Tools of risk analysis also depends on the phase of a project e.g. at the initial phase of a project, when not much data are available on hardware, standard FMEA cannot be applied; instead a functional FMEA may be appropriate. This study attempted to provide some directives to alleviate the difficulty in applying FTA, PRA, and FMEA in the CRM process. Hazard Analysis was not included in the scope of the study due to the short duration of the summer research project.
Seaside, Oregon, Tsunami Pilot Study-Modernization of FEMA Flood Hazard Maps: GIS Data
Wong, Florence L.; Venturato, Angie J.; Geist, Eric L.
2006-01-01
Introduction: The Federal Emergency Management Agency (FEMA) Federal Insurance Rate Map (FIRM) guidelines do not currently exist for conducting and incorporating tsunami hazard assessments that reflect the substantial advances in tsunami research achieved in the last two decades; this conclusion is the result of two FEMA-sponsored workshops and the associated Tsunami Focused Study (Chowdhury and others, 2005). Therefore, as part of FEMA's Map Modernization Program, a Tsunami Pilot Study was carried out in the Seaside/Gearhart, Oregon, area to develop an improved Probabilistic Tsunami Hazard Analysis (PTHA) methodology and to provide recommendations for improved tsunami hazard assessment guidelines (Tsunami Pilot Study Working Group, 2006). The Seaside area was chosen because it is typical of many coastal communities in the section of the Pacific Coast from Cape Mendocino to the Strait of Juan de Fuca, and because State agencies and local stakeholders expressed considerable interest in mapping the tsunami threat to this area. The study was an interagency effort by FEMA, U.S. Geological Survey, and the National Oceanic and Atmospheric Administration (NOAA), in collaboration with the University of Southern California, Middle East Technical University, Portland State University, Horning Geoscience, Northwest Hydraulics Consultants, and the Oregon Department of Geological and Mineral Industries. We present the spatial (geographic information system, GIS) data from the pilot study in standard GIS formats and provide files for visualization in Google Earth, a global map viewer.
Future trends in flood risk in Indonesia - A probabilistic approach
NASA Astrophysics Data System (ADS)
Muis, Sanne; Guneralp, Burak; Jongman, Brenden; Ward, Philip
2014-05-01
Indonesia is one of the 10 most populous countries in the world and is highly vulnerable to (river) flooding. Catastrophic floods occur on a regular basis; total estimated damages were US 0.8 bn in 2010 and US 3 bn in 2013. Large parts of Greater Jakarta, the capital city, are annually subject to flooding. Flood risks (i.e. the product of hazard, exposure and vulnerability) are increasing due to rapid increases in exposure, such as strong population growth and ongoing economic development. The increase in risk may also be amplified by increasing flood hazards, such as increasing flood frequency and intensity due to climate change and land subsidence. The implementation of adaptation measures, such as the construction of dykes and strategic urban planning, may counteract these increasing trends. However, despite its importance for adaptation planning, a comprehensive assessment of current and future flood risk in Indonesia is lacking. This contribution addresses this issue and aims to provide insight into how socio-economic trends and climate change projections may shape future flood risks in Indonesia. Flood risk were calculated using an adapted version of the GLOFRIS global flood risk assessment model. Using this approach, we produced probabilistic maps of flood risks (i.e. annual expected damage) at a resolution of 30"x30" (ca. 1km x 1km at the equator). To represent flood exposure, we produced probabilistic projections of urban growth in a Monte-Carlo fashion based on probability density functions of projected population and GDP values for 2030. To represent flood hazard, inundation maps were computed using the hydrological-hydraulic component of GLOFRIS. These maps show flood inundation extent and depth for several return periods and were produced for several combinations of GCMs and future socioeconomic scenarios. Finally, the implementation of different adaptation strategies was incorporated into the model to explore to what extent adaptation may be able to decrease future risks. Preliminary results show that the urban extent in Indonesia is projected to increase within 211 to 351% over the period 2000-2030 (5 and 95 percentile). Mainly driven by this rapid urbanization, potential flood losses in Indonesia increase rapidly and are primarily concentrated on the island of Java. The results reveal the large risk-reducing potential of adaptation measures. Since much of the urban development between 2000 and 2030 takes place in flood-prone areas, strategic urban planning (i.e. building in safe areas) may significantly reduce the urban population and infrastructure exposed to flooding. We conclude that a probabilistic risk approach in future flood risk assessment is vital; the drivers behind risk trends (exposure, hazard, vulnerability) should be understood to develop robust and efficient adaptation pathways.
NASA Astrophysics Data System (ADS)
Odbert, Henry; Aspinall, Willy
2014-05-01
Evidence-based hazard assessment at volcanoes assimilates knowledge about the physical processes of hazardous phenomena and observations that indicate the current state of a volcano. Incorporating both these lines of evidence can inform our belief about the likelihood (probability) and consequences (impact) of possible hazardous scenarios, forming a basis for formal quantitative hazard assessment. However, such evidence is often uncertain, indirect or incomplete. Approaches to volcano monitoring have advanced substantially in recent decades, increasing the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Interpreting these multiple strands of parallel, partial evidence thus becomes increasingly complex. In practice, interpreting many timeseries requires an individual to be familiar with the idiosyncrasies of the volcano, monitoring techniques, configuration of recording instruments, observations from other datasets, and so on. In making such interpretations, an individual must consider how different volcanic processes may manifest as measureable observations, and then infer from the available data what can or cannot be deduced about those processes. We examine how parts of this process may be synthesised algorithmically using Bayesian inference. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple strands of evidence (e.g. observations, model results and interpretations) and their associated uncertainties in a methodical manner. BBNs are usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic data from the long-lived eruption at Soufriere Hills Volcano, Montserrat. We discuss the uncertainty of inferences, and how our method provides a route to formal propagation of uncertainties in hazard models. Such approaches provide an attractive route to developing an interface between volcano monitoring analyses and probabilistic hazard scenario analysis. We discuss the use of BBNs in hazard analysis as a tractable and traceable tool for fast, rational assimilation of complex, multi-parameter data sets in the context of timely volcanic crisis decision support.
NASA Astrophysics Data System (ADS)
Odbert, Henry; Hincks, Thea; Aspinall, Willy
2015-04-01
Volcanic hazard assessments must combine information about the physical processes of hazardous phenomena with observations that indicate the current state of a volcano. Incorporating both these lines of evidence can inform our belief about the likelihood (probability) and consequences (impact) of possible hazardous scenarios, forming a basis for formal quantitative hazard assessment. However, such evidence is often uncertain, indirect or incomplete. Approaches to volcano monitoring have advanced substantially in recent decades, increasing the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Interpreting these multiple strands of parallel, partial evidence thus becomes increasingly complex. In practice, interpreting many timeseries requires an individual to be familiar with the idiosyncrasies of the volcano, monitoring techniques, configuration of recording instruments, observations from other datasets, and so on. In making such interpretations, an individual must consider how different volcanic processes may manifest as measureable observations, and then infer from the available data what can or cannot be deduced about those processes. We examine how parts of this process may be synthesised algorithmically using Bayesian inference. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple strands of evidence (e.g. observations, model results and interpretations) and their associated uncertainties in a methodical manner. BBNs are usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic data from the long-lived eruption at Soufriere Hills Volcano, Montserrat. We show how our method provides a route to formal propagation of uncertainties in hazard models. Such approaches provide an attractive route to developing an interface between volcano monitoring analyses and probabilistic hazard scenario analysis. We discuss the use of BBNs in hazard analysis as a tractable and traceable tool for fast, rational assimilation of complex, multi-parameter data sets in the context of timely volcanic crisis decision support.
Probabilistic QoS Analysis In Wireless Sensor Networks
2012-04-01
and A.O. Fapojuwo. TDMA scheduling with optimized energy efficiency and minimum delay in clustered wireless sensor networks . IEEE Trans. on Mobile...Research Computer Science and Engineering, Department of 5-1-2012 Probabilistic QoS Analysis in Wireless Sensor Networks Yunbo Wang University of...Wang, Yunbo, "Probabilistic QoS Analysis in Wireless Sensor Networks " (2012). Computer Science and Engineering: Theses, Dissertations, and Student
Process for computing geometric perturbations for probabilistic analysis
Fitch, Simeon H. K. [Charlottesville, VA; Riha, David S [San Antonio, TX; Thacker, Ben H [San Antonio, TX
2012-04-10
A method for computing geometric perturbations for probabilistic analysis. The probabilistic analysis is based on finite element modeling, in which uncertainties in the modeled system are represented by changes in the nominal geometry of the model, referred to as "perturbations". These changes are accomplished using displacement vectors, which are computed for each node of a region of interest and are based on mean-value coordinate calculations.
Conceptual Development of a National Volcanic Hazard Model for New Zealand
NASA Astrophysics Data System (ADS)
Stirling, Mark; Bebbington, Mark; Brenna, Marco; Cronin, Shane; Christophersen, Annemarie; Deligne, Natalia; Hurst, Tony; Jolly, Art; Jolly, Gill; Kennedy, Ben; Kereszturi, Gabor; Lindsay, Jan; Neall, Vince; Procter, Jonathan; Rhoades, David; Scott, Brad; Shane, Phil; Smith, Ian; Smith, Richard; Wang, Ting; White, James D. L.; Wilson, Colin J. N.; Wilson, Tom
2017-06-01
We provide a synthesis of a workshop held in February 2016 to define the goals, challenges and next steps for developing a national probabilistic volcanic hazard model for New Zealand. The workshop involved volcanologists, statisticians, and hazards scientists from GNS Science, Massey University, University of Otago, Victoria University of Wellington, University of Auckland, and University of Canterbury. We also outline key activities that will develop the model components, define procedures for periodic update of the model, and effectively articulate the model to end-users and stakeholders. The development of a National Volcanic Hazard Model is a formidable task that will require long-term stability in terms of team effort, collaboration and resources. Development of the model in stages or editions that are modular will make the process a manageable one that progressively incorporates additional volcanic hazards over time, and additional functionalities (e.g. short-term forecasting). The first edition is likely to be limited to updating and incorporating existing ashfall hazard models, with the other hazards associated with lahar, pyroclastic density currents, lava flow, ballistics, debris avalanche, and gases/aerosols being considered in subsequent updates.
NASA Astrophysics Data System (ADS)
Kataoka, Norio; Kasama, Kiyonobu; Zen, Kouki; Chen, Guangqi
This paper presents a probabilistic method for assessi ng the liquefaction risk of cement-treated ground, which is an anti-liquefaction ground improved by cemen t-mixing. In this study, the liquefaction potential of cement-treated ground is analyzed statistically using Monte Carlo Simulation based on the nonlinear earthquake response analysis consid ering the spatial variability of so il properties. The seismic bearing capacity of partially liquefied ground is analyzed in order to estimat e damage costs induced by partial liquefaction. Finally, the annual li quefaction risk is calcu lated by multiplying the liquefaction potential with the damage costs. The results indicated that the proposed new method enables to evaluate the probability of liquefaction, to estimate the damage costs using the hazard curv e, fragility curve induced by liquefaction, and liq uefaction risk curve.
NASA Astrophysics Data System (ADS)
Wang, Chunxiang; Watanabe, Naoki; Marui, Hideaki
2013-04-01
The hilly slopes of Mt. Medvednica are stretched in the northwestern part of Zagreb City, Croatia, and extend to approximately 180km2. In this area, landslides, e.g. Kostanjek landslide and Črešnjevec landslide, have brought damage to many houses, roads, farmlands, grassland and etc. Therefore, it is necessary to predict the potential landslides and to enhance landslide inventory for hazard mitigation and security management of local society in this area. We combined deterministic method and probabilistic method to assess potential landslides including their locations, size and sliding surfaces. Firstly, this study area is divided into several slope units that have similar topographic and geological characteristics using the hydrology analysis tool in ArcGIS. Then, a GIS-based modified three-dimensional Hovland's method for slope stability analysis system is developed to identify the sliding surface and corresponding three-dimensional safety factor for each slope unit. Each sliding surface is assumed to be the lower part of each ellipsoid. The direction of inclination of the ellipsoid is considered to be the same as the main dip direction of the slope unit. The center point of the ellipsoid is randomly set to the center point of a grid cell in the slope unit. The minimum three-dimensional safety factor and corresponding critical sliding surface are also obtained for each slope unit. Thirdly, since a single value of safety factor is insufficient to evaluate the slope stability of a slope unit, the ratio of the number of calculation cases in which the three-dimensional safety factor values less than 1.0 to the total number of trial calculation is defined as the failure probability of the slope unit. If the failure probability is more than 80%, the slope unit is distinguished as 'unstable' from other slope units and the landslide hazard can be mapped for the whole study area.
Spectral amplification models for response spectrum addressing the directivity effect
NASA Astrophysics Data System (ADS)
Moghimi, Saed; Akkar, Sinan
2017-04-01
Ground motions with forward directivity effects are known with their significantly large spectral ordinates in medium-to-long periods. The large spectral ordinates stem from the impulsive characteristics of the forward directivity ground motions. The quantification of these spectral amplifications requires the identification of major seismological parameters that play a role in their generation. After running a suite of probabilistic seismic hazard analysis, Moghimi and Akkar (2016) have shown that fault slip rate, fault characteristic magnitude, fault-site geometry as well as mean annual exceedance rate are important parameters that determine the level of spectral amplification due to directivity. These parameters are considered to develop two separate spectral amplification equations in this study. The proposed equations rely on Shahi and Baker (SHB11; 2011) and Chiou and Spudich (CHS13; Spudic et al., 2013) narrow-band forward directivity models. The presented equations only focus on the estimation of maximum spectral amplifications that occur at the ends of the fault segments. This way we eliminate the fault-site parameter in our equations for simplification. The proposed equations show different trends due to differences in the narrow-band directivity models of SHB11 and CHS13. The equations given in this study can form bases for describing forward directivity effects in seismic design codes. REFERENCES Shahi. S., Baker, J.W. (2011), "An Empirically Calibrated Framework for Including the Effects of Near-Fault Directivity in Probabilistic Seismic Hazard Analysis", Bulletin of the Seismological Society of America, 101(2): 742-755. Spudich, P., Watson-Lamprey, J., Somerville, P., Bayless, J., Shahi, S. K., Baker, J. W., Rowshandel, B., and Chiou, B. (2013), "Final Report of the NGA-West2 Directivity Working Group", PEER Report 2013/09. Moghimi. S., Akkar, S. (2016), "Implications of Forward Directivity Effects on Design Ground Motions", Seismological Society of America, Annual meeting, 2016, Reno, Nevada, 87:2B Pg. 464
Probabilistic Seismic Hazard Assessment for Iraq Using Complete Earthquake Catalogue Files
NASA Astrophysics Data System (ADS)
Ameer, A. S.; Sharma, M. L.; Wason, H. R.; Alsinawi, S. A.
2005-05-01
Probabilistic seismic hazard analysis (PSHA) has been carried out for Iraq. The earthquake catalogue used in the present study covers an area between latitude 29° 38.5° N and longitude 39° 50° E containing more than a thousand events for the period 1905 2000. The entire Iraq region has been divided into thirteen seismogenic sources based on their seismic characteristics, geological setting and tectonic framework. The completeness of the seismicity catalogue has been checked using the method proposed by Stepp (1972). The analysis of completeness shows that the earthquake catalogue is not complete below Ms=4.8 for all of Iraq and seismic source zones S1, S4, S5, and S8, while it varies for the other seismic zones. A statistical treatment of completeness of the data file was carried out in each of the magnitude classes. The Frequency Magnitude Distributions (FMD) for the study area including all seismic source zones were established and the minimum magnitude of complete reporting (Mc) were then estimated. For the entire Iraq the Mc was estimated to be about Ms=4.0 while S11 shows the lowest Mc to be about Ms=3.5 and the highest Mc of about Ms=4.2 was observed for S4. The earthquake activity parameters (activity rate λ, b value, maximum regional magnitude mmax) as well as the mean return period (R) with a certain lower magnitude mmin ≥ m along with their probability of occurrence have been determined for all thirteen seismic source zones of Iraq. The maximum regional magnitude mmax was estimated as 7.87 ± 0.86 for entire Iraq. The return period for magnitude 6.0 is largest for source zone S3 which is estimated to be 705 years while the smallest value is estimated as 9.9 years for all of Iraq.
