Probability based models for estimation of wildfire risk
Haiganoush Preisler; D. R. Brillinger; R. E. Burgan; John Benoit
2004-01-01
We present a probability-based model for estimating fire risk. Risk is defined using three probabilities: the probability of fire occurrence; the conditional probability of a large fire given ignition; and the unconditional probability of a large fire. The model is based on grouped data at the 1 km²-day cell level. We fit a spatially and temporally explicit non-...
Using effort information with change-in-ratio data for population estimation
Udevitz, Mark S.; Pollock, Kenneth H.
1995-01-01
Most change-in-ratio (CIR) methods for estimating fish and wildlife population sizes have been based only on assumptions about how encounter probabilities vary among population subclasses. When information on sampling effort is available, it is also possible to derive CIR estimators based on assumptions about how encounter probabilities vary over time. This paper presents a generalization of previous CIR models that allows explicit consideration of a range of assumptions about the variation of encounter probabilities among subclasses and over time. Explicit estimators are derived under this model for specific sets of assumptions about the encounter probabilities. Numerical methods are presented for obtaining estimators under the full range of possible assumptions. Likelihood ratio tests for these assumptions are described. Emphasis is on obtaining estimators based on assumptions about variation of encounter probabilities over time.
Developing a probability-based model of aquifer vulnerability in an agricultural region
NASA Astrophysics Data System (ADS)
Chen, Shih-Kai; Jang, Cheng-Shin; Peng, Yi-Huei
2013-04-01
SummaryHydrogeological settings of aquifers strongly influence the regional groundwater movement and pollution processes. Establishing a map of aquifer vulnerability is considerably critical for planning a scheme of groundwater quality protection. This study developed a novel probability-based DRASTIC model of aquifer vulnerability in the Choushui River alluvial fan, Taiwan, using indicator kriging and to determine various risk categories of contamination potentials based on estimated vulnerability indexes. Categories and ratings of six parameters in the probability-based DRASTIC model were probabilistically characterized according to the parameter classification methods of selecting a maximum estimation probability and calculating an expected value. Moreover, the probability-based estimation and assessment gave us an excellent insight into propagating the uncertainty of parameters due to limited observation data. To examine the prediction capacity of pollutants for the developed probability-based DRASTIC model, medium, high, and very high risk categories of contamination potentials were compared with observed nitrate-N exceeding 0.5 mg/L indicating the anthropogenic groundwater pollution. The analyzed results reveal that the developed probability-based DRASTIC model is capable of predicting high nitrate-N groundwater pollution and characterizing the parameter uncertainty via the probability estimation processes.
Estimating the Probability of Rare Events Occurring Using a Local Model Averaging.
Chen, Jin-Hua; Chen, Chun-Shu; Huang, Meng-Fan; Lin, Hung-Chih
2016-10-01
In statistical applications, logistic regression is a popular method for analyzing binary data accompanied by explanatory variables. But when one of the two outcomes is rare, the estimation of model parameters has been shown to be severely biased and hence estimating the probability of rare events occurring based on a logistic regression model would be inaccurate. In this article, we focus on estimating the probability of rare events occurring based on logistic regression models. Instead of selecting a best model, we propose a local model averaging procedure based on a data perturbation technique applied to different information criteria to obtain different probability estimates of rare events occurring. Then an approximately unbiased estimator of Kullback-Leibler loss is used to choose the best one among them. We design complete simulations to show the effectiveness of our approach. For illustration, a necrotizing enterocolitis (NEC) data set is analyzed. © 2016 Society for Risk Analysis.
Detection of sea otters in boat-based surveys of Prince William Sound, Alaska
Udevitz, Mark S.; Bodkin, James L.; Costa, Daniel P.
1995-01-01
Boat-based surveys have been commonly used to monitor sea otter populations, but there has been little quantitative work to evaluate detection biases that may affect these surveys. We used ground-based observers to investigate sea otter detection probabilities in a boat-based survey of Prince William Sound, Alaska. We estimated that 30% of the otters present on surveyed transects were not detected by boat crews. Approximately half (53%) of the undetected otters were missed because the otters left the transects, apparently in response to the approaching boat. Unbiased estimates of detection probabilities will be required for obtaining unbiased population estimates from boat-based surveys of sea otters. Therefore, boat-based surveys should include methods to estimate sea otter detection probabilities under the conditions specific to each survey. Unbiased estimation of detection probabilities with ground-based observers requires either that the ground crews detect all of the otters in observed subunits, or that there are no errors in determining which crews saw each detected otter. Ground-based observer methods may be appropriate in areas where nearly all of the sea otter habitat is potentially visible from ground-based vantage points.
[WebSurvCa: web-based estimation of death and survival probabilities in a cohort].
Clèries, Ramon; Ameijide, Alberto; Buxó, Maria; Vilardell, Mireia; Martínez, José Miguel; Alarcón, Francisco; Cordero, David; Díez-Villanueva, Ana; Yasui, Yutaka; Marcos-Gragera, Rafael; Vilardell, Maria Loreto; Carulla, Marià; Galceran, Jaume; Izquierdo, Ángel; Moreno, Víctor; Borràs, Josep M
2018-01-19
Relative survival has been used as a measure of the temporal evolution of the excess risk of death of a cohort of patients diagnosed with cancer, taking into account the mortality of a reference population. Once the excess risk of death has been estimated, three probabilities can be computed at time T: 1) the crude probability of death associated with the cause of initial diagnosis (disease under study), 2) the crude probability of death associated with other causes, and 3) the probability of absolute survival in the cohort at time T. This paper presents the WebSurvCa application (https://shiny.snpstats.net/WebSurvCa/), whereby hospital-based and population-based cancer registries and registries of other diseases can estimate such probabilities in their cohorts by selecting the mortality of the relevant region (reference population). Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Estimating trace-suspect match probabilities for singleton Y-STR haplotypes using coalescent theory.
Andersen, Mikkel Meyer; Caliebe, Amke; Jochens, Arne; Willuweit, Sascha; Krawczak, Michael
2013-02-01
Estimation of match probabilities for singleton haplotypes of lineage markers, i.e. for haplotypes observed only once in a reference database augmented by a suspect profile, is an important problem in forensic genetics. We compared the performance of four estimators of singleton match probabilities for Y-STRs, namely the count estimate, both with and without Brenner's so-called 'kappa correction', the surveying estimate, and a previously proposed, but rarely used, coalescent-based approach implemented in the BATWING software. Extensive simulation with BATWING of the underlying population history, haplotype evolution and subsequent database sampling revealed that the coalescent-based approach is characterized by lower bias and lower mean squared error than the uncorrected count estimator and the surveying estimator. Moreover, in contrast to the two count estimators, both the surveying and the coalescent-based approach exhibited a good correlation between the estimated and true match probabilities. However, although its overall performance is thus better than that of any other recognized method, the coalescent-based estimator is still computation-intense on the verge of general impracticability. Its application in forensic practice therefore will have to be limited to small reference databases, or to isolated cases of particular interest, until more powerful algorithms for coalescent simulation have become available. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
A Web-based interface to calculate phonotactic probability for words and nonwords in English
VITEVITCH, MICHAEL S.; LUCE, PAUL A.
2008-01-01
Phonotactic probability refers to the frequency with which phonological segments and sequences of phonological segments occur in words in a given language. We describe one method of estimating phonotactic probabilities based on words in American English. These estimates of phonotactic probability have been used in a number of previous studies and are now being made available to other researchers via a Web-based interface. Instructions for using the interface, as well as details regarding how the measures were derived, are provided in the present article. The Phonotactic Probability Calculator can be accessed at http://www.people.ku.edu/~mvitevit/PhonoProbHome.html. PMID:15641436
Butler, Troy; Wildey, Timothy
2018-01-01
In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Troy; Wildey, Timothy
In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less
Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs
2017-01-01
Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package. PMID:29107980
The estimated lifetime probability of acquiring human papillomavirus in the United States.
Chesson, Harrell W; Dunne, Eileen F; Hariri, Susan; Markowitz, Lauri E
2014-11-01
Estimates of the lifetime probability of acquiring human papillomavirus (HPV) can help to quantify HPV incidence, illustrate how common HPV infection is, and highlight the importance of HPV vaccination. We developed a simple model, based primarily on the distribution of lifetime numbers of sex partners across the population and the per-partnership probability of acquiring HPV, to estimate the lifetime probability of acquiring HPV in the United States in the time frame before HPV vaccine availability. We estimated the average lifetime probability of acquiring HPV among those with at least 1 opposite sex partner to be 84.6% (range, 53.6%-95.0%) for women and 91.3% (range, 69.5%-97.7%) for men. Under base case assumptions, more than 80% of women and men acquire HPV by age 45 years. Our results are consistent with estimates in the existing literature suggesting a high lifetime probability of HPV acquisition and are supported by cohort studies showing high cumulative HPV incidence over a relatively short period, such as 3 to 5 years.
Models based on value and probability in health improve shared decision making.
Ortendahl, Monica
2008-10-01
Diagnostic reasoning and treatment decisions are a key competence of doctors. A model based on values and probability provides a conceptual framework for clinical judgments and decisions, and also facilitates the integration of clinical and biomedical knowledge into a diagnostic decision. Both value and probability are usually estimated values in clinical decision making. Therefore, model assumptions and parameter estimates should be continually assessed against data, and models should be revised accordingly. Introducing parameter estimates for both value and probability, which usually pertain in clinical work, gives the model labelled subjective expected utility. Estimated values and probabilities are involved sequentially for every step in the decision-making process. Introducing decision-analytic modelling gives a more complete picture of variables that influence the decisions carried out by the doctor and the patient. A model revised for perceived values and probabilities by both the doctor and the patient could be used as a tool for engaging in a mutual and shared decision-making process in clinical work.
Cipoli, Daniel E; Martinez, Edson Z; Castro, Margaret de; Moreira, Ayrton C
2012-12-01
To estimate the pretest probability of Cushing's syndrome (CS) diagnosis by a Bayesian approach using intuitive clinical judgment. Physicians were requested, in seven endocrinology meetings, to answer three questions: "Based on your personal expertise, after obtaining clinical history and physical examination, without using laboratorial tests, what is your probability of diagnosing Cushing's Syndrome?"; "For how long have you been practicing Endocrinology?"; and "Where do you work?". A Bayesian beta regression, using the WinBugs software was employed. We obtained 294 questionnaires. The mean pretest probability of CS diagnosis was 51.6% (95%CI: 48.7-54.3). The probability was directly related to experience in endocrinology, but not with the place of work. Pretest probability of CS diagnosis was estimated using a Bayesian methodology. Although pretest likelihood can be context-dependent, experience based on years of practice may help the practitioner to diagnosis CS.
Multifractals embedded in short time series: An unbiased estimation of probability moment
NASA Astrophysics Data System (ADS)
Qiu, Lu; Yang, Tianguang; Yin, Yanhua; Gu, Changgui; Yang, Huijie
2016-12-01
An exact estimation of probability moments is the base for several essential concepts, such as the multifractals, the Tsallis entropy, and the transfer entropy. By means of approximation theory we propose a new method called factorial-moment-based estimation of probability moments. Theoretical prediction and computational results show that it can provide us an unbiased estimation of the probability moments of continuous order. Calculations on probability redistribution model verify that it can extract exactly multifractal behaviors from several hundred recordings. Its powerfulness in monitoring evolution of scaling behaviors is exemplified by two empirical cases, i.e., the gait time series for fast, normal, and slow trials of a healthy volunteer, and the closing price series for Shanghai stock market. By using short time series with several hundred lengths, a comparison with the well-established tools displays significant advantages of its performance over the other methods. The factorial-moment-based estimation can evaluate correctly the scaling behaviors in a scale range about three generations wider than the multifractal detrended fluctuation analysis and the basic estimation. The estimation of partition function given by the wavelet transform modulus maxima has unacceptable fluctuations. Besides the scaling invariance focused in the present paper, the proposed factorial moment of continuous order can find its various uses, such as finding nonextensive behaviors of a complex system and reconstructing the causality relationship network between elements of a complex system.
Kendall, W.L.; Nichols, J.D.; Hines, J.E.
1997-01-01
Statistical inference for capture-recapture studies of open animal populations typically relies on the assumption that all emigration from the studied population is permanent. However, there are many instances in which this assumption is unlikely to be met. We define two general models for the process of temporary emigration, completely random and Markovian. We then consider effects of these two types of temporary emigration on Jolly-Seber (Seber 1982) estimators and on estimators arising from the full-likelihood approach of Kendall et al. (1995) to robust design data. Capture-recapture data arising from Pollock's (1982) robust design provide the basis for obtaining unbiased estimates of demographic parameters in the presence of temporary emigration and for estimating the probability of temporary emigration. We present a likelihood-based approach to dealing with temporary emigration that permits estimation under different models of temporary emigration and yields tests for completely random and Markovian emigration. In addition, we use the relationship between capture probability estimates based on closed and open models under completely random temporary emigration to derive three ad hoc estimators for the probability of temporary emigration, two of which should be especially useful in situations where capture probabilities are heterogeneous among individual animals. Ad hoc and full-likelihood estimators are illustrated for small mammal capture-recapture data sets. We believe that these models and estimators will be useful for testing hypotheses about the process of temporary emigration, for estimating demographic parameters in the presence of temporary emigration, and for estimating probabilities of temporary emigration. These latter estimates are frequently of ecological interest as indicators of animal movement and, in some sampling situations, as direct estimates of breeding probabilities and proportions.
van Walraven, Carl
2017-04-01
Diagnostic codes used in administrative databases cause bias due to misclassification of patient disease status. It is unclear which methods minimize this bias. Serum creatinine measures were used to determine severe renal failure status in 50,074 hospitalized patients. The true prevalence of severe renal failure and its association with covariates were measured. These were compared to results for which renal failure status was determined using surrogate measures including the following: (1) diagnostic codes; (2) categorization of probability estimates of renal failure determined from a previously validated model; or (3) bootstrap methods imputation of disease status using model-derived probability estimates. Bias in estimates of severe renal failure prevalence and its association with covariates were minimal when bootstrap methods were used to impute renal failure status from model-based probability estimates. In contrast, biases were extensive when renal failure status was determined using codes or methods in which model-based condition probability was categorized. Bias due to misclassification from inaccurate diagnostic codes can be minimized using bootstrap methods to impute condition status using multivariable model-derived probability estimates. Copyright © 2017 Elsevier Inc. All rights reserved.
Multinomial mixture model with heterogeneous classification probabilities
Holland, M.D.; Gray, B.R.
2011-01-01
Royle and Link (Ecology 86(9):2505-2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logit-normal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated Royle-Link model yields nearly unbiased estimates of multinomial and correct classification probability estimates when classification probabilities are allowed to vary according to the normal distribution on the logit scale or according to the Beta distribution. The method is illustrated using categorical submersed aquatic vegetation data. ?? 2010 Springer Science+Business Media, LLC.
Probability theory, not the very guide of life.
Juslin, Peter; Nilsson, Håkan; Winman, Anders
2009-10-01
Probability theory has long been taken as the self-evident norm against which to evaluate inductive reasoning, and classical demonstrations of violations of this norm include the conjunction error and base-rate neglect. Many of these phenomena require multiplicative probability integration, whereas people seem more inclined to linear additive integration, in part, at least, because of well-known capacity constraints on controlled thought. In this article, the authors show with computer simulations that when based on approximate knowledge of probabilities, as is routinely the case in natural environments, linear additive integration can yield as accurate estimates, and as good average decision returns, as estimates based on probability theory. It is proposed that in natural environments people have little opportunity or incentive to induce the normative rules of probability theory and, given their cognitive constraints, linear additive integration may often offer superior bounded rationality.
Statistical methods for incomplete data: Some results on model misspecification.
McIsaac, Michael; Cook, R J
2017-02-01
Inverse probability weighted estimating equations and multiple imputation are two of the most studied frameworks for dealing with incomplete data in clinical and epidemiological research. We examine the limiting behaviour of estimators arising from inverse probability weighted estimating equations, augmented inverse probability weighted estimating equations and multiple imputation when the requisite auxiliary models are misspecified. We compute limiting values for settings involving binary responses and covariates and illustrate the effects of model misspecification using simulations based on data from a breast cancer clinical trial. We demonstrate that, even when both auxiliary models are misspecified, the asymptotic biases of double-robust augmented inverse probability weighted estimators are often smaller than the asymptotic biases of estimators arising from complete-case analyses, inverse probability weighting or multiple imputation. We further demonstrate that use of inverse probability weighting or multiple imputation with slightly misspecified auxiliary models can actually result in greater asymptotic bias than the use of naïve, complete case analyses. These asymptotic results are shown to be consistent with empirical results from simulation studies.
New Image-Based Techniques for Prostate Biopsy and Treatment
2012-04-01
C-arm fluoroscopy, MICCAI 2011, Toronto, Canada, 2011. 4) Poster Presentation: Prostate Cancer Probability Estimation Based on DCE- DTI Features...and P. Kozlowski, “Prostate Cancer Probability Estimation Based on DCE- DTI Features and Support Vector Machine Classification,” Annual Meeting of... DTI ), which characterize the de-phasing of the MR signal caused by molecular diffusion. Prostate cancer causes a pathological change in the tissue
NASA Astrophysics Data System (ADS)
Siettos, Constantinos I.; Anastassopoulou, Cleo; Russo, Lucia; Grigoras, Christos; Mylonakis, Eleftherios
2016-06-01
Based on multiscale agent-based computations we estimated the per-contact probability of transmission by age of the Ebola virus disease (EVD) that swept through Liberia from May 2014 to March 2015. For the approximation of the epidemic dynamics we have developed a detailed agent-based model with small-world interactions between individuals categorized by age. For the estimation of the structure of the evolving contact network as well as the per-contact transmission probabilities by age group we exploited the so called Equation-Free framework. Model parameters were fitted to official case counts reported by the World Health Organization (WHO) as well as to recently published data of key epidemiological variables, such as the mean time to death, recovery and the case fatality rate.
Estimating the Probability of Traditional Copying, Conditional on Answer-Copying Statistics.
