Science.gov

Sample records for probabilistic shock initiation

  1. Shock initiation of nitromethane

    SciTech Connect

    Yoo, C.S.; Holmes, N.C.

    1993-12-31

    The shock initiation processes of nitromethane have been examined by using a fast time-resolved emission spectroscopy at a two-stage gas gun. a broad, but strong emission has been observed in a spectral range between 350 and 700 nm from shocked nitromethane above 9 GPa. The temporal profile suggests that shocked nitromethane detonates through three characteristic periods, namely an induction period, a hock initiation period, and a thermal explosion period. This paper discusses temporal and chemical characteristics of these periods and present the temperature of the shock-detonating nitromethane at pressures between 9 and 15 GPa.

  2. Shock initiation of porous TATB

    SciTech Connect

    Anderson, A.B.; Ginsberg, M.J.; Seitz, W.L.; Wackerle, J.

    1981-01-01

    The planar shock initiation of 1.8-g/cm/sup 3/ TATB has been studied with embedded-Manganin pressure gauges and with the explosive wedge technique. A Lagrangian analysis and an assumed equation of state were used to determine reaction histories during the initiation process. Correlation of reaction rates to state variables has resulted in a shock-strength modified Arrhenius rate law. Numerical simulations employing the rate law have been performed for a number of initiation experiments on TATB.

  3. Augmenting Probabilistic Risk Assesment with Malevolent Initiators

    SciTech Connect

    Curtis Smith; David Schwieder

    2011-11-01

    As commonly practiced, the use of probabilistic risk assessment (PRA) in nuclear power plants only considers accident initiators such as natural hazards, equipment failures, and human error. Malevolent initiators are ignored in PRA, but are considered the domain of physical security, which uses vulnerability assessment based on an officially specified threat (design basis threat). This paper explores the implications of augmenting and extending existing PRA models by considering new and modified scenarios resulting from malevolent initiators. Teaming the augmented PRA models with conventional vulnerability assessments can cost-effectively enhance security of a nuclear power plant. This methodology is useful for operating plants, as well as in the design of new plants. For the methodology, we have proposed an approach that builds on and extends the practice of PRA for nuclear power plants for security-related issues. Rather than only considering 'random' failures, we demonstrated a framework that is able to represent and model malevolent initiating events and associated plant impacts.

  4. Shock Initiation of Damaged Explosives

    SciTech Connect

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  5. Shock Initiation of Heterogeneous Explosives

    SciTech Connect

    Reaugh, J E

    2004-05-10

    The fundamental picture that shock initiation in heterogeneous explosives is caused by the linking of hot spots formed at inhomogeneities was put forward by several researchers in the 1950's and 1960's, and more recently. Our work uses the computer hardware and software developed in the Advanced Simulation and Computing (ASC) program of the U.S. Department of Energy to explicitly include heterogeneities at the scale of the explosive grains and to calculate the consequences of realistic although approximate models of explosive behavior. Our simulations are performed with ALE-3D, a three-dimensional, elastic-plastic-hydrodynamic Arbitrary Lagrange-Euler finite-difference program, which includes chemical kinetics and heat transfer, and which is under development at this laboratory. We developed the parameter values for a reactive-flow model to describe the non-ideal detonation behavior of an HMX-based explosive from the results of grain-scale simulations. In doing so, we reduced the number of free parameters that are inferred from comparison with experiment to a single one - the characteristic defect dimension. We also performed simulations of the run to detonation in small volumes of explosive. These simulations illustrate the development of the reaction zone and the acceleration of the shock front as the flame fronts start from hot spots, grow, and interact behind the shock front. In this way, our grain-scale simulations can also connect to continuum experiments directly.

  6. Shock initiation in heterogeneous explosives

    SciTech Connect

    Nunziato, J.W.; Kipp, M.E.; Setchell, R.E.; Walsh, E.K.

    1982-09-01

    It is generally accepted that the shock initiation of heterogeneous explosives begins with the formation of hot spots in the vicinity of microstructural defects such as voids, grain boundaries, and phase boundaries where there can be significant localized deformation as a result of material viscosity, plastic work, and intergranular friction. In this report, we describe this phenomenon in the context of a recently developed theory of chemically reacting, multiphase mixtures. In particular, we consider a granular explosive with an energetic binder (e.g. PBX-9404) and represent it as a three-phase, saturated mixture consisting of the granular reactant, the binder phase, and the product gases. Under dynamic loading, viscous dissipation results in high temperatures in the binder phase which subsequently thermally explodes to form product gases. Decomposition of the granular reactant is achieved by laminar grain burning. This model has been incorporated into a 1-D Lagrangian finite-difference code (WONDY) and the evolution of compressive shock and acceleration (ramp) waves have been calculated for PBX-9404. The calculated wave growth at the front, as well as the reaction-induced pressure wave behind the front, are shown to be in good agreement with experimental observations.

  7. Revisiting Shock Initiation Modeling of Homogeneous Explosives

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2013-04-01

    Shock initiation of homogeneous explosives has been a subject of research since the 1960s, with neat and sensitized nitromethane as the main materials for experiments. A shock initiation model of homogeneous explosives was established in the early 1960s. It involves a thermal explosion event at the shock entrance boundary, which develops into a superdetonation that overtakes the initial shock. In recent years, Sheffield and his group, using accurate experimental tools, were able to observe details of buildup of the superdetonation. There are many papers on modeling shock initiation of heterogeneous explosives, but there are only a few papers on modeling shock initiation of homogeneous explosives. In this article, bulk reaction reactive flow equations are used to model homogeneous shock initiation in an attempt to reproduce experimental data of Sheffield and his group. It was possible to reproduce the main features of the shock initiation process, including thermal explosion, superdetonation, input shock overtake, overdriven detonation after overtake, and the beginning of decay toward Chapman-Jouget (CJ) detonation. The time to overtake (TTO) as function of input pressure was also calculated and compared to the experimental TTO.

  8. Probabilistic events in shock driven multiphase hydrodynamic instabilities

    NASA Astrophysics Data System (ADS)

    Black, Wolfgang; Denissen, Nick; McFarland, Jacob

    2016-11-01

    Multiphase flows are an important and complex topic of research with a rich parameter space. Historically many simplifications and assumptions have been made to allow simulation techniques to be applied to these systems. Some common assumptions include no partilce-particle effects, evenly distributed particle fields, no phase change, or even constant particle radii. For some flows, these assumptions may be applicable but as the systems undergo complex accelerations and eventually become turbulent these multiphase parameters can create significant effects. Through the use of FLAG, a multiphysics hydrodynamics code developed at Los Alamos national laboratory, these assumptions can be relaxed or eliminated to increase fidelity and guide the development of experiments. This talk will build on our previous work utilizing simulations on the shock driven multiphase instability with a new investigation into a greater parameter space provided by additional multiphase effects; including a probabilistic particle field, various particle radii, and particle-particle effects on the evolution of commonly studied interfaces. Los Alamos National Laboratory LA-UR-16-25652.

  9. A probabilistic approach for channel initiation

    Treesearch

    Erkan Istanbulluoglu; David G. Tarboton; Robert T. Pack; Charles H. Luce

    2002-01-01

    The channel head represents an important transition point from hillslope to fluvial processes. There is a nonlinear threshold transition across the channel head with sediment transport much larger in channels than on hillslopes. Deterministic specific catchment area, a, thresholds for channel initiation, sometimes dependent on slope, S...

  10. Shock initiation studies on heterogeneous explosives

    SciTech Connect

    Simpson, R.L.; Helm, F.H.; Crawford, P.C; Kury, J.W.

    1988-03-29

    A set of laboratory experiments and a modeling analysis to determine and characterize the shock initiation behavior of high explosives are described. The experimental techniques include modified wedge tests, in situ manganin pressure gauge measurements, and multichannel visible radiometry on explosive samples shock loaded with an electric gun. A description of the experimental methodologies and limitations is made examining the effect of particle size in the shock initiation of HMX/water mixtures. The theoretical analysis is based on reactive flow hydrodynamic calculations using a three term ignition and growth model. 14 refs., 10 figs.

  11. Shock Initiation of Energetic Materials at Different Initial Temperatures

    SciTech Connect

    Urtiew, P A; Tarver, C M

    2005-01-14

    Shock initiation is one of the most important properties of energetic materials, which must transition to detonation exactly as intended when intentionally shocked and not detonate when accidentally shocked. The development of manganin pressure gauges that are placed inside the explosive charge and record the buildup of pressure upon shock impact has greatly increased the knowledge of these reactive flows. This experimental data, together with similar data from electromagnetic particle velocity gauges, has allowed us to formulate the Ignition and Growth model of shock initiation and detonation in hydrodynamic computer codes for predictions of shock initiation scenarios that cannot be tested experimentally. An important problem in shock initiation of solid explosives is the change in sensitivity that occurs upon heating (or cooling). Experimental manganin pressure gauge records and the corresponding Ignition and Growth model calculations are presented for two solid explosives, LX-17 (92.5 % triaminotrinitrobenzene (TATB) with 7.5 % Kel-F binder) and LX-04 (85 % octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX) with 15 % Viton binder) at several initial temperatures.

  12. Barrier experiment: Shock initiation under complex loading

    SciTech Connect

    Menikoff, Ralph

    2016-01-12

    The barrier experiments are a variant of the gap test; a detonation wave in a donor HE impacts a barrier and drives a shock wave into an acceptor HE. The question we ask is: What is the trade-off between the barrier material and threshold barrier thickness to prevent the acceptor from detonating. This can be viewed from the perspective of shock initiation of the acceptor subject to a complex pressure drive condition. Here we consider key factors which affect whether or not the acceptor undergoes a shock-to-detonation transition. These include the following: shock impedance matches for the donor detonation wave into the barrier and then the barrier shock into the acceptor, the pressure gradient behind the donor detonation wave, and the curvature of detonation front in the donor. Numerical simulations are used to illustrate how these factors affect the reaction in the acceptor.

  13. Simulation of shock-initiated ignition

    NASA Astrophysics Data System (ADS)

    Melguizo-Gavilanes, J.; Rezaeyan, N.; Lopez-Aoyagi, M.; Bauwens, L.

    2010-12-01

    The scenario of detonative ignition in shocked mixture is significant because it is a contributor to deflagration to detonation transition, for example following shock reflections. However, even in one dimension, simulation of ignition between a contact surface or a flame and a shock moving into a combustible mixture is difficult because of the singular nature of the initial conditions. Initially, as the shock starts moving into reactive mixture, the region filled with reactive mixture has zero thickness. On a fixed grid, the number of grid points between the shock and the contact surface increases as the shock moves away from the latter. Due to initial lack of resolution in the region of interest, staircasing may occur, whereby the resulting plots consist of jumps between few values a few grid points, and these numerical artifacts are amplified by the chemistry which is very sensitive to temperature, leading to unreliable results. The formulation is transformed, replacing time and space by time and space over time as the independent variables. This frame of reference corresponds to the self-similar formulation in which the non-reactive problem remains stationary, and the initial conditions are well-resolved. Additionally, a solution obtained from short time perturbation is used as initial condition, at a time still short enough for the perturbation to be very accurate, but long enough so that there is sufficient resolution. The numerical solution to the transformed problem is obtained using an essentially non-oscillatory algorithm, which is adequate not only for the early part of the process, but also for the latter part, when chemistry leads to appearance of a shock and eventually a detonation wave is formed. A validation study was performed and the results were compared with the literature, for single step Arrhenius chemistry. The method and its implementation were found to be effective. Results are presented for values of activation energy ranging from mild to

  14. Shock Initiation Thresholds of Various Energetic Materials

    NASA Astrophysics Data System (ADS)

    Damm, David; Welle, Eric; Yarrington, Cole

    2013-06-01

    Shock initiation threshold data for several energetic materials has been analyzed for both short-pulses and long, sustained shocks. In the limit of long duration shocks, the critical pressure for initiation is governed by the balance between chemical energy release in the vicinity of hotspots and thermal dissipation which cools the hotspot and can quench reactions. The observed trends in critical pressure from one material to the next are related to the thermophysical properties and chemical reaction kinetics of each material. Scaling analysis, combined with hydrocode simulations of collapsing pores has confirmed these trends; however large uncertainty in the reaction kinetics under shock loading prevents an accurate quantitative description of hotspot ignition. For a given pore diameter, scaling analysis allows a quick estimate of the temperature at which the reaction rate will exceed the rate of thermal dissipation. Using published thermophysical property data and reaction kinetics we found that the trend in critical hotspot temperatures for several common materials (e.g. PETN, HMX, HNS, and TATB) matches the observed trend in initiation sensitivity. The hydrocode simulations of pore collapse provide a link between the critical temperature and the initial shock pressure. For these simulations we have used recently published QMD-based equations of state for the fully-dense, crystalline phase and have included the effects of variable specific heat, viscous dissipation, and plastic work. These results will be presented and the need for physically-meaningful reaction rates will be emphasized.

  15. Multiple shock initiation of LX-17

    SciTech Connect

    Tarver, C.M.; Cook, T.M.; Urtiew, P.A.; Tao, W.C.

    1993-07-01

    The response of the insensitive TATB-based high explosive LX-17 to multiple shock impacts is studied experimentally in a four inch gas gun using embedded manganin gauges and numerically using the ignition and growth reactive flow model of shock initiation and detonation. Pressure histories are reported for LX-17 cylinders which are subjected to sustained shock pulses followed by secondary compressions from shocks reflected from metal discs attached to the backs of the explosive targets. These measured and calculated pressure histories show that the threshold for hot spot growth in LX-17 is 7 GPa, that LX-17 can be dead pressed at slightly lower pressures, and that the reaction rates behind reflected shocks increase greatly as the impedance of the metal increases. A study of the response of LX-17 to the collision of two reacting, diverging shocks forming a Mach stem wave inside the LX-17 charge demonstrated that this interaction can result in a high pressure region of sufficient size and strength to cause detonation under certain conditions.

  16. Initial Probabilistic Evaluation of Reactor Pressure Vessel Fracture with Grizzly and Raven

    SciTech Connect

    Spencer, Benjamin; Hoffman, William; Sen, Sonat; Rabiti, Cristian; Dickson, Terry; Bass, Richard

    2015-10-01

    The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled reactor pressure vessels (RPVs). Grizzly can be used to model the thermal/mechanical response of an RPV under transient conditions that would be observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtain stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. These capabilities have been demonstrated previously. A typical RPV is likely to contain a large population of pre-existing flaws introduced during the manufacturing process. This flaw population is characterized stastistically through probability density functions of the flaw distributions. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation during a transient event. This report documents initial work to perform probabilistic analysis of RPV fracture during a PTS event using a combination of the RAVEN risk analysis code and Grizzly. This work is limited in scope, considering only a single flaw with deterministic geometry, but with uncertainty introduced in the parameters that influence fracture toughness. These results are benchmarked against equivalent models run in the FAVOR code. When fully developed, the RAVEN/Grizzly methodology for modeling probabilistic fracture in RPVs will provide a general capability that can be used to consider a wider variety of vessel and flaw conditions that are difficult to consider with current tools. In addition, this will provide access to advanced probabilistic techniques provided by RAVEN, including adaptive sampling and parallelism, which can dramatically

  17. Shock Wave Initiation of Mixture Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Mikhailov, A. L.; Nazarov, D. V.; Finyushin, S. A.; Men'shikh, A. V.; Davydov, V. A.

    2006-07-01

    We investigated initiation of liquid HE consisting of tetranitromethane (TNM) and nitrobenzene (NB). Smooth stable (when mass of NB<20%) and pulsing unstable detonation wave front was registered (20-50% NB). We registered shock wave, shock compressed explosive (SCE) detonation wave and normal detonation wave for unstable detonation front on different parts of the front. In case of normal and SCE detonation wave we registered parameters rise during 3-25 nsec until the start of chemical reaction. We consider it to be the induction period of thermal explosion inside detonation wave front.

  18. Modeling shock initiation in Composition B

    SciTech Connect

    Murphy, M.J.; Lee, E.L.; Weston, A.M.; Williams, A.E.

    1993-05-01

    A hydrodynamic modeling study of the shock initiation behavior of Composition B explosive was performed using the {open_quotes}Ignition and Growth of Reaction in High Explosive{close_quotes} model developed at the Lawrence Livermore National Laboratory. The HE (heterogeneous explosives) responses were computed using the CALE and DYNA2D hydrocodes and then compared to experimental results. The data from several standard shock initiation and HE performance experiments was used to determine the parameters required for the model. Simulations of the wedge tests (pop plots) and failure diameter tests were found to be sufficient for defining the ignition and growth parameters used in the two term version of the computational model. These coefficients were then applied in the response analysis of several Composition B impact initiation experiments. A description of the methodology used to determine the coefficients and the resulting range of useful application of the ignition and growth of reaction model is described.

  19. Shock-initiation chemistry of nitroarenes

    SciTech Connect

    Davis, L.L.; Brower, K.R.

    1997-11-01

    The authors present evidence that the shock-initiation chemistry of nitroarenes is dominated by the intermolecular hydrogen transfer mechanism discussed previously. The acceleration by pressure, kinetic isotope effect, and product distribution are consistent with the bimolecular transition state kinetic isotope effect, and product distribution are consistent with the bimolecular transition state rather than rate-determining C-N homolysis.GC-MS analysis of samples which were subjected to a shock wave generated by detonation of nitromethane shows that nitrobenzene produces aniline and biphenyl, and o-nitrotoluene forms aniline, toluene, o-toluidine and o-cresol, but not anthranil, benzoxazinone, or cyanocyclopentandiene. In isotopic labeling experiments o-nitrotoluene and TNT show extensive H-D exchange on their methyl groups, and C-N bond rupture is not consistent with the formation of aniline from nitrobenzene or nitrotoluene, nor the formation of o-toluidine from o-nitrotoluene. Recent work incorporating fast TOF mass spectroscopy of samples shocked and quenched by adiabatic expansion shows that the initial chemical reactions in shocked solid nitroaromatic explosives proceed along this path.

  20. Trends in shock initiation of heterogeneous explosives

    SciTech Connect

    Howe, P.M.

    1998-07-01

    Part of the difficulty in developing physically based models of shock initiation which have genuine predictive capability is that insufficient constraints are often imposed: models are most often applied to very limited data sets which encompass very narrow parameter ranges. Therefore, it seems to be of considerable value to examine the rather large existing shock initiation database to identify trends, similarities, and differences, which predictive models must describe, if they are to be of genuinely utility. In this paper, existing open-literature data for shock initiation of detonation of heterogeneous explosives in one-dimensional geometries have been examined. The intent was to identify -- and where possible, isolate -- physically measurable and controllable parameter effects. Plastic bonded explosives with a variety of different binders and binder concentrations were examined. Data for different pressed explosive particulate materials and particle size distributions were reviewed. Effects of porosity were examined in both binderless and particle-matrix compositions. Effects of inert and reactive binders, and inert and reactive particle fills were examined. In several instances, the calculated data used by the original authors in their analysis was recalculated to correct for discrepancies and errors in the original analysis.

  1. Shock initiation sensitivity of hexanitrostilbene (HNS)

    SciTech Connect

    Schwarz, A C

    1981-01-01

    Experiments were conducted to study the influence of powder morphology, sample density, diameter of the impacting flyer and duration of the stimulus on the shock initiation sensitivity of the high explosive, hexanitrostilbene. The shock stimulus was provided by a polyimide flyer accelerated by an electrically-exploded, metallic foil. Impact pressure (P) was controlled between 3.8 and 9.8 GPa and pulse duration (tau) was nominally 0.035 ..mu..s except for the last experiment where pulse duration varied. Powder morphology significantly influenced the shock amplitude required for initiation with the finest-particle HNS requiring the least pressure, 6.3 GPa, and exhibiting the sharpest threshold. Both a reduction in density of HNS, from 1.60 to 1.30 Mg/m/sup 3/, and an increase in flyer diameter affected a reduction in impact velocity (or pressure) needed to induce detonation. The line which separates detontion from non-detonation is expressed by P/sup 2/ /sup 4/ tau = constant for tau between 0.01 and 0.10 ..mu..s; for longer pulses the initiation criterion becomes one of constant pressure.

  2. Trends in shock initiation of heterogeneous explosives

    SciTech Connect

    Howe, P.M.

    1998-12-31

    Various data from the literature on shock initiation were examined to ascertain the relative importance of effects of porosity, particle size, and binder composition upon explosives initiation behavior. Both pure and composite explosives were examined. It was found that the main influence of porosity is manifested through changes in Hugoniot relations. The threshold for initiation was found to be insensitive to porosity, except at very low porosities. The buildup process was found to be weakly dependent upon porosity. Particle size effects were found to depend sensitively upon the nature of the particulates. For inert particles embedded in a reactive continuum, initiation is strongly specific surface area dependent. For HMX particles embedded in inert or reactive continua, particle effects are subtle. Sparse data indicate that binder composition has a small but significant effect upon threshold velocities.

  3. Shock initiation sensitivity of PETN: A steric hindrance model

    SciTech Connect

    Dick, J.J.

    1991-01-01

    In this report, shock initiation sensitivity of PETN crystals is discussed. A new molecular model for shock sensitivity in crystalline solids is proposed in terms of steric hindrance to edge dislocation motion. This model is successful in predicting the relative shock sensitivities of the four PETN orientations studied, especially at low stresses. (JL)

  4. A shock initiation model for fine-grained hexanitrostilbene

    SciTech Connect

    Kipp, M.E.; Setchell, R.E.

    1989-01-01

    An established body of data indicates that very fine-grained hexanitrostilbene (HNS), when pressed to 92% of crystal density, exhibits shock initiation characteristics unlike those typical of porous, granular explosives. That is, a progressive buildup towards detonation from an initial shock by hot spot formation and growth processes is not observed. Instead, this particular HNS exhibits shock initiation characteristics normally associated with homogeneous explosives (e.g., the formation of a superdetonation wave after an initial shock has been introduced). In the present work, a comprehensive effort has been made to develop a predictive model for shock initiation in this material. This model is based on a theory of homogeneous reactive mixtures, and includes a refined equation of state for porous HNS reactant and a JWL equation of state for gaseous reaction products. The model has been incorporated into wave propagation codes, and comparisons with available initiation data are made. 22 refs., 8 figs.

  5. INITIAL WASTE PACKAGE PROBABILISTIC CRITICALITY ANALYSIS: UNCANISTERED FUEL (TBV)

    SciTech Connect

    J.R. Massari

    1995-10-06

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint, The specific objectives of this initial analysis are to: (1) Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts; (2) Demonstrate the established process by estimating the probability of criticality as a function of time since emplacement for an intact uncanistered fuel waste package (UCF-WP) configuration; and (3) Identify the dominant sequences leading to waste package criticality for subsequent detailed analysis. The purpose of this analysis is to document and demonstrate the developed process as it has been applied to the UCF-WP. This revision is performed to correct deficiencies in the previous revision and provide further detail on the calculations performed. Due to the current lack of knowledge in a number of areas, every attempt has been made to ensure that the all calculations and assumptions were conservative. This analysis is preliminary in nature, and is intended to be superseded by at least two more versions prior to license application. The information and assumptions used to generate this analysis are unverified and have been globally assigned TBV identifier TBV-059-WPD. Future versions of this analysis will update these results, possibly replacing the global TBV with a small number of TBV's on individual items, with the goal of removing all TBV designations by license application submittal. The final output of this document, the probability of UCF-WP criticality as a function of time, is therefore, also TBV. This document is intended to deal only with the risk of internal criticality with unaltered fuel

  6. Shock initiation of 1,3,3-trinitroazetidine (TNAZ)

    SciTech Connect

    Simpson, R.L.; Urtiew, P.A.; Tarver, C.M.

    1995-07-19

    The shock sensitivity of the pressed solid explosive 1,3,3-trinitroazetidine (TNAZ) was determined using the embedded manganin pressure gauge technique. At an initial pressure of 1.3 GPa, pressure buildup (exothermic reaction) was observed after ten {mu}s. At 2 GPa, TNAZ reacted rapidly and transitioned to detonation in approximately 13 mm. At 3.6 GPa, detonation occurred in less than 6 mm of shock propagation. Thus, pure TNAZ is more shock sensitive than HMX-based explosives but less shock sensitive than PETN-based explosives. The shocked TNAZ exhibited little reaction directly behind the shock front, followed by an extremely rapid reaction. This reaction caused both a detonation wave and a retonation wave in the partially decomposed TNAZ. An Ignition and Growth reactive model for TNAZ was developed to help understand this complex initiation phenomenon.

  7. Shock initiation of 1,3,3-trinitroazetidine (TNAZ)

    SciTech Connect

    Simpson, R.L.; Urtiew, P.A.; Tarver, C.M.

    1996-05-01

    The shock sensitivity of the pressed solid explosive 1,3,3-trinitroazetidine (TNAZ) was determined using the embedded manganin pressure gauge technique. At an initial pressure of 1.3 GPa, pressure buildup (exothermic reaction) was observed after ten {mu}s. At 2 GPa, TNAZ reacted rapidly and transitioned to detonation in approximately 13 mm. At 3.6 GPa, detonation occurred in less than 6 mm of shock propagation. Thus, pure TNAZ is more shock sensitive than HMX-based explosives but less shock sensitive than PETN-based explosives. The shocked TNAZ exhibited little reaction directly behind the shock front, followed by an extremely rapid reaction. This reaction caused both a detonation wave and a retonation wave in the partially decomposed TNAZ. An Ignition and Growth reactive flow model for TNAZ was developed to help explain this complex initiation phenomenon. {copyright} {ital 1996 American Institute of Physics.}

  8. Ultrafast shock initiation of exothermic chemistry in hydrogen peroxide.

    PubMed

    Armstrong, Michael R; Zaug, Joseph M; Goldman, Nir; Kuo, I-Feng W; Crowhurst, Jonathan C; Howard, W Michael; Carter, Jeffrey A; Kashgarian, Michaele; Chesser, John M; Barbee, Troy W; Bastea, Sorin

    2013-12-12

    We report observations of shock compressed, unreacted hydrogen peroxide at pressures up to the von Neumann pressure for a steady detonation wave, using ultrafast laser-driven shock wave methods. At higher laser drive energy we find evidence of exothermic chemical reactivity occurring in less than 100 ps after the arrival of the shock wave in the sample. The results are consistent with our MD simulations and analysis and suggest that reactivity in hydrogen peroxide is initiated on a sub-100 ps time scale under conditions found just subsequent to the lead shock in a steady detonation wave.

  9. Overview of Future of Probabilistic Methods and RMSL Technology and the Probabilistic Methods Education Initiative for the US Army at the SAE G-11 Meeting

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.

    2003-01-01

    The SAE G-11 RMSL Division and Probabilistic Methods Committee meeting sponsored by the Picatinny Arsenal during March 1-3, 2004 at Westin Morristown, will report progress on projects for probabilistic assessment of Army system and launch an initiative for probabilistic education. The meeting features several Army and industry Senior executives and Ivy League Professor to provide an industry/government/academia forum to review RMSL technology; reliability and probabilistic technology; reliability-based design methods; software reliability; and maintainability standards. With over 100 members including members with national/international standing, the mission of the G-11s Probabilistic Methods Committee is to enable/facilitate rapid deployment of probabilistic technology to enhance the competitiveness of our industries by better, faster, greener, smarter, affordable and reliable product development.

  10. Overview of Future of Probabilistic Methods and RMSL Technology and the Probabilistic Methods Education Initiative for the US Army at the SAE G-11 Meeting

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.

    2003-01-01

    The SAE G-11 RMSL Division and Probabilistic Methods Committee meeting sponsored by the Picatinny Arsenal during March 1-3, 2004 at Westin Morristown, will report progress on projects for probabilistic assessment of Army system and launch an initiative for probabilistic education. The meeting features several Army and industry Senior executives and Ivy League Professor to provide an industry/government/academia forum to review RMSL technology; reliability and probabilistic technology; reliability-based design methods; software reliability; and maintainability standards. With over 100 members including members with national/international standing, the mission of the G-11s Probabilistic Methods Committee is to enable/facilitate rapid deployment of probabilistic technology to enhance the competitiveness of our industries by better, faster, greener, smarter, affordable and reliable product development.

  11. Pressurized thermal shock probabilistic fracture mechanics sensitivity analysis for Yankee Rowe reactor pressure vessel

    SciTech Connect

    Dickson, T.L.; Cheverton, R.D.; Bryson, J.W.; Bass, B.R.; Shum, D.K.M.; Keeney, J.A.

    1993-08-01

    The Nuclear Regulatory Commission (NRC) requested Oak Ridge National Laboratory (ORNL) to perform a pressurized-thermal-shock (PTS) probabilistic fracture mechanics (PFM) sensitivity analysis for the Yankee Rowe reactor pressure vessel, for the fluences corresponding to the end of operating cycle 22, using a specific small-break-loss- of-coolant transient as the loading condition. Regions of the vessel with distinguishing features were to be treated individually -- upper axial weld, lower axial weld, circumferential weld, upper plate spot welds, upper plate regions between the spot welds, lower plate spot welds, and the lower plate regions between the spot welds. The fracture analysis methods used in the analysis of through-clad surface flaws were those contained in the established OCA-P computer code, which was developed during the Integrated Pressurized Thermal Shock (IPTS) Program. The NRC request specified that the OCA-P code be enhanced for this study to also calculate the conditional probabilities of failure for subclad flaws and embedded flaws. The results of this sensitivity analysis provide the NRC with (1) data that could be used to assess the relative influence of a number of key input parameters in the Yankee Rowe PTS analysis and (2) data that can be used for readily determining the probability of vessel failure once a more accurate indication of vessel embrittlement becomes available. This report is designated as HSST report No. 117.

  12. Initial Validation of Ballistic Shock Transducers

    DTIC Science & Technology

    2017-06-05

    whip” is reduced as much as possible. Mounting surfaces must be prepped according to manufacturer’s recommendations and the proper mounting torque ...evaluate the physical and functional performance of materiel likely to be exposed to mechanically induced shocks in its lifetime. (2) Generally...will be excited. For this, the gauge should not be mounted and torqued to its specified settings. Instead, place the gauge (face up) on a wooden

  13. Initiation of detonation by steady planar incident shock waves

    NASA Astrophysics Data System (ADS)

    Edwards, D. H.; Thomas, G. O.; Williams, T. L.

    1981-11-01

    The initiation of detonation by planar shocks is studied in a vertical shock tube in which a removable diaphragm allows the generated shock to be transmitted into the gas mixture, without any reflection at the interface. Streak schlieren photography confirms that a quasi-steady shock reaction complex is formed prior to the shock acceleration phase. The steady phase enabled the induction delay time to be measured in a direct manner, and microwave interferometry, along with pressure transducers, gave an accurate value for the delay time. The shock acceleration was determined from the locus of the exothermic reaction zone, and it is shown that the time coherence of energy release between particles entering the shock front at different times leads to the formation of reactive centers which are characteristic of mild ignition. Ignition delay data obtained by the incident shock method for oxyacetylene, diluted with nitrogen, are compared with those obtained by the reflected shock technique and shown to have advantages in high heat capacity systems.

  14. Simulations for detonation initiation behind reflected shock waves

    NASA Astrophysics Data System (ADS)

    Takano, Yasunari

    Numerical simulations are carried out for detonation initiation behind reflected shock waves in a shock tube. The two-dimensional thin-layer Navier-Stokes equations with chemical effects are numerically solved by use of a combined method consisting of the Flux-Corrected Transport scheme, the Crank-Nicolson scheme, and a chemical calculation step. Effects of chemical reactions occurring in a shock-heated hydrogen, oxygen, and argon mixture are estimated by using a simplified reaction model: two progress parameters are introduced to take account of induction reactions as well as exothermic reactions. Simulations are carried out referring to several experiments: generation of multidimensional and unstable reaction shock waves; strong and mild ignitions; and reacting shock waves in hydrogen and oxygen diluted in argon mixture.

  15. Shock initiation of a heated ammonium perchlorate-based propellant

    SciTech Connect

    Tarver, C.M.; Urtiew, P.A.; Tao, W.C.

    1996-04-01

    Solid propellants are containing ammonium perchlorate (AP), aluminum, and a carboxylterminated polybutadiene binder (CTPB) are known to burn reliably and to be very insensitive to transition to detonation under ambient conditions. In accident scenarios, these propellants may become more shock sensitive when they are subjected to heat and/or multiple impacts. The shock sensitivity of one such propellant, ANB-3066, is determined using embedded manganin pressure gauges at an elevated temperature of 170 C. The measured pressure histories are modeled using the Ignition and Growth reactive flow model of shock initiation and detonation. The experiments clearly show that ANB-3066 is not significant more shock sensitive at 170 C than it is at ambient temperature. The Ignition and Growth reactive flow calculations indicate that less than 20% of the chemical energy of AP and CTPB reactions is released at input shock pressures as high as 21 GPa. The aluminum component does not reach the high temperatures required for it to react. These results indicate that AP-based solid propellants are still extremely resistant to shock to detonation transition even when heated to temperatures close to the thermal decomposition temperature of the propellant formulation. The shock insensitivity of heated AP-based propellants is hypothesized to be due to the melting of the AP component during shock loading and the relatively low temperatures produced by the weakly exothermic decomposition of AP and binder.

  16. Initiating solar system formation through stellar shock waves

    NASA Technical Reports Server (NTRS)

    Boss, A. P.; Myhill, E. A.

    1993-01-01

    Isotopic anomalies in presolar grains and other meteoritical components require nucleosynthesis in stellar interiors, condensation into dust grains in stellar envelopes, transport of the grains through the interstellar medium by stellar outflows, and finally injection of the grains into the presolar nebula. The proximity of the presolar cloud to these energetic stellar events suggests that a shock wave from a stellar outflow might have initiated the collapse of an otherwise stable presolar cloud. We have begun to study the interactions of stellar shock waves with thermally supported, dense molecular cloud cores, using a three spatial dimension (3D) radiative hydrodynamics code. Supernova shock waves have been shown by others to destroy quiescent clouds, so we are trying to determine if the much smaller shock speeds found in, e.g., asymptotic giant branch (AGB) star winds, are strong enough to initiate collapse in an otherwise stable, rotating, solar-mass cloud core, without leading to destruction of the cloud.

  17. Cylindrical converging shock initiation of reactive materials

    NASA Astrophysics Data System (ADS)

    Jenkins, Charles M.; Horie, Yasuyuki; Lindsay, Christopher Michael; Butler, George C.; Lambert, David; Welle, Eric

    2012-03-01

    Recent research has been conducted that builds on the Forbes et al. (1997) study of inducing a rapid solid state reaction in a highly porous core using a converging cylindrical shock driven by a high explosive. The high explosive annular charge used in this research to compress the center reactive core was comparable to PBXN-110. Some modifications were made on the physical configuration of the test item for scale-up and ease of production. The reactive materials (I2O5/Al and I2O5/Al/Teflon) were hand mixed and packed to a tap density of about 32 percent. Data provided by a Cordon 114 high speed framing camera and a Photon Doppler Velocimetry instrument provided exit gas expansion, core particle and cylinder wall velocities. Analysis indicates that the case expansion velocity differs according to the core formulation and behaved similar to the baseline high explosive core with the exit gas of the reactive materials producing comparable velocities. Results from CTH hydrocode used to model the test item compares favorably to the experimental results.

  18. Hot spot-derived shock initiation phenomena in heterogeneous nitromethane

    SciTech Connect

    Dattelbaum, Dana M; Sheffield, Stephen A; Stahl, David B; Dattelbaum, Andrew M

    2009-01-01

    The addition of solid silica particles to gelled nitromethane offers a tractable model system for interrogating the role of impedance mismatches as one type of hot spot 'seed' on the initiation behaviors of explosive formulations. Gas gun-driven plate impact experiments are used to produce well-defined shock inputs into nitromethane-silica mixtures containing size-selected silica beads at 6 wt%. The Pop-plots or relationships between shock input pressure and rundistance (or time)-to-detonation for mixtures containing small (1-4 {micro}m) and large (40 {micro}m) beads are presented. Overall, the addition of beads was found to influence the shock sensitivity of the mixtures, with the smaller beads being more sensitizing than the larger beads, lowering the shock initiation threshold for the same run distance to detonation compared with neat nitromethane. In addition, the use of embedded electromagnetic gauges provides detailed information pertaining to the mechanism of the build-up to detonation and associated reactive flow. Of note, an initiation mechanism characteristic of homogeneous liquid explosives, such as nitromethane, was observed in the nitromethane-40 {micro}m diameter silica samples at high shock input pressures, indicating that the influence of hot spots on the initiation process was minimal under these conditions.

  19. Shock initiation of bare and covered explosives by projectile impact

    SciTech Connect

    Bahl, K L; Vantine, H C; Weingart, R C

    1981-04-22

    Shock initiation thresholds of bare and covered PBX-9404 and an HMX/TATB explosive called RX-26-AF were measured. The shocks were produced by the impact of flat-nosed and round-nosed steel projectiles in the velocity range of 0.5 to 2.2 km/s. Three types of coverings were used, 2 or 6 mm of tantalum, and a composite of aluminum and plastic. An Eulerian code containing material-strength and explosive-initiation models was used to evaluate our ability to calculate the shock initiation thresholds. These code calculations agreed well with the flat-nosed experimental data, but not so well with the round-nosed data.

  20. Investigation of shock initiation of desensitized RDX

    SciTech Connect

    Bordzilovskii, S.A.; Karakhanov, S.M.

    1995-11-01

    The process of initiation of detonation of pressed desensitized RDX is considered. Pressure profiles were recorded by manganin gauges in different cross sections of a charge and processed by the Lagrange analysis for a reacting flow. The analysis has shown that the decomposition rate immediately behind the initiating wave front is low and increases with increase of pressure in it. A maximum in the dependence of the decomposition rate on the reaction coordinate can be observed when the values of the reaction coordinate are 0.4-0.6.

  1. Detonation Initiation by Annular Jets and Shock Waves

    DTIC Science & Technology

    2007-11-02

    11,12,13,14,15,16,17,18, 19,20,21,22 to better understand the shock implosion process. The current interest in air-breathing pulse detonation engines ( PDEs ) has led...This technology has yet to be realized and, as a result, current PDEs use initiator tubes sensitized with oxygen 23 or detonate more sensitive mixtures... Detonation Initiation by Annular Jets and Shock Waves Final Report for Award ONR N00014-03 -0931 Joseph E. Shepherd Aeronautics California Institute

  2. Probabilistic fatigue life prediction using ultrasonic inspection data considering equivalent initial flaw size uncertainty

    NASA Astrophysics Data System (ADS)

    Guan, X.; Zhang, J.; Kadau, K.; Zhou, S. K.

    2013-01-01

    This study presents a systematical method for probabilistic fatigue life prediction using ultrasonic inspection data. A probabilistic model to correlate the ultrasonic inspection reported size and the actual size is proposed based on historical data of rotor flaw sizing. Both of the reported size and the actual size are quantified in terms of the equivalent reflector diameter. The equivalent initial flaw size (EIFS) is then calculated based on the actual size for fatigue propagation analysis. All major uncertainties, such as EIFS uncertainty, fatigue crack growth model parameter uncertainty, and experimental data measurement uncertainty are explicitly included in the fatigue life prediction. Bayesian parameter estimation is used to estimate fatigue crack growth model parameters and measurement uncertainties using a limited number of fatigue testing data points. The overall procedure is demonstrated using a Cr-Mo-V rotor segment with ultrasonic inspection data. Interpretations of the probabilistic prediction results are given.

  3. Microstructural effects in shock initiation of granular explosives. [Hexanitrostilbene (HNS)

    SciTech Connect

    Setchell, R.E.

    1987-01-01

    The shock sensitivity of explosives having identical chemical compositions and densities can be very different if they differ significantly in their microstructural characteristics. In the current work, the explosive hexanitrostilbene (HNS) is used to examine the effects of microstructural characteristics on shock initiation processes. Initial powders having three distinct grain-size distributions are used to press binderless pellets at a common density that is 92% of crystal density. The effects of the pressing operations are shown in grain-size distributions found for powders recovered from dispersed pellets. Planar impact techniques are used to generate sustained shock waves at pressures from 2.5 to 3.4 GPa in each type of HNS material. Laser velocity interferometry is used to observe the evolution of these waves propagating in each material. In addition, two methods for observing visible emission from the shock-compressed explosives are used to provide more sensitive indicators of chemical reactivity. The results clearly show that the three types of HNS have fundamentally different shock initiation behaviors under the conditions examined. 24 refs., 8 figs.

  4. Initial Climate Response to a Termination Shock

    NASA Astrophysics Data System (ADS)

    Irvine, Peter

    2015-04-01

    The risk of the termination of a deployment of solar radiation management (SRM) geoengineering has been raised as one of the key concerns about these ideas. Early studies demonstrated that a rapid warming of the climate would follow such a termination with global mean temperatures rapidly rising towards the levels that would have been expected in the absence of SRM geoengineering. Further work has noted the contrasting timescale of the adjustment of global mean temperature and sea-level rise, with sea-levels responding much slower and not reaching the same levels as would have been the case in the absence of SRM geoengineering. Whilst these previous studies have shown the basics of the response to a termination of SRM, a detailed analysis of the climate response in the first months or years of a termination has not been investigated. To conduct such an analysis tens of simulations with a termination of SRM are conducted, starting from the end of a G1 simulation with the HadCM3 model. The termination is initiated in Spring, Summer, Autumn and Winter to investigate whether the response depends on the season. Analyzing these results I find some novel dynamic responses in the initial months and years following a termination of SRM which have not been seen in previous studies which employed decadal-scale averages. These include: A reduction in the global-scale hydrological cycle's intensity in the first weeks following termination, counter to the longer-term increase; An almost instantaneous adjustment of land-mean precipitation to the equilibrium value; And substantial shifts in the pattern of precipitation in the initial years that are distinct from those seen in the equilibrium response and which are characterized by large increases in terrestrial precipitation and runoff in many regions.

  5. Modeling short pulse duration shock initiation of solid explosives

    SciTech Connect

    Tarver, C.M.; Hallquist, J.O.; Erickson, L.M.

    1985-06-27

    The chemical reaction rate law in the ignition and growth model of shock initiation and detonation of solid explosives is modified so that the model can accurately simulate short pulse duration shock initiation. The reaction rate law contains three terms to model the ignition of hot spots by shock compression, the slow growth of reaction from these isolated hot spots, and the rapid completion of reaction as the hot spots coalesce. Comparisons for PBX 9404 between calculated and experimental records are presented for the electric gun mylar flyer plate system, the minimum priming charge test, embedded manganin pressure and particle velocity gauges, and VISAR particle velocity measurements for a wide variety of input pressures, rise times and pulse durations. The ignition and growth model is now a fully developed phenomenological tool that can be applied with confidence to almost any hazard, vulnerability or explosive performance problem. 27 refs., 16 figs., 2 tabs.

  6. Microenergetic shock initiation studies on deposited films of PETN.

    SciTech Connect

    Long, Gregory T.; Knepper, Robert; Jones, David Alexander; Brundage, Aaron L.; Trott, Wayne Merle; Wixom, Ryan R.; Tappan, Alexander Smith

    2009-07-01

    Films of the high explosive PETN (pentaerythritol tetranitrate) up to 500-{micro}m thick have been deposited through physical vapor deposition, with the intent of creating well-defined samples for shock-initiation studies. PETN films were characterized with surface profilometry, scanning electron microscopy, x-ray diffraction, and focused ion beam nanotomography. These high-density films were subjected to strong shocks in both the in-plane and out-of-plane orientations. Initiation behavior was monitored with high-speed framing and streak camera photography. Direct initiation with a donor explosive (either RDX with binder, or CL-20 with binder) was possible in both orientations, but with the addition of a thin aluminum buffer plate (in-plane configuration only), initiation proved to be difficult due to the attenuated shock and the high density of the PETN films. Mesoscale models of microenergetic samples were created using the shock physics code CTH and compared with experimental results. The results of these experiments will be discussed in the context of small sample geometry, deposited film morphology, and density.

  7. Initial Conditions and Modeling for Shock Driven Turbulence

    NASA Astrophysics Data System (ADS)

    Grinstein, Fernando

    2016-11-01

    We focus on the simulation of shock-driven material mixing driven by flow instabilities and initial conditions. Beyond complex multi-scale resolution of shocks and variable density turbulence, me must address the equally difficult problem of predicting flow transition promoted by energy deposited at the material interfacial layer during the shock interface interactions. Transition involves unsteady large-scale coherent-structure dynamics which can be captured by LES, but not by URANS based on equilibrium turbulence assumptions and single-point-closure modeling. Such URANS is frequently preferred on the engineering end of computation capabilities for full-scale configurations - and with reduced 1D/2D dimensionality being also a common aspect. With suitable initialization around each transition - e.g., reshock, URANS can be used to simulate the subsequent near-equilibrium weakly turbulent flow. We demonstrate 3D state-of-the-art URANS performance in one such flow regime. We simulate the CEA planar shock-tube experiments by Poggi et al. (1998) with an ILES strategy. Laboratory turbulence and mixing data are used to benchmark ILES. In turn, the ILES generated data is used to initialize and as reference to assess state-of-the-art 3D URANS. We find that by prescribing physics-based 3D initial conditions and allowing for 3D flow convection with just enough resolution, the additionally computed dissipation in 3D URANS effectively blends with the modeled dissipation to yield significantly improved statistical predictions.

  8. Probabilistic Threshold Criterion

    SciTech Connect

    Gresshoff, M; Hrousis, C A

    2010-03-09

    The Probabilistic Shock Threshold Criterion (PSTC) Project at LLNL develops phenomenological criteria for estimating safety or performance margin on high explosive (HE) initiation in the shock initiation regime, creating tools for safety assessment and design of initiation systems and HE trains in general. Until recently, there has been little foundation for probabilistic assessment of HE initiation scenarios. This work attempts to use probabilistic information that is available from both historic and ongoing tests to develop a basis for such assessment. Current PSTC approaches start with the functional form of the James Initiation Criterion as a backbone, and generalize to include varying areas of initiation and provide a probabilistic response based on test data for 1.8 g/cc (Ultrafine) 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and LX-17 (92.5% TATB, 7.5% Kel-F 800 binder). Application of the PSTC methodology is presented investigating the safety and performance of a flying plate detonator and the margin of an Ultrafine TATB booster initiating LX-17.

  9. Initial NIF Shock Timing Experiments: Comparison with Simulation

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Boehly, T. R.; Datte, P. S.; Bowers, M. W.; Olson, R. E.; Munro, D. H.; Milovich, J. L.; Jones, O. S.; Nikroo, A.; Kroll, J. J.; Horner, J. B.; Hamza, A. V.; Bhandarkar, S. D.; Giraldez, E.; Castro, C.; Gibson, C. R.; Eggert, J. H.; Smith, R. F.; Park, H.-S.; Young, B. K.; Hsing, W. W.; Landen, O. L.; Meyerhofer, D. D.

    2010-11-01

    Initial experiments are underway to demonstrate the techniques required to tune the shock timing of capsule implosions on the National Ignition Facility (NIF). These experiments use a modified cryogenic hohlraum geometry designed to precisely match the performance of ignition hohlraums. The targets employ a re-entrant Au cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shocks is diagnosed with VISAR (Velocity Interferometer System for Any Reflector) and DANTE. The results of these measurements will be used to set the precision pulse shape for ignition capsule implosions to follow. Experimental results and comparisons with numerical simulation are presented.

  10. Extended run distance measurements of shock initiation in PBX 9502

    SciTech Connect

    Gustavsen, R. L.; Sheffield, S. A.; Alcon, R. R.

    2007-12-12

    We have completed a series of shock initiation experiments on two lots of PBX 9502 (95 weight % TATB, 5 weight % Kel-F 800 binder). One PBX 9502 lot contained few fine particles (10 weight % <20 microns) while the second lot contained many fines (38 weight % <20 microns). Large, 71 mm diameter PBX 9502 samples were used and input pressures were 7.5-8.5 GPa, resulting in run distances of 25-35 mm. Buildup to detonation was measured using embedded magnetic particle velocity gauges. An unusual feature of the work was the use of metallic impactors (316 stainless steel) in combination with magnetic gauges. It has previously been assumed that conducting impactors would badly perturb the magnetic gauge measurements. However, we observed only a baseline voltage shift of {approx_equal}10% which increased linearly with time. Results include detonation coordinates (x*, t*) vs. initial shock pressure. No lot to lot differences in initiation behavior were observed.

  11. Experimental studies of chemical reactivity during shock initiation of hexanitrostilbene

    SciTech Connect

    Setchell, R.E.

    1985-01-01

    A new experimental approach has been used to examine the release of chemical energy during shock initiation of hexanitrostilbene (HNS). In this approach, the intensity of visible emission from an explosive/window interface, integrated over the spectral range of 550 to 800 nm, was recorded in time as a measure of local chemical reactivity at this interface. Simultaneously, VISAR measurements were made of the particle velocity of the same interface in order to examine the relative effect of the energy release on the wave motion. Sustained and short-duration shocks, having pressures from 2.3 GPa to 4.0 GPa, were generated in two types of HNS materials that previously have shown significant differences in shock sensitivity. The emission intensity was found to be a very sensitive indicator of chemical reactivity. The combined measurements indicate that the temporal and spatial behavior of energy release during shock initiation is quite different in the two types of HNS. 21 refs., 15 figs.

  12. Shock initiation experiments on ratchet grown PBX 9502

    SciTech Connect

    Gustavsen, Richard L; Thompson, Darla G; Olinger, Barton W; Deluca, Racci; Bartram, Brian D; Pierce, Timothy H; Sanchez, Nathaniel J

    2010-01-01

    This study compares the shock initiation behavior of PBX 9502 pressed to less than nominal density (nominal density is 1.890 {+-} 0.005 g/cm{sup 3}) with PBX 9502 pressed to nominal density and then ''ratchet grown'' to low density. PBX 9502 is an insensitive plastic bonded explosive consisting of 95 weight % dry-aminated tri-amino-tri-nitro-benzene (TATB) and 5 weight % Kel-F 800 plastic binder. ''Ratchet growth'' - an irreversible increase in specific volume - occurs when an explosive based on TATB is temperature cycled. The design of our study is as follows: PBX 9502, all from the same lot, received the following four treatments. Samples in the first group were pressed to less than nominal density. These were not ratchet grown and used as a baseline. Samples in the second group were pressed to nominal density and then ratchet grown by temperature cycling 30 times between -54 C and +80 C. Samples in the final group were pressed to nominal density and cut into 100 mm by 25.4 mm diameter cylinders. During thermal cycling the cylinders were axially constrained by a 100 psi load. Samples for shock initiation experiments were cut perpendicular (disks) and parallel (slabs) to the axial load. The four sample groups can be summarized with the terms pressed low, ratchet grown/no load, axial load/disks, and axial load/slabs. All samples were shock initiated with nearly identical inputs in plate impact experiments carried out on a gas gun. Wave profiles were measured after propagation through 3, 4, 5, and 6 mm of explosive. Side by side comparison of wave profiles from different samples is used as a measure of relative sensitivity. All reduced density samples were more shock sensitive than nominal density PBX 9502. Differences in shock sensitivity between ratchet grown and pressed to low density PBX 9502 were small, but the low density pressings are slightly more sensitive than the ratchet grown samples.

  13. Shock-wave initiation of heterogeneous reactive solids

    NASA Astrophysics Data System (ADS)

    Johnson, J. N.; Tang, P. K.; Forest, C. A.

    1985-05-01

    Shock-wave initiation of solid explosives depends on localized regions of high temperature (hot spots) created by heterogeneous deformation in the vicinity of various defects. Current mathematical models of shock initiation tend to fall into two broad categories: (1) thermodynamic-state-dependent reaction-rate models, and (2) the continuum theory of multiphase mixtures. The level of generality possessed by (1) appears to be insufficient for representation of observed initiation phenomena, while that of (2) may exceed necessary requirements based on present measurement capabilities. As a means of bridging the gap between these two models, we present an internal-state-variable theory based on elementary physical principles, relying on specific limiting cases for the determination of functional forms. The appropriate minimum set of internal-state variables are the mass fraction of hot spots μ, their degree of reaction f, and their average creation temperature θ. The overall reaction rate λ˙, then depends on μ, f, and θ in addition to the usual macroscopic thermodynamic variables (current state as well as their history). Two specific forms of this set of equations are applied to time-resolved shock-initiation data on PBX-9404. Numerical solution is achieved by the method of characteristics for rate-dependent chemical reaction. Additional questions such as the effect of thermal equilibrium between phases (solid reactants and gaseous products) on the theoretical results are discussed quantitatively.

  14. Initial resuscitation and management of pediatric septic shock

    PubMed Central

    Martin, Kelly; Weiss, Scott L.

    2015-01-01

    The pediatric sepsis syndrome remains a common cause of morbidity, mortality, and health care utilization costs worldwide. The initial resuscitation and management of pediatric sepsis is focused on 1) rapid recognition of abnormal tissue perfusion and restoration of adequate cardiovascular function, 2) eradication of the inciting invasive infection, including prompt administration of empiric broad-spectrum antimicrobial medications, and 3) supportive care of organ system dysfunction. Efforts to improve early and aggressive initial resuscitation and ongoing management strategies have improved outcomes in pediatric severe sepsis and septic shock, though many questions still remain as to the optimal therapeutic strategies for many patients. In this article, we will briefly review the definitions, epidemiology, clinical manifestations, and pathophysiology of sepsis and provide an extensive overview of both current and novel therapeutic strategies used to resuscitate and manage pediatric patients with severe sepsis and septic shock. PMID:25604591

  15. Efficacy of transthoracic cardioversion of atrial fibrillation using a biphasic, truncated exponential shock waveform at variable initial shock energies.

    PubMed

    Rashba, Eric J; Gold, Michael R; Crawford, Fred A; Leman, Robert B; Peters, Robert W; Shorofsky, Stephen R

    2004-12-15

    Biphasic shocks are more effective than damped sine wave monophasic shocks for transthoracic cardioversion (CV) of atrial fibrillation (AF), but the optimal protocol for CV with biphasic shocks has not been defined. We conducted a prospective, randomized study of 120 consecutive patients with persistent AF to delineate the dose-response curve for CV of AF with a biphasic truncated exponential shock waveform and to identify clinical predictors of shock efficacy. Our data suggest that the initial shock energy for CV with this waveform should be 200 J if the patient weighs <90 kg and 360 J if the patient weighs >/=90 kg.

  16. Reduction of initial shock in decadal predictions using a new initialization strategy

    NASA Astrophysics Data System (ADS)

    He, Yujun; Wang, Bin; Liu, Mimi; Liu, Li; Yu, Yongqiang; Liu, Juanjuan; Li, Ruizhe; Zhang, Cheng; Xu, Shiming; Huang, Wenyu; Liu, Qun; Wang, Yong; Li, Feifei

    2017-08-01

    A novel full-field initialization strategy based on the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) is proposed to alleviate the well-known initial shock occurring in the early years of decadal predictions. It generates consistent initial conditions, which best fit the monthly mean oceanic analysis data along the coupled model trajectory in 1 month windows. Three indices to measure the initial shock intensity are also proposed. Results indicate that this method does reduce the initial shock in decadal predictions by Flexible Global Ocean-Atmosphere-Land System model, Grid-point version 2 (FGOALS-g2) compared with the three-dimensional variational data assimilation-based nudging full-field initialization for the same model and is comparable to or even better than the different initialization strategies for other fifth phase of the Coupled Model Intercomparison Project (CMIP5) models. Better hindcasts of global mean surface air temperature anomalies can be obtained than in other FGOALS-g2 experiments. Due to the good model response to external forcing and the reduction of initial shock, higher decadal prediction skill is achieved than in other CMIP5 models.

  17. Shock initiation of explosives: High temperature hot spots explained

    NASA Astrophysics Data System (ADS)

    Bassett, Will P.; Johnson, Belinda P.; Neelakantan, Nitin K.; Suslick, Kenneth S.; Dlott, Dana D.

    2017-08-01

    We investigated the shock initiation of energetic materials with a tabletop apparatus that uses km s-1 laser-driven flyer plates to initiate tiny explosive charges and obtains complete temperature histories with a high dynamic range. By comparing various microstructured formulations, including a pentaerythritol tetranitrate (PETN) based plastic explosive (PBX) denoted XTX-8003, we determined that micron-scale pores were needed to create high hot spot temperatures. In charges where micropores (i.e., micron-sized pores) were present, a hot spot temperature of 6000 K was observed; when the micropores were pre-compressed to nm scale, however, the hot spot temperature dropped to ˜4000 K. By comparing XTX-8003 with an analog that replaced PETN by nonvolatile silica, we showed that the high temperatures require gas in the pores, that the high temperatures were created by adiabatic gas compression, and that the temperatures observed can be controlled by the choice of ambient gases. The hot spots persist in shock-compressed PBXs even in vacuum because the initially empty pores became filled with gas created in-situ by shock-induced chemical decomposition.

  18. Non-Shock Initiation Model for Explosive Families: Experimental Results

    NASA Astrophysics Data System (ADS)

    Anderson, M. U.; Todd, S. N.; Caipen, T. L.; Jensen, C. B.; Hughs, C. G.

    2009-12-01

    The "DaMaGe-Initiated-Reaction" (DMGIR) computational model has been developed to predict the response of high explosives to non-shock mechanical insults. The distinguishing feature of this model is the introduction of a damage variable, which relates the evolution of damage to the initiation of a reaction in the explosive, and its growth to detonation. Specifically designed experiments were used to study the initiation process of each explosive family with embedded shock sensors and optical diagnostics. The experimental portion of this model development began with a study of PBXN-5 to develop DMGIR model coefficients for the rigid plastic bonded family, followed by studies of the cast, and bulk-moldable explosive families. The experimental results show an initiation mechanism that is related to input energy and material damage, with well defined initiation thresholds for each explosive family. These initiation details will extend the predictive capability of the DMGIR model from the rigid family into the cast and bulk-moldable families.

  19. Non-shock initiation model for explosive families : experimental results.

    SciTech Connect

    Anderson, Mark U.; Jensen, Charles B.; Todd, Steven N.; Hugh, Chance G.; Caipen, Terry L.

    2010-03-01

    The 'DaMaGe-Initiated-Reaction' (DMGIR) computational model has been developed to predict the response of high explosives to non-shock mechanical insults. The distinguishing feature of this model is the introduction of a damage variable, which relates the evolution of damage to the initiation of a reaction in the explosive, and its growth to detonation. Specifically designed experiments were used to study the initiation process of each explosive family with embedded shock sensors and optical diagnostics. The experimental portion of this model development began with a study of PBXN-5 to develop DMGIR model coefficients for the rigid plastic bonded family, followed by studies of the cast, and bulk-moldable explosive families. The experimental results show an initiation mechanism that is related to input energy and material damage, with well defined initiation thresholds for each explosive family. These initiation details will extend the predictive capability of the DMGIR model from the rigid family into the cast and bulk-moldable families.

  20. Shock initiation studies on high concentration hydrogen peroxide

    SciTech Connect

    Sheffield, Stephen A; Dattelbaum, Dana M; Stahl, David B; Gibson, L. Lee; Bartram, Brian D.

    2009-01-01

    Concentrated hydrogen peroxide (H{sub 2}O{sub 2}) has been known to detonate for many years. However, because of its reactivity and the difficulty in handling and confining it, along with the large critical diameter, few studies providing basic information about the initiation and detonation properties have been published. We are conducting a study to understand and quantify the initiation and detonation properties of highly concentrated H{sub 2}O{sub 2} using a gas-driven two-stage gun to produce well defined shock inputs. Multiple magnetic gauges are used to make in-situ measurements of the growth of reaction and subsequent detonation in the liquid. These experiments are designed to be one-dimensional to eliminate any difficulties that might be encountered with large critical diameters. Because of the concern of the reactivity of the H{sub 2}O{sub 2} with the confining materials, a remote loading system has been developed. The gun is pressurized, then the cell is filled and the experiment shot within less than three minutes. TV cameras are attached to the target so the cell filling can be monitored. Several experiments have been completed on {approx}98 wt % H{sub 2}O{sub 2}/H{sub 2}O mixtures; initiation has been observed in some experiments that shows homogeneous shock initiation behavior. The initial shock pressurizes and heats the mixture. After an induction time, a thermal explosion type reaction produces an evolving reactive wave that strengthens and eventually overdrives the first wave producing a detonation. From these measurements, we have determined unreacted Hugoniot information, times (distances) to detonation (Pop-plot points) that indicate low sensitivity, and detonation velocities of high concentration H{sub 2}O{sub 2}/H{sub 2}O solutions that agree with earlier estimates.

  1. Testing and modeling of PBX-9591 shock initiation

    SciTech Connect

    Lam, Kim; Foley, Timothy; Novak, Alan; Dickson, Peter; Parker, Gary

    2010-01-01

    This paper describes an ongoing effort to develop a detonation sensitivity test for PBX-9501 that is suitable for studying pristine and damaged HE. The approach involves testing and comparing the sensitivities of HE pressed to various densities and those of pre-damaged samples with similar porosities. The ultimate objectives are to understand the response of pre-damaged HE to shock impacts and to develop practical computational models for use in system analysis codes for HE safety studies. Computer simulation with the CTH shock physics code is used to aid the experimental design and analyze the test results. In the calculations, initiation and growth or failure of detonation are modeled with the empirical HVRB model. The historical LANL SSGT and LSGT were reviewed and it was determined that a new, modified gap test be developed to satisfy the current requirements. In the new test, the donor/spacer/acceptor assembly is placed in a holder that is designed to work with fixtures for pre-damaging the acceptor sample. CTH simulations were made of the gap test with PBX-9501 samples pressed to three different densities. The calculated sensitivities were validated by test observations. The agreement between the computed and experimental critical gap thicknesses, ranging from 9 to 21 mm under various test conditions, is well within 1 mm. These results show that the numerical modeling is a valuable complement to the experimental efforts in studying and understanding shock initiation of PBX-9501.

  2. Shock wave initiated by an ion passing through liquid water

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Solov'Yov, Andrey V.