MASTODON: A geosciences simulation tool built using the open-source framework MOOSE
NASA Astrophysics Data System (ADS)
Slaughter, A.
2017-12-01
The Department of Energy (DOE) is currently investing millions of dollars annually into various modeling and simulation tools for all aspects of nuclear energy. An important part of this effort includes developing applications based on the open-source Multiphysics Object Oriented Simulation Environment (MOOSE; mooseframework.org) from Idaho National Laboratory (INL).Thanks to the efforts of the DOE and outside collaborators, MOOSE currently contains a large set of physics modules, including phase field, level set, heat conduction, tensor mechanics, Navier-Stokes, fracture (extended finite-element method), and porous media, among others. The tensor mechanics and contact modules, in particular, are well suited for nonlinear geosciences problems. Multi-hazard Analysis for STOchastic time-DOmaiN phenomena (MASTODON; https://seismic-research.inl.gov/SitePages/Mastodon.aspx)--a MOOSE-based application--is capable of analyzing the response of 3D soil-structure systems to external hazards with current development focused on earthquakes. It is capable of simulating seismic events and can perform extensive "source-to-site" simulations including earthquake fault rupture, nonlinear wave propagation, and nonlinear soil-structure interaction analysis. MASTODON also includes a dynamic probabilistic risk assessment capability that enables analysts to not only perform deterministic analyses, but also easily perform probabilistic or stochastic simulations for the purpose of risk assessment. Although MASTODON has been developed for the nuclear industry, it can be used to assess the risk for any structure subjected to earthquakes.The geosciences community can learn from the nuclear industry and harness the enormous effort underway to build simulation tools that are open, modular, and share a common framework. In particular, MOOSE-based multiphysics solvers are inherently parallel, dimension agnostic, adaptive in time and space, fully coupled, and capable of interacting with other applications. The geosciences community could benefit from existing tools by enabling collaboration between researchers and practitioners throughout the world and advance the state-of-the-art in line with other scientific research efforts.
Probabilistic structural analysis using a general purpose finite element program
NASA Astrophysics Data System (ADS)
Riha, D. S.; Millwater, H. R.; Thacker, B. H.
1992-07-01
This paper presents an accurate and efficient method to predict the probabilistic response for structural response quantities, such as stress, displacement, natural frequencies, and buckling loads, by combining the capabilities of MSC/NASTRAN, including design sensitivity analysis and fast probability integration. Two probabilistic structural analysis examples have been performed and verified by comparison with Monte Carlo simulation of the analytical solution. The first example consists of a cantilevered plate with several point loads. The second example is a probabilistic buckling analysis of a simply supported composite plate under in-plane loading. The coupling of MSC/NASTRAN and fast probability integration is shown to be orders of magnitude more efficient than Monte Carlo simulation with excellent accuracy.
NASA Astrophysics Data System (ADS)
Peng, Chi; Cai, Yimin; Wang, Tieyu; Xiao, Rongbo; Chen, Weiping
2016-11-01
In this study, we proposed a Regional Probabilistic Risk Assessment (RPRA) to estimate the health risks of exposing residents to heavy metals in different environmental media and land uses. The mean and ranges of heavy metal concentrations were measured in water, sediments, soil profiles and surface soils under four land uses along the Shunde Waterway, a drinking water supply area in China. Hazard quotients (HQs) were estimated for various exposure routes and heavy metal species. Riverbank vegetable plots and private vegetable plots had 95th percentiles of total HQs greater than 3 and 1, respectively, indicating high risks of cultivation on the flooded riverbank. Vegetable uptake and leaching to groundwater were the two transfer routes of soil metals causing high health risks. Exposure risks during outdoor recreation, farming and swimming along the Shunde Waterway are theoretically safe. Arsenic and cadmium were identified as the priority pollutants that contribute the most risk among the heavy metals. Sensitivity analysis showed that the exposure route, variations in exposure parameters, mobility of heavy metals in soil, and metal concentrations all influenced the risk estimates.
NASA Astrophysics Data System (ADS)
Saad, S. M.; Shakaff, A. Y. M.; Saad, A. R. M.; Yusof, A. M.; Andrew, A. M.; Zakaria, A.; Adom, A. H.
2017-03-01
There are various sources influencing indoor air quality (IAQ) which could emit dangerous gases such as carbon monoxide (CO), carbon dioxide (CO2), ozone (O3) and particulate matter. These gases are usually safe for us to breathe in if they are emitted in safe quantity but if the amount of these gases exceeded the safe level, they might be hazardous to human being especially children and people with asthmatic problem. Therefore, a smart indoor air quality monitoring system (IAQMS) is needed that able to tell the occupants about which sources that trigger the indoor air pollution. In this project, an IAQMS that able to classify sources influencing IAQ has been developed. This IAQMS applies a classification method based on Probabilistic Neural Network (PNN). It is used to classify the sources of indoor air pollution based on five conditions: ambient air, human activity, presence of chemical products, presence of food and beverage, and presence of fragrance. In order to get good and best classification accuracy, an analysis of several feature selection based on data pre-processing method is done to discriminate among the sources. The output from each data pre-processing method has been used as the input for the neural network. The result shows that PNN analysis with the data pre-processing method give good classification accuracy of 99.89% and able to classify the sources influencing IAQ high classification rate.
NASA Astrophysics Data System (ADS)
Wyss, Max
2013-04-01
An earthquake of M6.3 killed 309 people in L'Aquila, Italy, on 6 April 2011. Subsequently, a judge in L'Aquila convicted seven who had participated in an emergency meeting on March 30, assessing the probability of a major event to follow the ongoing earthquake swarm. The sentence was six years in prison, a combine fine of 2 million Euros, loss of job, loss of retirement rent, and lawyer's costs. The judge followed the prosecution's accusation that the review by the Commission of Great Risks had conveyed a false sense of security to the population, which consequently did not take their usual precautionary measures before the deadly earthquake. He did not consider the facts that (1) one of the convicted was not a member of the commission and had merrily obeyed orders to bring the latest seismological facts to the discussion, (2) another was an engineer who was not required to have any expertise regarding the probability of earthquakes, (3) and two others were seismologists not invited to speak to the public at a TV interview and a press conference. This exaggerated judgment was the consequence of an uproar in the population, who felt misinformed and even mislead. Faced with a population worried by an earthquake swarm, the head of the Italian Civil Defense is on record ordering that the population be calmed, and the vice head executed this order in a TV interview one hour before the meeting of the Commission by stating "the scientific community continues to tell me that the situation is favorable and that there is a discharge of energy." The first lesson to be learned is that communications to the public about earthquake hazard and risk must not be left in the hands of someone who has gross misunderstandings about seismology. They must be carefully prepared by experts. The more significant lesson is that the approach to calm the population and the standard probabilistic hazard and risk assessment, as practiced by GSHAP, are misleading. The later has been criticized as being incorrect for scientific reasons and here I argue that it is also ineffective for psychological reasons. Instead of calming the people or by underestimating the hazard in strongly active areas by the GSHAP approach, they should be told quantitatively the consequences of the reasonably worst case and be motivated to prepare for it, whether or not it may hit the present or the next generation. In a worst case scenario for L'Aquila, the number of expected fatalities and injured should have been calculated for an event in the range of M6.5 to M7, as I did for a civil defense exercise in Umbria, Italy. With the prospect that approximately 500 people may die in an earthquake in the immediate or distant future, some residents might have built themselves an earthquake closet (similar to a simple tornado shelter) in a corner of their apartment, into which they might have dashed to safety at the onset of the P-wave before the destructive S-wave arrived. I conclude that in earthquake prone areas quantitative loss estimates due to a reasonable worst case earthquake should replace probabilistic hazard and risk estimates. This is a service, which experts owe the community. Insurance companies and academics may still find use for probabilistic estimates of losses, especially in areas of low seismic hazard, where the worst case scenario approach is less appropriate.
Probabilistic Seismic Hazard Assessment for a NPP in the Upper Rhine Graben, France
NASA Astrophysics Data System (ADS)
Clément, Christophe; Chartier, Thomas; Jomard, Hervé; Baize, Stéphane; Scotti, Oona; Cushing, Edward
2015-04-01
The southern part of the Upper Rhine Graben (URG) straddling the border between eastern France and western Germany, presents a relatively important seismic activity for an intraplate area. A magnitude 5 or greater shakes the URG every 25 years and in 1356 a magnitude greater than 6.5 struck the city of Basel. Several potentially active faults have been identified in the area and documented in the French Active Fault Database (web site in construction). These faults are located along the Graben boundaries and also inside the Graben itself, beneath heavily populated areas and critical facilities (including the Fessenheim Nuclear Power Plant). These faults are prone to produce earthquakes with magnitude 6 and above. Published regional models and preliminary geomorphological investigations provided provisional assessment of slip rates for the individual faults (0.1-0.001 mm/a) resulting in recurrence time of 10 000 years or greater for magnitude 6+ earthquakes. Using a fault model, ground motion response spectra are calculated for annual frequencies of exceedance (AFE) ranging from 10-4 to 10-8 per year, typical for design basis and probabilistic safety analyses of NPPs. A logic tree is implemented to evaluate uncertainties in seismic hazard assessment. The choice of ground motion prediction equations (GMPEs) and range of slip rate uncertainty are the main sources of seismic hazard variability at the NPP site. In fact, the hazard for AFE lower than 10-4 is mostly controlled by the potentially active nearby Rhine River fault. Compared with areal source zone models, a fault model localizes the hazard around the active faults and changes the shape of the Uniform Hazard Spectrum at the site. Seismic hazard deaggregations are performed to identify the earthquake scenarios (including magnitude, distance and the number of standard deviations from the median ground motion as predicted by GMPEs) that contribute to the exceedance of spectral acceleration for the different AFE levels. These scenarios are finally examined with respect to the seismicity data available in paleoseismic, historic and instrumental catalogues.
Seismic hazard and risk assessment for large Romanian dams situated in the Moldavian Platform
NASA Astrophysics Data System (ADS)
Moldovan, Iren-Adelina; Popescu, Emilia; Otilia Placinta, Anica; Petruta Constantin, Angela; Toma Danila, Dragos; Borleanu, Felix; Emilian Toader, Victorin; Moldoveanu, Traian
2016-04-01
Besides periodical technical inspections, the monitoring and the surveillance of dams' related structures and infrastructures, there are some more seismic specific requirements towards dams' safety. The most important one is the seismic risk assessment that can be accomplished by rating the dams into seismic risk classes using the theory of Bureau and Ballentine (2002), and Bureau (2003), taking into account the maximum expected peak ground motions at the dams site - values obtained using probabilistic hazard assessment approaches (Moldovan et al., 2008), the structures vulnerability and the downstream risk characteristics (human, economical, historic and cultural heritage, etc) in the areas that might be flooded in the case of a dam failure. Probabilistic seismic hazard (PSH), vulnerability and risk studies for dams situated in the Moldavian Platform, starting from Izvorul Muntelui Dam, down on Bistrita and following on Siret River and theirs affluent will be realized. The most vulnerable dams will be studied in detail and flooding maps will be drawn to find the most exposed downstream localities both for risk assessment studies and warnings. GIS maps that clearly indicate areas that are potentially flooded are enough for these studies, thus giving information on the number of inhabitants and goods that may be destroyed. Geospatial servers included topography is sufficient to achieve them, all other further studies are not necessary for downstream risk assessment. The results will consist of local and regional seismic information, dams specific characteristics and locations, seismic hazard maps and risk classes, for all dams sites (for more than 30 dams), inundation maps (for the most vulnerable dams from the region) and possible affected localities. The studies realized in this paper have as final goal to provide the local emergency services with warnings of a potential dam failure and ensuing flood as a result of an large earthquake occurrence, allowing further public training for evacuation. The work is supported from PNII/PCCA 2013 Project DARING 69/2014, financed by UEFISCDI, Romania. Bureau GJ (2003) "Dams and appurtenant facilities" Earthquake Engineering Handbook, CRS Press, WF Chen, and C Scawthorn (eds.), Boca Raton, pp. 26.1-26.47. Bureau GJ and Ballentine GD (2002) "A comprehensive seismic vulnerability and loss assessment of the State of Carolina using HAZUS. Part IV: Dam inventory and vulnerability assessment methodology", 7th National Conference on Earthquake Engineering, July 21-25, Boston, Earthquake Engineering Research Institute, Oakland, CA. Moldovan IA, Popescu E, Constantin A (2008), "Probabilistic seismic hazard assessment in Romania: application for crustal seismic active zones", Romanian Journal of Physics, Vol.53, Nos. 3-4
Seismic hazard in Hawaii: High rate of large earthquakes and probabilistics ground-motion maps
Klein, F.W.; Frankel, A.D.; Mueller, C.S.; Wesson, R.L.; Okubo, P.G.
2001-01-01
The seismic hazard and earthquake occurrence rates in Hawaii are locally as high as that near the most hazardous faults elsewhere in the United States. We have generated maps of peak ground acceleration (PGA) and spectral acceleration (SA) (at 0.2, 0.3 and 1.0 sec, 5% critical damping) at 2% and 10% exceedance probabilities in 50 years. The highest hazard is on the south side of Hawaii Island, as indicated by the MI 7.0, MS 7.2, and MI 7.9 earthquakes, which occurred there since 1868. Probabilistic values of horizontal PGA (2% in 50 years) on Hawaii's south coast exceed 1.75g. Because some large earthquake aftershock zones and the geometry of flank blocks slipping on subhorizontal decollement faults are known, we use a combination of spatially uniform sources in active flank blocks and smoothed seismicity in other areas to model seismicity. Rates of earthquakes are derived from magnitude distributions of the modem (1959-1997) catalog of the Hawaiian Volcano Observatory's seismic network supplemented by the historic (1868-1959) catalog. Modern magnitudes are ML measured on a Wood-Anderson seismograph or MS. Historic magnitudes may add ML measured on a Milne-Shaw or Bosch-Omori seismograph or MI derived from calibrated areas of MM intensities. Active flank areas, which by far account for the highest hazard, are characterized by distributions with b slopes of about 1.0 below M 5.0 and about 0.6 above M 5.0. The kinked distribution means that large earthquake rates would be grossly under-estimated by extrapolating small earthquake rates, and that longer catalogs are essential for estimating or verifying the rates of large earthquakes. Flank earthquakes thus follow a semicharacteristic model, which is a combination of background seismicity and an excess number of large earthquakes. Flank earthquakes are geometrically confined to rupture zones on the volcano flanks by barriers such as rift zones and the seaward edge of the volcano, which may be expressed by a magnitude distribution similar to that including characteristic earthquakes. The island chain northwest of Hawaii Island is seismically and volcanically much less active. We model its seismic hazard with a combination of a linearly decaying ramp fit to the cataloged seismicity and spatially smoothed seismicity with a smoothing half-width of 10 km. We use a combination of up to four attenuation relations for each map because for either PGA or SA, there is no single relation that represents ground motion for all distance and magnitude ranges. Great slumps and landslides visible on the ocean floor correspond to catastrophes with effective energy magnitudes ME above 8.0. A crude estimate of their frequency suggests that the probabilistic earthquake hazard is at least an order of magnitude higher for flank earthquakes than that from submarine slumps.