Allen, Jeff; Ghattas, Andrew
2016-06-01
Statistics for detecting copying on multiple-choice tests produce p values measuring the probability of a value at least as large as that observed, under the null hypothesis of no copying. The posterior probability of copying is arguably more relevant than the p value, but cannot be derived from Bayes' theorem unless the population probability of copying and probability distribution of the answer-copying statistic under copying are known. In this article, the authors develop an estimator for the posterior probability of copying that is based on estimable quantities and can be used with any answer-copying statistic. The performance of the estimator is evaluated via simulation, and the authors demonstrate how to apply the formula using actual data. Potential uses, generalizability to other types of cheating, and limitations of the approach are discussed.
Sri Lankan FRAX model and country-specific intervention thresholds.
Lekamwasam, Sarath
2013-01-01
There is a wide variation in fracture probabilities estimated by Asian FRAX models, although the outputs of South Asian models are concordant. Clinicians can choose either fixed or age-specific intervention thresholds when making treatment decisions in postmenopausal women. Cost-effectiveness of such approach, however, needs to be addressed. This study examined suitable fracture probability intervention thresholds (ITs) for Sri Lanka, based on the Sri Lankan FRAX model. Fracture probabilities were estimated using all Asian FRAX models for a postmenopausal woman of BMI 25 kg/m² and has no clinical risk factors apart from a fragility fracture, and they were compared. Age-specific ITs were estimated based on the Sri Lankan FRAX model using the method followed by the National Osteoporosis Guideline Group in the UK. Using the age-specific ITs as the reference standard, suitable fixed ITs were also estimated. Fracture probabilities estimated by different Asian FRAX models varied widely. Japanese and Taiwan models showed higher fracture probabilities while Chinese, Philippine, and Indonesian models gave lower fracture probabilities. Output of remaining FRAX models were generally similar. Age-specific ITs of major osteoporotic fracture probabilities (MOFP) based on the Sri Lankan FRAX model varied from 2.6 to 18% between 50 and 90 years. ITs of hip fracture probabilities (HFP) varied from 0.4 to 6.5% between 50 and 90 years. In finding fixed ITs, MOFP of 11% and HFP of 3.5% gave the lowest misclassification and highest agreement. Sri Lankan FRAX model behaves similar to other Asian FRAX models such as Indian, Singapore-Indian, Thai, and South Korean. Clinicians may use either the fixed or age-specific ITs in making therapeutic decisions in postmenopausal women. The economical aspects of such decisions, however, need to be considered.
Optimal estimation for discrete time jump processes
NASA Technical Reports Server (NTRS)
Vaca, M. V.; Tretter, S. A.
1977-01-01
Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are obtained. The approach is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. A general representation for optimum estimates and recursive equations for minimum mean squared error (MMSE) estimates are obtained. MMSE estimates are nonlinear functions of the observations. The problem of estimating the rate of a DTJP when the rate is a random variable with a probability density function of the form cx super K (l-x) super m and show that the MMSE estimates are linear in this case. This class of density functions explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.
Optimal estimation for discrete time jump processes
NASA Technical Reports Server (NTRS)
Vaca, M. V.; Tretter, S. A.
1978-01-01
Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are derived. The approach used is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. Thus a general representation is obtained for optimum estimates, and recursive equations are derived for minimum mean-squared error (MMSE) estimates. In general, MMSE estimates are nonlinear functions of the observations. The problem is considered of estimating the rate of a DTJP when the rate is a random variable with a beta probability density function and the jump amplitudes are binomially distributed. It is shown that the MMSE estimates are linear. The class of beta density functions is rather rich and explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.
Generalizations and Extensions of the Probability of Superiority Effect Size Estimator
ERIC Educational Resources Information Center
Ruscio, John; Gera, Benjamin Lee
2013-01-01
Researchers are strongly encouraged to accompany the results of statistical tests with appropriate estimates of effect size. For 2-group comparisons, a probability-based effect size estimator ("A") has many appealing properties (e.g., it is easy to understand, robust to violations of parametric assumptions, insensitive to outliers). We review…
Calibrating SALT: a sampling scheme to improve estimates of suspended sediment yield
Robert B. Thomas
1986-01-01
Abstract - SALT (Selection At List Time) is a variable probability sampling scheme that provides unbiased estimates of suspended sediment yield and its variance. SALT performs better than standard schemes which are estimate variance. Sampling probabilities are based on a sediment rating function which promotes greater sampling intensity during periods of high...
Nonparametric probability density estimation by optimization theoretic techniques
NASA Technical Reports Server (NTRS)
Scott, D. W.
1976-01-01
Two nonparametric probability density estimators are considered. The first is the kernel estimator. The problem of choosing the kernel scaling factor based solely on a random sample is addressed. An interactive mode is discussed and an algorithm proposed to choose the scaling factor automatically. The second nonparametric probability estimate uses penalty function techniques with the maximum likelihood criterion. A discrete maximum penalized likelihood estimator is proposed and is shown to be consistent in the mean square error. A numerical implementation technique for the discrete solution is discussed and examples displayed. An extensive simulation study compares the integrated mean square error of the discrete and kernel estimators. The robustness of the discrete estimator is demonstrated graphically.
Naive Probability: Model-Based Estimates of Unique Events.
Khemlani, Sangeet S; Lotstein, Max; Johnson-Laird, Philip N
2015-08-01
We describe a dual-process theory of how individuals estimate the probabilities of unique events, such as Hillary Clinton becoming U.S. President. It postulates that uncertainty is a guide to improbability. In its computer implementation, an intuitive system 1 simulates evidence in mental models and forms analog non-numerical representations of the magnitude of degrees of belief. This system has minimal computational power and combines evidence using a small repertoire of primitive operations. It resolves the uncertainty of divergent evidence for single events, for conjunctions of events, and for inclusive disjunctions of events, by taking a primitive average of non-numerical probabilities. It computes conditional probabilities in a tractable way, treating the given event as evidence that may be relevant to the probability of the dependent event. A deliberative system 2 maps the resulting representations into numerical probabilities. With access to working memory, it carries out arithmetical operations in combining numerical estimates. Experiments corroborated the theory's predictions. Participants concurred in estimates of real possibilities. They violated the complete joint probability distribution in the predicted ways, when they made estimates about conjunctions: P(A), P(B), P(A and B), disjunctions: P(A), P(B), P(A or B or both), and conditional probabilities P(A), P(B), P(B|A). They were faster to estimate the probabilities of compound propositions when they had already estimated the probabilities of each of their components. We discuss the implications of these results for theories of probabilistic reasoning. © 2014 Cognitive Science Society, Inc.
Cluster membership probability: polarimetric approach
NASA Astrophysics Data System (ADS)
Medhi, Biman J.; Tamura, Motohide
2013-04-01
Interstellar polarimetric data of the six open clusters Hogg 15, NGC 6611, NGC 5606, NGC 6231, NGC 5749 and NGC 6250 have been used to estimate the membership probability for the stars within them. For proper-motion member stars, the membership probability estimated using the polarimetric data is in good agreement with the proper-motion cluster membership probability. However, for proper-motion non-member stars, the membership probability estimated by the polarimetric method is in total disagreement with the proper-motion cluster membership probability. The inconsistencies in the determined memberships may be because of the fundamental differences between the two methods of determination: one is based on stellar proper motion in space and the other is based on selective extinction of the stellar output by the asymmetric aligned dust grains present in the interstellar medium. The results and analysis suggest that the scatter of the Stokes vectors q (per cent) and u (per cent) for the proper-motion member stars depends on the interstellar and intracluster differential reddening in the open cluster. It is found that this method could be used to estimate the cluster membership probability if we have additional polarimetric and photometric information for a star to identify it as a probable member/non-member of a particular cluster, such as the maximum wavelength value (λmax), the unit weight error of the fit (σ1), the dispersion in the polarimetric position angles (overline{ɛ }), reddening (E(B - V)) or the differential intracluster reddening (ΔE(B - V)). This method could also be used to estimate the membership probability of known member stars having no membership probability as well as to resolve disagreements about membership among different proper-motion surveys.
PROBABILITY SURVEYS , CONDITIONAL PROBABILITIES AND ECOLOGICAL RISK ASSESSMENT
We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...
Mortality estimation from carcass searches using the R-package carcass: a tutorial
Korner-Nievergelt, Fränzi; Behr, Oliver; Brinkmann, Robert; Etterson, Matthew A.; Huso, Manuela M. P.; Dalthorp, Daniel; Korner-Nievergelt, Pius; Roth, Tobias; Niermann, Ivo
2015-01-01
This article is a tutorial for the R-package carcass. It starts with a short overview of common methods used to estimate mortality based on carcass searches. Then, it guides step by step through a simple example. First, the proportion of animals that fall into the search area is estimated. Second, carcass persistence time is estimated based on experimental data. Third, searcher efficiency is estimated. Fourth, these three estimated parameters are combined to obtain the probability that an animal killed is found by an observer. Finally, this probability is used together with the observed number of carcasses found to obtain an estimate for the total number of killed animals together with a credible interval.
Waiting for the Bus: When Base-Rates Refuse to Be Neglected
ERIC Educational Resources Information Center
Teigen, Karl Halvor; Keren, Gideon
2007-01-01
The paper reports the results from 16 versions of a simple probability estimation task, where probability estimates derived from base-rate information have to be modified by case knowledge. In the bus problem [adapted from Falk, R., Lipson, A., & Konold, C. (1994), the ups and downs of the hope function in a fruitless search. In G. Wright & P.…
A Bayesian Assessment of Seismic Semi-Periodicity Forecasts
NASA Astrophysics Data System (ADS)
Nava, F.; Quinteros, C.; Glowacka, E.; Frez, J.
2016-01-01
Among the schemes for earthquake forecasting, the search for semi-periodicity during large earthquakes in a given seismogenic region plays an important role. When considering earthquake forecasts based on semi-periodic sequence identification, the Bayesian formalism is a useful tool for: (1) assessing how well a given earthquake satisfies a previously made forecast; (2) re-evaluating the semi-periodic sequence probability; and (3) testing other prior estimations of the sequence probability. A comparison of Bayesian estimates with updated estimates of semi-periodic sequences that incorporate new data not used in the original estimates shows extremely good agreement, indicating that: (1) the probability that a semi-periodic sequence is not due to chance is an appropriate estimate for the prior sequence probability estimate; and (2) the Bayesian formalism does a very good job of estimating corrected semi-periodicity probabilities, using slightly less data than that used for updated estimates. The Bayesian approach is exemplified explicitly by its application to the Parkfield semi-periodic forecast, and results are given for its application to other forecasts in Japan and Venezuela.
Calibrating random forests for probability estimation.
Dankowski, Theresa; Ziegler, Andreas
2016-09-30
Probabilities can be consistently estimated using random forests. It is, however, unclear how random forests should be updated to make predictions for other centers or at different time points. In this work, we present two approaches for updating random forests for probability estimation. The first method has been proposed by Elkan and may be used for updating any machine learning approach yielding consistent probabilities, so-called probability machines. The second approach is a new strategy specifically developed for random forests. Using the terminal nodes, which represent conditional probabilities, the random forest is first translated to logistic regression models. These are, in turn, used for re-calibration. The two updating strategies were compared in a simulation study and are illustrated with data from the German Stroke Study Collaboration. In most simulation scenarios, both methods led to similar improvements. In the simulation scenario in which the stricter assumptions of Elkan's method were not met, the logistic regression-based re-calibration approach for random forests outperformed Elkan's method. It also performed better on the stroke data than Elkan's method. The strength of Elkan's method is its general applicability to any probability machine. However, if the strict assumptions underlying this approach are not met, the logistic regression-based approach is preferable for updating random forests for probability estimation. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Estimating parameters for probabilistic linkage of privacy-preserved datasets.
Brown, Adrian P; Randall, Sean M; Ferrante, Anna M; Semmens, James B; Boyd, James H
2017-07-10
Probabilistic record linkage is a process used to bring together person-based records from within the same dataset (de-duplication) or from disparate datasets using pairwise comparisons and matching probabilities. The linkage strategy and associated match probabilities are often estimated through investigations into data quality and manual inspection. However, as privacy-preserved datasets comprise encrypted data, such methods are not possible. In this paper, we present a method for estimating the probabilities and threshold values for probabilistic privacy-preserved record linkage using Bloom filters. Our method was tested through a simulation study using synthetic data, followed by an application using real-world administrative data. Synthetic datasets were generated with error rates from zero to 20% error. Our method was used to estimate parameters (probabilities and thresholds) for de-duplication linkages. Linkage quality was determined by F-measure. Each dataset was privacy-preserved using separate Bloom filters for each field. Match probabilities were estimated using the expectation-maximisation (EM) algorithm on the privacy-preserved data. Threshold cut-off values were determined by an extension to the EM algorithm allowing linkage quality to be estimated for each possible threshold. De-duplication linkages of each privacy-preserved dataset were performed using both estimated and calculated probabilities. Linkage quality using the F-measure at the estimated threshold values was also compared to the highest F-measure. Three large administrative datasets were used to demonstrate the applicability of the probability and threshold estimation technique on real-world data. Linkage of the synthetic datasets using the estimated probabilities produced an F-measure that was comparable to the F-measure using calculated probabilities, even with up to 20% error. Linkage of the administrative datasets using estimated probabilities produced an F-measure that was higher than the F-measure using calculated probabilities. Further, the threshold estimation yielded results for F-measure that were only slightly below the highest possible for those probabilities. The method appears highly accurate across a spectrum of datasets with varying degrees of error. As there are few alternatives for parameter estimation, the approach is a major step towards providing a complete operational approach for probabilistic linkage of privacy-preserved datasets.
Crash probability estimation via quantifying driver hazard perception.
Li, Yang; Zheng, Yang; Wang, Jianqiang; Kodaka, Kenji; Li, Keqiang
2018-07-01
Crash probability estimation is an important method to predict the potential reduction of crash probability contributed by forward collision avoidance technologies (FCATs). In this study, we propose a practical approach to estimate crash probability, which combines a field operational test and numerical simulations of a typical rear-end crash model. To consider driver hazard perception characteristics, we define a novel hazard perception measure, called as driver risk response time, by considering both time-to-collision (TTC) and driver braking response to impending collision risk in a near-crash scenario. Also, we establish a driving database under mixed Chinese traffic conditions based on a CMBS (Collision Mitigation Braking Systems)-equipped vehicle. Applying the crash probability estimation in this database, we estimate the potential decrease in crash probability owing to use of CMBS. A comparison of the results with CMBS on and off shows a 13.7% reduction of crash probability in a typical rear-end near-crash scenario with a one-second delay of driver's braking response. These results indicate that CMBS is positive in collision prevention, especially in the case of inattentive drivers or ole drivers. The proposed crash probability estimation offers a practical way for evaluating the safety benefits in the design and testing of FCATs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Probability Surveys, Conditional Probability, and Ecological Risk Assessment
We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency’s (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...
Red-shouldered hawk occupancy surveys in central Minnesota, USA
Henneman, C.; McLeod, M.A.; Andersen, D.E.
2007-01-01
Forest-dwelling raptors are often difficult to detect because many species occur at low density or are secretive. Broadcasting conspecific vocalizations can increase the probability of detecting forest-dwelling raptors and has been shown to be an effective method for locating raptors and assessing their relative abundance. Recent advances in statistical techniques based on presence-absence data use probabilistic arguments to derive probability of detection when it is <1 and to provide a model and likelihood-based method for estimating proportion of sites occupied. We used these maximum-likelihood models with data from red-shouldered hawk (Buteo lineatus) call-broadcast surveys conducted in central Minnesota, USA, in 1994-1995 and 2004-2005. Our objectives were to obtain estimates of occupancy and detection probability 1) over multiple sampling seasons (yr), 2) incorporating within-season time-specific detection probabilities, 3) with call type and breeding stage included as covariates in models of probability of detection, and 4) with different sampling strategies. We visited individual survey locations 2-9 times per year, and estimates of both probability of detection (range = 0.28-0.54) and site occupancy (range = 0.81-0.97) varied among years. Detection probability was affected by inclusion of a within-season time-specific covariate, call type, and breeding stage. In 2004 and 2005 we used survey results to assess the effect that number of sample locations, double sampling, and discontinued sampling had on parameter estimates. We found that estimates of probability of detection and proportion of sites occupied were similar across different sampling strategies, and we suggest ways to reduce sampling effort in a monitoring program.
A method for modeling bias in a person's estimates of likelihoods of events
NASA Technical Reports Server (NTRS)
Nygren, Thomas E.; Morera, Osvaldo
1988-01-01
It is of practical importance in decision situations involving risk to train individuals to transform uncertainties into subjective probability estimates that are both accurate and unbiased. We have found that in decision situations involving risk, people often introduce subjective bias in their estimation of the likelihoods of events depending on whether the possible outcomes are perceived as being good or bad. Until now, however, the successful measurement of individual differences in the magnitude of such biases has not been attempted. In this paper we illustrate a modification of a procedure originally outlined by Davidson, Suppes, and Siegel (3) to allow for a quantitatively-based methodology for simultaneously estimating an individual's subjective utility and subjective probability functions. The procedure is now an interactive computer-based algorithm, DSS, that allows for the measurement of biases in probability estimation by obtaining independent measures of two subjective probability functions (S+ and S-) for winning (i.e., good outcomes) and for losing (i.e., bad outcomes) respectively for each individual, and for different experimental conditions within individuals. The algorithm and some recent empirical data are described.
Effects of sampling conditions on DNA-based estimates of American black bear abundance
Laufenberg, Jared S.; Van Manen, Frank T.; Clark, Joseph D.