    2010-11-01

    We investigate the shock wave produced by an energetic ion in liquid water. This wave is initiated by a rapid energy loss when the ion moves through the Bragg peak. The energy is transferred from the ion to secondary electrons, which then transfer it to the water molecules. The pressure in the overheated water increases by several orders of magnitude and drives a cylindrical shock wave on a nanometer scale. This wave eventually weakens as the front expands further; but before that, it may contribute to DNA damage due to large pressure gradients developed within a few nanometers from the ion’s trajectory. This mechanism of DNA damage may be a very important contribution to the direct chemical effects of low-energy electrons and holes.

  3. Stochastic shock response spectrum decomposition method based on probabilistic definitions of temporal peak acceleration, spectral energy, and phase lag distributions of mechanical impact pyrotechnic shock test data

    NASA Astrophysics Data System (ADS)

    Hwang, James Ho-Jin; Duran, Adam

    2016-08-01

    Most of the times pyrotechnic shock design and test requirements for space systems are provided in Shock Response Spectrum (SRS) without the input time history. Since the SRS does not describe the input or the environment, a decomposition method is used to obtain the source time history. The main objective of this paper is to develop a decomposition method producing input time histories that can satisfy the SRS requirement based on the pyrotechnic shock test data measured from a mechanical impact test apparatus. At the heart of this decomposition method is the statistical representation of the pyrotechnic shock test data measured from the MIT Lincoln Laboratory (LL) designed Universal Pyrotechnic Shock Simulator (UPSS). Each pyrotechnic shock test data measured at the interface of a test unit has been analyzed to produce the temporal peak acceleration, Root Mean Square (RMS) acceleration, and the phase lag at each band center frequency. Maximum SRS of each filtered time history has been calculated to produce a relationship between the input and the response. Two new definitions are proposed as a result. The Peak Ratio (PR) is defined as the ratio between the maximum SRS and the temporal peak acceleration at each band center frequency. The ratio between the maximum SRS and the RMS acceleration is defined as the Energy Ratio (ER) at each band center frequency. Phase lag is estimated based on the time delay between the temporal peak acceleration at each band center frequency and the peak acceleration at the lowest band center frequency. This stochastic process has been applied to more than one hundred pyrotechnic shock test data to produce probabilistic definitions of the PR, ER, and the phase lag. The SRS is decomposed at each band center frequency using damped sinusoids with the PR and the decays obtained by matching the ER of the damped sinusoids to the ER of the test data. The final step in this stochastic SRS decomposition process is the Monte Carlo (MC

  4. Initiation structure of oblique detonation waves behind conical shocks

    NASA Astrophysics Data System (ADS)

    Yang, Pengfei; Ng, Hoi Dick; Teng, Honghui; Jiang, Zonglin

    2017-08-01

    The understanding of oblique detonation dynamics has both inherent basic research value for high-speed compressible reacting flow and propulsion application in hypersonic aerospace systems. In this study, the oblique detonation structures formed by semi-infinite cones are investigated numerically by solving the unsteady, two-dimensional axisymmetric Euler equations with a one-step irreversible Arrhenius reaction model. The present simulation results show that a novel wave structure, featured by two distinct points where there is close-coupling between the shock and combustion front, is depicted when either the cone angle or incident Mach number is reduced. This structure is analyzed by examining the variation of the reaction length scale and comparing the flow field with that of planar, wedge-induced oblique detonations. Further simulations are performed to study the effects of chemical length scale and activation energy, which are both found to influence the formation of this novel structure. The initiation mechanism behind the conical shock is discussed to investigate the interplay between the effect of the Taylor-Maccoll flow, front curvature, and energy releases from the chemical reaction in conical oblique detonations. The observed flow fields are interpreted by means of the energetic limit as in the critical regime for initiation of detonation.

  5. Multiple-shock initiation via statistical crack mechanics

    SciTech Connect

    Dienes, J.K.; Kershner, J.D.

    1998-12-31

    Statistical Crack Mechanics (SCRAM) is a theoretical approach to the behavior of brittle materials that accounts for the behavior of an ensemble of microcracks, including their opening, shear, growth, and coalescence. Mechanical parameters are based on measured strain-softening behavior. In applications to explosive and propellant sensitivity it is assumed that closed cracks act as hot spots, and that the heating due to interfacial friction initiates reactions which are modeled as one-dimensional heat flow with an Arrhenius source term, and computed in a subscale grid. Post-ignition behavior of hot spots is treated with the burn model of Ward, Son and Brewster. Numerical calculations using SCRAM-HYDROX are compared with the multiple-shock experiments of Mulford et al. in which the particle velocity in PBX 9501 is measured with embedded wires, and reactions are initiated and quenched.

  6. Detection of deterministic and probabilistic convection initiation using Himawari-8 Advanced Himawari Imager data

    NASA Astrophysics Data System (ADS)

    Lee, Sanggyun; Han, Hyangsun; Im, Jungho; Jang, Eunna; Lee, Myong-In

    2017-05-01

    The detection of convective initiation (CI) is very important because convective clouds bring heavy rainfall and thunderstorms that typically cause severe socio-economic damage. In this study, deterministic and probabilistic CI detection models based on decision trees (DT), random forest (RF), and logistic regression (LR) were developed using Himawari-8 Advanced Himawari Imager (AHI) data obtained from June to August 2016 over the Korean Peninsula. A total of 12 interest fields that contain brightness temperature, spectral differences of the brightness temperatures, and their time trends were used to develop CI detection models. While, in our study, the interest field of 11.2 µm Tb was considered the most crucial for detecting CI in the deterministic models and the probabilistic RF model, the trispectral difference, i.e. (8.6-11.2 µm)-(11.2-12.4 µm), was determined to be the most important one in the LR model. The performance of the four models varied by CI case and validation data. Nonetheless, the DT model typically showed higher probability of detection (POD), while the RF model produced higher overall accuracy (OA) and critical success index (CSI) and lower false alarm rate (FAR) than the other models. The CI detection of the mean lead times by the four models were in the range of 20-40 min, which implies that convective clouds can be detected 30 min in advance, before precipitation intensity exceeds 35 dBZ over the Korean Peninsula in summer using the Himawari-8 AHI data.

  7. Alternate Methods to Experimentally Investigate Shock Initiation Properties of Explosives

    NASA Astrophysics Data System (ADS)

    Svingala, Forrest; Lee, Richard; Sutherland, Gerrit; Samuels, Philip

    2015-06-01

    Reactive flow models are desired for many new explosives early in the formulation development stage. Traditionally, these models are parameterized by carefully-controlled 1-D shock experiments, including gas-gun testing with embedded gauges and wedge testing with explosive plane wave lenses (PWL). These experiments are easy to interpret, due to their 1-D nature, but are generally expensive to perform, and cannot be performed at all explosive test facilities. We investigate alternative methods to probe shock-initiation behavior of new explosives using widely-available pentolite gap test donors and simple time-of-arrival type diagnostics. These methods can be performed at a low cost at virtually any explosives testing facility, which allows experimental data to parameterize reactive flow models to be collected much earlier in the development of an explosive formulation. However, the fundamentally 2-D nature of these tests may increase the modeling burden in parameterizing these models, and reduce general applicability. Several variations of the so-called modified gap test were investigated and evaluated for suitability as an alternative to established 1-D gas gun and PWL techniques. At least partial agreement with 1-D test methods was observed for the explosives tested, and future work is planned to scope the applicability and limitations of these experimental techniques.

  8. Alternate methodologies to experimentally investigate shock initiation properties of explosives

    NASA Astrophysics Data System (ADS)

    Svingala, Forrest R.; Lee, Richard J.; Sutherland, Gerrit T.; Benjamin, Richard; Boyle, Vincent; Sickels, William; Thompson, Ronnie; Samuels, Phillip J.; Wrobel, Erik; Cornell, Rodger

    2017-01-01

    Reactive flow models are desired for new explosive formulations early in the development stage. Traditionally, these models are parameterized by carefully-controlled 1-D shock experiments, including gas-gun testing with embedded gauges and wedge testing with explosive plane wave lenses (PWL). These experiments are easy to interpret due to their 1-D nature, but are expensive to perform and cannot be performed at all explosive test facilities. This work investigates alternative methods to probe shock-initiation behavior of new explosives using widely-available pentolite gap test donors and simple time-of-arrival type diagnostics. These experiments can be performed at a low cost at most explosives testing facilities. This allows experimental data to parameterize reactive flow models to be collected much earlier in the development of an explosive formulation. However, the fundamentally 2-D nature of these tests may increase the modeling burden in parameterizing these models and reduce general applicability. Several variations of the so-called modified gap test were investigated and evaluated for suitability as an alternative to established 1-D gas gun and PWL techniques. At least partial agreement with 1-D test methods was observed for the explosives tested, and future work is planned to scope the applicability and limitations of these experimental techniques.

  9. LOW AMPLITUDE SINGLE AND MULTIPLE SHOCK INITIATION EXPERIMENTS AND MODELING OF LX-04

    SciTech Connect

    Vandersall, K S; Tarver, C M; Garcia, F; Chidester, S; Urtiew, P A; Forbes, J W

    2006-06-27

    Shock initiation experiments were performed on the plastic bonded explosive (PBX) LX-04 (85% HMX, 15% Viton binder) using single and multiple low amplitude shocks to obtain pressure history data for use in Ignition and Growth reactive flow modeling parameterization. A 100 mm diameter propellant driven gas gun was utilized to initiate the LX-04 explosive charges containing manganin piezoresistive pressure gauge packages placed between explosive discs. In the single shock experiments, the run distances to detonation at three shock pressures showed agreement with previously published data above 3 GPa. Even longer run distances to detonation were measured using 80 mm long by 145 mm diameter LX-04 charges impacted by low velocity projectiles from a 155 mm diameter gun. The minimum shock pressure required to cause low levels of exothermic reaction were determined for these large LX-04 charge dimensions. Multiple shocks were generated as double shocks by using a flyer plate with two materials and as reflected shocks by placing a high impedance material at the rear of the explosive charge. In both cases, the first shock pressure was not high enough to cause detonation of LX-04, and the second shock pressure, which would have been sufficient to cause detonation if generated by a single shock, failed to cause detonation. Thus LX-04 exhibited shock desensitization over a range of 0.6 to 1.4 GPa. The higher shock pressure LX-04 model was extended to accurately simulate these lower pressure and multiple shock gauge records. The shock desensitization effects observed with multiple shock compressions were partially accounted for in the model by using a critical compression corresponding to a shock pressure of 1.2 GPa. This shock desensitization effect occurs at higher pressures than those of other HMX-based PBX's containing higher HMX percentages.

  10. MESOSCALE MODELLING OF SHOCK INITIATION IN HMX-BASED EXPLOSIVES

    SciTech Connect

    Mulford, R. N. R.; Swift, D. C.

    2001-01-01

    Hydrocode calculations we used to simulate initiation in single- and double-shock experiments on several HMX-based explosives. Variations in the reactive behavior of theee materials reflects the differences between binders in the material, providing information regarding the sensitivity of the explosive to the mechanical properties of the constituents. Materials considered are EDC-37, with a soft binder, PBX-9601, with a relatively malleable binder, and PIBX-9404, with a stiff binder. Bulk reactive behavior of these materials is dominated by the HMX component and should be comparable, while the mechanical response varies. The reactive flow model is temperature-dependent, based on a modified Arrhenius rate. Some unreacted material is allowed to react at a rate given by the state of the hotspot rather than the bulk state of the unreacted explosive, according to a length scale reflecting the hotspot size, and a time scale for thermal equilibration. The Arrhenius rate for HMX is wsumed to be the same for all compositions. The initiation data for different HMX-bwd explosives axe modelled by choosing plausible parameters to describe the reactive and dissipative properties of the binder, and hence the behavior of the hotspots in each formulation.

  11. Utilizing Computational Probabilistic Methods to Derive Shock Specifications in a Nondeterministic Environment

    SciTech Connect

    FIELD JR.,RICHARD V.; RED-HORSE,JOHN R.; PAEZ,THOMAS L.

    2000-10-25

    One of the key elements of the Stochastic Finite Element Method, namely the polynomial chaos expansion, has been utilized in a nonlinear shock and vibration application. As a result, the computed response was expressed as a random process, which is an approximation to the true solution process, and can be thought of as a generalization to solutions given as statistics only. This approximation to the response process was then used to derive an analytically-based design specification for component shock response that guarantees a balanced level of marginal reliability. Hence, this analytically-based reference SRS might lead to an improvement over the somewhat ad hoc test-based reference in the sense that it will not exhibit regions of conservativeness. nor lead to overtesting of the design.

  12. detection of probabilistic Convective Initiation (CI) using Himawari-8 AHI, weather radar, and lightning data.

    NASA Astrophysics Data System (ADS)

    Lee, S.; Han, H.; Im, J.; Jang, E.; Lee, M. I.

    2016-12-01

    Convective rainfall can cause flash flooding with significant human and economic losses. In order to prevent such damages, monitoring and prediction of convective rainfall have been conducted with Automatic Weather System (AWS) and ground based weather radar data. However, these measurements cannot cover vast areas limiting spatial continuity. Geostationary satellite sensors observe clouds and storms over vast areas at very high temporal resolution ( 10 minutes). Thus, geostationary satellite remote sensing is an alternative way to predict and monitor convective rainfall. In general, interest fields such as brightness temperature at a specific spectral channel or the difference of brightness temperatures between two channels are considered important to identify Convective Initiation (CI). Existing CI algorithms use simple interest fields and their associated thresholds. However, such a simple thresholding approach might not be ideal to consider complicated characteristics of convective clouds. In this study, logistic regression and probabilistic random forest were evaluated to provide CI probability associated with various characteristics of convective clouds. Himawari-8 Advanced Himawari-8 Imager (AHI) data collected between June and August 2015 were used to detect CI. A quantitative validation of CI was conducted using weather radar and lightning data. Results show that an overall accuracy of CI detection by logistic regression is 84.5% when radar data was used as reference data and 0.5 was applied to the probability data as a threshold to make a binary classification, which is higher than that by probabilistic random forest (87.4%). The validation using lightning data produced a similar result with the radar-based assessment. However, the probability of detection (POD) of the logistic regression model was a bit lower than that of the random forest model due to the relatively large number of missed CI objects.

  13. Biodamage via shock waves initiated by irradiation with ions.

    PubMed

    Surdutovich, Eugene; Yakubovich, Alexander V; Solov'yov, Andrey V

    2013-01-01

    Radiation damage following the ionising radiation of tissue has different scenarios and mechanisms depending on the projectiles or radiation modality. We investigate the radiation damage effects due to shock waves produced by ions. We analyse the strength of the shock wave capable of directly producing DNA strand breaks and, depending on the ion's linear energy transfer, estimate the radius from the ion's path, within which DNA damage by the shock wave mechanism is dominant. At much smaller values of linear energy transfer, the shock waves turn out to be instrumental in propagating reactive species formed close to the ion's path to large distances, successfully competing with diffusion.

  14. Development of transient initiating event frequencies for use in probabilistic risk assessments

    SciTech Connect

    Mackowiak, D.P.; Gentillon, C.D.; Smith, K.L.

    1985-05-01

    Transient initiating event frequencies are an essential input to the analysis process of a nuclear power plant probabilistic risk assessment. These frequencies describe events causing or requiring scrams. This report documents an effort to validate and update from other sources a computer-based data file developed by the Electric Power Research Institute (EPRI) describing such events at 52 United States commercial nuclear power plants. Operating information from the United States Nuclear Regulatory Commission on 24 additional plants from their date of commercial operation has been combined with the EPRI data, and the entire data base has been updated to add 1980 through 1983 events for all 76 plants. The validity of the EPRI data and data analysis methodology and the adequacy of the EPRI transient categories are examined. New transient initiating event frequencies are derived from the expanded data base using the EPRI transient categories and data display methods. Upper bounds for these frequencies are also provided. Additional analyses explore changes in the dominant transients, changes in transient outage times and their impact on plant operation, and the effects of power level and scheduled scrams on transient event frequencies. A more rigorous data analysis methodology is developed to encourage further refinement of the transient initiating event frequencies derived herein. Updating the transient event data base resulted in approx.2400 events being added to EPRI's approx.3000-event data file. The resulting frequency estimates were in most cases lower than those reported by EPRI, but no significant order-of-magnitude changes were noted. The average number of transients per year for the combined data base is 8.5 for pressurized water reactors and 7.4 for boiling water reactors.

  15. Growth rate of a shocked mixing layer with known initial perturbations [Mixing at shocked interfaces with known perturbations

    SciTech Connect

    Weber, Christopher R.; Cook, Andrew W.; Bonazza, Riccardo

    2013-05-14

    Here we derive a growth-rate model for the Richtmyer–Meshkov mixing layer, given arbitrary but known initial conditions. The initial growth rate is determined by the net mass flux through the centre plane of the perturbed interface immediately after shock passage. The net mass flux is determined by the correlation between the post-shock density and streamwise velocity. The post-shock density field is computed from the known initial perturbations and the shock jump conditions. The streamwise velocity is computed via Biot–Savart integration of the vorticity field. The vorticity deposited by the shock is obtained from the baroclinic torque with an impulsive acceleration. Using the initial growth rate and characteristic perturbation wavelength as scaling factors, the model collapses the growth-rate curves and, in most cases, predicts the peak growth rate over a range of Mach numbers (1.1 ≤Mi≤1.9), Atwood numbers (₋0.73 ≤ A ≤ ₋0.35 and 0.22 ≤ A ≤ 0.73), adiabatic indices (1.40/1.67≤γ12≤1.67/1.09) and narrow-band perturbation spectra. Lastly, the mixing layer at late times exhibits a power-law growth with an average exponent of θ=0.24.

  16. Probabilistic evaluation of initiation time in RC bridge beams with load-induced cracks exposed to de-icing salts

    SciTech Connect

    Lu Zhaohui; Zhao Yangang; Yu Zhiwu; Ding Faxing

    2011-03-15

    In this study, a reliability-based method for predicting the initiation time of reinforced concrete bridge beams with load-induced cracks exposed to de-icing salts is presented. A practical model for predicting the diffusion coefficient of chloride ingress into load-induced cracked concrete is proposed. Probabilistic information about uncertainties related to the surface chloride content and the threshold chloride concentration has been estimated from a wide review of previous experimental or statistical studies. Probabilistic analysis to estimate the time to corrosion initiation with/without considering the effect of the load-induced cracks on the chloride ingress into concrete has been carried out. Results of the analysis demonstrate the importance of considering the effect of the load-induced cracks for correct prediction of corrosion initiation in RC bridge beams exposed to chlorides.

  17. Shock initiation of the TATB based explosive PBX 9502 heated to ~ 76∘C

    NASA Astrophysics Data System (ADS)

    Gustavsen, Richard; Gehr, Russell; Bucholtz, Scott; Pacheco, Adam; Bartram, Brian

    2015-06-01

    Recently we reported on shock initiation of PBX 9502 (95 wt.% tri-amino-trinitro-benzene, 5 wt.% Kel-F800 binder) cooled to -55°C and to 77K Shock waves were generated by gas-gun driven plate impacts and reactive flow in the cooled PBX 9502 was measured with embedded electromagnetic gauges. Here we use similar methods to warm the explosive to ~ 76°C. The explosive sample is heated by warm air flowing through channels in an aluminum sample mounting plate and a copper tubing coil surrounding the sample. Temperature in the sample is monitored using six type-E thermocouples. Results show increased shock sensitivity; time and distance to detonation onset vs. initial shock pressure are shorter than when the sample is initially at ambient temperature. Our results are consistent with those reported by Dallman & Wackerle. Particle velocity wave profiles were also obtained during the shock-to-detonation transition and will be presented.

  18. Quantification of initial-data uncertainty on a shock-accelerated gas cylinder

    SciTech Connect

    Tritschler, V. K. Avdonin, A.; Hickel, S.; Hu, X. Y.; Adams, N. A.

    2014-02-15

    We quantify initial-data uncertainties on a shock accelerated heavy-gas cylinder by two-dimensional well-resolved direct numerical simulations. A high-resolution compressible multicomponent flow simulation model is coupled with a polynomial chaos expansion to propagate the initial-data uncertainties to the output quantities of interest. The initial flow configuration follows previous experimental and numerical works of the shock accelerated heavy-gas cylinder. We investigate three main initial-data uncertainties, (i) shock Mach number, (ii) contamination of SF{sub 6} with acetone, and (iii) initial deviations of the heavy-gas region from a perfect cylindrical shape. The impact of initial-data uncertainties on the mixing process is examined. The results suggest that the mixing process is highly sensitive to input variations of shock Mach number and acetone contamination. Additionally, our results indicate that the measured shock Mach number in the experiment of Tomkins et al. [“An experimental investigation of mixing mechanisms in shock-accelerated flow,” J. Fluid. Mech. 611, 131 (2008)] and the estimated contamination of the SF{sub 6} region with acetone [S. K. Shankar, S. Kawai, and S. K. Lele, “Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder,” Phys. Fluids 23, 024102 (2011)] exhibit deviations from those that lead to best agreement between our simulations and the experiment in terms of overall flow evolution.

  19. Initial ISEE magnetometer results - Shock observation. [magnetic field profiles across terrestrial bow and interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Greenstadt, E. W.

    1979-01-01

    A selection of early measurements is used to illustrate the three advantages brought by ISEE to the study of natural collisionless shocks. These advantages are the ability to resolve most space/time ambiguity by means of simultaneous two-point measurements, instrumentation to make comprehensive field and particle observations covering all important quantities, and the capacity to record data at high time resolution. Magnetic-field records from shocks of various types are presented; the types of shock include laminar, supercritical, quasi-perpendicular, high-beta, and quasi-parallel. The spacing of the two spacecraft and the resolution of the system are employed to develop numerous kinematic descriptions of the shocks and the waves that compose and surround them. Data from a single particle experiment are correlated with field data for three cases to demonstrate the important role of comprehensive instrumentation.

  20. An initial probabilistic hazard assessment of oil dispersants approved by the United States National Contingency Plan.

    PubMed

    Berninger, Jason P; Williams, E Spencer; Brooks, Bryan W

    2011-07-01

    Dispersants are commonly applied during oil spill mitigation efforts; however, these industrial chemicals may present risks to aquatic organisms individually and when mixed with oil. Fourteen dispersants are listed on the U.S. Environmental Protection Agency (U.S. EPA) National Oil and Hazardous Substances Pollution Contingency Plan (NCP). Availability of environmental effects information for such agents is limited, and individual components of dispersants are largely proprietary. Probabilistic hazard assessment approaches including Chemical Toxicity Distributions (CTDs) may be useful as an initial step toward prioritizing environmental hazards from the use of dispersants. In the present study, we applied the CTD approach to two acute toxicity datasets: NCP (the contingency plan dataset) and DHOS (a subset of NCP listed dispersants reevaluated subsequent to the Deepwater Horizon oil spill). These datasets contained median lethal concentration (LC50) values for dispersants alone and dispersant:oil mixtures, in two standard marine test species, Menidia beryllina and Mysidopsis bahia. These CTDs suggest that dispersants alone are generally less toxic than oil. In contrast, most dispersant:oil mixtures are more toxic than oil alone. For the two datasets (treated separately because of differing methodologies), CTDs would predict 95% of dispersant:oil mixtures to have acute toxicity values above 0.32 and 0.76 mg/L for Mysidopsis and 0.33 mg/L and 1.06 mg/L for Menidia (for DHOS and NCP, respectively). These findings demonstrate the utility of CTDs as a means to evaluate the comparative ecotoxicity of dispersants alone and in mixture with different oil types. The approaches presented here also provide valuable tools for prioritizing prospective and retrospective environmental assessments of oil dispersants.

  1. Effect of initial perturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks

    NASA Astrophysics Data System (ADS)

    Dell, Zachary; Stellingwerf, Robert; Abarzhi, Snezhana

    2015-11-01

    We study the effect initial perturbation on the Richtmyer-Meshkov (RM) flows induced by strong shocks in fluids with contrasting densities. Smooth Particle Hydrodynamics simulations are employed. Broad range of shock strengths and density ratios is considered (Mach=3,5,10, and Atwood=0.6,0.8,0.95). The amplitude of initial single mode sinusoidal perturbation of the interface varies from 0% to 100% of its wavelength. We analyze the initial growth-rate of the RMI immediately after the shock passage, when the perturbation amplitude increases linearly with time. We find that the initial growth-rate of RMI is a non-monotone function of the amplitude of the initial perturbation. This restrains the amount of energy that can be deposited by the shock at the interface. The maximum value of the initial growth-rate depends strongly and the corresponding value of the initial perturbation amplitude depends only slightly on the shock strength and density ratio. The maximum value of the initial growth-rate increases with the increase of the Atwood number for a fixed Mach number, and decreases with the increase of the Mach number for a fixed Atwood number. We argue that the non-monotonicity of RMI growth-rate is a result of a combination of geometric effect and the effect of secondary shocks.

  2. Effect of initial perturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks

    NASA Astrophysics Data System (ADS)

    Dell, Zachary; Stellingwerf, Robert; Abarzhi, Snezhana

    2015-11-01

    We study the effect initial perturbation on the Richtmyer-Meshkov (RM) flows induced by strong shocks in fluids with contrasting densities. Smooth Particle Hydrodynamics simulations are employed. Broad range of shock strengths and density ratios is considered (Mach=3,5,10, and Atwood=0.6,0.8,0.95). The amplitude of initial single mode sinusoidal perturbation of the interface varies from 0% to 100% of its wavelength. We analyze the initial growth-rate of the RMI immediately after the shock passage, when the perturbation amplitude increases linearly with time. We find that the initial growth-rate of RMI is a non-monotone function of the amplitude of the initial perturbation. This restrains the amount of energy that can be deposited by the shock at the interface. The maximum value of the initial growth-rate depends strongly and the corresponding value of the initial perturbation amplitude depends only slightly on the shock strength and density ratio. The maximum value of the initial growth-rate increases with the increase of the Atwood number for a fixed Mach number, and decreases with the increase of the Mach number for a fixed Atwood number. We argue that the non-monotonicity of RMI growth-rate is a result of a combination of geometric effect and the effect of secondary shocks. Support of the National Science Foundation is warmly appreciated.

  3. Numerical analysis of initial stage of thermal shock

    NASA Astrophysics Data System (ADS)

    Demidov, V. N.

    2016-07-01

    The paper studies a problem of a thermal shock at the surface of a half-space, which properties are described by elastic-plastic model taking into account dynamic effects, heat inertia, coupling between thermal and mechanical fields. The problem is solved numerically using finite-difference method of S.K. Godunov.

  4. Effect of initial perturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks

    SciTech Connect

    Dell, Z.; Abarzhi, S. I. E-mail: sabarji@andrew.cmu.edu; Stellingwerf, R. F.

    2015-09-15

    We systematically study the effect of the initial perturbation on Richtmyer-Meshkov (RM) flows induced by strong shocks in fluids with contrasting densities. Smooth Particle Hydrodynamics simulations are employed. A broad range of shock strengths and density ratios is considered. The amplitude of the initial single mode sinusoidal perturbation of the interface varies from 0% to 100% of its wavelength. The simulations results are compared, wherever possible, with four rigorous theories, and with other experiments and simulations, achieving good quantitative and qualitative agreement. Our study is focused on early time dynamics of the Richtmyer-Meshkov instability (RMI). We analyze the initial growth-rate of RMI immediately after the shock passage, when the perturbation amplitude increases linearly with time. For the first time, to the authors' knowledge, we find that the initial growth-rate of RMI is a non-monotone function of the initial perturbation amplitude, thus restraining the amount of energy that can be deposited by the shock at the interface. The maximum value of the initial growth-rate depends on the shock strength and the density ratio, whereas the corresponding value of the initial perturbation amplitude depends only slightly on the shock strength and density ratio.

  5. Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Dell, Z. R.; Pandian, A.; Bhowmick, A. K.; Swisher, N. C.; Stanic, M.; Stellingwerf, R. F.; Abarzhi, S. I.

    2017-09-01

    We focus on the classical problem of the dependence on the initial conditions of the initial growth-rate of strong shock driven Richtmyer-Meshkov instability (RMI) by developing a novel empirical model and by employing rigorous theories and Smoothed Particle Hydrodynamics simulations to describe the simulation data with statistical confidence in a broad parameter regime. For the given values of the shock strength, fluid density ratio, and wavelength of the initial perturbation of the fluid interface, we find the maximum value of the RMI initial growth-rate, the corresponding amplitude scale of the initial perturbation, and the maximum fraction of interfacial energy. This amplitude scale is independent of the shock strength and density ratio and is characteristic quantity of RMI dynamics. We discover the exponential decay of the ratio of the initial and linear growth-rates of RMI with the initial perturbation amplitude that excellently agrees with available data.

  6. Numerical calculation of shock-induced initiation of detonations

    NASA Technical Reports Server (NTRS)

    Cort, G. E.; Fu, J. H. M.

    1980-01-01

    Results of numerical calculations of the impact of steel cylinders and spheres on the plastic bonded high explosive PBX 9501 are described. The calculations were carried out by a reactive, multicomponent, two dimensional, Eulerian hydrodynamic computer code, 2DE. The 2DE computer code is a finite difference code that uses the donor acceptor cell method to compute mixed cell fluxes. The parameters in the Forest Fire burn model are developed from experiments where the induced shock approximates a plane wave and are applied, in this case, to a situation where the induced shock is a divergent wave with curvature that depends on the size and shape of the projectile. The calculated results are compared with results from experiments involving instrumented mock and live high explosives, with projectiles of varying size, shapes, and velocities.

  7. Shock initiation of explosives: Temperature spikes and growth spurts

    NASA Astrophysics Data System (ADS)

    Bassett, Will P.; Dlott, Dana D.

    2016-08-01

    When energetic materials are subjected to high-velocity impacts, the first steps in the shock-to-detonation transition are the creation, ignition, and growth of hot spots. We used 1-3.2 km s-1 laser-launched flyer plates to impact powdered octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, a powerful explosive, and monitored hundreds of emission bursts with an apparatus that determined temperature and emissivity at all times. The time-dependent volume fraction of hot spots was determined by measuring the time-dependent emissivity. After the shock, most hot spots extinguished, but the survivors smoldered for hundreds of nanoseconds until their temperatures spiked, causing a hot spot growth spurt. Depending on the impact duration, the growth spurts could be as fast as 300 ns and as slow as 13 μs.

  8. Time-resolved study of laser initiated shock wave propagation in superfluid 4He

    NASA Astrophysics Data System (ADS)

    Garcia, Allan; Buelna, Xavier; Popov, Evgeny; Eloranta, Jussi

    2016-09-01

    Intense shock waves in superfluid 4He between 1.7 and 2.1 K are generated by rapidly expanding confined plasma from laser ablation of a metal target immersed in the liquid. The resulting shock fronts in the liquid with initial velocities up to ca. Mach 10 are visualized by time-resolved shadowgraph photography. These high intensity shocks decay within 500 ns into less energetic shock waves traveling at Mach 2, which have their lifetime in the microsecond time scale. Based on the analysis using the classical Rankine-Hugoniot theory, the shock fronts created remain in the solid phase up to 1 μs and the associated thermodynamic state appears outside the previously studied region. The extrapolated initial shock pressure of 0.5 GPa is comparable to typical plasma pressures produced during liquid phase laser ablation. A secondary shock originating from fast heat propagation on the metal surface is also observed and a lower limit estimate for the heat propagation velocity is measured as 7 × 104 m/s. In the long-time limit, the high intensity shocks turn into liquid state waves that propagate near the speed of sound.

  9. Ab initio molecular dynamics simulations of nitromethane under shock initiation conditions

    NASA Astrophysics Data System (ADS)

    Decker, S. A.; Chau, D.; Woo, T. K.; Zhang, F.

    Detonation theories for homogeneous, condensed energetic materials have focused on 1-d analysis in which the detonation ignition physics forms the most difficult part. The classic ZND model considers detonation ignition through a frozen shock transition followed by an induction period, in which the shock temperature induces vibrational, rotational and electronic excitation followed by molecular dissociation (i.e., thermal decomposition). The frozen shock assumption has been the topic of debate and an alternative model has been proposed whereby detonation ignition arises from excitation of the translational degrees of freedom in the shock front [1]. This raises an important postulation of detonation ignition of molecular condensed matter being initiated by non-equilibrium kinetic events within the shock front rather than equilibrium thermal molecular dissociation due to the shock temperature. Experimental support for this hypothesis must be derived from observations inside the shock front thereby requiring measurements on the time scale of 10-2-1 ps, which remains beyond the scope of current experimental techniques. However, the recent development of ab initio molecular dynamics simulations offers an alternative approach to elucidate possible mechanisms of detonation ignition. These methods are based on first-principle quantum mechanical calculations that allow for the simulation of chemical processes at the atomic level. Molecular dynamics simulations of bimolecular collisions using density functional theories serve as a most simplified model for shock-induced dissociation [2-3], while multimolecular collisions including neighbourhood molecules serve as a simple model for shock dissociation in bulk liquid [4].

  10. Electromagnetic gauge measurements of shock initiating PBX9501 and PBX9502 explosives

    SciTech Connect

    Sheffield, S.A.; Gustavsen, R.L.; Hill, L.G.; Alcon, R.R.

    1998-12-31

    The authors have used an embedded electromagnetic particle velocity gauge technique to measure the shock initiation behavior in PBX9501 and PBX9502 explosives. Experiments have been conducted in which up to twelve separate measurements have been made in a single experiment which detail the growth from an input shock to a detonation. In addition, another gauge element called a shock tracker has been used to monitor the progress of the shock front as a function of time, thus providing a position-time trajectory of the wave front as it moves through the explosive sample. This provides similar data to that obtained in a traditional wedge test and is used to determine the position and time that the wave attains detonation. Data on both explosives show evidence of heterogeneous initiation (growth in the front) and homogeneous initiation (growth behind the front) with the PBX9502 showing more Heterogeneous behavior and the PBX 9501 showing more homogeneous behavior.

  11. Shock Initiation of New and Aged PBX 9501 Measured with Embedded Electromagnetic Particle Velocity Gauges

    SciTech Connect

    L. G. Hill; R. L. Gustavsen; R. R. Alcon; S. A. Sheffield

    1999-09-01

    We have used an embedded electromagnetic particle velocity gauge technique to measure the shock initiation behavior in PBX 9501 explosive. Up to twelve separate particle velocity wave profile measurements have been made at different depths in a single experiment. These detail the growth from an input shock to a detonation. In addition, another gauge element called a ''shock tracker'' has been used to monitor the progress of the shock front as a function of time and position as it moves through the explosive sample. This provides data similar to that obtained in a traditional explosively driven wedge test and is used to determine the position and time that the wave attains detonation. Run distance-to-detonation vs. input pressure (Pop-plot) data and particle velocity wave profile data have been obtained on new PBX 9501 pressed to densities of 1.826, 1.830, and 1.837 g/cm{sup 3}. In addition, the same measurements were performed on aged material recovered from dismantled W76 and W78 weapons. The input pressure range covered was 3.0 to 5.2 GPa. All results to date show shock sensitivity to be a function only of the initial density and not of age. PBX 9501 shock initiates the same after 17 years in stockpile as it does on the day it is pressed. Particle velocity wave profiles show mixed heterogeneous initiation (growth in the front) and homogeneous initiation (growth behind the front).

  12. A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy

    PubMed Central

    Freund, Jonathan B.; Colonius, Tim; Evan, Andrew P.

    2007-01-01

    Evidence suggests that inertial cavitation plays an important role in the renal injury incurred during shock-wave lithotripsy. However, it is unclear how tissue damage is initiated, and significant injury typically occurs only after a sufficient dose of shock waves. While it has been suggested that shock-induced shearing might initiate injury, estimates indicate that individual shocks do not produce sufficient shear to do so. In this paper, we hypothesize that the cumulative shear of the many shocks is damaging. This mechanism depends upon whether there is sufficient time between shocks for tissue to relax to its unstrained state. We investigate the mechanism with a physics-based simulation model wherein the the basement membranes that define the tubules and vessels in the inner medulla are represented as elastic shells surrounded by viscous fluid. Material properties are estimated from in vitro tests of renal basement membranes and documented mechanical properties of cells and extracellular gels. Estimates for the net shear deformation from a typical lithotripter shock (~ 0.1%) are found from a separate dynamic shock simulation. The results suggest that the larger interstitial volume (~ 40%) near the papilla tip gives the tissue there a relaxation time comparable to clinical shock delivery rates (~ 1Hz), thus allowing shear to accumulate. Away from the papilla tip, where the interstitial volume is smaller (≲ 20%), the model tissue relaxes completely before the next shock would be delivered. Implications of the model are that slower delivery rates and broader focal zones should both decrease injury, consistent with some recent observations. PMID:17507147

  13. An evaluation of the reliability and usefulness of external-initiator PRA (probabilistic risk analysis) methodologies

    SciTech Connect

    Budnitz, R.J.; Lambert, H.E. )

    1990-01-01

    The discipline of probabilistic risk analysis (PRA) has become so mature in recent years that it is now being used routinely to assist decision-making throughout the nuclear industry. This includes decision-making that affects design, construction, operation, maintenance, and regulation. Unfortunately, not all sub-areas within the larger discipline of PRA are equally mature,'' and therefore the many different types of engineering insights from PRA are not all equally reliable. 93 refs., 4 figs., 1 tab.

  14. Shock Initiation of UF-TATB at 250(degree)C

    SciTech Connect

    Urtiew, P A; Forbes, J W; Garcia, F; Tarver, C M

    2001-06-05

    The shock initiation properties of pure ultrafine grade triaminotrinitrobenzne (UF-TATB) pressed to an initial density of 1.80 g/cm{sup 3} and fired at ambient temperature and 250 C are reported. Embedded manganin pressure gauges are used to measure the pressure histories during the buildup to detonation at several input pressures. The ambient temperature results confirm previous run distance to detonation versus shock pressure results. UF-TATB at 250 C is shown to be much more shock sensitive than it is at ambient temperature. At high impact pressures, the shock sensitivity of UF-TATB at 250 C approaches that of HMX-based explosives under ambient conditions. Ignition and Growth reactive flow models are developed for UF-TATB at both temperatures to allow predictions to be made for other scenarios.

  15. Effects of tandem and colliding shock waves on the initiation of triaminotrinitrobenzene

    SciTech Connect

    Tarver, C.M.; Urtiew, P.A.; Tao, W.C.

    1995-09-01

    The shock initiation of the insensitive high-explosive LX-17, which contains 92.5% triaminotrinitrobenzene and 7.5% Kel-F binder, was studied under simulated accident conditions in which two shock waves interact producing locally high pressures and temperatures. Two experimental geometries were studied using embedded manganin pressure gauges to measure the increases in pressure due to exothermic reaction at various locations as functions of time. These pressure histories were compared to ignition and growth reactive flow model calculations to determine whether a second shock compression of reacting LX-17 caused unusually rapid reaction rates and thus more extreme hazards. One experiment used a tandem flyer plate of aluminum and steel separated by a gap to shock the LX-17 charge, allow it to rarify, and then reshock the damaged charge to even higher pressures. These experiments revealed no significant enhancement of the LX-17 reaction rates under this shock, rarefaction, and reshock loading. The second experiment used a grooved flyer plate to produce a subcritical shock wave in LX-17, which then diverged and collided, producing a Mach stem interaction at the charge axis. The threshold conditions under which the Mach stem grew to detonation were measured. The standard LX-17 ignition and growth model yielded excellent agreement with the pressure gauge records in the Mach stem interaction region. The formation of Mach stem interactions by nearly simultaneous multiple high-velocity impacts was identified as a serious shock initiation hazard for heterogeneous solid explosives.

  16. Shock initiation of an {epsilon}-CL-20-estane formulation

    SciTech Connect

    Tarver, C.M.; Simpson, R.L.; Urtiew, P.A.

    1995-07-19

    The shock sensitivity of a pressed solid explosive formulation, LX-19, containing 95.2% by weight epsilon phase 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW) and 4.8% Estane binder, was determined using the wedge test and embedded manganin pressure gauge techniques. This formulation was shown to be slightly more sensitive than LX-14, which contains 95.5% HMX and 4.5% Estane binder. The measured pressure histories for LX-19 were very similar to those obtained using several HMX-inert binder formulations. An Ignition and Growth reactive model for LX-19 was developed which differed from those for HMX-inert binder formulations only by a 25% higher hot spot growth rate.

  17. Shock initiation of an {epsilon}-CL-20-estane formulation

    SciTech Connect

    Tarver, C.M.; Simpson, R.L.; Urtiew, P.A.

    1996-05-01

    The shock sensitivity of a pressed solid explosive formulation, LX-19, containing 95.2{percent} by weight epsilon phase 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW) and 4.8{percent} Estane binder, was determined using the wedge test and embedded manganin pressure gauge techniques. This formulation was shown to be slightly more sensitive than LX-14, which contains 95.5{percent} HMX and 4.5{percent} Estane binder. The measured pressure histories for LX-19 were very similar to those obtained using several HMX-inert binder formulations. An Ignition and Growth reactive flow model for LX-19 was developed which differed from those for HMX-inert binder formulations only by a 25{percent} higher hot spot growth rate. {copyright} {ital 1996 American Institute of Physics.}

  18. Shock initiated reactions of reactive multi-phase blast explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2017-01-01

    This paper describes a new class of non-ideal explosive compositions made of perfluoropolyether (PFPE), nanoaluminum, and a micron-size, high mass density, reactive metal. Unlike high explosives, these compositions release energy via a fast self-oxidized combustion wave rather than a true self-sustaining detonation. Their reaction rates are shock dependent and they can be overdriven to change their energy release rate. These compositions are fuel rich and have an extended aerobic energy release phase. The term "reactive multiphase blast" refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts energy and momentum [1]; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. Tantalum-based RMBX formulations were tested in two spherical core-shell configurations - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  19. Large Area and Short-Pulse Shock Initiation of a Tatb/hmx Mixed Explosive

    NASA Astrophysics Data System (ADS)

    Guiji, Wang; Chengwei, Sun; Jun, Chen; Cangli, Liu; Jianheng, Zhao; Fuli, Tan; Ning, Zhang

    2007-12-01

    The large area and short-pulse shock initiation experiments on the plastic bonded mixed explosive of TATB(80%) and HMX(15%) have been performed with an electric gun where a Mylar flyer of 10-19 mm in diameter and 0.05˜0.30 mm in thickness was launched by an electrically exploding metallic bridge foil. The cylindrical explosive specimens (Φ16 mm×8 mm in size) were initiated by the Mylar flyers in thickness of 0.07˜0.20 mm, which induced shock pressure in specimen was of duration ranging from 0.029 to 0.109 μs. The experimental data were treated with the DRM(Delayed Robbins-Monro) procedure and to provide the initiation threshold of flyer velocities at 50% probability are 3.398˜1.713 km/s and that of shock pressure P 13.73˜5.23 GPa, respectively for different pulse durations. The shock initiation criteria of the explosive specimen at 50% and 100% probabilities are yielded. In addition, the 30° wedged sample was tested and the shock to detonation transition (SDT) process emerging on its inclined surface was diagnosed with a device consisting of multiple optical fiber probe, optoelectronic transducer and digital oscilloscope. The POP plot of the explosive has been gained from above SDT data.

  20. Initial decomposition of the condensed-phase β-HMX under shock waves: molecular dynamics simulations.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Ji, Guang-Fu; Chen, Xiang-Rong; Zhao, Feng; Wei, Dong-Qing

    2012-11-26

    We have performed quantum-based multiscale simulations to study the initial chemical processes of condensed-phase octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under shock wave loading. A self-consistent charge density-functional tight-binding (SCC-DFTB) method was employed. The results show that the initial decomposition of shocked HMX is triggered by the N-NO(2) bond breaking under the low velocity impact (8 km/s). As the shock velocity increases (11 km/s), the homolytic cleavage of the N-NO(2) bond is suppressed under high pressure, the C-H bond dissociation becomes the primary pathway for HMX decomposition in its early stages. It is accompanied by a five-membered ring formation and hydrogen transfer from the CH(2) group to the -NO(2) group. Our simulations suggest that the initial chemical processes of shocked HMX are dependent on the impact velocity, which gain new insights into the initial decomposition mechanism of HMX upon shock loading at the atomistic level, and have important implications for understanding and development of energetic materials.

  1. Shock initiation experiments with ignition and growth modeling on low density composition B

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin S.; Garcia, Frank; Tarver, Craig M.

    2017-01-01

    Shock initiation experiments on low density (˜1.2 and ˜1.5 g/cm3) Composition B were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and provide a basis for Ignition and Growth reactive flow modeling. A 101 mm diameter gas gun was utilized to initiate the explosive charges with manganin piezoresistive pressure gauge packages placed between packed layers (˜1.2 g/cm3) confined in Teflon rings or sample disks pressed to low density (˜1.5 g/cm3). The shock sensitivity was found to increase with decreasing density as expected. Ignition and Growth model parameters were derived that yielded reasonable agreement with the experimental data at both initial densities. The shock sensitivity at the tested densities are compared to prior published work with near full density material.

  2. Time to initiation of treatment with polymyxin B cartridge hemoperfusion in septic shock patients.

    PubMed

    Takeyama, Naoshi; Noguchi, Hiroshi; Hirakawa, Akihiko; Kano, Hideki; Morino, Kazuma; Obata, Toru; Sakamoto, Tetsuya; Tamai, Fumihiro; Ishikura, Hiroyasu; Kase, Youichi; Kobayashi, Makoto; Naka, Toshio; Takahashi, Yoshiki

    2012-01-01

    We investigated whether early initiation of hemoperfusion with a polymyxin B cartridge (PMX) after the diagnosis of septic shock could improve the clinical outcome. A prospective, open-labeled, multicenter cohort study was performed at intensive care units in Japan. 41 patients received PMX within 6 h after the diagnosis of septic shock (early group) and 51 patients were treated after 6 h (late group). The early group had a significantly shorter duration of ventilator support and also had a lower catecholamine requirement. PMX was effective for improvement of hypotension, hypoperfusion, the sequential organ failure assessment score, and pulmonary oxygenation regardless of the timing of its initiation. The 28-day mortality rate did not differ between the two groups. Early initiation of PMX shortened the duration of ventilator support and also reduced the catecholamine requirement, so early treatment of septic shock should achieve a better outcome. Copyright © 2012 S. Karger AG, Basel.

  3. Shock initiation experiments with ignition and growth modeling on low density HMX

    NASA Astrophysics Data System (ADS)

    Garcia, Frank; Vandersall, Kevin S.; Tarver, Craig M.

    2014-05-01

    Shock initiation experiments on low density (~1.2 and ~1.6 g/cm3) HMX were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and provide a basis for Ignition and Growth reactive flow modeling. A 101 mm diameter gas gun was utilized to initiate the explosive charges with manganin piezoresistive pressure gauge packages placed between packed layers (~1.2 g/cm3) or sample disks pressed to low density (~1.6 g/cm3). The measured shock sensitivity of the ~1.2 g/cm3 HMX was similar to that previously measured by Sheffield et al. and the ~1.6 g/cm3 HMX was measured to be much less shock sensitive. Ignition and Growth model parameters were utilized that yielded good agreement with the experimental data at both initial densities.

  4. Shock initiation of 2,4-dinitroimidazole (2,4-DNI)

    SciTech Connect

    Urtiew, P.A.; Tarver, C.M.; Simpson, R.L.

    1995-07-19

    The shock sensitivity of the pressed solid explosive 2,4-dinitroimidazole (2,4-DNI) was determined using the embedded manganin pressure gauge technique. At an initial shock pressure of 2 GPa, several microseconds were required before any exothermic reaction was observed. At 4 GPa, 2,4-DNI reacted more rapidly but did not transition to detonation at the 12 mm deep gauge position. At 6 GPa, detonation occurred in less than 6 mm of shock propagation. Thus, 2,4-DNI is more shock sensitive than TATB-based explosives but is considerably less shock sensitive than HMX-based explosives. An Ignition and Growth reactive flow model for 2,4-DNI based on these gauge records showed that 2,4-DNI exhibits shock initiation characteristics similar to TATB but reacts faster. The chemical structure of 2,4-DNI suggests that it may exhibit thermal decomposition reactions similar to nitroguanine and explosives with similar ring structures, such as ANTA and NTO.

  5. Shock initiation of 2,4-dinitroimidazole (2,4-DNI)

    SciTech Connect

    Urtiew, P.A.; Tarver, C.M.; Simpson, R.L.

    1996-05-01

    The shock sensitivity of the pressed solid explosive 2,4-dinitroimidazole (2,4-DNI) was determined using the embedded manganin pressure gauge technique. At an initial shock pressure of 2 GPa, several microseconds were required before any exothermic reaction was observed. At 4 GPa, 2,4-DNI reacted more rapidly but did not transition to detonation at the 12 mm deep gauge position. At 6 GPa, detonation occurred in less than 6 mm of shock propagation. Thus, 2,4-DNI is more shock sensitive than TATB-based explosives but is considerably less shock sensitive than HMX-based explosives. An Ignition and Growth reactive flow model for 2,4-DNI based on these gauge records showed that 2,4-DNI exhibits shock initiation characteristics similar to TATB but reacts faster. The chemical structure of 2,4-DNI suggests that it may exhibit thermal decomposition reactions similar to nitroguanine and explosives with similar ring structures, such as ANTA and NTO. {copyright} {ital 1996 American Institute of Physics.}

  6. Mesoscale modelling of shock initiation in HMX-based explosives

    SciTech Connect

    Swift, D. C.; Mulford, R. N. R.; Winter, R. E.; Taylor, P.; Salisbury, D. A.; Harris, E. J.

    2002-01-01

    Motivation: predictive capability Want to predict initiation, detonics and performance given: {sm_bullet} Variations in composition {sm_bullet} Variations in morphology {sm_bullet}Different loading conditions Previous work on PBX and ANFO: need physically-based model rather than just mechanical calibrations

  7. Effect of Pressure Gradients on the Initiation of PBX-9502 via Irregular (Mach) Reflection of Low Pressure Curved Shock Waves

    SciTech Connect

    Hull, Lawrence Mark; Miller, Phillip Isaac; Moro, Erik Allan

    2016-11-28

    In the instance of multiple fragment impact on cased explosive, isolated curved shocks are generated in the explosive. These curved shocks propagate and may interact and form irregular or Mach reflections along the interaction loci, thereby producing a single shock that may be sufficient to initiate PBX-9501. However, the incident shocks are divergent and their intensity generally decreases as they expand, and the regions behind the Mach stem interaction loci are generally unsupported and allow release waves to rapidly affect the flow. The effects of release waves and divergent shocks may be considered theoretically through a “Shock Change Equation”.

  8. Shock

    MedlinePlus

    ... you think a person is in shock: Call 911 for immediate medical help. Check the person's airway, ... help. When to Contact a Medical Professional Call 911 any time a person has symptoms of shock. ...

  9. Study of void collapse leading to shock initiation and ignition in heterogeneous energetic material

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Koundinyan, Sushilkumar Prabu; Udaykumar, H. S.

    2015-06-01

    In heterogeneous energetic materials like PBX, porosity plays an important role in shock initiation and ignition. This is because the collapse of voids leads to the formation of local high temperature regions termed as hot spots under the application of shock loading. The formation of hot spots can take place because of several mechanisms such as plastic deformation of voids, hydrodynamic impact on voids leading to the formation of high speed material jets etc. Once these hot spots are formed, they can lead to reaction and ignition in the explosive material. However, diffusive phenomenon like heat conduction can play an important role in shock initiation because depending on the size and intensity of void collapse hot spots, local ignition conditions can be smeared out. In the current work, void collapse leading to shock initiation and ignition in HMX has been studied using a massively parallel Eulerian code, SCIMITAR3D. The chemical kinetics of HMX decomposition and reaction has been modeled using the Henson-Smilowitz multi-step mechanism. Based on the current framework an ignition criterion has been established for single void collapse analysis for various shock strengths. Furthermore, the effects of void-void interactions have been analyzed demonstrating the important role of the combination of void fraction, reaction chemistry and heat conduction in determining the ignition threshold. This work has been funded from the AFRL-RWPC, Computational Mechanics Branch, Eglin AFB, Program Manager: Dr. Martin Schmidt.

  10. Large Area and Short Pulsed Shock Initiation of A TATB/HMX Mixed Explosive

    NASA Astrophysics Data System (ADS)

    Wang, Guiji; Sun, Chengwei; Chen, Jun; Liu, Cangli; Tan, Fuli; Zhang, Ning

    2007-06-01

    The large area and short pulsed shock initiation experiment on a plastic bonded mixed explosive of TATB(80%) and HMX(15%) has been performed with an electric gun where a mylar flyer of 19mm in diameter and 0.05˜0.30mm in thickness is launched by an electrically exploding metallic bridge foil. The cylindrical explosive specimens (φ16mm x 8mm in size) were initiated by the mylar flyers in thickness of 0.07˜0.20mm, which induced shock pressure in specimen was of duration ranging 0.029˜0.109μs. The experimental data were treated with the DRM(Delayed Robbins-Monro) procedure and to provide the threshold of shock pressure P 13.73˜5.23GPa. The shock initiation criterion of the explosive specimen is (P/GPa)^1.451(τ/μs) = 1.2. Meanwhile the criterion in 100% probability in the experiment is (P/GPa)^1.8(τ/μs) = 2.63. In addition, the 30^o wedged specimen was tested and the shock to detonation transition (SDT) process emerging on its inclined surface was diagnosed with a device consisting of multiple optical fiber probe, optoelectronic transducer and digital oscilloscope. The POP plot of the explosive has been gained from above SDT data.

  11. Initiation of explosive boiling of a droplet with a shock wave

    NASA Astrophysics Data System (ADS)

    Frost, D. L.

    1989-12-01

    The role of incident shock waves in the initiation of vapor explosions in volatile liquid hydrocarbons has been investigated. Experiments were carried out on single droplets (1 2 mm diameter) immersed in a host fluid and heated to temperatures at or near the limit of superheat. Shocks generated by spark discharge were directed at previously nonevaporating drops as well as at drops boiling stably at high pressure. Explosive boiling is triggered in previously nonevaporating drops only if the drop temperature is above a threshold temperature that is near the superheat limit. Interaction of a shock with a stably boiling drop immediately causes a transition to violent unstable boiling in which fine droplets are torn from the evaporating interface, generating a two-phase flow downstream. On the previously nonevaporating interface between the drop and the host liquid, multiple nucleation sites appear which grow rapidly and coalesce. Overpressures generated in the surrounding fluid during bubble collapse may reach values on the same level as the pressure jump across the shock wave that initiated the explosive boiling. A simple calculation is given, which suggests that shock focusing may influence the location at which unstable boiling is initiated.

  12. Shock initiated thermal and chemical responses of HMX crystal from ReaxFF molecular dynamics simulation.

    PubMed

    Zhou, Tingting; Song, Huajie; Liu, Yi; Huang, Fenglei

    2014-07-21

    To gain an atomistic-level understanding of the thermal and chemical responses of condensed energetic materials under thermal shock, we developed a thermal shock reactive dynamics (TS-RD) computational protocol using molecular dynamics simulation coupled with ReaxFF force field. β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) was selected as a a target explosive due to its wide usage in the military and industry. The results show that a thermal shock initiated by a large temperature gradient between the "hot" region and the "cold" region results in thermal expansion of the particles and induces a thermal-mechanical wave propagating back and forth in the system with an averaged velocity of 3.32 km s(-1). Heat propagating along the direction of thermal shock leads to a temperature increment of the system and thus chemical reaction initiation. Applying a continuum reactive heat conduction model combined with the temperature distribution obtained from the RD simulation, a heat conduction coefficient is derived as 0.80 W m(-1) K(-1). The chemical reaction mechanisms during thermal shock were analyzed, showing that the reaction is triggered by N-NO2 bond breaking followed by HONO elimination and ring fission. The propagation rates of the reaction front and reaction center are obtained to be 0.069 and 0.038 km s(-1), based on the time and spatial distribution of NO2. The pressure effect on the thermal shock was also investigated by employing uniaxial compression before the thermal shock. We find that compression significantly accelerates thermal-mechanical wave propagation and heat conduction, resulting in higher temperature and more excited molecules and thus earlier initiation and faster propagation of chemical reactions.

  13. Plantar Purpura as the Initial Presentation of Viridians Streptococcal Shock Syndrome Secondary to Streptococcus gordonii Bacteremia

    PubMed Central

    Liao, Chen-Yi; Su, Kuan-Jen; Lin, Cheng-Hui; Huang, Shu-Fang; Chin, Hsien-Kuo; Chang, Chin-Wen; Kuo, Wu-Hsien; Ben, Ren-Jy; Yeh, Yen-Cheng

    2016-01-01

    Viridians streptococcal shock syndrome is a subtype of toxic shock syndrome. Frequently, the diagnosis is missed initially because the clinical features are nonspecific. However, it is a rapidly progressive disease, manifested by hypotension, rash, palmar desquamation, and acute respiratory distress syndrome within a short period. The disease course is generally fulminant and rarely presents initially as a purpura over the plantar region. We present a case of a 54-year-old female hospital worker diagnosed with viridians streptococcal shock syndrome caused by Streptococcus gordonii. Despite aggressive antibiotic treatment, fluid hydration, and use of inotropes and extracorporeal membrane oxygenation, the patient succumbed to the disease. Early diagnosis of the potentially fatal disease followed by a prompt antibiotic regimen and appropriate use of steroids are cornerstones in the management of this disease to reduce the risk of high morbidity and mortality. PMID:27366188

  14. Effects of initial condition spectral content on shock-driven turbulent mixing.

    PubMed

    Nelson, Nicholas J; Grinstein, Fernando F

    2015-07-01

    The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the rage code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band of high density gas (SF(6)) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF(6) bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF(6) band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.

  15. Effects of Initial Condition Spectral Content on Shock Driven-Turbulent Mixing

    SciTech Connect

    Nelson, Nicholas James; Grinstein, Fernando F.

    2015-07-15

    The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the RAGE code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band of high density gas (SF6) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF6 bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF6 band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.

  16. Effects of Initial Condition Spectral Content on Shock Driven-Turbulent Mixing

    DOE PAGES

    Nelson, Nicholas James; Grinstein, Fernando F.

    2015-07-15

    The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the RAGE code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band ofmore » high density gas (SF6) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF6 bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF6 band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.« less

  17. Effects of initial condition spectral content on shock-driven turbulent mixing

    NASA Astrophysics Data System (ADS)

    Nelson, Nicholas J.; Grinstein, Fernando F.

    2015-07-01

    The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the rage code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band of high density gas (SF6) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF6 bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF6 band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.

  18. Shock Initiation Experiments Plus Ignition and Growth Modeling of Damaged LX-04 Charges

    NASA Astrophysics Data System (ADS)

    Chidester, Steven K.; Garcia, Frank; Vandersall, Kevin S.; Tarver, Craig M.

    2009-12-01

    Shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX and 15% Viton by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. The LX-04 charges were damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermal damaged LX-04 charges were heated to 190° C for a long enough time for the beta to delta phase transition to occur and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while the thermally damaged LX-04 was much more shock sensitive. The pristine LX-04 Ignition and Growth model, modified only by igniting a larger amount of explosive during shock compression based on the damaged charge density, accurately calculated the increased shock sensitivity of the three damaged charges.

  19. SHOCK INITIATION EXPERIMENTS PLUS IGNITION AND GROWTH MODELING OF DAMAGED LX-04 CHARGES

    SciTech Connect

    Chidester, S K; Garcia, F; Vandersall, K S; Tarver, C M

    2009-06-23

    Shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX and 15% Viton by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. The LX-04 charges were damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermal damaged LX-04 charges were heated to 190 C for a long enough time for the beta to delta phase transition to occur and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while the thermally damaged LX-04 was much more shock sensitive. The pristine LX-04 Ignition and Growth model, modified only by igniting a larger amount of explosive during shock compression based on the damaged charge density, accurately calculated the increased shock sensitivity of the three damaged charges.

  20. SHOCK INITIATION EXPERIMENTS AND MODELING OF COMPOSITION B AND C-4

    SciTech Connect

    Urtiew, P A; Vandersall, K S; Tarver, C M; Garcia, F; Forbes, J W

    2006-06-13

    Shock initiation experiments on the explosives Composition B and C-4 were performed to obtain in-situ pressure gauge data for the purpose of determining the Ignition and Growth reactive flow model with proper modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive charges containing manganin piezoresistive pressure gauge packages embedded in the explosive sample. Experimental data provided new information on the shock velocity versus particle velocity relationship for each of the investigated materials in their respective pressure range. The run-distance-to-detonation points on the Pop-plot for these experiments showed agreement with previously published data, and Ignition and Growth modeling calculations resulted in a good fit to the experimental data. These experimental data were used to determine Ignition and Growth reactive flow model parameters for these explosives. Identical ignition and growth reaction rate parameters were used for C-4 and Composition B, and the Composition B model also included a third reaction rate to simulate the completion of reaction by the TNT component. The Composition B model was then tested on existing short pulse duration, gap test, and projectile impact shock initiation with good results. This Composition B model can be applied to shock initiation scenarios that have not or cannot be tested experimentally with a high level of confidence in its predictions.

  1. Short pulse duration shock initiation experiments plus ignition and growth modeling on Composition B

    NASA Astrophysics Data System (ADS)

    May, Chadd M.; Tarver, Craig M.

    2014-05-01

    Composition B (63% RDX, 36% TNT, 1% wax) is still a widely used energetic material whose shock initiation characteristics are necessary to understand. It is now possible to shock initiate Composition B and other secondary explosives at diameters well below their characteristic failure diameters for unconfined self-sustaining detonation. This is done using very high velocity, very thin, small diameter flyer plates accelerated by electric or laser power sources. Recently experimental detonation versus failure to detonate threshold flyer velocity curves for Composition B using several KaptonTM flyer thicknesses and diameters were measured. Flyer plates with diameters of 2 mm successfully detonated Composition B, which has a nominal failure diameter of 4.3 mm. The shock pressures required for these initiations are greater than the Chapman-Jouguet (C-J) pressure in self-sustaining Composition B detonation waves. The initiation process is two-dimensional, because both rear and side rarefactions can affect the shocked Composition B reaction rates. The Ignition and Growth reactive flow model for Composition B is extended to yield accurate simulations of this new threshold velocity data for various flyer thicknesses.