Operational Earthquake Forecasting and Decision-Making in a Low-Probability Environment
NASA Astrophysics Data System (ADS)
Jordan, T. H.; the International Commission on Earthquake ForecastingCivil Protection
2011-12-01
Operational earthquake forecasting (OEF) is the dissemination of authoritative information about the time dependence of seismic hazards to help communities prepare for potentially destructive earthquakes. Most previous work on the public utility of OEF has anticipated that forecasts would deliver high probabilities of large earthquakes; i.e., deterministic predictions with low error rates (false alarms and failures-to-predict) would be possible. This expectation has not been realized. An alternative to deterministic prediction is probabilistic forecasting based on empirical statistical models of aftershock triggering and seismic clustering. During periods of high seismic activity, short-term earthquake forecasts can attain prospective probability gains in excess of 100 relative to long-term forecasts. The utility of such information is by no means clear, however, because even with hundredfold increases, the probabilities of large earthquakes typically remain small, rarely exceeding a few percent over forecasting intervals of days or weeks. Civil protection agencies have been understandably cautious in implementing OEF in this sort of "low-probability environment." The need to move more quickly has been underscored by recent seismic crises, such as the 2009 L'Aquila earthquake sequence, in which an anxious public was confused by informal and inaccurate earthquake predictions. After the L'Aquila earthquake, the Italian Department of Civil Protection appointed an International Commission on Earthquake Forecasting (ICEF), which I chaired, to recommend guidelines for OEF utilization. Our report (Ann. Geophys., 54, 4, 2011; doi: 10.4401/ag-5350) concludes: (a) Public sources of information on short-term probabilities should be authoritative, scientific, open, and timely, and need to convey epistemic uncertainties. (b) Earthquake probabilities should be based on operationally qualified, regularly updated forecasting systems. (c) All operational models should be evaluated for reliability and skill by retrospective testing, and the models should be under continuous prospective testing against long-term forecasts and alternative time-dependent models. (d) Short-term models used in operational forecasting should be consistent with the long-term forecasts used in probabilistic seismic hazard analysis. (e) Alert procedures should be standardized to facilitate decisions at different levels of government, based in part on objective analysis of costs and benefits. (f) In establishing alert protocols, consideration should also be given to the less tangible aspects of value-of-information, such as gains in psychological preparedness and resilience. Authoritative statements of increased risk, even when the absolute probability is low, can provide a psychological benefit to the public by filling information vacuums that lead to informal predictions and misinformation. Formal OEF procedures based on probabilistic forecasting appropriately separate hazard estimation by scientists from the decision-making role of civil protection authorities. The prosecution of seven Italian scientists on manslaughter charges stemming from their actions before the L'Aquila earthquake makes clear why this separation should be explicit in defining OEF protocols.
Statistical analysis of life history calendar data.
Eerola, Mervi; Helske, Satu
2016-04-01
The life history calendar is a data-collection tool for obtaining reliable retrospective data about life events. To illustrate the analysis of such data, we compare the model-based probabilistic event history analysis and the model-free data mining method, sequence analysis. In event history analysis, we estimate instead of transition hazards the cumulative prediction probabilities of life events in the entire trajectory. In sequence analysis, we compare several dissimilarity metrics and contrast data-driven and user-defined substitution costs. As an example, we study young adults' transition to adulthood as a sequence of events in three life domains. The events define the multistate event history model and the parallel life domains in multidimensional sequence analysis. The relationship between life trajectories and excess depressive symptoms in middle age is further studied by their joint prediction in the multistate model and by regressing the symptom scores on individual-specific cluster indices. The two approaches complement each other in life course analysis; sequence analysis can effectively find typical and atypical life patterns while event history analysis is needed for causal inquiries. © The Author(s) 2012.
Alternate Methods in Refining the SLS Nozzle Plug Loads
NASA Technical Reports Server (NTRS)
Burbank, Scott; Allen, Andrew
2013-01-01
Numerical analysis has shown that the SLS nozzle environmental barrier (nozzle plug) design is inadequate for the prelaunch condition, which consists of two dominant loads: 1) the main engines startup pressure and 2) an environmentally induced pressure. Efforts to reduce load conservatisms included a dynamic analysis which showed a 31% higher safety factor compared to the standard static analysis. The environmental load is typically approached with a deterministic method using the worst possible combinations of pressures and temperatures. An alternate probabilistic approach, utilizing the distributions of pressures and temperatures, resulted in a 54% reduction in the environmental pressure load. A Monte Carlo simulation of environmental load that used five years of historical pressure and temperature data supported the results of the probabilistic analysis, indicating the probabilistic load is reflective of a 3-sigma condition (1 in 370 probability). Utilizing the probabilistic load analysis eliminated excessive conservatisms and will prevent a future overdesign of the nozzle plug. Employing a similar probabilistic approach to other design and analysis activities can result in realistic yet adequately conservative solutions.
A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network
NASA Astrophysics Data System (ADS)
Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.
2018-02-01
Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.
Development of a new family of normalized modulus reduction and material damping curves
NASA Astrophysics Data System (ADS)
Darendeli, Mehmet Baris
2001-12-01
As part of various research projects [including the SRS (Savannah River Site) Project AA891070, EPRI (Electric Power Research Institute) Project 3302, and ROSRINE (Resolution of Site Response Issues from the Northridge Earthquake) Project], numerous geotechnical sites were drilled and sampled. Intact soil samples over a depth range of several hundred meters were recovered from 20 of these sites. These soil samples were tested in the laboratory at The University of Texas at Austin (UTA) to characterize the materials dynamically. The presence of a database accumulated from testing these intact specimens motivated a re-evaluation of empirical curves employed in the state of practice. The weaknesses of empirical curves reported in the literature were identified and the necessity of developing an improved set of empirical curves was recognized. This study focused on developing the empirical framework that can be used to generate normalized modulus reduction and material damping curves. This framework is composed of simple equations, which incorporate the key parameters that control nonlinear soil behavior. The data collected over the past decade at The University of Texas at Austin are statistically analyzed using First-order, Second-moment Bayesian Method (FSBM). The effects of various parameters (such as confining pressure and soil plasticity) on dynamic soil properties are evaluated and quantified within this framework. One of the most important aspects of this study is estimating not only the mean values of the empirical curves but also estimating the uncertainty associated with these values. This study provides the opportunity to handle uncertainty in the empirical estimates of dynamic soil properties within the probabilistic seismic hazard analysis framework. A refinement in site-specific probabilistic seismic hazard assessment is expected to materialize in the near future by incorporating the results of this study into state of practice.
Pollitz, F.F.; Schwartz, D.P.
2008-01-01
We construct a viscoelastic cycle model of plate boundary deformation that includes the effect of time-dependent interseismic strain accumulation, coseismic strain release, and viscoelastic relaxation of the substrate beneath the seismogenic crust. For a given fault system, time-averaged stress changes at any point (not on a fault) are constrained to zero; that is, kinematic consistency is enforced for the fault system. The dates of last rupture, mean recurrence times, and the slip distributions of the (assumed) repeating ruptures are key inputs into the viscoelastic cycle model. This simple formulation allows construction of stress evolution at all points in the plate boundary zone for purposes of probabilistic seismic hazard analysis (PSHA). Stress evolution is combined with a Coulomb failure stress threshold at representative points on the fault segments to estimate the times of their respective future ruptures. In our PSHA we consider uncertainties in a four-dimensional parameter space: the rupture peridocities, slip distributions, time of last earthquake (for prehistoric ruptures) and Coulomb failure stress thresholds. We apply this methodology to the San Francisco Bay region using a recently determined fault chronology of area faults. Assuming single-segment rupture scenarios, we find that fature rupture probabilities of area faults in the coming decades are the highest for the southern Hayward, Rodgers Creek, and northern Calaveras faults. This conclusion is qualitatively similar to that of Working Group on California Earthquake Probabilities, but the probabilities derived here are significantly higher. Given that fault rupture probabilities are highly model-dependent, no single model should be used to assess to time-dependent rupture probabilities. We suggest that several models, including the present one, be used in a comprehensive PSHA methodology, as was done by Working Group on California Earthquake Probabilities.
A probabilistic assessment of waste water injection induced seismicity in central California
NASA Astrophysics Data System (ADS)
Goebel, T.; Hauksson, E.; Ampuero, J. P.; Aminzadeh, F.; Cappa, F.; Saleeby, J.
2014-12-01
The recent, large increase in seismic activity within the central and eastern U.S. may be connected to an increase in fluid injection activity since ~2001. Anomalous seismic sequences can easily be identified in regions with low background seismicity rates. Here, we analyze seismicity in plate boundary regions where tectonically-driven earthquake sequences are common, potentially masking injection-induced events. We show results from a comprehensive analysis of waste water disposal wells in Kern county, the largest oil-producing county in California. We focus on spatial-temporal correlations between seismic and injection activity and seismicity-density changes due to injection. We perform a probabilistic assessment of induced vs. tectonic earthquakes, which can be applied to different regions independent of background rates and may provide insights into the probability of inducing earthquakes as a function of injection parameters and local geological conditions. Our results show that most earthquakes are caused by tectonic forcing, however, waste water injection contributes to seismic activity in four different regions with several events above M4. The seismicity shows different migration characteristics relative to the injection sites, including linear and non-linear trends. The latter is indicative of diffusive processes which take advantage of reservoir properties and fault structures and can induce earthquakes at distances of up to 10 km. Our results suggest that injection-related triggering processes are complex, possibly involving creep, and delayed triggering. Pore-pressure diffusion may be more extensive in the presence of active faults and high-permeability damage zones thus altering the local seismic hazard in a non-linear fashion. As a consequence, generic "best-practices" for fluid injections like a maximum distance from the nearest active fault may not be sufficient to mitigate a potential seismic hazard increase.
Probabilistic Risk Assessment: A Bibliography
NASA Technical Reports Server (NTRS)
2000-01-01
Probabilistic risk analysis is an integration of failure modes and effects analysis (FMEA), fault tree analysis and other techniques to assess the potential for failure and to find ways to reduce risk. This bibliography references 160 documents in the NASA STI Database that contain the major concepts, probabilistic risk assessment, risk and probability theory, in the basic index or major subject terms, An abstract is included with most citations, followed by the applicable subject terms.
Probabilistic Sensitivity Analysis with Respect to Bounds of Truncated Distributions (PREPRINT)
2010-04-01
AFRL-RX-WP-TP-2010-4147 PROBABILISTIC SENSITIVITY ANALYSIS WITH RESPECT TO BOUNDS OF TRUNCATED DISTRIBUTIONS (PREPRINT) H. Millwater and...5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) H. Millwater and Y. Feng 5d. PROJECT...Z39-18 1 Probabilistic Sensitivity Analysis with respect to Bounds of Truncated Distributions H. Millwater and Y. Feng Department of Mechanical
Plioutsias, Anastasios; Karanikas, Nektarios; Chatzimihailidou, Maria Mikela
2018-03-01
Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this article presents: (1) a set of safety requirements generated from the application of the systems theoretic process analysis (STPA) technique on a generic small drone system; (2) a gap analysis between the set of safety requirements and the ones met by 19 popular drone models; (3) the extent of the differences between those models, their manufacturers, and the countries of origin; and (4) the association of drone prices with the extent they meet the requirements derived by STPA. The application of STPA resulted in 70 safety requirements distributed across the authority, manufacturer, end user, or drone automation levels. A gap analysis showed high dissimilarities regarding the extent to which the 19 drones meet the same safety requirements. Statistical results suggested a positive correlation between drone prices and the extent that the 19 drones studied herein met the safety requirements generated by STPA, and significant differences were identified among the manufacturers. This work complements the existing risk assessment frameworks for small drones, and contributes to the establishment of a commonly endorsed international risk analysis framework. Such a framework will support the development of a holistic and methodologically justified standardization scheme for small drone flights. © 2017 Society for Risk Analysis.
Sensitivity analysis of seismic hazard for the northwestern portion of the state of Gujarat, India
Petersen, M.D.; Rastogi, B.K.; Schweig, E.S.; Harmsen, S.C.; Gomberg, J.S.
2004-01-01
We test the sensitivity of seismic hazard to three fault source models for the northwestern portion of Gujarat, India. The models incorporate different characteristic earthquake magnitudes on three faults with individual recurrence intervals of either 800 or 1600 years. These recurrence intervals imply that large earthquakes occur on one of these faults every 266-533 years, similar to the rate of historic large earthquakes in this region during the past two centuries and for earthquakes in intraplate environments like the New Madrid region in the central United States. If one assumes a recurrence interval of 800 years for large earthquakes on each of three local faults, the peak ground accelerations (PGA; horizontal) and 1-Hz spectral acceleration ground motions (5% damping) are greater than 1 g over a broad region for a 2% probability of exceedance in 50 years' hazard level. These probabilistic PGAs at this hazard level are similar to median deterministic ground motions. The PGAs for 10% in 50 years' hazard level are considerably lower, generally ranging between 0.2 g and 0.7 g across northwestern Gujarat. Ground motions calculated from our models that consider fault interevent times of 800 years are considerably higher than other published models even though they imply similar recurrence intervals. These higher ground motions are mainly caused by the application of intraplate attenuation relations, which account for less severe attenuation of seismic waves when compared to the crustal interplate relations used in these previous studies. For sites in Bhuj and Ahmedabad, magnitude (M) 7 3/4 earthquakes contribute most to the PGA and the 0.2- and 1-s spectral acceleration ground motion maps at the two considered hazard levels. ?? 2004 Elsevier B.V. All rights reserved.
Probabilistic simulation of uncertainties in thermal structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Shiao, Michael
1990-01-01
Development of probabilistic structural analysis methods for hot structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) blade temperature, pressure, and torque of the Space Shuttle Main Engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; (3) evaluation of the failure probability; (4) reliability and risk-cost assessment, and (5) an outline of an emerging approach for eventual hot structures certification. Collectively, the results demonstrate that the structural durability/reliability of hot structural components can be effectively evaluated in a formal probabilistic framework. In addition, the approach can be readily extended to computationally simulate certification of hot structures for aerospace environments.
A probabilistic Hu-Washizu variational principle
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Besterfield, G. H.
1987-01-01
A Probabilistic Hu-Washizu Variational Principle (PHWVP) for the Probabilistic Finite Element Method (PFEM) is presented. This formulation is developed for both linear and nonlinear elasticity. The PHWVP allows incorporation of the probabilistic distributions for the constitutive law, compatibility condition, equilibrium, domain and boundary conditions into the PFEM. Thus, a complete probabilistic analysis can be performed where all aspects of the problem are treated as random variables and/or fields. The Hu-Washizu variational formulation is available in many conventional finite element codes thereby enabling the straightforward inclusion of the probabilistic features into present codes.
Murphy, S.; Scala, A.; Herrero, A.; Lorito, S.; Festa, G.; Trasatti, E.; Tonini, R.; Romano, F.; Molinari, I.; Nielsen, S.
2016-01-01
The 2011 Tohoku earthquake produced an unexpected large amount of shallow slip greatly contributing to the ensuing tsunami. How frequent are such events? How can they be efficiently modelled for tsunami hazard? Stochastic slip models, which can be computed rapidly, are used to explore the natural slip variability; however, they generally do not deal specifically with shallow slip features. We study the systematic depth-dependence of slip along a thrust fault with a number of 2D dynamic simulations using stochastic shear stress distributions and a geometry based on the cross section of the Tohoku fault. We obtain a probability density for the slip distribution, which varies both with depth, earthquake size and whether the rupture breaks the surface. We propose a method to modify stochastic slip distributions according to this dynamically-derived probability distribution. This method may be efficiently applied to produce large numbers of heterogeneous slip distributions for probabilistic tsunami hazard analysis. Using numerous M9 earthquake scenarios, we demonstrate that incorporating the dynamically-derived probability distribution does enhance the conditional probability of exceedance of maximum estimated tsunami wave heights along the Japanese coast. This technique for integrating dynamic features in stochastic models can be extended to any subduction zone and faulting style. PMID:27725733
Specifying design conservatism: Worst case versus probabilistic analysis
NASA Technical Reports Server (NTRS)
Miles, Ralph F., Jr.