2013-01-01
DNA-based capture-mark-recapture techniques are commonly used to estimate American black bear (Ursus americanus) population abundance (N). Although the technique is well established, many questions remain regarding study design. In particular, relationships among N, capture probability of heterogeneity mixtures A and B (pA and pB, respectively, or p, collectively), the proportion of each mixture (π), number of capture occasions (k), and probability of obtaining reliable estimates of N are not fully understood. We investigated these relationships using 1) an empirical dataset of DNA samples for which true N was unknown and 2) simulated datasets with known properties that represented a broader array of sampling conditions. For the empirical data analysis, we used the full closed population with heterogeneity data type in Program MARK to estimate N for a black bear population in Great Smoky Mountains National Park, Tennessee. We systematically reduced the number of those samples used in the analysis to evaluate the effect that changes in capture probabilities may have on parameter estimates. Model-averaged N for females and males were 161 (95% CI = 114–272) and 100 (95% CI = 74–167), respectively (pooled N = 261, 95% CI = 192–419), and the average weekly p was 0.09 for females and 0.12 for males. When we reduced the number of samples of the empirical data, support for heterogeneity models decreased. For the simulation analysis, we generated capture data with individual heterogeneity covering a range of sampling conditions commonly encountered in DNA-based capture-mark-recapture studies and examined the relationships between those conditions and accuracy (i.e., probability of obtaining an estimated N that is within 20% of true N), coverage (i.e., probability that 95% confidence interval includes true N), and precision (i.e., probability of obtaining a coefficient of variation ≤20%) of estimates using logistic regression. The capture probability for the larger of 2 mixture proportions of the population (i.e., pA or pB, depending on the value of π) was most important for predicting accuracy and precision, whereas capture probabilities of both mixture proportions (pA and pB) were important to explain variation in coverage. Based on sampling conditions similar to parameter estimates from the empirical dataset (pA = 0.30, pB = 0.05, N = 250, π = 0.15, and k = 10), predicted accuracy and precision were low (60% and 53%, respectively), whereas coverage was high (94%). Increasing pB, the capture probability for the predominate but most difficult to capture proportion of the population, was most effective to improve accuracy under those conditions. However, manipulation of other parameters may be more effective under different conditions. In general, the probabilities of obtaining accurate and precise estimates were best when p≥ 0.2. Our regression models can be used by managers to evaluate specific sampling scenarios and guide development of sampling frameworks or to assess reliability of DNA-based capture-mark-recapture studies.
Genetic Algorithm-Based Motion Estimation Method using Orientations and EMGs for Robot Controls
Chae, Jeongsook; Jin, Yong; Sung, Yunsick
2018-01-01
Demand for interactive wearable devices is rapidly increasing with the development of smart devices. To accurately utilize wearable devices for remote robot controls, limited data should be analyzed and utilized efficiently. For example, the motions by a wearable device, called Myo device, can be estimated by measuring its orientation, and calculating a Bayesian probability based on these orientation data. Given that Myo device can measure various types of data, the accuracy of its motion estimation can be increased by utilizing these additional types of data. This paper proposes a motion estimation method based on weighted Bayesian probability and concurrently measured data, orientations and electromyograms (EMG). The most probable motion among estimated is treated as a final estimated motion. Thus, recognition accuracy can be improved when compared to the traditional methods that employ only a single type of data. In our experiments, seven subjects perform five predefined motions. When orientation is measured by the traditional methods, the sum of the motion estimation errors is 37.3%; likewise, when only EMG data are used, the error in motion estimation by the proposed method was also 37.3%. The proposed combined method has an error of 25%. Therefore, the proposed method reduces motion estimation errors by 12%. PMID:29324641
Two-step estimation in ratio-of-mediator-probability weighted causal mediation analysis.
Bein, Edward; Deutsch, Jonah; Hong, Guanglei; Porter, Kristin E; Qin, Xu; Yang, Cheng
2018-04-15
This study investigates appropriate estimation of estimator variability in the context of causal mediation analysis that employs propensity score-based weighting. Such an analysis decomposes the total effect of a treatment on the outcome into an indirect effect transmitted through a focal mediator and a direct effect bypassing the mediator. Ratio-of-mediator-probability weighting estimates these causal effects by adjusting for the confounding impact of a large number of pretreatment covariates through propensity score-based weighting. In step 1, a propensity score model is estimated. In step 2, the causal effects of interest are estimated using weights derived from the prior step's regression coefficient estimates. Statistical inferences obtained from this 2-step estimation procedure are potentially problematic if the estimated standard errors of the causal effect estimates do not reflect the sampling uncertainty in the estimation of the weights. This study extends to ratio-of-mediator-probability weighting analysis a solution to the 2-step estimation problem by stacking the score functions from both steps. We derive the asymptotic variance-covariance matrix for the indirect effect and direct effect 2-step estimators, provide simulation results, and illustrate with an application study. Our simulation results indicate that the sampling uncertainty in the estimated weights should not be ignored. The standard error estimation using the stacking procedure offers a viable alternative to bootstrap standard error estimation. We discuss broad implications of this approach for causal analysis involving propensity score-based weighting. Copyright © 2018 John Wiley & Sons, Ltd.
Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Zeng, Ming
2011-01-01
This paper addresses the collective odor source localization (OSL) problem in a time-varying airflow environment using mobile robots. A novel OSL methodology which combines odor-source probability estimation and multiple robots' search is proposed. The estimation phase consists of two steps: firstly, the separate probability-distribution map of odor source is estimated via Bayesian rules and fuzzy inference based on a single robot's detection events; secondly, the separate maps estimated by different robots at different times are fused into a combined map by way of distance based superposition. The multi-robot search behaviors are coordinated via a particle swarm optimization algorithm, where the estimated odor-source probability distribution is used to express the fitness functions. In the process of OSL, the estimation phase provides the prior knowledge for the searching while the searching verifies the estimation results, and both phases are implemented iteratively. The results of simulations for large-scale advection-diffusion plume environments and experiments using real robots in an indoor airflow environment validate the feasibility and robustness of the proposed OSL method.
Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Zeng, Ming
2011-01-01
This paper addresses the collective odor source localization (OSL) problem in a time-varying airflow environment using mobile robots. A novel OSL methodology which combines odor-source probability estimation and multiple robots’ search is proposed. The estimation phase consists of two steps: firstly, the separate probability-distribution map of odor source is estimated via Bayesian rules and fuzzy inference based on a single robot’s detection events; secondly, the separate maps estimated by different robots at different times are fused into a combined map by way of distance based superposition. The multi-robot search behaviors are coordinated via a particle swarm optimization algorithm, where the estimated odor-source probability distribution is used to express the fitness functions. In the process of OSL, the estimation phase provides the prior knowledge for the searching while the searching verifies the estimation results, and both phases are implemented iteratively. The results of simulations for large-scale advection–diffusion plume environments and experiments using real robots in an indoor airflow environment validate the feasibility and robustness of the proposed OSL method. PMID:22346650
Bivariate categorical data analysis using normal linear conditional multinomial probability model.
Sun, Bingrui; Sutradhar, Brajendra
2015-02-10
Bivariate multinomial data such as the left and right eyes retinopathy status data are analyzed either by using a joint bivariate probability model or by exploiting certain odds ratio-based association models. However, the joint bivariate probability model yields marginal probabilities, which are complicated functions of marginal and association parameters for both variables, and the odds ratio-based association model treats the odds ratios involved in the joint probabilities as 'working' parameters, which are consequently estimated through certain arbitrary 'working' regression models. Also, this later odds ratio-based model does not provide any easy interpretations of the correlations between two categorical variables. On the basis of pre-specified marginal probabilities, in this paper, we develop a bivariate normal type linear conditional multinomial probability model to understand the correlations between two categorical variables. The parameters involved in the model are consistently estimated using the optimal likelihood and generalized quasi-likelihood approaches. The proposed model and the inferences are illustrated through an intensive simulation study as well as an analysis of the well-known Wisconsin Diabetic Retinopathy status data. Copyright © 2014 John Wiley & Sons, Ltd.
Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Schmittner, A.; Urban, N.; Shakun, J. D.; Mahowald, N. M.; Clark, P. U.; Bartlein, P. J.; Mix, A. C.; Rosell-Melé, A.
2011-12-01
In 1959 IJ Good published the discussion "Kinds of Probability" in Science. Good identified (at least) five kinds. The need for (at least) a sixth kind of probability when quantifying uncertainty in the context of climate science is discussed. This discussion brings out the differences in weather-like forecasting tasks and climate-links tasks, with a focus on the effective use both of science and of modelling in support of decision making. Good also introduced the idea of a "Dynamic probability" a probability one expects to change without any additional empirical evidence; the probabilities assigned by a chess playing program when it is only half thorough its analysis being an example. This case is contrasted with the case of "Mature probabilities" where a forecast algorithm (or model) has converged on its asymptotic probabilities and the question hinges in whether or not those probabilities are expected to change significantly before the event in question occurs, even in the absence of new empirical evidence. If so, then how might one report and deploy such immature probabilities in scientific-support of decision-making rationally? Mature Probability is suggested as a useful sixth kind, although Good would doubtlessly argue that we can get by with just one, effective communication with decision makers may be enhanced by speaking as if the others existed. This again highlights the distinction between weather-like contexts and climate-like contexts. In the former context one has access to a relevant climatology (a relevant, arguably informative distribution prior to any model simulations), in the latter context that information is not available although one can fall back on the scientific basis upon which the model itself rests, and estimate the probability that the model output is in fact misinformative. This subjective "probability of a big surprise" is one way to communicate the probability of model-based information holding in practice, the probability that the information the model-based probability is conditioned on holds. It is argued that no model-based climate-like probability forecast is complete without a quantitative estimate of its own irrelevance, and that the clear identification of model-based probability forecasts as mature or immature, are critical elements for maintaining the credibility of science-based decision support, and can shape uncertainty quantification more widely.
Application of a multistate model to estimate culvert effects on movement of small fishes
Norman, J.R.; Hagler, M.M.; Freeman, Mary C.; Freeman, B.J.
2009-01-01
While it is widely acknowledged that culverted road-stream crossings may impede fish passage, effects of culverts on movement of nongame and small-bodied fishes have not been extensively studied and studies generally have not accounted for spatial variation in capture probabilities. We estimated probabilities for upstream and downstream movement of small (30-120 mm standard length) benthic and water column fishes across stream reaches with and without culverts at four road-stream crossings over a 4-6-week period. Movement and reach-specific capture probabilities were estimated using multistate capture-recapture models. Although none of the culverts were complete barriers to passage, only a bottomless-box culvert appeared to permit unrestricted upstream and downstream movements by benthic fishes based on model estimates of movement probabilities. At two box culverts that were perched above the water surface at base flow, observed movements were limited to water column fishes and to intervals when runoff from storm events raised water levels above the perched level. Only a single fish was observed to move through a partially embedded pipe culvert. Estimates for probabilities of movement over distances equal to at least the length of one culvert were low (e.g., generally ???0.03, estimated for 1-2-week intervals) and had wide 95% confidence intervals as a consequence of few observed movements to nonadjacent reaches. Estimates of capture probabilities varied among reaches by a factor of 2 to over 10, illustrating the importance of accounting for spatially variable capture rates when estimating movement probabilities with capture-recapture data. Longer-term studies are needed to evaluate temporal variability in stream fish passage at culverts (e.g., in relation to streamflow variability) and to thereby better quantify the degree of population fragmentation caused by road-stream crossings with culverts. ?? American Fisheries Society 2009.
DOT National Transportation Integrated Search
2015-01-01
Traditionally, the Iowa DOT has used the Iowa Runoff Chart and single-variable regional regression equations (RREs) from a USGS report : (published in 1987) as the primary methods to estimate annual exceedance-probability discharge : (AEPD) for small...
Park, Tae-Ryong; Brooks, John M; Chrischilles, Elizabeth A; Bergus, George
2008-01-01
Contrast methods to assess the health effects of a treatment rate change when treatment benefits are heterogeneous across patients. Antibiotic prescribing for children with otitis media (OM) in Iowa Medicaid is the empirical example. Instrumental variable (IV) and linear probability model (LPM) are used to estimate the effect of antibiotic treatments on cure probabilities for children with OM in Iowa Medicaid. Local area physician supply per capita is the instrument in the IV models. Estimates are contrasted in terms of their ability to make inferences for patients whose treatment choices may be affected by a change in population treatment rates. The instrument was positively related to the probability of being prescribed an antibiotic. LPM estimates showed a positive effect of antibiotics on OM patient cure probability while IV estimates showed no relationship between antibiotics and patient cure probability. Linear probability model estimation yields the average effects of the treatment on patients that were treated. IV estimation yields the average effects for patients whose treatment choices were affected by the instrument. As antibiotic treatment effects are heterogeneous across OM patients, our estimates from these approaches are aligned with clinical evidence and theory. The average estimate for treated patients (higher severity) from the LPM model is greater than estimates for patients whose treatment choices are affected by the instrument (lower severity) from the IV models. Based on our IV estimates it appears that lowering antibiotic use in OM patients in Iowa Medicaid did not result in lost cures.
ERIC Educational Resources Information Center
Ruscio, John; Mullen, Tara
2012-01-01
It is good scientific practice to the report an appropriate estimate of effect size and a confidence interval (CI) to indicate the precision with which a population effect was estimated. For comparisons of 2 independent groups, a probability-based effect size estimator (A) that is equal to the area under a receiver operating characteristic curve…
Comparison of methods for estimating density of forest songbirds from point counts
Jennifer L. Reidy; Frank R. Thompson; J. Wesley. Bailey
2011-01-01
New analytical methods have been promoted for estimating the probability of detection and density of birds from count data but few studies have compared these methods using real data. We compared estimates of detection probability and density from distance and time-removal models and survey protocols based on 5- or 10-min counts and outer radii of 50 or 100 m. We...
Nongpiur, Monisha E; Haaland, Benjamin A; Perera, Shamira A; Friedman, David S; He, Mingguang; Sakata, Lisandro M; Baskaran, Mani; Aung, Tin
2014-01-01
To develop a score along with an estimated probability of disease for detecting angle closure based on anterior segment optical coherence tomography (AS OCT) imaging. Cross-sectional study. A total of 2047 subjects 50 years of age and older were recruited from a community polyclinic in Singapore. All subjects underwent standardized ocular examination including gonioscopy and imaging by AS OCT (Carl Zeiss Meditec). Customized software (Zhongshan Angle Assessment Program) was used to measure AS OCT parameters. Complete data were available for 1368 subjects. Data from the right eyes were used for analysis. A stepwise logistic regression model with Akaike information criterion was used to generate a score that then was converted to an estimated probability of the presence of gonioscopic angle closure, defined as the inability to visualize the posterior trabecular meshwork for at least 180 degrees on nonindentation gonioscopy. Of the 1368 subjects, 295 (21.6%) had gonioscopic angle closure. The angle closure score was calculated from the shifted linear combination of the AS OCT parameters. The score can be converted to an estimated probability of having angle closure using the relationship: estimated probability = e(score)/(1 + e(score)), where e is the natural exponential. The score performed well in a second independent sample of 178 angle-closure subjects and 301 normal controls, with an area under the receiver operating characteristic curve of 0.94. A score derived from a single AS OCT image, coupled with an estimated probability, provides an objective platform for detection of angle closure. Copyright © 2014 Elsevier Inc. All rights reserved.
Inference for lidar-assisted estimation of forest growing stock volume
Ronald E. McRoberts; Erik Næsset; Terje Gobakken
2013-01-01
Estimates of growing stock volume are reported by the national forest inventories (NFI) of most countries and may serve as the basis for aboveground biomass and carbon estimates as required by an increasing number of international agreements. The probability-based (design-based) statistical estimators traditionally used by NFIs to calculate estimates are generally...
What is the lifetime risk of developing cancer?: the effect of adjusting for multiple primaries
Sasieni, P D; Shelton, J; Ormiston-Smith, N; Thomson, C S; Silcocks, P B
2011-01-01
Background: The ‘lifetime risk' of cancer is generally estimated by combining current incidence rates with current all-cause mortality (‘current probability' method) rather than by describing the experience of a birth cohort. As individuals may get more than one type of cancer, what is generally estimated is the average (mean) number of cancers over a lifetime. This is not the same as the probability of getting cancer. Methods: We describe a method for estimating lifetime risk that corrects for the inclusion of multiple primary cancers in the incidence rates routinely published by cancer registries. The new method applies cancer incidence rates to the estimated probability of being alive without a previous cancer. The new method is illustrated using data from the Scottish Cancer Registry and is compared with ‘gold-standard' estimates that use (unpublished) data on first primaries. Results: The effect of this correction is to make the estimated ‘lifetime risk' smaller. The new estimates are extremely similar to those obtained using incidence based on first primaries. The usual ‘current probability' method considerably overestimates the lifetime risk of all cancers combined, although the correction for any single cancer site is minimal. Conclusion: Estimation of the lifetime risk of cancer should either be based on first primaries or should use the new method. PMID:21772332
Wald Sequential Probability Ratio Test for Analysis of Orbital Conjunction Data
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Markley, F. Landis; Gold, Dara
2013-01-01
We propose a Wald Sequential Probability Ratio Test for analysis of commonly available predictions associated with spacecraft conjunctions. Such predictions generally consist of a relative state and relative state error covariance at the time of closest approach, under the assumption that prediction errors are Gaussian. We show that under these circumstances, the likelihood ratio of the Wald test reduces to an especially simple form, involving the current best estimate of collision probability, and a similar estimate of collision probability that is based on prior assumptions about the likelihood of collision.
De Backer, A; Martinez, G T; Rosenauer, A; Van Aert, S
2013-11-01
In the present paper, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. In order to count the number of atoms, it is assumed that the total scattered intensity scales with the number of atoms per atom column. These intensities are quantitatively determined using model-based statistical parameter estimation theory. The distribution describing the probability that intensity values are generated by atomic columns containing a specific number of atoms is inferred on the basis of the experimental scattered intensities. Finally, the number of atoms per atom column is quantified using this estimated probability distribution. The number of atom columns available in the observed STEM image, the number of components in the estimated probability distribution, the width of the components of the probability distribution, and the typical shape of a criterion to assess the number of components in the probability distribution directly affect the accuracy and precision with which the number of atoms in a particular atom column can be estimated. It is shown that single atom sensitivity is feasible taking the latter aspects into consideration. © 2013 Elsevier B.V. All rights reserved.
Impact of probability estimation on frequency of urine culture requests in ambulatory settings.