  2. Development of Simplified Probabilistic Risk Assessment Model for Seismic Initiating Event

    SciTech Connect

    S. Khericha; R. Buell; S. Sancaktar; M. Gonzalez; F. Ferrante

    2012-06-01

    ABSTRACT This paper discusses a simplified method to evaluate seismic risk using a methodology built on dividing the seismic intensity spectrum into multiple discrete bins. The seismic probabilistic risk assessment model uses Nuclear Regulatory Commission’s (NRC’s) full power Standardized Plant Analysis Risk (SPAR) model as the starting point for development. The seismic PRA models are integrated with their respective internal events at-power SPAR model. This is accomplished by combining the modified system fault trees from the full power SPAR model with seismic event tree logic. The peak ground acceleration is divided into five bins. The g-value for each bin is estimated using the geometric mean of lower and upper values of that particular bin and the associated frequency for each bin is estimated by taking the difference between upper and lower values of that bin. The component’s fragilities are calculated for each bin using the plant data, if available, or generic values of median peak ground acceleration and uncertainty values for the components. For human reliability analysis (HRA), the SPAR HRA (SPAR-H) method is used which requires the analysts to complete relatively straight forward worksheets that include the performance shaping factors (PSFs). The results are then used to estimate human error probabilities (HEPs) of interest. This work is expected to improve the NRC’s ability to include seismic hazards in risk assessments for operational events in support of the reactor oversight program (e.g., significance determination process).

  3. Modeling the shock initiation of PBX 9501 in ALE3D

    SciTech Connect

    Mace, Jonathan; Mas, Eric M; Leininger, Lara; Springer, H Keo

    2008-01-01

    The SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has determined the 3-dimensional shock initiation behavior of the HMX based heterogeneous high explosive, PBX9501, which has a PMMA case and a steel impact cover. The SMIS real-world shot scenario creates a unique test-bed because many of the fragments arrive at the impact plate off-center and at an angle of impact. The goal of this model validation experiments is to demonstrate the predictive capability of the Tarver-Lee Ignition and Growth (I&G) reactive flow model in this fully 3-dimensional regime of Shock to Detonation Transition (SDT).

  4. Initial condition spectral content effects on shock-driven turbulent mixing

    NASA Astrophysics Data System (ADS)

    Grinstein, Fernando; Nelson, Nicholas

    2015-11-01

    We report simulations of a shocked heavy band using the RAGE code in the implicit LES context. We consider a shock-tube configuration with a band of high density SF6 gas embedded in low density air. A shock with Mach number 1.26 is transported through the band, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The evolution of the system is followed as the primary shock traverses the SF6 band, reflects off the end-wall, propagates back and reshocks the mixing layers. We apply a variety of initial perturbations to the interfaces between the two Buids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25 % less total mixing at late times. Analysis is based on the evolution of mixing widths, mixedness, turbulent kinetic energy, and effective Reynolds number estimates.

  5. Initial conditions and modeling for simulations of shock driven turbulent material mixing

    SciTech Connect

    Grinstein, Fernando F.

    2016-11-17

    Here, we focus on the simulation of shock-driven material mixing driven by flow instabilities and initial conditions (IC). Beyond complex multi-scale resolution issues of shocks and variable density turbulence, me must address the equally difficult problem of predicting flow transition promoted by energy deposited at the material interfacial layer during the shock interface interactions. Transition involves unsteady large-scale coherent-structure dynamics capturable by a large eddy simulation (LES) strategy, but not by an unsteady Reynolds-Averaged Navier–Stokes (URANS) approach based on developed equilibrium turbulence assumptions and single-point-closure modeling. On the engineering end of computations, such URANS with reduced 1D/2D dimensionality and coarser grids, tend to be preferred for faster turnaround in full-scale configurations.

  6. Initial conditions and modeling for simulations of shock driven turbulent material mixing

    DOE PAGES

    Grinstein, Fernando F.

    2016-11-17

    Here, we focus on the simulation of shock-driven material mixing driven by flow instabilities and initial conditions (IC). Beyond complex multi-scale resolution issues of shocks and variable density turbulence, me must address the equally difficult problem of predicting flow transition promoted by energy deposited at the material interfacial layer during the shock interface interactions. Transition involves unsteady large-scale coherent-structure dynamics capturable by a large eddy simulation (LES) strategy, but not by an unsteady Reynolds-Averaged Navier–Stokes (URANS) approach based on developed equilibrium turbulence assumptions and single-point-closure modeling. On the engineering end of computations, such URANS with reduced 1D/2D dimensionality and coarsermore » grids, tend to be preferred for faster turnaround in full-scale configurations.« less

  7. Multiphysics Simulations of Hot-Spot Initiation in Shocked Insensitive High-Explosive

    NASA Astrophysics Data System (ADS)

    Najjar, Fady; Howard, W. M.; Fried, L. E.

    2010-11-01

    Solid plastic-bonded high-explosive materials consist of crystals with micron-sized pores embedded. Under mechanical or thermal insults, these voids increase the ease of shock initiation by generating high-temperature regions during their collapse that might lead to ignition. Understanding the mechanisms of hot-spot initiation has significant research interest due to safety, reliability and development of new insensitive munitions. Multi-dimensional high-resolution meso-scale simulations are performed using the multiphysics software, ALE3D, to understand the hot-spot initiation. The Cheetah code is coupled to ALE3D, creating multi-dimensional sparse tables for the HE properties. The reaction rates were obtained from MD Quantum computations. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a "secondary" jet. We will discuss the results obtained with hydro-thermo-chemical processes leading to ignition growth for various pore sizes and different shock pressures.

  8. Manganin Gauge and Reactive Flow Modeling Study of the Shock Initiation of PBX 9501

    SciTech Connect

    Tarver, C M; Forbes, J W; Garcia, F; Urtiew, P A

    2001-06-05

    A series of 101mm diameter gas gun experiments was fired using manganin pressure gauges embedded in the HMX-based explosive PBX 9501 at initial temperatures of 20 C and 50 C. Flyer plate impact velocities were chosen to produce impact pressure levels in PBX 9501 at which the growth of explosive reaction preceding detonation was measured on most of the gauges and detonation pressure profiles were recorded on some of the gauges placed deepest into the explosive targets. All measured pressure histories for initial temperatures of 25 C and 50 C were essentially identical. Measured run distances to detonation at several input shock pressures agreed with previous results. An existing ignition and growth reactive flow computer model for shock initiation and detonation of PBX 9501, which was developed based on LANL embedded particle velocity gauge data, was tested on these pressure gauge results. The agreement was excellent, indicating that the embedded pressure and particle velocity gauge techniques yielded consistent results.

  9. A numerical study of initial-stage interaction between shock and particle curtain

    NASA Astrophysics Data System (ADS)

    Deng, Xiaolong; Jiang, Lingjie

    2016-11-01

    High speed particulate flow appears in many scientific and engineering problems. Wagner et al., 2012 studied the planar shock - particle curtain interaction experimentally, found the movement and expansion of the particle curtain, together with the movement of shock waves. Theofanous et al., 2016 did similar experiments, discovered a time scaling that reveals a universal regime for cloud expansion. In these experiments, both the particle-fluid interaction and the particle-particle collision are not negligible, which make it challenging to be dealt with. This work aims to numerically study and understand this problem. Applying the stratified multiphase model presented by Chang & Liou 2007 and regarding one phase as solid, following Regele et al., 2014, we study the initial stage of a planar shock impacting on a particle curtain in 2D, in which the particles can be regarded as static so that the collision between particles are not considered. The locations of reflected shock, transmitted shock, and contact discontinuity are examined. The turbulent energy generated in the interacting area is investigated. Keeping the total volume fraction of particles, and changing the particle number, good convergence results are obtained. Effective drag coefficient in 1D model is also calibrated. The authors acknowledge the support from National Natural Science Foundation of China (Grant No. 91230203).

  10. Development of numerical framework to study microstructural effects on shock initiation in heterogeneous energetic materials

    NASA Astrophysics Data System (ADS)

    Schmidt, Martin; Rai, Nirmal; Udaykumar, H. S.

    2015-06-01

    Heterogeneous energetic materials like plastic bonded explosives (PBX) have very detailed and non-uniform microstructure. The heterogeneity is mainly because of presence of HMX crystals embedded in a polymer binder matrix. Also, manufacturing defects often creates pores and cracks in the material. Shock interaction with these heterogeneities leads to local heated regions known as hot spots. It is widely accepted that these hot spots are predominantly the cause of triggering reaction and eventually ignition in these energetic materials. There are various physical phenomenon through which hot spot can be created such as pore collapse, inter-granular friction in HMX crystals, shock heating of HMX crystals and binder etc. Hence, microstructural heterogeneity can play a vital role for shock initiation in PBX. In the current work, a general framework has been established for performing mesoscale simulations on heterogeneous energetic material. In order to get an accurate representation of the microstructure, image processing algorithms have been employed on XCMT images of PBX microstructure. The image processing framework has been built up with massively parallel Eulerian code, SCIMITAR3D. Shock simulation on PBX microstructures has been performed and the effect of microstructure geometry has been studied for different shock strengths case. The simulation results have been shown to resolve hot spots created due to various heterogeneities present in the microstructure.

  11. Probabilistic distributions of M/L values for ultrafaint dwarf spheroidal galaxies: stochastic samplings of the initial mass function

    NASA Astrophysics Data System (ADS)

    Hernandez, X.

    2012-02-01

    We explore the ranges and distributions which will result for the intrinsic stellar mass-to-light ratio (M/L) values of single stellar populations, at fixed initial mass function (IMF), age and metallicity, from the discrete stochastic sampling of a probabilistic IMF. As the total mass of a certain stellar population tends to infinity, the corresponding M/L values quickly converge to fixed numbers associated with the particulars of the IMF, age, metallicity and star formation histories in question. When going to small stellar populations, however, a natural inherent spread will appear for the M/L values, which will become probabilistic quantities. For the recently discovered ultrafaint local dwarf spheroidal galaxies, with total luminosities dropping below 103LV/L⊙, it is important to asses the amplitude of the probabilistic spread in inherent M/L values mentioned above. The total baryonic masses of these systems are usually estimated from their observed luminosities, and the assumption of a fixed, deterministic M/L value, suitable for the infinite population limit of the assumed ages and metallicities of the stellar populations in question. This total baryonic masses are crucial for testing and calibrating of structure formation scenarios, as the local ultrafaint dwarf spheroidals represent the most extreme galactic scales known. Also, subject to reliable M/L values is the use of these systems as possible discriminants between dark matter and modified gravity theories. By simulating large collections of stellar populations, each consisting of a particular collection of individual stars, we compute statistical distributions for the resulting M/L values. We find that for total numbers of stars in the range of what is observed for the local ultrafaint dwarf spheroidals, the inherent M/L values of stellar populations can be expected to vary by factors of upwards of 3, interestingly, systematically skewed towards higher values than what is obtained for the

  12. Shock

    MedlinePlus

    ... the heart cannot pump blood effectively. This may happen after a heart attack. Neurogenic shock is caused by damage to the nervous system. Symptoms of shock include Confusion or lack of alertness Loss of consciousness Sudden and ongoing rapid heartbeat Sweating Pale skin ...

  13. Performance characterization of a miniaturized exploding foil initiator via modified VISAR interferometer and shock wave analysis

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonju; Kim, Bohoon; Jang, Seung-gyo; Kim, Kyu-Hyoung; Yoh, Jack J.

    2017-06-01

    A pyrotechnic device that consists of a donor/acceptor pair separated by a gap or a bulkhead relies on the shock attenuation characteristics of the gap material and the shock sensitivity of the donor and acceptor explosives. In this study, a miniaturized exploding foil initiator, based on high pulsed electrical power generator, was designed to launch a micro Kapton® flyer for impact initiation of a high explosive in order to understand its performance characteristics. Here, the explosive substance was replaced with a witness plate because the flyer poses various flight motions of rotation, bend, and fragmentation due to its extreme thinness. By using a Velocity Interferometer System for Any Reflector and ANSYS Explicit Dynamics, the averaged velocity of a flyer is measured, which then allows for the calculation of the shock pressure and the duration imparted to the explosive for an initiation. Subsequently, the relationship between the flyer velocity, the amplitude, and the width of impact loading can be used to assess the performance of the designed exploding foil initiator of a micro pyro-mechanical device.

  14. Timing of vasopressor initiation and mortality in septic shock: a cohort study

    PubMed Central

    2014-01-01

    Introduction Despite recent advances in the management of septic shock, mortality remains unacceptably high. Earlier initiation of key therapies including appropriate antimicrobials and fluid resuscitation appears to reduce the mortality in this condition. This study examined whether early initiation of vasopressor therapy is associated with improved survival in fluid therapy-refractory septic shock. Methods Utilizing a well-established database, relevant information including duration of time to vasopressor administration following the initial documentation of recurrent/persistent hypotension associated with septic shock was assessed in 8,670 adult patients from 28 ICUs in Canada, the United States of America, and Saudi Arabia. The primary endpoint was survival to hospital discharge. Secondary endpoints were length of ICU and hospital stay as well as duration of ventilator support and vasopressor dependence. Analysis involved multivariate linear and logistic regression analysis. Results In total, 8,640 patients met the definition of septic shock with time of vasopressor/inotropic initiation documented. Of these, 6,514 were suitable for analysis. The overall unadjusted hospital mortality rate was 53%. Independent mortality correlates included liver failure (odds ratio (OR) 3.46, 95% confidence interval (CI), 2.67 to 4.48), metastatic cancer (OR 1.63, CI, 1.32 to 2.01), AIDS (OR 1.91, CI, 1.29 to 2.49), hematologic malignancy (OR 1.88, CI, 1.46 to 2.41), neutropenia (OR 1.78, CI, 1.27 to 2.49) and chronic hypertension (OR 0.62 CI, 0.52 to 0.73). Delay of initiation of appropriate antimicrobial therapy (OR 1.07/hr, CI, 1.06 to 1.08), age (OR 1.03/yr, CI, 1.02 to 1.03), and Acute Physiology and Chronic Health Evaluation (APACHE) II Score (OR 1.11/point, CI, 1.10 to 1.12) were also found to be significant independent correlates of mortality. After adjustment, only a weak correlation between vasopressor delay and hospital mortality was found (adjusted OR 1.02/hr, 95% CI

  15. Structure of Shocks in Burgers Turbulence with Lévy Noise Initial Data

    NASA Astrophysics Data System (ADS)

    Abramson, Joshua

    2013-08-01

    We study the structure of the shocks for the inviscid Burgers equation in dimension 1 when the initial velocity is given by Lévy noise, or equivalently when the initial potential is a two-sided Lévy process ψ 0. When ψ 0 is abrupt in the sense of Vigon or has bounded variation with lim sup| h|↓0 h -2 ψ 0( h)=∞, we prove that the set of points with zero velocity is regenerative, and that in the latter case this set is equal to the set of Lagrangian regular points, which is non-empty. When ψ 0 is abrupt we show that the shock structure is discrete. When ψ 0 is eroded we show that there are no rarefaction intervals.

  16. SHOCK INITIATION EXPERIMENTS ON THE TATB BASED EXPLOSIVE RX-03-GO WITH IGNITION AND GROWTH MODELING

    SciTech Connect

    Vandersall, K S; Garcia, F; Tarver, C M

    2009-06-23

    Shock initiation experiments on the TATB based explosive RX-03-GO (92.5% TATB, 7.5% Cytop A by weight) were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and calculate Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive sample with manganin piezoresistive pressure gauge packages placed between sample slices. The RX-03-GO formulation utilized is similar to that of LX-17 (92.5% TATB, 7.5% Kel-f by weight) with the notable differences of a new binder material and TATB that has been dissolved and recrystallized in order to improve the purity and morphology. The shock sensitivity will be compared with that of prior data on LX-17 and other TATB formulations. Ignition and Growth modeling parameters were obtained with a reasonable fit to the experimental data.

  17. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void

    NASA Astrophysics Data System (ADS)

    Shan, Tzu-Ray; Thompson, Aidan P.

    2014-05-01

    We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N2 and H2O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.

  18. Mesoscale simulations of shock initiation in energetic materials characterized by three-dimensional nanotomography.

    SciTech Connect

    Long, Gregory T.; Brundage, Aaron L.; Wixom, Ryan R.; Tappan, Alexander Smith

    2009-08-01

    Three-dimensional shock simulations of energetic materials have been conducted to improve our understanding of initiation at the mesoscale. Vapor-deposited films of PETN and pressed powders of HNS were characterized with a novel three-dimensional nanotomographic technique. Detailed microstructures were constructed experimentally from a stack of serial electron micrographs obtained by successive milling and imaging in a dual-beam FIB/SEM. These microstructures were digitized and imported into a multidimensional, multimaterial Eulerian shock physics code. The simulations provided insight into the mechanisms of pore collapse in PETN and HNS samples with distinctly different three-dimensional pore morphology and distribution. This modeling effort supports investigations of microscale explosive phenomenology and elucidates mechanisms governing initiation of secondary explosives.

  19. Mesoscale Simulations of Shock Initiation in Energetic Materials Characterized by Three-Dimensional Nanotomography

    NASA Astrophysics Data System (ADS)

    Brundage, A. L.; Wixom, R. R.; Tappan, A. S.; Long, G. T.

    2009-12-01

    Three-dimensional shock simulations of energetic materials have been conducted to improve our understanding of initiation at the mesoscale. Vapor-deposited films of PETN and pressed powders of HNS were characterized with a novel three-dimensional nanotomographic technique. Detailed microstructures were constructed experimentally from a stack of serial electron micrographs obtained by successive milling and imaging in a dual-beam FIB/SEM. These microstructures were digitized and imported into a multidimensional, multimaterial Eulerian shock physics code. The simulations provided insight into the mechanisms of pore collapse in PETN and HNS samples with distinctly different three-dimensional pore morphology and distribution. This modeling effort supports investigations of microscale explosive phenomenology and elucidates mechanisms governing initiation of secondary explosives.

  20. Mesoscale simulations of shock initiation in energetic materials characterized by three-dimensional nanotomagraphy

    NASA Astrophysics Data System (ADS)

    Brundage, Aaron; Wixom, Ryan; Tappan, Alexander; Long, Gregory

    2009-06-01

    Three-dimensional reverse ballistic shock simulations of energetic materials have been conducted to improve our understanding of initiation at the mesoscale. Vapor-deposited films of PETN and pressed powders of HNS were characterized with a novel three-dimensional nanotomographic technique. Detailed microstructures were constructed experimentally from a stack of serial electron micrographs obtained by successive milling and imaging in a dual-beam FIB/SEM. These microstructures were digitized and imported into a multidimensional, multimaterial Eulerian shock physics code. The simulations provided insight into the mechanisms of pore collapse in PETN and HNS samples with distinctly different three-dimensional pore morphology and distribution. This modeling effort supports the novel design and development of microenergetic devices and elucidates mechanisms governing initiation of secondary explosives.

  1. Shock initiation of the TATB-based explosive PBX 9502 cooled to 77 Kelvin

    NASA Astrophysics Data System (ADS)

    Hollowell, B. C.; Gustavsen, R. L.; Dattelbaum, D. M.; Bartram, B. D.

    2014-05-01

    We present gas-gun driven plate impact shock initiation experiments on the explosive PBX 9502 (95 weight percent triaminotrinitrobenzene, 5 weight percent Kel-F 800 binder) cooled to liquid nitrogen temperature, 77K. PBX 9502 samples were cooled by flowing liquid nitrogen through a sample mounting plate and surrounding coil. Temperatures were monitored using embedded and surface mounted thermocouples. Reactive flow was measured with embedded electromagnetic particle velocity gauges. Wave profiles from the particle velocity gauges show that, even at 77K, shock initiation in PBX 9502 retains a heterogeneous or "hot-spot" character. The "Pop-plot," or distance to detonation, xD, vs. impact pressure, P, is log10(xD) = 4.9 - 3.3log10(P).

  2. Shock Initiation Experiments Plus Ignition and Growth Modeling of PBXN-112

    NASA Astrophysics Data System (ADS)

    Garcia, Frank; Vandersall, Kevin; Tarver, Craig

    2011-06-01

    Shock initiation experiments on the HMX based explosive PBXN-112 (89% HMX, 11% polyaurylmethacrylate by weight) were performed to obtain in-situ pressure gauge data, to characterize the run-distance-to-detonation behavior, and to provide a basis for Ignition and Growth reactive flow modeling. A 101 mm diameter gas gun was utilized to initiate the explosive charge with manganin piezoresistive pressure gauge packages placed between sample slices. The shock sensitivity of PBXN-112 is compared to that of other HMX formulations. Ignition and Growth model parameters were derived that yielded a good fit to the experimental data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Shock Initiation Experiments on the Tatb Based Explosive RX-03-GO with Ignition and Growth Modeling

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin S.; Garcia, Frank; Tarver, Craig M.

    2009-12-01

    Shock initiation experiments on the TATB based explosive RX-03-GO (92.5% TATB, 7.5% Cytop A by weight) were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and calculate Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive sample with manganin piezoresistive pressure gauge packages placed between sample slices. The RX-03-GO formulation utilized is similar to that of LX-17 (92.5% TATB, 7.5% Kel-f by weight) with the notable differences of a new binder material and TATB that has been dissolved and recrystallized in order to improve the purity and morphology. The shock sensitivity will be compared with that of prior data on LX-17 and other TATB formulations. Ignition and Growth modeling parameters were obtained with a reasonable fit to the experimental data.

  4. Next generation experiments and models for shock initiation and detonation of solid explosives

    SciTech Connect

    Tarver, C M

    1999-06-01

    Current phenomenological hydrodynamic reactive flow models, such as Ignition and Growth and Johnson- Tang-Forest, when normalized to embedded gauge and laser velocimetry data, have been very successful in predicting shock initiation and detonation properties of solid explosives in most scenarios. However, since these models use reaction rates based on the compression and pressure of the reacting mixture, they can not easily model situations in which the local temperature, which controls the local reaction rate, changes differently from the local pressure. With the advent of larger, faster, parallel computers, microscopic modeling of the hot spot formation processes and Arrhenius chemical kinetic reaction rates that dominate shock initiation and detonation can now be attempted. Such a modeling effort can not be successful without nanosecond or better time resolved experimental data on these processes. The experimental and modeling approaches required to build the next generation of physically realistic reactive flow models are discussed.

  5. The pharmacokinetics of vancomycin during the initial loading dose in patients with septic shock

    PubMed Central

    Katip, Wasan; Jaruratanasirikul, Sutep; Pattharachayakul, Sutthiporn; Wongpoowarak, Wibul; Jitsurong, Arnurai; Lucksiri, Aroonrut

    2016-01-01

    Objective To characterize the pharmacokinetics (PK) of vancomycin in patients in the initial phase of septic shock. Methods Twelve patients with septic shock received an intravenous infusion of vancomycin 30 mg/kg over 2 h. The vancomycin PK study was conducted during the first 12 h of the regimen. Serum vancomycin concentration–time data were analyzed using the standard model-independent analysis and the compartment model. Results For the noncompartment analysis the mean values ± standard deviation (SD) of the estimated clearance and volume of distribution of vancomycin at steady state were 6.05±1.06 L/h and 78.73±21.78 L, respectively. For the compartmental analysis, the majority of vancomycin concentration–time profiles were best described by a two-compartment PK model. Thus, the two-compartmental first-order elimination model was used for the analysis. The mean ± SD of the total clearance (3.70±1.25 L/h) of vancomycin was higher than that obtained from patients without septic shock. In contrast, the volume of the central compartment (8.34±4.36 L) and volume of peripheral compartment (30.99±7.84 L) did not increase when compared with patients without septic shock. Conclusion The total clearance of vancomycin was increased in septic shock patients. However, the volume of the central compartment and peripheral compartment did not increase. Consequently, a loading dose of vancomycin should be considered in all patients with septic shock. PMID:27920562

  6. Pressure-Energy Coupling, Sound Speed, and Shock Initiation Experiments on Explosives Using Pulsed Electron Beams.

    DTIC Science & Technology

    azide, KDNBF , and single crystal specimens of RDX, PETN, and lead azide. The experiments on the lead azide were unsuccessful. However, sound speed...and thermomechanical response data were obtained on the pressed pellets of KDNBF and on the single crystal specimens of RDX and PETN that allow...calculation of components of the Gruneisen tensor for these materials. Shock initiation experiments on KDNBF were also performed. (Modified author abstract)

  7. Ignition and Growth Modeling of Shock Initiation of Different Particle Size Formulations of PBXC03 Explosive

    NASA Astrophysics Data System (ADS)

    Hussain, Tariq; Liu, Yan; Huang, Fenglei; Duan, Zhuoping

    2016-01-01

    The change in shock sensitivity of explosives having various explosive grain sizes is discussed. Along with other parameters, explosive grain size is one of the key parameters controlling the macroscopic behavior of shocked pressed explosives. Ignition and growth reactive flow modeling is performed for the shock initiation experiments carried out by using the in situ manganin piezoresistive pressure gauge technique to investigate the influences of the octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) particle size on the shock initiation and the subsequent detonation growth process for the three explosive formulations of pressed PBXC03 (87% HMX, 7% 1,3,5-trichloro-2,4,6-trinitrobenzene (TATB), 6% Viton by weight). All of the formulation studied had the same density but different explosive grain sizes. A set of ignition and growth parameters was obtained for all three formulations. Only the coefficient G1 of the first growth term in the reaction rate equation was varied with the grain size; all other parameters were kept the same for all formulations. It was found that G1 decreases almost linearly with HMX particle size for PBXC03. However, the equation of state (EOS) for solid explosive had to be adjusted to fit the experimental data. Both experimental and numerical simulation results show that the shock sensitivity of PBXC03 decreases with increasing HMX particle size for the sustained pressure pulses (around 4 GPa) as obtained in the experiment. This result is in accordance with the results reported elsewhere in literature. For future work, a better approach may be to find standard solid Grüneisen EOS and product Jones-Wilkins-Lee (JWL) EOS for each formulation for the best fit to the experimental data.

  8. The determinants of hospital mortality among patients with septic shock receiving appropriate initial antibiotic treatment*.

    PubMed

    Labelle, Andrew; Juang, Paul; Reichley, Richard; Micek, Scott; Hoffmann, Justin; Hoban, Alex; Hampton, Nicholas; Kollef, Marin

    2012-07-01

    To identify the determinants of hospital mortality among patients with septic shock receiving appropriate initial antibiotic treatment. A retrospective cohort study of hospitalized patients with blood culture positive septic shock (January 2002-December 2007). Barnes-Jewish Hospital, a 1,250-bed urban teaching hospital. Four hundred thirty-six consecutive patients with septic shock and a positive blood culture. Data abstraction from computerized medical records. Septic shock was associated with bloodstream infection due to Gram-negative bacteria (59.2%) and Gram-positive bacteria (40.8%). Two hundred twenty-four patients (51.4%) died during their hospitalization. The presence of infection attributed to antibiotic-resistant bacteria was similar for patients who survived and expired (22.6% vs. 20.1%; p = .516). Multivariate logistic regression analysis demonstrated that infection acquired in the intensive care unit (adjusted odds ratio 1.99; 95% confidence interval 1.52-2.60; p = .011) and increasing Acute Physiology and Chronic Health Evaluation II scores (one-point increments) (adjusted odds ratio 1.11; 95% confidence interval 1.09-1.14; p < .001) were independently associated with a greater risk of hospital mortality, whereas infection with methicillin-susceptible Staphylococcus aureus (adjusted odds ratio 0.32; 95% confidence interval 0.20-0.52; p = .017) was independently associated with a lower risk of hospital mortality. Patients infected with methicillin-susceptible Staphylococcus aureus infections were statistically younger and had lower Charlson comorbidity and Acute Physiology and Chronic Health Evaluation II scores compared to patients with non-methicillin-susceptible Staphylococcus aureus infections. Among patients with septic shock who receive appropriate initial antibiotic treatment, acquisition of infection in the intensive care unit and severity of illness appear to be the most important determinants of clinical outcome.

  9. Shock Initiation Experiments with Ignition and Growth Modeling on Low Density HMX

    NASA Astrophysics Data System (ADS)

    Garcia, Frank; Vandersall, Kevin; Tarver, Craig

    2013-06-01

    Shock initiation experiments on low density (1.24 and 1.64 g/cm3) HMX were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and provide a basis for Ignition and Growth reactive flow modeling. A 101 mm diameter gas gun was utilized to initiate the explosive charges with manganin piezoresistive pressure gauge packages placed between packed layers (1.24 g/cm3) or sample disks pressed to low density (1.64 g/cm3) . The measured shock sensitivity of the 1.24 g/cm3 HMX was similar to that previously measured by Dick and Sheffield et al. and the 1.64 g/cm3 HMX was measured to be much less shock sensitive. Ignition and Growth model parameters were derived that yielded good agreement with the experimental data at both initial densities. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. SHOCK INITIATION OF COMPOSITION B AND C-4 EXPLOSIVES; EXPERIMENTS AND MODELING

    SciTech Connect

    Urtiew, P A; Vandersall, K S; Tarver, C M; Garcia, F; Forbes, J W

    2006-08-18

    Shock initiation experiments on the explosives Composition B and C-4 were performed to obtain in-situ pressure gauge data for the purpose of providing the Ignition and Growth reactive flow model with proper modeling parameters. A 100 mm diameter propellant driven gas gun was utilized to initiate the explosive charges containing manganin piezoresistive pressure gauge packages embedded in the explosive sample. Experimental data provided new information on the shock velocity--particle velocity relationship for each of the investigated material in their respective pressure range. The run-distance-to-detonation points on the Pop-plot for these experiments showed agreement with previously published data, and Ignition and Growth modeling calculations resulted in a good fit to the experimental data. Identical ignition and growth reaction rate parameters were used for C-4 and Composition B, and the Composition B model also included a third reaction rate to simulate the completion of reaction by the TNT component. This model can be applied to shock initiation scenarios that have not or cannot be tested experimentally with a high level of confidence in its predictions.

  11. Shock Initiation Experiments with Ignition and Growth Modeling on Low Density Composition B

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin S.; Garcia, Frank; Tarver, Craig M.

    2015-06-01

    Shock initiation experiments on low density (~1.2 and ~1.5 g/cm3) Composition B were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and provide a basis for Ignition and Growth reactive flow modeling. A 101 mm diameter gas gun was utilized to initiate the explosive charges with manganin piezoresistive pressure gauge packages placed between packed layers (~1.2 g/cm3) confined in Teflon rings or sample disks pressed to low density (~1.5 g/cm3) . The shock sensitivity was found to increase with decreasing density as expected. Ignition and Growth model parameters were derived that yielded reasonable agreement with the experimental data at both initial densities. The shock sensitivity at the tested densities will be compared to prior work published as near full density material. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded in part by the Joint DoD-DOE Munitions Program.

  12. Non-Shock Initiation Model for Plastic Bonded Explosive PBXN-5 and Cast Explosive: Experimental Results

    NASA Astrophysics Data System (ADS)

    Anderson, Mark; Todd, Steven; Caipen, Terry; Jensen, Charlie; Hughs, Chance

    2009-06-01

    A damage initiated reaction (DMGIR) computational model is being developed for the CTH shock physics code to predict the response of an explosive to non-shock mechanical insults. The distinguishing feature of this model is the introduction of a damage variable, which relates the evolution of damage to the initiation of reaction in the explosive, and its growth to detonation. The DMGIR model is a complement to the History Variable Reactive Burn (HVRB) model embedded in the current CTH code. Specifically designed experiments are supporting the development, implementation, and validation of the DMGIR numerical approach. PBXN-5 was the initial explosive material used experimentally to develop the DMGIR model. This explosive represents a family of plastically bonded explosives with good mechanical strength and rigid body properties. The model has been extended to cast explosives represented by Composition B. Furthermore, the DMGIR model will extended to predict results of non-shock mechanical insults for moldable plastic explosives such as C4 and PrimaSheet.

  13. Non-Shock Initiation Model for Plastic Bonded Explosive PBXN-5 and Cast Explosive

    NASA Astrophysics Data System (ADS)

    Todd, Steven; Caipen, Terry; Grady, Dennis; Anderson, Mark

    2009-06-01

    A damage initiated reaction (DMGIR) computational model is being developed for the CTH shock physics code to predict the response of an explosive to non-shock mechanical insults. The distinguishing feature of this model is the introduction of a damage variable, which relates the evolution of damage to the initiation of reaction in the explosive, and its growth to detonation. The DMGIR model is a complement to the History Variable Reactive Burn (HVRB) model embedded in the current CTH code. Specifically designed experiments are supporting the development, implementation, and validation of the DMGIR numerical approach. PBXN-5 was the initial explosive material used experimentally to develop the DMGIR model. This explosive represents a family of plastically bonded explosives with good mechanical strength and rigid body properties. The model has been extended to cast explosives represented by Composition B. Furthermore, the DMGIR model will extended to predict results of non-shock mechanical insults for moldable plastic explosives such as C4 and PrimaSheet.

  14. Initiation of Explosives From the Bow Shock of a Supersonic Penetrator

    NASA Astrophysics Data System (ADS)

    Ferm, Eric N.

    2007-06-01

    An analytic and computational study of supersonic penetration of an explosive is presented. The goal is the development of an initiation criterion relating projectile diameter and threshold projectile velocity determined by fundamental material and explosive parameters. The basis of the initiation criterion is an examination of the steady flow structure around a supersonic penetrator in the unreacted materials, yielding the states along the bow shock and the size and sonic character of the flow structure. The state is used to determine the time scale of the reacting explosive using initiation experiment results (Pop Plot). The size of the subsonic region is compared to the failure diameter to examine the viability of the initiation. The results are compared with experimental initiation criterion.

  15. Initiation of Explosives From the Bow Shock of a Supersonic Penetrator

    NASA Astrophysics Data System (ADS)

    Ferm, Eric

    2009-06-01

    An analytic and computational study of supersonic penetration of an explosive is presented. The goal is the development of an initiation criterion relating projectile diameter and threshold projectile velocity determined by fundamental material and explosive parameters. The basis of the initiation criterion is an examination of the steady flow structure around a supersonic penetrator in the unreacted materials, yielding the states along the bow shock and the size and sonic character of the flow structure. The state is used to determine the time scale of the reacting explosive using initiation experiment results (Pop Plot). The size of the subsonic region is compared to the failure diameter to examine the viability of the initiation. The results are compared with experimental initiation criterion.

  16. Examining the effects of microstructure and loading on the shock initiation of HMX with mesoscale simulations

    NASA Astrophysics Data System (ADS)

    Springer, H. Keo; Tarver, Craig; Bastea, Sorin

    2015-06-01

    We perform reactive mesoscale simulations to study shock initiation in HMX over a range of pore morphologies and sizes, porosities, and loading conditions in order to improve our understanding of structure-performance relationships. These relationships are important because they guide the development of advanced macroscale models incorporating hot spot mechanisms and the optimization of novel energetic material microstructures. Mesoscale simulations are performed using the multiphysics hydrocode, ALE3D. Spherical, elliptical, polygonal, and crack-like pore geometries 0.1, 1, 10, and 100 microns in size and 2, 5, 10, and 14% porosity are explored. Loading conditions are realized with shock pressures of 6, 10, 20, 38, and 50 GPa. A Cheetah-based tabular model, including temperature-dependent heat capacity, is used for the unreacted and the product equation-of-state. Also, in-line Cheetah is used to probe chemical species evolution. The influence of microstructure and shock loading on shock-to-detonation-transition run distance, reaction rate and product gas species evolution are discussed. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. This work is funded by the Joint DoD-DOE Munitions Program.

  17. Shock initiation of the TATB-based explosive PBX 9502 cooled to 77 Kelvin

    NASA Astrophysics Data System (ADS)

    Hollowell, B.; Gustavsen, R.; Dattelbaum, D.; Bartram, B.

    2013-06-01

    Recently we reported on shock initiation of PBX 9502 (95 wt.% tri-amino-trinitro-benzene, 5 wt.% Kel-F800 binder) cooled to -55°C or 218 K (J. Appl. Phys., 112, 74909 (2012)). Shock waves were generated by gas-gun driven plate impacts and reactive flow in the cooled PBX 9502 was measured with embedded electromagnetic gauges. Here we describe methods to cool the explosive below -55°C down to liquid nitrogen temperature of -196°C or 77 K. We start cooling by flowing chilled nitrogen (N2) gas through channels in a sample mounting plate and a copper tubing coil. Temperature in the sample is monitored using type-E thermocouples; samples are cooled at ~1-2°C/min. After minimum temperature is reached using N2 gas, we flow liquid nitrogen (LN2) through the channels. Minimum temperatures of 77 K were reached. Preliminary results show continued reductions in temperature cause continued reductions in shock sensitivity. Reducing the temperature below -55°C further reduces the sensitivity. Wave profiles were also obtained during the shock-to-detonation transition and will be presented.

  18. Large-Scale Reactive Atomistic Simulation of Shock-induced Initiation Processes in Energetic Materials

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan

    2013-06-01

    Initiation in energetic materials is fundamentally dependent on the interaction between a host of complex chemical and mechanical processes, occurring on scales ranging from intramolecular vibrations through molecular crystal plasticity up to hydrodynamic phenomena at the mesoscale. A variety of methods (e.g. quantum electronic structure methods (QM), non-reactive classical molecular dynamics (MD), mesoscopic continuum mechanics) exist to study processes occurring on each of these scales in isolation, but cannot describe how these processes interact with each other. In contrast, the ReaxFF reactive force field, implemented in the LAMMPS parallel MD code, allows us to routinely perform multimillion-atom reactive MD simulations of shock-induced initiation in a variety of energetic materials. This is done either by explicitly driving a shock-wave through the structure (NEMD) or by imposing thermodynamic constraints on the collective dynamics of the simulation cell e.g. using the Multiscale Shock Technique (MSST). These MD simulations allow us to directly observe how energy is transferred from the shockwave into other processes, including intramolecular vibrational modes, plastic deformation of the crystal, and hydrodynamic jetting at interfaces. These processes in turn cause thermal excitation of chemical bonds leading to initial chemical reactions, and ultimately to exothermic formation of product species. Results will be presented on the application of this approach to several important energetic materials, including pentaerythritol tetranitrate (PETN) and ammonium nitrate/fuel oil (ANFO). In both cases, we validate the ReaxFF parameterizations against QM and experimental data. For PETN, we observe initiation occurring via different chemical pathways, depending on the shock direction. For PETN containing spherical voids, we observe enhanced sensitivity due to jetting, void collapse, and hotspot formation, with sensitivity increasing with void size. For ANFO, we

  19. Predictability and prediction of Indian summer monsoon by CFSv2: implication of the initial shock effect

    NASA Astrophysics Data System (ADS)

    Shukla, Ravi P.; Huang, Bohua; Marx, L.; Kinter, James L.; Shin, Chul-Su

    2017-03-01

    This study evaluates the seasonal predictability of the Indian summer monsoon (ISM) rainfall using the Climate Forecast System, version 2 (CFSv2), the current operational forecast model for subseasonal-to-seasonal predictions at the National Centers for Environmental Prediction (NCEP). From a 50-year CFSv2 simulation, 21 wet, dry and normal ISM cases are chosen for a set of seasonal "predictions" with initial states in each month from January to May to conduct predictability experiments. For each prediction, a five-member ensemble is generated with perturbed atmospheric initial states and all predictions are integrated to the end of September. Based on the measures of correlation and root mean square error, the prediction skill decreases with lead month, with the initial states with the shortest lead (May initial states) generally showing the highest skill for predicting the summer mean (June to September; JJAS) rainfall, zonal wind at 850 hPa and sea surface temperature over the ISM region in the perfect model scenario. These predictability experiments are used to understand the finding reported by some recent studies that the NCEP CFSv2 seasonal retrospective forecasts generally have higher skill in predicting the ISM rainfall anomalies from February initial states than from May ones. Comparing the May climatologies generated by the February and May initialized CFSv2 retrospective forecasts, it is found that the latter shows larger bias over the Arabian Sea, with stronger monsoon winds, precipitation and surface latent heat flux. Although the atmospheric bias diminishes quickly after May, an accompanying cold bias persists in the Arabian Sea for several months. It is argued that a similar phenomenon does not occur in the predictability experiments in the perfect model scenario, because the initial shock is negligible in these experiments by design. Therefore, it is possible that the stronger model bias and initial shock in the May CFSv2 retrospective forecasts

  20. INITIAL WASTE PACKAGE PROBABILISTIC CRITICALITY ANALYSIS: MULTI-PURPOSE CANISTER WITH DISPOSAL CONTAINER (TBV)

    SciTech Connect

    J.R. Massari

    1995-10-06

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to: (1) Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts; (2) Demonstrate the established process by estimating the probability of criticality as a function of time since emplacement for an intact multi-purpose canister waste package (MPC-WP) configuration; (3) Identify the dominant sequences leading to waste package criticality for subsequent detailed analysis. The purpose of this analysis is to document and demonstrate the developed process as it has been applied to the MPC-WP. This revision is performed to correct deficiencies in the previous revision and provide further detail on the calculations performed. This analysis is similar to that performed for the uncanistered fuel waste package (UCF-WP, B00000000-01717-2200-00079).

  1. Investigating short-pulse shock initiation in HMX-based explosives with reactive meso-scale simulations

    NASA Astrophysics Data System (ADS)

    Springer, H. K.; Tarver, C. M.; Reaugh, J. E.; May, C. M.

    2014-05-01

    We performed reactive meso-scale simulations of short-pulse experiments to study the influence of flyer velocity and pore structure on shock initiation of LX-10 (95wt% HMX, 5wt% Viton A). Our calculations show that the reaction evolution fit a power law relationship in time and increases with increasing porosity, decreasing pore size, and increasing flyer velocity. While heterogeneous shock initiation modes, dependent on hot spot mechanisms, are predicted at lower flyer velocities, mixed heterogeneous-homogeneous shock initiation modes, less dependent on hot spots, are predicted at higher velocities. These studies are important because they enable the development of predictive shock initiation models that incorporate complex microstructure and can be used to optimize performance-safety characteristics of explosives.

  2. Anisotropic responses and initial decomposition of condensed-phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multiscale shock technique.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Song, Zhen-Fei; Chen, Xiang-Rong; Ji, Guang-Fu; Zhao, Feng; Wei, Dong-Qing

    2014-07-24

    Molecular dynamics simulations in conjunction with multiscale shock technique (MSST) are performed to study the initial chemical processes and the anisotropy of shock sensitivity of the condensed-phase HMX under shock loadings applied along the a, b, and c lattice vectors. A self-consistent charge density-functional tight-binding (SCC-DFTB) method was employed. Our results show that there is a difference between lattice vector a (or c) and lattice vector b in the response to a shock wave velocity of 11 km/s, which is investigated through reaction temperature and relative sliding rate between adjacent slipping planes. The response along lattice vectors a and c are similar to each other, whose reaction temperature is up to 7000 K, but quite different along lattice vector b, whose reaction temperature is only up to 4000 K. When compared with shock wave propagation along the lattice vectors a (18 Å/ps) and c (21 Å/ps), the relative sliding rate between adjacent slipping planes along lattice vector b is only 0.2 Å/ps. Thus, the small relative sliding rate between adjacent slipping planes results in the temperature and energy under shock loading increasing at a slower rate, which is the main reason leading to less sensitivity under shock wave compression along lattice vector b. In addition, the C-H bond dissociation is the primary pathway for HMX decomposition in early stages under high shock loading from various directions. Compared with the observation for shock velocities V(imp) = 10 and 11 km/s, the homolytic cleavage of N-NO2 bond was obviously suppressed with increasing pressure.

  3. Computational Study of 3-D Hot-Spot Initiation in Shocked Insensitive High-Explosive

    NASA Astrophysics Data System (ADS)

    Najjar, F. M.; Howard, W. M.; Fried, L. E.

    2011-06-01

    High explosive shock sensitivity is controlled by a combination of mechanical response, thermal properties, and chemical properties. The interplay of these physical phenomena in realistic condensed energetic materials is currently lacking. A multiscale computational framework is developed investigating hot spot (void) ignition in a single crystal of an insensitive HE, TATB. Atomistic MD simulations are performed to provide the key chemical reactions and these reaction rates are used in 3-D multiphysics simulations. The multiphysics code, ALE3D, is linked to the chemistry software, Cheetah, and a three-way coupled approach is pursued including hydrodynamics, thermal and chemical analyses. A single spherical air bubble is embedded in the insensitive HE and its collapse due to shock initiation is evolved numerically in time; while the ignition processes due chemical reactions are studied. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a ``secondary'' jet. Results obtained with hydro-thermo-chemical processes leading to ignition growth will be discussed for various pore sizes and different shock pressures. LLNL-ABS-471438. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  4. Caspase-8 inhibition represses initial human monocyte activation in septic shock model

    PubMed Central

    Oliva-Martin, Maria Jose; Sanchez-Abarca, Luis Ignacio; Rodhe, Johanna; Carrillo-Jimenez, Alejandro; Vlachos, Pinelopi; Herrera, Antonio Jose; Garcia-Quintanilla, Albert; Caballero-Velazquez, Teresa; Perez-Simon, Jose Antonio; Joseph, Bertrand; Venero, Jose Luis

    2016-01-01

    In septic patients, the onset of septic shock occurs due to the over-activation of monocytes. We tested the therapeutic potential of directly targeting innate immune cell activation to limit the cytokine storm and downstream phases. We initially investigated whether caspase-8 could be an appropriate target given it has recently been shown to be involved in microglial activation. We found that LPS caused a mild increase in caspase-8 activity and that the caspase-8 inhibitor IETD-fmk partially decreased monocyte activation. Furthermore, caspase-8 inhibition induced necroptotic cell death of activated monocytes. Despite inducing necroptosis, caspase-8 inhibition reduced LPS-induced expression and release of IL-1β and IL-10. Thus, blocking monocyte activation has positive effects on both the pro and anti-inflammatory phases of septic shock. We also found that in primary mouse monocytes, caspase-8 inhibition did not reduce LPS-induced activation or induce necroptosis. On the other hand, broad caspase inhibitors, which have already been shown to improve survival in mouse models of sepsis, achieved both. Thus, given that monocyte activation can be regulated in humans via the inhibition of a single caspase, we propose that the therapeutic use of caspase-8 inhibitors could represent a more selective alternative that blocks both phases of septic shock at the source. PMID:27250033

  5. Manganin Gauge and Reactive Flow Modeling Study of the Shock Initiation of PBX 9501

    NASA Astrophysics Data System (ADS)

    Tarver, C. M.; Forbes, J. W.; Garcia, F.; Urtiew, P. A.

    2002-07-01

    A series of 101mm diameter gas gun experiments was fired using manganin pressure gauges embedded in the HMX-based explosive PBX 9501 at initial temperatures of 20degC and 50degC. Flyer plate impact velocities were chosen to produce impact pressure levels in PBX 9501 at which the growth of explosive reaction preceding detonation was measured on most of the gauges and detonation pressure profiles were recorded on some of the gauges placed deepest into the explosive targets. All measured pressure histories for initial temperatures of 25degC and 50degC were essentially identical. Measured run distances to detonation at three input shock pressures agreed with previous results. An existing Ignition and Growth reactive flow computer model for shock initiation and detonation of PBX 9501, which was developed based on LANL embedded particle velocity gauge data, was tested on these pressure gauge results. The agreement was excellent, indicating that the embedded pressure and particle velocity gauge techniques yielded consistent results.

  6. Grain-Scale Simulations of Hot-Spot Initiation for Shocked TATB

    SciTech Connect

    Najjar, F; Howard, W; Fried, L

    2009-07-31

    High-explosive (HE) material consists of large-sized grains with micron-sized embedded impurities and pores. Under various mechanical/thermal insults, these pores collapse generating high-temperature regions leading to ignition. A computational study has been performed to investigate the mechanisms of pore collapse and hot spot initiation in TATB crystals, employing the thermohydrodynamics arbitrary-Lagrange-Eulerian code ALE3D. This initial study includes non-reactive dynamics to isolate the thermal and hydrodynamical effects. Two-dimensional high-resolution large-scale meso-scale simulations have been undertaken. We study an axisymmetric configuration for pore radii ranging from 0.5 to 2{micro}m, with initial shock pressures in the range from 3 to 11 GPa. A Mie-Gruneisen Equation of State (EOS) model is used for TATB, and includes a constant yield strength and shear modulus; while the air in the pore invokes a Livermore Equation of State (LEOS) model. The parameter space is systematically studied by considering various shock strengths, pore diameters and material properties. We find that thermal diffusion from the collapsed pores has an important effect in generating high-temperature hot spots in the TATB.

  7. Phenylephrine versus norepinephrine for initial hemodynamic support of patients with septic shock: a randomized, controlled trial

    PubMed Central

    Morelli, Andrea; Ertmer, Christian; Rehberg, Sebastian; Lange, Matthias; Orecchioni, Alessandra; Laderchi, Amalia; Bachetoni, Alessandra; D'Alessandro, Mariadomenica; Van Aken, Hugo; Pietropaoli, Paolo; Westphal, Martin

    2008-01-01

    Introduction Previous findings suggest that a delayed administration of phenylephrine replacing norepinephrine in septic shock patients causes a more pronounced hepatosplanchnic vasoconstriction as compared with norepinephrine. Nevertheless, a direct comparison between the two study drugs has not yet been performed. The aim of the present study was, therefore, to investigate the effects of a first-line therapy with either phenylephrine or norepinephrine on systemic and regional hemodynamics in patients with septic shock. Methods We performed a prospective, randomized, controlled trial in a multidisciplinary intensive care unit in a university hospital. We enrolled septic shock patients (n = 32) with a mean arterial pressure below 65 mmHg despite adequate volume resuscitation. Patients were randomly allocated to treatment with either norepinephrine or phenylephrine infusion (n = 16 each) titrated to achieve a mean arterial pressure between 65 and 75 mmHg. Data from right heart catheterization, a thermodye dilution catheter, gastric tonometry, acid-base homeostasis, as well as creatinine clearance and cardiac troponin were obtained at baseline and after 12 hours. Differences within and between groups were analyzed using a two-way analysis of variance for repeated measurements with group and time as factors. Time-independent variables were compared with one-way analysis of variance. Results No differences were found in any of the investigated parameters. Conclusions The present study suggests there are no differences in terms of cardiopulmonary performance, global oxygen transport, and regional hemodynamics when phenylephrine was administered instead of norepinephrine in the initial hemodynamic support of septic shock. Trial registration ClinicalTrial.gov NCT00639015 PMID:19017409

  8. Modeling The Shock Initiation of PBX-9501 in ALE3D

    SciTech Connect

    Leininger, L; Springer, H K; Mace, J; Mas, E

    2008-07-01

    The SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has determined the 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate the code predictions. The SMIS tests use a powder gun to shoot scaled NATO standard fragments at a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. The SMIS real-world shot scenario creates a unique test-bed because many of the fragments arrive at the impact plate off-center and at an angle of impact. The goal of this model validation experiments is to demonstrate the predictive capability of the Tarver-Lee Ignition and Growth (I&G) reactive flow model [2] in this fully 3-dimensional regime of Shock to Detonation Transition (SDT). The 3-dimensional Arbitrary Lagrange Eulerian hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations accurately reproduce the 'Go/No-Go' threshold of the Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied in a predictive fashion for the response of heterogeneous high explosives in the SDT regime.

  9. Modeling Three-Dimensional Shock Initiation of PBX 9501 in ALE3D

    SciTech Connect

    Leininger, L; Springer, H K; Mace, J; Mas, E

    2008-07-08

    A recent SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has provided 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate and study code predictions. These SMIS tests used a powder gun to shoot scaled NATO standard fragments into a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. This SMIS real-world shot scenario creates a unique test-bed because (1) SMIS tests facilitate the investigation of 3D Shock to Detonation Transition (SDT) within the context of a considerable suite of diagnostics, and (2) many of the fragments arrive at the impact plate off-center and at an angle of impact. A particular goal of these model validation experiments is to demonstrate the predictive capability of the ALE3D implementation of the Tarver-Lee Ignition and Growth reactive flow model [2] within a fully 3-dimensional regime of SDT. The 3-dimensional Arbitrary Lagrange Eulerian (ALE) hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations reproduce observed 'Go/No-Go' 3D Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied for the response of heterogeneous high explosives in the SDT regime.

  10. Shock initiation of the TATB-based explosive PBX-9502 heated to ˜ 76°C

    NASA Astrophysics Data System (ADS)

    Gustavsen, R. L.; Gehr, R. J.; Bucholtz, S. M.; Pacheco, A. H.; Bartram, B. D.

    2017-01-01

    We present gas-gun driven plate impact shock initiation experiments on the explosive PBX 9502 (95 weight percent triaminotrinitrobenzene, 5 weight percent Kel-F 800 binder) heated to ˜ 76°C. PBX 9502 samples were heated by flowing hot air through a sample mounting plate and surrounding coil. Temperatures were monitored using embedded and surface mounted type-E thermocouples. The shock to detonation transition was recorded using embedded electromagnetic particle velocity gauges. Results show increased shock sensitivity; time and distance to detonation onset vs. initial shock pressure are shorter than when the sample is initially at ambient temperature. Our results are consistent with those reported by Dallman and Wackerle: the "Pop-plot," or distance to detonation, xD, vs. impact pressure, P, is log10(xD) = 3.41 - 2.47 log10(P).

  11. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    PubMed

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-05

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data.

  12. SHOCK INITIATION EXPERIMENTS ON PBX9501 EXPLOSIVE AT 150?C FOR IGNITION AND GROWTH MODELING

    SciTech Connect

    Vandersall, K S; Tarver, C M; Garcia, F; Urtiew, P A

    2005-07-19

    Shock initiation experiments on the explosive PBX9501 (95% HMX, 2.5% estane, and 2.5% nitroplasticizer by weight) were performed at 150 C to obtain in-situ pressure gauge data and Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the PBX9501 explosive with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments showed agreement with previously published data and Ignition and Growth modeling parameters were obtained with a good fit to the experimental data. This parameter set will allow accurate code predictions to be calculated for safety scenarios involving PBX9501 explosives at temperatures close to 150 C.

  13. SHOCK INITIATION EXPERIMENTS ON THE HMX BASED EXPLOSIVE LX-10 WITH ASSOCIATED IGNITION AND GROWTH MODELING

    SciTech Connect

    Vandersall, K S; Tarver, C M; Garcia, F; Urtiew, P A; Chidester, S K

    2007-06-15

    Shock initiation experiments on the HMX based explosives LX-10 (95% HMX, 5% Viton by weight) and LX-07 (90% HMX, 10% Viton by weight) were performed to obtain in-situ pressure gauge data, run-distance-to-detonation thresholds, and Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive samples with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments and prior experiments on another HMX based explosive LX LX-04 (85% HMX, 15% Viton by weight) will be shown, discussed, and compared as a function of the binder content. This parameter set will provide additional information to ensure accurate code predictions for safety scenarios involving HMX explosives with different percent binder content additions.

  14. Study of factors which influence the shock-initiation sensitivity of hexanitrostilbene (HNS)

    SciTech Connect

    Schwarz, A. C.

    1981-03-01

    An experimental program was conducted to study factors which influence the shock initiation sensitivity of hexanitrostilbene (HNS). The six factors evaluated were: (1) powder morphology, (2) sample density, (3) test temperature, (4) sample length, (5) diameter of the impacting flyer, and (6) duration of the input stimulus. In addition, the effect of pressure duration, tau, was assessed on the initiation sensitivity of an extrudable explosive (LX-13) and of hexanitroazobenzene (HNAB) for comparison with that of superfine hexanitrostilbene (HNS-SF). The impact stimulus was provided by a polyimide flyer 1.57 mm in diameter propelled by an electrically excited bursting foil. Flyer velocity determined impact pressure, P (3 to 20 GPa), and flyer thickness the shock duration, tau (0.010 to 0.150 ..mu..s), the pulse shape being rectangular. Powder morphology was the most significant factor to influence the initiation sensitivity of HNS; with 0.035-..mu..s pulses the smallest particle-sized HNS had a threshold pressure for initiation which was 50% of that required for the coarser HNS-II. Other factors which lowered the threshold pressure were: lower sample density, elevated test temperature, and larger diameter flyers. HNS-SF showed a shorter growth-to-detonation distance (GTDD) than HNS-I; the GTDD was 0.56 mm at an impact pressure of 7.3 GPa. Pulse duration affected the threshold pressure with each explosive behaving in its own characteristic manner; a P-tau characterization is essential, therefore, for all explosives of interest and should include values of tau which are equivalent to pulse durations expected in service.

  15. Shock.

    PubMed

    Wacker, David A; Winters, Michael E

    2014-11-01

    Critically ill patients with undifferentiated shock are complex and challenging cases in the ED. A systematic approach to assessment and management is essential to prevent unnecessary morbidity and mortality. The simplified, systematic approach described in this article focuses on determining the presence of problems with cardiac function (the pump), intravascular volume (the tank), or systemic vascular resistance (the pipes). With this approach, the emergency physician can detect life-threatening conditions and implement time-sensitive therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Computational prediction of probabilistic ignition threshold of pressed granular Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under shock loading

    NASA Astrophysics Data System (ADS)

    Kim, Seokpum; Miller, Christopher; Horie, Yasuyuki; Molek, Christopher; Welle, Eric; Zhou, Min

    2016-09-01

    The probabilistic ignition thresholds of pressed granular Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine explosives with average grain sizes between 70 μm and 220 μm are computationally predicted. The prediction uses material microstructure and basic constituent properties and does not involve curve fitting with respect to or prior knowledge of the attributes being predicted. The specific thresholds predicted are James-type relations between the energy flux and energy fluence for given probabilities of ignition. Statistically similar microstructure sample sets are computationally generated and used based on the features of micrographs of materials used in actual experiments. The predicted thresholds are in general agreement with measurements from shock experiments in terms of trends. In particular, it is found that grain size significantly affects the ignition sensitivity of the materials, with smaller sizes leading to lower energy thresholds required for ignition. For example, 50% ignition threshold of the material with an average grain size of 220 μm is approximately 1.4-1.6 times that of the material with an average grain size of 70 μm in terms of energy fluence. The simulations account for the controlled loading of thin-flyer shock experiments with flyer velocities between 1.5 and 4.0 km/s, constituent elasto-viscoplasticity, fracture, post-fracture contact and friction along interfaces, bulk inelastic heating, interfacial frictional heating, and heat conduction. The constitutive behavior of the materials is described using a finite deformation elasto-viscoplastic formulation and the Birch-Murnaghan equation of state. The ignition thresholds are determined via an explicit analysis of the size and temperature states of hotspots in the materials and a hotspot-based ignition criterion. The overall ignition threshold analysis and the microstructure-level hotspot analysis also lead to the definition of a macroscopic ignition parameter (J) and a microscopic

  17. Study of void sizes and loading configurations effects on shock initiation due to void collapse in heterogeneous energetic materials

    NASA Astrophysics Data System (ADS)

    Roy, Sidhartha; Rai, Nirmal; Udaykumar, H. S.

    2015-06-01

    In heterogeneous energetic materials, presence of porosity has been seen to increase its sensitivity towards shock initiation and ignition. Under the application of shock load, the viscoplastic deformation of voids and its collapse leads to the formation of local high temperature regions known as hot spots. The chemical reaction triggers at the hot spot depending on the local temperature and grows eventually leading to ignition and formation of detonation waves in the material. The temperature of the hot spot depends on various factors such as shock strength, void size, void arrangements, loading configuration etc. Hence, to gain deeper understanding on shock initiation and ignition study due to void collapse, a parametric study involving various factors which can affect the hot spot temperature is desired. In the current work, effects of void sizes, shock strength and loading configurations has been studied for shock initiation in HMX using massively parallel Eulerian code, SCIMITAR3D. The chemical reaction and decomposition for HMX has been modeled using Henson-Smilowitz multi step mechanism. The effect of heat conduction has also been taken into consideration. Ignition threshold criterion has been established for various factors as mentioned. The critical hot spot temperature and its size which can lead to ignition has been obtained from numerical experiments.

  18. Shock initiation studies of low density HMX using electromagnetic particle velocity and PVDF stress gauges

    SciTech Connect

    Sheffield, S.A.; Gustavsen, R.L.; Alcon, R.R.; Graham, R.A.; Anderson, M.U.

    1993-09-01

    Magnetic particle velocity and PVDF stress rate gauges have been used to measure the shock response of low density octotetramethylene tetranitramine (HMX) (1.24 &/cm{sup 3}). In experiments done at LANL, magnetic particle velocity gauges were located on both sides of the explosive. In nearly identical experiments done at SNL, PVDF stress rate gauges were located at the same positions so both particle velocity and stress histories were obtained for a particular experimental condition. Unreacted Hugoniot data were obtained and an EOS was developed by combining methods used by Hayes, Sheffield and Mitchell (for describing the Hugoniot of HNS at various densities) with Hermann`s P-{alpha} model. Using this technique, it is only necessary to know some thermodynamic constants or the Hugoniot of the initially solid material and the porous material sound speed to obtain accurate unreacted Hugoniots for the porous explosive. Loading and reaction paths were established in the stress-particle velocity plane for some experimental conditions. This information was used to determine a global reaction rate of {approx} 0.13 {mu}s{sup {minus}1} for porous HMX shocked to 0.8 GPa. At low input stresses the transmitted wave profiles had long rise times (up to 1 {mu}s) due to the compaction processes.

  19. Shock initiation of nano-Al/Teflon: High dynamic range pyrometry measurements

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Bassett, Will P.; Dlott, Dana D.