1993-01-01
Design conservatism is the difference between specified and required performance, and is introduced when uncertainty is present. The classical approach of worst-case analysis for specifying design conservatism is presented, along with the modern approach of probabilistic analysis. The appropriate degree of design conservatism is a tradeoff between the required resources and the probability and consequences of a failure. A probabilistic analysis properly models this tradeoff, while a worst-case analysis reveals nothing about the probability of failure, and can significantly overstate the consequences of failure. Two aerospace examples will be presented that illustrate problems that can arise with a worst-case analysis.
Blanton, Brian; Dresback, Kendra; Colle, Brian; Kolar, Randy; Vergara, Humberto; Hong, Yang; Leonardo, Nicholas; Davidson, Rachel; Nozick, Linda; Wachtendorf, Tricia
2018-04-25
Hurricane track and intensity can change rapidly in unexpected ways, thus making predictions of hurricanes and related hazards uncertain. This inherent uncertainty often translates into suboptimal decision-making outcomes, such as unnecessary evacuation. Representing this uncertainty is thus critical in evacuation planning and related activities. We describe a physics-based hazard modeling approach that (1) dynamically accounts for the physical interactions among hazard components and (2) captures hurricane evolution uncertainty using an ensemble method. This loosely coupled model system provides a framework for probabilistic water inundation and wind speed levels for a new, risk-based approach to evacuation modeling, described in a companion article in this issue. It combines the Weather Research and Forecasting (WRF) meteorological model, the Coupled Routing and Excess STorage (CREST) hydrologic model, and the ADvanced CIRCulation (ADCIRC) storm surge, tide, and wind-wave model to compute inundation levels and wind speeds for an ensemble of hurricane predictions. Perturbations to WRF's initial and boundary conditions and different model physics/parameterizations generate an ensemble of storm solutions, which are then used to drive the coupled hydrologic + hydrodynamic models. Hurricane Isabel (2003) is used as a case study to illustrate the ensemble-based approach. The inundation, river runoff, and wind hazard results are strongly dependent on the accuracy of the mesoscale meteorological simulations, which improves with decreasing lead time to hurricane landfall. The ensemble envelope brackets the observed behavior while providing "best-case" and "worst-case" scenarios for the subsequent risk-based evacuation model. © 2018 Society for Risk Analysis.
Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan
2005-01-01
Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.
Interpreting intraplate tectonics for seismic hazard: a UK historical perspective
NASA Astrophysics Data System (ADS)
Musson, R. M. W.
2012-04-01
It is notoriously difficult to construct seismic source models for probabilistic seismic hazard assessment in intraplate areas on the basis of geological information, and many practitioners have given up the task in favour of purely seismicity-based models. This risks losing potentially valuable information in regions where the earthquake catalogue is short compared to the seismic cycle. It is interesting to survey how attitudes to this issue have evolved over the past 30 years. This paper takes the UK as an example, and traces the evolution of seismic source models through generations of hazard studies. It is found that in the UK, while the earliest studies did not consider regional tectonics in any way, there has been a gradual evolution towards more tectonically based models. Experience in other countries, of course, may differ.
E-research platform of EPOS Thematic Core Service "ANTHROPOGENIC HAZARDS"
NASA Astrophysics Data System (ADS)
Orlecka-Sikora, Beata; Lasocki, Stanisław; Grasso, Jean Robert; Schmittbuhl, Jean; Kwiatek, Grzegorz; Garcia, Alexander; Cassidy, Nigel; Sterzel, Mariusz; Szepieniec, Tomasz; Dineva, Savka; Biggare, Pascal; Saccorotti, Gilberto; Sileny, Jan; Fischer, Tomas
2016-04-01
EPOS Thematic Core Service ANTHROPOGENIC HAZARDS (TCS AH) aims to create new research opportunities in the field of anthropogenic hazards evoked by exploitation of georesources. TCS AH, based on the prototype built in the framework of the IS-EPOS project (https://tcs.ah-epos.eu/), financed from Polish structural funds (POIG.02.03.00-14-090/13-00), is being further developed within EPOS IP project (H2020-INFRADEV-1-2015-1, INFRADEV-3-2015). TCS AH is designed as a functional e-research environment to ensure a researcher the maximum possible freedom for in silico experimentation by providing a virtual laboratory in which researcher will be able to create own workspace with own processing streams. The unique integrated RI is: (i) data gathered in the so- called "episodes", comprehensively describing a geophysical process, induced or triggered by human technological activity, which under certain circumstances can become hazardous for people, infrastructure and the environment and (ii) problem-oriented, specific high-level services, with the particular attention devoted to methods analyzing correlations between technology, geophysical response and resulting hazard. Services to be implemented are grouped within six blocks: (1) Basic services for data integration and handling; (2) Services for physical models of stress/strain changes over time and space as driven by geo-resource production; (3) Services for analysing geophysical signals; (4) Services to extract the relation between technological operations and observed induced seismic/deformation; (5) Services to quantitative probabilistic assessments of anthropogenic seismic hazard - statistical properties of anthropogenic seismic series and their dependence on time-varying anthropogenesis; ground motion prediction equations; stationary and time-dependent probabilistic seismic hazard estimates, related to time-changeable technological factors inducing the seismic process; (6) Simulator for Multi-hazard/multi-risk assessment in ExploRation/exploitation of GEoResources (MERGER) - numerical estimate of the occurrence probability of chains of events or processes impacting the environment. TCS AH will also serve the public sector expert knowledge and background information. In order to fulfill this aim the services for outreach, dissemination & communication will be implemented. From the technical point of view the implementation of services will proceed according to the methods worked within the mentioned before IS-EPOS project. The detailed workflows of implementation process of aforementioned services & interaction between user & TCS AH have been already prepared.
Dinov, Martin; Leech, Robert
2017-01-01
Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analysis, including the GFP peak definition, the clustering itself and in the post-clustering assignment of microstates back onto the EEG timecourse of interest. We perform a fully probabilistic microstate clustering and labeling, to account for these sources of uncertainty using the closest probabilistic analog to KM called Fuzzy C-means (FCM). We train softmax multi-layer perceptrons (MLPs) using the KM and FCM-inferred cluster assignments as target labels, to then allow for probabilistic labeling of the full EEG data instead of the usual correlation-based deterministic microstate label assignment typically used. We assess the merits of the probabilistic analysis vs. the deterministic approaches in EEG data recorded while participants perform real or imagined motor movements from a publicly available data set of 109 subjects. Though FCM group template maps that are almost topographically identical to KM were found, there is considerable uncertainty in the subsequent assignment of microstate labels. In general, imagined motor movements are less predictable on a time point-by-time point basis, possibly reflecting the more exploratory nature of the brain state during imagined, compared to during real motor movements. We find that some relationships may be more evident using FCM than using KM and propose that future microstate analysis should preferably be performed probabilistically rather than deterministically, especially in situations such as with brain computer interfaces, where both training and applying models of microstates need to account for uncertainty. Probabilistic neural network-driven microstate assignment has a number of advantages that we have discussed, which are likely to be further developed and exploited in future studies. In conclusion, probabilistic clustering and a probabilistic neural network-driven approach to microstate analysis is likely to better model and reveal details and the variability hidden in current deterministic and binarized microstate assignment and analyses.
Dinov, Martin; Leech, Robert
2017-01-01
Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analysis, including the GFP peak definition, the clustering itself and in the post-clustering assignment of microstates back onto the EEG timecourse of interest. We perform a fully probabilistic microstate clustering and labeling, to account for these sources of uncertainty using the closest probabilistic analog to KM called Fuzzy C-means (FCM). We train softmax multi-layer perceptrons (MLPs) using the KM and FCM-inferred cluster assignments as target labels, to then allow for probabilistic labeling of the full EEG data instead of the usual correlation-based deterministic microstate label assignment typically used. We assess the merits of the probabilistic analysis vs. the deterministic approaches in EEG data recorded while participants perform real or imagined motor movements from a publicly available data set of 109 subjects. Though FCM group template maps that are almost topographically identical to KM were found, there is considerable uncertainty in the subsequent assignment of microstate labels. In general, imagined motor movements are less predictable on a time point-by-time point basis, possibly reflecting the more exploratory nature of the brain state during imagined, compared to during real motor movements. We find that some relationships may be more evident using FCM than using KM and propose that future microstate analysis should preferably be performed probabilistically rather than deterministically, especially in situations such as with brain computer interfaces, where both training and applying models of microstates need to account for uncertainty. Probabilistic neural network-driven microstate assignment has a number of advantages that we have discussed, which are likely to be further developed and exploited in future studies. In conclusion, probabilistic clustering and a probabilistic neural network-driven approach to microstate analysis is likely to better model and reveal details and the variability hidden in current deterministic and binarized microstate assignment and analyses. PMID:29163110
Petersen, Mark D.; Mueller, Charles; Moschetti, Morgan P.; Hoover, Susan M.; Rukstales, Kenneth S.; McNamara, Daniel E.; Williams, Robert A.; Shumway, Allison; Powers, Peter; Earle, Paul; Llenos, Andrea L.; Michael, Andrew J.; Rubinstein, Justin L.; Norbeck, Jack; Cochran, Elizabeth S.
2018-01-01
This article describes the U.S. Geological Survey (USGS) 2018 one‐year probabilistic seismic hazard forecast for the central and eastern United States from induced and natural earthquakes. For consistency, the updated 2018 forecast is developed using the same probabilistic seismicity‐based methodology as applied in the two previous forecasts. Rates of earthquakes across the United States M≥3.0">M≥3.0 grew rapidly between 2008 and 2015 but have steadily declined over the past 3 years, especially in areas of Oklahoma and southern Kansas where fluid injection has decreased. The seismicity pattern in 2017 was complex with earthquakes more spatially dispersed than in the previous years. Some areas of west‐central Oklahoma experienced increased activity rates where industrial activity increased. Earthquake rates in Oklahoma (429 earthquakes of M≥3">M≥3 and 4 M≥4">M≥4), Raton basin (Colorado/New Mexico border, six earthquakes M≥3">M≥3), and the New Madrid seismic zone (11 earthquakes M≥3">M≥3) continue to be higher than historical levels. Almost all of these earthquakes occurred within the highest hazard regions of the 2017 forecast. Even though rates declined over the past 3 years, the short‐term hazard for damaging ground shaking across much of Oklahoma remains at high levels due to continuing high rates of smaller earthquakes that are still hundreds of times higher than at any time in the state’s history. Fine details and variability between the 2016–2018 forecasts are obscured by significant uncertainties in the input model. These short‐term hazard levels are similar to active regions in California. During 2017, M≥3">M≥3 earthquakes also occurred in or near Ohio, West Virginia, Missouri, Kentucky, Tennessee, Arkansas, Illinois, Oklahoma, Kansas, Colorado, New Mexico, Utah, and Wyoming.
Reassessment of probabilistic seismic hazard in the Marmara region
Kalkan, Erol; Gulkan, Polat; Yilmaz, Nazan; Çelebi, Mehmet
2009-01-01
In 1999, the eastern coastline of the Marmara region (Turkey) witnessed increased seismic activity on the North Anatolian fault (NAF) system with two damaging earthquakes (M 7.4 Kocaeli and M 7.2 D??zce) that occurred almost three months apart. These events have reduced stress on the western segment of the NAF where it continues under the Marmara Sea. The undersea fault segments have been recently explored using bathymetric and reflection surveys. These recent findings helped scientists to understand the seismotectonic environment of the Marmara basin, which has remained a perplexing tectonic domain. On the basis of collected new data, seismic hazard of the Marmara region is reassessed using a probabilistic approach. Two different earthquake source models: (1) the smoothed-gridded seismicity model and (2) fault model and alternate magnitude-frequency relations, Gutenberg-Richter and characteristic, were used with local and imported ground-motion-prediction equations. Regional exposure is computed and quantified on a set of hazard maps that provide peak horizontal ground acceleration (PGA) and spectral acceleration at 0.2 and 1.0 sec on uniform firm-rock site condition (760 m=sec average shear wave velocity in the upper 30 m). These acceleration levels were computed for ground motions having 2% and 10% probabilities of exceedance in 50 yr, corresponding to return periods of about 2475 and 475 yr, respectively. The maximum PGA computed (at rock site) is 1.5g along the fault segments of the NAF zone extending into the Marmara Sea. The new maps generally show 10% to 15% increase for PGA, 0.2 and 1.0 sec spectral acceleration values across much of Marmara compared to previous regional hazard maps. Hazard curves and smooth design spectra for three site conditions: rock, soil, and soft-soil are provided for the Istanbul metropolitan area as possible tools in future risk estimates.
Probabilistic seismic hazard maps for Sinai Peninsula, Egypt
NASA Astrophysics Data System (ADS)
Deif, A.; Abou Elenean, K.; El Hadidy, M.; Tealeb, A.; Mohamed, A.
2009-09-01
Sinai experienced the largest Egyptian earthquake with moment magnitude (Mw) 7.2 in 1995 in the Gulf of Aqaba, 350 km from Cairo. It is characterized by the presence of many tourist projects in addition to different natural resources. The aim of the current study is to present, for the first time, the probabilistic spectral hazard maps for Sinai. Revised earthquake catalogues for Sinai and its surroundings, from 112 BC to 2006 AD with magnitude equal or greater than 3.0, are used to calculate seismic hazard in the region of interest between 27°N and 31.5°N and 32°E and 36°E. We declustered these catalogues to include only independent events. The catalogues were tested for the completeness of different magnitude ranges. 28 seismic source zones are used to define the seismicity. The recurrence rates and the maximum earthquakes across these zones were also determined from these modified catalogues. Strong ground motion relations for rock are used to produce 5% damped spectral acceleration values for four different periods (0.2, 0.5, 1.0 and 2.0 s) to define the uniform response spectra at each site (grid of 0.2° × 0.2° all over the area). Maps showing spectral acceleration values at 0.2, 0.5, 1.0 and 2.0 s periods as well as peak ground acceleration (PGA) for the return period of 475 years (equivalent to 90% probability on non-exceedence in 50 years) are presented. In addition, Uniform Hazard Spectra (UHS) at 25 different periods for the four main cities (Hurghda, Sharm El-Sheikh, Nuweibaa and Suez) are graphed. The highest hazard is found in the Gulf of Aqaba with maximum spectral accelerations 356 cm s-2 at a period of 0.22 s for a return period of 475 years.
NASA Astrophysics Data System (ADS)
Yadav, R. B. S.; Tsapanos, T. M.; Bayrak, Yusuf; Koravos, G. Ch.