Gul, Naheed; Quadri, Mujtaba
2012-07-01
To determine the perceptions of the medical community about urine culture in diagnosing urinary tract infections. The cross-sectional survey based of consecutive sampling was conducted at Shifa International Hospital, Islamabad, on 200 doctors, including medical students of the Shifa College of Medicine, from April to October 2010. A questionnaire with three common clinical scenarios of low, intermediate and high pre-test probability for urinary tract infection was used to assess the behaviour of the respondents to make a decision for urine culture test. The differences between the reference estimates and the respondents' estimates of pre- and post-test probability were assessed. The association of estimated probabilities with the number of tests ordered was also evaluated. The respondents were also asked about the cost effectiveness and safety of urine culture and sensitivity. Data was analysed using SPSS version 15. In low pre-test probability settings, the disease probability was over-estimated, suggesting the participants' inability to rule out the disease. The post-test probabilities were, however, under-estimated by the doctors as compared to the students. In intermediate and high pre-test probability settings, both over- and underestimation of probabilities were noticed. Doctors were more likely to consider ordering the test as the disease probability increased. Most of the respondents were of the opinion that urine culture was a cost-effective test and there was no associated potential harm. The wide variation in the clinical use of urine culture necessitates the formulation of appropriate guidelines for the diagnostic use of urine culture, and application of Bayesian probabilistic thinking to real clinical situations.
Royle, J. Andrew; Chandler, Richard B.; Gazenski, Kimberly D.; Graves, Tabitha A.
2013-01-01
Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture–recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on “ecological distance,” i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture–recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture–recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.
Royle, J Andrew; Chandler, Richard B; Gazenski, Kimberly D; Graves, Tabitha A
2013-02-01
Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture--recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on "ecological distance," i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture-recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture-recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.
Diaby, Vakaramoko; Adunlin, Georges; Montero, Alberto J
2014-02-01
Survival modeling techniques are increasingly being used as part of decision modeling for health economic evaluations. As many models are available, it is imperative for interested readers to know about the steps in selecting and using the most suitable ones. The objective of this paper is to propose a tutorial for the application of appropriate survival modeling techniques to estimate transition probabilities, for use in model-based economic evaluations, in the absence of individual patient data (IPD). An illustration of the use of the tutorial is provided based on the final progression-free survival (PFS) analysis of the BOLERO-2 trial in metastatic breast cancer (mBC). An algorithm was adopted from Guyot and colleagues, and was then run in the statistical package R to reconstruct IPD, based on the final PFS analysis of the BOLERO-2 trial. It should be emphasized that the reconstructed IPD represent an approximation of the original data. Afterwards, we fitted parametric models to the reconstructed IPD in the statistical package Stata. Both statistical and graphical tests were conducted to verify the relative and absolute validity of the findings. Finally, the equations for transition probabilities were derived using the general equation for transition probabilities used in model-based economic evaluations, and the parameters were estimated from fitted distributions. The results of the application of the tutorial suggest that the log-logistic model best fits the reconstructed data from the latest published Kaplan-Meier (KM) curves of the BOLERO-2 trial. Results from the regression analyses were confirmed graphically. An equation for transition probabilities was obtained for each arm of the BOLERO-2 trial. In this paper, a tutorial was proposed and used to estimate the transition probabilities for model-based economic evaluation, based on the results of the final PFS analysis of the BOLERO-2 trial in mBC. The results of our study can serve as a basis for any model (Markov) that needs the parameterization of transition probabilities, and only has summary KM plots available.
A dynamic programming approach to estimate the capacity value of energy storage
Sioshansi, Ramteen; Madaeni, Seyed Hossein; Denholm, Paul
2013-09-17
Here, we present a method to estimate the capacity value of storage. Our method uses a dynamic program to model the effect of power system outages on the operation and state of charge of storage in subsequent periods. We combine the optimized dispatch from the dynamic program with estimated system loss of load probabilities to compute a probability distribution for the state of charge of storage in each period. This probability distribution can be used as a forced outage rate for storage in standard reliability-based capacity value estimation methods. Our proposed method has the advantage over existing approximations that itmore » explicitly captures the effect of system shortage events on the state of charge of storage in subsequent periods. We also use a numerical case study, based on five utility systems in the U.S., to demonstrate our technique and compare it to existing approximation methods.« less
Disentangling sampling and ecological explanations underlying species-area relationships
Cam, E.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Alpizar-Jara, R.; Flather, C.H.
2002-01-01
We used a probabilistic approach to address the influence of sampling artifacts on the form of species-area relationships (SARs). We developed a model in which the increase in observed species richness is a function of sampling effort exclusively. We assumed that effort depends on area sampled, and we generated species-area curves under that model. These curves can be realistic looking. We then generated SARs from avian data, comparing SARs based on counts with those based on richness estimates. We used an approach to estimation of species richness that accounts for species detection probability and, hence, for variation in sampling effort. The slopes of SARs based on counts are steeper than those of curves based on estimates of richness, indicating that the former partly reflect failure to account for species detection probability. SARs based on estimates reflect ecological processes exclusively, not sampling processes. This approach permits investigation of ecologically relevant hypotheses. The slope of SARs is not influenced by the slope of the relationship between habitat diversity and area. In situations in which not all of the species are detected during sampling sessions, approaches to estimation of species richness integrating species detection probability should be used to investigate the rate of increase in species richness with area.
Using optimal transport theory to estimate transition probabilities in metapopulation dynamics
Nichols, Jonathan M.; Spendelow, Jeffrey A.; Nichols, James D.
2017-01-01
This work considers the estimation of transition probabilities associated with populations moving among multiple spatial locations based on numbers of individuals at each location at two points in time. The problem is generally underdetermined as there exists an extremely large number of ways in which individuals can move from one set of locations to another. A unique solution therefore requires a constraint. The theory of optimal transport provides such a constraint in the form of a cost function, to be minimized in expectation over the space of possible transition matrices. We demonstrate the optimal transport approach on marked bird data and compare to the probabilities obtained via maximum likelihood estimation based on marked individuals. It is shown that by choosing the squared Euclidean distance as the cost, the estimated transition probabilities compare favorably to those obtained via maximum likelihood with marked individuals. Other implications of this cost are discussed, including the ability to accurately interpolate the population's spatial distribution at unobserved points in time and the more general relationship between the cost and minimum transport energy.
Consistency of extreme flood estimation approaches
NASA Astrophysics Data System (ADS)
Felder, Guido; Paquet, Emmanuel; Penot, David; Zischg, Andreas; Weingartner, Rolf
2017-04-01
Estimations of low-probability flood events are frequently used for the planning of infrastructure as well as for determining the dimensions of flood protection measures. There are several well-established methodical procedures to estimate low-probability floods. However, a global assessment of the consistency of these methods is difficult to achieve, the "true value" of an extreme flood being not observable. Anyway, a detailed comparison performed on a given case study brings useful information about the statistical and hydrological processes involved in different methods. In this study, the following three different approaches for estimating low-probability floods are compared: a purely statistical approach (ordinary extreme value statistics), a statistical approach based on stochastic rainfall-runoff simulation (SCHADEX method), and a deterministic approach (physically based PMF estimation). These methods are tested for two different Swiss catchments. The results and some intermediate variables are used for assessing potential strengths and weaknesses of each method, as well as for evaluating the consistency of these methods.
The probability of lava inundation at the proposed and existing Kulani prison sites
Kauahikaua, J.P.; Trusdell, F.A.; Heliker, C.C.
1998-01-01
The State of Hawai`i has proposed building a 2,300-bed medium-security prison about 10 km downslope from the existing Kulani medium-security correctional facility. The proposed and existing facilities lie on the northeast rift zone of Mauna Loa, which last erupted in 1984 in this same general area. We use the best available geologic mapping and dating with GIS software to estimate the average recurrence interval between lava flows that inundate these sites. Three different methods are used to adjust the number of flows exposed at the surface for those flows that are buried to allow a better representation of the recurrence interval. Probabilities are then computed, based on these recurrence intervals, assuming that the data match a Poisson distribution. The probability of lava inundation for the existing prison site is estimated to be 11- 12% in the next 50 years. The probability of lava inundation for the proposed sites B and C are 2- 3% and 1-2%, respectively, in the same period. The probabilities are based on estimated recurrence intervals for lava flows, which are approximately proportional to the area considered. The probability of having to evacuate the prison is certainly higher than the probability of lava entering the site. Maximum warning times between eruption and lava inundation of a site are estimated to be 24 hours for the existing prison site and 72 hours for proposed sites B and C. Evacuation plans should take these times into consideration.
Estimating nest detection probabilities for white-winged dove nest transects in Tamaulipas, Mexico
Nichols, J.D.; Tomlinson, R.E.; Waggerman, G.
1986-01-01
Nest transects in nesting colonies provide one source of information on White-winged Dove (Zenaida asiatica asiatica) population status and reproduction. Nests are counted along transects using standardized field methods each year in Texas and northeastern Mexico by personnel associated with Mexico's Office of Flora and Fauna, the Texas Parks and Wildlife Department, and the U.S. Fish and Wildlife Service. Nest counts on transects are combined with information on the size of nesting colonies to estimate total numbers of nests in sampled colonies. Historically, these estimates have been based on the actual nest counts on transects and thus have required the assumption that all nests lying within transect boundaries are detected (seen) with a probability of one. Our objectives were to test the hypothesis that nest detection probability is one and, if rejected, to estimate this probability.
Estimating site occupancy rates when detection probabilities are less than one
MacKenzie, D.I.; Nichols, J.D.; Lachman, G.B.; Droege, S.; Royle, J. Andrew; Langtimm, C.A.
2002-01-01
Nondetection of a species at a site does not imply that the species is absent unless the probability of detection is 1. We propose a model and likelihood-based method for estimating site occupancy rates when detection probabilities are 0.3). We estimated site occupancy rates for two anuran species at 32 wetland sites in Maryland, USA, from data collected during 2000 as part of an amphibian monitoring program, Frogwatch USA. Site occupancy rates were estimated as 0.49 for American toads (Bufo americanus), a 44% increase over the proportion of sites at which they were actually observed, and as 0.85 for spring peepers (Pseudacris crucifer), slightly above the observed proportion of 0.83.
Lesser scaup breeding probability and female survival on the yukon flats, Alaska
Martin, K.H.; Lindberg, M.S.; Schmutz, J.A.; Bertram, M.R.
2009-01-01
Information on the ecology of waterfowl breeding in the boreal forest is lacking, despite the boreal region's importance to continental waterfowl populations and to duck species that are currently declining, such as lesser scaup (Aythya affinis). We estimated breeding probability and breeding season survival of female lesser scaup on the Yukon Flats National Wildlife Refuge, Alaska, USA, in 2005 and 2006. We captured and marked 93 lesser scaup with radiotransmitters during prelaying and nesting periods. Although all marked lesser scaup females were paired throughout prelaying and incubation periods, we estimated breeding probability over both years as 0.12 (SE = 0.05, n = 67) using telemetry. Proportion of lesser scaup females undergoing rapid follicle growth at capture in 2006 was 0.46 (SE = 0.11, n = 37), based on concentration of yolk precursors in blood plasma. By combining methods based on telemetry, yolk precursors, and postovulatory follicles, we estimated maximum breeding probability as 0.68 (SE = 0.08, n = 37) in 2006. Notably, breeding probability was positively related to female body mass. Survival of female lesser scaup during the nesting and brood-rearing periods was 0.92 (SE = 0.05) in 2005 and 0.86 (SE = 0.08) in 2006. Our results suggest that breeding probability is lower than expected for lesser scaup. In addition, the implicit assumption of continental duck-monitoring programs that all paired females attempt to breed should be reevaluated. Recruitment estimates based on annual breeding-pair surveys may overestimate productivity of scaup pairs in the boreal forest. ?? The Wildlife Society.
Garriguet, Didier
2016-04-01
Estimates of the prevalence of adherence to physical activity guidelines in the population are generally the result of averaging individual probability of adherence based on the number of days people meet the guidelines and the number of days they are assessed. Given this number of active and inactive days (days assessed minus days active), the conditional probability of meeting the guidelines that has been used in the past is a Beta (1 + active days, 1 + inactive days) distribution assuming the probability p of a day being active is bounded by 0 and 1 and averages 50%. A change in the assumption about the distribution of p is required to better match the discrete nature of the data and to better assess the probability of adherence when the percentage of active days in the population differs from 50%. Using accelerometry data from the Canadian Health Measures Survey, the probability of adherence to physical activity guidelines is estimated using a conditional probability given the number of active and inactive days distributed as a Betabinomial(n, a + active days , β + inactive days) assuming that p is randomly distributed as Beta(a, β) where the parameters a and β are estimated by maximum likelihood. The resulting Betabinomial distribution is discrete. For children aged 6 or older, the probability of meeting physical activity guidelines 7 out of 7 days is similar to published estimates. For pre-schoolers, the Betabinomial distribution yields higher estimates of adherence to the guidelines than the Beta distribution, in line with the probability of being active on any given day. In estimating the probability of adherence to physical activity guidelines, the Betabinomial distribution has several advantages over the previously used Beta distribution. It is a discrete distribution and maximizes the richness of accelerometer data.
Multistage variable probability forest volume inventory. [the Defiance Unit of the Navajo Nation
NASA Technical Reports Server (NTRS)
Anderson, J. E. (Principal Investigator)
1979-01-01
An inventory scheme based on the use of computer processed LANDSAT MSS data was developed. Output from the inventory scheme provides an estimate of the standing net saw timber volume of a major timber species on a selected forested area of the Navajo Nation. Such estimates are based on the values of parameters currently used for scaled sawlog conversion to mill output. The multistage variable probability sampling appears capable of producing estimates which compare favorably with those produced using conventional techniques. In addition, the reduction in time, manpower, and overall costs lend it to numerous applications.
Taylor, Jeremy M G; Cheng, Wenting; Foster, Jared C
2015-03-01
A recent article (Zhang et al., 2012, Biometrics 168, 1010-1018) compares regression based and inverse probability based methods of estimating an optimal treatment regime and shows for a small number of covariates that inverse probability weighted methods are more robust to model misspecification than regression methods. We demonstrate that using models that fit the data better reduces the concern about non-robustness for the regression methods. We extend the simulation study of Zhang et al. (2012, Biometrics 168, 1010-1018), also considering the situation of a larger number of covariates, and show that incorporating random forests into both regression and inverse probability weighted based methods improves their properties. © 2014, The International Biometric Society.
Probabilistic confidence for decisions based on uncertain reliability estimates
NASA Astrophysics Data System (ADS)
Reid, Stuart G.
2013-05-01
Reliability assessments are commonly carried out to provide a rational basis for risk-informed decisions concerning the design or maintenance of engineering systems and structures. However, calculated reliabilities and associated probabilities of failure often have significant uncertainties associated with the possible estimation errors relative to the 'true' failure probabilities. For uncertain probabilities of failure, a measure of 'probabilistic confidence' has been proposed to reflect the concern that uncertainty about the true probability of failure could result in a system or structure that is unsafe and could subsequently fail. The paper describes how the concept of probabilistic confidence can be applied to evaluate and appropriately limit the probabilities of failure attributable to particular uncertainties such as design errors that may critically affect the dependability of risk-acceptance decisions. This approach is illustrated with regard to the dependability of structural design processes based on prototype testing with uncertainties attributable to sampling variability.
Schriger, David L; Menchine, Michael; Wiechmann, Warren; Carmelli, Guy
2018-04-20
We conducted this study to better understand how emergency physicians estimate risk and make admission decisions for patients with low-risk chest pain. We created a Web-based survey consisting of 5 chest pain scenarios that included history, physical examination, ECG findings, and basic laboratory studies, including a negative initial troponin-level result. We administered the scenarios in random order to emergency medicine residents and faculty at 11 US emergency medicine residency programs. We randomized respondents to receive questions about 1 of 2 endpoints, acute coronary syndrome or serious complication (death, dysrhythmia, or congestive heart failure within 30 days). For each scenario, the respondent provided a quantitative estimate of the probability of the endpoint, a qualitative estimate of the risk of the endpoint (very low, low, moderate, high, or very high), and an admission decision. Respondents also provided demographic information and completed a 3-item Fear of Malpractice scale. Two hundred eight (65%) of 320 eligible physicians completed the survey, 73% of whom were residents. Ninety-five percent of respondents were wholly consistent (no admitted patient was assigned a lower probability than a discharged patient). For individual scenarios, probability estimates covered at least 4 orders of magnitude; admission rates for scenarios varied from 16% to 99%. The majority of respondents (>72%) had admission thresholds at or below a 1% probability of acute coronary syndrome. Respondents did not fully differentiate the probability of acute coronary syndrome and serious outcome; for each scenario, estimates for the two were quite similar despite a serious outcome being far less likely. Raters used the terms "very low risk" and "low risk" only when their probability estimates were less than 1%. The majority of respondents considered any probability greater than 1% for acute coronary syndrome or serious outcome to be at least moderate risk and warranting admission. Physicians used qualitative terms in ways fundamentally different from how they are used in ordinary conversation, which may lead to miscommunication during shared decisionmaking processes. These data suggest that probability or utility models are inadequate to describe physician decisionmaking for patients with chest pain. Copyright © 2018 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Jung, R.E.; Royle, J. Andrew; Sauer, J.R.; Addison, C.; Rau, R.D.; Shirk, J.L.; Whissel, J.C.
2005-01-01
Stream salamanders in the family Plethodontidae constitute a large biomass in and near headwater streams in the eastern United States and are promising indicators of stream ecosystem health. Many studies of stream salamanders have relied on population indices based on counts rather than population estimates based on techniques such as capture-recapture and removal. Application of estimation procedures allows the calculation of detection probabilities (the proportion of total animals present that are detected during a survey) and their associated sampling error, and may be essential for determining salamander population sizes and trends. In 1999, we conducted capture-recapture and removal population estimation methods for Desmognathus salamanders at six streams in Shenandoah National Park, Virginia, USA. Removal sampling appeared more efficient and detection probabilities from removal data were higher than those from capture-recapture. During 2001-2004, we used removal estimation at eight streams in the park to assess the usefulness of this technique for long-term monitoring of stream salamanders. Removal detection probabilities ranged from 0.39 to 0.96 for Desmognathus, 0.27 to 0.89 for Eurycea and 0.27 to 0.75 for northern spring (Gyrinophilus porphyriticus) and northern red (Pseudotriton ruber) salamanders across stream transects. Detection probabilities did not differ across years for Desmognathus and Eurycea, but did differ among streams for Desmognathus. Population estimates of Desmognathus decreased between 2001-2002 and 2003-2004 which may be related to changes in stream flow conditions. Removal-based procedures may be a feasible approach for population estimation of salamanders, but field methods should be designed to meet the assumptions of the sampling procedures. New approaches to estimating stream salamander populations are discussed.