    2017-02-01

    Laser-launched flyer plates (25 μm thick Cu) were used to impact-initiate reactive materials consisting of 40 nm Al particles embedded in TeflonAF polymer (Al/Teflon) on sapphire substrates at a stoichiometric concentration (2.3:1 Teflon:Al), as well as one-half and one-fourth that concentration. A high dynamic range emission spectrometer was used to time and spectrally resolve the emitted light and to determine graybody temperature histories with nanosecond time resolution. At 0.5 km s-1, first light emission was observed from Teflon, but at 0.6 km s-1, the emission from Al/Teflon became much more intense, so we assigned the impact threshold for Al/Teflon reactions to be 0.6 (±0.1) km s-1. The flyer plates produced a 7 ns duration steady shock drive. Emission from shocked Al/Teflon above threshold consisted of two bursts. At the higher impact velocities, the first burst started 15 ns after impact, peaked at 25 ns, and persisted for 75 ns. The second burst started at a few hundred nanoseconds and lasted until 2 μs. The 15 ns start time was exactly the time the flyer plate velocity dropped to zero after impact with sapphire. The first burst was associated with shock-triggered reactions and the second, occurring at ambient pressure, was associated with combustion of leftover material that did not react during shock. The emission spectrum was found to be a good fit to a graybody at all times, allowing temperature histories to be extracted. At 25 ns, the temperature at 0.7 km s-1 and the one-fourth Al load was 3800 K. Those temperatures increased significantly with impact velocity, up to 4600 K, but did not increase as much with Al load. A steady combustion process at 2800 (±100) K was observed in the microsecond range. The minimal dependence on Al loading indicates that these peak temperatures arise primarily from Al nanoparticles reacting almost independently, since the presence of nearby heat sources had little influence on the peak temperatures.

  20. Influence of a CME’s Initial Parameters on the Arrival of the Associated Interplanetary Shock at Earth and the Shock Propagational Model Version 3

    NASA Astrophysics Data System (ADS)

    Zhao, X. H.; Feng, X. S.

    2015-08-01

    Predicting the arrival times of coronal mass ejections (CMEs) and their related waves at Earth is an important aspect of space weather forecasting. The Shock Propagation Model (SPM) and its updated version (SPM2), which use the initial parameters of solar flare-Type II burst events as input, have been developed to predict the shock arrival time. This paper continues to investigate the influence of solar disturbances and their associated CMEs on the corresponding interplanetary (IP) shock’s arrival at Earth. It has been found that IP shocks associated with wider CMEs have a greater probability of reaching the Earth, and the CME speed obtained from coronagraph observations can be supplementary to the initial shock speed computed from Type II radio bursts when predicting the shock’s arrival time. Therefore, the third version of the model, i.e., SPM3, has been developed based on these findings. The new version combines the characteristics of solar flare-Type II events with the initial parameters of the accompanying CMEs to provide the prediction of the associated IP shock’s arrival at Earth. The prediction test for 498 events of Solar Cycle 23 reveals that the prediction success rate of SPM3 is 70%-71%, which is apparently higher than that of the previous SPM2 model (61%-63%). The transit time prediction error of SPM3 for the Earth-encountered shocks is within 9 hr (mean-absolute). Comparisons between SPM3 and other similar models also demonstrate that SPM3 has the highest success rate and best prediction performance.

  1. Computational study of 3-D hot-spot initiation in shocked insensitive high-explosive

    NASA Astrophysics Data System (ADS)

    Najjar, F. M.; Howard, W. M.; Fried, L. E.; Manaa, M. R.; Nichols, A., III; Levesque, G.

    2012-03-01

    High-explosive (HE) material consists of large-sized grains with micron-sized embedded impurities and pores. Under various mechanical/thermal insults, these pores collapse generating hightemperature regions leading to ignition. A hydrodynamic study has been performed to investigate the mechanisms of pore collapse and hot spot initiation in TATB crystals, employing a multiphysics code, ALE3D, coupled to the chemistry module, Cheetah. This computational study includes reactive dynamics. Two-dimensional high-resolution large-scale meso-scale simulations have been performed. The parameter space is systematically studied by considering various shock strengths, pore diameters and multiple pore configurations. Preliminary 3-D simulations are undertaken to quantify the 3-D dynamics.

  2. Laser-driven miniature flyer plates for shock initiation of secondary explosives

    NASA Astrophysics Data System (ADS)

    Paisley, D. L.

    1989-08-01

    Miniature flyer plates (greater than 1-mm diameter X greater than 5-micron thick) of aluminum and other materials are accelerated by a 10-ns pulsed Nd:YAG laser to velocities less than 5 km/s. Velocity profiles are recorded by velocity interferometry (VISAR) techniques and impact planarity by electronic streak photography. Techniques for improving energy coupling from laser to flyer plate will be discussed. Flyer plate performance parameters will be compared with material properties. The P(sup n)t criteria for shock initiation of explosives will be compared for various flyer materials, pressure, and pulse duration. Performance of secondary explosives (PETN, HNS, HMX, various PBX, others) will be reported. These data will detail the experimental effect of t (in P(sup n)t) approaching values of a few nanoseconds.

  3. Laser-driven miniature flyer plates for shock initiation of secondary explosives

    SciTech Connect

    Paisley, D.L.

    1989-01-01

    Miniature flyer plates (<1-mm diameter X <5-micron thick) of aluminum and other materials are accelerated by a 10-ns pulsed Nd:YAG laser to velocities >5 km/s. Velocity profiles are recorded by velocity interferometry (VISAR) techniques and impact planarity by electronic streak photography. Techniques for improving energy coupling from laser to flyer plate will be discussed. Flyer plate performance parameters will be compared with material properties. The P/sup n/t criteria for shock initiation of explosives will be compared for various flyer materials, pressure, and pulse duration. Performance of secondary explosives (PETN, HNS, HMX, various PBX, others) will be reported. These data will detail the experimental effect of t (in P/sup n/t) approaching values of a few nanoseconds. 9 refs., 5 figs.

  4. Probabilistic risk analysis and fault trees: Initial discussion of application to identification of risk at a wellhead

    NASA Astrophysics Data System (ADS)

    Rodak, C.; Silliman, S.

    2012-02-01

    Wellhead protection is of critical importance for managing groundwater resources. While a number of previous authors have addressed questions related to uncertainties in advective capture zones, methods for addressing wellhead protection in the presence of uncertainty in the chemistry of groundwater contaminants, the relationship between land-use and contaminant sources, and the impact on health of the receiving population are limited. It is herein suggested that probabilistic risk analysis (PRA) combined with fault trees (FT) provides a structure whereby chemical transport can be combined with uncertainties in source, chemistry, and health impact to assess the probability of negative health outcomes in the population. As such, PRA-FT provides a new strategy for the identification of areas of probabilistically high human health risk. Application of this approach is demonstrated through a simplified case study involving flow to a well in an unconfined aquifer with heterogeneity in aquifer properties and contaminant sources.

  5. A simple probabilistic model of initiation of motion of poorly-sorted granular mixtures subjected to a turbulent flow

    NASA Astrophysics Data System (ADS)

    Ferreira, Rui M. L.; Ferrer-Boix, Carles; Hassan, Marwan

    2015-04-01

    Initiation of sediment motion is a classic problem of sediment and fluid mechanics that has been studied at wide range of scales. By analysis at channel scale one means the investigation of a reach of a stream, sufficiently large to encompass a large number of sediment grains but sufficiently small not to experience important variations in key hydrodynamic variables. At this scale, and for poorly-sorted hydraulically rough granular beds, existing studies show a wide variation of the value of the critical Shields parameter. Such uncertainty constitutes a problem for engineering studies. To go beyond Shields paradigm for the study of incipient motion at channel scale this problem can be can be cast in probabilistic terms. An empirical probability of entrainment, which will naturally account for size-selective transport, can be calculated at the scale of the bed reach, using a) the probability density functions (PDFs) of the flow velocities {{f}u}(u|{{x}n}) over the bed reach, where u is the flow velocity and xn is the location, b) the PDF of the variability of competent velocities for the entrainment of individual particles, {{f}{{up}}}({{u}p}), where up is the competent velocity, and c) the concept of joint probability of entrainment and grain size. One must first divide the mixture in into several classes M and assign a correspondent frequency p_M. For each class, a conditional PDF of the competent velocity {{f}{{up}}}({{u}p}|M) is obtained, from the PDFs of the parameters that intervene in the model for the entrainment of a single particle: [ {{u}p}/√{g(s-1){{di}}}={{Φ }u}( { {{C}k} },{{{φ}k}},ψ,{{u}p/{di}}{{{ν}(w)}} )) ] where { Ck } is a set of shape parameters that characterize the non-sphericity of the grain, { φk} is a set of angles that describe the orientation of particle axes and its positioning relatively to its neighbours, ψ is the skin friction angle of the particles, {{{u}p}{{d}i}}/{{{ν}(w)}} is a particle Reynolds number, di is the sieving

  6. Duration of hemodynamic effects of crystalloids in patients with circulatory shock after initial resuscitation

    PubMed Central

    2014-01-01

    Background In the later stages of circulatory shock, monitoring should help to avoid fluid overload. In this setting, volume expansion is ideally indicated only for patients in whom the cardiac index (CI) is expected to increase. Crystalloids are usually the choice for fluid replacement. As previous studies evaluating the hemodynamic effect of crystalloids have not distinguished responders from non-responders, the present study was designed to evaluate the duration of the hemodynamic effects of crystalloids according to the fluid responsiveness status. Methods This is a prospective observational study conducted after the initial resuscitation phase of circulatory shock (>6 h vasopressor use). Critically ill, sedated adult patients monitored with a pulmonary artery catheter who received a fluid challenge with crystalloids (500 mL infused over 30 min) were included. Hemodynamic variables were measured at baseline (T0) and at 30 min (T1), 60 min (T2), and 90 min (T3) after a fluid bolus, totaling 90 min of observation. The patients were analyzed according to their fluid responsiveness status (responders with CI increase >15% and non-responders ≤15% at T1). The data were analyzed by repeated measures of analysis of variance. Results Twenty patients were included, 14 of whom had septic shock. Overall, volume expansion significantly increased the CI: 3.03 ± 0.64 L/min/m2 to 3.58 ± 0.66 L/min/m2 (p < 0.05). From this period, there was a progressive decrease: 3.23 ± 0.65 L/min/m2 (p < 0.05, T2 versus T1) and 3.12 ± 0.64 L/min/m2 (p < 0.05, period T3 versus T1). Similar behavior was observed in responders (13 patients), 2.84 ± 0.61 L/min/m2 to 3.57 ± 0.65 L/min/m2 (p < 0.05) with volume expansion, followed by a decrease, 3.19 ± 0.69 L/min/m2 (p < 0.05, T2 versus T1) and 3.06 ± 0.70 L/min/m2 (p < 0.05, T3 versus T1). Blood pressure and cardiac filling pressures also decreased significantly after

  7. On the low pressure shock initiation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine based plastic bonded explosives

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin S.; Tarver, Craig M.; Garcia, Frank; Chidester, Steven K.

    2010-05-01

    In large explosive and propellant charges, relatively low shock pressures on the order of 1-2 GPa impacting large volumes and lasting tens of microseconds can cause shock initiation of detonation. The pressure buildup process requires several centimeters of shock propagation before shock to detonation transition occurs. In this paper, experimentally measured run distances to detonation for lower input shock pressures are shown to be much longer than predicted by extrapolation of high shock pressure data. Run distance to detonation and embedded manganin gauge pressure histories are measured using large diameter charges of six octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) based plastic bonded explosives (PBX's): PBX 9404; LX-04; LX-07; LX-10; PBX 9501; and EDC37. The embedded gauge records show that the lower shock pressures create fewer and less energetic "hot spot" reaction sites, which consume the surrounding explosive particles at reduced reaction rates and cause longer distances to detonation. The experimental data is analyzed using the ignition and growth reactive flow model of shock initiation in solid explosives. Using minimum values of the degrees of compression required to ignite hot spot reactions, the previously determined high shock pressure ignition and growth model parameters for the six explosives accurately simulate the much longer run distances to detonation and much slower growths of pressure behind the shock fronts measured during the shock initiation of HMX PBX's at several low shock pressures.

  8. Probabilistic Structural Analysis Program

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.

    2010-01-01

    NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.

  9. Embedded electromagnetic gauge measurements and modeling of shock initiation in the TATB based explosives PBX 9502 and LX-17

    SciTech Connect

    Gustavsen, R. L.; Sheffield, S. A.; Alcon, R. R.; Forbes, J. W.; Tarver, C. M.; Garcia, F.

    2001-01-01

    We have completed a series of shock initiation experiments on PBX 9502 (95 weight % dry aminated TATB explosive, 5 weight % Kel-F 800 binder) and LX-17 (92.% wet aminated TATB, 7.5 % Kel-F 800). These experiments were performed on the gas/gas two stage gun at Los Alamos. Samples were prepared with ten or eleven embedded electromagnetic particle velocity gauges to measure the evolution of the wave leading up to a detonation. Additionally, one to three shock tracker gauges were used to track the position of the shock front with time and determine the point where detonation was achieved. Wave profiles indicate little delay between formation of hot-spots in the shock front and release of hotspot energy. In other words, a great deal of the buildup occurs in the shock front, rather than behind it. Run distances and times to detonation as a function of initial pressure are consistent with published data. The Ignition and Growth model with published parameters for LX-17 replicate the data very well.

  10. Modification of amino acids at shock pressures of 3 to 30 GPA: Initial results

    NASA Technical Reports Server (NTRS)

    Peterson, Etta; Horz, Friedrich; Haynes, Gerald; See, Thomas

    1991-01-01

    Since the discovery of amino acids in the Murchison meteorite, much speculation has focused on their origin and subsequent alteration, including the possible role of secondary processes, both terrestrial and extraterrestrial. As collisional processes and associated shock waves seem to have affected the silicate portions of many primitive meteorites, a mixture of powdered Allende (125-150 m grain size) and nine synthetic amino acids (six protein and three nonprotein) were subjected to controlled shock pressures from 3 to 30 GPa to determine the effect of shocks on amino acid survivability. Preliminary characterizations of the recovered shock products are presented.

  11. Effects of damage on non-shock initiation of HMX-based explosives

    SciTech Connect

    Preston, Daniel N; Peterson, Paul D; Kien - Yin, Lee; Chavez, David E; Deluca, Racci; Avilucea, Gabriel; Hagelberg, Stephanie

    2009-01-01

    Structural damage in energetic materials plays a significant role in the probability of nonshock initiation events. Damage may occur in the form of voids or cracks either within crystals or in binder-rich regions between crystals. These cracks affect whether hotspots generated by impact will quench or propagate under non-shock insult. For this study, we have separately engineered intracrystalline and inter-crystalline cracks in to the HMX-based PBX 9501. Intra-crystalline cracks were created by subjecting HMX to forward and reverse solid-to-solid phase transformations prior to formulation. Inter-crystalline cracks were induced by compressing formulated samples of PBX 9501 at an average strain rate of 0.00285 S{sup -1}. Both sets of pre-damaged explosives were then impact tested using the LANL Type 12 Drop Weight-Impact Machine and their sensitivities compared to nondamaged PBX 9501. Results of these tests clearly show significant differences in sensitivity between damaged and non-damaged PBX 9501.

  12. A reactive burn model for shock initiation in a PBX: scaling and separability based on the hot spot concept

    SciTech Connect

    Show, Milton S; Menikoff, Ralph

    2010-01-01

    In the formulation of a reactive burn model for shock initiation, we endeavor to incorporate a number of effects based on the underlying physical concept of hot spot ignition followed by the growth of reaction due to diverging deflagration fronts. The passage of a shock front sets the initial condition for reaction, leading to a fraction of the hot spots that completely burn while others will quench. The form of the rate model is chosen to incorporate approximations based on the physical picture. In particular, the approximations imply scaling relations that are then used to mathematically separate various contributions. That is, the model is modular and refinements can be applied separately without changing the other contributions. For example, the effect of initial temperature, porosity, etc. predominantly enter the characterization of the non-quenching hot spot distribution. A large collection of velocity gauge data is shown to be well represented by the model with a very small number of parameters.

  13. Elucidation of the Dynamics for Hot-Spot Initiation at Nonuniform Interfaces of Highly Shocked Materials

    DTIC Science & Technology

    2011-12-07

    simulation cell with 3695375 independent atoms. For shock velocities of 2.5 and 3.5 km/s it takes ∼10 ps for the shock wave to traverse the interface. Such a...Color online) Snapshot of PBX during shock loading at Up = 2.5 km/s (for 6.0 ps ). The shading is based on the total slip in angstroms. This system is...to the optimum viscosity and compression strength.21 Each chain contains ten HTPB repeat units connected via one IPDI crosslinking molecule to four

  14. A data-driven approach for determining time of initial movement in shock experiments using photonic Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Howard, Marylesa; Diaz, Abel; Briggs, Matthew E.; Crawford, Kristen; Dolan, D. H.; Furlanetto, Michael R.; Furnish, Michael D.; Holtkamp, David B.; Lone, B. M. La; Strand, Oliver T.; Stevens, Gerald D.; Tunnell, Thomas W.

    2017-01-01

    Photonic Doppler Velocimetry is an interferometric technique for measuring the beat frequency of a moving surface, from which the calculated velocity profile of the surface can be used to describe the physical changes the material undergoes after high-impact shock. Such a technique may also be used to characterize the performance of small detonators and determine the time at which the surface began moving. In this work, we develop a semi-automated technique for extracting the time of initial movement from a normalized lineout of the power spectrogram near the offset frequency of each probe. We characterize the response bias of this method and compare with the time of initial movement obtained by hand calculation of the raw voltage data. Results are shown on data from shock experiments such as gas gun setups and explosives-driven flyer plates.

  15. Probabilistic Models to Predict the Growth Initiation Time for Pseudomonas spp. in Processed Meats Formulated with NaCl and NaNO2.

    PubMed

    Jo, Hyunji; Park, Beomyoung; Oh, Mihwa; Gwak, Eunji; Lee, Heeyoung; Lee, Soomin; Yoon, Yohan

    2014-01-01

    This study developed probabilistic models to determine the initiation time of growth of Pseudomonas spp. in combinations with NaNO2 and NaCl concentrations during storage at different temperatures. The combination of 8 NaCl concentrations (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, and 1.75%) and 9 NaNO2 concentrations (0, 15, 30, 45, 60, 75, 90, 105, and 120 ppm) were prepared in a nutrient broth. The medium was placed in the wells of 96-well microtiter plates, followed by inoculation of a five-strain mixture of Pseudomonas in each well. All microtiter plates were incubated at 4, 7, 10, 12, and 15℃ for 528, 504, 504, 360 and 144 h, respectively. Growth (growth initiation; GI) or no growth was then determined by turbidity every 24 h. These growth response data were analyzed by a logistic regression to produce growth/no growth interface of Pseudomonas spp. and to calculate GI time. NaCl and NaNO2 were significantly effective (p<0.05) on inhibiting Pseudomonas spp. growth when stored at 4-12℃. The developed model showed that at lower NaCl concentration, higher NaNO2 level was required to inhibit Pseudomonas growth at 4-12℃. However, at 15℃, there was no significant effect of NaCl and NaNO2. The model overestimated GI times by 58.2±17.5 to 79.4±11%. These results indicate that the probabilistic models developed in this study should be useful in calculating the GI times of Pseudomonas spp. in combination with NaCl and NaNO2 concentrations, considering the over-prediction percentage.

  16. Probabilistic Risk Assessment of Hydraulic Fracturing in Unconventional Reservoirs by Means of Fault Tree Analysis: An Initial Discussion

    NASA Astrophysics Data System (ADS)

    Rodak, C. M.; McHugh, R.; Wei, X.

    2016-12-01

    The development and combination of horizontal drilling and hydraulic fracturing has unlocked unconventional hydrocarbon reserves around the globe. These advances have triggered a number of concerns regarding aquifer contamination and over-exploitation, leading to scientific studies investigating potential risks posed by directional hydraulic fracturing activities. These studies, balanced with potential economic benefits of energy production, are a crucial source of information for communities considering the development of unconventional reservoirs. However, probabilistic quantification of the overall risk posed by hydraulic fracturing at the system level are rare. Here we present the concept of fault tree analysis to determine the overall probability of groundwater contamination or over-exploitation, broadly referred to as the probability of failure. The potential utility of fault tree analysis for the quantification and communication of risks is approached with a general application. However, the fault tree design is robust and can handle various combinations of regional-specific data pertaining to relevant spatial scales, geological conditions, and industry practices where available. All available data are grouped into quantity and quality-based impacts and sub-divided based on the stage of the hydraulic fracturing process in which the data is relevant as described by the USEPA. Each stage is broken down into the unique basic events required for failure; for example, to quantify the risk of an on-site spill we must consider the likelihood, magnitude, composition, and subsurface transport of the spill. The structure of the fault tree described above can be used to render a highly complex system of variables into a straightforward equation for risk calculation based on Boolean logic. This project shows the utility of fault tree analysis for the visual communication of the potential risks of hydraulic fracturing activities on groundwater resources.

  17. Hot spot initiation and chemical reaction in shocked polymeric bonded explosives

    NASA Astrophysics Data System (ADS)

    An, Qi; Zybin, Sergey; Jaramillo-Botero, Andres; Goddard, William; Materials; Process Simulation Center, Caltech Team

    2011-06-01

    A polymer bonded explosive (PBX) model based on PBXN-106 is studied via molecular dynamics (MD) simulations using reactive force field (ReaxFF) under shock loading conditions. Hotspot is observed when shock waves pass through the non-planar interface of explosives and elastomers. Adiabatic shear localization is proposed as the main mechanism of hotspot ignition in PBX for high velocity impact. Our simulation also shows that the coupling of shear localization and chemical reactions at hotspot region play important rules at stress relaxtion for explosives. The phenomenon that shock waves are obsorbed by elastomers is also observed in the MD simulations. This research received supports from ARO (W911NF-05-1-0345; W911NF-08-1-0124), ONR (N00014-05-1-0778), and Los Alamos National Laboratory (LANL).

  18. Thermomechanical damage of nucleosome by the shock wave initiated by ion passing through liquid water

    NASA Astrophysics Data System (ADS)

    Yakubovich, Alexander V.; Surdutovich, Eugene; Solov'yov, Andrey V.

    2012-05-01

    We report on the results of full-atom molecular dynamics simulations of the heat spike in the water medium caused by the propagation of the heavy ion in the vicinity of its Bragg peak. High rate of energy transfer from an ion to the molecules of surrounding water environment leads to the rapid increase of the temperature of the molecules in the vicinity of ions trajectory. As a result of an abrupt increase of the temperature we observe the formation of the nanoscale shock wave propagating through the medium. We investigate the thermomechanical damage caused by the shock wave to the nucleosome located in the vicinity of heavy ion trajectory. We observe the substantial deformation of the DNA secondary structure. We show that the produced shock wave can lead to the thermomechanical breakage of the DNA backbone covalent bonds and present estimates for the number of such strand brakes per one cell nucleus.

  19. Observation of dispersive shock waves developing from initial depressions in shallow water

    NASA Astrophysics Data System (ADS)

    Trillo, S.; Klein, M.; Clauss, G. F.; Onorato, M.

    2016-10-01

    We investigate surface gravity waves in a shallow water tank, in the limit of long wavelengths. We report the observation of non-stationary dispersive shock waves rapidly expanding over a 90 m flume. They are excited by means of a wave maker that allows us to launch a controlled smooth (single well) depression with respect to the unperturbed surface of the still water, a case that contains no solitons. The dynamics of the shock waves are observed at different levels of nonlinearity equivalent to a different relative smallness of the dispersive effect. The observed undulatory behavior is found to be in good agreement with the dynamics described in terms of a Korteweg-de Vries equation with evolution in space, though in the most nonlinear cases the description turns out to be improved over the quasi linear trailing edge of the shock by modeling the evolution in terms of the integro-differential (nonlocal) Whitham equation.

  20. A cumulative shear mechanism for tissue injury initiation in shock-wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan

    2007-11-01

    Considerable injury to renal tissue often accompanies treatment when shocks waves are delivered to break up kidney stones. The most severe injuries seem to involve cavitation damage, driven by the expansive portion of the lithotripor's wave. However, data from animal studies indicate that inverted shock waves, which should preclude cavitation, still cause local injury near the tip of the renal papilla, which seems particularly susceptible to injury in general. We develop a model of papilla tissue, which consists mostly of parallel fluid filled elastic 10 to 30μm diameter tubules, to assess whether or not the shear of repeated shocks can accumulate to cause injury. Material properties are estimated from reported measurements of renal basement membranes. A Stokes-flow boundary integral algorithm is used to estimate the net viscoelastic properties of the tissue. It is predicted that the particular microstructure of the tissue near the tip of the papilla is indeed susceptible to shear accumulation as consistent with several observations.

  1. Benchtop and Initial Clinical Evaluation of the ShockPulse Stone Eliminator in Percutaneous Nephrolithotomy.

    PubMed

    Chew, Ben H; Matteliano, Andre A; de Los Reyes, Thomas; Lipkin, Michael E; Paterson, Ryan F; Lange, Dirk

    2017-02-01

    Standardized bench testing of the new ShockPulse™ intracorporeal lithotripter was performed against three commercially available lithotripsy systems to determine differences and nuances in performance. The ShockPulse intracorporeal lithotripter was tested against the LUS-2™, CyberWand,™ and EMS LithoClast™ in a standardized bench setting using hard (Ultracal-30) and soft (plaster of Paris) stone phantoms. An in vitro kidney model was used to record the time needed to fragment stone samples into retrievable-sized pieces. The time needed to fully comminute and evacuate stone samples was also recorded. The efficacy of each device at various applied pressures was determined using a hands-free apparatus, which was used to apply 1.0, 1.5, and 2.0 pounds of fixed force. For hard and soft stones, the time needed to create retrievable fragments was similar among all systems (p = 0.585). The ShockPulse was significantly faster than the LUS-2 and LithoClast at fully fragmenting and evacuating stone samples (p = 0.046), while the CyberWand was significantly slower than all three systems at this task (p = 0.001). When fixed forces were applied to a large stone phantom, the ShockPulse and CyberWand were significantly faster than the LUS-2 and LithoClast (p < 0.0001). When groups of smaller stones were tested, the ShockPulse was significantly faster at 1.0 pound (p < 0.001) and 1.5 pounds (p < 0.002) of force. At 2.0 pounds, no differences were observed (p = 0.09). The ShockPulse is equally as effective and, in some circumstances, more effective than the three commercially available devices against which it was tested in an in vitro setting.

  2. Constitutive modeling of weak and strong shock-initiation of porous explosives

    SciTech Connect

    Bennett, L.S.

    1998-12-31

    A continuum based reactive burn model for shocked loaded high explosives has been developed that uses heterogeneous distribution of pore collapse energy to one or more of the constituents (a hot spot) as an ignition source, represents constituents with independent equations of state and has multiple competing and sequential chemical reactions. Reaction propagates from the hot spot to the remainder of the material through either a pressure or temperature dependence of heat transfer through a film layer. The reaction may be quenched by heat transfer or shock release if it is not rapid enough.

  3. Initial fluid resuscitation following adjusted body weight dosing is associated with improved mortality in obese patients with suspected septic shock.

    PubMed

    Taylor, Stephanie Parks; Karvetski, Colleen H; Templin, Megan A; Heffner, Alan C; Taylor, Brice T

    2017-08-15

    The optimal initial fluid resuscitation strategy for obese patients with septic shock is unknown. We evaluated fluid resuscitation strategies across BMI groups. Retrospective analysis of 4157 patients in a multicenter activation pathway for treatment of septic shock between 2014 and 2016. 1293 (31.3%) patients were obese (BMI≥30). Overall, higher BMI was associated with lower mortality, however this survival advantage was eliminated in adjusted analyses. Patients with higher BMI received significantly less fluid per kilogram at 3h than did patients with lower BMI (p≤0.001). In obese patients, fluid given at 3h mimicked a dosing strategy based on actual body weight (ABW) in 780 (72.2%), adjusted body weight (AdjBW) in 95 (8.8%), and ideal body weight (IBW) in 205 (19.0%). After adjusting for condition- and treatment-related variables, dosing based on AdjBW was associated with improved mortality compared to ABW (OR 0.45; 95% CI [0.19, 1.07]) and IBW (OR 0.29; 95% CI [0.11,0.74]). Using AdjBW to calculate initial fluid resuscitation volume for obese patients with suspected shock may improve outcomes compared to other weight-based dosing strategies. The optimal fluid dosing strategy for obese patients should be a focus of future prospective research. Copyright © 2017. Published by Elsevier Inc.

  4. Probabilistic Risk Analysis and Fault Trees as Tools in Improving the Delineation of Wellhead Protection Areas: An Initial Discussion

    NASA Astrophysics Data System (ADS)

    Rodak, C. M.; Silliman, S. E.

    2010-12-01

    Delineation of a wellhead protection area (WHPA) is a critical component of managing / protecting the aquifer(s) supplying potable water to a public water-supply well. While a number of previous authors have addressed questions related to uncertainties in advective capture zones, methods for assessing WHPAs in the presence of uncertainty in the chemistry of groundwater contaminants, the relationship between land-use and contaminant sources, and the impact on health risk within the receiving population are more limited. Probabilistic risk analysis (PRA) combined with fault trees (FT) addresses this latter challenge by providing a structure whereby four key WHPA issues may be addressed: (i) uncertainty in land-use practices and chemical release, (ii) uncertainty in groundwater flow, (iii) variability in natural attenuation properties (and/or remediation) of the contaminants, and (iv) estimated health risk from contaminant arrival at a well. The potential utility of PRA-FT in this application is considered through a simplified case study involving management decisions related both to regional land use planning and local land-use zoning regulation. An application-specific fault tree is constructed to visualize and identify the events required for health risk failure at the well and a Monte Carlo approach is used to create multiple realizations of groundwater flow and chemical transport to a well in a model of a simple, unconfined aquifer. Model parameters allowed to vary during this simplified case study include hydraulic conductivity, probability of a chemical spill (related to land use variation in space), and natural attenuation through variation in rate of decay of the contaminant. Numerical results are interpreted in association with multiple land-use management scenarios as well as multiple cancer risk assumptions regarding the contaminant arriving at the well. This case study shows significant variability of health risk at the well, however general trends were

  5. Shock initiation behavior of PBXN-9 determined by gas gun experiments

    SciTech Connect

    Sanchez, Nathaniel J; Gustavsen, Richard L; Hooks, Daniel E

    2009-01-01

    The shock to detonation transition was evaluated in the HMX based explosive PBXN-9 by a series of light-gas gun experiments. PBXN-9 consists of 92 wt% HMX, 2wt% Hycar 4054 & 6 wt% dioctyl adipate with a density of 1.75 g/cm{sup 3} and 0.8% voids. The experiments were designed to understand the specifics of wave evolution and the run distance to detonation as a function of input shock pressure. These experiments were conducted on gas guns in order to vary the input shock pressure accurately. The primary diagnostics were embedded magnetic gauges, which are based on Faraday's law of induction, and Photon Doppler Velocimetry (PDV). The run distance to detonation vs. shock pressure, or 'Pop plot,' was redefined as log(X*) = 2.14-1.82 log(P), which is substantially different than previous data. The Hugoniot was refined as U{sub s} = 2.32 + 2.21 U{sub p}. This data will be useful for the development of predictive models for the safety and performance of PBXN-9 along with providing increased understanding of HMX based explosives in varying formulations.

  6. Shock initiation behavior of PBXN-9 determined by gas gun experiments

    NASA Astrophysics Data System (ADS)

    Sanchez, Nathaniel; Gustavsen, Richard; Hooks, Daniel

    2009-06-01

    The shock to detonation transition was evaluated in the HMX based explosive PBXN-9 by a series of light-gas gun experiments. PBXN-9 consists of 92 wt% HMX, 2wt% Hycar 4054 & 6 wt% dioctyl adipate with a density of 1.75 g/cm^3 and 0.8% voids. The experiments were designed to understand the specifics of wave evolution and the run distance to detonation as a function of input shock pressure. These experiments were conducted on gas guns in order to vary the input shock pressure accurately. The primary diagnostics are embedded magnetic gauges which are based on Faraday's law of induction along with photon Doppler velocimetry (PDV). The run distance to detonation vs. shock pressure, or ``Pop plot,'' was redefined as log (X*) = 2.14 -- 1.82 log (P), which is substantially different than previous data. The Hugoniot was refined as Us = 2.32 + 2.21 Up. This data will be useful for the development of predictive models for the safety and performance of PBXN-9 in addition to providing an increased understanding of HMX based explosives in varying formulations.

  7. Shock Initiation Behavior of PBXN-9 Determined by Gas Gun Experiments

    NASA Astrophysics Data System (ADS)

    Sanchez, N. J.; Gustavsen, R. L.; Hooks, D. E.

    2009-12-01

    The shock to detonation transition was evaluated in the HMX based explosive PBXN-9 by a series of light-gas gun experiments. PBXN-9 consists of 92 wt% HMX, 2wt% Hycar 4054 & 6 wt&percent; dioctyl adipate with a density of 1.75 g/cm3 and 0.8&% voids. The experiments were designed to understand the specifics of wave evolution and the run distance to detonation as a function of input shock pressure. These experiments were conducted on gas guns in order to vary the input shock pressure accurately. The primary diagnostics were embedded magnetic gauges, which are based on Faraday's law of induction, and Photon Doppler Velocimetry (PDV). The run distance to detonation vs. shock pressure, or "Pop plot," was redefined as log(X) = 2.14-1.82 log (P), which is substantially different than previous data. The Hugoniot was refined as Us = 2.32+2.211 Up. This data will be useful for the development of predictive models for the safety and performance of PBXN-9 along with providing increased understanding of HMX based explosives in varying formulations.

  8. Colloids for the Initial Management of Severe Sepsis and Septic Shock in Pediatric Patients: A Systematic Review.

    PubMed

    Medeiros, Daniela Nasu Monteiro; Ferranti, Juliana Ferreira; Delgado, Artur Figueiredo; de Carvalho, Werther Brunow

    2015-11-01

    The goal of this study was to perform a systematic review of the literature assessing the use of colloids for the initial treatment of severe sepsis and septic shock in pediatric patients. The PICO [Patient, Intervention, Comparison, Outcome] method was used for the selection of studies, and the Cochrane Bias Tool was used to analyze the quality of the selected studies. Relevant studies were sought using the following databases: EMBASE (1980 to March 2014), PubMed (1970 to March 2014), Cochrane (1980 to March 2014), Web of Science, and Scopus. Searches used the following key words: isotonic solution, crystalloid, saline solution, colloid, resuscitation, fluid therapy, sepsis and septic shock, starch, and gelatin. The filters children and clinical trial were used when possible. Study selection was performed by 1 examiner. The selected articles were analyzed by 2 examiners who validated the articles according to the Cochrane Bias Tool. Discrepancies were resolved by consensus or by a third examiner. A total of 110 articles were selected based on the key words. Of these, 99 were excluded because they assessed postoperative follow-up, burn cases, cardiac surgery, or nutritional therapy or were review articles, guidelines, or editorials. One study was included after an analysis of previous reviews. A total of 12 articles were selected for analysis because they were reports of clinical trials conducted with prospective cohorts and they analyzed the use of crystalloids and colloids or colloids only in the initial treatment of severe sepsis or septic shock in children and adolescents. The total number of patients was 4375, and they ranged in age from 2 months to 15 years, with most patients between 5 and 15 years. Five studies assessed patients diagnosed with malaria, 5 assessed patients with dengue shock syndrome, 1 studied febrile diseases, and 1 examined the progression of patients with septic shock caused by various causes. The studies analyzed did not find evidence to

  9. Numerical simulation of increasing initial perturbations of a bubble in the bubble-shock interaction problem

    NASA Astrophysics Data System (ADS)

    Korneev, Boris; Levchenko, Vadim

    2016-12-01

    A set of numerical experiments on the interaction between a planar shock wave and a spherical bubble with a slightly perturbed surface is considered. Spectral analysis of the instability growth is carried out and three-dimensional Euler equations of fluid dynamics are chosen as the mathematical model for the process. The equations are solved via the Runge-Kutta discontinuous Galerkin method and the special DiamondTorre algorithm for multi-GPU implementation is used.

  10. Elucidation of the Dynamics for Hot-Spot Initiation at Nonuniform Interfaces of Highly Shocked Materials

    DTIC Science & Technology

    2011-12-07

    to examine the effect of shocks on realistic models of polymer-bonded explosives, where we use these simulations to extract the mechanism of hot-spot...simulation cell and time interval is far beyond the capabilities of current quantum mechanics (QM) methods but can be treated using the QM- based ...using HTPB - and isophorone diisocyanate (IPDI)- based polyurethane rubber. HTPB (see Fig. S1 of the Supplemental Material18) is a copolymer, containing

  11. Initial shock and long-term stand development following thinning in a Douglas-fir plantation.

    Treesearch

    Constance A. Harrington; Donald L. Reukema

    1983-01-01

    Responses following the application of six precommercial thinning treatments to a 27-year-old Douglas-fir plantation (2.4-m spacing, height at age 100 = 24 m) have been monitored for 25 years. Spacing after thinning ranged from 3.4 m to 8.1 m. Immediately following thinning, trees exhibited thinning shock; that is, substantial height growth reductions. The severity and...

  12. Experimental Investigation of Free Field and Shock-Initiated Implosion of Composite Structures

    DTIC Science & Technology

    2017-02-06

    of experimental studies is perfor med to study the implos i on behavior of a variety of different composite structures under varying loading...c o llapse of double hull composite structures . Results from each provide signi fi cant new unde r standing o f the co l lapse mechanics of these...Carbon- fiber/epoxy , Co l lapse Mode , Composite Structures , Double Hull , Digital Image Correlation (DIC) , Fluid- Structure Wave , Shock Wave

  13. The Role of the Membrane-Initiated Heat Shock Response in Cancer

    PubMed Central

    Bromberg, Zohar; Weiss, Yoram

    2016-01-01

    The heat shock response (HSR) is a cellular response to diverse environmental and physiological stressors resulting in the induction of genes encoding molecular chaperones, proteases, and other proteins that are essential for protection and recovery from cellular damage. Since different perturbations cause accumulation of misfolded proteins, cells frequently encounter fluctuations in the environment which alter proteostasis. Since tumor cells use their natural adaptive mechanism of coping with stress and misfolded proteins, in recent years, the proteostasis network became a promising target for anti-tumor therapy. The membrane is the first to be affected by heat shock and therefore may be the first one to sense heat shock. The membrane also connects between the extracellular and the intracellular signals. Hence, there is a “cross talk” between the HSR and the membranes since heat shock can induce changes in the fluidity of membranes, leading to membrane lipid remodeling that occurs in several diseases such as cancer. During the last decade, a new possible therapy has emerged in which an external molecule is used that could induce membrane lipid re-organization. Since at the moment there are very few substances that regulate the HSR effectively, an alternative way has been searched to modulate chaperone activities through the plasma membrane. Recently, we suggested that the use of the membrane Transient Receptor Potential Vanilloid-1 (TRPV1) modulators regulated the HSR in cancer cells. However, the primary targets of the signal transduction pathway are yet un-known. This review provides an overview of the current literature regarding the role of HSR in membrane remodeling in cancer since a deep understanding of the membrane biology in cancer and the membrane heat sensing pathway is essential to design novel efficient therapies. PMID:27200359

  14. Probabilistic simple sticker systems

    NASA Astrophysics Data System (ADS)

    Selvarajoo, Mathuri; Heng, Fong Wan; Sarmin, Nor Haniza; Turaev, Sherzod

    2017-04-01

    A model for DNA computing using the recombination behavior of DNA molecules, known as a sticker system, was introduced by by L. Kari, G. Paun, G. Rozenberg, A. Salomaa, and S. Yu in the paper entitled DNA computing, sticker systems and universality from the journal of Acta Informatica vol. 35, pp. 401-420 in the year 1998. A sticker system uses the Watson-Crick complementary feature of DNA molecules: starting from the incomplete double stranded sequences, and iteratively using sticking operations until a complete double stranded sequence is obtained. It is known that sticker systems with finite sets of axioms and sticker rules generate only regular languages. Hence, different types of restrictions have been considered to increase the computational power of sticker systems. Recently, a variant of restricted sticker systems, called probabilistic sticker systems, has been introduced [4]. In this variant, the probabilities are initially associated with the axioms, and the probability of a generated string is computed by multiplying the probabilities of all occurrences of the initial strings in the computation of the string. Strings for the language are selected according to some probabilistic requirements. In this paper, we study fundamental properties of probabilistic simple sticker systems. We prove that the probabilistic enhancement increases the computational power of simple sticker systems.

  15. Measurements of shock initiation in the tri-amino-tri-nitro-benzene based explosive PBX 9502: Wave forms from embedded gauges and comparison of four different material lots

    NASA Astrophysics Data System (ADS)

    Gustavsen, R. L.; Sheffield, S. A.; Alcon, R. R.

    2006-06-01

    We have completed a series of ambient temperature (23+/-2 °C) shock initiation experiments on four lots (batches) of the insensitive high explosive PBX 9502. PBX 9502 consists by weight of 95% dry-aminated tri-amino-tri-nitro-benzene (TATB) and 5% of the plastic binder Kel-F 800, a 3/1 copolymer of chloro-trifluoro-ethylene and vinylidene-fluoride. Two of the four lots were manufactured using the ``virgin'' process. Both of these lots had few fine TATB particles. One virgin lot was stored the majority of its life (>15 yr) as a molding powder and pressed as a 240 mm diameter by 130 mm thick cylinder. The other virgin lot was stored the majority of its life as a hollow hemispherical pressing. Two lots were manufactured using the ``recycle'' process and had many fine TATB particles. One recycled lot was stored the majority of its life as a molding powder, while the other was stored as a pressed charge. Shock initiation experiments were performed using precisely characterized planar shocks generated by impacting an explosive sample with a projectile accelerated in a two-stage gas gun. The evolution of the shock into a detonation was measured using 10 or 11 embedded electromagnetic particle velocity gauges and three ``shock tracker'' gauges. Results include the following: (1) high quality particle velocity wave forms which should be useful for calibrating reactive burn models, (2) no difference in the sustained shock initiation response between lots regardless of material processing or storage history, (3) responses for all lots equivalent to those measured by Dick et al. [J. Appl. Phys. 63, 4881 (1988)], additional Hugoniot and Pop-plot data for PBX 9502, and (5) the short shock response which, when compared to the sustained shock response, shows no extension in the run distance unless the rarefaction overtakes the shock front prior to the distance it would have run towards a detonation as a sustained shock.

  16. Motivational Modulation of Self-Initiated and Externally Triggered Movement Speed Induced by Threat of Shock: Experimental Evidence for Paradoxical Kinesis in Parkinson’s Disease

    PubMed Central

    McDonald, Louise M.; Griffin, Harry J.; Angeli, Aikaterini; Torkamani, Mariam; Georgiev, Dejan; Jahanshahi, Marjan

    2015-01-01

    Background Paradoxical kinesis has been observed in bradykinetic people with Parkinson’s disease. Paradoxical kinesis occurs in situations where an individual is strongly motivated or influenced by relevant external cues. Our aim was to induce paradoxical kinesis in the laboratory. We tested whether the motivation of avoiding a mild electric shock was sufficient to induce paradoxical kinesis in externally-triggered and self-initiated conditions in people with Parkinson’s disease tested on medication and in age-matched controls. Methods Participants completed a shock avoidance behavioural paradigm in which half of the trials could result in a mild electric shock if the participant did not move fast enough. Half of the trials of each type were self-initiated and half were externally-triggered. The criterion for avoiding shock was a maximum movement time, adjusted according to each participant’s performance on previous trials using a staircase tracking procedure. Results On trials with threat of shock, both patients with Parkinson’s disease and controls had faster movement times compared to no potential shock trials, in both self-initiated and externally-triggered conditions. The magnitude of improvement of movement time from no potential shock to potential shock trials was positively correlated with anxiety ratings. Conclusions When motivated to avoid mild electric shock, patients with Parkinson’s disease, similar to healthy controls, showed significant speeding of movement execution. This was observed in both self-initiated and externally-triggered versions of the task. Nevertheless, in the ET condition the improvement of reaction times induced by motivation to avoid shocks was greater for the PD patients than controls, highlighting the value of external cues for movement initiation in PD patients. The magnitude of improvement from the no potential shock to the potential shock trials was associated with the threat-induced anxiety. This demonstration of

  17. Early growth response 1 mediates the systemic and hepatic inflammatory response initiated by hemorrhagic shock.

    PubMed

    Prince, Jose M; Ming, Mei Jian; Levy, Ryan M; Liu, Shubing; Pinsky, David J; Vodovotz, Yoram; Billiar, Timothy R

    2007-02-01

    Hemorrhagic shock (HS) is a major cause of morbidity and mortality in trauma patients. The early growth response 1 (Egr-1) transcription factor is induced by a variety of cellular stresses, including hypoxia, and may function as a master switch to trigger the expression of numerous key inflammatory mediators. We hypothesized that HS would induce hepatic expression of Egr-1 and that Egr-1 upregulates the inflammatory response after HS. The Egr-1 mice and wild-type (WT) controls (n>or=5 for all groups) were subjected to HS alone or HS followed by resuscitation (HS/R). Other mice were subjected to a sham procedure which included general anesthesia and vessel cannulation but no shock (sham). After the HS, HS/R, or sham procedures, mice were euthanized for determination of serum concentrations of interleukin (IL) 6, IL-10, and alanine aminotransferase. Northern blot analysis was performed to evaluate Egr-1 messenger RNA (mRNA) expression. Liver whole cell lysates were evaluated for Egr-1 protein expression by Western blot analysis. Hepatic expression of IL-6, granulocyte colony-stimulating factor, and intracellular adhesion molecule 1 mRNA was determined by semiquantitative reverse transcriptase-polymerase chain reaction. The Egr-1 DNA binding was assessed using the electrophoretic mobility shift assay. Hemorrhagic shock results in a rapid and transient hepatic expression of Egr-1 mRNA in WT mice by 1 h, whereas protein and DNA binding activity was evident by 2.5 h. The Egr-1 mRNA expression diminished after 4 h of resuscitation, whereas Egr-1 protein expression and DNA binding activity persisted through resuscitation. The Egr-1 mice exhibited decreased levels of hepatic inflammatory mediators compared with WT controls with a decrease in hepatic mRNA levels of IL-6 by 42%, granulocyte colony-stimulating factor by 39%, and intracellular adhesion molecule 1 by 43%. Similarly, Egr-1 mice demonstrated a decreased systemic inflammatory response and hepatic injury after HS

  18. Prognostic value of extravascular lung water and its potential role in guiding fluid therapy in septic shock after initial resuscitation.

    PubMed

    Wang, Hao; Cui, Na; Su, Longxiang; Long, Yun; Wang, Xiaoting; Zhou, Xiang; Chai, Wenzhao; Liu, Dawei

    2016-06-01

    To explore whether extravascular lung water (EVLW) provides a valuable prognostic tool guiding fluid therapy in septic shock patients after initial resuscitation. We performed a retrospective study of septic shock patients who achieved adequate initial fluid resuscitation with extended hemodynamic monitoring, analyzing the prognostic value of EVLW and whether fluid therapy for 24 (T24) or 24-48 hours (T24-48) after initial resuscitation with a recommended value of EVLW yielded a 28-day mortality advantage. One hundred five patients with septic shock were included in this study, 60 (57.1%) of whom died after 28 days. For 48 hours after initial resuscitation, the daily fluid balance (DFB; T24: 2494 ± 1091 vs 1965 ± 964 mL [P = .011] and T24-48: 2127 ± 783 vs 1588 ± 665 mL [P < .001]) and daily maximum values of the EVLW index (EVLWImax; T24: 13.9 ± 3.7 vs 11.5 ± 3.2 mL/kg [P < .001] and T24-48: 14.4 ± 5.3 vs 12.0 ± 4.4 mL/kg [P < .001]) were significantly higher in nonsurvivors than in survivors. In multivariate regression analysis, the DFB (T24: odds ratio [OR] 1.001 [P = .016] and T24-48: OR 1.001 [P = .008]), EVLWImax (T24: OR 2.158 [P = .002] and T24-48: OR 3.277 [P = .001]), blood lactate (T24: OR 1.368 [P = .021] and T24-48: OR 4.112 [P < .001]), and central venous blood oxygen saturation (T24: OR 0.893 [P = .013] and T24-48: OR 0.780 [P = .004]) were all independently associated with the 28-day mortality. A receiver operating characteristic analysis revealed that area under the curve values of 0.82 (95% confidence interval, 0.74-0.91; P < .001) and 0.90 (95% confidence interval, 0.83-0.96; P < .001) for EVLWImax ≥ 12.5 mL/kg (T24 and T24-48) predicted a 28-day mortality with sensitivities of 88% (80%-96%) and 95% (90%-100%) and specificities of 60% (46%-74%) and 76% (63%-89%).The EVLWImax was correlated with DFB with Spearman ρ values of 0.497 (T24: P < .001) and 0.650 (T24-48: P < .001). Cox survival and regression analyses demonstrated that

  19. Using probabilistic terrorism risk modeling for regulatory benefit-cost analysis: application to the Western hemisphere travel initiative in the land environment.

    PubMed

    Willis, Henry H; LaTourrette, Tom

    2008-04-01

    This article presents a framework for using probabilistic terrorism risk modeling in regulatory analysis. We demonstrate the framework with an example application involving a regulation under consideration, the Western Hemisphere Travel Initiative for the Land Environment, (WHTI-L). First, we estimate annualized loss from terrorist attacks with the Risk Management Solutions (RMS) Probabilistic Terrorism Model. We then estimate the critical risk reduction, which is the risk-reducing effectiveness of WHTI-L needed for its benefit, in terms of reduced terrorism loss in the United States, to exceed its cost. Our analysis indicates that the critical risk reduction depends strongly not only on uncertainties in the terrorism risk level, but also on uncertainty in the cost of regulation and how casualties are monetized. For a terrorism risk level based on the RMS standard risk estimate, the baseline regulatory cost estimate for WHTI-L, and a range of casualty cost estimates based on the willingness-to-pay approach, our estimate for the expected annualized loss from terrorism ranges from $2.7 billion to $5.2 billion. For this range in annualized loss, the critical risk reduction for WHTI-L ranges from 7% to 13%. Basing results on a lower risk level that results in halving the annualized terrorism loss would double the critical risk reduction (14-26%), and basing the results on a higher risk level that results in a doubling of the annualized terrorism loss would cut the critical risk reduction in half (3.5-6.6%). Ideally, decisions about terrorism security regulations and policies would be informed by true benefit-cost analyses in which the estimated benefits are compared to costs. Such analyses for terrorism security efforts face substantial impediments stemming from the great uncertainty in the terrorist threat and the very low recurrence interval for large attacks. Several approaches can be used to estimate how a terrorism security program or regulation reduces the

  20. Addressing culture shock in first year midwifery students: Maximising the initial clinical experience.

    PubMed

    Cummins, Allison M; Catling, Christine; Hogan, Rosemarie; Homer, Caroline S E

    2014-12-01

    Many Bachelor of Midwifery students have not had any exposure to the hospital setting prior to their clinical placement. Students have reported their placements are foreign to them, with a specialised confusing 'language'. It is important to provide support to students to prevent culture shock that may lead to them leaving the course. To assist first year midwifery students with the transition into clinical practice by providing a preparatory workshop. An action research project developed resources for a workshop held prior to students' first clinical placement. Four phases were held: Phase one involved holding discussion groups with students returning from clinical practice; Phase two was the creation of vodcasts; Phase three was integration of resources into the clinical subject and phase four was the evaluation and reflection on the action research project. Evaluations of the workshops were undertaken through surveying the students after they returned from their clinical placement. A descriptive analysis of the evaluations was performed. Students rated the workshop, vodcasts and the simulated handover positively. Further recommendations were that complications of labour and birth be included in their first semester as students were unexpectedly exposed to this in their first clinical placement. The students evaluated the workshop positively in reducing the amount of culture shock experienced on the first clinical placement. In addition the students provided further recommendations of strategies that would assist with clinical placement. Copyright © 2014 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  1. Shock Initiation Experiments on PBX9501 Explosive at 150°C for Ignition and Growth Modeling

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin S.; Tarver, Craig M.; Garcia, Frank; Urtiew, Paul A.

    2006-07-01

    Shock initiation experiments on the explosive PBX9501 (95% HMX, 2.5% estane, and 2.5% nitroplasticizer by weight) were performed at 150°C to obtain in-situ pressure gauge data and Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the PBX9501 explosive with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments showed agreement with previously published data and Ignition and Growth modeling parameters were obtained with a good fit to the experimental data. This parameter set will allow accurate code predictions to be calculated for safety scenarios involving PBX9501 explosives at temperatures close to 150°C.

  2. SHOCK INITIATION EXPERIMENTS ON PBX 9501 EXPLOSIVE AT PRESSURES BELOW 3 GPa WITH ASSOCIATED IGNITION AND GROWTH MODELING

    SciTech Connect

    Chidester, S K; Thompson, D G; Vandersall, K S; Idar, D J; Tarver, C M; Garcia, F; Urtiew, P A

    2007-06-13

    Shock initiation experiments on the explosive PBX 9501 (95% HMX, 2.5% estane, and 2.5% nitroplasticizer by weight) were performed at pressures below 3 GPa to obtain in-situ pressure gauge data, run-distance-to-detonation thresholds, and Ignition and Growth modeling parameters. Propellant driven gas guns (101 mm and 155 mm) were utilized to initiate the PBX 9501 explosive with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments showed agreement with previously published data and Ignition and Growth modeling parameters were obtained with a good fit to the experimental data. This parameter set will allow accurate code predictions to be calculated for safety scenarios in the low-pressure regime (below 3 GPa) involving PBX 9501 explosive.

  3. Overview of Probabilistic Methods for SAE G-11 Meeting for Reliability and Uncertainty Quantification for DoD TACOM Initiative with SAE G-11 Division

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.

    2003-01-01

    The SAE G-11 RMSL Division and Probabilistic Methods Committee meeting during October 6-8 at the Best Western Sterling Inn, Sterling Heights (Detroit), Michigan is co-sponsored by US Army Tank-automotive & Armaments Command (TACOM). The meeting will provide an industry/government/academia forum to review RMSL technology; reliability and probabilistic technology; reliability-based design methods; software reliability; and maintainability standards. With over 100 members including members with national/international standing, the mission of the G-11's Probabilistic Methods Committee is to "enable/facilitate rapid deployment of probabilistic technology to enhance the competitiveness of our industries by better, faster, greener, smarter, affordable and reliable product development."

  4. Appropriate evaluation and treatment of heart failure patients after implantable cardioverter-defibrillator discharge: time to go beyond the initial shock.

    PubMed

    Mishkin, Joseph D; Saxonhouse, Sherry J; Woo, Gregory W; Burkart, Thomas A; Miles, William M; Conti, Jamie B; Schofield, Richard S; Sears, Samuel F; Aranda, Juan M

    2009-11-24

    Multiple clinical trials support the use of implantable cardioverter-defibrillators (ICDs) for prevention of sudden cardiac death in patients with heart failure (HF). Unfortunately, several complicating issues have arisen from the universal use of ICDs in HF patients. An estimated 20% to 35% of HF patients who receive an ICD for primary prevention will experience an appropriate shock within 1 to 3 years of implant, and one-third of patients will experience an inappropriate shock. An ICD shock is associated with a 2- to 5-fold increase in mortality, with the most common cause being progressive HF. The median time from initial ICD shock to death ranges from 168 to 294 days depending on HF etiology and the appropriateness of the ICD therapy. Despite this prognosis, current guidelines do not provide a clear stepwise approach to managing these high-risk patients. An ICD shock increases HF event risk and should trigger a thorough evaluation to determine the etiology of the shock and guide subsequent therapeutic interventions. Several combinations of pharmacologic and device-based interventions such as adding amiodarone to baseline beta-blocker therapy, adjusting ICD sensitivity, and employing antitachycardia pacing may reduce future appropriate and inappropriate shocks. Aggressive HF surveillance and management is required after an ICD shock, as the risk of sudden cardiac death is transformed to an increased HF event risk.

  5. Effect of alcohol addition on shock-initiated formation of soot from benzene

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael; Yuan, Tony

    1988-01-01

    Soot formation in benzene-methanol and benzene-ethanol argon-diluted mixtures was studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. The experiments were performed at temperatures 1580-2250 K, pressures 2.0-3.0 bar, and total carbon atom concentrations (2.0-2.7) x 10 to the 17th atoms/cu cm. The results obtained indicate that the addition of alcohol suppresses the formation of soot from benzene at all temperatures, and that the reduction in soot yields is increased with the amount of alcohol added. The analysis of the results indicates that the suppression effect is probably due to the oxidation of soot and soot precursors by OH and the removal of hydrogen atoms by alcohol and water molecules.

  6. Unilateral pulmonary edema: a rare initial presentation of cardiogenic shock due to acute myocardial infarction.

    PubMed

    Shin, Jeong Hun; Kim, Seok Hwan; Park, Jinkyu; Lim, Young-Hyo; Park, Hwan-Cheol; Choi, Sung Il; Shin, Jinho; Kim, Kyung-Soo; Kim, Soon-Gil; Hong, Mun K; Lee, Jae Ung

    2012-02-01

    Cardiogenic unilateral pulmonary edema (UPE) is a rare clinical entity that is often misdiagnosed at first. Most cases of cardiogenic UPE occur in the right upper lobe and are caused by severe mitral regurgitation (MR). We present an unusual case of right-sided UPE in a patient with cardiogenic shock due to acute myocardial infarction (AMI) without severe MR. The patient was successfully treated by percutaneous coronary intervention and medical therapy for heart failure. Follow-up chest Radiography showed complete resolution of the UPE. This case reminds us that AMI can present as UPE even in patients without severe MR or any preexisting pulmonary disease affecting the vasculature or parenchyma of the lung.

  7. Effect of alcohol addition on shock-initiated formation of soot from benzene

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael; Yuan, Tony

    1988-01-01

    Soot formation in benzene-methanol and benzene-ethanol argon-diluted mixtures was studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. The experiments were performed at temperatures 1580-2250 K, pressures 2.0-3.0 bar, and total carbon atom concentrations (2.0-2.7) x 10 to the 17th atoms/cu cm. The results obtained indicate that the addition of alcohol suppresses the formation of soot from benzene at all temperatures, and that the reduction in soot yields is increased with the amount of alcohol added. The analysis of the results indicates that the suppression effect is probably due to the oxidation of soot and soot precursors by OH and the removal of hydrogen atoms by alcohol and water molecules.

  8. Scaling effect for HF chain chemical laser initiated by a standing shock wave

    NASA Astrophysics Data System (ADS)

    Mel'nikov, Igor V.; Stepanov, A. A.; Shcheglov, V. A.

    1994-06-01

    The scaling theory is exploited for a cw chain HF laser initiated by a stationary detonation wave. This provides us with a fast and accurate method of estimating the output parameters of the laser at different compositions of the initial mixture. The comparative analysis to numerical simulation is performed and demonstrates a reasonable degree of accuracy using our method.

  9. Shock initiation sensitivity and Hugoniot-based equation of state of Composition-B obtained using in situ electromagnetic gauging

    NASA Astrophysics Data System (ADS)

    Gibson, L.; Dattelbaum, Dana; Bartram, Brian; Sheffield, Stephen; Gustavsen, Richard; Handley, Caroline; Shock and Detonation Physics Team; Explosives Modelling Team

    2013-06-01

    Composition-B (Comp-B) is a solid cast explosive comprised of 59.5 wt% cyclotrimethylene-trinitramine (RDX), 39.5 wt% 2,4,6-trinitrotoluene (TNT), and 1 wt% wax. Its initial density depends on formulation method and as a result, the detonation properties of Comp-B have generally been studied at densities of 1.69 g/cm3 and 1.72 g/cm3. The shock initiation sensitivity (Pop-plot) of Comp-B has been reported previously; obtained using both explosively-driven wedge tests and embedded manganin gauge techniques. We describe the results of a series of gas-gun-driven plate-impact initiation experiments on Comp-B (ρ0 = 1.72 g/cm3) using embedded electromagnetic gauges to obtain in situ particle velocity wave profiles at 10 Lagrangian positions in each experiment. From the wave profiles, an unreacted Hugoniot locus, the run-distance-to-detonation, and initiation waveforms are obtained in each experiment. The results indicate that Comp-B at ρ0 = 1.72 g/cm3 is more sensitive than reported previously. Comparisons are made of the new Hugoniot states with an earlier Hugoniot-based EOS. Measurements of the detonation wave profile using photonic Doppler velocimetry are also presented and discussed in the context of ZND detonation theory.

  10. Constitutively Active Acetylcholine-Dependent Potassium Current Increases Atrial Defibrillation Threshold by Favoring Post-Shock Re-Initiation.

    PubMed

    Bingen, Brian O; Askar, Saïd F A; Neshati, Zeinab; Feola, Iolanda; Panfilov, Alexander V; de Vries, Antoine A F; Pijnappels, Daniël A

    2015-10-21

    Electrical cardioversion (ECV), a mainstay in atrial fibrillation (AF) treatment, is unsuccessful in up to 10-20% of patients. An important aspect of the remodeling process caused by AF is the constitutive activition of the atrium-specific acetylcholine-dependent potassium current (IK,ACh → IK,ACh-c), which is associated with ECV failure. This study investigated the role of IK,ACh-c in ECV failure and setting the atrial defibrillation threshold (aDFT) in optically mapped neonatal rat cardiomyocyte monolayers. AF was induced by burst pacing followed by application of biphasic shocks of 25-100 V to determine aDFT. Blocking IK,ACh-c by tertiapin significantly decreased DFT, which correlated with a significant increase in wavelength during reentry. Genetic knockdown experiments, using lentiviral vectors encoding a Kcnj5-specific shRNA to modulate IK,ACh-c, yielded similar results. Mechanistically, failed ECV was attributed to incomplete phase singularity (PS) removal or reemergence of PSs (i.e. re-initiation) through unidirectional propagation of shock-induced action potentials. Re-initiation occurred at significantly higher voltages than incomplete PS-removal and was inhibited by IK,ACh-c blockade. Whole-heart mapping confirmed our findings showing a 60% increase in ECV success rate after IK,ACh-c blockade. This study provides new mechanistic insight into failing ECV of AF and identifies IK,ACh-c as possible atrium-specific target to increase ECV effectiveness, while decreasing its harmfulness.