2013-03-01
A straightforward Bayesian statistic is applied in five broad seismogenic source zones of the northwest frontier of the Himalayas to estimate the earthquake hazard parameters (maximum regional magnitude M max, β value of G-R relationship and seismic activity rate or intensity λ). For this purpose, a reliable earthquake catalogue which is homogeneous for M W ≥ 5.0 and complete during the period 1900 to 2010 is compiled. The Hindukush-Pamir Himalaya zone has been further divided into two seismic zones of shallow ( h ≤ 70 km) and intermediate depth ( h > 70 km) according to the variation of seismicity with depth in the subduction zone. The estimated earthquake hazard parameters by Bayesian approach are more stable and reliable with low standard deviations than other approaches, but the technique is more time consuming. In this study, quantiles of functions of distributions of true and apparent magnitudes for future time intervals of 5, 10, 20, 50 and 100 years are calculated with confidence limits for probability levels of 50, 70 and 90 % in all seismogenic source zones. The zones of estimated M max greater than 8.0 are related to the Sulaiman-Kirthar ranges, Hindukush-Pamir Himalaya and Himalayan Frontal Thrusts belt; suggesting more seismically hazardous regions in the examined area. The lowest value of M max (6.44) has been calculated in Northern-Pakistan and Hazara syntaxis zone which have estimated lowest activity rate 0.0023 events/day as compared to other zones. The Himalayan Frontal Thrusts belt exhibits higher earthquake magnitude (8.01) in next 100-years with 90 % probability level as compared to other zones, which reveals that this zone is more vulnerable to occurrence of a great earthquake. The obtained results in this study are directly useful for the probabilistic seismic hazard assessment in the examined region of Himalaya.
NASA Technical Reports Server (NTRS)
Price J. M.; Ortega, R.
1998-01-01
Probabilistic method is not a universally accepted approach for the design and analysis of aerospace structures. The validity of this approach must be demonstrated to encourage its acceptance as it viable design and analysis tool to estimate structural reliability. The objective of this Study is to develop a well characterized finite population of similar aerospace structures that can be used to (1) validate probabilistic codes, (2) demonstrate the basic principles behind probabilistic methods, (3) formulate general guidelines for characterization of material drivers (such as elastic modulus) when limited data is available, and (4) investigate how the drivers affect the results of sensitivity analysis at the component/failure mode level.
DSOD Procedures for Seismic Hazard Analysis
NASA Astrophysics Data System (ADS)
Howard, J. K.; Fraser, W. A.
2005-12-01
DSOD, which has jurisdiction over more than 1200 dams in California, routinely evaluates their dynamic stability using seismic shaking input ranging from simple pseudostatic coefficients to spectrally matched earthquake time histories. Our seismic hazard assessments assume maximum earthquake scenarios of nearest active and conditionally active seismic sources. Multiple earthquake scenarios may be evaluated depending on sensitivity of the design analysis (e.g., to certain spectral amplitudes, duration of shaking). Active sources are defined as those with evidence of movement within the last 35,000 years. Conditionally active sources are those with reasonable expectation of activity, which are treated as active until demonstrated otherwise. The Division's Geology Branch develops seismic hazard estimates using spectral attenuation formulas applicable to California. The formulas were selected, in part, to achieve a site response model similar to the 2000 IBC's for rock, soft rock, and stiff soil sites. The level of dynamic loading used in the stability analysis (50th, 67th, or 84th percentile ground shaking estimates) is determined using a matrix that considers consequence of dam failure and fault slip rate. We account for near-source directivity amplification along such faults by adjusting target response spectra and developing appropriate design earthquakes for analysis of structures sensitive to long-period motion. Based on in-house studies, the orientation of the dam analysis section relative to the fault-normal direction is considered for strike-slip earthquakes, but directivity amplification is assumed in any orientation for dip-slip earthquakes. We do not have probabilistic standards, but we evaluate the probability of our ground shaking estimates using hazard curves constructed from the USGS Interactive De-Aggregation website. Typically, return periods for our design loads exceed 1000 years. Excessive return periods may warrant a lower design load. Minimum shaking levels are provided for sites far from active faulting. Our procedures and standards are presented at the DSOD website http://damsafety.water.ca.gov/. We review our methods and tools periodically under the guidance of our Consulting Board for Earthquake Analysis (and expect to make changes pending NGA completion), mindful that frequent procedural changes can interrupt design evaluations.
A Comparison of Probabilistic and Deterministic Campaign Analysis for Human Space Exploration
NASA Technical Reports Server (NTRS)
Merrill, R. Gabe; Andraschko, Mark; Stromgren, Chel; Cirillo, Bill; Earle, Kevin; Goodliff, Kandyce
2008-01-01
Human space exploration is by its very nature an uncertain endeavor. Vehicle reliability, technology development risk, budgetary uncertainty, and launch uncertainty all contribute to stochasticity in an exploration scenario. However, traditional strategic analysis has been done in a deterministic manner, analyzing and optimizing the performance of a series of planned missions. History has shown that exploration scenarios rarely follow such a planned schedule. This paper describes a methodology to integrate deterministic and probabilistic analysis of scenarios in support of human space exploration. Probabilistic strategic analysis is used to simulate "possible" scenario outcomes, based upon the likelihood of occurrence of certain events and a set of pre-determined contingency rules. The results of the probabilistic analysis are compared to the nominal results from the deterministic analysis to evaluate the robustness of the scenario to adverse events and to test and optimize contingency planning.
Pasta, D J; Taylor, J L; Henning, J M
1999-01-01
Decision-analytic models are frequently used to evaluate the relative costs and benefits of alternative therapeutic strategies for health care. Various types of sensitivity analysis are used to evaluate the uncertainty inherent in the models. Although probabilistic sensitivity analysis is more difficult theoretically and computationally, the results can be much more powerful and useful than deterministic sensitivity analysis. The authors show how a Monte Carlo simulation can be implemented using standard software to perform a probabilistic sensitivity analysis incorporating the bootstrap. The method is applied to a decision-analytic model evaluating the cost-effectiveness of Helicobacter pylori eradication. The necessary steps are straightforward and are described in detail. The use of the bootstrap avoids certain difficulties encountered with theoretical distributions. The probabilistic sensitivity analysis provided insights into the decision-analytic model beyond the traditional base-case and deterministic sensitivity analyses and should become the standard method for assessing sensitivity.
Home Site Map News Organization Search: Go www.nws.noaa.gov Search the CPC Go Download KML Day 3-7 . See static maps below this for the most up to date graphics. Categorical Outlooks Day 3-7 Day 8-14 EDT May 25 2018 Synopsis: The summer season is expected to move in quickly for much of the contiguous
Steven P. Norman; Danny C. Lee; Sandra Jacobson; Christine Damiani
2010-01-01
The tradeoffs that surround forest management are inherently complex, often involving multiple temporal and spatial scales. For example, conflicts may result when fuel treatments are designed to mediate long-term fuel hazards, but activities could impair sensitive aquatic habitat or degrade wildlife habitat in the short term. This complexity makes it hard for managers...
Expanding CyberShake Physics-Based Seismic Hazard Calculations to Central California
NASA Astrophysics Data System (ADS)
Silva, F.; Callaghan, S.; Maechling, P. J.; Goulet, C. A.; Milner, K. R.; Graves, R. W.; Olsen, K. B.; Jordan, T. H.
2016-12-01
As part of its program of earthquake system science, the Southern California Earthquake Center (SCEC) has developed a simulation platform, CyberShake, to perform physics-based probabilistic seismic hazard analysis (PSHA) using 3D deterministic wave propagation simulations. CyberShake performs PSHA by first simulating a tensor-valued wavefield of Strain Green Tensors. CyberShake then takes an earthquake rupture forecast and extends it by varying the hypocenter location and slip distribution, resulting in about 500,000 rupture variations. Seismic reciprocity is used to calculate synthetic seismograms for each rupture variation at each computation site. These seismograms are processed to obtain intensity measures, such as spectral acceleration, which are then combined with probabilities from the earthquake rupture forecast to produce a hazard curve. Hazard curves are calculated at seismic frequencies up to 1 Hz for hundreds of sites in a region and the results interpolated to obtain a hazard map. In developing and verifying CyberShake, we have focused our modeling in the greater Los Angeles region. We are now expanding the hazard calculations into Central California. Using workflow tools running jobs across two large-scale open-science supercomputers, NCSA Blue Waters and OLCF Titan, we calculated 1-Hz PSHA results for over 400 locations in Central California. For each location, we produced hazard curves using both a 3D central California velocity model created via tomographic inversion, and a regionally averaged 1D model. These new results provide low-frequency exceedance probabilities for the rapidly expanding metropolitan areas of Santa Barbara, Bakersfield, and San Luis Obispo, and lend new insights into the effects of directivity-basin coupling associated with basins juxtaposed to major faults such as the San Andreas. Particularly interesting are the basin effects associated with the deep sediments of the southern San Joaquin Valley. We will compare hazard estimates from the 1D and 3D models, summarize the challenges of expanding CyberShake to a new geographic region, and describe our future CyberShake plans.
Probabilistic Aeroelastic Analysis Developed for Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, Subodh K.; Stefko, George L.; Pai, Shantaram S.
2003-01-01
Aeroelastic analyses for advanced turbomachines are being developed for use at the NASA Glenn Research Center and industry. However, these analyses at present are used for turbomachinery design with uncertainties accounted for by using safety factors. This approach may lead to overly conservative designs, thereby reducing the potential of designing higher efficiency engines. An integration of the deterministic aeroelastic analysis methods with probabilistic analysis methods offers the potential to design efficient engines with fewer aeroelastic problems and to make a quantum leap toward designing safe reliable engines. In this research, probabilistic analysis is integrated with aeroelastic analysis: (1) to determine the parameters that most affect the aeroelastic characteristics (forced response and stability) of a turbomachine component such as a fan, compressor, or turbine and (2) to give the acceptable standard deviation on the design parameters for an aeroelastically stable system. The approach taken is to combine the aeroelastic analysis of the MISER (MIStuned Engine Response) code with the FPI (fast probability integration) code. The role of MISER is to provide the functional relationships that tie the structural and aerodynamic parameters (the primitive variables) to the forced response amplitudes and stability eigenvalues (the response properties). The role of FPI is to perform probabilistic analyses by utilizing the response properties generated by MISER. The results are a probability density function for the response properties. The probabilistic sensitivities of the response variables to uncertainty in primitive variables are obtained as a byproduct of the FPI technique. The combined analysis of aeroelastic and probabilistic analysis is applied to a 12-bladed cascade vibrating in bending and torsion. Out of the total 11 design parameters, 6 are considered as having probabilistic variation. The six parameters are space-to-chord ratio (SBYC), stagger angle (GAMA), elastic axis (ELAXS), Mach number (MACH), mass ratio (MASSR), and frequency ratio (WHWB). The cascade is considered to be in subsonic flow with Mach 0.7. The results of the probabilistic aeroelastic analysis are the probability density function of predicted aerodynamic damping and frequency for flutter and the response amplitudes for forced response.
Earthquake parametrics based protection for microfinance disaster management in Indonesia
NASA Astrophysics Data System (ADS)
Sedayo, M. H.; Damanik, R.
2017-07-01
Financial institutions included microfinance institutions those lend money to people also face the risk when catastrophe event hit their operation area. Liquidity risk when withdrawal amount and Non Performance Loan (NPL) hiking fast in the same time could hit their cash flow. There are products in market that provide backup fund for this kind of situation. Microfinance institution needs a guideline too make contingency plan in their disaster management program. We develop a probabilistic seismic hazard, index and zonation map as a tool to help in making financial disaster impact reduction program for microfinance in Indonesia. GMPE was used to estimate PGA for each Kabupaten points. PGA to MMI conversion was done by applied empirical relationship. We used loan distribution data from Financial Service Authority and Bank Indonesia as exposure in indexing. Index level from this study could be use as rank of urgency. Probabilistic hazard map was used to pricing two backup scenarios and to make a zonation. We proposed three zones with annual average cost 0.0684‰, 0.4236‰ and 1.4064 for first scenario and 0.3588‰, 2.6112‰, and 6.0816‰ for second scenario.
CyberShake: Running Seismic Hazard Workflows on Distributed HPC Resources
NASA Astrophysics Data System (ADS)
Callaghan, S.; Maechling, P. J.; Graves, R. W.; Gill, D.; Olsen, K. B.; Milner, K. R.; Yu, J.; Jordan, T. H.
2013-12-01
As part of its program of earthquake system science research, the Southern California Earthquake Center (SCEC) has developed a simulation platform, CyberShake, to perform physics-based probabilistic seismic hazard analysis (PSHA) using 3D deterministic wave propagation simulations. CyberShake performs PSHA by simulating a tensor-valued wavefield of Strain Green Tensors, and then using seismic reciprocity to calculate synthetic seismograms for about 415,000 events per site of interest. These seismograms are processed to compute ground motion intensity measures, which are then combined with probabilities from an earthquake rupture forecast to produce a site-specific hazard curve. Seismic hazard curves for hundreds of sites in a region can be used to calculate a seismic hazard map, representing the seismic hazard for a region. We present a recently completed PHSA study in which we calculated four CyberShake seismic hazard maps for the Southern California area to compare how CyberShake hazard results are affected by different SGT computational codes (AWP-ODC and AWP-RWG) and different community velocity models (Community Velocity Model - SCEC (CVM-S4) v11.11 and Community Velocity Model - Harvard (CVM-H) v11.9). We present our approach to running workflow applications on distributed HPC resources, including systems without support for remote job submission. We show how our approach extends the benefits of scientific workflows, such as job and data management, to large-scale applications on Track 1 and Leadership class open-science HPC resources. We used our distributed workflow approach to perform CyberShake Study 13.4 on two new NSF open-science HPC computing resources, Blue Waters and Stampede, executing over 470 million tasks to calculate physics-based hazard curves for 286 locations in the Southern California region. For each location, we calculated seismic hazard curves with two different community velocity models and two different SGT codes, resulting in over 1100 hazard curves. We will report on the performance of this CyberShake study, four times larger than previous studies. Additionally, we will examine the challenges we face applying these workflow techniques to additional open-science HPC systems and discuss whether our workflow solutions continue to provide value to our large-scale PSHA calculations.
Global/local methods for probabilistic structural analysis
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Wu, Y.-T.
1993-01-01
A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.
Global/local methods for probabilistic structural analysis
NASA Astrophysics Data System (ADS)
Millwater, H. R.; Wu, Y.-T.
1993-04-01
A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.
Structural reliability methods: Code development status
NASA Astrophysics Data System (ADS)
Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.
1991-05-01
The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.
Structural reliability methods: Code development status
NASA Technical Reports Server (NTRS)
Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.
1991-01-01
The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.
Evaluating the Benefits of Adaptation of Critical Infrastructures to Hydrometeorological Risks.
Thacker, Scott; Kelly, Scott; Pant, Raghav; Hall, Jim W
2018-01-01
Infrastructure adaptation measures provide a practical way to reduce the risk from extreme hydrometeorological hazards, such as floods and windstorms. The benefit of adapting infrastructure assets is evaluated as the reduction in risk relative to the "do nothing" case. However, evaluating the full benefits of risk reduction is challenging because of the complexity of the systems, the scarcity of data, and the uncertainty of future climatic changes. We address this challenge by integrating methods from the study of climate adaptation, infrastructure systems, and complex networks. In doing so, we outline an infrastructure risk assessment that incorporates interdependence, user demands, and potential failure-related economic losses. Individual infrastructure assets are intersected with probabilistic hazard maps to calculate expected annual damages. Protection measure costs are integrated to calculate risk reduction and associated discounted benefits, which are used to explore the business case for investment in adaptation. A demonstration of the methodology is provided for flood protection of major electricity substations in England and Wales. We conclude that the ongoing adaptation program for major electricity assets is highly cost beneficial. © 2017 Society for Risk Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Daniel James; Lipinski, Ronald J.; Bechtel, Ryan D.