NASA Astrophysics Data System (ADS)
Inoue, N.; Kitada, N.; Irikura, K.
2013-12-01
A probability of surface rupture is important to configure the seismic source, such as area sources or fault models, for a seismic hazard evaluation. In Japan, Takemura (1998) estimated the probability based on the historical earthquake data. Kagawa et al. (2004) evaluated the probability based on a numerical simulation of surface displacements. The estimated probability indicates a sigmoid curve and increases between Mj (the local magnitude defined and calculated by Japan Meteorological Agency) =6.5 and Mj=7.0. The probability of surface rupture is also used in a probabilistic fault displacement analysis (PFDHA). The probability is determined from the collected earthquake catalog, which were classified into two categories: with surface rupture or without surface rupture. The logistic regression is performed for the classified earthquake data. Youngs et al. (2003), Ross and Moss (2011) and Petersen et al. (2011) indicate the logistic curves of the probability of surface rupture by normal, reverse and strike-slip faults, respectively. Takao et al. (2013) shows the logistic curve derived from only Japanese earthquake data. The Japanese probability curve shows the sharply increasing in narrow magnitude range by comparison with other curves. In this study, we estimated the probability of surface rupture applying the logistic analysis to the surface displacement derived from a surface displacement calculation. A source fault was defined in according to the procedure of Kagawa et al. (2004), which determined a seismic moment from a magnitude and estimated the area size of the asperity and the amount of slip. Strike slip and reverse faults were considered as source faults. We applied Wang et al. (2003) for calculations. The surface displacements with defined source faults were calculated by varying the depth of the fault. A threshold value as 5cm of surface displacement was used to evaluate whether a surface rupture reach or do not reach to the surface. We carried out the logistic regression analysis to the calculated displacements, which were classified by the above threshold. The estimated probability curve indicated the similar trend to the result of Takao et al. (2013). The probability of revere faults is larger than that of strike slip faults. On the other hand, PFDHA results show different trends. The probability of reverse faults at higher magnitude is lower than that of strike slip and normal faults. Ross and Moss (2011) suggested that the sediment and/or rock over the fault compress and not reach the displacement to the surface enough. The numerical theory applied in this study cannot deal with a complex initial situation such as topography.
An operational system of fire danger rating over Mediterranean Europe
NASA Astrophysics Data System (ADS)
Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.
2017-04-01
A methodology is presented to assess fire danger based on the probability of exceedance of prescribed thresholds of daily released energy. The procedure is developed and tested over Mediterranean Europe, defined by latitude circles of 35 and 45°N and meridians of 10°W and 27.5°E, for the period 2010-2016. The procedure involves estimating the so-called static and daily probabilities of exceedance. For a given point, the static probability is estimated by the ratio of the number of daily fire occurrences releasing energy above a given threshold to the total number of occurrences inside a cell centred at the point. The daily probability of exceedance which takes into account meteorological factors by means of the Canadian Fire Weather Index (FWI) is in turn estimated based on a Generalized Pareto distribution with static probability and FWI as covariates of the scale parameter. The rationale of the procedure is that small fires, assessed by the static probability, have a weak dependence on weather, whereas the larger fires strongly depend on concurrent meteorological conditions. It is shown that observed frequencies of exceedance over the study area for the period 2010-2016 match with the estimated values of probability based on the developed models for static and daily probabilities of exceedance. Some (small) variability is however found between different years suggesting that refinements can be made in future works by using a larger sample to further increase the robustness of the method. The developed methodology presents the advantage of evaluating fire danger with the same criteria for all the study area, making it a good parameter to harmonize fire danger forecasts and forest management studies. Research was performed within the framework of EUMETSAT Satellite Application Facility for Land Surface Analysis (LSA SAF). Part of methods developed and results obtained are on the basis of the platform supported by The Navigator Company that is currently providing information about fire meteorological danger for Portugal for a wide range of users.
Measuring survival time: a probability-based approach useful in healthcare decision-making.
2011-01-01
In some clinical situations, the choice between treatment options takes into account their impact on patient survival time. Due to practical constraints (such as loss to follow-up), survival time is usually estimated using a probability calculation based on data obtained in clinical studies or trials. The two techniques most commonly used to estimate survival times are the Kaplan-Meier method and the actuarial method. Despite their limitations, they provide useful information when choosing between treatment options.
Metocean design parameter estimation for fixed platform based on copula functions
NASA Astrophysics Data System (ADS)
Zhai, Jinjin; Yin, Qilin; Dong, Sheng
2017-08-01
Considering the dependent relationship among wave height, wind speed, and current velocity, we construct novel trivariate joint probability distributions via Archimedean copula functions. Total 30-year data of wave height, wind speed, and current velocity in the Bohai Sea are hindcast and sampled for case study. Four kinds of distributions, namely, Gumbel distribution, lognormal distribution, Weibull distribution, and Pearson Type III distribution, are candidate models for marginal distributions of wave height, wind speed, and current velocity. The Pearson Type III distribution is selected as the optimal model. Bivariate and trivariate probability distributions of these environmental conditions are established based on four bivariate and trivariate Archimedean copulas, namely, Clayton, Frank, Gumbel-Hougaard, and Ali-Mikhail-Haq copulas. These joint probability models can maximize marginal information and the dependence among the three variables. The design return values of these three variables can be obtained by three methods: univariate probability, conditional probability, and joint probability. The joint return periods of different load combinations are estimated by the proposed models. Platform responses (including base shear, overturning moment, and deck displacement) are further calculated. For the same return period, the design values of wave height, wind speed, and current velocity obtained by the conditional and joint probability models are much smaller than those by univariate probability. Considering the dependence among variables, the multivariate probability distributions provide close design parameters to actual sea state for ocean platform design.
High throughput nonparametric probability density estimation.
Farmer, Jenny; Jacobs, Donald
2018-01-01
In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.
High throughput nonparametric probability density estimation
Farmer, Jenny
2018-01-01
In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference. PMID:29750803
Implementation of the Iterative Proportion Fitting Algorithm for Geostatistical Facies Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yupeng, E-mail: yupeng@ualberta.ca; Deutsch, Clayton V.
2012-06-15
In geostatistics, most stochastic algorithm for simulation of categorical variables such as facies or rock types require a conditional probability distribution. The multivariate probability distribution of all the grouped locations including the unsampled location permits calculation of the conditional probability directly based on its definition. In this article, the iterative proportion fitting (IPF) algorithm is implemented to infer this multivariate probability. Using the IPF algorithm, the multivariate probability is obtained by iterative modification to an initial estimated multivariate probability using lower order bivariate probabilities as constraints. The imposed bivariate marginal probabilities are inferred from profiles along drill holes or wells.more » In the IPF process, a sparse matrix is used to calculate the marginal probabilities from the multivariate probability, which makes the iterative fitting more tractable and practical. This algorithm can be extended to higher order marginal probability constraints as used in multiple point statistics. The theoretical framework is developed and illustrated with estimation and simulation example.« less
Multiple data sources improve DNA-based mark-recapture population estimates of grizzly bears.
Boulanger, John; Kendall, Katherine C; Stetz, Jeffrey B; Roon, David A; Waits, Lisette P; Paetkau, David
2008-04-01
A fundamental challenge to estimating population size with mark-recapture methods is heterogeneous capture probabilities and subsequent bias of population estimates. Confronting this problem usually requires substantial sampling effort that can be difficult to achieve for some species, such as carnivores. We developed a methodology that uses two data sources to deal with heterogeneity and applied this to DNA mark-recapture data from grizzly bears (Ursus arctos). We improved population estimates by incorporating additional DNA "captures" of grizzly bears obtained by collecting hair from unbaited bear rub trees concurrently with baited, grid-based, hair snag sampling. We consider a Lincoln-Petersen estimator with hair snag captures as the initial session and rub tree captures as the recapture session and develop an estimator in program MARK that treats hair snag and rub tree samples as successive sessions. Using empirical data from a large-scale project in the greater Glacier National Park, Montana, USA, area and simulation modeling we evaluate these methods and compare the results to hair-snag-only estimates. Empirical results indicate that, compared with hair-snag-only data, the joint hair-snag-rub-tree methods produce similar but more precise estimates if capture and recapture rates are reasonably high for both methods. Simulation results suggest that estimators are potentially affected by correlation of capture probabilities between sample types in the presence of heterogeneity. Overall, closed population Huggins-Pledger estimators showed the highest precision and were most robust to sparse data, heterogeneity, and capture probability correlation among sampling types. Results also indicate that these estimators can be used when a segment of the population has zero capture probability for one of the methods. We propose that this general methodology may be useful for other species in which mark-recapture data are available from multiple sources.
Wang, Yunpeng; Thompson, Wesley K.; Schork, Andrew J.; Holland, Dominic; Chen, Chi-Hua; Bettella, Francesco; Desikan, Rahul S.; Li, Wen; Witoelar, Aree; Zuber, Verena; Devor, Anna; Nöthen, Markus M.; Rietschel, Marcella; Chen, Qiang; Werge, Thomas; Cichon, Sven; Weinberger, Daniel R.; Djurovic, Srdjan; O’Donovan, Michael; Visscher, Peter M.; Andreassen, Ole A.; Dale, Anders M.
2016-01-01
Most of the genetic architecture of schizophrenia (SCZ) has not yet been identified. Here, we apply a novel statistical algorithm called Covariate-Modulated Mixture Modeling (CM3), which incorporates auxiliary information (heterozygosity, total linkage disequilibrium, genomic annotations, pleiotropy) for each single nucleotide polymorphism (SNP) to enable more accurate estimation of replication probabilities, conditional on the observed test statistic (“z-score”) of the SNP. We use a multiple logistic regression on z-scores to combine information from auxiliary information to derive a “relative enrichment score” for each SNP. For each stratum of these relative enrichment scores, we obtain nonparametric estimates of posterior expected test statistics and replication probabilities as a function of discovery z-scores, using a resampling-based approach that repeatedly and randomly partitions meta-analysis sub-studies into training and replication samples. We fit a scale mixture of two Gaussians model to each stratum, obtaining parameter estimates that minimize the sum of squared differences of the scale-mixture model with the stratified nonparametric estimates. We apply this approach to the recent genome-wide association study (GWAS) of SCZ (n = 82,315), obtaining a good fit between the model-based and observed effect sizes and replication probabilities. We observed that SNPs with low enrichment scores replicate with a lower probability than SNPs with high enrichment scores even when both they are genome-wide significant (p < 5x10-8). There were 693 and 219 independent loci with model-based replication rates ≥80% and ≥90%, respectively. Compared to analyses not incorporating relative enrichment scores, CM3 increased out-of-sample yield for SNPs that replicate at a given rate. This demonstrates that replication probabilities can be more accurately estimated using prior enrichment information with CM3. PMID:26808560
NASA Astrophysics Data System (ADS)
Fung, D. C. N.; Wang, J. P.; Chang, S. H.; Chang, S. C.
2014-12-01
Using a revised statistical model built on past seismic probability models, the probability of different magnitude earthquakes occurring within variable timespans can be estimated. The revised model is based on Poisson distribution and includes the use of best-estimate values of the probability distribution of different magnitude earthquakes recurring from a fault from literature sources. Our study aims to apply this model to the Taipei metropolitan area with a population of 7 million, which lies in the Taipei Basin and is bounded by two normal faults: the Sanchaio and Taipei faults. The Sanchaio fault is suggested to be responsible for previous large magnitude earthquakes, such as the 1694 magnitude 7 earthquake in northwestern Taipei (Cheng et. al., 2010). Based on a magnitude 7 earthquake return period of 543 years, the model predicts the occurrence of a magnitude 7 earthquake within 20 years at 1.81%, within 79 years at 6.77% and within 300 years at 21.22%. These estimates increase significantly when considering a magnitude 6 earthquake; the chance of one occurring within the next 20 years is estimated to be 3.61%, 79 years at 13.54% and 300 years at 42.45%. The 79 year period represents the average lifespan of the Taiwan population. In contrast, based on data from 2013, the probability of Taiwan residents experiencing heart disease or malignant neoplasm is 11.5% and 29%. The inference of this study is that the calculated risk that the Taipei population is at from a potentially damaging magnitude 6 or greater earthquake occurring within their lifetime is just as great as of suffering from a heart attack or other health ailments.
ERIC Educational Resources Information Center
Herek, Gregory M.
2009-01-01
Using survey responses collected via the Internet from a U.S. national probability sample of gay, lesbian, and bisexual adults (N = 662), this article reports prevalence estimates of criminal victimization and related experiences based on the target's sexual orientation. Approximately 20% of respondents reported having experienced a person or…
Estimating soil moisture exceedance probability from antecedent rainfall
NASA Astrophysics Data System (ADS)
Cronkite-Ratcliff, C.; Kalansky, J.; Stock, J. D.; Collins, B. D.
2016-12-01
The first storms of the rainy season in coastal California, USA, add moisture to soils but rarely trigger landslides. Previous workers proposed that antecedent rainfall, the cumulative seasonal rain from October 1 onwards, had to exceed specific amounts in order to trigger landsliding. Recent monitoring of soil moisture upslope of historic landslides in the San Francisco Bay Area shows that storms can cause positive pressure heads once soil moisture values exceed a threshold of volumetric water content (VWC). We propose that antecedent rainfall could be used to estimate the probability that VWC exceeds this threshold. A major challenge to estimating the probability of exceedance is that rain gauge records are frequently incomplete. We developed a stochastic model to impute (infill) missing hourly precipitation data. This model uses nearest neighbor-based conditional resampling of the gauge record using data from nearby rain gauges. Using co-located VWC measurements, imputed data can be used to estimate the probability that VWC exceeds a specific threshold for a given antecedent rainfall. The stochastic imputation model can also provide an estimate of uncertainty in the exceedance probability curve. Here we demonstrate the method using soil moisture and precipitation data from several sites located throughout Northern California. Results show a significant variability between sites in the sensitivity of VWC exceedance probability to antecedent rainfall.
NASA Astrophysics Data System (ADS)
Huang, Q. Z.; Hsu, S. Y.; Li, M. H.
2016-12-01
The long-term streamflow prediction is important not only to estimate water-storage of a reservoir but also to the surface water intakes, which supply people's livelihood, agriculture, and industry. Climatology forecasts of streamflow have been traditionally used for calculating the exceedance probability curve of streamflow and water resource management. In this study, we proposed a stochastic approach to predict the exceedance probability curve of long-term streamflow with the seasonal weather outlook from Central Weather Bureau (CWB), Taiwan. The approach incorporates a statistical downscale weather generator and a catchment-scale hydrological model to convert the monthly outlook into daily rainfall and temperature series and to simulate the streamflow based on the outlook information. Moreover, we applied Bayes' theorem to derive a method for calculating the exceedance probability curve of the reservoir inflow based on the seasonal weather outlook and its imperfection. The results show that our approach can give the exceedance probability curves reflecting the three-month weather outlook and its accuracy. We also show how the improvement of the weather outlook affects the predicted exceedance probability curves of the streamflow. Our approach should be useful for the seasonal planning and management of water resource and their risk assessment.
Meuwissen, Theo H E; Indahl, Ulf G; Ødegård, Jørgen
2017-12-27
Non-linear Bayesian genomic prediction models such as BayesA/B/C/R involve iteration and mostly Markov chain Monte Carlo (MCMC) algorithms, which are computationally expensive, especially when whole-genome sequence (WGS) data are analyzed. Singular value decomposition (SVD) of the genotype matrix can facilitate genomic prediction in large datasets, and can be used to estimate marker effects and their prediction error variances (PEV) in a computationally efficient manner. Here, we developed, implemented, and evaluated a direct, non-iterative method for the estimation of marker effects for the BayesC genomic prediction model. The BayesC model assumes a priori that markers have normally distributed effects with probability [Formula: see text] and no effect with probability (1 - [Formula: see text]). Marker effects and their PEV are estimated by using SVD and the posterior probability of the marker having a non-zero effect is calculated. These posterior probabilities are used to obtain marker-specific effect variances, which are subsequently used to approximate BayesC estimates of marker effects in a linear model. A computer simulation study was conducted to compare alternative genomic prediction methods, where a single reference generation was used to estimate marker effects, which were subsequently used for 10 generations of forward prediction, for which accuracies were evaluated. SVD-based posterior probabilities of markers having non-zero effects were generally lower than MCMC-based posterior probabilities, but for some regions the opposite occurred, resulting in clear signals for QTL-rich regions. The accuracies of breeding values estimated using SVD- and MCMC-based BayesC analyses were similar across the 10 generations of forward prediction. For an intermediate number of generations (2 to 5) of forward prediction, accuracies obtained with the BayesC model tended to be slightly higher than accuracies obtained using the best linear unbiased prediction of SNP effects (SNP-BLUP model). When reducing marker density from WGS data to 30 K, SNP-BLUP tended to yield the highest accuracies, at least in the short term. Based on SVD of the genotype matrix, we developed a direct method for the calculation of BayesC estimates of marker effects. Although SVD- and MCMC-based marker effects differed slightly, their prediction accuracies were similar. Assuming that the SVD of the marker genotype matrix is already performed for other reasons (e.g. for SNP-BLUP), computation times for the BayesC predictions were comparable to those of SNP-BLUP.