  11. Constitutively Active Acetylcholine-Dependent Potassium Current Increases Atrial Defibrillation Threshold by Favoring Post-Shock Re-Initiation

    PubMed Central

    Bingen, Brian O.; Askar, Saïd F. A.; Neshati, Zeinab; Feola, Iolanda; Panfilov, Alexander V.; de Vries, Antoine A. F.; Pijnappels, Daniël A.

    2015-01-01

    Electrical cardioversion (ECV), a mainstay in atrial fibrillation (AF) treatment, is unsuccessful in up to 10–20% of patients. An important aspect of the remodeling process caused by AF is the constitutive activition of the atrium-specific acetylcholine-dependent potassium current (IK,ACh → IK,ACh-c), which is associated with ECV failure. This study investigated the role of IK,ACh-c in ECV failure and setting the atrial defibrillation threshold (aDFT) in optically mapped neonatal rat cardiomyocyte monolayers. AF was induced by burst pacing followed by application of biphasic shocks of 25–100 V to determine aDFT. Blocking IK,ACh-c by tertiapin significantly decreased DFT, which correlated with a significant increase in wavelength during reentry. Genetic knockdown experiments, using lentiviral vectors encoding a Kcnj5-specific shRNA to modulate IK,ACh-c, yielded similar results. Mechanistically, failed ECV was attributed to incomplete phase singularity (PS) removal or reemergence of PSs (i.e. re-initiation) through unidirectional propagation of shock-induced action potentials. Re-initiation occurred at significantly higher voltages than incomplete PS-removal and was inhibited by IK,ACh-c blockade. Whole-heart mapping confirmed our findings showing a 60% increase in ECV success rate after IK,ACh-c blockade. This study provides new mechanistic insight into failing ECV of AF and identifies IK,ACh-c as possible atrium-specific target to increase ECV effectiveness, while decreasing its harmfulness. PMID:26487066

  12. (U) Analysis of shock-initiated PBX-9501 through porous CeO2

    SciTech Connect

    Fredenburg, David A.; Dattelbaum, Dana Mcgraw; Dennis-Koller, Darcie

    2015-07-24

    The attenuation properties of an impact initiated PBX-9501 explosive through several thicknesses of CeO2 powder is investigated. The CeO2 is at an initial porous density of 4.0 g/cm3 , roughly 55 % of theoretical maximum density. Measurements of the input (into the powder) and propagated (through the powder) wave profiles are measured using optical velocimetry. Results show a reduction of the average wave speed, CX, and peak steady-state material velocity, uP , with increasing powder thickness from 1.5 - 5.0 mm.

  13. Trans sodium crocetinate for hemorrhagic shock: effect of time delay in initiating therapy.

    PubMed

    Giassi, Lisa J; Poynter, A Kennon; Gainer, John L

    2002-12-01

    A new drug, trans sodium crocetinate (TSC), has been suggested for use in resuscitation after trauma. TSC has been shown to increase survival in a rat model of hemorrhagic shock. It also results in an increase in blood pressure and a decrease in plasma lactate levels when given immediately after hemorrhage. TSC increases whole-body oxygen consumption rates, and it is thought that its physiological effects are due to the increased oxygen availability. In fact, TSC therapy and 100% oxygen therapy show similar results when used in the same rat hemorrhage model. It has been suggested, however, that 100% oxygen therapy is effective only if begun immediately after hemorrhage. Such a window of opportunity has been said to exist for other resuscitation methods; thus, the current study is to determine if this is true for TSC. In one series of experiments, rats were bled 60% of their blood volumes and given an injection of TSC (or saline) 20 min after the hemorrhage ended. The injection was then repeated four times, spaced 10 min apart. Thirty minutes after the final injection, the animals were infused with normal saline. TSC again restored blood pressure and other parameters, but repeated dosing was necessary. In addition, this therapy prevented an increase in liver enzymes (transaminases) as measured 24 h after hemorrhage. In a second study, rats were bled 60% of their blood volumes, followed by a second bleeding (an additional 10%) done 10 min later. No subsequent fluid was infused in this group. The majority of the animals treated with TSC after the second hemorrhage survived, whereas the controls did not. These data suggest that TSC is effective when given after a delay. The dosing regimen must be different, however, presumably because of the blood acidosis that develops after hemorrhage. The results also suggest that TSC may be protective against secondary liver damage resulting from trauma.

  14. Initialization shock in decadal hindcasts due to errors in wind stress over the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Pohlmann, Holger; Kröger, Jürgen; Greatbatch, Richard; Müller, Wolfgang

    2017-04-01

    Low prediction skill in the tropical Pacific is a common problem in decadal prediction systems, especially for lead years 2-5 which, in many systems, is lower than in uninitialized experiments. On the other hand, the tropical Pacific is of almost worldwide climate relevance through its teleconnections with other tropical and extratropical regions and also of importance for global mean temperature. Understanding the causes of the reduced prediction skill is thus of major interest for decadal climate predictions. We look into the problem of reduced prediction skill by analyzing the Max Planck Institute Earth System Model (MPI-ESM) decadal hindcasts for the fifth phase of the Climate Model Intercomparison Project and performing a sensitivity experiment in which hindcasts are initialized from a model run forced only by surface wind stress. In both systems, sea surface temperature variability in the tropical Pacific is successfully initialized, but most skill is lost at lead years 2-5. Utilizing the sensitivity experiment enables us to pin down the reason for the reduced prediction skill in MPI-ESM to errors in wind stress used for the initialization. A spurious trend in the wind stress forcing displaces the equatorial thermocline in MPI-ESM unrealistically. When the climate model is then switched into its forecast mode, the recovery process triggers artificial El Niño and La Niña events at the surface. Our results demonstrate the importance of realistic wind stress products for the initialization of decadal predictions.

  15. The Initial Stage of the International Sojourn: Excitement or Culture Shock?

    ERIC Educational Resources Information Center

    Brown, Lorraine; Holloway, Immy

    2008-01-01

    This paper presents findings from an ethnographic study of the adjustment journey of international postgraduate students at a university in the South of England, which involved interviews and participant observation over a 12-month academic year. It was discovered that the initial stage of the sojourn was not characterised by feelings of…

  16. Initialization shock in decadal hindcasts due to errors in wind stress over the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Pohlmann, Holger; Kröger, Jürgen; Greatbatch, Richard J.; Müller, Wolfgang A.

    2016-12-01

    Low prediction skill in the tropical Pacific is a common problem in decadal prediction systems, especially for lead years 2-5 which, in many systems, is lower than in uninitialized experiments. On the other hand, the tropical Pacific is of almost worldwide climate relevance through its teleconnections with other tropical and extratropical regions and also of importance for global mean temperature. Understanding the causes of the reduced prediction skill is thus of major interest for decadal climate predictions. We look into the problem of reduced prediction skill by analyzing the Max Planck Institute Earth System Model (MPI-ESM) decadal hindcasts for the fifth phase of the Climate Model Intercomparison Project and performing a sensitivity experiment in which hindcasts are initialized from a model run forced only by surface wind stress. In both systems, sea surface temperature variability in the tropical Pacific is successfully initialized, but most skill is lost at lead years 2-5. Utilizing the sensitivity experiment enables us to pin down the reason for the reduced prediction skill in MPI-ESM to errors in wind stress used for the initialization. A spurious trend in the wind stress forcing displaces the equatorial thermocline in MPI-ESM unrealistically. When the climate model is then switched into its forecast mode, the recovery process triggers artificial El Niño and La Niña events at the surface. Our results demonstrate the importance of realistic wind stress products for the initialization of decadal predictions.

  17. Effect of Electric Fields of the Reaction Rates in Shock Initiating and Detonating Solid Explosives

    DTIC Science & Technology

    2012-01-01

    kV, 5 kJ was applied. Using the LANL prism test, Ramsay [19] showed that the failure thicknesses of PBX 9502 (95% TATB/5% Kel-F) wedges are reduced...preheating unconfined PBX 9502 wedges to 173˚C or 250˚C. A higher initial temperature shortens the overall reaction time. Garcia and Tarver [21...applied the 3D PBX 9502 Ignition and Growth reactive flow model to unconfined, confined, and preheated prism tests. To obtain a calculated failure

  18. A direction sensitive detonation model for granular to continuum scale for shock initiation of pentaerythritol tetranitrate single crystal in multi-dimensions

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hong; Yoh, Jack J.

    2015-08-01

    Experiments have shown that the shock sensitivity of a single crystal pentaerythritol tetranitrate (PETN) has a strong dependence on the crystal orientation. The ignition and growth (I & G) model has been widely used in studies of the shock initiation of energetic materials while the model is independent of the direction of compression, and thus it is impossible to address anisotropic sensitivity of such material. In this paper, we base our new model in the recently proposed reactive flow concept that incorporates an anisotropic ignition mechanism that depends on both strain and strain rate which are given in the general tensor notation. A multi-dimensional simulation is performed in order to illustrate the strain dependence of the initiation of a PETN pellet. The model is applicable to any anisotropic energetic material subjected to a shock impact, not limited to single crystal PETN.

  19. The Panchromatic Hubble Andromeda Treasury. IV. A Probabilistic Approach to Inferring the High-mass Stellar Initial Mass Function and Other Power-law Functions

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Fouesneau, Morgan; Hogg, David W.; Rix, Hans-Walter; Dolphin, Andrew E.; Dalcanton, Julianne J.; Foreman-Mackey, Daniel T.; Lang, Dustin; Johnson, L. Clifton; Beerman, Lori C.; Bell, Eric F.; Gordon, Karl D.; Gouliermis, Dimitrios; Kalirai, Jason S.; Skillman, Evan D.; Williams, Benjamin F.

    2013-01-01

    We present a probabilistic approach for inferring the parameters of the present-day power-law stellar mass function (MF) of a resolved young star cluster. This technique (1) fully exploits the information content of a given data set; (2) can account for observational uncertainties in a straightforward way; (3) assigns meaningful uncertainties to the inferred parameters; (4) avoids the pitfalls associated with binning data; and (5) can be applied to virtually any resolved young cluster, laying the groundwork for a systematic study of the high-mass stellar MF (M >~ 1 M ⊙). Using simulated clusters and Markov Chain Monte Carlo sampling of the probability distribution functions, we show that estimates of the MF slope, α, are unbiased and that the uncertainty, Δα, depends primarily on the number of observed stars and on the range of stellar masses they span, assuming that the uncertainties on individual masses and the completeness are both well characterized. Using idealized mock data, we compute the theoretical precision, i.e., lower limits, on α, and provide an analytic approximation for Δα as a function of the observed number of stars and mass range. Comparison with literature studies shows that ~3/4 of quoted uncertainties are smaller than the theoretical lower limit. By correcting these uncertainties to the theoretical lower limits, we find that the literature studies yield langαrang = 2.46, with a 1σ dispersion of 0.35 dex. We verify that it is impossible for a power-law MF to obtain meaningful constraints on the upper mass limit of the initial mass function, beyond the lower bound of the most massive star actually observed. We show that avoiding substantial biases in the MF slope requires (1) including the MF as a prior when deriving individual stellar mass estimates, (2) modeling the uncertainties in the individual stellar masses, and (3) fully characterizing and then explicitly modeling the completeness for stars of a given mass. The precision on MF

  20. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. IV. A PROBABILISTIC APPROACH TO INFERRING THE HIGH-MASS STELLAR INITIAL MASS FUNCTION AND OTHER POWER-LAW FUNCTIONS

    SciTech Connect

    Weisz, Daniel R.; Fouesneau, Morgan; Dalcanton, Julianne J.; Clifton Johnson, L.; Beerman, Lori C.; Williams, Benjamin F.; Hogg, David W.; Foreman-Mackey, Daniel T.; Rix, Hans-Walter; Gouliermis, Dimitrios; Dolphin, Andrew E.; Lang, Dustin; Bell, Eric F.; Gordon, Karl D.; Kalirai, Jason S.; Skillman, Evan D.

    2013-01-10

    We present a probabilistic approach for inferring the parameters of the present-day power-law stellar mass function (MF) of a resolved young star cluster. This technique (1) fully exploits the information content of a given data set; (2) can account for observational uncertainties in a straightforward way; (3) assigns meaningful uncertainties to the inferred parameters; (4) avoids the pitfalls associated with binning data; and (5) can be applied to virtually any resolved young cluster, laying the groundwork for a systematic study of the high-mass stellar MF (M {approx}> 1 M {sub Sun }). Using simulated clusters and Markov Chain Monte Carlo sampling of the probability distribution functions, we show that estimates of the MF slope, {alpha}, are unbiased and that the uncertainty, {Delta}{alpha}, depends primarily on the number of observed stars and on the range of stellar masses they span, assuming that the uncertainties on individual masses and the completeness are both well characterized. Using idealized mock data, we compute the theoretical precision, i.e., lower limits, on {alpha}, and provide an analytic approximation for {Delta}{alpha} as a function of the observed number of stars and mass range. Comparison with literature studies shows that {approx}3/4 of quoted uncertainties are smaller than the theoretical lower limit. By correcting these uncertainties to the theoretical lower limits, we find that the literature studies yield ({alpha}) = 2.46, with a 1{sigma} dispersion of 0.35 dex. We verify that it is impossible for a power-law MF to obtain meaningful constraints on the upper mass limit of the initial mass function, beyond the lower bound of the most massive star actually observed. We show that avoiding substantial biases in the MF slope requires (1) including the MF as a prior when deriving individual stellar mass estimates, (2) modeling the uncertainties in the individual stellar masses, and (3) fully characterizing and then explicitly modeling the

  1. Shock-induced initiation and energy release behavior of polymer bonded explosive materials

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Cai, Xuanming; Hypervelocity Impact Research Center Team

    2015-06-01

    In this paper, an initially sealed vented test chamber and a test projectile with a recessed hole were designed to complete the experiments. As the initiation takes place on the interior, great amounts of thermo-chemical energy gases were vented through a hole formed by the penetration process. The gas pressure inside the chamber was used to evaluate the energy release behavior of polymer bonded explosive materials. The impact pressure of the projectile was measured by the PVDF sensors. Based on the earlier work that the constitutive equation of polymer bonded explosive materials was established, the impact pressure of the projectile was obtained through the numerical simulation. The experimental results reveal that the impact pressure is significant to the energy release behavior, and in some extent the gas pressure improves with the velocity of the projectile. The impact pressure obtained by the experiments is comparing with which obtained through the numerical simulation, and the results of the comparing is that the value of them are closely relative. The experimental results also indicate that the constitutive equation of polymer bonded explosive materials used in the numerical simulation can correctly describe the mechanical behavior of PBX materials.

  2. Uncontrolled hemorrhagic shock results in a hypercoagulable state modulated by initial fluid resuscitation regimens.

    PubMed

    Riha, Gordon M; Kunio, Nicholas R; Van, Philbert Y; Kremenevskiy, Igor; Anderson, Ross; Hamilton, Gregory J; Differding, Jerome A; Schreiber, Martin A

    2013-07-01

    Previous studies have shown large-volume resuscitation modulates coagulopathy and inflammation. Our objective was to analyze the effects of initial bolus fluids used in military and civilian settings on coagulation and inflammation in a prospective, randomized, blinded trial of resuscitation of uncontrolled hemorrhage. Fifty swine were anesthetized, intubated, and ventilated and had monitoring lines placed. A Grade V liver injury was performed followed by 30 minutes of hemorrhage. After 30 minutes, the liver was packed, and randomized fluid resuscitation was initiated during a 12-minute period with 2 L of normal saline, 2 L of lactated Ringer's solution, 250 mL of 7.5% saline with 3% Dextran, 500 mL of Hextend, or no fluid (NF). Animals were monitored for 2 hours after injury. Thrombelastograms (TEGs), prothrombin time (PT), partial thromboplastin time, fibrinogen as well as serum interleukin 6, interleukin 8, and tumor necrosis factor α levels were drawn at baseline and after 1 hour and 2 hours. The NF group had less posttreatment blood loss compared with other groups (p < 0.01). Blood loss was similar in the other groups. TEG R values in each group decreased from baseline at 1 and 2 hours (p < 0.02). The groups receiving 2 L of normal saline, 250 mL of 7.5% saline with 3% Dextran, or 500 mL of Hextend had lower TEG maximum amplitude values compared with NF group (p < 0.02). All fluids except lactated Ringer's solution resulted in significant increases in PT compared with NF, whereas all fluids resulted in significant decreases in fibrinogen compared with NF (p < 0.02). Fluid resuscitation groups as well as NF group demonstrated significant increases in inflammatory cytokines from baseline to 1 hour and baseline to 2 hours. There were no significant differences in inflammatory cytokines between groups at 2 hours. Withholding fluid resulted in the least significant change in PT, fibrinogen, and maximum amplitude and in the lowest posttreatment blood loss

  3. Physiopathology of shock

    PubMed Central

    Bonanno, Fabrizio Giuseppe

    2011-01-01

    Shock syndromes are of three types: cardiogenic, hemorrhagic and inflammatory. Hemorrhagic shock has its initial deranged macro-hemodynamic variables in the blood volume and venous return. In cardiogenic shock there is a primary pump failure that has cardiac output/mean arterial pressure as initial deranged variables. In Inflammatory Shock it is the microcirculation that is mainly affected, while the initial deranged macrocirculation variable is the total peripheral resistance hit by systemic inflammatory response. PMID:21769210

  4. Influence of Small Change of Porosity on Shock Initiation of an HMX/TATB/Viton Explosive and Ignition and Growth Modeling

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Hussain, Tariq; Huang, Fenglei; Duan, Zhuoping

    2016-07-01

    All solid explosives in practical use are more or less porous. Although it is known that the change in porosity affects the shock sensitivity of solid explosives, the effect of small changes in porosity on the sensitivity needs to be determined for safe and efficient use of explosive materials. In this study, the influence of a small change in porosity on shock initiation and the subsequent detonation growth process of a plastic-bonded explosive PBXC03, composed of 87% cyclotetramethylene-tetranitramine (HMX), 7% triaminotrinitrobenzene (TATB), and 6% Viton by weight, are investigated by shock to detonation transition experiments. Two explosive formulations of PBXC03 having the same initial grain sizes pressed to 98 and 99% of theoretical mass density (1.873 g/cm3) respectively are tested using the in situ manganin piezoresistive pressure gauge technique. Numerical modeling of the experiments is performed using an ignition and growth reactive flow model. Reasonable agreement with the experimental results is obtained by increasing the growth term coefficient in the Lee-Tarver ignition and growth model with porosity. Combining the experimental and simulation results shows that the shock sensitivity increases with porosity for PBXC03 having the same explosive initial grain sizes for the pressures (about 3.1 GPa) applied in the experiments.

  5. Heat shock protein DNAJB8 is a novel target for immunotherapy of colon cancer-initiating cells.

    PubMed

    Morita, Rena; Nishizawa, Satoshi; Torigoe, Toshihiko; Takahashi, Akari; Tamura, Yasuaki; Tsukahara, Tomohide; Kanaseki, Takayuki; Sokolovskaya, Alice; Kochin, Vitaly; Kondo, Toru; Hashino, Satoshi; Asaka, Masahiro; Hara, Isao; Hirohashi, Yoshihiko; Sato, Noriyuki

    2014-04-01

    The aim of the present study was to establish cancer stem-like cell/cancer-initiating cell (CSC/CIC)-targeting immunotherapy. The CSC/CIC are thought to be essential for tumor maintenance, recurrence and distant metastasis. Therefore they are reasonable targets for cancer therapy. In the present study, we found that a heat shock protein (HSP) 40 family member, DnaJ (Hsp40) homolog, subfamily B, member 8 (DNAJB8), is preferentially expressed in CSC/CIC derived from colorectal cancer (CRC) cells rather than in non-CSC/CIC. Overexpression of DNAJB8 enhanced the expression of stem cell markers and tumorigenicity, indicating that DNAJB8 has a role in CRC CSC/CIC. A DNAJB8-specific cytotoxic T lymphocyte (CTL) response could be induced by a DNAJB8-derived antigenic peptide. A CTL clone specific for DNAJB8 peptide showed higher killing activity to CRC CSC/CIC compared with non-CSC/CIC, and CTL adoptive transfer into CRC CSC/CIC showed an antitumor effect in vivo. Taken together, the results indicate that DNAJB8 is expressed and has role in CRC CSC/CIC and that DNAJB8 is a novel target of CRC CSC/CIC-targeting immunotherapy.

  6. Probabilistic Techniques for Phrase Extraction.

    ERIC Educational Resources Information Center

    Feng, Fangfang; Croft, W. Bruce

    2001-01-01

    This study proposes a probabilistic model for automatically extracting English noun phrases for indexing or information retrieval. The technique is based on a Markov model, whose initial parameters are estimated by a phrase lookup program with a phrase dictionary, then optimized by a set of maximum entropy parameters. (Author/LRW)

  7. Ignition and Growth Reactive Flow Modeling of Shock Initiation of PBX 9502 at -55∘C and -196∘C

    NASA Astrophysics Data System (ADS)

    Chidester, Steven; Tarver, Craig

    2015-06-01

    Recently Gustavsen et al. and Hollowell et al. published two stage gas gun embedded particle velocity gauge experiments on PBX 9502 (95%TATB, 5% Kel-F800) cooled to -55°C and -196°C, respectively. At -196°C, PBX 9502 was shown to be much less shock sensitive than at -55°C, but it did transition to detonation. Previous Ignition and Growth model parameters for shock initiation of PBX 9502 at -55°C are modified based on the new data, and new parameters for -196°C PBX 9502 are created to accurately simulate the measured particle velocity histories and run distances to detonation versus shock pressures. This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  8. Association between Initial Fluid Choice and Subsequent In-hospital Mortality during the Resuscitation of Adults with Septic Shock.

    PubMed

    Raghunathan, Karthik; Bonavia, Anthony; Nathanson, Brian H; Beadles, Christopher A; Shaw, Andrew D; Brookhart, M Alan; Miller, Timothy E; Lindenauer, Peter K

    2015-12-01

    Currently, guidelines recommend initial resuscitation with intravenous (IV) crystalloids during severe sepsis/septic shock. Albumin is suggested as an alternative. However, fluid mixtures are often used in practice, and it is unclear whether the specific mixture of IV fluids used impacts outcomes. The objective of this study is to test the hypothesis that the specific mixture of IV fluids used during initial resuscitation, in severe sepsis, is associated with important in-hospital outcomes. Retrospective cohort study includes patients with severe sepsis who were resuscitated with at least 2 l of crystalloids and vasopressors by hospital day 2, patients who had not undergone any major surgical procedures, and patients who had a hospital length of stay (LOS) of at least 2 days. Inverse probability weighting, propensity score matching, and hierarchical regression methods were used for risk adjustment. Patients were grouped into four exposure categories: recipients of isotonic saline alone ("Sal" exclusively), saline in combination with balanced crystalloids ("Sal + Bal"), saline in combination with colloids ("Sal + Col"), or saline in combination with balanced crystalloids and colloids ("Sal + Bal + Col"). In-hospital mortality was the primary outcome, and hospital LOS and costs per day (among survivors) were secondary outcomes. In risk-adjusted Inverse Probability Weighting analyses including 60,734 adults admitted to 360 intensive care units across the United States between January 2006 and December 2010, in-hospital mortality was intermediate in the Sal group (20.2%), lower in the Sal + Bal group (17.7%, P < 0.001), higher in the Sal + Col group (24.2%, P < 0.001), and similar in the Sal + Bal + Col group (19.2%, P = 0.401). In pairwise propensity score-matched comparisons, the administration of balanced crystalloids by hospital day 2 was consistently associated with lower mortality, whether colloids were used (relative risk, 0.84; 95% CI, 0.76 to 0.92) or not

  9. Geometrical shock dynamics of fast magnetohydrodynamic shocks

    NASA Astrophysics Data System (ADS)

    Mostert, Wouter; Pullin, Dale I.; Samtaney, Ravi; Wheatley, Vincent

    2016-11-01

    We extend the theory of geometrical shock dynamics (GSD, Whitham 1958), to two-dimensional fast magnetohydrodynamic (MHD) shocks moving in the presence of nonuniform magnetic fields of general orientation and strength. The resulting generalized area-Mach number rule is adapted to MHD shocks moving in two spatial dimensions. A partially-spectral numerical scheme developed from that of Schwendeman (1993) is described. This is applied to the stability of plane MHD fast shocks moving into a quiescent medium containing a uniform magnetic field whose field lines are inclined to the plane-shock normal. In particular, we consider the time taken for an initially planar shock subject to an initial perturbed magnetosonic Mach number distribution, to first form shock-shocks. Supported by KAUST OCRF Award No. URF/1/2162-01.

  10. Probabilistic progressive buckling of trusses

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Chamis, Christos C.

    1991-01-01

    A three-bay, space, cantilever truss is probabilistically evaluated to describe progressive buckling and truss collapse in view of the numerous uncertainties associated with the structural, material, and load variables (primitive variables) that describe the truss. Initially, the truss is deterministically analyzed for member forces, and member(s) in which the axial force exceeds the Euler buckling load are identified. These member(s) are then discretized with several intermediate nodes and a probabilistic buckling analysis is performed on the truss to obtain its probabilistic buckling loads and respective mode shapes. Furthermore, sensitivities associated with the uncertainties in the primitive variables are investigated, margin of safety values for the truss are determined, and truss end node displacements are noted. These steps are repeated by sequentially removing the buckled member(s) until onset of truss collapse is reached. Results show that this procedure yields an optimum truss configuration for a given loading and for a specified reliability.

  11. Probabilistic progressive buckling of trusses

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Chamis, Christos C.

    1994-01-01

    A three-bay, space, cantilever truss is probabilistically evaluated to describe progressive buckling and truss collapse in view of the numerous uncertainties associated with the structural, material, and load variables that describe the truss. Initially, the truss is deterministically analyzed for member forces, and members in which the axial force exceeds the Euler buckling load are identified. These members are then discretized with several intermediate nodes, and a probabilistic buckling analysis is performed on the truss to obtain its probabilistic buckling loads and the respective mode shapes. Furthermore, sensitivities associated with the uncertainties in the primitive variables are investigated, margin of safety values for the truss are determined, and truss end node displacements are noted. These steps are repeated by sequentially removing buckled members until onset of truss collapse is reached. Results show that this procedure yields an optimum truss configuration for a given loading and for a specified reliability.

  12. Shock initiation of the tri-amino-tri-nitro-benzene based explosive PBX 9502 cooled to -55 bold">°C

    NASA Astrophysics Data System (ADS)

    Gustavsen, Richard L.; Gehr, Russell J.; Bucholtz, Scott M.; Alcon, Robert R.; Bartram, Brian D.

    2012-10-01

    We report a series of shock initiation experiments on PBX 9502 cooled to -55 °C. PBX 9502 consists of 95% dry aminated tri-amino-tri-nitro-benzene (TATB) and 5% poly-chloro-trifluoro-ethylene5 (Kel-F 800) binder. PBX 9502 samples were shock initiated by projectile impact from a two stage gas gun. Buildup to detonation was measured with 10 or more particle velocity gauges embedded at different depths in the sample. Three shock wave trackers measured the position of the shock front with time. Particle velocity vs. time wave-profiles and coordinates for onset of detonation were obtained as a function of the impact stress or pressure. PBX 9502 sample temperatures were monitored using type-E thermocouples, two inside the sample and two on the sample surface. Additional thermocouples were mounted on other parts of the cooling apparatus. Wave profiles from embedded gauges are qualitatively similar to those observed at 23 °C. However, at -55 °C, PBX 9502 is much less sensitive than at 23 °C. For example, at an inpact stress of 15.4 GPa, the distance to detonation at -55 °C is 7.8 mm. At 23 °C, the distance is 4.3 mm.

  13. Dynamic Responses and Initial Decomposition under Shock Loading: A DFTB Calculation Combined with MSST Method for β-HMX with Molecular Vacancy.

    PubMed

    He, Zheng-Hua; Chen, Jun; Ji, Guang-Fu; Liu, Li-Min; Zhu, Wen-Jun; Wu, Qiang

    2015-08-20

    Despite extensive efforts on studying the decomposition mechanism of HMX under extreme condition, an intrinsic understanding of mechanical and chemical response processes, inducing the initial chemical reaction, is not yet achieved. In this work, the microscopic dynamic response and initial decomposition of β-HMX with (1 0 0) surface and molecular vacancy under shock condition, were explored by means of the self-consistent-charge density-functional tight-binding method (SCC-DFTB) in conjunction with multiscale shock technique (MSST). The evolutions of various bond lengths and charge transfers were analyzed to explore and understand the initial reaction mechanism of HMX. Our results discovered that the C-N bond close to major axes had less compression sensitivity and higher stretch activity. The charge was transferred mainly from the N-NO2 group along the minor axes and H atom to C atom during the early compression process. The first reaction of HMX primarily initiated with the fission of the molecular ring at the site of the C-N bond close to major axes. Further breaking of the molecular ring enhanced intermolecular interactions and promoted the cleavage of C-H and N-NO2 bonds. More significantly, the dynamic response behavior clearly depended on the angle between chemical bond and shock direction.

  14. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    PubMed

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  15. Shock initiation sensitivity and Hugoniot-based equation of state of Composition B obtained using in situ electromagnetic gauging

    NASA Astrophysics Data System (ADS)

    Gibson, L. L.; Dattelbaum, D. M.; Bartram, B. D.; Sheffield, S. A.; Gustavsen, R. L.; Brown, G. W.; Sandstrom, M. M.; Giambra, A. M.; Handley, C. A.

    2014-05-01

    A series of gas gun-driven plate impact experiments were performed on vacuum melt-cast Composition B to obtain new Hugoniot states and shock sensitivity (run-distance-to-detonation) information. The Comp B (ρ0 = 1.713 g/cm3) consisted of 59.5% RDX, 39.5% TNT, and 1% wax, with ~ 6.5% HMX in the RDX. The measured Hugoniot states were found to be consistent with earlier reports, with the compressibility on the shock adiabat softer than that of a 63% RDX material reported by Marsh.[4] The shock sensitivity was found to be more sensitive (shorter run distance to detonation at a given shock input condition) than earlier reports for Comp B-3 and a lower density (1.68-1.69 g/cm3) Comp B formulation. The reactive flow during the shock-to-detonation transition was marked by heterogeneous, hot spot-driven growth both in and behind the leading shock front.

  16. Decomposition of some polynitro arenes initiated by heat and shock Part II: Several N-(2,4,6-trinitrophenyl)-substituted amino derivatives.

    PubMed

    Varga, Róbert; Zeman, Svatopluk; Kouba, Martin

    2006-10-11

    Samples of 2,4,6-trinitroaniline (PAM), 2,4,6-trinitro-N-(2,4,6-trinitrophenyl)aniline (DPA), N,N'-bis(2,4,6-trinitrophenyl)-3,5-dinitropyridine-2,6-diamine (PYX) and N,N',N''-tris(2,4,6-trinitrophenyl)-1,3,5-triazine-2,4,6-triamine (TPM) were exposed to heat or to shock and then analysed chromatographically (LC-UV and LC/MS). It was found that the main identified decomposition products of these two incomplete initiations are identical for each of the compounds studied. It has been stated that the chemical micro-mechanism of the primary fragmentations of their low-temperature decomposition should be the same as in the case of their initiation by shock, including fragmentation during their detonation transformation.

  17. Probabilistic cellular automata.

    PubMed

    Agapie, Alexandru; Andreica, Anca; Giuclea, Marius

    2014-09-01

    Cellular automata are binary lattices used for modeling complex dynamical systems. The automaton evolves iteratively from one configuration to another, using some local transition rule based on the number of ones in the neighborhood of each cell. With respect to the number of cells allowed to change per iteration, we speak of either synchronous or asynchronous automata. If randomness is involved to some degree in the transition rule, we speak of probabilistic automata, otherwise they are called deterministic. With either type of cellular automaton we are dealing with, the main theoretical challenge stays the same: starting from an arbitrary initial configuration, predict (with highest accuracy) the end configuration. If the automaton is deterministic, the outcome simplifies to one of two configurations, all zeros or all ones. If the automaton is probabilistic, the whole process is modeled by a finite homogeneous Markov chain, and the outcome is the corresponding stationary distribution. Based on our previous results for the asynchronous case-connecting the probability of a configuration in the stationary distribution to its number of zero-one borders-the article offers both numerical and theoretical insight into the long-term behavior of synchronous cellular automata.

  18. Unsteady triple-shock configurations and vortex contact structures initiated by the interaction of an energy source with a shock layer in gases

    NASA Astrophysics Data System (ADS)

    Azarova, O. A.; Gvozdeva, L. G.

    2016-08-01

    The effect of physical and chemical properties of the gaseous medium on the formation of triple Mach configurations and vortex contact structures and on the stagnation pressure and drag force dynamics has been studied for supersonic flows with external energy sources. For the ratio of specific heats that varies in a range of 1.1-1.4, a significant (up to 51.8%) difference has been obtained for the angles of triple-shock configurations in flows at Mach 4 past a cylindrically blunted plate. When studying the dynamics of the decreases in the stagnation pressure and drag force, it has been revealed that these effects are amplified and the vortex mechanism of drag reduction starts to prevail as the adiabatic index decreases.

  19. Decomposition of some polynitro arenes initiated by heat and shock Part I. 2,4,6-Trinitrotoluene.

    PubMed

    Varga, Róbert; Zeman, Svatopluk

    2006-05-20

    Samples of 2,4,6-trinitrotoluene (TNT) exposed to heat or to shock and residues after their detonation have been analyzed chromatographically (LC-UV and LC/MS). It was found that the main identified decomposition intermediates are identical in all the three cases. 4,6-Dinitro-2,1-benzoisoxazole and 2,4,6-trinitrobenzaldehyde are the most reactive from them. It has been stated that the chemical micro-mechanism of the primary fragmentations of shock-exposed TNT molecules and/or its detonation transformation should be the same as in the case of its low-temperature thermal decomposition.

  20. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock–induced oxidation

    PubMed Central

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D. Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-01-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4–8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.—Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock–induced oxidation. PMID:27317670

  1. A Numerical Model of CME Initiation and Shock Development for the 1998 May 2 Event: Implications for the Acceleration of GeV Protons

    NASA Astrophysics Data System (ADS)

    Roussev, I. I.; Sokolov, I. V.; Forbes, T. G.; Gombosi, T. I.; Lee, M. A.

    2004-05-01

    We present modeling results on the initiation and evolution of the coronal mass ejection which occurred on 1998 May 2 in NOAA AR8210. This is done within the framework of a global model of the solar magnetic field as it was observed by the Wilcox Solar Observatory. Our calculations are fully three-dimensional and involve compressible magnetohydrodynamics. We begin by first producing a steady-state solar wind for Carrington Rotation 1935/6. The solar eruption is initiated by slowly evolving the boundary conditions until a critical point is reached where the configuration loses mechanical equilibrium. As this point, the field erupts, and a flux rope is ejected away from the Sun, reaching a maximum speed in excess of 1,000 km/s. The shock that forms in front of the rope reaches a fast-mode Mach number in excess of 4 and a compression ratio greater than 3 by the time it has traveled a distance of 5 solar radii from the surface. Thus, by constructing a fully three-dimensional numerical model, which incorporates magnetic field data and a loss-of-equilibrium mechanism, we have been able to demonstrate that a shock can develop close to the Sun sufficiently strong to account for the energization of solar particles. For this event, diffusive-shock-acceleration theory predicts a distribution of solar energetic protons with a cut-off energy of about 10 GeV.

  2. On the applicability of probabilistics

    SciTech Connect

    Roth, P.G.

    1996-12-31

    GEAE`s traditional lifing approach, based on Low Cycle Fatigue (LCF) curves, is evolving for fracture critical powder metal components by incorporating probabilistic fracture mechanics analysis. Supporting this move is a growing validation database which convincingly demonstrates that probabilistics work given the right inputs. Significant efforts are being made to ensure the right inputs. For example, Heavy Liquid Separation (HLS) analysis has been developed to quantify and control inclusion content (1). Also, an intensive seeded fatigue program providing a model for crack initiation at inclusions is ongoing (2). Despite the optimism and energy, probabilistics are only tools and have limitations. Designing to low failure probabilities helps provide protection, but other strategies are needed to protect against surprises. A low risk design limit derived from a predicted failure distribution can lead to a high risk deployment if there are unaccounted-for deviations from analysis assumptions. Recognized deviations which are statistically quantifiable can be integrated into the probabilistic analysis (an advantage of the approach). When deviations are known to be possible but are not properly describable statistically, it may be more appropriate to maintain the traditional position of conservatively bounding relevant input parameters. Finally, safety factors on analysis results may be called for in cases where there is little experience supporting new design concepts or material applications (where unrecognized deviations might be expected).

  3. Shock initiation and detonation study on high concentration H2O2/H2O solutions using in-situ magnetic gauges

    SciTech Connect

    Sheffield, Stephen A; Dattelbaum, Dana M; Stahl, David B; Gibson, L Lee; Bartram, Brian D; Engelke, Ray

    2010-01-01

    Concentrated hydrogen peroxide (H{sub 2}O{sub 2}) has been known to detonate for many years. However, because of its reactivity and the difficulty in handling and confining it, along with the large critical diameter, few studies providing basic information about the initiation and detonation properties have been published. We are conducting a study to understand and quantify the initiation and detonation properties of highly concentrated H{sub 2}O{sub 2} using a gas-driven two-stage gun to produce well defined shock inputs. Multiple magnetic gauges are used to make in-situ measurements of the growth of reaction and subsequent detonation in the liquid. These experiments are designed to be one-dimensional to eliminate any difficulties that might be encountered with large critical diameters. Because of the concern of the reactivity of the H{sub 2}O{sub 2} with the confining materials, a remote loading system has been developed. The gun is pressurized, then the cell is filled and the experiment shot within less than three minutes. Several experiments have been completed on {approx}98 wt % H{sub 2}O{sub 2}/H{sub 2}O mixtures; homogeneous shock initiation behavior has been observed in the experiments where reaction is observed. The initial shock pressurizes and heats the mixture. After an induction time, a thermal explosion type reaction produces an evolving reactive wave that strengthens and eventually overdrives the first wave producing a detonation. From these experiments, we have determined unreacted Hugoniot points, times-to-detonation points that indicate low sensitivity (an input of 13.5 GPa produces detonation in 1 {micro}s compared to 9.5 GPa for neat nitromethane), and detonation velocities of high concentration H{sub 2}O{sub 2}/H{sub 2}O solutions of over 6.6 km/s.

  4. Learning Probabilistic Logic Models from Probabilistic Examples

    PubMed Central

    Chen, Jianzhong; Muggleton, Stephen; Santos, José

    2009-01-01

    Abstract We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples. PMID:19888348

  5. Association of Fluid Resuscitation Initiation Within 30 Minutes of Severe Sepsis and Septic Shock Recognition With Reduced Mortality and Length of Stay.

    PubMed

    Leisman, Daniel; Wie, Benjamin; Doerfler, Martin; Bianculli, Andrea; Ward, Mary Frances; Akerman, Meredith; D'Angelo, John K; Zemmel D'Amore, Jason A

    2016-09-01

    We evaluate the association of intravenous fluid resuscitation initiation within 30 minutes of severe sepsis or septic shock identification in the emergency department (ED) with inhospital mortality and hospital length of stay. We also compare intravenous fluid resuscitation initiated at various times from severe sepsis or septic shock identification's association with the same outcomes. This was a review of a prospective, observational cohort of all ED severe sepsis or septic shock patients during 13 months, captured in a performance improvement database at a single, urban, tertiary care facility (90,000 ED visits/year). The primary exposure was initiation of a crystalloid bolus at 30 mL/kg within 30 minutes of severe sepsis or septic shock identification. Secondary analysis compared intravenous fluid initiated within 30, 31 to 60, or 61 to 180 minutes, or when intravenous fluid resuscitation was initiated at greater than 180 minutes or not provided. Of 1,866 subjects, 53.6% were men, 72.5% were white, mean age was 72 years (SD 16.6 years), and mean initial lactate level was 2.8 mmol/L. Eighty-six percent of subjects were administered intravenous antibiotics within 180 minutes; 1,193 (64%) had intravenous fluid initiated within 30 minutes. Mortality was lower in the within 30 minutes group (159 [13.3%] versus 123 [18.3%]; 95% confidence interval [CI] 1.4% to 8.5%), as was median hospital length of stay (6 days [95% CI 6 to 7] versus 7 days [95% CI 7 to 8]). In multivariate regression that included adjustment for age, lactate, hypotension, acute organ dysfunction, and Emergency Severity Index score, intravenous fluid within 30 minutes was associated with lower mortality (odds ratio 0.63; 95% CI 0.46 to 0.86) and 12% shorter length of stay (hazard ratio=1.14; 95% CI 1.02 to 1.27). In secondary analysis, mortality increased with later intravenous fluid resuscitation initiation: 13.3% (≤30 minutes) versus 16.0% (31 to 60 minutes) versus 16.9% (61 to 180 minutes

  6. Shock gaseous cylinder interactions: Dynamically validated initial conditions provide excellent agreement between experiments and numerical simulations to late-intermediate time

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Zabusky, Norman J.; Peng, Gaozhu; Gupta, Sandeep

    2004-05-01

    We present numerical simulations of a planar shock interacting with a two-dimensional sulfur hexafluoride (SF6) cylinder. We have excellent agreement with experiments at two Mach numbers M=1.095 [Jacobs, Phys. Fluids A 5, 2239 (1993)] and M=1.2 [Zoldi, Ph.D. thesis, SUNY Stony Brook, 2002]. This includes intermediate scale features and quantities such as bounding box dimensions of coherent structures and velocity magnitude distribution function. Our simulations use a validated viscous FLASH [ASCI FLASH Center, "FLASH User's Guide," University of Chicago, 2002] environment initialized with a cylinder bounded by a finite-thickness interfacial transition layer of specific shape. The shape parameters are determined through iteration, beginning with the uncertain experimental images and optimizing to obtain maximal agreement with early to intermediate time evolving structures. The visiometric approach and the vortex paradigm [Hawley and Zabusky, Phys. Rev. Lett. 63, 1241 (1989)] are essential to obtain insight into this Richtmyer-Meshkov environment. We verify our recent discovery [Zabusky and Zhang, Phys. Fluids 14, 419 (2002)] that after the primary shock-deposition of vorticity by the incident shock, a vortex bilayer of large circulation magnitude grows significantly through intermediate times. The inclusion of physical viscosity allows us to examine some aspects of pre-turbulence at late-intermediate times.

  7. Effect of a relative phase of waves constituting the initial perturbation and the wave interference on the dynamics of strong-shock-driven Richtmyer-Meshkov flows

    NASA Astrophysics Data System (ADS)

    Pandian, Arun; Stellingwerf, Robert F.; Abarzhi, Snezhana I.

    2017-07-01

    While it is a common wisdom that initial conditions influence the evolution of the Richtmyer-Meshkov instability (RMI), the research in this area is focused primarily on the effects of the wavelength and amplitude of the interface perturbation. The information has hitherto largely ignored the influences on RMI dynamics of the relative phase of waves constituting a multiwave initial perturbation and the interference of the perturbation waves. In this work we systematically study the influence of the relative phase and the interference of waves constituting a multiwave initial perturbation on a strong-shock-driven Richtmyer-Meshkov unstable interface separating ideal fluids with contrast densities. We apply group theory analysis and smoothed particle hydrodynamics numerical simulations. For verification and validation of the simulations, qualitative and quantitative comparisons are performed with rigorous zeroth-order, linear, and nonlinear theories as well as with gas dynamics experiments achieving good agreement. For a sample case of a two-wave (two-mode) initial perturbation we select the first-wave amplitude enabling the maximum initial growth rate of the RMI and we vary the second-wave amplitude from 1% to 100% of the first-wave amplitude. We also vary the relative phase of the first and second waves and consider the in-phase, the antiphase and the random-phase cases. We find that the relative phase and the interference of waves are important factors of RMI dynamics influencing qualitatively and quantitatively the symmetry, morphology, and growth rate of the Richtmyer-Meshkov unstable interface, as well as the order and disorder in strong-shock-driven RMI.

  8. Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial.

    PubMed

    Hjortrup, Peter B; Haase, Nicolai; Bundgaard, Helle; Thomsen, Simon L; Winding, Robert; Pettilä, Ville; Aaen, Anne; Lodahl, David; Berthelsen, Rasmus E; Christensen, Henrik; Madsen, Martin B; Winkel, Per; Wetterslev, Jørn; Perner, Anders

    2016-11-01

    We assessed the effects of a protocol restricting resuscitation fluid vs. a standard care protocol after initial resuscitation in intensive care unit (ICU) patients with septic shock. We randomised 151 adult patients with septic shock who had received initial fluid resuscitation in nine Scandinavian ICUs. In the fluid restriction group fluid boluses were permitted only if signs of severe hypoperfusion occurred, while in the standard care group fluid boluses were permitted as long as circulation continued to improve. The co-primary outcome measures, resuscitation fluid volumes at day 5 and during ICU stay, were lower in the fluid restriction group than in the standard care group [mean differences -1.2 L (95 % confidence interval -2.0 to -0.4); p < 0.001 and -1.4 L (-2.4 to -0.4) respectively; p < 0.001]. Neither total fluid inputs and balances nor serious adverse reactions differed statistically significantly between the groups. Major protocol violations occurred in 27/75 patients in the fluid restriction group. Ischaemic events occurred in 3/75 in the fluid restriction group vs. 9/76 in the standard care group (odds ratio 0.32; 0.08-1.27; p = 0.11), worsening of acute kidney injury in 27/73 vs. 39/72 (0.46; 0.23-0.92; p = 0.03), and death by 90 days in 25/75 vs. 31/76 (0.71; 0.36-1.40; p = 0.32). A protocol restricting resuscitation fluid successfully reduced volumes of resuscitation fluid compared with a standard care protocol in adult ICU patients with septic shock. The patient-centred outcomes all pointed towards benefit with fluid restriction, but our trial was not powered to show differences in these exploratory outcomes. NCT02079402.

  9. Ignition and growth modeling of the shock initiation of PBX 9502 at -55°C and -196°C

    NASA Astrophysics Data System (ADS)

    Chidester, Steven K.; Tarver, Craig M.

    2017-01-01

    Gustavsen et al. reported the results of 26 shock initiation experiments using embedded particle velocity gauges on various lots of PBX 9502 (95% TATB/ 5% Kel-F binder) cooled to -55°C. A previously developed Ignition and Growth reactive flow model for -55°C PBX 9502 was compared to this newer data and was modified slightly. More recently, Hollowell et al. published similar data on PBX 9502 cooled to -196°C (+77K) with liquid nitrogen. An Ignition and Growth (I&G) model parameter set for -196°C PBX 9502 was developed and yielded good agreement with the measured shock initiation process and transition to detonation. Hollowell et al. also measured the interface particle velocity histories between the detonating PBX 9502 charges and various windows (PMMA, Kel-F, and LiF) placed at the rear PBX 9502 surfaces. This detonation data was accurately calculated using the -196°C PBX 9502 I&G parameters.

  10. SHOCK INITIATION EXPERIMENTS ON THE LLM-105 EXPLOSIVE RX-55-AA AT 25?C AND 150?C WITH IGNITION AND GROWTH MODELING

    SciTech Connect

    Garcia, F; Vandersall, K S; Tarver, C M; Urtiew, P A

    2007-06-15

    Shock initiation experiments on the LLM-105 based explosive RX-55-AA (95% LLM-105, 5% Viton by weight) were performed at 25 C and 150 C to obtain in-situ pressure gauge data, run-distance-to-detonation thresholds, and Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive sample with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments showed agreement at 25 C with previously published data on a similar LLM-105 based formulation RX-55-AB as well as a slight sensitivity increase at elevated temperature (150 C) as expected. Ignition and Growth modeling parameters were obtained with a reasonable fit to the experimental data.

  11. Perception of Speech Reflects Optimal Use of Probabilistic Speech Cues

    ERIC Educational Resources Information Center

    Clayards, Meghan; Tanenhaus, Michael K.; Aslin, Richard N.; Jacobs, Robert A.

    2008-01-01

    Listeners are exquisitely sensitive to fine-grained acoustic detail within phonetic categories for sounds and words. Here we show that this sensitivity is optimal given the probabilistic nature of speech cues. We manipulated the probability distribution of one probabilistic cue, voice onset time (VOT), which differentiates word initial labial…

  12. Perception of Speech Reflects Optimal Use of Probabilistic Speech Cues

    ERIC Educational Resources Information Center

    Clayards, Meghan; Tanenhaus, Michael K.; Aslin, Richard N.; Jacobs, Robert A.

    2008-01-01

    Listeners are exquisitely sensitive to fine-grained acoustic detail within phonetic categories for sounds and words. Here we show that this sensitivity is optimal given the probabilistic nature of speech cues. We manipulated the probability distribution of one probabilistic cue, voice onset time (VOT), which differentiates word initial labial…

  13. On peculiarities of near-threshold initiation of powder density explosive by air shock wave and by solid impactor

    NASA Astrophysics Data System (ADS)

    Kashkarov, AO; Ershov, AP; Pruuel, ER

    2016-10-01

    The features of near-threshold mode of initiating by gas-tight piston and high- enthalpy gas flow was evaluated for a powder density explosive PETN. Both methods lead to the development of detonation in about 10 μs time. The synchrotron radiation diagnostics have shown that the initial stages of the process were significantly different, that diversity being caused by the influence of the gas flow in the pores of the charge. In this work, the effect of the gas flow on the mode of initiation was studied experimentally.

  14. Does an infrasonic acoustic shock wave resonance of the manganese 3+ loaded/copper depleted prion protein initiate the pathogenesis of TSE?

    PubMed

    Purdey, Mark

    2003-06-01

    Intensive exposures to natural and artificial sources of infrasonic acoustic shock (tectonic disturbances, supersonic aeroplanes, etc.) have been observed in ecosystems supporting mammalian populations that are blighted by clusters of traditional and new variant strains of transmissible spongiform encephalopathy (TSE). But TSEs will only emerge in those 'infrasound-rich' environments which are simultaneously influenced by eco-factors that induce a high manganese (Mn)/low copper (Cu)-zinc (Zn) ratio in brains of local mammalian populations. Since cellular prion protein (PrPc) is a cupro-protein expressed throughout the circadian mediated pathways of the body, it is proposed that PrP's Cu component performs a role in the conduction and distribution of endogenous electromagnetic energy; energy that has been transduced from incoming ultraviolet, acoustic, geomagnetic radiations. TSE pathogenesis is initiated once Mn substitutes at the vacant Cu domain on PrPc and forms a nonpathogenic, protease resistant, 'sleeping' prion. A second stage of pathogenesis comes into play once a low frequency wave of infrasonic shock metamorphoses the piezoelectric atomic structure of the Mn 3+ component of the prion, thereby 'priming' the sleeping prion into its fully fledged, pathogenic TSE isoform - where the paramagnetic status of the Mn 3+ atom is transformed into a stable ferrimagnetic lattice work, due to the strong electron-phonon coupling resulting from the dynamic 'Jahn-Teller' type distortions of the oxygen octahedra specific to the trivalent Mn species. The so called 'infectivity' of the prion is a misnomer and should be correctly defined as the contagious field inducing capacity of the ferrimagnetic Mn 3+ component of the prion; which remains pathogenic at all temperatures below the 'curie point'. A progressive domino-like 'metal to ligand to metal' ferrimagnetic corruption of the conduits of electromagnetic superexchange is initiated. The TSE diseased brain can be likened to

  15. [Anaphylactic shock].

    PubMed

    Müller-Werdan, U; Werdan, K

    2000-02-25

    IgE-dependent and IgE-independent hypersensitivity reactions, the latter due to physical, chemical or hyperosmolar stimuli, may evolve as anaphylaxis or an anaphylactoid reaction, by an escalating release of mediators from mast cells and basophils. Without immediate treatment, anaphylaxis goes along with substantial morbidity (shock, multiple organ failure) and mortality; within minutes this explosive clinical response can be fatal. The severity of anaphylactic/anaphylactoid reactions is graded from stages 0 to IV in order to guide the management of this disease, stage III corresponding to anaphylactic shock. Severe anaphylactic reactions may take a progressive course despite adequate therapy; even in the case of an initial favourable response to treatment measures life-threatening symptoms may recur; there may be late-phase reactions 6 to 12 hours after the initial reaction. For the initial emergency management a differentiation between IgE-mediated and IgE-independent anaphylactoid reactions is not required. These are the pertinent principles of therapy in hypotensive and hypoxic patients: removal of the likely noxious agent at the site of introduction, provision of a patent airway, 100% oxygen supplementation, intravenous fluid therapy and pharmacological support with catecholamines. After primary care the monitoring and therapy of the patient with anaphylactic shock has to be continued on the intensive care unit. Guidelines for management of acute anaphylaxis referring to both the stage of disease including shock and the main clinical manifestation (cutaneous, pulmonary, cardiovascular) have been established by a German interdisciplinary consensus conference and were published in 1994; consensus guidelines for emergency medical treatment have been communicated by the ILCOR (1997) and the Project Team of the Resuscitation Council (UK) (1999).

  16. Radiative Shock Waves In Emerging Shocks

    NASA Astrophysics Data System (ADS)

    Drake, R. Paul; Doss, F.; Visco, A.

    2011-05-01

    In laboratory experiments we produce radiative shock waves having dense, thin shells. These shocks are similar to shocks emerging from optically thick environments in astrophysics in that they are strongly radiative with optically thick shocked layers and optically thin or intermediate downstream layers through which radiation readily escapes. Examples include shocks breaking out of a Type II supernova (SN) and the radiative reverse shock during the early phases of the SN remnant produced by a red supergiant star. We produce these shocks by driving a low-Z plasma piston (Be) at > 100 km/s into Xe gas at 1.1 atm. pressure. The shocked Xe collapses to > 20 times its initial density. Measurements of structure by radiography and temperature by several methods confirm that the shock wave is strongly radiative. We observe small-scale perturbations in the post-shock layer, modulating the shock and material interfaces. We describe a variation of the Vishniac instability theory of decelerating shocks and an analysis of associated scaling relations to account for the growth of these perturbations, identify how they scale to astrophysical systems such as SN 1993J, and consider possible future experiments. Collaborators in this work have included H.F. Robey, J.P. Hughes, C.C. Kuranz, C.M. Huntington, S.H. Glenzer, T. Doeppner, D.H. Froula, M.J. Grosskopf, and D.C. Marion ________________________________ * Supported by the US DOE NNSA under the Predictive Sci. Academic Alliance Program by grant DE-FC52-08NA28616, the Stewardship Sci. Academic Alliances program by grant DE-FG52-04NA00064, and the Nat. Laser User Facility by grant DE-FG03-00SF22021.

  17. Age-specific differences in prognostic significance of rhythm conversion from initial non-shockable to shockable rhythm and subsequent shock delivery in out-of-hospital cardiac arrest.

    PubMed

    Funada, Akira; Goto, Yoshikazu; Tada, Hayato; Teramoto, Ryota; Shimojima, Masaya; Hayashi, Kenshi; Yamagishi, Masakazu

    2016-11-01

    Early rhythm conversion from an initial non-shockable to a shockable rhythm and subsequent shock delivery in patients with out-of-hospital cardiac arrest (OHCA) has been associated with favourable neurological outcome (Cerebral Performance Category score 1 or 2; CPC 1-2). We hypothesized that the prognostic significance of rhythm conversion and subsequent shock delivery differs by age and time from initiation of cardiopulmonary resuscitation (CPR) by emergency medical service (EMS) providers to first defibrillation (shock delivery time). We analysed 430,443 OHCA patients with an initial non-shockable rhythm using a prospective Japanese Utstein-style database from 2011 to 2014. The primary endpoint was 1-month CPC 1-2. Multivariate logistic regression revealed that rhythm conversion and subsequent shock delivery is positively associated with 1-month CPC 1-2: the adjusted odds ratio was 6.09 (95% confidence interval: 3.65-9.75) for shock delivery time <10min and 3.34 (2.58-4.27) for 10-19min in patients aged 18-64 years, and 3.16 (1.45-6.09) for <10min and 2.17 (1.51-3.03) for 10-19min in patients aged 65-74 years. However, it is negatively associated with 1-month CPC 1-2 for shock delivery time of 20-59min in patients aged 75-84 years (0.55; 0.27-0.98) and ≥85 years (0.17; 0.03-0.53). Early rhythm conversion from an initial non-shockable to a shockable rhythm and subsequent shock delivery is associated with increased odds of 1-month CPC 1-2 in OHCA patients aged 18-74 years but not in those aged ≥75 years. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. [A case of anaphylactoid shock occurring immediately after the initiation of second intravenous administration of high-dose immunoglobulin (IVIg) in a patient with Crow-Fukase syndrome].

    PubMed

    Takahashi, Teruyuki; Ono, Shin-ichi; Ogawa, Katuhiko; Tamura, Masato; Mizutani, Tomohiko

    2003-06-01

    We report a case of anaphylactoid shock occurring immediately after the initiation of second intravenous administration of high-dose immunoglobulin (IVIg) in a patient with Crow-Fukase syndrome. The patient was a 57-year-old woman, who was admitted to our hospital because of numbness and muscle weakness in the four extremities, difficulty in walking, and foot edema. On admission, her skin was dry and rough, and also showing scattered pigmentation, small hemangiomas, and hypertrichosis in both legs. She had distal dominant muscle weakness, more prominent in her legs, and was not able to walk. Deep tendon reflexes in her four extremities were markedly diminished or absent. She had a glove and stocking type of paresthesia, severe impairment of vibration, and absence of joint position sensation in her four extremities. On laboratory data, serum vascular endothelial growth factor (VEGF) was markedly elevated to 5,184 pg/ml (normal: below 220 pg/ml). Cerebrospinal fluid examination revealed cell counts of 2/microliter and protein level of 114 mg/dl. Abdominal echo showed marked hepatosplenomegaly. On peripheral nerve conduction study, both motor and sensory conduction velocity were undetectable in her legs. We diagnosed her condition as Crow-Fukase syndrome, and started IVIg of polyethyleneglycol-treated gamma-globulin (PEG-glob) at 400 mg/kg/day for 5 consecutive days for polyneuropathy. Since the first IVIg mildly improved muscle weakness, we tried the second IVIg of PEG-glob. However, immediately after the initiation of second IVIg of PEG-glob, she developed hypotention, dyspnea, cold sweating, cyanosis, and became lethargic. We immediately stopped IVIg and started first-aid treatment with epinephrine and corticosteroid for these symptoms. This treatment was successful and the patient fully recovered without any sequelae. Since serum IgE level remained unchanged and lymphocyte stimulation test (LST) was positive against the same rot number of PEG-glob, we diagnosed

  19. Saline-expanded group O uncrossmatched packed red blood cells as an initial resuscitation fluid in severe shock.

    PubMed

    Schwab, C W; Civil, I; Shayne, J P

    1986-11-01

    Despite an excellent military experience with the use of the "universal donor" as an immediately available blood component, considerable reluctance to use uncrossmatched Group O packed cells (TOB) remains. In addition, problems continue with rapid blood acquisition in the emergency department. To study the safety of TOB used as an immediate resuscitation component, a 30-month prospective study of all patients arriving at a single trauma unit was undertaken. By protocol TOB (O-, female; O+, male) was delivered to the shock room prior to patient arrival and was expanded to 500 mL by adding 250 mL prewarmed saline (39.4 C) to the existing RBC unit. Transfusion was ordered on clinical signs of Class III or Class IV hemorrhage. Ninety-nine patients entered the protocol, receiving a total of 1,136 units of blood (11.5 units/patient). Four hundred ten units (4.1 units/patient) of uncrossmatched blood were administered on patient arrival--322 units of TOB and 88 units of type-specific blood (TSB). Seven patients (7.4%) had prior transfusions, and 14 (58%) women had prior pregnancies. Complications included disseminated intravascular coagulation, 12%; adult respiratory distress syndrome, 8%; and hepatitis, 1%. Forty-nine patients (49%) required massive transfusion (greater than 10 units/24 hr). All patients were followed clinically and by the blood bank for any signs of transfusion reactions or incompatibility throughout their hospital courses; none developed. There were no deaths related to transfusion incompatibility. We conclude that TOB used as an immediate resuscitative blood component is safe.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Initial stage of motion in the Lavrent'ev-Ishlinskii problem on longitudinal shock on a rod

    NASA Astrophysics Data System (ADS)

    Morozov, N. F.; Belyaev, A. K.; Tovstik, P. E.; Tovstik, T. P.

    2015-11-01

    The transverse motion of a thin rod under a sudden application of a prolonged longitudinal load at the initial stage of motion is considered. The introduction of self-similar variables makes it possible to propose a description of the transverse motion weakly dependent on the longitudinal deformation. Both single dents and periodic systems of dents are considered.

  1. Blueberry shock virus

    USDA-ARS?s Scientific Manuscript database

    Blueberry shock disease first observed in Washington state in 1987 and initially confused with blueberry scorch caused by Blueberry scorch virus (BlScV). However, shock affected plants produced a second flush of leaves after flowering and the plants appeared normal by late summer except for the lac...

  2. Mycobacterium tuberculosis septic shock.

    PubMed

    Kethireddy, Shravan; Light, R Bruce; Mirzanejad, Yazdan; Maki, Dennis; Arabi, Yaseen; Lapinsky, Stephen; Simon, David; Kumar, Aseem; Parrillo, Joseph E; Kumar, Anand

    2013-08-01

    Septic shock due to Mycobacterium tuberculosis (MTB) is an uncommon but well-recognized clinical syndrome. The objective of this study was to describe the unique clinical characteristics, epidemiologic risk factors, and covariates of survival of patients with MTB septic shock in comparison with other bacterial septic shock. A retrospective nested cohort study was conducted of patients given a diagnosis of MTB septic shock derived from a trinational, 8,670-patient database of patients with septic shock between 1996 and 2007. In the database, 53 patients had been given a diagnosis of MTB shock compared with 5,419 with septic shock associated with isolation of more common bacterial pathogens. Patients with MTB and other bacterial septic shock had in-hospital mortality rates of 79.2% and 49.7%, respectively (P < .0001). Of the cases of MTB shock, all but five patients had recognized respiratory tract involvement. Fifty-five percent of patients (29 of 53) were documented (by direct culture or stain) as having disseminated extrapulmonary involvement. Inappropriate and appropriate initial empirical therapy was delivered in 28 patients (52.8%) and 25 patients (47.2%); survival was 7.1% and 36.0%, respectively (P = .0114). Ten patients (18.9%) did not receive anti-MTB therapy; all died. The median time to appropriate antimicrobial therapy for MTB septic shock was 31.0 h (interquartile range, 18.9-71.9 h). Only 11 patients received anti-MTB therapy within 24 h of documentation of hypotension; six of these (54.5%) survived. Only one of 21 patients (4.8%) who started anti-MTB therapy after 24 h survived (P = .0003 vs < 24 h). Survival differences between these time intervals are not significantly different from those seen with bacterial septic shock due to more common bacterial pathogens. MTB septic shock behaves similarly to bacterial septic shock. As with bacterial septic shock, early appropriate antimicrobial therapy appears to improve mortality.