As compact and light weight power sources with reliable, long lives, Radioisotope Power Systems (RPSs) have made space missions to explore the solar system possible. Due to the hazardous material that can be released during a launch accident, the potential health risk of an accident must be quantified, so that appropriate launch approval decisions can be made. One part of the risk estimation involves modeling the response of the RPS to potential accident environments. Due to the complexity of modeling the full RPS response deterministically on dynamic variables, the evaluation is performed in a stochastic manner with a Monte Carlomore » simulation. The potential consequences can be determined by modeling the transport of the hazardous material in the environment and in human biological pathways. The consequence analysis results are summed and weighted by appropriate likelihood values to give a collection of probabilistic results for the estimation of the potential health risk. This information is used to guide RPS designs, spacecraft designs, mission architecture, or launch procedures to potentially reduce the risk, as well as to inform decision makers of the potential health risks resulting from the use of RPSs for space missions.« less
Numerical modelling of glacial lake outburst floods using physically based dam-breach models
NASA Astrophysics Data System (ADS)
Westoby, M. J.; Brasington, J.; Glasser, N. F.; Hambrey, M. J.; Reynolds, J. M.; Hassan, M. A. A. M.; Lowe, A.
2015-03-01
The instability of moraine-dammed proglacial lakes creates the potential for catastrophic glacial lake outburst floods (GLOFs) in high-mountain regions. In this research, we use a unique combination of numerical dam-breach and two-dimensional hydrodynamic modelling, employed within a generalised likelihood uncertainty estimation (GLUE) framework, to quantify predictive uncertainty in model outputs associated with a reconstruction of the Dig Tsho failure in Nepal. Monte Carlo analysis was used to sample the model parameter space, and morphological descriptors of the moraine breach were used to evaluate model performance. Multiple breach scenarios were produced by differing parameter ensembles associated with a range of breach initiation mechanisms, including overtopping waves and mechanical failure of the dam face. The material roughness coefficient was found to exert a dominant influence over model performance. The downstream routing of scenario-specific breach hydrographs revealed significant differences in the timing and extent of inundation. A GLUE-based methodology for constructing probabilistic maps of inundation extent, flow depth, and hazard is presented and provides a useful tool for communicating uncertainty in GLOF hazard assessment.
Assessment of volcanic hazards, vulnerability, risk and uncertainty (Invited)
NASA Astrophysics Data System (ADS)
Sparks, R. S.
2009-12-01
A volcanic hazard is any phenomenon that threatens communities . These hazards include volcanic events like pyroclastic flows, explosions, ash fall and lavas, and secondary effects such as lahars and landslides. Volcanic hazards are described by the physical characteristics of the phenomena, by the assessment of the areas that they are likely to affect and by the magnitude-dependent return period of events. Volcanic hazard maps are generated by mapping past volcanic events and by modelling the hazardous processes. Both these methods have their strengths and limitations and a robust map should use both approaches in combination. Past records, studied through stratigraphy, the distribution of deposits and age dating, are typically incomplete and may be biased. Very significant volcanic hazards, such as surge clouds and volcanic blasts, are not well-preserved in the geological record for example. Models of volcanic processes are very useful to help identify hazardous areas that do not have any geological evidence. They are, however, limited by simplifications and incomplete understanding of the physics. Many practical volcanic hazards mapping tools are also very empirical. Hazards maps are typically abstracted into hazards zones maps, which are some times called threat or risk maps. Their aim is to identify areas at high levels of threat and the boundaries between zones may take account of other factors such as roads, escape routes during evacuation, infrastructure. These boundaries may change with time due to new knowledge on the hazards or changes in volcanic activity levels. Alternatively they may remain static but implications of the zones may change as volcanic activity changes. Zone maps are used for planning purposes and for management of volcanic crises. Volcanic hazards maps are depictions of the likelihood of future volcanic phenomena affecting places and people. Volcanic phenomena are naturally variable, often complex and not fully understood. There are many sources of uncertainty in forecasting the areas that volcanic activity will effect and the severity of the effects. Uncertainties arise from: natural variability, inadequate data, biased data, incomplete data, lack of understanding of the processes, limitations to predictive models, ambiguity, and unknown unknowns. The description of volcanic hazards is thus necessarily probabilistic and requires assessment of the attendant uncertainties. Several issues arise from the probabilistic nature of volcanic hazards and the intrinsic uncertainties. Although zonation maps require well-defined boundaries for administrative pragmatism, such boundaries cannot divide areas that are completely safe from those that are unsafe. Levels of danger or safety need to be defined to decide on and justify boundaries through the concepts of vulnerability and risk. More data, better observations, improved models may reduce uncertainties, but can increase uncertainties and may lead to re-appraisal of zone boundaries. Probabilities inferred by statistical techniques are hard to communicate. Expert elicitation is an emerging methodology for risk assessment and uncertainty evaluation. The method has been applied at one major volcanic crisis (Soufrière Hills Volcano, Montserrat), and is being applied in planning for volcanic crises at Vesuvius.
On different types of uncertainties in the context of the precautionary principle.
Aven, Terje
2011-10-01
Few policies for risk management have created more controversy than the precautionary principle. A main problem is the extreme number of different definitions and interpretations. Almost all definitions of the precautionary principle identify "scientific uncertainties" as the trigger or criterion for its invocation; however, the meaning of this concept is not clear. For applying the precautionary principle it is not sufficient that the threats or hazards are uncertain. A stronger requirement is needed. This article provides an in-depth analysis of this issue. We question how the scientific uncertainties are linked to the interpretation of the probability concept, expected values, the results from probabilistic risk assessments, the common distinction between aleatory uncertainties and epistemic uncertainties, and the problem of establishing an accurate prediction model (cause-effect relationship). A new classification structure is suggested to define what scientific uncertainties mean. © 2011 Society for Risk Analysis.
NASA Technical Reports Server (NTRS)
1992-01-01
The technical effort and computer code developed during the first year are summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis.
NASA Astrophysics Data System (ADS)
Lasocki, Stanislaw; Urban, Pawel; Kwiatek, Grzegorz; Martinez-Garzón, Particia
2017-04-01
Injection induced seismicity (IIS) is an undesired dynamic rockmass response to massive fluid injections. This includes reactions, among others, to hydro-fracturing for shale gas exploitation. Complexity and changeability of technological factors that induce IIS, may result in significant deviations of the observed distributions of seismic process parameters from the models, which perform well in natural, tectonic seismic processes. Classic formulations of probabilistic seismic hazard analysis in natural seismicity assume the seismic marked point process to be a stationary Poisson process, whose marks - magnitudes are governed by a Gutenberg-Richter born exponential distribution. It is well known that the use of an inappropriate earthquake occurrence model and/or an inappropriate of magnitude distribution model leads to significant systematic errors of hazard estimates. It is therefore of paramount importance to check whether the mentioned, commonly used in natural seismicity assumptions on the seismic process, can be safely used in IIS hazard problems or not. Seismicity accompanying shale gas operations is widely studied in the framework of the project "Shale Gas Exploration and Exploitation Induced Risks" (SHEER). Here we present results of SHEER project investigations of such seismicity from Oklahoma and of a proxy of such seismicity - IIS data from The Geysers geothermal field. We attempt to answer to the following questions: • Do IIS earthquakes follow the Gutenberg-Richter distribution law, so that the magnitude distribution can be modelled by an exponential distribution? • Is the occurrence process of IIS earthquakes Poissonian? Is it segmentally Poissonian? If yes, how are these segments linked to cycles of technological operations? Statistical tests indicate that the Gutenberg-Richter relation born exponential distribution model for magnitude is, in general, inappropriate. The magnitude distribution can be complex, multimodal, with no ready-to-use functional model. In this connection, we recommend to use in hazard analyses non-parametric, kernel estimators of magnitude distribution. The earthquake occurrence process of IIS is not a Poisson process. When earthquakes' occurrences are influenced by a multitude of inducing factors, the interevent time distribution can be modelled by the Weibull distribution supporting a negative ageing property of the process. When earthquake occurrences are due to a specific injection activity, the earthquake rate directly depends on the injection rate and responds immediately to the changes of the injection rate. Furthermore, this response is not limited only to correlated variations of the seismic activity but it also concerns significant changes of the shape of interevent time distribution. Unlike the event rate, the shape of magnitude distribution does not exhibit correlation with the injection rate. This work was supported within SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE 16-2014-1 and within statutory activities No3841/E-41/S/2016 of Ministry of Science and Higher Education of Poland.
Incorporating climate change and morphological uncertainty into coastal change hazard assessments
Baron, Heather M.; Ruggiero, Peter; Wood, Nathan J.; Harris, Erica L.; Allan, Jonathan; Komar, Paul D.; Corcoran, Patrick
2015-01-01
Documented and forecasted trends in rising sea levels and changes in storminess patterns have the potential to increase the frequency, magnitude, and spatial extent of coastal change hazards. To develop realistic adaptation strategies, coastal planners need information about coastal change hazards that recognizes the dynamic temporal and spatial scales of beach morphology, the climate controls on coastal change hazards, and the uncertainties surrounding the drivers and impacts of climate change. We present a probabilistic approach for quantifying and mapping coastal change hazards that incorporates the uncertainty associated with both climate change and morphological variability. To demonstrate the approach, coastal change hazard zones of arbitrary confidence levels are developed for the Tillamook County (State of Oregon, USA) coastline using a suite of simple models and a range of possible climate futures related to wave climate, sea-level rise projections, and the frequency of major El Niño events. Extreme total water levels are more influenced by wave height variability, whereas the magnitude of erosion is more influenced by sea-level rise scenarios. Morphological variability has a stronger influence on the width of coastal hazard zones than the uncertainty associated with the range of climate change scenarios.
Analysis of a Hypergolic Propellant Explosion During Processing of Launch Vehicles in the VAB
NASA Technical Reports Server (NTRS)
Chrostowski, Jon D.; Gan Wenshui; Campbell, Michael D.
2010-01-01
NASA is developing launch vehicles to support missions to Low Earth Orbit (LEO), the moon and deep space. Whether manned or unmanned, the vehicle components will likely be integrated in the Vehicle Assembly Building (VAB) at Kennedy Space Center (KSC) and typically include a fueled spacecraft (SC) that sits on top of one or more stages. The processing of a fueled SC involves hazardous operations when it is brought into the VAB Transfer Aisle and lifted a significant height for mating with lower stages. Accidents resulting from these hazardous operations could impact unrelated personnel working in buildings adjacent to the VAB. Safe separation distances based on the DOD Explosives Standards Quantity-Distance (Q-D) approach result in large IBD arcs. This paper presents site-specific air blast and fragmentation hazard analyses for comparison with the Q-D arcs as well as consequence and risk analyses to provide added information for the decision maker. A new physics-based fragmentation model is presented that includes: a) the development of a primary fragment list (which defines the fragment characteristics) associated with a hypergolic propellant explosion, b) a description of a 3D fragment bounce model, c) the results of probabilistic Monte-Carlo simulations (that include uncertainties in the fragment characteristics) to determine: i) the hazardous fragment density distance, ii) the expected number of wall/roof impacts and penetrations to over 40 buildings adjacent to the VAB, and iii) the risk to building occupants.
Seismic hazard exposure for the Trans-Alaska Pipeline
Cluff, L.S.; Page, R.A.; Slemmons, D.B.; Grouse, C.B.; ,
2003-01-01
The discovery of oil on Alaska's North Slope and the construction of a pipeline to transport that oil across Alaska coincided with the National Environmental Policy Act of 1969 and a destructive Southern California earthquake in 1971 to cause stringent stipulations, state-of-the-art investigations, and innovative design for the pipeline. The magnitude 7.9 earthquake on the Denali fault in November 2002 was remarkably consistent with the design earthquake and fault displacement postulated for the Denali crossing of the Trans-Alaska Pipeline route. The pipeline maintained its integrity, and disaster was averted. Recent probabilistic studies to update previous hazard exposure conclusions suggest continuing pipeline integrity.
NASA Technical Reports Server (NTRS)
Fayssal, Safie; Weldon, Danny
2008-01-01
The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program called Constellation to send crew and cargo to the international Space Station, to the moon, and beyond. As part of the Constellation program, a new launch vehicle, Ares I, is being developed by NASA Marshall Space Flight Center. Designing a launch vehicle with high reliability and increased safety requires a significant effort in understanding design variability and design uncertainty at the various levels of the design (system, element, subsystem, component, etc.) and throughout the various design phases (conceptual, preliminary design, etc.). In a previous paper [1] we discussed a probabilistic functional failure analysis approach intended mainly to support system requirements definition, system design, and element design during the early design phases. This paper provides an overview of the application of probabilistic engineering methods to support the detailed subsystem/component design and development as part of the "Design for Reliability and Safety" approach for the new Ares I Launch Vehicle. Specifically, the paper discusses probabilistic engineering design analysis cases that had major impact on the design and manufacturing of the Space Shuttle hardware. The cases represent important lessons learned from the Space Shuttle Program and clearly demonstrate the significance of probabilistic engineering analysis in better understanding design deficiencies and identifying potential design improvement for Ares I. The paper also discusses the probabilistic functional failure analysis approach applied during the early design phases of Ares I and the forward plans for probabilistic design analysis in the detailed design and development phases.
NASA Astrophysics Data System (ADS)
Peruzza, Laura; Azzaro, Raffaele; Gee, Robin; D'Amico, Salvatore; Langer, Horst; Lombardo, Giuseppe; Pace, Bruno; Pagani, Marco; Panzera, Francesco; Ordaz, Mario; Suarez, Miguel Leonardo; Tusa, Giuseppina
2017-11-01
This paper describes the model implementation and presents results of a probabilistic seismic hazard assessment (PSHA) for the Mt. Etna volcanic region in Sicily, Italy, considering local volcano-tectonic earthquakes. Working in a volcanic region presents new challenges not typically faced in standard PSHA, which are broadly due to the nature of the local volcano-tectonic earthquakes, the cone shape of the volcano and the attenuation properties of seismic waves in the volcanic region. These have been accounted for through the development of a seismic source model that integrates data from different disciplines (historical and instrumental earthquake datasets, tectonic data, etc.; presented in Part 1, by Azzaro et al., 2017) and through the development and software implementation of original tools for the computation, such as a new ground-motion prediction equation and magnitude-scaling relationship specifically derived for this volcanic area, and the capability to account for the surficial topography in the hazard calculation, which influences source-to-site distances. Hazard calculations have been carried out after updating the most recent releases of two widely used PSHA software packages (CRISIS, as in Ordaz et al., 2013; the OpenQuake engine, as in Pagani et al., 2014). Results are computed for short- to mid-term exposure times (10 % probability of exceedance in 5 and 30 years, Poisson and time dependent) and spectral amplitudes of engineering interest. A preliminary exploration of the impact of site-specific response is also presented for the densely inhabited Etna's eastern flank, and the change in expected ground motion is finally commented on. These results do not account for M > 6 regional seismogenic sources which control the hazard at long return periods. However, by focusing on the impact of M < 6 local volcano-tectonic earthquakes, which dominate the hazard at the short- to mid-term exposure times considered in this study, we present a different viewpoint that, in our opinion, is relevant for retrofitting the existing buildings and for driving impending interventions of risk reduction.