Site occupancy models with heterogeneous detection probabilities
Royle, J. Andrew
2006-01-01
Models for estimating the probability of occurrence of a species in the presence of imperfect detection are important in many ecological disciplines. In these ?site occupancy? models, the possibility of heterogeneity in detection probabilities among sites must be considered because variation in abundance (and other factors) among sampled sites induces variation in detection probability (p). In this article, I develop occurrence probability models that allow for heterogeneous detection probabilities by considering several common classes of mixture distributions for p. For any mixing distribution, the likelihood has the general form of a zero-inflated binomial mixture for which inference based upon integrated likelihood is straightforward. A recent paper by Link (2003, Biometrics 59, 1123?1130) demonstrates that in closed population models used for estimating population size, different classes of mixture distributions are indistinguishable from data, yet can produce very different inferences about population size. I demonstrate that this problem can also arise in models for estimating site occupancy in the presence of heterogeneous detection probabilities. The implications of this are discussed in the context of an application to avian survey data and the development of animal monitoring programs.
Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.
2003-01-01
These maps present preliminary assessments of the probability of debris-flow activity and estimates of peak discharges that can potentially be generated by debris-flows issuing from basins burned by the Piru, Simi and Verdale Fires of October 2003 in southern California in response to the 25-year, 10-year, and 2-year 1-hour rain storms. The probability maps are based on the application of a logistic multiple regression model that describes the percent chance of debris-flow production from an individual basin as a function of burned extent, soil properties, basin gradients and storm rainfall. The peak discharge maps are based on application of a multiple-regression model that can be used to estimate debris-flow peak discharge at a basin outlet as a function of basin gradient, burn extent, and storm rainfall. Probabilities of debris-flow occurrence for the Piru Fire range between 2 and 94% and estimates of debris flow peak discharges range between 1,200 and 6,640 ft3/s (34 to 188 m3/s). Basins burned by the Simi Fire show probabilities for debris-flow occurrence between 1 and 98%, and peak discharge estimates between 1,130 and 6,180 ft3/s (32 and 175 m3/s). The probabilities for debris-flow activity calculated for the Verdale Fire range from negligible values to 13%. Peak discharges were not estimated for this fire because of these low probabilities. These maps are intended to identify those basins that are most prone to the largest debris-flow events and provide information for the preliminary design of mitigation measures and for the planning of evacuation timing and routes.
Individual Differences in Base Rate Neglect: A Fuzzy Processing Preference Index
Wolfe, Christopher R.; Fisher, Christopher R.
2013-01-01
Little is known about individual differences in integrating numeric base-rates and qualitative text in making probability judgments. Fuzzy-Trace Theory predicts a preference for fuzzy processing. We conducted six studies to develop the FPPI, a reliable and valid instrument assessing individual differences in this fuzzy processing preference. It consists of 19 probability estimation items plus 4 "M-Scale" items that distinguish simple pattern matching from “base rate respect.” Cronbach's Alpha was consistently above 0.90. Validity is suggested by significant correlations between FPPI scores and three other measurers: "Rule Based" Process Dissociation Procedure scores; the number of conjunction fallacies in joint probability estimation; and logic index scores on syllogistic reasoning. Replicating norms collected in a university study with a web-based study produced negligible differences in FPPI scores, indicating robustness. The predicted relationships between individual differences in base rate respect and both conjunction fallacies and syllogistic reasoning were partially replicated in two web-based studies. PMID:23935255
Sloma, Michael F.; Mathews, David H.
2016-01-01
RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. PMID:27852924
Conflict Probability Estimation for Free Flight
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Erzberger, Heinz
1996-01-01
The safety and efficiency of free flight will benefit from automated conflict prediction and resolution advisories. Conflict prediction is based on trajectory prediction and is less certain the farther in advance the prediction, however. An estimate is therefore needed of the probability that a conflict will occur, given a pair of predicted trajectories and their levels of uncertainty. A method is developed in this paper to estimate that conflict probability. The trajectory prediction errors are modeled as normally distributed, and the two error covariances for an aircraft pair are combined into a single equivalent covariance of the relative position. A coordinate transformation is then used to derive an analytical solution. Numerical examples and Monte Carlo validation are presented.
Estimating the empirical probability of submarine landslide occurrence
Geist, Eric L.; Parsons, Thomas E.; Mosher, David C.; Shipp, Craig; Moscardelli, Lorena; Chaytor, Jason D.; Baxter, Christopher D. P.; Lee, Homa J.; Urgeles, Roger
2010-01-01
The empirical probability for the occurrence of submarine landslides at a given location can be estimated from age dates of past landslides. In this study, tools developed to estimate earthquake probability from paleoseismic horizons are adapted to estimate submarine landslide probability. In both types of estimates, one has to account for the uncertainty associated with age-dating individual events as well as the open time intervals before and after the observed sequence of landslides. For observed sequences of submarine landslides, we typically only have the age date of the youngest event and possibly of a seismic horizon that lies below the oldest event in a landslide sequence. We use an empirical Bayes analysis based on the Poisson-Gamma conjugate prior model specifically applied to the landslide probability problem. This model assumes that landslide events as imaged in geophysical data are independent and occur in time according to a Poisson distribution characterized by a rate parameter λ. With this method, we are able to estimate the most likely value of λ and, importantly, the range of uncertainty in this estimate. Examples considered include landslide sequences observed in the Santa Barbara Channel, California, and in Port Valdez, Alaska. We confirm that given the uncertainties of age dating that landslide complexes can be treated as single events by performing statistical test of age dates representing the main failure episode of the Holocene Storegga landslide complex.
Estimating the probability of rare events: addressing zero failure data.
Quigley, John; Revie, Matthew
2011-07-01
Traditional statistical procedures for estimating the probability of an event result in an estimate of zero when no events are realized. Alternative inferential procedures have been proposed for the situation where zero events have been realized but often these are ad hoc, relying on selecting methods dependent on the data that have been realized. Such data-dependent inference decisions violate fundamental statistical principles, resulting in estimation procedures whose benefits are difficult to assess. In this article, we propose estimating the probability of an event occurring through minimax inference on the probability that future samples of equal size realize no more events than that in the data on which the inference is based. Although motivated by inference on rare events, the method is not restricted to zero event data and closely approximates the maximum likelihood estimate (MLE) for nonzero data. The use of the minimax procedure provides a risk adverse inferential procedure where there are no events realized. A comparison is made with the MLE and regions of the underlying probability are identified where this approach is superior. Moreover, a comparison is made with three standard approaches to supporting inference where no event data are realized, which we argue are unduly pessimistic. We show that for situations of zero events the estimator can be simply approximated with 1/2.5n, where n is the number of trials. © 2011 Society for Risk Analysis.
Lorz, C; Fürst, C; Galic, Z; Matijasic, D; Podrazky, V; Potocic, N; Simoncic, P; Strauch, M; Vacik, H; Makeschin, F
2010-12-01
We assessed the probability of three major natural hazards--windthrow, drought, and forest fire--for Central and South-Eastern European forests which are major threats for the provision of forest goods and ecosystem services. In addition, we analyzed spatial distribution and implications for a future oriented management of forested landscapes. For estimating the probability of windthrow, we used rooting depth and average wind speed. Probabilities of drought and fire were calculated from climatic and total water balance during growing season. As an approximation to climate change scenarios, we used a simplified approach with a general increase of pET by 20%. Monitoring data from the pan-European forests crown condition program and observed burnt areas and hot spots from the European Forest Fire Information System were used to test the plausibility of probability maps. Regions with high probabilities of natural hazard are identified and management strategies to minimize probability of natural hazards are discussed. We suggest future research should focus on (i) estimating probabilities using process based models (including sensitivity analysis), (ii) defining probability in terms of economic loss, (iii) including biotic hazards, (iv) using more detailed data sets on natural hazards, forest inventories and climate change scenarios, and (v) developing a framework of adaptive risk management.
Evaluating the risk of industrial espionage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bott, T.F.
1998-12-31
A methodology for estimating the relative probabilities of different compromise paths for protected information by insider and visitor intelligence collectors has been developed based on an event-tree analysis of the intelligence collection operation. The analyst identifies target information and ultimate users who might attempt to gain that information. The analyst then uses an event tree to develop a set of compromise paths. Probability models are developed for each of the compromise paths that user parameters based on expert judgment or historical data on security violations. The resulting probability estimates indicate the relative likelihood of different compromise paths and provide anmore » input for security resource allocation. Application of the methodology is demonstrated using a national security example. A set of compromise paths and probability models specifically addressing this example espionage problem are developed. The probability models for hard-copy information compromise paths are quantified as an illustration of the results using parametric values representative of historical data available in secure facilities, supplemented where necessary by expert judgment.« less
Zhang, Hang; Maloney, Laurence T.
2012-01-01
In decision from experience, the source of probability information affects how probability is distorted in the decision task. Understanding how and why probability is distorted is a key issue in understanding the peculiar character of experience-based decision. We consider how probability information is used not just in decision-making but also in a wide variety of cognitive, perceptual, and motor tasks. Very similar patterns of distortion of probability/frequency information have been found in visual frequency estimation, frequency estimation based on memory, signal detection theory, and in the use of probability information in decision-making under risk and uncertainty. We show that distortion of probability in all cases is well captured as linear transformations of the log odds of frequency and/or probability, a model with a slope parameter, and an intercept parameter. We then consider how task and experience influence these two parameters and the resulting distortion of probability. We review how the probability distortions change in systematic ways with task and report three experiments on frequency distortion where the distortions change systematically in the same task. We found that the slope of frequency distortions decreases with the sample size, which is echoed by findings in decision from experience. We review previous models of the representation of uncertainty and find that none can account for the empirical findings. PMID:22294978
A non-stationary cost-benefit based bivariate extreme flood estimation approach
NASA Astrophysics Data System (ADS)
Qi, Wei; Liu, Junguo
2018-02-01
Cost-benefit analysis and flood frequency analysis have been integrated into a comprehensive framework to estimate cost effective design values. However, previous cost-benefit based extreme flood estimation is based on stationary assumptions and analyze dependent flood variables separately. A Non-Stationary Cost-Benefit based bivariate design flood estimation (NSCOBE) approach is developed in this study to investigate influence of non-stationarities in both the dependence of flood variables and the marginal distributions on extreme flood estimation. The dependence is modeled utilizing copula functions. Previous design flood selection criteria are not suitable for NSCOBE since they ignore time changing dependence of flood variables. Therefore, a risk calculation approach is proposed based on non-stationarities in both marginal probability distributions and copula functions. A case study with 54-year observed data is utilized to illustrate the application of NSCOBE. Results show NSCOBE can effectively integrate non-stationarities in both copula functions and marginal distributions into cost-benefit based design flood estimation. It is also found that there is a trade-off between maximum probability of exceedance calculated from copula functions and marginal distributions. This study for the first time provides a new approach towards a better understanding of influence of non-stationarities in both copula functions and marginal distributions on extreme flood estimation, and could be beneficial to cost-benefit based non-stationary bivariate design flood estimation across the world.
van der Hoop, Julie M; Vanderlaan, Angelia S M; Taggart, Christopher T
2012-10-01
Vessel strikes are the primary source of known mortality for the endangered North Atlantic right whale (Eubalaena glacialis). Multi-institutional efforts to reduce mortality associated with vessel strikes include vessel-routing amendments such as the International Maritime Organization voluntary "area to be avoided" (ATBA) in the Roseway Basin right whale feeding habitat on the southwestern Scotian Shelf. Though relative probabilities of lethal vessel strikes have been estimated and published, absolute probabilities remain unknown. We used a modeling approach to determine the regional effect of the ATBA, by estimating reductions in the expected number of lethal vessel strikes. This analysis differs from others in that it explicitly includes a spatiotemporal analysis of real-time transits of vessels through a population of simulated, swimming right whales. Combining automatic identification system (AIS) vessel navigation data and an observationally based whale movement model allowed us to determine the spatial and temporal intersection of vessels and whales, from which various probability estimates of lethal vessel strikes are derived. We estimate one lethal vessel strike every 0.775-2.07 years prior to ATBA implementation, consistent with and more constrained than previous estimates of every 2-16 years. Following implementation, a lethal vessel strike is expected every 41 years. When whale abundance is held constant across years, we estimate that voluntary vessel compliance with the ATBA results in an 82% reduction in the per capita rate of lethal strikes; very similar to a previously published estimate of 82% reduction in the relative risk of a lethal vessel strike. The models we developed can inform decision-making and policy design, based on their ability to provide absolute, population-corrected, time-varying estimates of lethal vessel strikes, and they are easily transported to other regions and situations.
Detecting Anomalies in Process Control Networks
NASA Astrophysics Data System (ADS)
Rrushi, Julian; Kang, Kyoung-Don
This paper presents the estimation-inspection algorithm, a statistical algorithm for anomaly detection in process control networks. The algorithm determines if the payload of a network packet that is about to be processed by a control system is normal or abnormal based on the effect that the packet will have on a variable stored in control system memory. The estimation part of the algorithm uses logistic regression integrated with maximum likelihood estimation in an inductive machine learning process to estimate a series of statistical parameters; these parameters are used in conjunction with logistic regression formulas to form a probability mass function for each variable stored in control system memory. The inspection part of the algorithm uses the probability mass functions to estimate the normalcy probability of a specific value that a network packet writes to a variable. Experimental results demonstrate that the algorithm is very effective at detecting anomalies in process control networks.
From reading numbers to seeing ratios: a benefit of icons for risk comprehension.
Tubau, Elisabet; Rodríguez-Ferreiro, Javier; Barberia, Itxaso; Colomé, Àngels
2018-06-21
Promoting a better understanding of statistical data is becoming increasingly important for improving risk comprehension and decision-making. In this regard, previous studies on Bayesian problem solving have shown that iconic representations help infer frequencies in sets and subsets. Nevertheless, the mechanisms by which icons enhance performance remain unclear. Here, we tested the hypothesis that the benefit offered by icon arrays lies in a better alignment between presented and requested relationships, which should facilitate the comprehension of the requested ratio beyond the represented quantities. To this end, we analyzed individual risk estimates based on data presented either in standard verbal presentations (percentages and natural frequency formats) or as icon arrays. Compared to the other formats, icons led to estimates that were more accurate, and importantly, promoted the use of equivalent expressions for the requested probability. Furthermore, whereas the accuracy of the estimates based on verbal formats depended on their alignment with the text, all the estimates based on icons were equally accurate. Therefore, these results support the proposal that icons enhance the comprehension of the ratio and its mapping onto the requested probability and point to relational misalignment as potential interference for text-based Bayesian reasoning. The present findings also argue against an intrinsic difficulty with understanding single-event probabilities.
We conducted a probability-based sampling of Lake Superior in 2006 and compared the zooplankton biomass estimate with laser optical plankton counter (LOPC) predictions. The net survey consisted of 52 sites stratified across three depth zones (0-30, 30-150, >150 m). The LOPC tow...
Langtimm, C.A.; O'Shea, T.J.; Pradel, R.; Beck, C.A.
1998-01-01
The population dynamics of large, long-lived mammals are particularly sensitive to changes in adult survival. Understanding factors affecting survival patterns is therefore critical for developing and testing theories of population dynamics and for developing management strategies aimed at preventing declines or extinction in such taxa. Few studies have used modern analytical approaches for analyzing variation and testing hypotheses about survival probabilities in large mammals. This paper reports a detailed analysis of annual adult survival in the Florida manatee (Trichechus manatus latirostris), an endangered marine mammal, based on a mark-recapture approach. Natural and boat-inflicted scars distinctively 'marked' individual manatees that were cataloged in a computer-based photographic system. Photo-documented resightings provided 'recaptures.' Using open population models, annual adult-survival probabilities were estimated for manatees observed in winter in three areas of Florida: Blue Spring, Crystal River, and the Atlantic coast. After using goodness-of-fit tests in Program RELEASE to search for violations of the assumptions of mark-recapture analysis, survival and sighting probabilities were modeled under several different biological hypotheses with Program SURGE. Estimates of mean annual probability of sighting varied from 0.948 for Blue Spring to 0.737 for Crystal River and 0.507 for the Atlantic coast. At Crystal River and Blue Spring, annual survival probabilities were best estimated as constant over the study period at 0.96 (95% CI = 0.951-0.975 and 0.900-0.985, respectively). On the Atlantic coast, where manatees are impacted more by human activities, annual survival probabilities had a significantly lower mean estimate of 0.91 (95% CI = 0.887-0.926) and varied unpredictably over the study period. For each study area, survival did not differ between sexes and was independent of relative adult age. The high constant adult-survival probabilities estimated for manatees in the Blue Spring and Crystal River areas were consistent with current mammalian life history theory and other empirical data available for large, long-lived mammals. Adult survival probabilities in these areas appeared high enough to maintain growing populations if other traits such as reproductive rates and juvenile survival were also sufficiently high lower and variable survival rates on the Atlantic coast are cause for concern.
Accounting for Incomplete Species Detection in Fish Community Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A; Orth, Dr. Donald J; Jager, Yetta
2013-01-01
Riverine fish assemblages are heterogeneous and very difficult to characterize with a one-size-fits-all approach to sampling. Furthermore, detecting changes in fish assemblages over time requires accounting for variation in sampling designs. We present a modeling approach that permits heterogeneous sampling by accounting for site and sampling covariates (including method) in a model-based framework for estimation (versus a sampling-based framework). We snorkeled during three surveys and electrofished during a single survey in suite of delineated habitats stratified by reach types. We developed single-species occupancy models to determine covariates influencing patch occupancy and species detection probabilities whereas community occupancy models estimated speciesmore » richness in light of incomplete detections. For most species, information-theoretic criteria showed higher support for models that included patch size and reach as covariates of occupancy. In addition, models including patch size and sampling method as covariates of detection probabilities also had higher support. Detection probability estimates for snorkeling surveys were higher for larger non-benthic species whereas electrofishing was more effective at detecting smaller benthic species. The number of sites and sampling occasions required to accurately estimate occupancy varied among fish species. For rare benthic species, our results suggested that higher number of occasions, and especially the addition of electrofishing, may be required to improve detection probabilities and obtain accurate occupancy estimates. Community models suggested that richness was 41% higher than the number of species actually observed and the addition of an electrofishing survey increased estimated richness by 13%. These results can be useful to future fish assemblage monitoring efforts by informing sampling designs, such as site selection (e.g. stratifying based on patch size) and determining effort required (e.g. number of sites versus occasions).« less
Sampling considerations for disease surveillance in wildlife populations
Nusser, S.M.; Clark, W.R.; Otis, D.L.; Huang, L.