  3. Cardiogenic shock

    MedlinePlus

    Shock - cardiogenic ... electrical system of the heart (heart block) Cardiogenic shock occurs when the heart is unable to pump ... orthostatic hypotension) Weak (thready) pulse To diagnose cardiogenic shock, a catheter (tube) may be placed in the ...

  4. Shock Detector for SURF model

    SciTech Connect

    Menikoff, Ralph

    2016-01-11

    SURF and its extension SURFplus are reactive burn models aimed at shock initiation and propagation of detonation waves in high explosives. A distinctive feature of these models is that the burn rate depends on the lead shock pressure. A key part of the models is an algorithm to detect the lead shock. Typically, shock capturing hydro algorithms have small oscillations behind a shock. Here we investigate how well the shock detection algorithm works for a nearly steady propagating detonation wave in one-dimension using the Eulerian xRage code.

  5. Probabilistic boundary element method

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Raveendra, S. T.

    1989-01-01

    The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.

  6. Formalizing Probabilistic Safety Claims

    NASA Technical Reports Server (NTRS)

    Herencia-Zapana, Heber; Hagen, George E.; Narkawicz, Anthony J.

    2011-01-01

    A safety claim for a system is a statement that the system, which is subject to hazardous conditions, satisfies a given set of properties. Following work by John Rushby and Bev Littlewood, this paper presents a mathematical framework that can be used to state and formally prove probabilistic safety claims. It also enables hazardous conditions, their uncertainties, and their interactions to be integrated into the safety claim. This framework provides a formal description of the probabilistic composition of an arbitrary number of hazardous conditions and their effects on system behavior. An example is given of a probabilistic safety claim for a conflict detection algorithm for aircraft in a 2D airspace. The motivation for developing this mathematical framework is that it can be used in an automated theorem prover to formally verify safety claims.

  7. Probabilistic Composite Design

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1997-01-01

    Probabilistic composite design is described in terms of a computational simulation. This simulation tracks probabilistically the composite design evolution from constituent materials, fabrication process, through composite mechanics and structural components. Comparisons with experimental data are provided to illustrate selection of probabilistic design allowables, test methods/specimen guidelines, and identification of in situ versus pristine strength, For example, results show that: in situ fiber tensile strength is 90% of its pristine strength; flat-wise long-tapered specimens are most suitable for setting ply tensile strength allowables: a composite radome can be designed with a reliability of 0.999999; and laminate fatigue exhibits wide-spread scatter at 90% cyclic-stress to static-strength ratios.

  8. Recent developments of the NESSUS probabilistic structural analysis computer program

    NASA Technical Reports Server (NTRS)

    Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.

    1992-01-01

    The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.

  9. Recent developments of the NESSUS probabilistic structural analysis computer program

    NASA Technical Reports Server (NTRS)

    Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.

    1992-01-01

    The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.

  10. Structure in Radiating Shocks

    NASA Astrophysics Data System (ADS)

    Doss, Forrest

    2010-11-01

    The basic radiative shock experiment is a shock launched into a gas of high-atomic-number material at high velocities, which fulfills the conditions for radiative losses to collapse the post-shock material to over 20 times the initial gas density. This has been accomplished using the OMEGA Laser Facility by illuminating a Be ablator for 1 ns with a total of 4 kJ, launching the requisite shock, faster than 100 km/sec, into a polyimide shock tube filled with Xe. The experiments have lateral dimensions of 600 μm and axial dimensions of 2-3 mm, and are diagnosed by x-ray backlighting. Repeatable structure beyond the one-dimensional picture of a shock as a planar discontinuity was discovered in the experimental data. One form this took was that of radial boundary effects near the tube walls, extended approximately seventy microns into the system. The cause of this effect - low density wall material which is heated by radiation transport ahead of the shock, launching a new converging shock ahead of the main shock - is apparently unique to high-energy-density experiments. Another form of structure is the appearance of small-scale perturbations in the post-shock layer, modulating the shock and material interfaces and creating regions of enhanced and diminished aerial density within the layer. The authors have applied an instability theory, a variation of the Vishniac instability of decelerating shocks, to describe the growth of these perturbations. We have also applied Bayesian statistical methods to better understand the uncertainties associated with measuring shocked layer thickness in the presence of tilt. Collaborators: R. P. Drake, H. F. Robey, C. C. Kuranz, C. M. Huntington, M. J. Grosskopf, D. C. Marion.

  11. Expectancy Learning from Probabilistic Input by Infants

    PubMed Central

    Romberg, Alexa R.; Saffran, Jenny R.

    2013-01-01

    Across the first few years of life, infants readily extract many kinds of regularities from their environment, and this ability is thought to be central to development in a number of domains. Numerous studies have documented infants’ ability to recognize deterministic sequential patterns. However, little is known about the processes infants use to build and update representations of structure in time, and how infants represent patterns that are not completely predictable. The present study investigated how infants’ expectations fora simple structure develope over time, and how infants update their representations with new information. We measured 12-month-old infants’ anticipatory eye movements to targets that appeared in one of two possible locations. During the initial phase of the experiment, infants either saw targets that appeared consistently in the same location (Deterministic condition) or probabilistically in either location, with one side more frequent than the other (Probabilistic condition). After this initial divergent experience, both groups saw the same sequence of trials for the rest of the experiment. The results show that infants readily learn from both deterministic and probabilistic input, with infants in both conditions reliably predicting the most likely target location by the end of the experiment. Local context had a large influence on behavior: infants adjusted their predictions to reflect changes in the target location on the previous trial. This flexibility was particularly evident in infants with more variable prior experience (the Probabilistic condition). The results provide some of the first data showing how infants learn in real time. PMID:23439947

  12. Probabilistic Causation without Probability.

    ERIC Educational Resources Information Center

    Holland, Paul W.

    The failure of Hume's "constant conjunction" to describe apparently causal relations in science and everyday life has led to various "probabilistic" theories of causation of which the study by P. C. Suppes (1970) is an important example. A formal model that was developed for the analysis of comparative agricultural experiments…

  13. Probabilistic composite micromechanics

    NASA Technical Reports Server (NTRS)

    Stock, T. A.; Bellini, P. X.; Murthy, P. L. N.; Chamis, C. C.

    1988-01-01

    Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material properties at the micro level. Regression results are presented to show the relative correlation between predicted and response variables in the study.

  14. Probabilistic composite micromechanics

    NASA Technical Reports Server (NTRS)

    Stock, T. A.; Bellini, P. X.; Murthy, P. L. N.; Chamis, C. C.

    1988-01-01

    Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material properties at the micro level. Regression results are presented to show the relative correlation between predicted and response variables in the study.

  15. Comparison of Dawn and Dusk Precipitating Electron Energy Populations Shortly After the Initial Shock for the January 10th, 1997 Magnetic Cloud

    NASA Technical Reports Server (NTRS)

    Spann, J.; Germany, G.; Swift, W.; Parks, G.; Brittnacher, M.; Elsen, R.

    1997-01-01

    The observed precipitating electron energy between 0130 UT and 0400 UT of January 10 th, 1997, indicates that there is a more energetic precipitating electron population that appears in the auroral oval at 1800-2200 UT at 030) UT. This increase in energy occurs after the initial shock of the magnetic cloud reaches the Earth (0114 UT) and after faint but dynamic polar cap precipitation has been cleared out. The more energetic population is observed to remain rather constant in MLT through the onset of auroral activity (0330 UT) and to the end of the Polar spacecraft apogee pass. Data from the Ultraviolet Imager LBH long and LBH short images are used to quantify the average energy of the precipitating auroral electrons. The Wind spacecraft located about 100 RE upstream monitored the IMF and plasma parameters during the passing of the cloud. The affects of oblique angle viewing are included in the analysis. Suggestions as to the source of this hot electron population will be presented.

  16. Comparison of Dawn and Dusk Precipitating Electron Energy Populations Shortly After the Initial Shock for the January 10th, 1997 Magnetic Cloud

    NASA Technical Reports Server (NTRS)

    Spann, J.; Germany, G.; Swift, W.; Parks, G.; Brittnacher, M.; Elsen, R.

    1997-01-01

    The observed precipitating electron energy between 0130 UT and 0400 UT of January 10 th, 1997, indicates that there is a more energetic precipitating electron population that appears in the auroral oval at 1800-2200 UT at 030) UT. This increase in energy occurs after the initial shock of the magnetic cloud reaches the Earth (0114 UT) and after faint but dynamic polar cap precipitation has been cleared out. The more energetic population is observed to remain rather constant in MLT through the onset of auroral activity (0330 UT) and to the end of the Polar spacecraft apogee pass. Data from the Ultraviolet Imager LBH long and LBH short images are used to quantify the average energy of the precipitating auroral electrons. The Wind spacecraft located about 100 RE upstream monitored the IMF and plasma parameters during the passing of the cloud. The affects of oblique angle viewing are included in the analysis. Suggestions as to the source of this hot electron population will be presented.

  17. Device Strategies for Patients in INTERMACS Profiles 1 and 2 Cardiogenic Shock: Double Bridge With Extracorporeal Membrane Oxygenation and Initial Implant of More Durable Devices.

    PubMed

    Cheng, Richard; Ramzy, Danny; Azarbal, Babak; Arabia, Francisco A; Esmailian, Fardad; Czer, Lawrence S; Kobashigawa, Jon A; Moriguchi, Jaime D

    2017-03-01

    For Interagency Registry for Mechanically Assisted Circulatory Support profiles 1 and 2 cardiogenic shock patients initially placed on extracorporeal membrane oxygenation (ECMO), whether crossover to more durable devices is associated with increased survival, and its optimal timing, are not established. Profiles 1 and 2 patients placed on mechanical support were prospectively registered. Survival and successful hospital discharge were compared between patients placed on ECMO only, ECMO with early crossover, and ECMO with delayed crossover. Survival of patients directly implanted with non-ECMO devices was also reported. One-hundred and sixty-two patients were included. Mean age was 52.2 ± 13.8 years. Seventy-three of 162 (45.1%) were initiated on ECMO. Of these, 43 were supported with ECMO only, 11 were crossed-over early <4 days, and 19 were crossed-over in a delayed fashion. Survival was different across groups (Log-rank P < 0.002). In multivariate analysis, early crossover was associated with decreased mortality as compared with no crossover (hazard ratio [HR] 0.201, 95% confidence interval [95%CI] 0.058-0.697, P = 0.011) or with delayed crossover (HR 0.255, 95%CI 0.073-0.894, P = 0.033). Mortality was not different between delayed crossover and no crossover (P = 0.473). In patients with early crossover there were no deaths at 30 days, and 60-day survival was 90.0 ± 9.5%. Survival to hospital discharge was 72.8%. For patients directly implanted with non-ECMO devices, 30-day and 60-day survival was 90.9 ± 3.1% and 87.3 ± 3.8%, respectively, and survival to hospital discharge was 78.7%. Both initial implant of durable devices and double bridge strategy was associated with improved outcomes. If the double bridge strategy is chosen, early crossover is associated with improved survival and successful hospital discharge.

  18. Evaluating physicians' probabilistic judgments.

    PubMed

    Poses, R M; Cebul, R D; Centor, R M

    1988-01-01

    Physicians increasingly are challenged to make probabilistic judgments quantitatively. Their ability to make such judgments may be directly linked to the quality of care they provide. Many methods are available to evaluate these judgments. Graphic means of assessment include the calibration curve, covariance graph, and receiver operating characteristic (ROC) curve. Statistical tools can measure the significance of departures from ideal calibration, and measure the area under ROC curve. Modeling the calibration curve using linear or logistic regression provides another method to assess probabilistic judgments, although these may be limited by failure of the data to meet the model's assumptions. Scoring rules provide indices of overall judgmental performance, although their reliability is difficult to gauge for small sample sizes. Decompositions of scoring rules separate judgmental performance into functional components. The authors provide preliminary guidelines for choosing methods for specific research in this area.

  19. Probabilistic authenticated quantum dialogue

    NASA Astrophysics Data System (ADS)

    Hwang, Tzonelih; Luo, Yi-Ping

    2015-12-01

    This work proposes a probabilistic authenticated quantum dialogue (PAQD) based on Bell states with the following notable features. (1) In our proposed scheme, the dialogue is encoded in a probabilistic way, i.e., the same messages can be encoded into different quantum states, whereas in the state-of-the-art authenticated quantum dialogue (AQD), the dialogue is encoded in a deterministic way; (2) the pre-shared secret key between two communicants can be reused without any security loophole; (3) each dialogue in the proposed PAQD can be exchanged within only one-step quantum communication and one-step classical communication. However, in the state-of-the-art AQD protocols, both communicants have to run a QKD protocol for each dialogue and each dialogue requires multiple quantum as well as classical communicational steps; (4) nevertheless, the proposed scheme can resist the man-in-the-middle attack, the modification attack, and even other well-known attacks.

  20. Probabilistic Fatigue: Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2002-01-01

    Fatigue is a primary consideration in the design of aerospace structures for long term durability and reliability. There are several types of fatigue that must be considered in the design. These include low cycle, high cycle, combined for different cyclic loading conditions - for example, mechanical, thermal, erosion, etc. The traditional approach to evaluate fatigue has been to conduct many tests in the various service-environment conditions that the component will be subjected to in a specific design. This approach is reasonable and robust for that specific design. However, it is time consuming, costly and needs to be repeated for designs in different operating conditions in general. Recent research has demonstrated that fatigue of structural components/structures can be evaluated by computational simulation based on a novel paradigm. Main features in this novel paradigm are progressive telescoping scale mechanics, progressive scale substructuring and progressive structural fracture, encompassed with probabilistic simulation. These generic features of this approach are to probabilistically telescope scale local material point damage all the way up to the structural component and to probabilistically scale decompose structural loads and boundary conditions all the way down to material point. Additional features include a multifactor interaction model that probabilistically describes material properties evolution, any changes due to various cyclic load and other mutually interacting effects. The objective of the proposed paper is to describe this novel paradigm of computational simulation and present typical fatigue results for structural components. Additionally, advantages, versatility and inclusiveness of computational simulation versus testing are discussed. Guidelines for complementing simulated results with strategic testing are outlined. Typical results are shown for computational simulation of fatigue in metallic composite structures to demonstrate the

  1. Geothermal probabilistic cost study

    NASA Technical Reports Server (NTRS)

    Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-01-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.

  2. Probabilistic Model Development

    NASA Technical Reports Server (NTRS)

    Adam, James H., Jr.

    2010-01-01

    Objective: Develop a Probabilistic Model for the Solar Energetic Particle Environment. Develop a tool to provide a reference solar particle radiation environment that: 1) Will not be exceeded at a user-specified confidence level; 2) Will provide reference environments for: a) Peak flux; b) Event-integrated fluence; and c) Mission-integrated fluence. The reference environments will consist of: a) Elemental energy spectra; b) For protons, helium and heavier ions.

  3. Geothermal probabilistic cost study

    NASA Astrophysics Data System (ADS)

    Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.

  4. Probabilistic liver atlas construction.

    PubMed

    Dura, Esther; Domingo, Juan; Ayala, Guillermo; Marti-Bonmati, Luis; Goceri, E

    2017-01-13

    Anatomical atlases are 3D volumes or shapes representing an organ or structure of the human body. They contain either the prototypical shape of the object of interest together with other shapes representing its statistical variations (statistical atlas) or a probability map of belonging to the object (probabilistic atlas). Probabilistic atlases are mostly built with simple estimations only involving the data at each spatial location. A new method for probabilistic atlas construction that uses a generalized linear model is proposed. This method aims to improve the estimation of the probability to be covered by the liver. Furthermore, all methods to build an atlas involve previous coregistration of the sample of shapes available. The influence of the geometrical transformation adopted for registration in the quality of the final atlas has not been sufficiently investigated. The ability of an atlas to adapt to a new case is one of the most important quality criteria that should be taken into account. The presented experiments show that some methods for atlas construction are severely affected by the previous coregistration step. We show the good performance of the new approach. Furthermore, results suggest that extremely flexible registration methods are not always beneficial, since they can reduce the variability of the atlas and hence its ability to give sensible values of probability when used as an aid in segmentation of new cases.

  5. Renaissance of base deficit for the initial assessment of trauma patients: a base deficit-based classification for hypovolemic shock developed on data from 16,305 patients derived from the TraumaRegister DGU®

    PubMed Central

    2013-01-01

    Introduction The recognition and management of hypovolemic shock still remain an important task during initial trauma assessment. Recently, we have questioned the validity of the Advanced Trauma Life Support (ATLS) classification of hypovolemic shock by demonstrating that the suggested combination of heart rate, systolic blood pressure and Glasgow Coma Scale displays substantial deficits in reflecting clinical reality. The aim of this study was to introduce and validate a new classification of hypovolemic shock based upon base deficit (BD) at emergency department (ED) arrival. Methods Between 2002 and 2010, 16,305 patients were retrieved from the TraumaRegister DGU® database, classified into four strata of worsening BD [class I (BD ≤ 2 mmol/l), class II (BD > 2.0 to 6.0 mmol/l), class III (BD > 6.0 to 10 mmol/l) and class IV (BD > 10 mmol/l)] and assessed for demographics, injury characteristics, transfusion requirements and fluid resuscitation. This new BD-based classification was validated to the current ATLS classification of hypovolemic shock. Results With worsening of BD, injury severity score (ISS) increased in a step-wise pattern from 19.1 (± 11.9) in class I to 36.7 (± 17.6) in class IV, while mortality increased in parallel from 7.4% to 51.5%. Decreasing hemoglobin and prothrombin ratios as well as the amount of transfusions and fluid resuscitation paralleled the increasing frequency of hypovolemic shock within the four classes. The number of blood units transfused increased from 1.5 (± 5.9) in class I patients to 20.3 (± 27.3) in class IV patients. Massive transfusion rates increased from 5% in class I to 52% in class IV. The new introduced BD-based classification of hypovolemic shock discriminated transfusion requirements, massive transfusion and mortality rates significantly better compared to the conventional ATLS classification of hypovolemic shock (p < 0.001). Conclusions BD may be superior to the current ATLS classification of hypovolemic

  6. [Historical vision of shock].

    PubMed

    Dosne Pasqualini, C

    1998-01-01

    The concept of shock and its close relationship with that of stress dates back to the experiments of Hans Selye initiated in 1936 at McGill University in Montreal, with whom I collaborated between 1939 and 1942. It was demonstrated that the General Adaptation Syndrome begins with an Alarm Reaction, which consists of a Stage of Shock and one of Counter-Shock, followed by a Stage of Adaptation and finally a Stage of Exhaustion. My Ph.D. thesis concluded that shock was due to an adrenal insufficiency postulating that active metabolic processes drain the body of certain essential compounds the lack of which causes shock. My interest in the role of the glucose metabolism in shock led me to work with Bernardo Houssay in 1942 at the Institute of Physiology of the University of Buenos Aires and in 1944 with C.N.H. Long at Yale University. There I developed a method for the induction of hemorrhagic shock in the guinea pig with 94% lethality; curiously, the administration of 200 mg of ascorbic acid prevented death. Upon my return to Buenos Aires, these results were confirmed and moreover, it was demonstrated that the administration of cortisone led to 40% survival of the animals while desoxycorticosterone had no effect. At the time, no explanation was available but to-day, half a century later, this Symposium should be able to explain the mechanisms leading to death by hemorrhagic shock.

  7. Early Treatment in Shock

    DTIC Science & Technology

    2007-06-01

    1471–2210/2/7. Accessed April 15, 2005. 20. Wang CJ, Lee MJ, Chang MC, Lin JK. Inhibition of tumor promotion in benzo [ a ] pyrene -initiated CD-1 mouse...model. Deliverable: A panel of genes that are reproducibly altered in white blood cells and in liver and muscle by shock and resuscitation. 1. To...Deliverable: Coordinated with objective #1, A panel of genes that are reproducibly altered in white blood cells and in liver and muscle by shock and

  8. [Pathophysiology of hemorragic shock].

    PubMed

    Copotoiu, R; Cinca, E; Collange, O; Levy, F; Mertes, P-M

    2016-11-01

    This review addresses the pathophysiology of hemorrhagic shock, a condition produced by rapid and significant loss of intravascular volume, which may lead to hemodynamic instability, decreases in oxygen delivery, decreased tissue perfusion, cellular hypoxia, organ damage, and death. The initial neuroendocrine response is mainly a sympathetic activation. Haemorrhagic shock is associated altered microcirculatory permeability and visceral injury. It is also responsible for a complex inflammatory response associated with hemostasis alteration. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. PCAT: Probabilistic Cataloger

    NASA Astrophysics Data System (ADS)

    Daylan, Tansu; Portillo, K. N. Stephen; Finkbeiner, Douglas P.

    2017-05-01

    PCAT (Probabilistic Cataloger) samples from the posterior distribution of a metamodel, i.e., union of models with different dimensionality, to compare the models. This is achieved via transdimensional proposals such as births, deaths, splits and merges in addition to the within-model proposals. This method avoids noisy estimates of the Bayesian evidence that may not reliably distinguish models when sampling from the posterior probability distribution of each model. The code has been applied in two different subfields of astronomy: high energy photometry, where transdimensional elements are gamma-ray point sources; and strong lensing, where light-deflecting dark matter subhalos take the role of transdimensional elements.

  10. Probabilistic Resilience in Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Panerati, Jacopo; Beltrame, Giovanni; Schwind, Nicolas; Zeltner, Stefan; Inoue, Katsumi

    2016-05-01

    Originally defined in the context of ecological systems and environmental sciences, resilience has grown to be a property of major interest for the design and analysis of many other complex systems: resilient networks and robotics systems other the desirable capability of absorbing disruption and transforming in response to external shocks, while still providing the services they were designed for. Starting from an existing formalization of resilience for constraint-based systems, we develop a probabilistic framework based on hidden Markov models. In doing so, we introduce two new important features: stochastic evolution and partial observability. Using our framework, we formalize a methodology for the evaluation of probabilities associated with generic properties, we describe an efficient algorithm for the computation of its essential inference step, and show that its complexity is comparable to other state-of-the-art inference algorithms.

  11. Probabilistic Safety Assessment of Tehran Research Reactor

    SciTech Connect

    Hosseini, Seyed Mohammad Hadi; Nematollahi, Mohammad Reza; Sepanloo, Kamran

    2004-07-01

    Probabilistic Safety Assessment (PSA) application is found to be a practical tool for research reactor safety due to intense involvement of human interactions in an experimental facility. In this paper the application of the Probabilistic Safety Assessment to the Tehran Research Reactor (TRR) is presented. The level 1 PSA application involved: Familiarization with the plant, selection of accident initiators, mitigating functions and system definitions, event tree constructions and quantification, fault tree constructions and quantification, human reliability, component failure data base development and dependent failure analysis. Each of the steps of the analysis given above is discussed with highlights from the selected results. Quantification of the constructed models is done using SAPHIRE software. This Study shows that the obtained core damage frequency for Tehran Research Reactor (8.368 E-6 per year) well meets the IAEA criterion for existing nuclear power plants (1E-4). But safety improvement suggestions are offered to decrease the most probable accidents. (authors)

  12. 75 FR 13 - Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ...] Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events AGENCY... amending its regulations to provide alternate fracture toughness requirements for protection against... existing requirements are based on unnecessarily conservative probabilistic fracture mechanics analyses...

  13. Probabilistic Accident Progression Analysis with application to a LMFBR design

    SciTech Connect

    Jamali, K.M.

    1982-01-01

    A method for probabilistic analysis of accident sequences in nuclear power plant systems referred to as ''Probabilistic Accident Progression Analysis'' (PAPA) is described. Distinctive features of PAPA include: (1) definition and analysis of initiator-dependent accident sequences on the component level; (2) a new fault-tree simplification technique; (3) a new technique for assessment of the effect of uncertainties in the failure probabilities in the probabilistic ranking of accident sequences; (4) techniques for quantification of dependent failures of similar components, including an iterative technique for high-population components. The methodology is applied to the Shutdown Heat Removal System (SHRS) of the Clinch River Breeder Reactor Plant during its short-term (0probabilistically ranked sets of significant sequences and the system failure probability are calculated for each transient initiator of interest. The uncertainty propagation technique provides a new measure of importance (in addition to the regular point probabilities) in the probabilistic ranking of accident sequences. Dependent failures are shown to make the highest contribution to the system unavailabilities for all of the initiators that are considered. The probability of failure of the SHRS in short-term forced circulation per year is estimated at 2.6 x 10/sup -2/. Major contributors to this probability are the initiators loss of main feedwater system, loss of offsite power, and normal shutdown.

  14. Quantum probabilistic logic programming

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan

    2015-05-01

    We describe a quantum mechanics based logic programming language that supports Horn clauses, random variables, and covariance matrices to express and solve problems in probabilistic logic. The Horn clauses of the language wrap random variables, including infinite valued, to express probability distributions and statistical correlations, a powerful feature to capture relationship between distributions that are not independent. The expressive power of the language is based on a mechanism to implement statistical ensembles and to solve the underlying SAT instances using quantum mechanical machinery. We exploit the fact that classical random variables have quantum decompositions to build the Horn clauses. We establish the semantics of the language in a rigorous fashion by considering an existing probabilistic logic language called PRISM with classical probability measures defined on the Herbrand base and extending it to the quantum context. In the classical case H-interpretations form the sample space and probability measures defined on them lead to consistent definition of probabilities for well formed formulae. In the quantum counterpart, we define probability amplitudes on Hinterpretations facilitating the model generations and verifications via quantum mechanical superpositions and entanglements. We cast the well formed formulae of the language as quantum mechanical observables thus providing an elegant interpretation for their probabilities. We discuss several examples to combine statistical ensembles and predicates of first order logic to reason with situations involving uncertainty.

  15. Probabilistic Climate Forecasting

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Aina, T.; Bannerman, S.; Christensen, C.; Collins, M.; Dzbor, M.; Faull, N.; Folgate, V.; Frame, D.; Gault, R.; Kettleborough, J.; Knight, S.; Martin, A.; McPherson, E.; Simpson, A.; Spicer, B.; Stainforth, D.; Piani, C.

    2003-12-01

    As a European record-breaking summer draws to an end, climate `stakeholders' are actively planning for the future, presenting the climate research communtiy with a new challenge. Today's coastal and water-supply engineers do not need `projections' of how the climate might respond to rising levels of greenhouse gases, no matter how detailed and realistic. Rather they need to know what changes can be ruled out at a given level of confidence. This is probabilistic climate forecasting. The correct procedure for probabilistic climate forecasting begins with a perturbation analysis of the model to identify consistent relationships between observable quantities and forecast variables of interest(this is reffered to as: `mapping the response manifold'). The resulting ensemble is weighted to accurately represent both current knowledge and uncertainty in observations and then used to infer future climate change. Mapping the respons manifold in a full-scale, non-linear climate model is a formidable chalenge well beyond the capabilities of conventional supercomputing resources. Today the only adequate resource of this scale is presented by the joint idle processing capacity of home and desktop computers of the general public: this is the climateprediction.net approach.

  16. Probabilistic population aging

    PubMed Central

    2017-01-01

    We merge two methodologies, prospective measures of population aging and probabilistic population forecasts. We compare the speed of change and variability in forecasts of the old age dependency ratio and the prospective old age dependency ratio as well as the same comparison for the median age and the prospective median age. While conventional measures of population aging are computed on the basis of the number of years people have already lived, prospective measures are computed also taking account of the expected number of years they have left to live. Those remaining life expectancies change over time and differ from place to place. We compare the probabilistic distributions of the conventional and prospective measures using examples from China, Germany, Iran, and the United States. The changes over time and the variability of the prospective indicators are smaller than those that are observed in the conventional ones. A wide variety of new results emerge from the combination of methodologies. For example, for Germany, Iran, and the United States the likelihood that the prospective median age of the population in 2098 will be lower than it is today is close to 100 percent. PMID:28636675

  17. Topics in Probabilistic Judgment Aggregation

    ERIC Educational Resources Information Center

    Wang, Guanchun

    2011-01-01

    This dissertation is a compilation of several studies that are united by their relevance to probabilistic judgment aggregation. In the face of complex and uncertain events, panels of judges are frequently consulted to provide probabilistic forecasts, and aggregation of such estimates in groups often yield better results than could have been made…

  18. Passage Retrieval: A Probabilistic Technique.

    ERIC Educational Resources Information Center

    Melucci, Massimo

    1998-01-01

    Presents a probabilistic technique to retrieve passages from texts having a large size or heterogeneous semantic content. Results of experiments comparing the probabilistic technique to one based on a text segmentation algorithm revealed that the passage size affects passage retrieval performance; text organization and query generality may have an…

  19. Topics in Probabilistic Judgment Aggregation

    ERIC Educational Resources Information Center

    Wang, Guanchun

    2011-01-01

    This dissertation is a compilation of several studies that are united by their relevance to probabilistic judgment aggregation. In the face of complex and uncertain events, panels of judges are frequently consulted to provide probabilistic forecasts, and aggregation of such estimates in groups often yield better results than could have been made…

  20. Time Analysis for Probabilistic Workflows

    SciTech Connect

    Czejdo, Bogdan; Ferragut, Erik M

    2012-01-01

    There are many theoretical and practical results in the area of workflow modeling, especially when the more formal workflows are used. In this paper we focus on probabilistic workflows. We show algorithms for time computations in probabilistic workflows. With time of activities more precisely modeled, we can achieve improvement in the work cooperation and analyses of cooperation including simulation and visualization.

  1. Shocked reactions: the first half nanosecond

    NASA Astrophysics Data System (ADS)

    McGrane, Shawn

    2011-06-01

    Ultrafast laser techniques allow resolution of shock induced physics and chemistry picoseconds behind the shock front. We combine 300 ps sustained laser-generated shocks with ultrafast dynamic ellipsometry to measure the shock state and transient absorption to measure the molecular electronic response to shock loading. Additional nonlinear spectroscopic probes offer the potential to measure even more details of the molecular shock response, such as vibrational temperature and evolution of chemical species. Experimental data will be presented on shocked explosive crystals and liquids. Explosive crystals are studied for the relevance to shock initiation processes. A range of simple molecular liquids is being studied to map out shock reactivity as a function of systematic variations in bonding. The relation of the ultrafast laser data to molecular dynamics simulations and large scale gas gun work will be discussed with an emphasis on what the synthesized information can tell us about shock induced chemical reactions across this broad range of length and time scales.

  2. Probabilistic Structural Analysis Theory Development

    NASA Technical Reports Server (NTRS)

    Burnside, O. H.

    1985-01-01

    The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.

  3. Probabilistic Structural Analysis Theory Development

    NASA Technical Reports Server (NTRS)

    Burnside, O. H.

    1985-01-01

    The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.

  4. Fatigue crack growth reliability by probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Besterfield, Glen H.; Liu, Wing K.; Lawrence, Mark A.; Belytschko, Ted

    1991-01-01

    Fusion of the probabilistic finite-element method and reliability analysis for probabilistic fatigue-crack growth is presented. A comprehensive method for determining the probability of fatigue failure for mixed-mode cyclic loading is also presented. The loading is mixed-mode with randomness in the initial and final crack lengths, initial crack angle and position, material properties, crack-growth law, crack-direction law, and loading. The methodology consists of calculating the reliability index via an optimization procedure which is used to calculate the probability of fatigue failure. Performance of the methodology presented is demonstrated on a classical mode-I fatigue problem.

  5. Probabilistic retinal vessel segmentation

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  6. Probabilistic Fiber Composite Micromechanics

    NASA Technical Reports Server (NTRS)

    Stock, Thomas A.

    1996-01-01

    Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. The variables in which uncertainties are accounted for include constituent and void volume ratios, constituent elastic properties and strengths, and fiber misalignment. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material property variations induced by random changes expected at the material micro level. Regression results are presented to show the relative correlation between predictor and response variables in the study. These computational procedures make possible a formal description of anticipated random processes at the intra-ply level, and the related effects of these on composite properties.

  7. Probabilistic Mesomechanical Fatigue Model

    NASA Technical Reports Server (NTRS)

    Tryon, Robert G.

    1997-01-01

    A probabilistic mesomechanical fatigue life model is proposed to link the microstructural material heterogeneities to the statistical scatter in the macrostructural response. The macrostructure is modeled as an ensemble of microelements. Cracks nucleation within the microelements and grow from the microelements to final fracture. Variations of the microelement properties are defined using statistical parameters. A micromechanical slip band decohesion model is used to determine the crack nucleation life and size. A crack tip opening displacement model is used to determine the small crack growth life and size. Paris law is used to determine the long crack growth life. The models are combined in a Monte Carlo simulation to determine the statistical distribution of total fatigue life for the macrostructure. The modeled response is compared to trends in experimental observations from the literature.

  8. Novel probabilistic neuroclassifier

    NASA Astrophysics Data System (ADS)

    Hong, Jiang; Serpen, Gursel

    2003-09-01

    A novel probabilistic potential function neural network classifier algorithm to deal with classes which are multi-modally distributed and formed from sets of disjoint pattern clusters is proposed in this paper. The proposed classifier has a number of desirable properties which distinguish it from other neural network classifiers. A complete description of the algorithm in terms of its architecture and the pseudocode is presented. Simulation analysis of the newly proposed neuro-classifier algorithm on a set of benchmark problems is presented. Benchmark problems tested include IRIS, Sonar, Vowel Recognition, Two-Spiral, Wisconsin Breast Cancer, Cleveland Heart Disease and Thyroid Gland Disease. Simulation results indicate that the proposed neuro-classifier performs consistently better for a subset of problems for which other neural classifiers perform relatively poorly.

  9. TIMING OF SHOCK WAVES

    DOEpatents

    Tuck, J.L.

    1955-03-01

    This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.

  10. Shock Surface Undulation and Particle Acceleration at Oblique Shocks

    NASA Astrophysics Data System (ADS)

    Krauss-Varban, D.; Li, Y.; Luhmann, J. G.

    2006-12-01

    Considering the average Parker spiral magnetic field configuration, CME-driven interplanetary (IP) shocks within 1 AU should have oblique portions over much of their domain. Indeed, CME-driven shocks observed close to Earth are often oblique. However, it is well known that the standard diffusive shock acceleration mechanism, which relies on self-consistent wave generation via upstream propagating ions and their scattering, becomes increasingly inefficient with greater shock normal angle. Not only is a higher threshold energy required for the ions to leave the shock upstream, but also, approximately-parallel propagating waves are more quickly convected back into the shock, and the growth rate for waves propagating normal to the shock (the ones with the largest convective growth) decreases. As a result, typical, small-scale hybrid simulations of oblique shocks only show a dilute upstream beam, similar to what is often observed at the oblique Earth's bow shock - and no scattered, highly-energized ions. On the other hand, there are many "energetic storm particle" (ESP) events associated with oblique shocks that have significant fluxes of energetic ions. Recently, we have found that when run for a long time, our hybrid simulations (kinetic ions, electron fluid) show that the initial, weak beam is sufficient to generate compressive, steepening upstream waves. These waves are capable of disturbing the shock surface, resulting in an undulation that is propagating along the surface and growing in amplitude over time. The process is akin to that of the well-known reformation occurring at sufficiently strong quasi-parallel shocks. However, here the perturbations require at least two dimensions, show a strong spatial correlation, and travel along the shock surface. This process not only leads to enhanced ion acceleration, but also means that the shock characteristics are difficult to pinpoint, observationally: both the local jumps and the shock normal angle are highly variable

  11. Incorporating psychological influences in probabilistic cost analysis

    SciTech Connect

    Kujawski, Edouard; Alvaro, Mariana; Edwards, William

    2004-01-08

    Today's typical probabilistic cost analysis assumes an ''ideal'' project that is devoid of the human and organizational considerations that heavily influence the success and cost of real-world projects. In the real world ''Money Allocated Is Money Spent'' (MAIMS principle); cost underruns are rarely available to protect against cost overruns while task overruns are passed on to the total project cost. Realistic cost estimates therefore require a modified probabilistic cost analysis that simultaneously models the cost management strategy including budget allocation. Psychological influences such as overconfidence in assessing uncertainties and dependencies among cost elements and risks are other important considerations that are generally not addressed. It should then be no surprise that actual project costs often exceed the initial estimates and are delivered late and/or with a reduced scope. This paper presents a practical probabilistic cost analysis model that incorporates recent findings in human behavior and judgment under uncertainty, dependencies among cost elements, the MAIMS principle, and project management practices. Uncertain cost elements are elicited from experts using the direct fractile assessment method and fitted with three-parameter Weibull distributions. The full correlation matrix is specified in terms of two parameters that characterize correlations among cost elements in the same and in different subsystems. The analysis is readily implemented using standard Monte Carlo simulation tools such as {at}Risk and Crystal Ball{reg_sign}. The analysis of a representative design and engineering project substantiates that today's typical probabilistic cost analysis is likely to severely underestimate project cost for probability of success values of importance to contractors and procuring activities. The proposed approach provides a framework for developing a viable cost management strategy for allocating baseline budgets and contingencies. Given the

  12. Probabilistic brains: knowns and unknowns

    PubMed Central

    Pouget, Alexandre; Beck, Jeffrey M; Ma, Wei Ji; Latham, Peter E

    2015-01-01

    There is strong behavioral and physiological evidence that the brain both represents probability distributions and performs probabilistic inference. Computational neuroscientists have started to shed light on how these probabilistic representations and computations might be implemented in neural circuits. One particularly appealing aspect of these theories is their generality: they can be used to model a wide range of tasks, from sensory processing to high-level cognition. To date, however, these theories have only been applied to very simple tasks. Here we discuss the challenges that will emerge as researchers start focusing their efforts on real-life computations, with a focus on probabilistic learning, structural learning and approximate inference. PMID:23955561

  13. Probabilistic Design of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2006-01-01

    A formal procedure for the probabilistic design evaluation of a composite structure is described. The uncertainties in all aspects of a composite structure (constituent material properties, fabrication variables, structural geometry, and service environments, etc.), which result in the uncertain behavior in the composite structural responses, are included in the evaluation. The probabilistic evaluation consists of: (1) design criteria, (2) modeling of composite structures and uncertainties, (3) simulation methods, and (4) the decision-making process. A sample case is presented to illustrate the formal procedure and to demonstrate that composite structural designs can be probabilistically evaluated with accuracy and efficiency.

  14. Detonation Shock Radius Experiments.

    NASA Astrophysics Data System (ADS)

    Lambert, David; Debes, Joshua; Stewart, Scott; Yoo, Sunhee

    2007-06-01

    A previous passover experiment [1] was designed to create a complex detonation transient used in validating a reduced, asymptotically derived description of detonation shock dynamics (DSD). An underlying question remained on determining the location of the initial detonation shock radius to start the DSD simulation with respect to the dynamical response of the initiation system coupling's to the main charge. This paper concentrates on determining the initial shock radius required of such DSD governed problems. `Cut-back' experiments of PBX-9501 were conducted using an initiation system that sought to optimize the transferred detonation to the desired constant radius, hemispherical shape. Streak camera techniques captured the breakout on three of the prism's surfaces for time-of-arrival data. The paper includes comparisons to simulations using constant volume explosion and high pressure hot spots. The results of the experiments and simulation efforts provide fundamental design considerations for actual explosive systems and verify necessary conditions from which the asymptotic theory of DSD may apply. [1] Lambert, D., Stewart, D. Scott and Yoo, S. and Wescott, B., ``Experimental Validation of Detonation Shock Dynamics in Condensed Explosives. J. of Fluid Mechs., Vol. 546, pp.227-253 (2006).

  15. Common Difficulties with Probabilistic Reasoning.

    ERIC Educational Resources Information Center

    Hope, Jack A.; Kelly, Ivan W.

    1983-01-01

    Several common errors reflecting difficulties in probabilistic reasoning are identified, relating to ambiguity, previous outcomes, sampling, unusual events, and estimating. Knowledge of these mistakes and interpretations may help mathematics teachers understand the thought processes of their students. (MNS)

  16. Probabilistic Open Set Recognition

    NASA Astrophysics Data System (ADS)

    Jain, Lalit Prithviraj

    Real-world tasks in computer vision, pattern recognition and machine learning often touch upon the open set recognition problem: multi-class recognition with incomplete knowledge of the world and many unknown inputs. An obvious way to approach such problems is to develop a recognition system that thresholds probabilities to reject unknown classes. Traditional rejection techniques are not about the unknown; they are about the uncertain boundary and rejection around that boundary. Thus traditional techniques only represent the "known unknowns". However, a proper open set recognition algorithm is needed to reduce the risk from the "unknown unknowns". This dissertation examines this concept and finds existing probabilistic multi-class recognition approaches are ineffective for true open set recognition. We hypothesize the cause is due to weak adhoc assumptions combined with closed-world assumptions made by existing calibration techniques. Intuitively, if we could accurately model just the positive data for any known class without overfitting, we could reject the large set of unknown classes even under this assumption of incomplete class knowledge. For this, we formulate the problem as one of modeling positive training data by invoking statistical extreme value theory (EVT) near the decision boundary of positive data with respect to negative data. We provide a new algorithm called the PI-SVM for estimating the unnormalized posterior probability of class inclusion. This dissertation also introduces a new open set recognition model called Compact Abating Probability (CAP), where the probability of class membership decreases in value (abates) as points move from known data toward open space. We show that CAP models improve open set recognition for multiple algorithms. Leveraging the CAP formulation, we go on to describe the novel Weibull-calibrated SVM (W-SVM) algorithm, which combines the useful properties of statistical EVT for score calibration with one-class and binary

  17. Probabilistic Risk Assessment: A Bibliography

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Probabilistic risk analysis is an integration of failure modes and effects analysis (FMEA), fault tree analysis and other techniques to assess the potential for failure and to find ways to reduce risk. This bibliography references 160 documents in the NASA STI Database that contain the major concepts, probabilistic risk assessment, risk and probability theory, in the basic index or major subject terms, An abstract is included with most citations, followed by the applicable subject terms.

  18. Theoretical Insight into Shocked Gases

    SciTech Connect

    Leiding, Jeffery Allen

    2016-09-29

    I present the results of statistical mechanical calculations on shocked molecular gases. This work provides insight into the general behavior of shock Hugoniots of gas phase molecular targets with varying initial pressures. The dissociation behavior of the molecules is emphasized. Impedance matching calculations are performed to determine the maximum degree of dissociation accessible for a given flyer velocity as a function of initial gas pressure.

  19. Probabilistic theories with purification

    SciTech Connect

    Chiribella, Giulio; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2010-06-15

    We investigate general probabilistic theories in which every mixed state has a purification, unique up to reversible channels on the purifying system. We show that the purification principle is equivalent to the existence of a reversible realization of every physical process, that is, to the fact that every physical process can be regarded as arising from a reversible interaction of the system with an environment, which is eventually discarded. From the purification principle we also construct an isomorphism between transformations and bipartite states that possesses all structural properties of the Choi-Jamiolkowski isomorphism in quantum theory. Such an isomorphism allows one to prove most of the basic features of quantum theory, like, e.g., existence of pure bipartite states giving perfect correlations in independent experiments, no information without disturbance, no joint discrimination of all pure states, no cloning, teleportation, no programming, no bit commitment, complementarity between correctable channels and deletion channels, characterization of entanglement-breaking channels as measure-and-prepare channels, and others, without resorting to the mathematical framework of Hilbert spaces.

  20. Interval probabilistic neural network.

    PubMed

    Kowalski, Piotr A; Kulczycki, Piotr

    2017-01-01

    Automated classification systems have allowed for the rapid development of exploratory data analysis. Such systems increase the independence of human intervention in obtaining the analysis results, especially when inaccurate information is under consideration. The aim of this paper is to present a novel approach, a neural networking, for use in classifying interval information. As presented, neural methodology is a generalization of probabilistic neural network for interval data processing. The simple structure of this neural classification algorithm makes it applicable for research purposes. The procedure is based on the Bayes approach, ensuring minimal potential losses with regard to that which comes about through classification errors. In this article, the topological structure of the network and the learning process are described in detail. Of note, the correctness of the procedure proposed here has been verified by way of numerical tests. These tests include examples of both synthetic data, as well as benchmark instances. The results of numerical verification, carried out for different shapes of data sets, as well as a comparative analysis with other methods of similar conditioning, have validated both the concept presented here and its positive features.

  1. Probabilistic Solution of Ill-Posed Problems in Computational Vision.

    DTIC Science & Technology

    1987-03-01

    SOLUTION OF ILL - POSED PROBLEMS IN 1/t I CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB UNLASIIE...TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A. I. Memo 897 March 1987 Probabilistic Solution of Ill - Posed Problems in Computational Vision J. Marroquin... solution (a) exists, (b) is unique and (c) depends continuously on the initial data. Ill - posed problems fail to satisfy one or more of these

  2. Ensemble postprocessing for probabilistic quantitative precipitation forecasts

    NASA Astrophysics Data System (ADS)

    Bentzien, S.; Friederichs, P.

    2012-12-01

    Precipitation is one of the most difficult weather variables to predict in hydrometeorological applications. In order to assess the uncertainty inherent in deterministic numerical weather prediction (NWP), meteorological services around the globe develop ensemble prediction systems (EPS) based on high-resolution NWP systems. With non-hydrostatic model dynamics and without parameterization of deep moist convection, high-resolution NWP models are able to describe convective processes in more detail and provide more realistic mesoscale structures. However, precipitation forecasts are still affected by displacement errors, systematic biases and fast error growth on small scales. Probabilistic guidance can be achieved from an ensemble setup which accounts for model error and uncertainty of initial and boundary conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) provides such an ensemble system based on the German-focused limited-area model COSMO-DE. With a horizontal grid-spacing of 2.8 km, COSMO-DE is the convection-permitting high-resolution part of the operational model chain at DWD. The COSMO-DE-EPS consists of 20 realizations of COSMO-DE, driven by initial and boundary conditions derived from 4 global models and 5 perturbations of model physics. Ensemble systems like COSMO-DE-EPS are often limited with respect to ensemble size due to the immense computational costs. As a consequence, they can be biased and exhibit insufficient ensemble spread, and probabilistic forecasts may be not well calibrated. In this study, probabilistic quantitative precipitation forecasts are derived from COSMO-DE-EPS and evaluated at more than 1000 rain gauges located all over Germany. COSMO-DE-EPS is a frequently updated ensemble system, initialized 8 times a day. We use the time-lagged approach to inexpensively increase ensemble spread, which results in more reliable forecasts especially for extreme precipitation events. Moreover, we will show that statistical

  3. Molecular shock response of explosives: electronic absorption spectroscopy

    SciTech Connect

    Mcgrne, Shawn D; Moore, David S; Whitley, Von H; Bolme, Cindy A; Eakins, Daniel E

    2009-01-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the question of the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference from the shock front as well as broadband increased absorption. Relation to shock initiation hypotheses and the need for time dependent absorption data (future experiments) is briefly discussed.

  4. Septic Shock

    PubMed Central

    Seymour, Christopher W.; Rosengart, Matthew R.

    2015-01-01

    IMPORTANCE Septic shock is a clinical emergency that occurs in more than 230 000 US patients each year. OBSERVATIONS AND ADVANCES In the setting of suspected or documented infection, septic shock is typically defined in a clinical setting by low systolic (≤90 mm Hg) or mean arterial blood pressure (≤65 mm Hg) accompanied by signs of hypoperfusion (eg, oliguria, hyperlactemia, poor peripheral perfusion, or altered mental status). Focused ultrasonography is recommended for the prompt recognition of complicating physiology (eg, hypovolemia or cardiogenic shock), while invasive hemodynamic monitoring is recommended only for select patients. In septic shock, 3 randomized clinical trials demonstrate that protocolized care offers little advantage compared with management without a protocol. Hydroxyethyl starch is no longer recommended, and debate continues about the role of various crystalloid solutions and albumin. CONCLUSIONS AND RELEVANCE The prompt diagnosis of septic shock begins with obtainment of medical history and performance of a physical examination for signs and symptoms of infection and may require focused ultrasonography to recognize more complex physiologic manifestations of shock. Clinicians should understand the importance of prompt administration of intravenous fluids and vasoactive medications aimed at restoring adequate circulation, and the limitations of protocol-based therapy, as guided by recent evidence. PMID:26284722

  5. PROBABILISTIC INFORMATION INTEGRATION TECHNOLOGY

    SciTech Connect

    J. BOOKER; M. MEYER; ET AL

    2001-02-01

    The Statistical Sciences Group at Los Alamos has successfully developed a structured, probabilistic, quantitative approach for the evaluation of system performance based on multiple information sources, called Information Integration Technology (IIT). The technology integrates diverse types and sources of data and information (both quantitative and qualitative), and their associated uncertainties, to develop distributions for performance metrics, such as reliability. Applications include predicting complex system performance, where test data are lacking or expensive to obtain, through the integration of expert judgment, historical data, computer/simulation model predictions, and any relevant test/experimental data. The technology is particularly well suited for tracking estimated system performance for systems under change (e.g. development, aging), and can be used at any time during product development, including concept and early design phases, prior to prototyping, testing, or production, and before costly design decisions are made. Techniques from various disciplines (e.g., state-of-the-art expert elicitation, statistical and reliability analysis, design engineering, physics modeling, and knowledge management) are merged and modified to develop formal methods for the data/information integration. The power of this technology, known as PREDICT (Performance and Reliability Evaluation with Diverse Information Combination and Tracking), won a 1999 R and D 100 Award (Meyer, Booker, Bement, Kerscher, 1999). Specifically the PREDICT application is a formal, multidisciplinary process for estimating the performance of a product when test data are sparse or nonexistent. The acronym indicates the purpose of the methodology: to evaluate the performance or reliability of a product/system by combining all available (often diverse) sources of information and then tracking that performance as the product undergoes changes.

  6. Probabilistic exposure fusion.

    PubMed

    Song, Mingli; Tao, Dacheng; Chen, Chun; Bu, Jiajun; Luo, Jiebo; Zhang, Chengqi

    2012-01-01

    The luminance of a natural scene is often of high dynamic range (HDR). In this paper, we propose a new scheme to handle HDR scenes by integrating locally adaptive scene detail capture and suppressing gradient reversals introduced by the local adaptation. The proposed scheme is novel for capturing an HDR scene by using a standard dynamic range (SDR) device and synthesizing an image suitable for SDR displays. In particular, we use an SDR capture device to record scene details (i.e., the visible contrasts and the scene gradients) in a series of SDR images with different exposure levels. Each SDR image responds to a fraction of the HDR and partially records scene details. With the captured SDR image series, we first calculate the image luminance levels, which maximize the visible contrasts, and then the scene gradients embedded in these images. Next, we synthesize an SDR image by using a probabilistic model that preserves the calculated image luminance levels and suppresses reversals in the image luminance gradients. The synthesized SDR image contains much more scene details than any of the captured SDR image. Moreover, the proposed scheme also functions as the tone mapping of an HDR image to the SDR image, and it is superior to both global and local tone mapping operators. This is because global operators fail to preserve visual details when the contrast ratio of a scene is large, whereas local operators often produce halos in the synthesized SDR image. The proposed scheme does not require any human interaction or parameter tuning for different scenes. Subjective evaluations have shown that it is preferred over a number of existing approaches.

  7. Probabilistic analysis of manipulation tasks: A research agenda

    SciTech Connect

    Brost, R.C.; Christiansen, A.D.

    1992-10-01

    This paper addresses the problem of manipulation planning in the presence of uncertainty. We begin by reviewing the worst-case planning techniques introduced in and show that these methods are hampered by an information gap inherent to worst-case analysis techniques. As the task uncertainty increases, these methods fail to produce useful information even though a high-quality plan may exist. To fill this gap, we present the probabilistic backprojection, which describes the likelihood that a given action will achieve the task goal from a given initial state. We provide a constructive definition of the probabilistic backprojection and related probabilistic models of manipulation task mechanics, and show how these models unify and enhance several past results in manipulation planning. These models capture the fundamental nature of the task behavior, but appear to be very complex. Methods for computing these models are sketched, but efficient computational methods remain unknown.

  8. Probabilistic analysis of manipulation tasks: A research agenda

    SciTech Connect

    Brost, R.C. ); Christiansen, A.D. )

    1992-01-01

    This paper addresses the problem of manipulation planning in the presence of uncertainty. We begin by reviewing the worst-case planning techniques introduced in and show that these methods are hampered by an information gap inherent to worst-case analysis techniques. As the task uncertainty increases, these methods fail to produce useful information even though a high-quality plan may exist. To fill this gap, we present the probabilistic backprojection, which describes the likelihood that a given action will achieve the task goal from a given initial state. We provide a constructive definition of the probabilistic backprojection and related probabilistic models of manipulation task mechanics, and show how these models unify and enhance several past results in manipulation planning. These models capture the fundamental nature of the task behavior, but appear to be very complex. Methods for computing these models are sketched, but efficient computational methods remain unknown.

  9. Probabilistic quantum teleportation in the presence of noise

    NASA Astrophysics Data System (ADS)

    Fortes, Raphael; Rigolin, Gustavo

    2016-06-01

    We extend the research program initiated in [Phys. Rev. A 92, 012338 (2015), 10.1103/PhysRevA.92.012338] from noisy deterministic teleportation protocols to noisy probabilistic (conditional) protocols. Our main goal now is to study how we can increase the fidelity of the teleported state in the presence of noise by working with probabilistic protocols. We work with several scenarios involving the most common types of noise in realistic implementations of quantum communication tasks and find many cases where adding more noise to the probabilistic protocol increases considerably the fidelity of the teleported state, without decreasing the probability of a successful run of the protocol. Also, there are cases where the entanglement of the channel connecting Alice and Bob leading to the greatest fidelity is not maximal. Moreover, there exist cases where the optimal fidelity for the probabilistic protocols are greater than the maximal fidelity (2 /3 ) achievable by using only classical resources, while the optimal ones for the deterministic protocols under the same conditions lie below this limit. This result clearly illustrates that in some cases we can only get a truly quantum teleportation if we use probabilistic instead of deterministic protocols.

  10. Is the basic conditional probabilistic?

    PubMed

    Goodwin, Geoffrey P

    2014-06-01

    Nine experiments examined whether individuals treat the meaning of basic conditional assertions as deterministic or probabilistic. In Experiments 1-4, participants were presented with either probabilistic or deterministic relations, which they had to describe with a conditional. These experiments consistently showed that people tend only to use the basic if p then q construction to describe deterministic relations between antecedent and consequent, whereas they use a probabilistically qualified construction, if p then probably q, to describe probabilistic relations-suggesting that the default interpretation of the conditional is deterministic. Experiments 5 and 6 showed that when directly asked, individuals typically report that conditional assertions admit no exceptions (i.e., they are seen as deterministic). Experiments 7-9 showed that individuals judge the truth of conditional assertions in accordance with this deterministic interpretation. Together, these results pose a challenge to probabilistic accounts of the meaning of conditionals and support mental models, formal rules, and suppositional accounts. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  11. Probabilistic Design and Analysis Framework

    NASA Technical Reports Server (NTRS)

    Strack, William C.; Nagpal, Vinod K.

    2010-01-01

    PRODAF is a software package designed to aid analysts and designers in conducting probabilistic analysis of components and systems. PRODAF can integrate multiple analysis programs to ease the tedious process of conducting a complex analysis process that requires the use of multiple software packages. The work uses a commercial finite element analysis (FEA) program with modules from NESSUS to conduct a probabilistic analysis of a hypothetical turbine blade, disk, and shaft model. PRODAF applies the response surface method, at the component level, and extrapolates the component-level responses to the system level. Hypothetical components of a gas turbine engine are first deterministically modeled using FEA. Variations in selected geometrical dimensions and loading conditions are analyzed to determine the effects of the stress state within each component. Geometric variations include the cord length and height for the blade, inner radius, outer radius, and thickness, which are varied for the disk. Probabilistic analysis is carried out using developing software packages like System Uncertainty Analysis (SUA) and PRODAF. PRODAF was used with a commercial deterministic FEA program in conjunction with modules from the probabilistic analysis program, NESTEM, to perturb loads and geometries to provide a reliability and sensitivity analysis. PRODAF simplified the handling of data among the various programs involved, and will work with many commercial and opensource deterministic programs, probabilistic programs, or modules.

  12. Online dissemination of probabilistic forecasts

    NASA Astrophysics Data System (ADS)

    Roulston, M. S.; Smith, L. A.

    2003-04-01

    Probabilistic weather forecasts intrinsically contain a much larger amount of information than traditional deterministic forecasts. This greatly increases their potential value to end-users, but also creates an obstacle to their dissemination. Traditional media, such as TV, radio and newspapers, are not suitable for presenting probabilistic forecasts to a large number of users who need predictions concerning a range of variables at a range of locations. The web has the potential to allow probabilistic forecasts to be communicated to users without having to make tacit assumptions about how their individual utility functions depend on weather variables. Unfortunately, the majority of weather forecasts currently available on the web are little more than online renditions of the type of forecasts found in more traditional media. We present a demonstration of how probabilistic forecasts might be effectively disseminated using the web. The graphical user interface allows users to view ensembles of the weather variables of interest to them without having to summarise the probabilistic information in the ensemble, and thus make implicit assumptions about the users weather risk exposure. Such a GUI can also be used to view "end-to-end" ensemble forecasts of non-weather, but weather dependent, variables of direct interest to users (e.g. wind power production).

  13. Shock-activated electrochemical power supplies

    DOEpatents

    Benedick, William B.; Graham, Robert A.; Morosin, Bruno

    1988-01-01

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active.

  14. Shock-activated electrochemical power supplies

    DOEpatents

    Benedick, W.B.; Graham, R.A.; Morosin, B.

    1988-11-08

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active. 2 figs.

  15. Shock-activated electrochemical power supplies

    DOEpatents

    Benedick, W.B.; Graham, R.A.; Morosin, B.

    1987-04-20

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolyte rendering the electrolyte electrochemically active. 2 figs.

  16. Purification and initial characterization of the 71-kilodalton rat heat-shock protein and its cognate as fatty acid binding proteins.

    PubMed

    Guidon, P T; Hightower, L E

    1986-06-03

    The major rat heat-shock (stress) protein and its cognate were purified to electrophoretic homogeneity from livers of heat-shocked rats. Both proteins exhibited similar behavior on a variety of column chromatography matrices but were separable by preparative isoelectric focusing under nondenaturing conditions by virtue of a 0.2 pH unit difference in isoelectric point. Both purified proteins had similar physical properties, suggesting the possibility that they may have similar biological functions as well. Both proteins were homodimers under nondissociative conditions (Mr 150 000) with isoelectric points of 5.0 (cognate) and 5.2 (major stress protein). After denaturation, both proteins had an increase in isoelectric point of 0.6 pH unit, and the resulting polypeptide chains had apparent molecular weights of 73 000 (cognate) and 71 000 (major stress protein). Similarities in the electrophoretic properties of these two proteins and serum albumin, which also undergoes a large basic shift in isoelectric point due to loss of fatty acids and conformational changes accompanying denaturation, prompted us to search for lipids associated with the purified 71-kilodalton stress protein and its cognate. Thin-layer chromatography of chloroform/methanol extracts of these two proteins revealed nonesterified fatty acids bound to both proteins. Palmitic acid, stearic acid, and a small amount of myristic acid were identified by gas chromatography/mass spectroscopy. Both proteins contained approximately four molecules of fatty acid per dimer with palmitate and stearate present in a one to one molar ratio. Possible roles of the major stress protein and its cognate as fatty acid associated proteins in cellular responses to stress are discussed.

  17. Factors Affecting Shock Sensitivity of Energeticv Materials

    NASA Astrophysics Data System (ADS)

    Chakravarty, Avic; Gifford, Michael John; Greenaway, Martin; Proud, William; Field, John

    2001-06-01

    An extensive study has been carried out into the relationships between the particle size of a charge, the density to which it is packed, the presence of inert additives and the sensitivity of the charge to different initiating shocks. The critical parameters for three different shock regimes have been found. The long duration shocks are provided by a commercial detonator, the medium duration shocks are provided by an electrically driven flyer-plate and the short duration shocks are imparted using laser-driven flyer plates. It has been shown that the order of sensitivity of charges to different shock regimes varies. In particular, ultrafine materials have been shown to relatively insensitive to long duration low pressure shocks and sensitive to short duration high pressure shocks. The materials that have been studied include HNS, RDX and PETN.

  18. Vagueness as Probabilistic Linguistic Knowledge

    NASA Astrophysics Data System (ADS)

    Lassiter, Daniel

    Consideration of the metalinguistic effects of utterances involving vague terms has led Barker [1] to treat vagueness using a modified Stalnakerian model of assertion. I present a sorites-like puzzle for factual beliefs in the standard Stalnakerian model [28] and show that it can be resolved by enriching the model to make use of probabilistic belief spaces. An analogous problem arises for metalinguistic information in Barker's model, and I suggest that a similar enrichment is needed here as well. The result is a probabilistic theory of linguistic representation that retains a classical metalanguage but avoids the undesirable divorce between meaning and use inherent in the epistemic theory [34]. I also show that the probabilistic approach provides a plausible account of the sorites paradox and higher-order vagueness and that it fares well empirically and conceptually in comparison to leading competitors.