Mastrolorenzo, Giuseppe; Palladino, Danilo M; Pappalardo, Lucia; Rossano, Sergio
2017-01-01
The Campi Flegrei volcanic field (Italy) poses very high risk to the highly urbanized Neapolitan area. Eruptive history was dominated by explosive activity producing pyroclastic currents (hereon PCs; acronym for Pyroclastic Currents) ranging in scale from localized base surges to regional flows. Here we apply probabilistic numerical simulation approaches to produce PC hazard maps, based on a comprehensive spectrum of flow properties and vent locations. These maps are incorporated in a Geographic Information System (GIS) and provide all probable Volcanic Explosivity Index (VEI) scenarios from different source vents in the caldera, relevant for risk management planning. For each VEI scenario, we report the conditional probability for PCs (i.e., the probability for a given area to be affected by the passage of PCs in case of a PC-forming explosive event) and related dynamic pressure. Model results indicate that PCs from VEI<4 events would be confined within the Campi Flegrei caldera, PC propagation being impeded by the northern and eastern caldera walls. Conversely, PCs from VEI 4-5 events could invade a wide area beyond the northern caldera rim, as well as part of the Naples metropolitan area to the east. A major controlling factor of PC dispersal is represented by the location of the vent area. PCs from the potentially largest eruption scenarios (analogous to the ~15 ka, VEI 6 Neapolitan Yellow Tuff or even the ~39 ka, VEI 7 Campanian Ignimbrite extreme event) would affect a large part of the Campanian Plain to the north and the city of Naples to the east. Thus, in case of renewal of eruptive activity at Campi Flegrei, up to 3 million people will be potentially exposed to volcanic hazard, pointing out the urgency of an emergency plan. Considering the present level of uncertainty in forecasting the future eruption type, size and location (essentially based on statistical analysis of previous activity), we suggest that appropriate planning measures should face at least the VEI 5 reference scenario (at least 2 occurrences documented in the last 10 ka).
Mastrolorenzo, Giuseppe; Palladino, Danilo M.; Pappalardo, Lucia; Rossano, Sergio
2017-01-01
The Campi Flegrei volcanic field (Italy) poses very high risk to the highly urbanized Neapolitan area. Eruptive history was dominated by explosive activity producing pyroclastic currents (hereon PCs; acronym for Pyroclastic Currents) ranging in scale from localized base surges to regional flows. Here we apply probabilistic numerical simulation approaches to produce PC hazard maps, based on a comprehensive spectrum of flow properties and vent locations. These maps are incorporated in a Geographic Information System (GIS) and provide all probable Volcanic Explosivity Index (VEI) scenarios from different source vents in the caldera, relevant for risk management planning. For each VEI scenario, we report the conditional probability for PCs (i.e., the probability for a given area to be affected by the passage of PCs in case of a PC-forming explosive event) and related dynamic pressure. Model results indicate that PCs from VEI<4 events would be confined within the Campi Flegrei caldera, PC propagation being impeded by the northern and eastern caldera walls. Conversely, PCs from VEI 4–5 events could invade a wide area beyond the northern caldera rim, as well as part of the Naples metropolitan area to the east. A major controlling factor of PC dispersal is represented by the location of the vent area. PCs from the potentially largest eruption scenarios (analogous to the ~15 ka, VEI 6 Neapolitan Yellow Tuff or even the ~39 ka, VEI 7 Campanian Ignimbrite extreme event) would affect a large part of the Campanian Plain to the north and the city of Naples to the east. Thus, in case of renewal of eruptive activity at Campi Flegrei, up to 3 million people will be potentially exposed to volcanic hazard, pointing out the urgency of an emergency plan. Considering the present level of uncertainty in forecasting the future eruption type, size and location (essentially based on statistical analysis of previous activity), we suggest that appropriate planning measures should face at least the VEI 5 reference scenario (at least 2 occurrences documented in the last 10 ka). PMID:29020018
Probabilistic Sensitivity Analysis of Fretting Fatigue (Preprint)
2009-04-01
AFRL-RX-WP-TP-2009-4091 PROBABILISTIC SENSITIVITY ANALYSIS OF FRETTING FATIGUE (Preprint) Patrick J. Golden, Harry R. Millwater , and...Sensitivity Analysis of Fretting Fatigue Patrick J. Golden * Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 Harry R. Millwater † and
Probabilistic simulation of stress concentration in composite laminates
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Murthy, P. L. N.; Liaw, L.
1993-01-01
A computational methodology is described to probabilistically simulate the stress concentration factors in composite laminates. This new approach consists of coupling probabilistic composite mechanics with probabilistic finite element structural analysis. The probabilistic composite mechanics is used to probabilistically describe all the uncertainties inherent in composite material properties while probabilistic finite element is used to probabilistically describe the uncertainties associated with methods to experimentally evaluate stress concentration factors such as loads, geometry, and supports. The effectiveness of the methodology is demonstrated by using it to simulate the stress concentration factors in composite laminates made from three different composite systems. Simulated results match experimental data for probability density and for cumulative distribution functions. The sensitivity factors indicate that the stress concentration factors are influenced by local stiffness variables, by load eccentricities and by initial stress fields.
Probabilistic load simulation: Code development status
NASA Astrophysics Data System (ADS)
Newell, J. F.; Ho, H.
1991-05-01
The objective of the Composite Load Spectra (CLS) project is to develop generic load models to simulate the composite load spectra that are included in space propulsion system components. The probabilistic loads thus generated are part of the probabilistic design analysis (PDA) of a space propulsion system that also includes probabilistic structural analyses, reliability, and risk evaluations. Probabilistic load simulation for space propulsion systems demands sophisticated probabilistic methodology and requires large amounts of load information and engineering data. The CLS approach is to implement a knowledge based system coupled with a probabilistic load simulation module. The knowledge base manages and furnishes load information and expertise and sets up the simulation runs. The load simulation module performs the numerical computation to generate the probabilistic loads with load information supplied from the CLS knowledge base.
Probabilistic boundary element method
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Raveendra, S. T.
1989-01-01
The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.
Probabilistic Risk Analysis of Groundwater Related Problems in Subterranean Excavation Sites
NASA Astrophysics Data System (ADS)
Sanchez-Vila, X.; Jurado, A.; de Gaspari, F.; Vilarrasa, V.; Bolster, D.; Fernandez-Garcia, D.; Tartakovsky, D. M.
2009-12-01
Construction of subterranean excavations in densely populated areas is inherently hazardous. The number of construction sites (e.g., subway lines, railways and highway tunnels) has increased in recent years. These sites can pose risks to workers at the site as well as cause damage to surrounding buildings. The presence of groundwater makes the excavation even more complicated. We develop a probabilistic risk assessment (PRA) model o estimate the likelihood of occurrence of certain risks during a subway station construction. While PRA is widely used in many engineering fields, its applications to the underground constructions in general and to an underground station construction in particular are scarce if not nonexistent. This method enables us not only to evaluate the probability of failure, but also to quantify the uncertainty of the different events considered. The risk analysis was carried out using a fault tree analysis that made it possible to study a complex system in a structured and straightforward manner. As an example we consider an underground station for the new subway line in the Barcelona metropolitan area (Línia 9) through the town of Prat de Llobregat in the Llobregat River Delta, which is currently under development. A typical station on the L9 line lies partially between the shallow and the main aquifer. Specifically, it is located in the middle layer which is made up of silts and clays. By presenting this example we aim to illustrate PRA as an effective methodology for estimating and minimising risks and to demonstrate its utility as a potential tool for decision making.
NASA Astrophysics Data System (ADS)
Sobradelo, Rosa; Martí, Joan; Kilburn, Christopher; López, Carmen
2014-05-01
Understanding the potential evolution of a volcanic crisis is crucial to improving the design of effective mitigation strategies. This is especially the case for volcanoes close to densely-populated regions, where inappropriate decisions may trigger widespread loss of life, economic disruption and public distress. An outstanding goal for improving the management of volcanic crises, therefore, is to develop objective, real-time methodologies for evaluating how an emergency will develop and how scientists communicate with decision makers. Here we present a new model BADEMO (Bayesian Decision Model) that applies a general and flexible, probabilistic approach to managing volcanic crises. The model combines the hazard and risk factors that decision makers need for a holistic analysis of a volcanic crisis. These factors include eruption scenarios and their probabilities of occurrence, the vulnerability of populations and their activities, and the costs of false alarms and failed forecasts. The model can be implemented before an emergency, to identify actions for reducing the vulnerability of a district; during an emergency, to identify the optimum mitigating actions and how these may change as new information is obtained; and after an emergency, to assess the effectiveness of a mitigating response and, from the results, to improve strategies before another crisis occurs. As illustrated by a retrospective analysis of the 2011 eruption of El Hierro, in the Canary Islands, BADEMO provides the basis for quantifying the uncertainty associated with each recommended action as an emergency evolves, and serves as a mechanism for improving communications between scientists and decision makers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L.; Prescott, Steven; Coleman, Justin
This report describes the current progress and status related to the Industry Application #2 focusing on External Hazards. For this industry application within the Light Water Reactor Sustainability (LWRS) Program Risk-Informed Safety Margin Characterization (RISMC) R&D Pathway, we will create the Risk-Informed Margin Management (RIMM) approach to represent meaningful (i.e., realistic facility representation) event scenarios and consequences by using an advanced 3D facility representation that will evaluate external hazards such as flooding and earthquakes in order to identify, model and analyze the appropriate physics that needs to be included to determine plant vulnerabilities related to external events; manage the communicationmore » and interactions between different physics modeling and analysis technologies; and develop the computational infrastructure through tools related to plant representation, scenario depiction, and physics prediction. One of the unique aspects of the RISMC approach is how it couples probabilistic approaches (the scenario) with mechanistic phenomena representation (the physics) through simulation. This simulation-based modeling allows decision makers to focus on a variety of safety, performance, or economic metrics. In this report, we describe the evaluation of various physics toolkits related to flooding representation. Ultimately, we will be coupling the flooding representation with other events such as earthquakes in order to provide coupled physics analysis for scenarios where interactions exist.« less
NASA Astrophysics Data System (ADS)
Gribovszki, Katalin; Bokelmann, Götz; Mónus, Péter; Kovács, Károly; Kalmár, János
2016-04-01
Earthquakes hit urban centers in Europe infrequently, but occasionally with disastrous effects. This raises the important issue for society, how to react to the natural hazard: potential damages are huge, and infrastructure costs for addressing these hazards are huge as well. Obtaining an unbiased view of seismic hazard (and risk) is very important therefore. In principle, the best way to test Probabilistic Seismic Hazard Assessments (PSHA) is to compare with observations that are entirely independent of the procedure used to produce the PSHA models. Arguably, the most valuable information in this context should be information on long-term hazard, namely maximum intensities (or magnitudes) occurring over time intervals that are at least as long as a seismic cycle. Such information would be very valuable, even if it concerned only a single site. Long-term information can in principle be gained from intact stalagmites in natural karstic caves. These have survived all earthquakes that have occurred, over thousands of years - depending on the age of the stalagmite. Their "survival" requires that the horizontal ground acceleration has never exceeded a certain critical value within that period. We are focusing here on a case study from the Katerloch cave close to the city of Graz, Austria. A specially-shaped (candle stick style: high, slim, and more or less cylindrical form) intact and vulnerable stalagmites (IVSTM) in the Katerloch cave has been examined in 2013 and 2014. This IVSTM is suitable for estimating the upper limit for horizontal peak ground acceleration generated by pre-historic earthquakes. For this cave, we have extensive information about ages (e.g., Boch et al., 2006, 2010). The approach, used in our study, yields significant new constraints on seismic hazard, as the intactness of the stalagmites suggests that tectonic structures close to Katerloch cave, i.p. the Mur-Mürz fault did not generate very strong paleoearthquakes in the last few thousand years. This study is particular important for understanding the seismic hazard associated with the town of Graz. The acceleration level determined by our study for the territory of Katerloch cave is much lower than the PGA value interval (from 0.075 g to 0.1 g, in case of arithmetic mean, 85% fragile, rock type) determined by probabilistic seismic hazard calculation (SHARE Model, e.g., Giardini et al., 2013,) for a 475 years recurrence time (in 50 years with 10% probability of exceedance).
Parameter estimation in Probabilistic Seismic Hazard Analysis: current problems and some solutions
NASA Astrophysics Data System (ADS)
Vermeulen, Petrus
2017-04-01
A typical Probabilistic Seismic Hazard Analysis (PSHA) comprises identification of seismic source zones, determination of hazard parameters for these zones, selection of an appropriate ground motion prediction equation (GMPE), and integration over probabilities according the Cornell-McGuire procedure. Determination of hazard parameters often does not receive the attention it deserves, and, therefore, problems therein are often overlooked. Here, many of these problems are identified, and some of them addressed. The parameters that need to be identified are those associated with the frequency-magnitude law, those associated with earthquake recurrence law in time, and the parameters controlling the GMPE. This study is concerned with the frequency-magnitude law and temporal distribution of earthquakes, and not with GMPEs. TheGutenberg-Richter frequency-magnitude law is usually adopted for the frequency-magnitude law, and a Poisson process for earthquake recurrence in time. Accordingly, the parameters that need to be determined are the slope parameter of the Gutenberg-Richter frequency-magnitude law, i.e. the b-value, the maximum value at which the Gutenberg-Richter law applies mmax, and the mean recurrence frequency,λ, of earthquakes. If, instead of the Cornell-McGuire, the "Parametric-Historic procedure" is used, these parameters do not have to be known before the PSHA computations, they are estimated directly during the PSHA computation. The resulting relation for the frequency of ground motion vibration parameters has an analogous functional form to the frequency-magnitude law, which is described by parameters γ (analogous to the b¬-value of the Gutenberg-Richter law) and the maximum possible ground motion amax (analogous to mmax). Originally, the approach was possible to apply only to the simple GMPE, however, recently a method was extended to incorporate more complex forms of GMPE's. With regards to the parameter mmax, there are numerous methods of estimation, none of which is accepted as the standard one. There is also much controversy surrounding this parameter. In practice, when estimating the above mentioned parameters from seismic catalogue, the magnitude, mmin, from which a seismic catalogue is complete becomes important.Thus, the parameter mmin is also considered as a parameter to be estimated in practice. Several methods are discussed in the literature, and no specific method is preferred. Methods usually aim at identifying the point where a frequency-magnitude plot starts to deviate from linearity due to data loss. Parameter estimation is clearly a rich field which deserves much attention and, possibly standardization, of methods. These methods should be the sound and efficient, and a query into which methods are to be used - and for that matter which ones are not to be used - is in order.
NASA Astrophysics Data System (ADS)
García-Rodríguez, M. J.; Malpica, J. A.; Benito, B.
2009-04-01
In recent years, interest in landslide hazard assessment studies has increased substantially. They are appropriate for evaluation and mitigation plan development in landslide-prone areas. There are several techniques available for landslide hazard research at a regional scale. Generally, they can be classified in two groups: qualitative and quantitative methods. Most of qualitative methods tend to be subjective, since they depend on expert opinions and represent hazard levels in descriptive terms. On the other hand, quantitative methods are objective and they are commonly used due to the correlation between the instability factors and the location of the landslides. Within this group, statistical approaches and new heuristic techniques based on artificial intelligence (artificial neural network (ANN), fuzzy logic, etc.) provide rigorous analysis to assess landslide hazard over large regions. However, they depend on qualitative and quantitative data, scale, types of movements and characteristic factors used. We analysed and compared an approach for assessing earthquake-triggered landslides hazard using logistic regression (LR) and artificial neural networks (ANN) with a back-propagation learning algorithm. One application has been developed in El Salvador, a country of Central America where the earthquake-triggered landslides are usual phenomena. In a first phase, we analysed the susceptibility and hazard associated to the seismic scenario of the 2001 January 13th earthquake. We calibrated the models using data from the landslide inventory for this scenario. These analyses require input variables representing physical parameters to contribute to the initiation of slope instability, for example, slope gradient, elevation, aspect, mean annual precipitation, lithology, land use, and terrain roughness, while the occurrence or non-occurrence of landslides is considered as dependent variable. The results of the landslide susceptibility analysis are checked using landslide location data. These results show a high concordance between the landslide inventory and the high susceptibility estimated zone with an adjustment of 95.1 % for ANN model and 89.4% for LR model. In addition, we make a comparative analysis of both techniques using the Receiver Operating Characteristic (ROC) curve, a graphical plot of the sensitivity vs. (1 - specificity) for a binary classifier system in function of its discrimination threshold, and calculating the Area Under the ROC (AUROC) value for each model. Finally, the previous models are used for the developing a new probabilistic landslide hazard map for future events. They are obtained combining the expected triggering factor (calculated earthquake ground motion) for a return period of 475 years with the susceptibility map.