2008-01-01
Disease surveillance in wildlife populations involves detecting the presence of a disease, characterizing its prevalence and spread, and subsequent monitoring. A probability sample of animals selected from the population and corresponding estimators of disease prevalence and detection provide estimates with quantifiable statistical properties, but this approach is rarely used. Although wildlife scientists often assume probability sampling and random disease distributions to calculate sample sizes, convenience samples (i.e., samples of readily available animals) are typically used, and disease distributions are rarely random. We demonstrate how landscape-based simulation can be used to explore properties of estimators from convenience samples in relation to probability samples. We used simulation methods to model what is known about the habitat preferences of the wildlife population, the disease distribution, and the potential biases of the convenience-sample approach. Using chronic wasting disease in free-ranging deer (Odocoileus virginianus) as a simple illustration, we show that using probability sample designs with appropriate estimators provides unbiased surveillance parameter estimates but that the selection bias and coverage errors associated with convenience samples can lead to biased and misleading results. We also suggest practical alternatives to convenience samples that mix probability and convenience sampling. For example, a sample of land areas can be selected using a probability design that oversamples areas with larger animal populations, followed by harvesting of individual animals within sampled areas using a convenience sampling method.
Gariepy, Aileen M.; Creinin, Mitchell D.; Schwarz, Eleanor B.; Smith, Kenneth J.
2011-01-01
OBJECTIVE To estimate the probability of successful sterilization after hysteroscopic or laparoscopic sterilization procedure. METHODS An evidence-based clinical decision analysis using a Markov model was performed to estimate the probability of a successful sterilization procedure using laparoscopic sterilization, hysteroscopic sterilization in the operating room, and hysteroscopic sterilization in the office. Procedure and follow-up testing probabilities for the model were estimated from published sources. RESULTS In the base case analysis, the proportion of women having a successful sterilization procedure on first attempt is 99% for laparoscopic, 88% for hysteroscopic in the operating room and 87% for hysteroscopic in the office. The probability of having a successful sterilization procedure within one year is 99% with laparoscopic, 95% for hysteroscopic in the operating room, and 94% for hysteroscopic in the office. These estimates for hysteroscopic success include approximately 6% of women who attempt hysteroscopically but are ultimately sterilized laparoscopically. Approximately 5% of women who have a failed hysteroscopic attempt decline further sterilization attempts. CONCLUSIONS Women choosing laparoscopic sterilization are more likely than those choosing hysteroscopic sterilization to have a successful sterilization procedure within one year. However, the risk of failed sterilization and subsequent pregnancy must be considered when choosing a method of sterilization. PMID:21775842
Gariepy, Aileen M; Creinin, Mitchell D; Schwarz, Eleanor B; Smith, Kenneth J
2011-08-01
To estimate the probability of successful sterilization after an hysteroscopic or laparoscopic sterilization procedure. An evidence-based clinical decision analysis using a Markov model was performed to estimate the probability of a successful sterilization procedure using laparoscopic sterilization, hysteroscopic sterilization in the operating room, and hysteroscopic sterilization in the office. Procedure and follow-up testing probabilities for the model were estimated from published sources. In the base case analysis, the proportion of women having a successful sterilization procedure on the first attempt is 99% for laparoscopic sterilization, 88% for hysteroscopic sterilization in the operating room, and 87% for hysteroscopic sterilization in the office. The probability of having a successful sterilization procedure within 1 year is 99% with laparoscopic sterilization, 95% for hysteroscopic sterilization in the operating room, and 94% for hysteroscopic sterilization in the office. These estimates for hysteroscopic success include approximately 6% of women who attempt hysteroscopically but are ultimately sterilized laparoscopically. Approximately 5% of women who have a failed hysteroscopic attempt decline further sterilization attempts. Women choosing laparoscopic sterilization are more likely than those choosing hysteroscopic sterilization to have a successful sterilization procedure within 1 year. However, the risk of failed sterilization and subsequent pregnancy must be considered when choosing a method of sterilization.
Mars Exploration Rovers Landing Dispersion Analysis
NASA Technical Reports Server (NTRS)
Knocke, Philip C.; Wawrzyniak, Geoffrey G.; Kennedy, Brian M.; Desai, Prasun N.; Parker, TImothy J.; Golombek, Matthew P.; Duxbury, Thomas C.; Kass, David M.
2004-01-01
Landing dispersion estimates for the Mars Exploration Rover missions were key elements in the site targeting process and in the evaluation of landing risk. This paper addresses the process and results of the landing dispersion analyses performed for both Spirit and Opportunity. The several contributors to landing dispersions (navigation and atmospheric uncertainties, spacecraft modeling, winds, and margins) are discussed, as are the analysis tools used. JPL's MarsLS program, a MATLAB-based landing dispersion visualization and statistical analysis tool, was used to calculate the probability of landing within hazardous areas. By convolving this with the probability of landing within flight system limits (in-spec landing) for each hazard area, a single overall measure of landing risk was calculated for each landing ellipse. In-spec probability contours were also generated, allowing a more synoptic view of site risks, illustrating the sensitivity to changes in landing location, and quantifying the possible consequences of anomalies such as incomplete maneuvers. Data and products required to support these analyses are described, including the landing footprints calculated by NASA Langley's POST program and JPL's AEPL program, cartographically registered base maps and hazard maps, and flight system estimates of in-spec landing probabilities for each hazard terrain type. Various factors encountered during operations, including evolving navigation estimates and changing atmospheric models, are discussed and final landing points are compared with approach estimates.
NASA Technical Reports Server (NTRS)
Celaya, Jose R.; Saxen, Abhinav; Goebel, Kai
2012-01-01
This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process and how it relates to uncertainty representation, management, and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function and the true remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for the two while considering prognostics in making critical decisions.
Herts, Brian R; Schneider, Erika; Obuchowski, Nancy; Poggio, Emilio; Jain, Anil; Baker, Mark E
2009-08-01
The objectives of our study were to develop a model to predict the probability of reduced renal function after outpatient contrast-enhanced CT (CECT)--based on patient age, sex, and race and on serum creatinine level before CT or directly based on estimated glomerular filtration rate (GFR) before CT--and to determine the relationship between patients with changes in creatinine level that characterize contrast-induced nephropathy and patients with reduced GFR after CECT. Of 5,187 outpatients who underwent CECT, 963 (18.6%) had serum creatinine levels obtained within 6 months before and 4 days after CECT. The estimated GFR was calculated before and after CT using the four-variable Modification of Diet in Renal Disease (MDRD) Study equation. Pre-CT serum creatinine level, age, race, sex, and pre-CT estimated GFR were tested using multiple-variable logistic regression models to determine the probability of having an estimated GFR of < 60 and < 45 mL/min/1.73 m(2) after CECT. Two thirds of the patients were used to create and one third to test the models. We also determined discordance between patients who met standard definitions of contrast-induced nephropathy and those with a reduced estimated GFR after CECT. Significant (p < 0.002) predictors for a post-CT estimated GFR of < 60 mL/min/1.73 m(2) were age, race, sex, pre-CT serum creatinine level, and pre-CT estimated GFR. Sex, serum creatinine level, and pre-CT estimated GFR were significant factors (p < 0.001) for predicting a post-CT estimated GFR of < 45 mL/min/1.73 m(2). The probability is [exp(y) / (1 + exp(y))], where y = 6.21 - (0.10 x pre-CT estimated GFR) for an estimated GFR of < 60 mL/min/1.73 m(2), and y = 3.66 - (0.087 x pre-CT estimated GFR) for an estimated GFR of < 45 mL/min/1.73 m(2). A discrepancy between those who met contrast-induced nephropathy criteria by creatinine changes and those with a post-CT estimated GFR of < 60 mL/min/1.73 m(2) was detected in 208 of the 963 patients (21.6%). The probability of a reduced estimated GFR after CECT can be predicted by the pre-CT estimated GFR using the four-variable MDRD equation. Furthermore, standard criteria for contrast-induced nephropathy are poor predictors of poor renal function after CECT. Criteria need to be established for what is an acceptable risk to manage patients undergoing CECT.
Madenjian, C.P.; Chipman, B.D.; Marsden, J.E.
2008-01-01
Sea lamprey (Petromyzon marinus) control in North America costs millions of dollars each year, and control measures are guided by assessment of lamprey-induced damage to fisheries. The favored prey of sea lamprey in freshwater ecosystems has been lake trout (Salvelinus namaycush). A key parameter in assessing sea lamprey damage, as well as managing lake trout fisheries, is the probability of an adult lake trout surviving a lamprey attack. The conventional value for this parameter has been 0.55, based on laboratory experiments. In contrast, based on catch curve analysis, mark-recapture techniques, and observed wounding rates, we estimated that adult lake trout in Lake Champlain have a 0.74 probability of surviving a lamprey attack. Although sea lamprey growth in Lake Champlain was lower than that observed in Lake Huron, application of an individual-based model to both lakes indicated that the probability of surviving an attack in Lake Champlain was only 1.1 times higher than that in Lake Huron. Thus, we estimated that lake trout survive a lamprey attack in Lake Huron with a probability of 0.66. Therefore, our results suggested that lethality of a sea lamprey attack on lake trout has been overestimated in previous model applications used in fisheries management. ?? 2008 NRC.
She, Yunlang; Zhao, Lilan; Dai, Chenyang; Ren, Yijiu; Jiang, Gening; Xie, Huikang; Zhu, Huiyuan; Sun, Xiwen; Yang, Ping; Chen, Yongbing; Shi, Shunbin; Shi, Weirong; Yu, Bing; Xie, Dong; Chen, Chang
2017-11-01
To develop and validate a nomogram to estimate the pretest probability of malignancy in Chinese patients with solid solitary pulmonary nodule (SPN). A primary cohort of 1798 patients with pathologically confirmed solid SPNs after surgery was retrospectively studied at five institutions from January 2014 to December 2015. A nomogram based on independent prediction factors of malignant solid SPN was developed. Predictive performance also was evaluated using the calibration curve and the area under the receiver operating characteristic curve (AUC). The mean age of the cohort was 58.9 ± 10.7 years. In univariate and multivariate analysis, age; history of cancer; the log base 10 transformations of serum carcinoembryonic antigen value; nodule diameter; the presence of spiculation, pleural indentation, and calcification remained the predictive factors of malignancy. A nomogram was developed, and the AUC value (0.85; 95%CI, 0.83-0.88) was significantly higher than other three models. The calibration cure showed optimal agreement between the malignant probability as predicted by nomogram and the actual probability. We developed and validated a nomogram that can estimate the pretest probability of malignant solid SPNs, which can assist clinical physicians to select and interpret the results of subsequent diagnostic tests. © 2017 Wiley Periodicals, Inc.
UQ for Decision Making: How (at least five) Kinds of Probability Might Come Into Play
NASA Astrophysics Data System (ADS)
Smith, L. A.
2013-12-01
In 1959 IJ Good published the discussion "Kinds of Probability" in Science. Good identified (at least) five kinds. The need for (at least) a sixth kind of probability when quantifying uncertainty in the context of climate science is discussed. This discussion brings out the differences in weather-like forecasting tasks and climate-links tasks, with a focus on the effective use both of science and of modelling in support of decision making. Good also introduced the idea of a "Dynamic probability" a probability one expects to change without any additional empirical evidence; the probabilities assigned by a chess playing program when it is only half thorough its analysis being an example. This case is contrasted with the case of "Mature probabilities" where a forecast algorithm (or model) has converged on its asymptotic probabilities and the question hinges in whether or not those probabilities are expected to change significantly before the event in question occurs, even in the absence of new empirical evidence. If so, then how might one report and deploy such immature probabilities in scientific-support of decision-making rationally? Mature Probability is suggested as a useful sixth kind, although Good would doubtlessly argue that we can get by with just one, effective communication with decision makers may be enhanced by speaking as if the others existed. This again highlights the distinction between weather-like contexts and climate-like contexts. In the former context one has access to a relevant climatology (a relevant, arguably informative distribution prior to any model simulations), in the latter context that information is not available although one can fall back on the scientific basis upon which the model itself rests, and estimate the probability that the model output is in fact misinformative. This subjective "probability of a big surprise" is one way to communicate the probability of model-based information holding in practice, the probability that the information the model-based probability is conditioned on holds. It is argued that no model-based climate-like probability forecast is complete without a quantitative estimate of its own irrelevance, and that the clear identification of model-based probability forecasts as mature or immature, are critical elements for maintaining the credibility of science-based decision support, and can shape uncertainty quantification more widely.
Esparza, José; Chang, Marie-Louise; Widdus, Roy; Madrid, Yvette; Walker, Neff; Ghys, Peter D
2003-05-16
Once an effective HIV vaccine is discovered, a major challenge will be to ensure its world wide access. A preventive vaccine with low or moderate efficacy (30-50%) could be a valuable prevention tool, especially if targeted to populations at higher risk of HIV infection. High efficacy vaccines (80-90%) could be used in larger segments of the population. Estimated "needs" for future HIV vaccines were based on anticipated policies regarding target populations. Estimated "needs" were adjusted for "accessibility" and "acceptability" in the target populations, to arrive at an estimate of "probable uptake", i.e. courses of vaccine likely to be delivered. With a high efficacy vaccine, global needs are in the order of 690 million full immunization courses, targeting 22 and 69%, respectively, of the 15-49 years old, world wide and in sub-Saharan Africa, respectively. With a low/moderate efficacy vaccine targeted to populations at higher risk of HIV infection, the global needs were estimated to be 260 million full immunization courses, targeting 8 and 41%, respectively, of the world and sub-Saharan African population aged 15-49 years. The current estimate of probable uptake for hypothetical HIV vaccines, using existing health services and delivery systems, was 38% of the estimated need for a high efficacy vaccine, and 19% for a low/moderate efficacy vaccine. Bridging the gap between the estimated needs and the probable uptake for HIV vaccines will represent a major public health challenge for the future. The potential advantages and disadvantages of targeted versus universal vaccination will have to be considered.
Hoblitt, Richard P.; Scott, William E.
2011-01-01
In response to a request from the U.S. Department of Energy, we estimate the thickness of tephra accumulation that has an annual probability of 1 in 10,000 of being equaled or exceeded at the Hanford Site in south-central Washington State, where a project to build the Tank Waste Treatment and Immobilization Plant is underway. We follow the methodology of a 1987 probabilistic assessment of tephra accumulation in the Pacific Northwest. For a given thickness of tephra, we calculate the product of three probabilities: (1) the annual probability of an eruption producing 0.1 km3 (bulk volume) or more of tephra, (2) the probability that the wind will be blowing toward the Hanford Site, and (3) the probability that tephra accumulations will equal or exceed the given thickness at a given distance. Mount St. Helens, which lies about 200 km upwind from the Hanford Site, has been the most prolific source of tephra fallout among Cascade volcanoes in the recent geologic past and its annual eruption probability based on this record (0.008) dominates assessment of future tephra falls at the site. The probability that the prevailing wind blows toward Hanford from Mount St. Helens is 0.180. We estimate exceedance probabilities of various thicknesses of tephra fallout from an analysis of 14 eruptions of the size expectable from Mount St. Helens and for which we have measurements of tephra fallout at 200 km. The result is that the estimated thickness of tephra accumulation that has an annual probability of 1 in 10,000 of being equaled or exceeded is about 10 centimeters. It is likely that this thickness is a maximum estimate because we used conservative estimates of eruption and wind probabilities and because the 14 deposits we used probably provide an over-estimate. The use of deposits in this analysis that were mostly compacted by the time they were studied and measured implies that the bulk density of the tephra fallout we consider here is in the range of 1,000-1,250 kg/m3. The load of 10 cm of such tephra fallout on a flat surface would therefore be in the range of 100-125 kg/m2; addition of water from rainfall or snowmelt would provide additional load.
Knock probability estimation through an in-cylinder temperature model with exogenous noise
NASA Astrophysics Data System (ADS)
Bares, P.; Selmanaj, D.; Guardiola, C.; Onder, C.
2018-01-01
This paper presents a new knock model which combines a deterministic knock model based on the in-cylinder temperature and an exogenous noise disturbing this temperature. The autoignition of the end-gas is modelled by an Arrhenius-like function and the knock probability is estimated by propagating a virtual error probability distribution. Results show that the random nature of knock can be explained by uncertainties at the in-cylinder temperature estimation. The model only has one parameter for calibration and thus can be easily adapted online. In order to reduce the measurement uncertainties associated with the air mass flow sensor, the trapped mass is derived from the in-cylinder pressure resonance, which improves the knock probability estimation and reduces the number of sensors needed for the model. A four stroke SI engine was used for model validation. By varying the intake temperature, the engine speed, the injected fuel mass, and the spark advance, specific tests were conducted, which furnished data with various knock intensities and probabilities. The new model is able to predict the knock probability within a sufficient range at various operating conditions. The trapped mass obtained by the acoustical model was compared in steady conditions by using a fuel balance and a lambda sensor and differences below 1 % were found.
Risk-based decision making to manage water quality failures caused by combined sewer overflows
NASA Astrophysics Data System (ADS)
Sriwastava, A. K.; Torres-Matallana, J. A.; Tait, S.; Schellart, A.
2017-12-01
Regulatory authorities set certain environmental permit for water utilities such that the combined sewer overflows (CSO) managed by these companies conform to the regulations. These utility companies face the risk of paying penalty or negative publicity in case they breach the environmental permit. These risks can be addressed by designing appropriate solutions such as investing in additional infrastructure which improve the system capacity and reduce the impact of CSO spills. The performance of these solutions is often estimated using urban drainage models. Hence, any uncertainty in these models can have a significant effect on the decision making process. This study outlines a risk-based decision making approach to address water quality failure caused by CSO spills. A calibrated lumped urban drainage model is used to simulate CSO spill quality in Haute-Sûre catchment in Luxembourg. Uncertainty in rainfall and model parameters is propagated through Monte Carlo simulations to quantify uncertainty in the concentration of ammonia in the CSO spill. A combination of decision alternatives such as the construction of a storage tank at the CSO and the reduction in the flow contribution of catchment surfaces are selected as planning measures to avoid the water quality failure. Failure is defined as exceedance of a concentration-duration based threshold based on Austrian emission standards for ammonia (De Toffol, 2006) with a certain frequency. For each decision alternative, uncertainty quantification results into a probability distribution of the number of annual CSO spill events which exceed the threshold. For each alternative, a buffered failure probability as defined in Rockafellar & Royset (2010), is estimated. Buffered failure probability (pbf) is a conservative estimate of failure probability (pf), however, unlike failure probability, it includes information about the upper tail of the distribution. A pareto-optimal set of solutions is obtained by performing mean- pbf optimization. The effectiveness of using buffered failure probability compared to the failure probability is tested by comparing the solutions obtained by using mean-pbf and mean-pf optimizations.