  19. Probabilistic analysis of the efficiency of the damping devices against nuclear fuel container falling

    NASA Astrophysics Data System (ADS)

    Králik, Juraj

    2017-07-01

    The paper presents the probabilistic and sensitivity analysis of the efficiency of the damping devices cover of nuclear power plant under impact of the container of nuclear fuel of type TK C30 drop. The finite element idealization of nuclear power plant structure is used in space. The steel pipe damper system is proposed for dissipation of the kinetic energy of the container free fall. The experimental results of the shock-damper basic element behavior under impact loads are presented. The Newmark integration method is used for solution of the dynamic equations. The sensitivity and probabilistic analysis of damping devices was realized in the AntHILL and ANSYS software.

  20. Finite Mach number spherical shock wave, application to shock ignition

    SciTech Connect

    Vallet, A.; Ribeyre, X.; Tikhonchuk, V.

    2013-08-15

    A converging and diverging spherical shock wave with a finite initial Mach number M{sub s0} is described by using a perturbative approach over a small parameter M{sub s}{sup −2}. The zeroth order solution is the Guderley's self-similar solution. The first order correction to this solution accounts for the effects of the shock strength. Whereas it was constant in the Guderley's asymptotic solution, the amplification factor of the finite amplitude shock Λ(t)∝dU{sub s}/dR{sub s} now varies in time. The coefficients present in its series form are iteratively calculated so that the solution does not undergo any singular behavior apart from the position of the shock. The analytical form of the corrected solution in the vicinity of singular points provides a better physical understanding of the finite shock Mach number effects. The correction affects mainly the flow density and the pressure after the shock rebound. In application to the shock ignition scheme, it is shown that the ignition criterion is modified by more than 20% if the fuel pressure prior to the final shock is taken into account. A good agreement is obtained with hydrodynamic simulations using a Lagrangian code.

  1. Simulations of Converging Shock Collisions for Shock Ignition

    NASA Astrophysics Data System (ADS)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  2. Evaluation of Probabilistic Precipitation Forecast of TIGGE data and Probabilistic Flood Prediction over Huaihe Basin

    NASA Astrophysics Data System (ADS)

    Zhao, L.

    2016-12-01

    Rainfall is one of the most important weather phenomena which could result in severe flood and huge economic loss. A timely and accurate quantitative precipitation forecast (QPF) is a primary goal of operational prediction and one of the most factor that affects the issuance of flood warning. In order to improve a single ensemble prediction system (EPS), multi-model prediction system (MPS) and probabilistic prediction were developed with considering the characteristics of many EPS, i.e.. The simulation of initial uncertainties. The THORPEX Interactive Grand Global Ensemble (TIGGE) program provides a very good opportunity for MPS, probabilistic precipitation, and flood with further research. Based on the precipitation and temperature data obtained from TIGGE-China Meteorological Administration (CMA) archiving center and the rain gauge data, the three-layer variable infiltration capacity (VIC-3L) land surface model was employed to carry out probabilistic hydrological forecast experiments over the upper Huaihe River catchment from 20 July to 3 August 2008. The results show that the performance of the ensemble probabilistic prediction from each ensemble prediction system (EPS) is better than that of the deterministic prediction. Especially, that 72-h prediction has been improved obviously. The ensemble spread goes widely with increasing lead time and more observed discharge is bracketed in the 5th-99th quantile. The accuracy of river discharge prediction driven by the ECMWF-Centre EPS is higher than that driven by the CMA-EPS and the NCEP-EPS, and the grand-ensemble prediction is the best for hydrological prediction using the VIC model. With regard to Wangjiaba station, all predictions made with a single EPS are close to the observation between the 25th and 75th quantile. The onset of the flood ascending and the river discharge thresholds are predicted well, and so is the second rising limb. Nevertheless, the flood recession is not well predicted.

  3. Probabilistic inversion: a preliminary discussion

    NASA Astrophysics Data System (ADS)

    Battista Rossi, Giovanni; Crenna, Francesco

    2015-02-01

    We continue the discussion on the possibility of interpreting probability as a logic, that we have started in the previous IMEKO TC1-TC7-TC13 Symposium. We show here how a probabilistic logic can be extended up to including direct and inverse functions. We also discuss the relationship between this framework and the Bayes-Laplace rule, showing how the latter can be formally interpreted as a probabilistic inversion device. We suggest that these findings open a new perspective in the evaluation of measurement uncertainty.

  4. Is this septic shock? A rare case of distributive shock.

    PubMed

    Val-Flores, Luis Silva; Fior, Alberto; Santos, Ana; Reis, Luís; Bento, Luís

    2014-01-01

    The authors report a rare case of shock in a patient without significant clinical history, admitted to the intensive care unit for suspected septic shock. The patient was initially treated with fluid therapy without improvement. A hypothesis of systemic capillary leak syndrome was postulated following the confirmation of severe hypoalbuminemia, hypotension, and hemoconcentration--a combination of three symptoms typical of the disease. The authors discussed the differential diagnosis and also conducted a review of the diagnosis and treatment of the disease.

  5. Is this septic shock? A rare case of distributive shock

    PubMed Central

    Val-Flores, Luis Silva; Fior, Alberto; Santos, Ana; Reis, Luís; Bento, Luís

    2014-01-01

    The authors report a rare case of shock in a patient without significant clinical history, admitted to the intensive care unit for suspected septic shock. The patient was initially treated with fluid therapy without improvement. A hypothesis of systemic capillary leak syndrome was postulated following the confirmation of severe hypoalbuminemia, hypotension, and hemoconcentration - a combination of three symptoms typical of the disease. The authors discussed the differential diagnosis and also conducted a review of the diagnosis and treatment of the disease. PMID:25607273

  6. Septic Shock

    PubMed Central

    Lansing, Allan M.

    1963-01-01

    Septic shock may be defined as hypotension caused by bacteremia and accompanied by decreased peripheral blood flow, evidenced by oliguria. Clinically, a shaking chill is the warning signal. The immediate cause of hypotension is pooling of blood in the periphery, leading to decreased venous return: later, peripheral resistance falls and cardiac failure may occur. Irreversible shock is comparable to massive reactive hyperemia. Reticuloendothelial failure, histamine release, and toxic hypersensitivity may be factors in the pathogenesis of septic shock. Adrenal failure does not usually occur, but large doses of corticosteroid are employed therapeutically to counteract the effect of histamine release or hypersensitivity to endotoxin. The keys to successful therapy are time, antibiotics, vasopressors, cortisone and correction of acidosis. PMID:14063936

  7. Intense shock waves and shock-compressed gas flows in the channels of rail accelerators

    NASA Astrophysics Data System (ADS)

    Bobashev, S. V.; Zhukov, B. G.; Kurakin, R. O.; Ponyaev, S. A.; Reznikov, B. I.; Tverdokhlebov, K. V.

    2015-01-01

    Shock wave generation and shock-compressed gas flows attendant on the acceleration of an striker-free plasma piston in the channels of electromagnetic rail accelerators (railguns) are studied. Experiments are carried out in channels filled with helium or argon to an initial pressure of 25-500 Torr. At a pressure of 25 Torr, Mach numbers equal 32 in argon and 16 in helium. It is found that with the initial currents and gas initial densities in the channels being the same, the shock wave velocities in both gases almost coincide. Unlike standard shock tubes, a high electric field (up to 300 V/cm) present in the channel governs the motion of a shock-compressed layer. Once the charged particle concentration behind the shock wave becomes sufficiently high, the field causes part of the discharge current to pass through the shock-compressed layer. As a result, the glow of the layer becomes much more intense.

  8. Converging cylindrical shocks in ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=sqrt{μ _0/p_0} I/(2 π ) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field

  9. Converging cylindrical shocks in ideal magnetohydrodynamics

    SciTech Connect

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-09-15

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The

  10. Some characteristics of probabilistic one-sided splicing systems

    NASA Astrophysics Data System (ADS)

    Selvarajoo, Mathuri; Fong, Wan Heng; Sarmin, Nor Haniza; Turaev, Sherzod

    2013-04-01

    A theoretical model for DNA computing using the recombination behavior of DNA molecules known as asplicing system has been introduced in 1987. Splicing systems are based on the splicing operation which, informally, cuts two strings at the specific places and attaches the prefix of the first string to the suffix of the second string and the prefix of the second string to the suffix of the first string yielding the new strings. It is known that splicing systems with finite sets of axioms and splicing rules only generate regular languages. Hence, different types of restrictions for splicing systems have been considered to increase the computational power of the languages generated. Recently, probabilistic splicing systems have been introduced where the probabilities are initially associated with the axioms, and the probabilities of the generated strings are computed from the probabilities of the initial strings. In this paper, some properties of probabilistic one-sided splicing systems, which are special types of probabilistic splicing systems, are investigated. We prove that probabilistic one-sided splicing systems can also increase the computational power of the languages generated.

  11. Knowledge Acquisition for Probabilistic Expert Systems

    PubMed Central

    Lehmann, Harold P.

    1988-01-01

    Recent interest in probability-based expert systems has focused on the potential these systems have for being coherent with the beliefs of the modeled expert or of the user and consistent given any set of evidence. We have used the probabilistic formalism in creating the REFEREE system, a belief-network-based expert system designed to aid readers in determining the credibility of a randomized clinical trial. In this paper, we explore the effect the formalism had on the process of knowledge acquisition based on this experience. Although the system is still in development, we can report several of those effects. Specifically, the need to make operational definitions of concepts deemed important to the expert forced us to organize a domain that was formulated initially for a rule-based system. Categorizing probability distributions as being logical, probabilitic, or prototypical helped us to decrease the number of probability assessments. On the other hand, the lack of an intermediate prototype may have prolonged development, and computational limitations forced occasional compromises. The reality of building expert systems in a probabilistic paradigm may not be as hard as some critics have predicted.

  12. Making Probabilistic Relational Categories Learnable

    ERIC Educational Resources Information Center

    Jung, Wookyoung; Hummel, John E.

    2015-01-01

    Theories of relational concept acquisition (e.g., schema induction) based on structured intersection discovery predict that relational concepts with a probabilistic (i.e., family resemblance) structure ought to be extremely difficult to learn. We report four experiments testing this prediction by investigating conditions hypothesized to facilitate…

  13. Research on probabilistic information processing

    NASA Technical Reports Server (NTRS)

    Edwards, W.

    1973-01-01

    The work accomplished on probabilistic information processing (PIP) is reported. The research proposals and decision analysis are discussed along with the results of research on MSC setting, multiattribute utilities, and Bayesian research. Abstracts of reports concerning the PIP research are included.

  14. Probabilistic assessment of composite structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Shiao, Michael C.

    1993-01-01

    A methodology and attendant computer code were developed and are used to computationally simulate the uncertain behavior of composite structures. The uncertain behavior includes buckling loads, stress concentration factors, displacements, stress/strain, etc., which are the consequences of the inherent uncertainties (scatter) in the primitive (independent random) variables (constituent, ply, laminate, and structural) that describe the composite structures. The computer code is IPACS (Integrated Probabilistic Assessment of Composite Structures). IPACS can simulate both composite mechanics and composite structural behavior. Application to probabilistic composite mechanics is illustrated by its use to evaluate the uncertainties in the major Poisson's ratio and in laminate stiffness and strength. IPACS' application to probabilistic structural analysis is illustrated by its used to evaluate the uncertainties in the buckling of a composite plate, the stress concentration factor in a composite panel, and the vertical displacement and ply stress in a composite aircraft wing segment. IPACS' application to probabilistic design is illustrated by its use to assess the thin composite shell (pipe).

  15. Probabilistic assessment of composite structures

    NASA Technical Reports Server (NTRS)

    Shiao, Michael E.; Abumeri, Galib H.; Chamis, Christos C.

    1993-01-01

    A general computational simulation methodology for an integrated probabilistic assessment of composite structures is discussed and demonstrated using aircraft fuselage (stiffened composite cylindrical shell) structures with rectangular cutouts. The computational simulation was performed for the probabilistic assessment of the structural behavior including buckling loads, vibration frequencies, global displacements, and local stresses. The scatter in the structural response is simulated based on the inherent uncertainties in the primitive (independent random) variables at the fiber matrix constituent, ply, laminate, and structural scales that describe the composite structures. The effect of uncertainties due to fabrication process variables such as fiber volume ratio, void volume ratio, ply orientation, and ply thickness is also included. The methodology has been embedded in the computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). In addition to the simulated scatter, the IPACS code also calculates the sensitivity of the composite structural behavior to all the primitive variables that influence the structural behavior. This information is useful for assessing reliability and providing guidance for improvement. The results from the probabilistic assessment for the composite structure with rectangular cutouts indicate that the uncertainty in the longitudinal ply stress is mainly caused by the uncertainty in the laminate thickness, and the large overlap of the scatter in the first four buckling loads implies that the buckling mode shape for a specific buckling load can be either of the four modes.

  16. Transcranial direct current stimulation influences probabilistic association learning in schizophrenia.

    PubMed

    Vercammen, Ans; Rushby, Jacqueline A; Loo, Colleen; Short, Brooke; Weickert, Cynthia S; Weickert, Thomas W

    2011-09-01

    Schizophrenia is associated with heterogeneity in symptoms, cognition and treatment response. Probabilistic association learning, involving a gradual learning of cue-outcome associations, activates a frontal-striatal network in healthy adults. Studies of probabilistic association learning in schizophrenia have shown frontal-striatal dysfunction although considerable heterogeneity in performance has also been reported. Anodal transcranial direct current stimulation (tDCS) to the dorsolateral prefrontal cortex has been shown to improve probabilistic association learning in healthy adults. The aim of the current study was to determine the extent to which anodal tDCS to the left dorsolateral prefrontal cortex would reverse probabilistic association learning deficits in schizophrenia. Prior to tDCS, 20 people with schizophrenia performed an initial baseline assessment without stimulation. Anodal tDCS was administered continuously for 20 min at an intensity of 2.0 mA to the left dorsolateral prefrontal cortex in a single-blind, counterbalanced, sham-controlled, cross-over design while participants performed 150 trials of a probabilistic association learning test. Although anodal tDCS failed to improve probabilistic association learning based on the whole sample performance, greater variance in the active relative to the sham conditions suggested a subset of people may respond to treatment. Further correlation, regression and cluster analyses revealed differential effects of baseline performance on active tDCS and sham treatment and that there was a subset of people with schizophrenia who displayed improvement with tDCS suggesting that anodal tDCS to the dorsolateral prefrontal cortex may facilitate access to existing prefrontal cortex neural reserves in people with schizophrenia who show adequate capacity to learn at baseline. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  17. A probabilistic Hu-Washizu variational principle

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.; Besterfield, G. H.

    1987-01-01

    A Probabilistic Hu-Washizu Variational Principle (PHWVP) for the Probabilistic Finite Element Method (PFEM) is presented. This formulation is developed for both linear and nonlinear elasticity. The PHWVP allows incorporation of the probabilistic distributions for the constitutive law, compatibility condition, equilibrium, domain and boundary conditions into the PFEM. Thus, a complete probabilistic analysis can be performed where all aspects of the problem are treated as random variables and/or fields. The Hu-Washizu variational formulation is available in many conventional finite element codes thereby enabling the straightforward inclusion of the probabilistic features into present codes.

  18. Impact of Shock Front Nonstationarity on the Acceleration of Heavy Ions by Perpendicular Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Lembege, B.; Lu, Q.

    2010-12-01

    Both hybrid /full particle simulations and recent experimental results have clearly evidenced that the front of a supercritical quasi-perpendicular shock can be nonstationary and corresponds to the self-reformation of the front itself being due to the accumulation of reflected ions. Not only the amplitude but also the spatial scales of fields components at the front (ramp and foot) are strongly varying within each cycle of the self- reformation. On the other hand, several studies have been made on the acceleration and heating of heavy ions but most have been restricted to a stationary shock profile only. Herein, one-dimensional test particle simulations with fields components issued from self-consistent 1D PIC simulation are performed in order to investigate the impact of shock front non-stationarity on heavy ion acceleration (He, O, Fe). Reflection and acceleration mechanisms of heavy ions with different initial thermal velocities and different charge-mass ratios interacting with a non-stationary shock front (self-reformation) are analyzed in detail. Present preliminary results show that: (i) the heavy ions suffer shock drift acceleration (SDA) and shock surfing acceleration (SSA) mechanisms and will be compared with previous works; (ii) the fraction of reflected heavy ions increases with initial kinetic energy, charge-mass ratio and decreasing shock front width at both stationary shock (situation equivalent to fixed shock regime) and non-stationary shocks (situation equivalent to a continously time-evolving shock regime); (iii) the shock front non-stationarity facilitates the reflection of heavy ions for broad (rather than narrow) shock profiles; (iv) high energy part of Fe/O ratio spectra at a non-stationary shock decreases with shock ramp width. The impact of the shock front non-stationarity on the heavy ions spectra within the shock front region and the downstream region will be also discussed.

  19. Molecular Shock Response of Explosives: Electronic Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    McGrane, S. D.; Moore, D. S.; Whitley, V. H.; Bolme, C. A.; Eakins, D. E.

    2009-12-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference as well as broadband increased absorption. Relation to shock initiation and the need for time dependent absorption (future experiments) is briefly discussed.

  20. Joint Probabilistic Projection of Female and Male Life Expectancy

    PubMed Central

    Raftery, Adrian E.; Lalic, Nevena; Gerland, Patrick

    2014-01-01

    BACKGROUND The United Nations (UN) produces population projections for all countries every two years. These are used by international organizations, governments, the private sector and researchers for policy planning, for monitoring development goals, as inputs to economic and environmental models, and for social and health research. The UN is considering producing fully probabilistic population projections, for which joint probabilistic projections of future female and male life expectancy at birth are needed. OBJECTIVE We propose a methodology for obtaining joint probabilistic projections of female and male life expectancy at birth. METHODS We first project female life expectancy using a one-sex method for probabilistic projection of life expectancy. We then project the gap between female and male life expectancy. We propose an autoregressive model for the gap in a future time period for a particular country, which is a function of female life expectancy and a t-distributed random perturbation. This method takes into account mortality data limitations, is comparable across countries, and accounts for shocks. We estimate all parameters based on life expectancy estimates for 1950–2010. The methods are implemented in the bayesLife and bayesPop R packages. RESULTS We evaluated our model using out-of-sample projections for the period 1995–2010, and found that our method performed better than several possible alternatives. CONCLUSIONS We find that the average gap between female and male life expectancy has been increasing for female life expectancy below 75, and decreasing for female life expectancy above 75. Our projections of the gap are lower than the UN’s 2008 projections for most countries and so lead to higher projections of male life expectancy. PMID:25580082

  1. Shocking action: Facilitative effects of punishing electric shocks on action control.

    PubMed

    Eder, Andreas B; Dignath, David; Erle, Thorsten M; Wiemer, Julian

    2017-08-01

    Four experiments examined motivational effects of response-contingent electric shocks on action initiation. Although the shock was unambiguously aversive for the individual in line with subjective and functional criteria, results showed that the shock-producing action was initiated faster relative to a response producing no shock. However, no facilitation effect was found when strong shocks were delivered, ruling out increased emotional arousal as an explanation. The action was initiated faster even when the response discontinued to generate a shock. Furthermore, a control experiment with affectively neutral vibrotactile stimulations at homologous sites showed an analogous response facilitation effect. Overall, the results contradict the widespread belief that a contingency with a punishing response effect is sufficient for a response suppression. Instead, the results suggest that punishing action effects can facilitate action initiation via anticipatory feedback processes. Implications for theories and applications of punishment are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Collisionless Shocks and Particle Acceleration.

    NASA Astrophysics Data System (ADS)

    Malkov, M.

    2016-12-01

    Collisionless shocks emerged in the 50s and 60s of the last century as an important branch of plasma physics and have remained ever since. New applications pose new challenges to our understanding of collisionless shock mechanisms. Particle acceleration in astrophysical settings, primarily studied concerning the putative origin of cosmic rays (CR) in supernova remnant (SNR) shocks, stands out with the collisionless shock mechanism being the key. Among recent laboratory applications, a laser-based tabletop proton accelerator is an affordable compact alternative to big synchrotron accelerators. The much-anticipated proof of cosmic ray (CR) acceleration in supernova remnants is hindered by our limited understanding of collisionless shock mechanisms. Over the last decade, dramatically improved observations were puzzling the theorists with unexpected discoveries. The difference between the helium/carbon and proton CR rigidity (momentum to charge ratio) spectra, seemingly inconsistent with the acceleration and propagation theories, and the perplexing positron excess in the 10-300 GeV range are just two recent examples. The latter is now also actively discussed in the particle physics and CR communities as a possible signature of decay or annihilation of hypothetical dark matter particles. By considering an initial (injection) phase of a diffusive shock acceleration mechanism, including particle reflection off the shock front - where an elemental similarity of particle dynamics does not apply - I will discuss recent suggestions of how to address the new data from the collisionless shock perspective. The backreaction of accelerated particles on the shock structure, its environment, and visibility across the electromagnetic spectrum from radio to gamma rays is another key aspect of collisionless shock that will be discussed.

  3. Probabilistic load simulation: Code development status

    NASA Astrophysics Data System (ADS)

    Newell, J. F.; Ho, H.

    1991-05-01

    The objective of the Composite Load Spectra (CLS) project is to develop generic load models to simulate the composite load spectra that are included in space propulsion system components. The probabilistic loads thus generated are part of the probabilistic design analysis (PDA) of a space propulsion system that also includes probabilistic structural analyses, reliability, and risk evaluations. Probabilistic load simulation for space propulsion systems demands sophisticated probabilistic methodology and requires large amounts of load information and engineering data. The CLS approach is to implement a knowledge based system coupled with a probabilistic load simulation module. The knowledge base manages and furnishes load information and expertise and sets up the simulation runs. The load simulation module performs the numerical computation to generate the probabilistic loads with load information supplied from the CLS knowledge base.

  4. Probabilistic load simulation: Code development status

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Ho, H.

    1991-01-01

    The objective of the Composite Load Spectra (CLS) project is to develop generic load models to simulate the composite load spectra that are included in space propulsion system components. The probabilistic loads thus generated are part of the probabilistic design analysis (PDA) of a space propulsion system that also includes probabilistic structural analyses, reliability, and risk evaluations. Probabilistic load simulation for space propulsion systems demands sophisticated probabilistic methodology and requires large amounts of load information and engineering data. The CLS approach is to implement a knowledge based system coupled with a probabilistic load simulation module. The knowledge base manages and furnishes load information and expertise and sets up the simulation runs. The load simulation module performs the numerical computation to generate the probabilistic loads with load information supplied from the CLS knowledge base.

  5. Shock-induced chemistry in organic materials

    SciTech Connect

    Dattelbaum, Dana M; Sheffield, Steve; Engelke, Ray; Manner, Virginia; Chellappa, Raja; Yoo, Choong - Shik

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  6. Factors Affecting Shock Sensitivity of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Chakravarty, A.; Gifford, M. J.; Greenaway, M. W.; Proud, W. G.; Field, J. E.

    2002-07-01

    An extensive study has been carried out into the relationships between the particle size of a charge, the density to which it is packed, the presence of inert additives and the sensitivity of the charge to different initiating shocks. The critical parameters for two different shock regimes have been found. The long duration shocks are provided by a commercial detonator and the short duration shocks are imparted using laser-driven flyer plates. It has been shown that the order of sensitivity of charges to different shock regimes varies. In particular, ultrafine materials have been shown to be relatively insensitive to long duration low pressure shocks and sensitive to short duration high pressure shocks. The materials that have been studied include HNS, RDX and PETN.

  7. Weak and strong probabilistic solutions for a stochastic quasilinear parabolic equation with nonstandard growth

    NASA Astrophysics Data System (ADS)

    Ali, Z. I.; Sango, M.

    2016-07-01

    In this paper, we investigate a class of stochastic quasilinear parabolic initial boundary value problems with nonstandard growth in the functional setting of generalized Sobolev spaces. The deterministic version of the equation was first introduced and studied by Samokhin in [45] as a generalized model for polytropic filtration. We establish an existence result of weak probabilistic solutions when the forcing terms do not satisfy Lipschitz conditions. Under the Lipschitz property of the forcing terms, we obtain the uniqueness of weak probabilistic solutions. Combining the uniqueness and the famous Yamada-Watanabe result, we prove the existence of a unique strong probabilistic solution of the problem.

  8. Probabilistic Flash Flood Forecasting using Stormscale Ensembles

    NASA Astrophysics Data System (ADS)

    Hardy, J.; Gourley, J. J.; Kain, J. S.; Clark, A.; Novak, D.; Hong, Y.

    2013-12-01

    Flash flooding is one of the most costly and deadly natural hazards in the US and across the globe. The loss of life and property from flash floods could be mitigated with better guidance from hydrological models, but these models have limitations. For example, they are commonly initialized using rainfall estimates derived from weather radars, but the time interval between observations of heavy rainfall and a flash flood can be on the order of minutes, particularly for small basins in urban settings. Increasing the lead time for these events is critical for protecting life and property. Therefore, this study advances the use of quantitative precipitation forecasts (QPFs) from a stormscale NWP ensemble system into a distributed hydrological model setting to yield basin-specific, probabilistic flash flood forecasts (PFFFs). Rainfall error characteristics of the individual members are first diagnosed and quantified in terms of structure, amplitude, and location (SAL; Wernli et al., 2008). Amplitude and structure errors are readily correctable due to their diurnal nature, and the fine scales represented by the CAPS QPF members are consistent with radar-observed rainfall, mainly showing larger errors with afternoon convection. To account for the spatial uncertainty of the QPFs, we use an elliptic smoother, as in Marsh et al. (2012), to produce probabilistic QPFs (PQPFs). The elliptic smoother takes into consideration underdispersion, which is notoriously associated with stormscale ensembles, and thus, is good for targeting the approximate regions that may receive heavy rainfall. However, stormscale details contained in individual members are still needed to yield reasonable flash flood simulations. Therefore, on a case study basis, QPFs from individual members are then run through the hydrological model with their predicted structure and corrected amplitudes, but the locations of individual rainfall elements are perturbed within the PQPF elliptical regions using Monte

  9. Chondrule Destruction in Nebular Shocks

    NASA Astrophysics Data System (ADS)

    Jacquet, Emmanuel; Thompson, Christopher

    2014-12-01

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios epsilon >~ 0.1, and possibly even for solar abundances because of "sandblasting" by finer dust. A flow with epsilon >~ 10 requires much smaller shock velocities (~2 versus 8 km s-1) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  10. Chondrule destruction in nebular shocks

    SciTech Connect

    Jacquet, Emmanuel; Thompson, Christopher

    2014-12-10

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios ε ≳ 0.1, and possibly even for solar abundances because of 'sandblasting' by finer dust. A flow with ε ≳ 10 requires much smaller shock velocities (∼2 versus 8 km s{sup –1}) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  11. The Probabilistic Admissible Region with Additional Constraints

    NASA Astrophysics Data System (ADS)

    Roscoe, C.; Hussein, I.; Wilkins, M.; Schumacher, P.

    The admissible region, in the space surveillance field, is defined as the set of physically acceptable orbits (e.g., orbits with negative energies) consistent with one or more observations of a space object. Given additional constraints on orbital semimajor axis, eccentricity, etc., the admissible region can be constrained, resulting in the constrained admissible region (CAR). Based on known statistics of the measurement process, one can replace hard constraints with a probabilistic representation of the admissible region. This results in the probabilistic admissible region (PAR), which can be used for orbit initiation in Bayesian tracking and prioritization of tracks in a multiple hypothesis tracking framework. The PAR concept was introduced by the authors at the 2014 AMOS conference. In that paper, a Monte Carlo approach was used to show how to construct the PAR in the range/range-rate space based on known statistics of the measurement, semimajor axis, and eccentricity. An expectation-maximization algorithm was proposed to convert the particle cloud into a Gaussian Mixture Model (GMM) representation of the PAR. This GMM can be used to initialize a Bayesian filter. The PAR was found to be significantly non-uniform, invalidating an assumption frequently made in CAR-based filtering approaches. Using the GMM or particle cloud representations of the PAR, orbits can be prioritized for propagation in a multiple hypothesis tracking (MHT) framework. In this paper, the authors focus on expanding the PAR methodology to allow additional constraints, such as a constraint on perigee altitude, to be modeled in the PAR. This requires re-expressing the joint probability density function for the attributable vector as well as the (constrained) orbital parameters and range and range-rate. The final PAR is derived by accounting for any interdependencies between the parameters. Noting that the concepts presented are general and can be applied to any measurement scenario, the idea

  12. Management of Shock in Neonates.

    PubMed

    Bhat, B Vishnu; Plakkal, Nishad

    2015-10-01

    Shock is characterized by inadequate oxygen delivery to the tissues, and is more frequent in very low birth weight infants, especially in the first few days of life. Shock is an independent predictor of mortality, and the survivors are at a higher risk of neurologic impairment. Understanding the pathophysiology helps to recognize and classify shock in the early compensated phase and initiate appropriate treatment. Hypovolemia is rarely the primary cause of shock in neonates. Myocardial dysfunction is especially common in extremely preterm infants, and in term infants with perinatal asphyxia. Blood pressure measurements are easy, but correlate poorly with cerebral and systemic blood flows. Point-of-care cardiac ultrasound can help in individualized assessment of problems, selecting appropriate therapy and monitoring response, but may not always be available, and long-term benefits need to be demonstrated. The use of near-infrared spectroscopy to guide treatment of neonatal shock is currently experimental. In the absence of hypovolemia, excessive administration of fluid boluses is inappropriate therapy. Dobutamine and dopamine are the most common initial inotropes used in neonatal shock. Dobutamine has been shown to improve systemic blood flow, especially in very low birth weight infants, but dopamine is better at improving blood pressure in hypotensive infants. Newer inodilators including milrinone and levosimendan may be useful in selected settings. Data on long-term survival and neurologic outcomes following different management strategies are scarce and future research efforts should focus on this.

  13. Probabilistic Assessment of Fracture Progression in Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon; Mauget, Bertrand; Huang, Dade; Addi, Frank

    1999-01-01

    This report describes methods and corresponding computer codes that are used to evaluate progressive damage and fracture and to perform probabilistic assessment in built-up composite structures. Structural response is assessed probabilistically, during progressive fracture. The effects of design variable uncertainties on structural fracture progression are quantified. The fast probability integrator (FPI) is used to assess the response scatter in the composite structure at damage initiation. The sensitivity of the damage response to design variables is computed. The methods are general purpose and are applicable to stitched and unstitched composites in all types of structures and fracture processes starting from damage initiation to unstable propagation and to global structure collapse. The methods are demonstrated for a polymer matrix composite stiffened panel subjected to pressure. The results indicated that composite constituent properties, fabrication parameters, and respective uncertainties have a significant effect on structural durability and reliability. Design implications with regard to damage progression, damage tolerance, and reliability of composite structures are examined.

  14. Developing Probabilistic Safety Performance Margins for Unknown and Underappreciated Risks

    NASA Technical Reports Server (NTRS)

    Benjamin, Allan; Dezfuli, Homayoon; Everett, Chris

    2015-01-01

    Probabilistic safety requirements currently formulated or proposed for space systems, nuclear reactor systems, nuclear weapon systems, and other types of systems that have a low-probability potential for high-consequence accidents depend on showing that the probability of such accidents is below a specified safety threshold or goal. Verification of compliance depends heavily upon synthetic modeling techniques such as PRA. To determine whether or not a system meets its probabilistic requirements, it is necessary to consider whether there are significant risks that are not fully considered in the PRA either because they are not known at the time or because their importance is not fully understood. The ultimate objective is to establish a reasonable margin to account for the difference between known risks and actual risks in attempting to validate compliance with a probabilistic safety threshold or goal. In this paper, we examine data accumulated over the past 60 years from the space program, from nuclear reactor experience, from aircraft systems, and from human reliability experience to formulate guidelines for estimating probabilistic margins to account for risks that are initially unknown or underappreciated. The formulation includes a review of the safety literature to identify the principal causes of such risks.

  15. Synaptic Computation Underlying Probabilistic Inference

    PubMed Central

    Soltani, Alireza; Wang, Xiao-Jing

    2010-01-01

    In this paper we propose that synapses may be the workhorse of neuronal computations that underlie probabilistic reasoning. We built a neural circuit model for probabilistic inference when information provided by different sensory cues needs to be integrated, and the predictive powers of individual cues about an outcome are deduced through experience. We found that bounded synapses naturally compute, through reward-dependent plasticity, the posterior probability that a choice alternative is correct given that a cue is presented. Furthermore, a decision circuit endowed with such synapses makes choices based on the summated log posterior odds and performs near-optimal cue combination. The model is validated by reproducing salient observations of, and provide insights into, a monkey experiment using a categorization task. Our model thus suggests a biophysical instantiation of the Bayesian decision rule, while predicting important deviations from it similar to ‘base-rate neglect’ observed in human studies when alternatives have unequal priors. PMID:20010823

  16. The probabilistic no miracles argument.

    PubMed

    Sprenger, Jan

    This paper develops a probabilistic reconstruction of the No Miracles Argument (NMA) in the debate between scientific realists and anti-realists. The goal of the paper is to clarify and to sharpen the NMA by means of a probabilistic formalization. In particular, I demonstrate that the persuasive force of the NMA depends on the particular disciplinary context where it is applied, and the stability of theories in that discipline. Assessments and critiques of "the" NMA, without reference to a particular context, are misleading and should be relinquished. This result has repercussions for recent anti-realist arguments, such as the claim that the NMA commits the base rate fallacy (Howson (2000), Magnus and Callender (Philosophy of Science, 71:320-338, 2004)). It also helps to explain the persistent disagreement between realists and anti-realists.

  17. Environmental probabilistic quantitative assessment methodologies

    USGS Publications Warehouse

    Crovelli, R.A.

    1995-01-01

    In this paper, four petroleum resource assessment methodologies are presented as possible pollution assessment methodologies, even though petroleum as a resource is desirable, whereas pollution is undesirable. A methodology is defined in this paper to consist of a probability model and a probabilistic method, where the method is used to solve the model. The following four basic types of probability models are considered: 1) direct assessment, 2) accumulation size, 3) volumetric yield, and 4) reservoir engineering. Three of the four petroleum resource assessment methodologies were written as microcomputer systems, viz. TRIAGG for direct assessment, APRAS for accumulation size, and FASPU for reservoir engineering. A fourth microcomputer system termed PROBDIST supports the three assessment systems. The three assessment systems have different probability models but the same type of probabilistic method. The type of advantages of the analytic method are in computational speed and flexibility, making it ideal for a microcomputer. -from Author

  18. Undercuts by Laser Shock Forming

    SciTech Connect

    Wielage, Hanna; Vollertsen, Frank

    2011-05-04

    In laser shock forming TEA-CO{sub 2}-laser induced shock waves are used to form metal foils, such as aluminum or copper. The process utilizes an initiated plasma shock wave on the target surface, which leads to a forming of the foil. A challenge in forming technologies is the manufacturing of undercuts. By conventional forming methods these special forms are not feasible. In this article, it is presented that undercuts in the micro range can be produced by laser shock deep drawing. Different drawing die diameters, drawing die depths and the material aluminum in the thicknesses 20 and 50 {mu}m were investigated. It will be presented that smaller die diameters facilitate undercuts compared to bigger die diameters. The phenomena can be explained by Barlow's formula. Furthermore, it is shown which maximum undercut depth at different die diameters can be reached. To this end, cross-sections of the different parameter combinations are displayed.

  19. Annular arc accelerator shock tube

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P. (Inventor)

    1976-01-01

    An annular arc accelerator shock tube employs a cold gas driver to flow a stream of gas from an expansion section through a high voltage electrode section to a test section, thus driving a shock wave in front of it. A glow discharge detects the shock wave and actuates a trigger generator which in turn fires spark-gap switches to discharge a bank of capacitors across a centered cathode and an annular anode in tandem electrode sections. The initial shock wave passes through the anode section from the cathode section thereby depositing energy into the flow gas without the necessity of any diaphragm opening in the gas flow from the expansion section through the electrode sections.

  20. Shocks in the Early Universe

    NASA Astrophysics Data System (ADS)

    Pen, Ue-Li; Turok, Neil

    2016-09-01

    We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations of the kind observed on very large scales today, it also leads to the production of shocks in the radiation fluid of the very early Universe. Shocks cause departures from local thermal equilibrium as well as create vorticity and gravitational waves. For a scale-invariant spectrum and standard model physics, shocks form for temperatures 1 GeV shock formation and the consequent gravitational wave emission provide a signal detectable by current and planned gravitational wave experiments, allowing them to strongly constrain conditions present in the primordial Universe as early as 10-30 sec after the big bang.

  1. Shocks in the Early Universe.

    PubMed

    Pen, Ue-Li; Turok, Neil

    2016-09-23

    We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations of the kind observed on very large scales today, it also leads to the production of shocks in the radiation fluid of the very early Universe. Shocks cause departures from local thermal equilibrium as well as create vorticity and gravitational waves. For a scale-invariant spectrum and standard model physics, shocks form for temperatures 1  GeVshock formation and the consequent gravitational wave emission provide a signal detectable by current and planned gravitational wave experiments, allowing them to strongly constrain conditions present in the primordial Universe as early as 10^{-30}  sec after the big bang.

  2. Probabilistic risk assessment of HTGRs

    SciTech Connect

    Fleming, K.N.; Houghton, W.J.; Hannaman, G.W.; Joksimovic, V.

    1980-08-01

    Probabilistic Risk Assessment methods have been applied to gas-cooled reactors for more than a decade and to HTGRs for more than six years in the programs sponsored by the US Department of Energy. Significant advancements to the development of PRA methodology in these programs are summarized as are the specific applications of the methods to HTGRs. Emphasis here is on PRA as a tool for evaluating HTGR design options. Current work and future directions are also discussed.

  3. Probabilistic Simulation for Nanocomposite Characterization

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Coroneos, Rula M.

    2007-01-01

    A unique probabilistic theory is described to predict the properties of nanocomposites. The simulation is based on composite micromechanics with progressive substructuring down to a nanoscale slice of a nanofiber where all the governing equations are formulated. These equations have been programmed in a computer code. That computer code is used to simulate uniaxial strengths properties of a mononanofiber laminate. The results are presented graphically and discussed with respect to their practical significance. These results show smooth distributions.

  4. A Simple Probabilistic Combat Model

    DTIC Science & Technology

    2016-06-13

    model described here, all attrition is modeled probabilistically and it is possible (although unlikely) for the weaker side to be successful . The model...integrals are plotted as a function of the number of waves in the lower right plot . Since we start at a point in the space, there is a clear winner...Red14 5. MODEL FOR RED AND BLUE WIN PROBABILITY The previous plots have shown how the probability distribution of red and blue survivors evolves

  5. Probabilistic methods for rotordynamics analysis

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.

    1991-01-01

    This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.

  6. Applications of Probabilistic Risk Assessment

    SciTech Connect

    Burns, K.J.; Chapman, J.R.; Follen, S.M.; O'Regan, P.J. )

    1991-05-01

    This report provides a summary of potential and actual applications of Probabilistic Risk Assessment (PRA) technology and insights. Individual applications are derived from the experiences of a number of US nuclear utilities. This report identifies numerous applications of PRA techniques beyond those typically associated with PRAs. In addition, believing that the future use of PRA techniques should not be limited to those of the past, areas of plant operations, maintenance, and financial resource allocation are discussed. 9 refs., 3 tabs.

  7. Probabilistic tractography using Lasso bootstrap.

    PubMed

    Ye, Chuyang; Prince, Jerry L

    2017-01-01

    Diffusion magnetic resonance imaging (dMRI) can be used for noninvasive imaging of white matter tracts. Using fiber tracking, which propagates fiber streamlines according to fiber orientations (FOs) computed from dMRI, white matter tracts can be reconstructed for investigation of brain diseases and the brain connectome. Because of image noise, probabilistic tractography has been proposed to characterize uncertainties in FO estimation. Bootstrap provides a nonparametric approach to the estimation of FO uncertainties and residual bootstrap has been used for developing probabilistic tractography. However, recently developed models have incorporated sparsity regularization to reduce the required number of gradient directions to resolve crossing FOs, and the residual bootstrap used in previous methods is not applicable to these models. In this work, we propose a probabilistic tractography algorithm named Lasso bootstrap tractography (LBT) for the models that incorporate sparsity. Using a fixed tensor basis and a sparsity assumption, diffusion signals are modeled using a Lasso formulation. With the residuals from the Lasso model, a distribution of diffusion signals is obtained according to a modified Lasso bootstrap strategy. FOs are then estimated from the synthesized diffusion signals by an algorithm that improves FO estimation by enforcing spatial consistency of FOs. Finally, streamlining fiber tracking is performed with the computed FOs. The LBT algorithm was evaluated on simulated and real dMRI data both qualitatively and quantitatively. Results demonstrate that LBT outperforms state-of-the-art algorithms. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Overview of the Integrated Pressurized Thermal-Shock (IPTS) study

    SciTech Connect

    Cheverton, R.D.

    1990-01-01

    By the early 1980s, (PTS)-related, deterministic, vessel-integrity studies sponsored by the US Nuclear Regulatory Commission (NRC) indicated a potential for failure of some PWR vessels before design end of life, in the event of a postulated severe PTS transient. In response, the NRC established screening criteria, in the form of limiting values of the reference nil-ductility transition temperature (RT{sub NDT}), and initiated the development of a probabilistic methodology for evaluating vessel integrity. This latter effort, referred to as the Integrated Pressurized Thermal-Shock (IPTS) Program, included development of techniques for postulating PTS transients, estimating their frequencies, and calculating the probability of vessel failure for a specific transient. Summing the products of frequency of transient and conditional probability of failure for each of the many postulated transients provide a calculated value of the frequency of failure. The IPTS Program also included the application of the IPTS methodology to three US PWR plants (Oconee-1, Calvert Cliffs-1, and HBRobinson-2) and the specification of a maximum permissible value of the calculated frequency of vessel failure. Another important purpose of the IPTS study was to determine, through application of the IPTS methodology, which design and operating features, parameters, and PTS transients were dominant in affecting the calculated frequency of failure. The scope of the IPTS Program included the development of a probabilistic fracture-mechanics capability, modification of the TRAC and RELAP5 thermal/hydraulic codes, and development of the methodology for estimating the uncertainty in the calculated frequency of vessel failure.

  9. Shock tubes and waves; Proceedings of the Thirteenth International Symposium, Niagara Falls, NY, July 6-9, 1981

    NASA Astrophysics Data System (ADS)

    Treanor, C. E.; Hall, J. G.

    1982-10-01

    The present conference on shock tubes and waves considers shock tube drivers, luminous shock tubes, shock tube temperature and pressure measurement, shock front distortion in real gases, nonlinear standing waves, transonic flow shock wave turbulent boundary interactions, wall roughness effects on reflected shock bifurcation, argon thermal conductivity, pattern generation in gaseous detonations, cylindrical resonators, shock tunnel-produced high gain lasers, fluid dynamic aspects of laser-metal interaction, and the ionization of argon gas behind reflected shock waves. Also discussed are the ionization relaxation of shock-heated plasmas and gases, discharge flow/shock tube studies of singlet oxygen, rotational and vibrational relaxation, chemiluminescence thermal and shock wave decomposition of hydrogen cyanide and hydrogen azide, shock wave structure in gas-particle mixtures at low Mach numbers, binary nucleation in a Ludwieg tube, shock liquefaction experiments, pipeline explosions, the shock wave ignition of pulverized coal, and shock-initiated methane combustion.

  10. [Definition of shock types].

    PubMed

    Adams, H A; Baumann, G; Gänsslen, A; Janssens, U; Knoefel, W; Koch, T; Marx, G; Müller-Werdan, U; Pape, H C; Prange, W; Roesner, D; Standl, T; Teske, W; Werner, G; Zander, R

    2001-11-01

    Definitions of shock types. Hypovolaemic shock is a state of insufficient perfusion of vital organs with consecutive imbalance of oxygen supply and demand due to an intravascular volume deficiency with critically impaired cardiac preload. Subtypes are haemorrhagic shock, hypovolaemic shock in the narrow sense, traumatic-haemorrhagic shock and traumatic-hypovolaemic shock. Cardiac shock is caused by a primary critical cardiac pump failure with consecutive inadequate oxygen supply of the organism. Anaphylactic shock is an acute failure of blood volume distribution (distributive shock) and caused by IgE-dependent, type-I-allergic, classical hypersensibility, or a physically, chemically, or osmotically induced IgE-independent anaphylactoid hypersensibility. The septic shock is a sepsis-induced distribution failure of the circulating blood volume in the sense of a distributive shock. The neurogenic shock is a distributive shock induced by generalized and extensive vasodilatation with consecutive hypovolaemia due to an imbalance of sympathetic and parasympathetic regulation of vascular smooth muscles.

  11. Environmental probabilistic quantitative assessment methodologies

    NASA Astrophysics Data System (ADS)

    Crovelli, Robert A.

    1995-10-01

    Probabilistic methodologies developed originally for one area of application may be applicable in another area. Therefore, it is extremely important to communicate across disciplines. Of course, a physical reinterpretation is necessary and perhaps some modification of the methodology. This seems to be the situation in applying resource assessment methodologies as environmental assessment methodologies. In this paper, four petroleum resource assessment methodologies are presented as possible pollution assessment methodologies, even though petroleum as a resource is desirable, whereas pollution is undesirable. It is ironic that oil as a precious resource in the ground can become a serious pollutant as a spill in the ocean. There are similarities in both situations where the quantity of undiscovered crude oil and natural gas resources, and the quantity of a pollutant or contaminant are to be estimated. Obviously, we are interested in making a quantitative assessment in order to answer the question, "How much material is there?" For situations in which there are a lack of statistical data, risk analysis is used rather than classical statistical analysis. That is, a relatively subjective evaluation is made rather than an evaluation based on random sampling which may be impossible. Hence, probabilistic quantitative assessment methodologies are needed for the risk analysis. A methodology is defined in this paper to consist of a probability model and a probabilistic method, where the method is used to solve the model. The following four basic types of probability models are considered: (1) direct assessment, (2) accumulation size, (3) volumetric yield, and (4) reservoir engineering. Three of the four petroleum resource assessment methodologies were written as microcomputer systems, viz., TRIAGG for direct assessment, APRAS for accumulation size, and FASPU for reservoir engineering. A fourth microcomputer system termed PROBDIST supports the three assessment systems. TRIAGG

  12. Is probabilistic bias analysis approximately Bayesian?

    PubMed Central

    MacLehose, Richard F.; Gustafson, Paul

    2011-01-01

    Case-control studies are particularly susceptible to differential exposure misclassification when exposure status is determined following incident case status. Probabilistic bias analysis methods have been developed as ways to adjust standard effect estimates based on the sensitivity and specificity of exposure misclassification. The iterative sampling method advocated in probabilistic bias analysis bears a distinct resemblance to a Bayesian adjustment; however, it is not identical. Furthermore, without a formal theoretical framework (Bayesian or frequentist), the results of a probabilistic bias analysis remain somewhat difficult to interpret. We describe, both theoretically and empirically, the extent to which probabilistic bias analysis can be viewed as approximately Bayesian. While the differences between probabilistic bias analysis and Bayesian approaches to misclassification can be substantial, these situations often involve unrealistic prior specifications and are relatively easy to detect. Outside of these special cases, probabilistic bias analysis and Bayesian approaches to exposure misclassification in case-control studies appear to perform equally well. PMID:22157311

  13. Probabilistic Aeroelastic Analysis of Turbomachinery Components

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Mital, S. K.; Stefko, G. L.

    2004-01-01

    A probabilistic approach is described for aeroelastic analysis of turbomachinery blade rows. Blade rows with subsonic flow and blade rows with supersonic flow with subsonic leading edge are considered. To demonstrate the probabilistic approach, the flutter frequency, damping and forced response of a blade row representing a compressor geometry is considered. The analysis accounts for uncertainties in structural and aerodynamic design variables. The results are presented in the form of probabilistic density function (PDF) and sensitivity factors. For subsonic flow cascade, comparisons are also made with different probabilistic distributions, probabilistic methods, and Monte-Carlo simulation. The approach shows that the probabilistic approach provides a more realistic and systematic way to assess the effect of uncertainties in design variables on the aeroelastic instabilities and response.

  14. Numerical simulation of converging shock waves

    NASA Astrophysics Data System (ADS)

    Yee, Seokjune; Abe, Kanji

    We can achieve the high pressure and high temperature state of gas if the shock wave converges stably. In order to check the stability of the converging shock wave, we introduce two kinds of perturbed initial conditions. The Euler equations of conservation form are integrated by using explicit Non-Muscl TVD finite difference scheme.

  15. Hydrodynamic Simulations of Gaseous Argon Shock Experiments

    NASA Astrophysics Data System (ADS)

    Garcia, Daniel; Dattelbaum, Dana; Goodwin, Peter; Morris, John; Sheffield, Stephen; Burkett, Michael

    2015-06-01

    The lack of published Argon gas shock data motivated an evaluation of the Argon Equation of State (EOS) in gas phase initial density regimes never before reached. In particular, these regimes include initial pressures in the range of 200-500 psi (0.025 - 0.056 g/cc) and initial shock velocities around 0.2 cm/ μs. The objective of the numerical evaluation was to develop a physical understanding of the EOS behavior of shocked and subsequently multiply re-shocked Argon gas initially pressurized to 200-500 psi through Pagosa numerical hydrodynamic simulations utilizing the SESAME equation of state. Pagosa is a Los Alamos National Laboratory 2-D and 3-D Eulerian hydrocode capable of modeling high velocity compressible flow with multiple materials. The approach involved the use of gas gun experiments to evaluate the shock and multiple re-shock behavior of pressurized Argon gas to validate Pagosa simulations and the SESAME EOS. Additionally, the diagnostic capability within the experiments allowed for the EOS to be fully constrained with measured shock velocity, particle velocity and temperature. The simulations demonstrate excellent agreement with the experiments in the shock velocity/particle velocity space, but note unanticipated differences in the ionization front temperatures.

  16. Potential change in flaw geometry of an initially shallow finite-length surface flaw during a pressurized-thermal-shock transient

    SciTech Connect

    Shum, D.K.; Bryson, J.W.; Merkle, J.G.

    1993-09-01

    This study presents preliminary estimates on whether an shallow, axially oriented, inner-surface finite-length flaw in a PWR-RPV would tend to elongate in the axial direction and/or deepen into the wall of the vessel during a postulated PTS transient. Analysis results obtained based on the assumptions of (1) linear-elastic material response, and (2) cladding with same toughness as the base metal, indicate that a nearly semicircular flaw would likely propagate in the axial direction followed by propagation into the wall of the vessel. Note that these results correspond to initiation within the lower-shelf fracture toughness temperature range, and that their general validity within the lower-transition temperature range remains to be determined. The sensitivity of the numerical results aid conclusions to the following analysis assumptions are evaluated: (1) reference flaw geometry along the entire crack front and especially within the cladding region; (2) linear-elastic vs elastic-plastic description of material response; and (3) base-material-only vs bimaterial cladding-base vessel-model assumption. The sensitivity evaluation indicates that the analysis results are very sensitive to the above assumptions.

  17. Multiple shocks

    NASA Astrophysics Data System (ADS)

    Shenker, Stephen H.; Stanford, Douglas

    2014-12-01

    Using gauge/gravity duality, we explore a class of states of two CFTs with a large degree of entanglement, but with very weak local two-sided correlation. These states are constructed by perturbing the thermofield double state with thermal-scale operators that are local at different times. Acting on the dual black hole geometry, these perturbations create an intersecting network of shock waves, supporting a very long wormhole. Chaotic CFT dynamics and the associated fast scrambling time play an essential role in determining the qualitative features of the resulting geometries.

  18. Molecular scale shock response: electronic absorption spectroscopy of laser shocked explosives

    NASA Astrophysics Data System (ADS)

    McGrane, Shawn; Whitley, Von; Moore, David; Bolme, Cindy; Eakins, Daniel

    2009-06-01

    Single shot spectroscopies are being employed to answer questions fundamental to shock initiation of explosives. The goals are to: 1) determine the extent to which electronic excitations are, or are not, involved in shock induced reactions, 2) test the multiphonon up-pumping hypothesis in explosives, and 3) provide data on the initial evolution of temperature and chemistry following the shock loading of explosives on scales amenable to comparison to molecular dynamics simulations. The data presented in this talk are focused on answering the first question. Recent experimental results measuring the time history of ultraviolet/visible absorption spectroscopy of laser shocked explosive thin films and single crystals will be discussed.

  19. Probabilistic Evaluation of Blade Impact Damage

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Abumeri, G. H.

    2003-01-01

    The response to high velocity impact of a composite blade is probabilistically evaluated. The evaluation is focused on quantifying probabilistically the effects of uncertainties (scatter) in the variables that describe the impact, the blade make-up (geometry and material), the blade response (displacements, strains, stresses, frequencies), the blade residual strength after impact, and the blade damage tolerance. The results of probabilistic evaluations results are in terms of probability cumulative distribution functions and probabilistic sensitivities. Results show that the blade has relatively low damage tolerance at 0.999 probability of structural failure and substantial at 0.01 probability.

  20. Probabilistic structural analysis methods development for SSME

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Hopkins, D. A.

    1988-01-01

    The development of probabilistic structural analysis methods is a major part of the SSME Structural Durability Program and consists of three program elements: composite load spectra, probabilistic finite element structural analysis, and probabilistic structural analysis applications. Recent progress includes: (1) the effects of the uncertainties of several factors on the HPFP blade temperature pressure and torque, (2) the evaluation of the cumulative distribution function of structural response variables based on assumed uncertainties on primitive structural variables, and (3) evaluation of the failure probability. Collectively, the results obtained demonstrate that the structural durability of critical SSME components can be probabilistically evaluated.

  1. Detonation onset following shock wave focusing

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.; Penyazkov, O. G.; Sevrouk, K. L.; Nikitin, V. F.; Stamov, L. I.; Tyurenkova, V. V.

    2017-06-01

    The aim of the present paper is to study detonation initiation due to focusing of a shock wave reflected inside a cone. Both numerical and experimental investigations were conducted. Comparison of results made it possible to validate the developed 3-d transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen - air mixtures. The results of theoretical and numerical experiments made it possible improving kinetic schemes and turbulence models. Several different flow scenarios were detected in reflection of shock waves all being dependent on incident shock wave intensity: reflecting of shock wave with lagging behind combustion zone, formation of detonation wave in reflection and focusing, and intermediate transient regimes.

  2. Formation of ion-acoustic shocks

    NASA Technical Reports Server (NTRS)

    White, R. B.; Fried, B. D.; Coroniti, F. V.

    1974-01-01

    The formation of an ion-acoustic shock in a numerically modeled two-chamber double plasma device is investigated for a plasma of cold ions and isothermal Boltzmann electrons. An initial potential ramp applied to the driver chamber launches an ion-acoustic pulse into the target chamber which steepens into a shock. The quasi-steady shock structure agrees with observed double plasma shocks. An upper limit of Mach 1.6 is observed independent of the potential ramp magnitude, in agreement with theory.

  3. Weak-shock theory for spherical shock waves

    SciTech Connect

    Curtis, W.D.; Rosenkilde, C.E.; Yee, K.S.

    1982-03-01

    We develop weak shock theory in a form which would allow us to utilize output from a hydrodynamic code (e.g. KOVEC) as either an initial or boundary condition and then follow the wave evolution to much greater distances than the codes themselves can attain.

  4. Shock Prevention

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.

  5. Characterization of shocked beryllium

    NASA Astrophysics Data System (ADS)

    Cady, C. M.; Adams, C. D.; Hull, L. M.; Gray, G. T.; Prime, M. B.; Addessio, F. L.; Wynn, T. A.; Papin, P. A.; Brown, E. N.

    2012-08-01

    While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. In the current work, high strain rate tests were conducted using both explosive drive and a gas gun to accelerate the material. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. Two constitutive strength (plasticity) models, the Preston-Tonks-Wallace (PTW) and Mechanical Threshold Stress (MTS) models, were calibrated using common quasi-static and Hopkinson bar data. However, simulations with the two models give noticeably different results when compared with the measured experimental wave profiles. The experimental results indicate that, even if fractured by the initial shock loading, the Be remains sufficiently intact to support a shear stress following partial release and subsequent shock re-loading. Additional "arrested" drive shots were designed and tested to minimize the reflected tensile pulse in the sample. These tests were done to both validate the model and to put large shock induced compressive loads into the beryllium sample.

  6. Stability of undercompressive shock profiles

    NASA Astrophysics Data System (ADS)

    Howard, Peter; Zumbrun, Kevin

    Using a simplified pointwise iteration scheme, we establish nonlinear phase-asymptotic orbital stability of large-amplitude Lax, undercompressive, overcompressive, and mixed under-overcompressive type shock profiles of strictly parabolic systems of conservation laws with respect to initial perturbations |u(x)|⩽E(1 in C, E sufficiently small, under the necessary conditions of spectral and hyperbolic stability together with transversality of the connecting profile. This completes the program initiated by Zumbrun and Howard in [K. Zumbrun, P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J. 47 (4) (1998) 741-871], extending to the general undercompressive case results obtained for Lax and overcompressive shock profiles in [A. Szepessy, Z. Xin, Nonlinear stability of viscous shock waves, Arch. Ration. Mech. Anal. 122 (1993) 53-103; T.-P. Liu, Pointwise convergence to shock waves for viscous conservation laws, Comm. Pure Appl. Math. 50 (11) (1997) 1113-1182; K. Zumbrun, P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J. 47 (4) (1998) 741-871; K. Zumbrun, Refined wave-tracking and nonlinear stability of viscous Lax shocks, Methods Appl. Anal. 7 (2000) 747-768; M.-R. Raoofi, L-asymptotic behavior of perturbed viscous shock profiles, thesis, Indiana Univ., 2004; C. Mascia, K. Zumbrun, Pointwise Green's function bounds and stability of relaxation shocks, Indiana Univ. Math. J. 51 (4) (2002) 773-904; C. Mascia, K. Zumbrun, Stability of small-amplitude shock profiles of symmetric hyperbolic-parabolic systems, Comm. Pure Appl. Math. 57 (7) (2004) 841-876; C. Mascia, K. Zumbrun, Pointwise Green's function bounds for shock profiles with degenerate viscosity, Arch. Ration. Mech. Anal. 169 (3) (2003) 177-263; C. Mascia, K. Zumbrun, Stability of large-amplitude shock profiles of hyperbolic-parabolic systems, Arch. Ration. Mech. Anal. 172 (1) (2004) 93-131; C. Mascia, K. Zumbrun

  7. Vascular Endothelium and Hypovolemic Shock.

    PubMed

    Gulati, Anil

    2016-01-01

    Endothelium is a site of metabolic activity and has a major reservoir of multipotent stem cells. It plays a vital role in the vascular physiological, pathophysiological and reparative processes. Endothelial functions are significantly altered following hypovolemic shock due to ischemia of the endothelial cells and by reperfusion due to resuscitation with fluids. Activation of endothelial cells leads to release of vasoactive substances (nitric oxide, endothelin, platelet activating factor, prostacyclin, mitochondrial N-formyl peptide), mediators of inflammation (tumor necrosis factor α, interleukins, interferons) and thrombosis. Endothelial cell apoptosis is induced following hypovolemic shock due to deprivation of oxygen required by endothelial cell mitochondria; this lack of oxygen initiates an increase in mitochondrial reactive oxygen species (ROS) and release of apoptogenic proteins. The glycocalyx structure of endothelium is compromised which causes an impairment of the protective endothelial barrier resulting in increased permeability and leakage of fluids in to the tissue causing edema. Growth factors such as angiopoetins and vascular endothelial growth factors also contribute towards pathophysiology of hypovolemic shock. Endothelium is extremely active with numerous functions, understanding these functions will provide novel targets to design therapeutic agents for the acute management of hypovolemic shock. Hypovolemic shock also occurs in conditions such as dengue shock syndrome and Ebola hemorrhagic fever, defining the role of endothelium in the pathophysiology of these conditions will provide greater insight regarding the functions of endothelial cells in vascular regulation.

  8. Shock compression dynamics under a microscope

    NASA Astrophysics Data System (ADS)

    Dlott, Dana D.

    2017-01-01

    Our laboratory has developed a tabletop laser miniflyer launcher used for a wide variety of studies in the physical and chemical sciences. The flyers, typically 0.7 mm in diameter, can be used to shock microgram quantities of interesting materials. Frequently 100 shock experiments per day are performed. A microscope objective transmits the photon Doppler velocimeter (PDV) flyer plate diagnostic and various laser beams, and collects signals from the shocked materials that can be transmitted to video cameras, spectrographs, streak cameras, etc. In this paper I describe the flyer plate apparatus and then discuss three recent efforts: (1) Shock dissipation in nanoporous media; (2) Probing micropressures in shocked microstructured media; and (3) Shock initiation of nanotechnology reactive materials.

  9. SHOCK-EXCITED OSCILLATOR

    DOEpatents

    Creveling, R.

    1957-12-17

    S> A shock-excited quartz crystal oscillator is described. The circuit was specifically designed for application in micro-time measuring work to provide an oscillator which immediately goes into oscillation upon receipt of a trigger pulse and abruptly ceases oscillation when a second pulse is received. To achieve the instant action, the crystal has a prestressing voltage applied across it. A monostable multivibrator receives the on and off trigger pulses and discharges a pulse through the crystal to initiate or terminate oscillation instantly.

  10. Shock waves and nucleosynthesis in type II supernovae

    NASA Technical Reports Server (NTRS)

    Aufderheide, M. B.; Baron, E.; Thielemann, F.-K.

    1991-01-01

    In the study of nucleosynthesis in type II SN, shock waves are initiated artificially, since collapse calculations do not, as yet, give self-consistent shock waves strong enough to produce the SN explosion. The two initiation methods currently used by light-curve modelers are studied, with a focus on the peak temperatures and the nucleosynthetic yields in each method. The various parameters involved in artificially initiating a shock wave and the effects of varying these parameters are discussed.

  11. Motion of the heliospheric termination shock - A gas dynamic model

    NASA Technical Reports Server (NTRS)

    Barnes, Aaron

    1993-01-01

    A simple quantitative model is presented for the heliospheric termination shock's anticipated movement in response to upstream solar wind condition variations, under the assumption that the termination shock is initially a strong gasdynamic shock that is at rest relative to the sun, and that there is a discontinuous increase or decrease in the dynamical pressure upstream of the shock. The model suggests that the termination shock is constantly in motion, and that the mean position of the shock lies near the mean equilibrium position which corresponds to the balance between the mean solar wind dynamical pressure and the mean interstellar pressure.