Landslide hazard assessment: recent trends and techniques.
Pardeshi, Sudhakar D; Autade, Sumant E; Pardeshi, Suchitra S
2013-01-01
Landslide hazard assessment is an important step towards landslide hazard and risk management. There are several methods of Landslide Hazard Zonation (LHZ) viz. heuristic, semi quantitative, quantitative, probabilistic and multi-criteria decision making process. However, no one method is accepted universally for effective assessment of landslide hazards. In recent years, several attempts have been made to apply different methods of LHZ and to compare results in order to find the best suited model. This paper presents the review of researches on landslide hazard mapping published in recent years. The advanced multivariate techniques are proved to be effective in spatial prediction of landslides with high degree of accuracy. Physical process based models also perform well in LHZ mapping even in the areas with poor database. Multi-criteria decision making approach also play significant role in determining relative importance of landslide causative factors in slope instability process. Remote Sensing and Geographical Information System (GIS) are powerful tools to assess landslide hazards and are being used extensively in landslide researches since last decade. Aerial photographs and high resolution satellite data are useful in detection, mapping and monitoring landslide processes. GIS based LHZ models helps not only to map and monitor landslides but also to predict future slope failures. The advancements in Geo-spatial technologies have opened the doors for detailed and accurate assessment of landslide hazards.
Probability-based hazard avoidance guidance for planetary landing
NASA Astrophysics Data System (ADS)
Yuan, Xu; Yu, Zhengshi; Cui, Pingyuan; Xu, Rui; Zhu, Shengying; Cao, Menglong; Luan, Enjie
2018-03-01
Future landing and sample return missions on planets and small bodies will seek landing sites with high scientific value, which may be located in hazardous terrains. Autonomous landing in such hazardous terrains and highly uncertain planetary environments is particularly challenging. Onboard hazard avoidance ability is indispensable, and the algorithms must be robust to uncertainties. In this paper, a novel probability-based hazard avoidance guidance method is developed for landing in hazardous terrains on planets or small bodies. By regarding the lander state as probabilistic, the proposed guidance algorithm exploits information on the uncertainty of lander position and calculates the probability of collision with each hazard. The collision probability serves as an accurate safety index, which quantifies the impact of uncertainties on the lander safety. Based on the collision probability evaluation, the state uncertainty of the lander is explicitly taken into account in the derivation of the hazard avoidance guidance law, which contributes to enhancing the robustness to the uncertain dynamics of planetary landing. The proposed probability-based method derives fully analytic expressions and does not require off-line trajectory generation. Therefore, it is appropriate for real-time implementation. The performance of the probability-based guidance law is investigated via a set of simulations, and the effectiveness and robustness under uncertainties are demonstrated.
NASA Technical Reports Server (NTRS)
Duffy, S. F.; Hu, J.; Hopkins, D. A.
1995-01-01
The article begins by examining the fundamentals of traditional deterministic design philosophy. The initial section outlines the concepts of failure criteria and limit state functions two traditional notions that are embedded in deterministic design philosophy. This is followed by a discussion regarding safety factors (a possible limit state function) and the common utilization of statistical concepts in deterministic engineering design approaches. Next the fundamental aspects of a probabilistic failure analysis are explored and it is shown that deterministic design concepts mentioned in the initial portion of the article are embedded in probabilistic design methods. For components fabricated from ceramic materials (and other similarly brittle materials) the probabilistic design approach yields the widely used Weibull analysis after suitable assumptions are incorporated. The authors point out that Weibull analysis provides the rare instance where closed form solutions are available for a probabilistic failure analysis. Since numerical methods are usually required to evaluate component reliabilities, a section on Monte Carlo methods is included to introduce the concept. The article concludes with a presentation of the technical aspects that support the numerical method known as fast probability integration (FPI). This includes a discussion of the Hasofer-Lind and Rackwitz-Fiessler approximations.
Multisensor system for toxic gases detection generated on indoor environments
NASA Astrophysics Data System (ADS)
Durán, C. M.; Monsalve, P. A. G.; Mosquera, C. J.
2016-11-01
This work describes a wireless multisensory system for different toxic gases detection generated on indoor environments (i.e., Underground coal mines, etc.). The artificial multisensory system proposed in this study was developed through a set of six chemical gas sensors (MQ) of low cost with overlapping sensitivities to detect hazardous gases in the air. A statistical parameter was implemented to the data set and two pattern recognition methods such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA) were used for feature selection. The toxic gases categories were classified with a Probabilistic Neural Network (PNN) in order to validate the results previously obtained. The tests were carried out to verify feasibility of the application through a wireless communication model which allowed to monitor and store the information of the sensor signals for the appropriate analysis. The success rate in the measures discrimination was 100%, using an artificial neural network where leave-one-out was used as cross validation method.
NASA Astrophysics Data System (ADS)
Suppasri, A.; Charvet, I.; Leelawat, N.; Fukutani, Y.; Muhari, A.; Futami, T.; Imamura, F.
2014-12-01
This study focused in turn on detailed data of buildings and boats damage caused by the 2011 tsunami in order to understand its main causes and provide damage probability estimates. Tsunami-induced building damage data was collected from field surveys, and includes inundation depth, building material, number of stories and occupancy type for more than 80,000 buildings. Numerical simulations with high resolution bathymetry and topography data were conducted to obtain characteristic tsunami measures such as flow velocity. These data were analyzed using advanced statistical methods, ordinal regression analysis to create not only empirical 2D tsunami fragility curves, but also 3D tsunami fragility surfaces for the first time. The effect of floating debris was also considered, by using a binary indicator of debris impact based on the proximity of a structure from a debris source (i.e. washed away building). Both the 2D and 3D fragility analyses provided results for each different building damage level, and different topography. While 2D fragility curves provide easily interpretable results relating tsunami flow depth to damage probability for different damage levels, 3D fragility surfaces allow for several influential tsunami parameters to be taken into account thus reduce uncertainty in the probability estimations. More than 20,000 damaged boats were used in the analysis similar to the one carried out on the buildings. Detailed data for each boat comprises information on the damage ratio (paid value over insured value), tonnage, engine type, material type and damage classification. The 2D and 3D fragility analyses were developed using representative tsunami heights for each port obtained from field surveys and flow velocities obtained from the aforementioned simulations. The results are currently being adapted for practical disaster mitigation. They are being integrated with the probabilistic tsunami hazard analysis, in order to create offshore and onshore probabilistic hazard maps. Through the GPS and embedded calculation function based on the aforementioned fragility results, these applications can be used in the field for a quick estimation of possible building damage, as well as a decision support system for fishermen (whether or not they should move their boats to the deep sea upon tsunami arrival).
Probalistic Assessment of Radiation Risk for Solar Particle Events
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
2008-01-01
For long duration missions outside of the protection of the Earth's magnetic field, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon or Earth-to-Mars transit. The large majority (90%) of SPEs have small or no health consequences because the doses are low and the particles do not penetrate to organ depths. However, there is an operational challenge to respond to events of unknown size and duration. We have developed a probabilistic approach to SPE risk assessment in support of mission design and operational planning. Using the historical database of proton measurements during the past 5 solar cycles, the functional form of hazard function of SPE occurrence per cycle was found for nonhomogeneous Poisson model. A typical hazard function was defined as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions of particle fluences for a specified mission period were simulated ranging from its 5th to 95th percentile. Organ doses from large SPEs were assessed using NASA's Baryon transport model, BRYNTRN. The SPE risk was analyzed with the organ dose distribution for the given particle fluences during a mission period. In addition to the total particle fluences of SPEs, the detailed energy spectra of protons, especially at high energy levels, were recognized as extremely important for assessing the cancer risk associated with energetic particles for large events. The probability of exceeding the NASA 30-day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated for various SPE sizes. This probabilistic approach to SPE protection will be combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks in future work.
Probabilistic detection of volcanic ash using a Bayesian approach
Mackie, Shona; Watson, Matthew
2014-01-01
Airborne volcanic ash can pose a hazard to aviation, agriculture, and both human and animal health. It is therefore important that ash clouds are monitored both day and night, even when they travel far from their source. Infrared satellite data provide perhaps the only means of doing this, and since the hugely expensive ash crisis that followed the 2010 Eyjafjalljökull eruption, much research has been carried out into techniques for discriminating ash in such data and for deriving key properties. Such techniques are generally specific to data from particular sensors, and most approaches result in a binary classification of pixels into “ash” and “ash free” classes with no indication of the classification certainty for individual pixels. Furthermore, almost all operational methods rely on expert-set thresholds to determine what constitutes “ash” and can therefore be criticized for being subjective and dependent on expertise that may not remain with an institution. Very few existing methods exploit available contemporaneous atmospheric data to inform the detection, despite the sensitivity of most techniques to atmospheric parameters. The Bayesian method proposed here does exploit such data and gives a probabilistic, physically based classification. We provide an example of the method's implementation for a scene containing both land and sea observations, and a large area of desert dust (often misidentified as ash by other methods). The technique has already been successfully applied to other detection problems in remote sensing, and this work shows that it will be a useful and effective tool for ash detection. Key Points Presentation of a probabilistic volcanic ash detection scheme Method for calculation of probability density function for ash observations Demonstration of a remote sensing technique for monitoring volcanic ash hazards PMID:25844278
Probabilistic detection of volcanic ash using a Bayesian approach.
Mackie, Shona; Watson, Matthew
2014-03-16
Airborne volcanic ash can pose a hazard to aviation, agriculture, and both human and animal health. It is therefore important that ash clouds are monitored both day and night, even when they travel far from their source. Infrared satellite data provide perhaps the only means of doing this, and since the hugely expensive ash crisis that followed the 2010 Eyjafjalljökull eruption, much research has been carried out into techniques for discriminating ash in such data and for deriving key properties. Such techniques are generally specific to data from particular sensors, and most approaches result in a binary classification of pixels into "ash" and "ash free" classes with no indication of the classification certainty for individual pixels. Furthermore, almost all operational methods rely on expert-set thresholds to determine what constitutes "ash" and can therefore be criticized for being subjective and dependent on expertise that may not remain with an institution. Very few existing methods exploit available contemporaneous atmospheric data to inform the detection, despite the sensitivity of most techniques to atmospheric parameters. The Bayesian method proposed here does exploit such data and gives a probabilistic, physically based classification. We provide an example of the method's implementation for a scene containing both land and sea observations, and a large area of desert dust (often misidentified as ash by other methods). The technique has already been successfully applied to other detection problems in remote sensing, and this work shows that it will be a useful and effective tool for ash detection. Presentation of a probabilistic volcanic ash detection schemeMethod for calculation of probability density function for ash observationsDemonstration of a remote sensing technique for monitoring volcanic ash hazards.
Chou, Berry Yun-Hua; Liao, Chung-Min; Lin, Ming-Chao; Cheng, Hsu-Hui
2006-05-01
This paper presents a toxicokinetic/toxicodynamic analysis to appraise arsenic (As) bioaccumulation in farmed juvenile milkfish Chanos chanos at blackfoot disease (BFD)-endemic area in Taiwan, whereas probabilistic incremental lifetime cancer risk (ILCR) and hazard quotient (HQ) models are also employed to assess the range of exposures for the fishers and non-fishers who eat the contaminated fish. We conducted a 7-day exposure experiment to obtain toxicokinetic parameters, whereas a simple critical body burden toxicity model was verified with LC50(t) data obtained from a 7-day acute toxicity bioassay. Acute toxicity bioassay indicates that 96-h LC50 for juvenile milkfish exposed to As is 7.29 (95% CI: 3.10-10.47) mg l(-1). Our risk analysis for milkfish reared in BFD-endemic area indicates a low likelihood that survival is being affected by waterborne As. Human risk analysis demonstrates that 90%-tile probability exposure ILCRs for fishers in BFD-endemic area have orders of magnitude of 10(-3), indicating a high potential carcinogenic risk, whereas there is no significant cancer risk for non-fishers (ILCRs around 10(-5)). All predicted 90%-tiles of HQ are less than 1 for non-fishers, yet larger than 10 for fishers which indicate larger contributions from farmed milkfish consumptions. Sensitivity analysis indicates that to increase the accuracy of the results, efforts should focus on a better definition of probability distributions for milkfish daily consumption rate and As level in milkfish. Here we show that theoretical human health risks for consuming As-contaminated milkfish in the BFD-endemic area are alarming under a conservative condition based on a probabilistic risk assessment model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groth, Katrina M.; Zumwalt, Hannah Ruth; Clark, Andrew Jordan
2016-03-01
Hydrogen Risk Assessment Models (HyRAM) is a prototype software toolkit that integrates data and methods relevant to assessing the safety of hydrogen fueling and storage infrastructure. The HyRAM toolkit integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing the impact of hydrogen hazards, including thermal effects from jet fires and thermal pressure effects from deflagration. HyRAM version 1.0 incorporates generic probabilities for equipment failures for nine types of components, and probabilistic models for the impact of heat flux on humans and structures, with computationally and experimentally validated models of various aspects of gaseous hydrogen releasemore » and flame physics. This document provides an example of how to use HyRAM to conduct analysis of a fueling facility. This document will guide users through the software and how to enter and edit certain inputs that are specific to the user-defined facility. Description of the methodology and models contained in HyRAM is provided in [1]. This User’s Guide is intended to capture the main features of HyRAM version 1.0 (any HyRAM version numbered as 1.0.X.XXX). This user guide was created with HyRAM 1.0.1.798. Due to ongoing software development activities, newer versions of HyRAM may have differences from this guide.« less
Electromagnetic Compatibility (EMC) in Microelectronics.
1983-02-01
Fault Tree Analysis", System Saftey Symposium, June 8-9, 1965, Seattle: The Boeing Company . 12. Fussell, J.B., "Fault Tree Analysis-Concepts and...procedure for assessing EMC in microelectronics and for applying DD, 1473 EOiTO OP I, NOV6 IS OESOL.ETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS...CRITERIA 2.1 Background 2 2.2 The Probabilistic Nature of EMC 2 2.3 The Probabilistic Approach 5 2.4 The Compatibility Factor 6 3 APPLYING PROBABILISTIC
NESSUS/EXPERT - An expert system for probabilistic structural analysis methods
NASA Technical Reports Server (NTRS)
Millwater, H.; Palmer, K.; Fink, P.
1988-01-01
An expert system (NESSUS/EXPERT) is presented which provides assistance in using probabilistic structural analysis methods. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator. NESSUS/EXPERT was developed with a combination of FORTRAN and CLIPS, a C language expert system tool, to exploit the strengths of each language.
Probabilistic sizing of laminates with uncertainties
NASA Technical Reports Server (NTRS)
Shah, A. R.; Liaw, D. G.; Chamis, C. C.
1993-01-01
A reliability based design methodology for laminate sizing and configuration for a special case of composite structures is described. The methodology combines probabilistic composite mechanics with probabilistic structural analysis. The uncertainties of constituent materials (fiber and matrix) to predict macroscopic behavior are simulated using probabilistic theory. Uncertainties in the degradation of composite material properties are included in this design methodology. A multi-factor interaction equation is used to evaluate load and environment dependent degradation of the composite material properties at the micromechanics level. The methodology is integrated into a computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). Versatility of this design approach is demonstrated by performing a multi-level probabilistic analysis to size the laminates for design structural reliability of random type structures. The results show that laminate configurations can be selected to improve the structural reliability from three failures in 1000, to no failures in one million. Results also show that the laminates with the highest reliability are the least sensitive to the loading conditions.