  12. Motion of the heliospheric termination shock - A gas dynamic model

    NASA Technical Reports Server (NTRS)

    Barnes, Aaron

    1993-01-01

    A simple quantitative model is presented for the heliospheric termination shock's anticipated movement in response to upstream solar wind condition variations, under the assumption that the termination shock is initially a strong gasdynamic shock that is at rest relative to the sun, and that there is a discontinuous increase or decrease in the dynamical pressure upstream of the shock. The model suggests that the termination shock is constantly in motion, and that the mean position of the shock lies near the mean equilibrium position which corresponds to the balance between the mean solar wind dynamical pressure and the mean interstellar pressure.

  13. Probabilistic approach to EMP assessment

    SciTech Connect

    Bevensee, R.M.; Cabayan, H.S.; Deadrick, F.J.; Martin, L.C.; Mensing, R.W.

    1980-09-01

    The development of nuclear EMP hardness requirements must account for uncertainties in the environment, in interaction and coupling, and in the susceptibility of subsystems and components. Typical uncertainties of the last two kinds are briefly summarized, and an assessment methodology is outlined, based on a probabilistic approach that encompasses the basic concepts of reliability. It is suggested that statements of survivability be made compatible with system reliability. Validation of the approach taken for simple antenna/circuit systems is performed with experiments and calculations that involve a Transient Electromagnetic Range, numerical antenna modeling, separate device failure data, and a failure analysis computer program.

  14. Mixed deterministic and probabilistic networks

    PubMed Central

    Dechter, Rina

    2010-01-01

    The paper introduces mixed networks, a new graphical model framework for expressing and reasoning with probabilistic and deterministic information. The motivation to develop mixed networks stems from the desire to fully exploit the deterministic information (constraints) that is often present in graphical models. Several concepts and algorithms specific to belief networks and constraint networks are combined, achieving computational efficiency, semantic coherence and user-interface convenience. We define the semantics and graphical representation of mixed networks, and discuss the two main types of algorithms for processing them: inference-based and search-based. A preliminary experimental evaluation shows the benefits of the new model. PMID:20981243

  15. Probabilistic risk assessment: Number 219

    SciTech Connect

    Bari, R.A.

    1985-11-13

    This report describes a methodology for analyzing the safety of nuclear power plants. A historical overview of plants in the US is provided, and past, present, and future nuclear safety and risk assessment are discussed. A primer on nuclear power plants is provided with a discussion of pressurized water reactors (PWR) and boiling water reactors (BWR) and their operation and containment. Probabilistic Risk Assessment (PRA), utilizing both event-tree and fault-tree analysis, is discussed as a tool in reactor safety, decision making, and communications. (FI)

  16. Probabilistic Simulation for Nanocomposite Fracture

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A unique probabilistic theory is described to predict the uniaxial strengths and fracture properties of nanocomposites. The simulation is based on composite micromechanics with progressive substructuring down to a nanoscale slice of a nanofiber where all the governing equations are formulated. These equations have been programmed in a computer code. That computer code is used to simulate uniaxial strengths and fracture of a nanofiber laminate. The results are presented graphically and discussed with respect to their practical significance. These results show smooth distributions from low probability to high.

  17. The interaction between human initiation factor eIF3 subunit c and heat-shock protein 90: a necessary factor for translation mediated by the hepatitis C virus internal ribosome entry site.

    PubMed

    Ujino, Saneyuki; Nishitsuji, Hironori; Sugiyama, Ryuichi; Suzuki, Hitoshi; Hishiki, Takayuki; Sugiyama, Kazuo; Shimotohno, Kunitada; Takaku, Hiroshi

    2012-01-01

    Heat-shock protein 90 (Hsp90) is a molecular chaperone that plays a key role in the conformational maturation of various transcription factors and protein kinases in signal transduction. The hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA drives translation by directly recruiting the 40S ribosomal subunits that bind to eukaryotic initiation factor 3 (eIF3). Our data indicate that Hsp90 binds indirectly to eIF3 subunit c by interacting with it through the HCV IRES RNA, and the functional consequence of this Hsp90-eIF3c-HCV-IRES RNA interaction is the prevention of ubiquitination and the proteasome-dependent degradation of eIF3c. Hsp90 activity interference by Hsp90 inhibitors appears to be the result of the dissociation of eIF3c from Hsp90 in the presence of HCV IRES RNA and the resultant induction of the degradation of the free forms of eIF3c. Moreover, the interaction between Hsp90 and eIF3c is dependent on HCV IRES RNA binding. Furthermore, we demonstrate, by knockdown of eIF3c, that the silencing of eIF3c results in inhibitory effects on translation of HCV-derived RNA but does not affect cap-dependent translation. These results indicate that the interaction between Hsp90 and eIF3c may play an important role in HCV IRES-mediated translation.

  18. Acceleration of heavy ions by perpendicular collisionless shocks: Impact of the shock front nonstationarity

    NASA Astrophysics Data System (ADS)

    Yang, Z. W.; LembèGe, B.; Lu, Q. M.

    2011-10-01

    Both hybrid/full particle simulations and recent experimental results have clearly evidenced that the front of a supercritical quasi-perpendicular shock can be nonstationary. One responsible mechanism proposed for this nonstationarity is the self-reformation of the front itself being due to the accumulation of reflected ions. Important consequences of this nonstationarity are that not only the amplitude but also the spatial scales of fields components at the shock front (ramp and foot) are strongly varying within each cycle of the self-reformation. On the other hand, several studies have been made on the acceleration and heating of heavy ions but most have been restricted to a stationary shock profile only. Herein, one-dimensional test particle simulations based on shock profiles fields produced in PIC simulation are performed in order to investigate the impact of the shock front nonstationarity on heavy ion acceleration (He, O, Fe). Reflection and acceleration mechanisms of heavy ions (with different initial thermal velocities and different charge-mass ratios) interacting with a nonstationary shock front (self-reformation) are analyzed in detail. Present preliminary results show that: (1) the heavy ions suffer both shock drift acceleration (SDA) and shock surfing acceleration (SSA) mechanisms; (2) the fraction of reflected heavy ions increases with initial thermal velocity, charge-mass ratio and decreasing shock front width at both stationary shocks (situation equivalent to fixed shock cases) and nonstationary shocks (situation equivalent to continuously time-evolving shock cases); (3) the shock front nonstationarity (time-evolving shock case) facilitates the reflection of heavy ions; (4) a striking feature is the formation of an injected monoenergetic heavy ions population which persists in the shock front spectrum for different initial thermal velocities and ions species. The impact of the shock front nonstationarity on the heavy ions spectra within the shock

  19. Expansion shock waves in regularized shallow-water theory

    PubMed Central

    El, Gennady A.; Shearer, Michael

    2016-01-01

    We identify a new type of shock wave by constructing a stationary expansion shock solution of a class of regularized shallow-water equations that include the Benjamin–Bona–Mahony and Boussinesq equations. An expansion shock exhibits divergent characteristics, thereby contravening the classical Lax entropy condition. The persistence of the expansion shock in initial value problems is analysed and justified using matched asymptotic expansions and numerical simulations. The expansion shock's existence is traced to the presence of a non-local dispersive term in the governing equation. We establish the algebraic decay of the shock as it is gradually eroded by a simple wave on either side. More generally, we observe a robustness of the expansion shock in the presence of weak dissipation and in simulations of asymmetric initial conditions where a train of solitary waves is shed from one side of the shock. PMID:27279780

  20. Expansion shock waves in regularized shallow-water theory

    NASA Astrophysics Data System (ADS)

    El, Gennady A.; Hoefer, Mark A.; Shearer, Michael

    2016-05-01

    We identify a new type of shock wave by constructing a stationary expansion shock solution of a class of regularized shallow-water equations that include the Benjamin-Bona-Mahony and Boussinesq equations. An expansion shock exhibits divergent characteristics, thereby contravening the classical Lax entropy condition. The persistence of the expansion shock in initial value problems is analysed and justified using matched asymptotic expansions and numerical simulations. The expansion shock's existence is traced to the presence of a non-local dispersive term in the governing equation. We establish the algebraic decay of the shock as it is gradually eroded by a simple wave on either side. More generally, we observe a robustness of the expansion shock in the presence of weak dissipation and in simulations of asymmetric initial conditions where a train of solitary waves is shed from one side of the shock.

  1. Spectral Contextual Classification of Hyperspectral Imagery With Probabilistic Relaxation Labeling.

    PubMed

    Kumar, Brajesh; Dikshit, Onkar

    2016-09-29

    In this paper, a spectral-spatial classification framework based on probabilistic relaxation labeling using compatibility coefficients is proposed for hyperspectral images. It is a two-stage classifier that uses maximum a posteriori (MAP) estimation to maximize posterior probabilities of classification map obtained in first stage to incorporate spatial information for better classification accuracy. Two different forms of compatibility coefficients based on correlation and mutual information are used for MAP estimation. The initial probability estimates are obtained from probabilistic support vector machine (SVM) classifier. The combination of SVM with MAP estimation is investigated and compared with benchmark Markov random field and extended morphological profile-based approaches and some other recent methods. The experimental results are presented for three airborne hyperspectral images. The results reveal that incorporation of contextual information with both forms of compatibility coefficients statistically significantly improved SVM results. The compatibility coefficients based on correlation produced the best results among the relaxation methods outperforming many existing methods.

  2. Use of Probabilistic Risk Assessment in Shuttle Decision Making Process

    NASA Technical Reports Server (NTRS)

    Boyer, Roger L.; Hamlin, Teri, L.

    2011-01-01

    This slide presentation reviews the use of Probabilistic Risk Assessment (PRA) to assist in the decision making for the shuttle design and operation. Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and disciplined approach to identifying and analyzing risk in complex systems and/or processes that seeks answers to three basic questions: (i.e., what can go wrong? what is the likelihood of these occurring? and what are the consequences that could result if these occur?) The purpose of the Shuttle PRA (SPRA) is to provide a useful risk management tool for the Space Shuttle Program (SSP) to identify strengths and possible weaknesses in the Shuttle design and operation. SPRA was initially developed to support upgrade decisions, but has evolved into a tool that supports Flight Readiness Reviews (FRR) and near real-time flight decisions. Examples of the use of PRA for the shuttle are reviewed.

  3. Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Nagpal, Vinod K.

    2007-01-01

    An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.

  4. Probabilistic analysis of cascade failure dynamics in complex network

    NASA Astrophysics Data System (ADS)

    Zhang, Ding-Xue; Zhao, Dan; Guan, Zhi-Hong; Wu, Yonghong; Chi, Ming; Zheng, Gui-Lin

    2016-11-01

    The impact of initial load and tolerance parameter distribution on cascade failure is investigated. By using mean field theory, a probabilistic cascade failure model is established. Based on the model, the damage caused by certain attack size can be predicted, and the critical attack size is derived by the condition of cascade failure end, which ensures no collapse. The critical attack size is larger than the case of constant tolerance parameter for network of random distribution. Comparing three typical distributions, simulation results indicate that the network whose initial load and tolerance parameter both follow Weibull distribution performs better than others.

  5. Role of molecular dynamics on descriptions of shock front processes

    NASA Astrophysics Data System (ADS)

    Karo, A. M.

    1981-07-01

    A computational approach, based on classical molecular dynamics, is used to form a realistic picture of shock induced processes occurring at the shock front and resulting from the detailed, violent motion associated with shock motion on an atomic scale. Prototype studies of phase transitions are discussed. The interaction of the shock front with defects, surfaces, voids, and inclusions, and across grain boundaries are summarized. The critical question of how mechanical energy imparted to a condensed material by shock loading is converted to the activation energy required to overcome some initial energy barrier in an initiation process, is addressed.

  6. Probabilistic analysis of tsunami hazards

    USGS Publications Warehouse

    Geist, E.L.; Parsons, T.

    2006-01-01

    Determining the likelihood of a disaster is a key component of any comprehensive hazard assessment. This is particularly true for tsunamis, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models. We discuss probabilistic tsunami hazard analysis (PTHA) from the standpoint of integrating computational methods with empirical analysis of past tsunami runup. PTHA is derived from probabilistic seismic hazard analysis (PSHA), with the main difference being that PTHA must account for far-field sources. The computational methods rely on numerical tsunami propagation models rather than empirical attenuation relationships as in PSHA in determining ground motions. Because a number of source parameters affect local tsunami runup height, PTHA can become complex and computationally intensive. Empirical analysis can function in one of two ways, depending on the length and completeness of the tsunami catalog. For site-specific studies where there is sufficient tsunami runup data available, hazard curves can primarily be derived from empirical analysis, with computational methods used to highlight deficiencies in the tsunami catalog. For region-wide analyses and sites where there are little to no tsunami data, a computationally based method such as Monte Carlo simulation is the primary method to establish tsunami hazards. Two case studies that describe how computational and empirical methods can be integrated are presented for Acapulco, Mexico (site-specific) and the U.S. Pacific Northwest coastline (region-wide analysis).

  7. Software for Probabilistic Risk Reduction

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Michel, Thierry; Madsen, Soren; Chapin, Elaine; Rodriguez, Ernesto

    2004-01-01

    A computer program implements a methodology, denoted probabilistic risk reduction, that is intended to aid in planning the development of complex software and/or hardware systems. This methodology integrates two complementary prior methodologies: (1) that of probabilistic risk assessment and (2) a risk-based planning methodology, implemented in a prior computer program known as Defect Detection and Prevention (DDP), in which multiple requirements and the beneficial effects of risk-mitigation actions are taken into account. The present methodology and the software are able to accommodate both process knowledge (notably of the efficacy of development practices) and product knowledge (notably of the logical structure of a system, the development of which one seeks to plan). Estimates of the costs and benefits of a planned development can be derived. Functional and non-functional aspects of software can be taken into account, and trades made among them. It becomes possible to optimize the planning process in the sense that it becomes possible to select the best suite of process steps and design choices to maximize the expectation of success while remaining within budget.

  8. Models for Retrieval with Probabilistic Indexing.

    ERIC Educational Resources Information Center

    Fuhr, Norbert

    1989-01-01

    Describes three models for probabilistic indexing, all based on the Darmstadt automatic indexing approach, and presents experimental evaluation results for each. The discussion covers the improved retrieval effectiveness of probabilistic indexing over binary indexing, and suggestions for using this automatic indexing method with free text terms.…

  9. Probabilistic Cue Combination: Less Is More

    ERIC Educational Resources Information Center

    Yurovsky, Daniel; Boyer, Ty W.; Smith, Linda B.; Yu, Chen

    2013-01-01

    Learning about the structure of the world requires learning probabilistic relationships: rules in which cues do not predict outcomes with certainty. However, in some cases, the ability to track probabilistic relationships is a handicap, leading adults to perform non-normatively in prediction tasks. For example, in the "dilution effect,"…

  10. Error Discounting in Probabilistic Category Learning

    ERIC Educational Resources Information Center

    Craig, Stewart; Lewandowsky, Stephan; Little, Daniel R.

    2011-01-01

    The assumption in some current theories of probabilistic categorization is that people gradually attenuate their learning in response to unavoidable error. However, existing evidence for this error discounting is sparse and open to alternative interpretations. We report 2 probabilistic-categorization experiments in which we investigated error…

  11. Probabilistic Cue Combination: Less Is More

    ERIC Educational Resources Information Center

    Yurovsky, Daniel; Boyer, Ty W.; Smith, Linda B.; Yu, Chen

    2013-01-01

    Learning about the structure of the world requires learning probabilistic relationships: rules in which cues do not predict outcomes with certainty. However, in some cases, the ability to track probabilistic relationships is a handicap, leading adults to perform non-normatively in prediction tasks. For example, in the "dilution effect,"…

  12. Hemodynamic Analysis of Pediatric Septic Shock and Cardiogenic Shock Using Transpulmonary Thermodilution

    PubMed Central

    Lee, En-Pei; Hsia, Shao-Hsuan; Lin, Jainn-Jim; Chan, Oi-Wa; Lee, Jung; Lin, Chia-Ying

    2017-01-01

    Septic shock and cardiogenic shock are the two most common types of shock in children admitted to pediatric intensive care units (PICUs). The aim of the study was to investigate which hemodynamic variables were associated with mortality in children with shock. We retrospectively analyzed 50 children with shock (37 septic shock cases and 13 cardiogenic shock cases) in the PICU and monitored their hemodynamics using transpulmonary thermodilution from 2003 to 2016. Clinical factors were analyzed between the patients with septic and cardiogenic shock. In addition, hemodynamic parameters associated with mortality were analyzed. The 28-day mortality was significantly higher in the septic group than in the cardiogenic group (p = 0.016). Initially, the parameters of cardiac output and cardiac contractility were higher in the septic group (p < 0.05) while the parameters of preload and afterload were all higher in the cardiogenic group (p < 0.05). Cardiac index was significantly lower in the nonsurvivors of cardiogenic shock at the time of initial admission and after the first 24 hours (both p < 0.05), while systemic vascular resistance index (SVRI) was significantly lower in the nonsurvivors of septic shock (p < 0.001). Therefore, during the first 24 hours after intensive care, SVRI and cardiac index are the most important hemodynamic parameters associated with mortality. PMID:28401152

  13. Coherent Raman Studies of Shocked Liquids

    NASA Astrophysics Data System (ADS)

    McGrane, Shawn; Brown, Kathryn; Dang, Nhan; Bolme, Cynthia; Moore, David

    2013-06-01

    Transient vibrational spectroscopies offer the potential to directly observe time dependent shock induced chemical reaction kinetics. We report recent experiments that couple a hybrid picosecond/femtosecond coherent anti-Stokes Raman spectroscopy (CARS) diagnostic with our tabletop ultrafast laser driven shock platform. Initial results on liquids shocked to 20 GPa suggest that sub-picosecond dephasing at high pressure and temperature may limit the application of this nonresonant background free version of CARS. Initial results using interferometric CARS to increase sensitivity and overcome these limitations will be presented.

  14. Is probabilistic evidence a source of knowledge?

    PubMed

    Friedman, Ori; Turri, John

    2015-07-01

    We report a series of experiments examining whether people ascribe knowledge for true beliefs based on probabilistic evidence. Participants were less likely to ascribe knowledge for beliefs based on probabilistic evidence than for beliefs based on perceptual evidence (Experiments 1 and 2A) or testimony providing causal information (Experiment 2B). Denial of knowledge for beliefs based on probabilistic evidence did not arise because participants viewed such beliefs as unjustified, nor because such beliefs leave open the possibility of error. These findings rule out traditional philosophical accounts for why probabilistic evidence does not produce knowledge. The experiments instead suggest that people deny knowledge because they distrust drawing conclusions about an individual based on reasoning about the population to which it belongs, a tendency previously identified by "judgment and decision making" researchers. Consistent with this, participants were more willing to ascribe knowledge for beliefs based on probabilistic evidence that is specific to a particular case (Experiments 3A and 3B).

  15. Belief Propagation for Probabilistic Slow Feature Analysis

    NASA Astrophysics Data System (ADS)

    Omori, Toshiaki; Sekiguchi, Tomoki; Okada, Masato

    2017-08-01

    Slow feature analysis (SFA) is a time-series analysis method for extracting slowly-varying latent features from multi-dimensional data. A recent study proposed a probabilistic framework of SFA using the Bayesian statistical framework. However, the conventional probabilistic framework of SFA can not accurately extract the slow feature in noisy environments since its marginal likelihood function was approximately derived under the assumption that there exists no observation noise. In this paper, we propose a probabilistic framework of SFA with rigorously derived marginal likelihood function. Here, we rigorously derive the marginal likelihood function of the probabilistic framework of SFA by using belief propagation. We show using numerical data that the proposed probabilistic framework of SFA can accurately extract the slow feature and underlying parameters for the latent dynamics simultaneously even under noisy environments.

  16. Numerical simulation of shock wave emanating from a square shock tube

    NASA Astrophysics Data System (ADS)

    Abe, Akihisa; Itoh, Katsuhiro; Takayama, Kazuyoshi

    1990-11-01

    The flow field behind a shock wave emitted from a square shock tube was studied. Being 3-D, various phenomena were observed for axisymmetric flow such as distorted vortex ring structures generated from the shock tube exit, shock wave deformation, and a variety of flow structures behind the shock wave. If the generative mechanisms of distorted vortex ring and flows from the shock tube are clear, this also contributes to the technical advancement, regarding the mixture of different chemical species. The shock wave emanating from a square shock tube was studied in numerical simulation and shock tube experiment. In order to simulate these flow fields, a second order upwind Total Variation Diminishing (TVD) finite difference scheme was used. The TVD scheme, having been used for 2-D problems, was extended to 3-D and applied to Euler equations. The computational domain of 60 x 60 x 60 grid points covers a quarter of the shock tube cross section. As an initial configuration, a normal shock wave with Mach 1.5 was taken. The numerical results were compared with data from optical measurements. Good qualitative agreement was obtained between numerical and experimental results.

  17. Prediction of massive bleeding. Shock index and modified shock index.

    PubMed

    Terceros-Almanza, L J; García-Fuentes, C; Bermejo-Aznárez, S; Prieto-Del Portillo, I J; Mudarra-Reche, C; Sáez-de la Fuente, I; Chico-Fernández, M

    2017-04-08

    To determine the predictive value of the Shock Index and Modified Shock Index in patients with massive bleeding due to severe trauma. Retrospective cohort. Severe trauma patient's initial attention at the intensive care unit of a tertiary hospital. Patients older than 14 years that were admitted to the hospital with severe trauma (Injury Severity Score >15) form January 2014 to December 2015. We studied the sensitivity (Se), specificity (Sp), positive and negative predictive value (PV+ and PV-), positive and negative likelihood ratio (LR+ and LR-), ROC curves (Receiver Operating Characteristics) and the area under the same (AUROC) for prediction of massive hemorrhage. 287 patients were included, 76.31% (219) were male, mean age was 43,36 (±17.71) years and ISS was 26 (interquartile range [IQR]: 21-34). The overall frequency of massive bleeding was 8.71% (25). For Shock Index: AUROC was 0.89 (95% confidence intervals [CI] 0.84 to 0.94), with an optimal cutoff at 1.11, Se was 91.3% (95% CI: 73.2 to 97.58) and Sp was 79.69% (95% CI: 74.34 to 84.16). For the Modified Shock Index: AUROC was 0.90 (95% CI: 0.86 to 0.95), with an optimal cutoff at 1.46, Se was 95.65% (95% CI: 79.01 to 99.23) and Sp was 75.78% (95% CI: 70.18 to 80.62). Shock Index and Modified Shock Index are good predictors of massive bleeding and could be easily incorporated to the initial workup of patients with severe trauma. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  18. Particle Acceleration in Shock-Shock Interaction

    NASA Astrophysics Data System (ADS)

    Nakanotani, Masaru; Matsukiyo, Shuichi; Hada, Tohru

    2015-04-01

    Collisionless shock waves play a crucial role in producing high energy particles. One of the most plausible acceleration mechanisms is the first order Fermi acceleration in which non-thermal particles statistically gain energy while scattered by MHD turbulence both upstream and downstream of a shock. Indeed, X-ray emission from energetic particles accelerated at supernova remnant shocks is often observed [e.g., Uchiyama et al., 2007]. Most of the previous studies on shock acceleration assume the presence of a single shock. In space, however, two shocks frequently come close to or even collide with each other. For instance, it is observed that a CME (coronal mass ejection) driven shock collides with the earth's bow shock [Hietala et al., 2011], or interplanetary shocks pass through the heliospheric termination shock [Lu et al., 1999]. Colliding shocks are observed also in high power laser experiments [Morita et al., 2013]. It is expected that shock-shock interactions efficiently produce high energy particles. A previous work using hybrid simulation [Cargill et al., 1986] reports efficient ion acceleration when supercritical two shocks collide. In the hybrid simulation, however, the electron dynamics cannot be resolved so that electron acceleration cannot be discussed in principle. Here, we perform one-dimensional full Particle-in-Cell (PIC) simulations to examine colliding two symmetric oblique shocks and the associated electron acceleration. In particular, the following three points are discussed in detail. 1. Energetic electrons are observed upstream of the two shocks before their collision. These energetic electrons are efficiently accelerated through multiple reflections at the two shocks (Fermi acceleration). 2. The reflected electrons excite large amplitude upstream waves. Electron beam cyclotron instability [Hasegawa, 1975] and electron fire hose instability [Li et al., 2000] appear to occur. 3. The large amplitude waves can scatters energetic electrons in

  19. RECOLLIMATION SHOCKS IN MAGNETIZED RELATIVISTIC JETS

    SciTech Connect

    Mizuno, Yosuke; Rezzolla, Luciano; Gómez, Jose L.; Nishikawa, Ken-Ichi; Meli, Athina; Hardee, Philip E.

    2015-08-10

    We have performed two-dimensional special-relativistic magnetohydrodynamic simulations of non-equilibrium over-pressured relativistic jets in cylindrical geometry. Multiple stationary recollimation shock and rarefaction structures are produced along the jet by the nonlinear interaction of shocks and rarefaction waves excited at the interface between the jet and the surrounding ambient medium. Although initially the jet is kinematically dominated, we have considered axial, toroidal, and helical magnetic fields to investigate the effects of different magnetic-field topologies and strengths on the recollimation structures. We find that an axial field introduces a larger effective gas pressure and leads to stronger recollimation shocks and rarefactions, resulting in larger flow variations. The jet boost grows quadratically with the initial magnetic field. On the other hand, a toroidal field leads to weaker recollimation shocks and rarefactions, significantly modifying the jet structure after the first recollimation rarefaction and shock. The jet boost decreases systematically. For a helical field, instead, the behavior depends on the magnetic pitch, with a phenomenology that ranges between the one seen for axial and toroidal magnetic fields, respectively. In general, however, a helical magnetic field yields a more complex shock and rarefaction substructure close to the inlet that significantly modifies the jet structure. The differences in shock structure resulting from different field configurations and strengths may have observable consequences for disturbances propagating through a stationary recollimation shock.

  20. Shock experiments on maskelynite-bearing anorthosite

    NASA Technical Reports Server (NTRS)

    Lambert, P.; Grieve, R. A. F.

    1984-01-01

    A series of shock recovery experiments over 9.9-60.4 GPa have been carried out on naturally shocked anorthosite from the Mistastin impact structure in Labrador consisting primarily of diaplectic plagioclase glass or maskelynite, An(50), and pyroxene. Petrographic observations of the experimental products indicate that the component minerals and diaplectic glasses generally retained their initial character throughout, the only exception being the increase in fracturing which occurred in the 9.9 GPa shot. Reshocking at pressures higher than the initial shock tends to lower the refractive index of maskelynite. The increase in refractive index of maskelynite reshocked to pressures lower than the initial pressure is interpreted as due to shock densification of the diaplectic glass above the Hugoniot elastic limit and below the mixed phase regime. The data suggest that the low-high-low density transition of maskelynite occurs about 8 GPa below that of the crystal of corresponding composition.

  1. Formulation of probabilistic models of protein structure in atomic detail using the reference ratio method.

    PubMed

    Valentin, Jan B; Andreetta, Christian; Boomsma, Wouter; Bottaro, Sandro; Ferkinghoff-Borg, Jesper; Frellsen, Jes; Mardia, Kanti V; Tian, Pengfei; Hamelryck, Thomas

    2014-02-01

    We propose a method to formulate probabilistic models of protein structure in atomic detail, for a given amino acid sequence, based on Bayesian principles, while retaining a close link to physics. We start from two previously developed probabilistic models of protein structure on a local length scale, which concern the dihedral angles in main chain and side chains, respectively. Conceptually, this constitutes a probabilistic and continuous alternative to the use of discrete fragment and rotamer libraries. The local model is combined with a nonlocal model that involves a small number of energy terms according to a physical force field, and some information on the overall secondary structure content. In this initial study we focus on the formulation of the joint model and the evaluation of the use of an energy vector as a descriptor of a protein's nonlocal structure; hence, we derive the parameters of the nonlocal model from the native structure without loss of generality. The local and nonlocal models are combined using the reference ratio method, which is a well-justified probabilistic construction. For evaluation, we use the resulting joint models to predict the structure of four proteins. The results indicate that the proposed method and the probabilistic models show considerable promise for probabilistic protein structure prediction and related applications. Copyright © 2013 Wiley Periodicals, Inc.

  2. Probabilistic Reasoning for Plan Robustness

    NASA Technical Reports Server (NTRS)

    Schaffer, Steve R.; Clement, Bradley J.; Chien, Steve A.

    2005-01-01

    A planning system must reason about the uncertainty of continuous variables in order to accurately project the possible system state over time. A method is devised for directly reasoning about the uncertainty in continuous activity duration and resource usage for planning problems. By representing random variables as parametric distributions, computing projected system state can be simplified in some cases. Common approximation and novel methods are compared for over-constrained and lightly constrained domains. The system compares a few common approximation methods for an iterative repair planner. Results show improvements in robustness over the conventional non-probabilistic representation by reducing the number of constraint violations witnessed by execution. The improvement is more significant for larger problems and problems with higher resource subscription levels but diminishes as the system is allowed to accept higher risk levels.

  3. Probabilistic Reasoning for Plan Robustness

    NASA Technical Reports Server (NTRS)

    Schaffer, Steve R.; Clement, Bradley J.; Chien, Steve A.

    2005-01-01

    A planning system must reason about the uncertainty of continuous variables in order to accurately project the possible system state over time. A method is devised for directly reasoning about the uncertainty in continuous activity duration and resource usage for planning problems. By representing random variables as parametric distributions, computing projected system state can be simplified in some cases. Common approximation and novel methods are compared for over-constrained and lightly constrained domains. The system compares a few common approximation methods for an iterative repair planner. Results show improvements in robustness over the conventional non-probabilistic representation by reducing the number of constraint violations witnessed by execution. The improvement is more significant for larger problems and problems with higher resource subscription levels but diminishes as the system is allowed to accept higher risk levels.

  4. Probabilistic Survivability Versus Time Modeling

    NASA Technical Reports Server (NTRS)

    Joyner, James J., Sr.

    2016-01-01

    This presentation documents Kennedy Space Center's Independent Assessment work completed on three assessments for the Ground Systems Development and Operations (GSDO) Program to assist the Chief Safety and Mission Assurance Officer during key programmatic reviews and provided the GSDO Program with analyses of how egress time affects the likelihood of astronaut and ground worker survival during an emergency. For each assessment, a team developed probability distributions for hazard scenarios to address statistical uncertainty, resulting in survivability plots over time. The first assessment developed a mathematical model of probabilistic survivability versus time to reach a safe location using an ideal Emergency Egress System at Launch Complex 39B (LC-39B); the second used the first model to evaluate and compare various egress systems under consideration at LC-39B. The third used a modified LC-39B model to determine if a specific hazard decreased survivability more rapidly than other events during flight hardware processing in Kennedy's Vehicle Assembly Building.

  5. Probabilistic direct counterfactual quantum communication

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng

    2017-02-01

    It is striking that the quantum Zeno effect can be used to launch a direct counterfactual communication between two spatially separated parties, Alice and Bob. So far, existing protocols of this type only provide a deterministic counterfactual communication service. However, this counterfactuality should be payed at a price. Firstly, the transmission time is much longer than a classical transmission costs. Secondly, the chained-cycle structure makes them more sensitive to channel noises. Here, we extend the idea of counterfactual communication, and present a probabilistic-counterfactual quantum communication protocol, which is proved to have advantages over the deterministic ones. Moreover, the presented protocol could evolve to a deterministic one solely by adjusting the parameters of the beam splitters. Project supported by the National Natural Science Foundation of China (Grant No. 61300203).

  6. Probabilistic cloning of equidistant states

    SciTech Connect

    Jimenez, O.; Roa, Luis; Delgado, A.

    2010-08-15

    We study the probabilistic cloning of equidistant states. These states are such that the inner product between them is a complex constant or its conjugate. Thereby, it is possible to study their cloning in a simple way. In particular, we are interested in the behavior of the cloning probability as a function of the phase of the overlap among the involved states. We show that for certain families of equidistant states Duan and Guo's cloning machine leads to cloning probabilities lower than the optimal unambiguous discrimination probability of equidistant states. We propose an alternative cloning machine whose cloning probability is higher than or equal to the optimal unambiguous discrimination probability for any family of equidistant states. Both machines achieve the same probability for equidistant states whose inner product is a positive real number.

  7. Probabilistic Fatigue Damage Program (FATIG)

    NASA Technical Reports Server (NTRS)

    Michalopoulos, Constantine

    2012-01-01

    FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.

  8. Survival of carbon grains in shocks

    NASA Technical Reports Server (NTRS)

    Seab, C. Gregory

    1990-01-01

    Supernova shocks play a significant part in the life of an interstellar grain. In a typical 10 to the 9th power year lifetime, a grain will be hit by an average of 10 shocks of 100 km s(sup -1) or greater velocity, and even more shocks of lower velocity. Evaluation of the results of this frequent shock processing is complicated by a number of uncertainties, but seems to give about 10 percent destruction of silicate grains and about half that for graphite grains. Because of the frequency of shocking, the mineralogy and sizes of the grain population is predominately determined by shock processing effects, and not by the initial grain nucleation and growth environment. One consequence of the significant role played by interstellar shocks is that a certain fraction (up to 5 percent) of the carbon should be transformed into the diamond phase. Diamond transformation is observed in the laboratory at threshold shock pressures easily obtainable in grain-grain collisions in supernova shocks. Yields for transforming graphite, amorphous carbon, glassy carbon, and other nearly pure carbon solids into diamond are quite high. Impurities up to at least the 10 percent level (for oxygen) are tolerated in the process. The typical size diamond expected from shock transformation agrees well with the observed sizes in the Lewis et al. findings in meteoritic material. Isotropic anomalies already contained in the grain are likely to be retained through the conversion process, while others may be implanted by the shock if the grain is close to the supernova. The meteoritic diamonds are likely to be the results of transformation of carbon grains in grain-grain collisions in supernova shock waves.

  9. Application of probabilistic fracture mechanics to the PTS issue

    SciTech Connect

    Cheverton, R.D.; Ball, D.G.

    1985-01-01

    As a part of the NRC effort to obtain a resolution to the PWR PTS issue, a probabilistic approach has been applied that includes a probabilistic fracture-mechanics (PFM) analysis. The PFM analysis is performed with OCA-P, a computer code that performs thermal, stress and fracture-mechanics analyses and estimates the conditional probability of vessel failure, P(F/E), using Monte Carlo techniques. The stress intensity factor (K/sub I/) is calculated for two- and three-dimensional surface flaws using superposition techniques and influence coefficients. Importance-sampling techniques are used, as necessary, to limit to a reasonable value the number of vessels actually calculated. Analyses of three PWR plants indicate that (1) the critical initial flaw depth is very small (5 to 15 mm), (2) the benefit of warm prestressing and the role of crack arrest are transient dependent, (3) crack arrest does not occur for the dominant transients, and (4) the single largest uncertainty in the overall probabilistic analysis is the number of surface flaws per vessel. 30 refs., 6 figs., 4 tabs.

  10. The properties of probabilistic simple regular sticker system

    NASA Astrophysics Data System (ADS)

    Selvarajoo, Mathuri; Fong, Wan Heng; Sarmin, Nor Haniza; Turaev, Sherzod

    2015-10-01

    A mathematical model for DNA computing using the recombination behavior of DNA molecules, known as a sticker system, has been introduced in 1998. In sticker system, the sticker operation is based on the Watson-Crick complementary feature of DNA molecules. The computation of sticker system starts from an incomplete double-stranded sequence. Then by iterative sticking operations, a complete double-stranded sequence is obtained. It is known that sticker systems with finite sets of axioms and sticker rule (including the simple regular sticker system) generate only regular languages. Hence, different types of restrictions have been considered to increase the computational power of the languages generated by the sticker systems. In this paper, we study the properties of probabilistic simple regular sticker systems. In this variant of sticker system, probabilities are associated with the axioms, and the probability of a generated string is computed by multiplying the probabilities of all occurrences of the initial strings. The language are selected according to some probabilistic requirements. We prove that the probabilistic enhancement increases the computational power of simple regular sticker systems.

  11. Development of probabilistic multimedia multipathway computer codes.

    SciTech Connect

    Yu, C.; LePoire, D.; Gnanapragasam, E.; Arnish, J.; Kamboj, S.; Biwer, B. M.; Cheng, J.-J.; Zielen, A. J.; Chen, S. Y.; Mo, T.; Abu-Eid, R.; Thaggard, M.; Sallo, A., III.; Peterson, H., Jr.; Williams, W. A.; Environmental Assessment; NRC; EM

    2002-01-01

    The deterministic multimedia dose/risk assessment codes RESRAD and RESRAD-BUILD have been widely used for many years for evaluation of sites contaminated with residual radioactive materials. The RESRAD code applies to the cleanup of sites (soils) and the RESRAD-BUILD code applies to the cleanup of buildings and structures. This work describes the procedure used to enhance the deterministic RESRAD and RESRAD-BUILD codes for probabilistic dose analysis. A six-step procedure was used in developing default parameter distributions and the probabilistic analysis modules. These six steps include (1) listing and categorizing parameters; (2) ranking parameters; (3) developing parameter distributions; (4) testing parameter distributions for probabilistic analysis; (5) developing probabilistic software modules; and (6) testing probabilistic modules and integrated codes. The procedures used can be applied to the development of other multimedia probabilistic codes. The probabilistic versions of RESRAD and RESRAD-BUILD codes provide tools for studying the uncertainty in dose assessment caused by uncertain input parameters. The parameter distribution data collected in this work can also be applied to other multimedia assessment tasks and multimedia computer codes.

  12. Transient shocks beyond the heliopause

    SciTech Connect

    Fermo, R. L.; Pogorelov, N. V.; Burlaga, L. F.

    2015-09-30

    The heliopause is a rich, dynamic surface affected by the time-dependent solar wind. Stream interactions due to coronal mass ejections (CMEs), corotating interaction regions (CIRs), and other transient phenomena are known to merge producing global merged interaction regions (GMIRs). Numerical simulations of the solar wind interaction with the local interstellar medium (LISM) show that GMIRs, as well other time-dependent structures in the solar wind, may produce compression/rarefaction waves and shocks in the LISM behind the heliopause. These shocks may initiate wave activity observed by the Voyager spacecraft. The magnetometer onboard Voyager 1 indeed observed a few structures that may be interpreted as shocks. We present numerical simulations of such shocks in the year of 2000, when both Voyager spacecraft were in the supersonic solar wind region, and in 2012, when Voyager 1 observed traveling shocks. In the former case, Voyager observations themselves provide time- dependent boundary conditions in the solar wind. In the latter case, we use OMNI data at 1 AU to analyze the plasma and magnetic field behavior after Voyager 1 crossed the heliospheric boundary. Numerical results are compared with spacecraft observations.

  13. Transient shocks beyond the heliopause

    DOE PAGES

    Fermo, R. L.; Pogorelov, N. V.; Burlaga, L. F.

    2015-09-30

    The heliopause is a rich, dynamic surface affected by the time-dependent solar wind. Stream interactions due to coronal mass ejections (CMEs), corotating interaction regions (CIRs), and other transient phenomena are known to merge producing global merged interaction regions (GMIRs). Numerical simulations of the solar wind interaction with the local interstellar medium (LISM) show that GMIRs, as well other time-dependent structures in the solar wind, may produce compression/rarefaction waves and shocks in the LISM behind the heliopause. These shocks may initiate wave activity observed by the Voyager spacecraft. The magnetometer onboard Voyager 1 indeed observed a few structures that may bemore » interpreted as shocks. We present numerical simulations of such shocks in the year of 2000, when both Voyager spacecraft were in the supersonic solar wind region, and in 2012, when Voyager 1 observed traveling shocks. In the former case, Voyager observations themselves provide time- dependent boundary conditions in the solar wind. In the latter case, we use OMNI data at 1 AU to analyze the plasma and magnetic field behavior after Voyager 1 crossed the heliospheric boundary. Numerical results are compared with spacecraft observations.« less

  14. Transient shocks beyond the heliopause

    NASA Astrophysics Data System (ADS)

    Fermo, R. L.; Pogorelov, N. V.; Burlaga, L. F.

    2015-09-01

    The heliopause is a rich, dynamic surface affected by the time-dependent solar wind. Stream interactions due to coronal mass ejections (CMEs), corotating interaction regions (CIRs), and other transient phenomena are known to merge producing global merged interaction regions (GMIRs). Numerical simulations of the solar wind interaction with the local interstellar medium (LISM) show that GMIRs, as well other time-dependent structures in the solar wind, may produce compression/rarefaction waves and shocks in the LISM behind the heliopause. These shocks may initiate wave activity observed by the Voyager spacecraft. The magnetometer onboard Voyager 1 indeed observed a few structures that may be interpreted as shocks. We present numerical simulations of such shocks in the year of 2000, when both Voyager spacecraft were in the supersonic solar wind region, and in 2012, when Voyager 1 observed traveling shocks. In the former case, Voyager observations themselves provide time- dependent boundary conditions in the solar wind. In the latter case, we use OMNI data at 1 AU to analyze the plasma and magnetic field behavior after Voyager 1 crossed the heliospheric boundary. Numerical results are compared with spacecraft observations.

  15. Probabilistic Structural Evaluation of Uncertainties in Radiator Sandwich Panel Design

    NASA Technical Reports Server (NTRS)

    Kuguoglu, Latife; Ludwiczak, Damian

    2006-01-01

    The Jupiter Icy Moons Orbiter (JIMO) Space System is part of the NASA's Prometheus Program. As part of the JIMO engineering team at NASA Glenn Research Center, the structural design of the JIMO Heat Rejection Subsystem (HRS) is evaluated. An initial goal of this study was to perform sensitivity analyses to determine the relative importance of the input variables on the structural responses of the radiator panel. The desire was to let the sensitivity analysis information identify the important parameters. The probabilistic analysis methods illustrated here support this objective. The probabilistic structural performance evaluation of a HRS radiator sandwich panel was performed. The radiator panel structural performance was assessed in the presence of uncertainties in the loading, fabrication process variables, and material properties. The stress and displacement contours of the deterministic structural analysis at mean probability was performed and results presented. It is followed by a probabilistic evaluation to determine the effect of the primitive variables on the radiator panel structural performance. Based on uncertainties in material properties, structural geometry and loading, the results of the displacement and stress analysis are used as an input file for the probabilistic analysis of the panel. The sensitivity of the structural responses, such as maximum displacement and maximum tensile and compressive stresses of the facesheet in x and y directions and maximum VonMises stresses of the tube, to the loading and design variables is determined under the boundary condition where all edges of the radiator panel are pinned. Based on this study, design critical material and geometric parameters of the considered sandwich panel are identified.

  16. Development of Probabilistic Methods to Assess Meteotsunami Hazards

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Ten Brink, U. S.

    2014-12-01

    A probabilistic method to assess the hazard from meteotsunamis is developed from both probabilistic tsunami hazard analysis (PTHA) and probabilistic storm-surge forecasting. Meteotsunamis are unusual sea level events, generated when the speed of an atmospheric pressure or wind disturbance is comparable to the phase speed of long waves in the ocean. A general aggregation equation, similar to that used in PTHA, incorporates different meteotsunami sources. A historical record of 116 pressure disturbances recorded between 2000 and 2013 by the U.S. Automated Surface Observing Stations (ASOS) along the U.S. East Coast is used to establish a continuous analytic distribution of each source parameter as well as the overall Poisson rate of occurrence. Initially, atmospheric parameters are considered independently such that the joint probability distribution is given by the product of each marginal distribution. The probabilistic equations are implemented using a Monte Carlo scheme, where a synthetic catalog of pressure disturbances is compiled by sampling the parameter distributions. For each entry in the catalog, ocean wave amplitudes are computed using a finite-difference hydrodynamic model that solves for the linearized long-wave equations. Aggregation of the results from the Monte Carlo scheme results in a meteotsunami hazard curve that plots the annualized rate of exceedance with respect to maximum event amplitude for a particular location along the coast. Results from using 20 synthetic catalogs of 116 events each, resampled from the parent parameter distributions, yield mean and quantile hazard curves. An example is presented for four Mid-Atlantic sites using ASOS data in which only atmospheric pressure disturbances from squall lines and derechos are considered. Results indicate that site-to-site variations among meteotsunami hazard curves are related to the geometry and width of the adjacent continental shelf. The new hazard analysis of meteotsunamis is important for

  17. Probabilistic Extra-Tropical Storm Surge Guidance

    NASA Astrophysics Data System (ADS)

    Liu, H.; Taylor, A. A.

    2016-02-01

    The National Weather Service's (NWS) Meteorological Development Laboratory (MDL) developed the Extra-Tropical Storm Surge (ETSS) model in 1995 by applying the Sea Lake and Overland Surges from Hurricanes (SLOSH) model to Extra-Tropical storms. Over the last two years, MDL, with Hurricane Sandy Supplemental funding, has enhanced the ETSS model to meet the anticipated requirements of a potential extra-tropical storm surge watch. The latest such enhancement, implemented in October 2015, enabled ETSS to operationally provide deterministic inundation guidance four times a day based on storm surge and tide in all of its model domains. Storm surge guidance has various uncertainties associated with it such as (a) the atmospheric forcing (wind speed, wind direction and atmospheric pressure), (b) the initial water conditions, (c) the included physical processes, (d) the numerical scheme, etc. While some of these can be reduced by enhancing the storm surge model, others, such as atmospheric forcing, rely on external inputs. Uncertainty in atmospheric forcing is particularly challenging as it is the main source of uncertainty in storm surge based inundation guidance. Ensemble techniques are necessary to produce quantitative estimates of storm surge based inundation risk. To create such an ensemble technique, MDL has developed the Probabilistic Extra-Tropical Storm Surge (PETSS) model by using atmospheric inputs from the 21 Global Ensemble Forecast System ensemble members. This paper describes the details of this effort and provides statistical verification of the PETSS products for several case studies.

  18. A Probabilistic Asteroid Impact Risk Model

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Wheeler, Lorien F.; Dotson, Jessie L.

    2016-01-01

    Asteroid threat assessment requires the quantification of both the impact likelihood and resulting consequence across the range of possible events. This paper presents a probabilistic asteroid impact risk (PAIR) assessment model developed for this purpose. The model incorporates published impact frequency rates with state-of-the-art consequence assessment tools, applied within a Monte Carlo framework that generates sets of impact scenarios from uncertain parameter distributions. Explicit treatment of atmospheric entry is included to produce energy deposition rates that account for the effects of thermal ablation and object fragmentation. These energy deposition rates are used to model the resulting ground damage, and affected populations are computed for the sampled impact locations. The results for each scenario are aggregated into a distribution of potential outcomes that reflect the range of uncertain impact parameters, population densities, and strike probabilities. As an illustration of the utility of the PAIR model, the results are used to address the question of what minimum size asteroid constitutes a threat to the population. To answer this question, complete distributions of results are combined with a hypothetical risk tolerance posture to provide the minimum size, given sets of initial assumptions. Model outputs demonstrate how such questions can be answered and provide a means for interpreting the effect that input assumptions and uncertainty can have on final risk-based decisions. Model results can be used to prioritize investments to gain knowledge in critical areas or, conversely, to identify areas where additional data has little effect on the metrics of interest.

  19. Probabilistic machine learning and artificial intelligence.

    PubMed

    Ghahramani, Zoubin

    2015-05-28

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  20. Probabilistic machine learning and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Ghahramani, Zoubin

    2015-05-01

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  1. Probabilistic cognition in two indigenous Mayan groups

    PubMed Central

    Fontanari, Laura; Gonzalez, Michel; Vallortigara, Giorgio; Girotto, Vittorio

    2014-01-01

    Is there a sense of chance shared by all individuals, regardless of their schooling or culture? To test whether the ability to make correct probabilistic evaluations depends on educational and cultural guidance, we investigated probabilistic cognition in preliterate and prenumerate Kaqchikel and K’iche’, two indigenous Mayan groups, living in remote areas of Guatemala. Although the tested individuals had no formal education, they performed correctly in tasks in which they had to consider prior and posterior information, proportions and combinations of possibilities. Their performance was indistinguishable from that of Mayan school children and Western controls. Our results provide evidence for the universal nature of probabilistic cognition. PMID:25368160

  2. Probabilistic population projections with migration uncertainty

    PubMed Central

    Azose, Jonathan J.; Ševčíková, Hana; Raftery, Adrian E.

    2016-01-01

    We produce probabilistic projections of population for all countries based on probabilistic projections of fertility, mortality, and migration. We compare our projections to those from the United Nations’ Probabilistic Population Projections, which uses similar methods for fertility and mortality but deterministic migration projections. We find that uncertainty in migration projection is a substantial contributor to uncertainty in population projections for many countries. Prediction intervals for the populations of Northern America and Europe are over 70% wider, whereas prediction intervals for the populations of Africa, Asia, and the world as a whole are nearly unchanged. Out-of-sample validation shows that the model is reasonably well calibrated. PMID:27217571

  3. Probabilistic population projections with migration uncertainty.

    PubMed

    Azose, Jonathan J; Ševčíková, Hana; Raftery, Adrian E

    2016-06-07

    We produce probabilistic projections of population for all countries based on probabilistic projections of fertility, mortality, and migration. We compare our projections to those from the United Nations' Probabilistic Population Projections, which uses similar methods for fertility and mortality but deterministic migration projections. We find that uncertainty in migration projection is a substantial contributor to uncertainty in population projections for many countries. Prediction intervals for the populations of Northern America and Europe are over 70% wider, whereas prediction intervals for the populations of Africa, Asia, and the world as a whole are nearly unchanged. Out-of-sample validation shows that the model is reasonably well calibrated.

  4. Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols

    SciTech Connect

    Bragard, Jean Simic, Ana; Elorza, Jorge; Grigoriev, Roman O.; Fenton, Flavio H.; Cherry, Elizabeth M.; Gilmour, Robert F.; Otani, Niels F.

    2013-12-15

    In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one–dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 × 10{sup 6} simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation.

  5. Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols

    NASA Astrophysics Data System (ADS)

    Bragard, Jean; Simic, Ana; Elorza, Jorge; Grigoriev, Roman O.; Cherry, Elizabeth M.; Gilmour, Robert F.; Otani, Niels F.; Fenton, Flavio H.

    2013-12-01

    In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one-dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 × 106 simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation.

  6. Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols

    PubMed Central

    Bragard, Jean; Simic, Ana; Elorza, Jorge; Grigoriev, Roman O.; Cherry, Elizabeth M.; Gilmour, Robert F.; Otani, Niels F.; Fenton, Flavio H.

    2013-01-01

    In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one–dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 × 106 simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation. PMID:24387558

  7. Collisionless Weibel shocks: Full formation mechanism and timing

    SciTech Connect

    Bret, A.; Stockem, A.; Narayan, R.; Silva, L. O.

    2014-07-15

    Collisionless shocks in plasmas play an important role in space physics (Earth's bow shock) and astrophysics (supernova remnants, relativistic jets, gamma-ray bursts, high energy cosmic rays). While the formation of a fluid shock through the steepening of a large amplitude sound wave has been understood for long, there is currently no detailed picture of the mechanism responsible for the formation of a collisionless shock. We unravel the physical mechanism at work and show that an electromagnetic Weibel shock always forms when two relativistic collisionless, initially unmagnetized, plasma shells encounter. The predicted shock formation time is in good agreement with 2D and 3D particle-in-cell simulations of counterstreaming pair plasmas. By predicting the shock formation time, experimental setups aiming at producing such shocks can be optimised to favourable conditions.

  8. Avoidance based on shock intensity reduction with no change in shock probability.

    PubMed

    Bersh, P J; Alloy, L B

    1978-11-01

    Rats were trained on a free-operant avoidance procedure in which shock intensity was controlled by interresponse time. Shocks were random at a density of about 10 shocks per minute. Shock probability was response independent. As long as interresponse times remained less than the limit in effect, any shocks received were at the lower of two intensities (0.75 mA). Whenever interresponse times exceeded the limit, any shocks received were at the higher intensity (1.6 mA). The initial limit of 15 seconds was decreased in 3-second steps to either 6 or 3 seconds. All animals lever pressed to avoid higher intensity shock. As the interresponse time limit was reduced, the response rate during the lower intensity shock and the proportion of brief interresponse times increased. Substantial warmup effects were evident, particularly at the shorter interresponse-time limits. Shock intensity reduction without change in shock probability was effective in the acquisition and maintenance of avoidance responding, as well as in differentiation of interresponse times. This research suggests limitations on the generality of a safety signal interpretation of avoidance conditioning.

  9. 10 CFR 50.61 - Fracture toughness requirements for protection against pressurized thermal shock events.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Fracture toughness requirements for protection against... Construction Permits § 50.61 Fracture toughness requirements for protection against pressurized thermal shock..., research results, and plant surveillance data, and may use probabilistic fracture mechanics techniques...

  10. Shock desensitizing of solid explosive

    SciTech Connect

    Davis, William C

    2010-01-01

    Solid explosive can be desensitized by a shock wave too weak to initiate it promptly, and desensitized explosive does not react although its chemical composition is almost unchanged. A strong second shock does not cause reaction until it overtakes the first shock. The first shock, if it is strong enough, accelerates very slowly at first, and then more rapidly as detonation approaches. These facts suggest that there are two competing reactions. One is the usual explosive goes to products with the release of energy, and the other is explosive goes to dead explosive with no chemical change and no energy release. The first reaction rate is very sensitive to the local state, and the second is only weakly so. At low pressure very little energy is released and the change to dead explosive dominates. At high pressure, quite the other way, most of the explosive goes to products. Numerous experiments in both the initiation and the full detonation regimes are discussed and compared in testing these ideas.

  11. Reclassifying the spectrum of septic patients using lactate: severe sepsis, cryptic shock, vasoplegic shock and dysoxic shock.

    PubMed

    Ranzani, Otavio Tavares; Monteiro, Mariana Barbosa; Ferreira, Elaine Maria; Santos, Sergio Ricardo; Machado, Flavia Ribeiro; Noritomi, Danilo Teixeira

    2013-01-01

    The current definition of severe sepsis and septic shock includes a heterogeneous profile of patients. Although the prognostic value of hyperlactatemia is well established, hyperlactatemia is observed in patients with and without shock. The present study aimed to compare the prognosis of septic patients by stratifying them according to two factors: hyperlactatemia and persistent hypotension. The present study is a secondary analysis of an observational study conducted in ten hospitals in Brazil (Rede Amil - SP). Septic patients with initial lactate measurements in the first 6 hours of diagnosis were included and divided into 4 groups according to hyperlactatemia (lactate >4mmol/L) and persistent hypotension: (1) severe sepsis (without both criteria); (2) cryptic shock (hyperlactatemia without persistent hypotension); (3) vasoplegic shock (persistent hypotension without hyperlactatemia); and (4) dysoxic shock (both criteria). In total, 1,948 patients were analyzed, and the sepsis group represented 52% of the patients, followed by 28% with vasoplegic shock, 12% with dysoxic shock and 8% with cryptic shock. Survival at 28 days differed among the groups (p<0.001). Survival was highest among the severe sepsis group (69%, p<0.001 versus others), similar in the cryptic and vasoplegic shock groups (53%, p=0.39), and lowest in the dysoxic shock group (38%, p<0.001 versus others). In the adjusted analysis, the survival at 28 days remained different among the groups (p<0.001) and the dysoxic shock group exhibited the highest hazard ratio (HR=2.99, 95%CI 2.21-4.05). The definition of sepsis includes four different profiles if we consider the presence of hyperlactatemia. Further studies are needed to better characterize septic patients, to understand the etiology and to design adequate targeted treatments.

  12. Reclassifying the spectrum of septic patients using lactate: severe sepsis, cryptic shock, vasoplegic shock and dysoxic shock

    PubMed Central

    Ranzani, Otavio Tavares; Monteiro, Mariana Barbosa; Ferreira, Elaine Maria; Santos, Sergio Ricardo; Machado, Flavia Ribeiro; Noritomi, Danilo Teixeira

    2013-01-01

    Objective The current definition of severe sepsis and septic shock includes a heterogeneous profile of patients. Although the prognostic value of hyperlactatemia is well established, hyperlactatemia is observed in patients with and without shock. The present study aimed to compare the prognosis of septic patients by stratifying them according to two factors: hyperlactatemia and persistent hypotension. Methods The present study is a secondary analysis of an observational study conducted in ten hospitals in Brazil (Rede Amil - SP). Septic patients with initial lactate measurements in the first 6 hours of diagnosis were included and divided into 4 groups according to hyperlactatemia (lactate >4mmol/L) and persistent hypotension: (1) severe sepsis (without both criteria); (2) cryptic shock (hyperlactatemia without persistent hypotension); (3) vasoplegic shock (persistent hypotension without hyperlactatemia); and (4) dysoxic shock (both criteria). Results In total, 1,948 patients were analyzed, and the sepsis group represented 52% of the patients, followed by 28% with vasoplegic shock, 12% with dysoxic shock and 8% with cryptic shock. Survival at 28 days differed among the groups (p<0.001). Survival was highest among the severe sepsis group (69%, p<0.001 versus others), similar in the cryptic and vasoplegic shock groups (53%, p=0.39), and lowest in the dysoxic shock group (38%, p<0.001 versus others). In the adjusted analysis, the survival at 28 days remained different among the groups (p<0.001) and the dysoxic shock group exhibited the highest hazard ratio (HR=2.99, 95%CI 2.21-4.05). Conclusion The definition of sepsis includes four different profiles if we consider the presence of hyperlactatemia. Further studies are needed to better characterize septic patients, to understand the etiology and to design adequate targeted treatments. PMID:24553507

  13. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    NASA Technical Reports Server (NTRS)

    Bershader, D. (Editor); Hanson, R. (Editor)

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.

  14. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    NASA Technical Reports Server (NTRS)

    Bershader, D. (Editor); Hanson, R. (Editor)

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.

  15. [Shock in obstetrics. Institutional experience].

    PubMed

    Bonfante Ramírez, E; Ahued Ahued, R; García-Benítez, C Q; Bolaños Ancona, R; Callejos, T; Juárez García, L

    1997-04-01

    Shock is one of the most difficult problems an obstetrician can face. Hemorrhage is the main reason of shock. A descriptive and retrospective research was conducted at Instituto Nacional de Perinatología, from January 1992 to May 1996, including all patients admitted to the intensive care unit with diagnosis of shock. There were found 90 cases with diagnosis of shock, 82 were hipovolemic, and 8 cases had the septic kind of shock. The average of age was 32.2 years, with a gestational age between 6.2 to 41.4 weeks . There were 71 healthy patients, hypertension was associated to pregnancy in 9 cases, infertility in two, myomatosis in 2, and diabetes in 2 more patients. Other 5 cases reported different pathologies. The most frequent cause for hipovolemic shock resulted to be placenta acreta (40 cases), followed by uterine tone alterations in 37 patients, ectopic pregnancy in 7, uterine rupture or perforation in 4, and vaginal or cervical lacerations in 2. The estimated blood loss varied from 2200 cc to 6500 cc, and the minimal arterial pressure registered during shock was between 40/20 mmHg to 90/60 mmHg. Medical initial assistance consisted in volume reposition with crystalloids, globular packages, and plasma expansors in 73 patients (81.1%). The rest of the patients received in addition coloids, platelets and cryoprecipitates. A total of 76 patients required surgical intervention consisting in total abdominal hysterectomy. In 5 cases the previous surgical procedure was done and ligation of hypogastric vessels was needed. Salpingectomy was performed in 5 patients, and rupture or perforation repair in 3. The average surgery time was 2 hours and 33 minutes. The observed complications were 7 cases with abscess of the cupula, consumption coagulopathy in 2, 1 vesical quirurgical injury, 1 intestinal occlusion, and 11 vesico-vaginal fistula. The average days of hospitalization resulted to be 5. The most frequent kind of shock seen by obstetricians is the hipovolemic type

  16. Pharmacotherapy of circulatory shock.

    PubMed

    Higgins, T L; Chernow, B

    1987-06-01

    The rubric "shock" encompasses a wide spectrum of critical events, which if untreated, result in morbidity and mortality. Understanding of the various forms of shock has evolved rapidly in the past 20 years as new laboratory and clinical observations have been published. In this article, the authors discuss the physiology of the shock state, review the circumstances in which shock becomes likely, and review the etiologies and diagnostic characteristics of distributive (septic, spinal, anaphylactoid/anaphylactic), cardiogenic, hypovolemic, and obstructive shock. The rationale and applications of conventional and controversial therapies are discussed. The therapeutic potentials of current lines of shock research are also discussed.

  17. COMMUNICATING PROBABILISTIC RISK OUTCOMES TO RISK MANAGERS

    EPA Science Inventory

    Increasingly, risk assessors are moving away from simple deterministic assessments to probabilistic approaches that explicitly incorporate ecological variability, measurement imprecision, and lack of knowledge (collectively termed "uncertainty"). While the new methods provide an...

  18. Probabilistic micromechanics for high-temperature composites

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.

    1993-01-01

    The three-year program of research had the following technical objectives: the development of probabilistic methods for micromechanics-based constitutive and failure models, application of the probabilistic methodology in the evaluation of various composite materials and simulation of expected uncertainties in unidirectional fiber composite properties, and influence of the uncertainties in composite properties on the structural response. The first year of research was devoted to the development of probabilistic methodology for micromechanics models. The second year of research focused on the evaluation of the Chamis-Hopkins constitutive model and Aboudi constitutive model using the methodology developed in the first year of research. The third year of research was devoted to the development of probabilistic finite element analysis procedures for laminated composite plate and shell structures.

  19. Non-unitary probabilistic quantum computing

    NASA Technical Reports Server (NTRS)

    Gingrich, Robert M.; Williams, Colin P.

    2004-01-01

    We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.

  20. Non-unitary probabilistic quantum computing

    NASA Technical Reports Server (NTRS)

    Gingrich, Robert M.; Williams, Colin P.

    2004-01-01

    We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.