Pattern recognition for passive polarimetric data using nonparametric classifiers
NASA Astrophysics Data System (ADS)
Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.
2005-08-01
Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.
Sloma, Michael F; Mathews, David H
2016-12-01
RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. © 2016 Sloma and Mathews; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Austin, Peter C; Schuster, Tibor
2016-10-01
Observational studies are increasingly being used to estimate the effect of treatments, interventions and exposures on outcomes that can occur over time. Historically, the hazard ratio, which is a relative measure of effect, has been reported. However, medical decision making is best informed when both relative and absolute measures of effect are reported. When outcomes are time-to-event in nature, the effect of treatment can also be quantified as the change in mean or median survival time due to treatment and the absolute reduction in the probability of the occurrence of an event within a specified duration of follow-up. We describe how three different propensity score methods, propensity score matching, stratification on the propensity score and inverse probability of treatment weighting using the propensity score, can be used to estimate absolute measures of treatment effect on survival outcomes. These methods are all based on estimating marginal survival functions under treatment and lack of treatment. We then conducted an extensive series of Monte Carlo simulations to compare the relative performance of these methods for estimating the absolute effects of treatment on survival outcomes. We found that stratification on the propensity score resulted in the greatest bias. Caliper matching on the propensity score and a method based on earlier work by Cole and Hernán tended to have the best performance for estimating absolute effects of treatment on survival outcomes. When the prevalence of treatment was less extreme, then inverse probability of treatment weighting-based methods tended to perform better than matching-based methods. © The Author(s) 2014.
Pearson, Kristen Nicole; Kendall, William L.; Winkelman, Dana L.; Persons, William R.
2015-01-01
Our findings reveal evidence for skipped spawning in a potamodromous cyprinid, humpback chub (HBC; Gila cypha ). Using closed robust design mark-recapture models, we found, on average, spawning HBC transition to the skipped spawning state () with a probability of 0.45 (95% CRI (i.e. credible interval): 0.10, 0.80) and skipped spawners remain in the skipped spawning state () with a probability of 0.60 (95% CRI: 0.26, 0.83), yielding an average spawning cycle of every 2.12 years, conditional on survival. As a result, migratory skipped spawners are unavailable for detection during annual sampling events. If availability is unaccounted for, survival and detection probability estimates will be biased. Therefore, we estimated annual adult survival probability (S), while accounting for skipped spawning, and found S remained reasonably stable throughout the study period, with an average of 0.75 ((95% CRI: 0.66, 0.82), process varianceσ2 = 0.005), while skipped spawning probability was highly dynamic (σ2 = 0.306). By improving understanding of HBC spawning strategies, conservation decisions can be based on less biased estimates of survival and a more informed population model structure.
A study of parameter identification
NASA Technical Reports Server (NTRS)
Herget, C. J.; Patterson, R. E., III
1978-01-01
A set of definitions for deterministic parameter identification ability were proposed. Deterministic parameter identificability properties are presented based on four system characteristics: direct parameter recoverability, properties of the system transfer function, properties of output distinguishability, and uniqueness properties of a quadratic cost functional. Stochastic parameter identifiability was defined in terms of the existence of an estimation sequence for the unknown parameters which is consistent in probability. Stochastic parameter identifiability properties are presented based on the following characteristics: convergence properties of the maximum likelihood estimate, properties of the joint probability density functions of the observations, and properties of the information matrix.
Agoritsas, Thomas; Courvoisier, Delphine S; Combescure, Christophe; Deom, Marie; Perneger, Thomas V
2011-04-01
The probability of a disease following a diagnostic test depends on the sensitivity and specificity of the test, but also on the prevalence of the disease in the population of interest (or pre-test probability). How physicians use this information is not well known. To assess whether physicians correctly estimate post-test probability according to various levels of prevalence and explore this skill across respondent groups. Randomized trial. Population-based sample of 1,361 physicians of all clinical specialties. We described a scenario of a highly accurate screening test (sensitivity 99% and specificity 99%) in which we randomly manipulated the prevalence of the disease (1%, 2%, 10%, 25%, 95%, or no information). We asked physicians to estimate the probability of disease following a positive test (categorized as <60%, 60-79%, 80-94%, 95-99.9%, and >99.9%). Each answer was correct for a different version of the scenario, and no answer was possible in the "no information" scenario. We estimated the proportion of physicians proficient in assessing post-test probability as the proportion of correct answers beyond the distribution of answers attributable to guessing. Most respondents in each of the six groups (67%-82%) selected a post-test probability of 95-99.9%, regardless of the prevalence of disease and even when no information on prevalence was provided. This answer was correct only for a prevalence of 25%. We estimated that 9.1% (95% CI 6.0-14.0) of respondents knew how to assess correctly the post-test probability. This proportion did not vary with clinical experience or practice setting. Most physicians do not take into account the prevalence of disease when interpreting a positive test result. This may cause unnecessary testing and diagnostic errors.
A new approach to estimate time-to-cure from cancer registries data.
Boussari, Olayidé; Romain, Gaëlle; Remontet, Laurent; Bossard, Nadine; Mounier, Morgane; Bouvier, Anne-Marie; Binquet, Christine; Colonna, Marc; Jooste, Valérie
2018-04-01
Cure models have been adapted to net survival context to provide important indicators from population-based cancer data, such as the cure fraction and the time-to-cure. However existing methods for computing time-to-cure suffer from some limitations. Cure models in net survival framework were briefly overviewed and a new definition of time-to-cure was introduced as the time TTC at which P(t), the estimated covariate-specific probability of being cured at a given time t after diagnosis, reaches 0.95. We applied flexible parametric cure models to data of four cancer sites provided by the French network of cancer registries (FRANCIM). Then estimates of the time-to-cure by TTC and by two existing methods were derived and compared. Cure fractions and probabilities P(t) were also computed. Depending on the age group, TTC ranged from to 8 to 10 years for colorectal and pancreatic cancer and was nearly 12 years for breast cancer. In thyroid cancer patients under 55 years at diagnosis, TTC was strikingly 0: the probability of being cured was >0.95 just after diagnosis. This is an interesting result regarding the health insurance premiums of these patients. The estimated values of time-to-cure from the three approaches were close for colorectal cancer only. We propose a new approach, based on estimated covariate-specific probability of being cured, to estimate time-to-cure. Compared to two existing methods, the new approach seems to be more intuitive and natural and less sensitive to the survival time distribution. Copyright © 2018 Elsevier Ltd. All rights reserved.
He, Hua; McDermott, Michael P.
2012-01-01
Sensitivity and specificity are common measures of the accuracy of a diagnostic test. The usual estimators of these quantities are unbiased if data on the diagnostic test result and the true disease status are obtained from all subjects in an appropriately selected sample. In some studies, verification of the true disease status is performed only for a subset of subjects, possibly depending on the result of the diagnostic test and other characteristics of the subjects. Estimators of sensitivity and specificity based on this subset of subjects are typically biased; this is known as verification bias. Methods have been proposed to correct verification bias under the assumption that the missing data on disease status are missing at random (MAR), that is, the probability of missingness depends on the true (missing) disease status only through the test result and observed covariate information. When some of the covariates are continuous, or the number of covariates is relatively large, the existing methods require parametric models for the probability of disease or the probability of verification (given the test result and covariates), and hence are subject to model misspecification. We propose a new method for correcting verification bias based on the propensity score, defined as the predicted probability of verification given the test result and observed covariates. This is estimated separately for those with positive and negative test results. The new method classifies the verified sample into several subsamples that have homogeneous propensity scores and allows correction for verification bias. Simulation studies demonstrate that the new estimators are more robust to model misspecification than existing methods, but still perform well when the models for the probability of disease and probability of verification are correctly specified. PMID:21856650
Improving inferences from fisheries capture-recapture studies through remote detection of PIT tags
Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Shively, Rip S.
2010-01-01
Models for capture-recapture data are commonly used in analyses of the dynamics of fish and wildlife populations, especially for estimating vital parameters such as survival. Capture-recapture methods provide more reliable inferences than other methods commonly used in fisheries studies. However, for rare or elusive fish species, parameter estimation is often hampered by small probabilities of re-encountering tagged fish when encounters are obtained through traditional sampling methods. We present a case study that demonstrates how remote antennas for passive integrated transponder (PIT) tags can increase encounter probabilities and the precision of survival estimates from capture-recapture models. Between 1999 and 2007, trammel nets were used to capture and tag over 8,400 endangered adult Lost River suckers (Deltistes luxatus) during the spawning season in Upper Klamath Lake, Oregon. Despite intensive sampling at relatively discrete spawning areas, encounter probabilities from Cormack-Jolly-Seber models were consistently low (< 0.2) and the precision of apparent annual survival estimates was poor. Beginning in 2005, remote PIT tag antennas were deployed at known spawning locations to increase the probability of re-encountering tagged fish. We compare results based only on physical recaptures with results based on both physical recaptures and remote detections to demonstrate the substantial improvement in estimates of encounter probabilities (approaching 100%) and apparent annual survival provided by the remote detections. The richer encounter histories provided robust inferences about the dynamics of annual survival and have made it possible to explore more realistic models and hypotheses about factors affecting the conservation and recovery of this endangered species. Recent advances in technology related to PIT tags have paved the way for creative implementation of large-scale tagging studies in systems where they were previously considered impracticable.
Saviane, Chiara; Silver, R Angus
2006-06-15
Synapses play a crucial role in information processing in the brain. Amplitude fluctuations of synaptic responses can be used to extract information about the mechanisms underlying synaptic transmission and its modulation. In particular, multiple-probability fluctuation analysis can be used to estimate the number of functional release sites, the mean probability of release and the amplitude of the mean quantal response from fits of the relationship between the variance and mean amplitude of postsynaptic responses, recorded at different probabilities. To determine these quantal parameters, calculate their uncertainties and the goodness-of-fit of the model, it is important to weight the contribution of each data point in the fitting procedure. We therefore investigated the errors associated with measuring the variance by determining the best estimators of the variance of the variance and have used simulations of synaptic transmission to test their accuracy and reliability under different experimental conditions. For central synapses, which generally have a low number of release sites, the amplitude distribution of synaptic responses is not normal, thus the use of a theoretical variance of the variance based on the normal assumption is not a good approximation. However, appropriate estimators can be derived for the population and for limited sample sizes using a more general expression that involves higher moments and introducing unbiased estimators based on the h-statistics. Our results are likely to be relevant for various applications of fluctuation analysis when few channels or release sites are present.
Nowak, Michael D.; Smith, Andrew B.; Simpson, Carl; Zwickl, Derrick J.
2013-01-01
Molecular divergence time analyses often rely on the age of fossil lineages to calibrate node age estimates. Most divergence time analyses are now performed in a Bayesian framework, where fossil calibrations are incorporated as parametric prior probabilities on node ages. It is widely accepted that an ideal parameterization of such node age prior probabilities should be based on a comprehensive analysis of the fossil record of the clade of interest, but there is currently no generally applicable approach for calculating such informative priors. We provide here a simple and easily implemented method that employs fossil data to estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade, which can be used to fit an informative parametric prior probability distribution on a node age. Specifically, our method uses the extant diversity and the stratigraphic distribution of fossil lineages confidently assigned to a clade to fit a branching model of lineage diversification. Conditioning this on a simple model of fossil preservation, we estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade. The likelihood surface of missing history can then be translated into a parametric prior probability distribution on the age of the clade of interest. We show that the method performs well with simulated fossil distribution data, but that the likelihood surface of missing history can at times be too complex for the distribution-fitting algorithm employed by our software tool. An empirical example of the application of our method is performed to estimate echinoid node ages. A simulation-based sensitivity analysis using the echinoid data set shows that node age prior distributions estimated under poor preservation rates are significantly less informative than those estimated under high preservation rates. PMID:23755303
Kocher, David C; Apostoaei, A Iulian; Henshaw, Russell W; Hoffman, F Owen; Schubauer-Berigan, Mary K; Stancescu, Daniel O; Thomas, Brian A; Trabalka, John R; Gilbert, Ethel S; Land, Charles E
2008-07-01
The Interactive RadioEpidemiological Program (IREP) is a Web-based, interactive computer code that is used to estimate the probability that a given cancer in an individual was induced by given exposures to ionizing radiation. IREP was developed by a Working Group of the National Cancer Institute and Centers for Disease Control and Prevention, and was adopted and modified by the National Institute for Occupational Safety and Health (NIOSH) for use in adjudicating claims for compensation for cancer under the Energy Employees Occupational Illness Compensation Program Act of 2000. In this paper, the quantity calculated in IREP is referred to as "probability of causation/assigned share" (PC/AS). PC/AS for a given cancer in an individual is calculated on the basis of an estimate of the excess relative risk (ERR) associated with given radiation exposures and the relationship PC/AS = ERR/ERR+1. IREP accounts for uncertainties in calculating probability distributions of ERR and PC/AS. An accounting of uncertainty is necessary when decisions about granting claims for compensation for cancer are made on the basis of an estimate of the upper 99% credibility limit of PC/AS to give claimants the "benefit of the doubt." This paper discusses models and methods incorporated in IREP to estimate ERR and PC/AS. Approaches to accounting for uncertainty are emphasized, and limitations of IREP are discussed. Although IREP is intended to provide unbiased estimates of ERR and PC/AS and their uncertainties to represent the current state of knowledge, there are situations described in this paper in which NIOSH, as a matter of policy, makes assumptions that give a higher estimate of the upper 99% credibility limit of PC/AS than other plausible alternatives and, thus, are more favorable to claimants.
Evaluating detection and estimation capabilities of magnetometer-based vehicle sensors
NASA Astrophysics Data System (ADS)
Slater, David M.; Jacyna, Garry M.
2013-05-01
In an effort to secure the northern and southern United States borders, MITRE has been tasked with developing Modeling and Simulation (M&S) tools that accurately capture the mapping between algorithm-level Measures of Performance (MOP) and system-level Measures of Effectiveness (MOE) for current/future surveillance systems deployed by the the Customs and Border Protection Office of Technology Innovations and Acquisitions (OTIA). This analysis is part of a larger M&S undertaking. The focus is on two MOPs for magnetometer-based Unattended Ground Sensors (UGS). UGS are placed near roads to detect passing vehicles and estimate properties of the vehicle's trajectory such as bearing and speed. The first MOP considered is the probability of detection. We derive probabilities of detection for a network of sensors over an arbitrary number of observation periods and explore how the probability of detection changes when multiple sensors are employed. The performance of UGS is also evaluated based on the level of variance in the estimation of trajectory parameters. We derive the Cramer-Rao bounds for the variances of the estimated parameters in two cases: when no a priori information is known and when the parameters are assumed to be Gaussian with known variances. Sample results show that UGS perform significantly better in the latter case.
Bos, Marian E H; Te Beest, Dennis E; van Boven, Michiel; van Beest Holle, Mirna Robert-Du Ry; Meijer, Adam; Bosman, Arnold; Mulder, Yonne M; Koopmans, Marion P G; Stegeman, Arjan
2010-05-01
An epizootic of avian influenza (H7N7) caused a large number of human infections in The Netherlands in 2003. We used data from this epizootic to estimate infection probabilities for persons involved in disease control on infected farms. Analyses were based on databases containing information on the infected farms, person-visits to these farms, and exposure variables (number of birds present, housing type, poultry type, depopulation method, period during epizootic). Case definition was based on self-reported conjunctivitis and positive response to hemagglutination inhibition assay. A high infection probability was associated with clinical inspection of poultry in the area surrounding infected flocks (7.6%; 95% confidence interval [CI], 1.4%-18.9%) and active culling during depopulation (6.2%; 95% CI, 3.7%-9.6%). Low probabilities were estimated for management of biosecurity (0.0%; 95% CI, 0.0%-1.0%) and cleaning assistance during depopulation (0.0%; 95% CI, 0.0%-9.2%). No significant association was observed between the probability of infection and the exposure variables.
Kline, Jeffrey A; Stubblefield, William B
2014-03-01
Pretest probability helps guide diagnostic testing for patients with suspected acute coronary syndrome and pulmonary embolism. Pretest probability derived from the clinician's unstructured gestalt estimate is easier and more readily available than methods that require computation. We compare the diagnostic accuracy of physician gestalt estimate for the pretest probability of acute coronary syndrome and pulmonary embolism with a validated, computerized method. This was a secondary analysis of a prospectively collected, multicenter study. Patients (N=840) had chest pain, dyspnea, nondiagnostic ECGs, and no obvious diagnosis. Clinician gestalt pretest probability for both acute coronary syndrome and pulmonary embolism was assessed by visual analog scale and from the method of attribute matching using a Web-based computer program. Patients were followed for outcomes at 90 days. Clinicians had significantly higher estimates than attribute matching for both acute coronary syndrome (17% versus 4%; P<.001, paired t test) and pulmonary embolism (12% versus 6%; P<.001). The 2 methods had poor correlation for both acute coronary syndrome (r(2)=0.15) and pulmonary embolism (r(2)=0.06). Areas under the receiver operating characteristic curve were lower for clinician estimate compared with the computerized method for acute coronary syndrome: 0.64 (95% confidence interval [CI] 0.51 to 0.77) for clinician gestalt versus 0.78 (95% CI 0.71 to 0.85) for attribute matching. For pulmonary embolism, these values were 0.81 (95% CI 0.79 to 0.92) for clinician gestalt and 0.84 (95% CI 0.76 to 0.93) for attribute matching. Compared with a validated machine-based method, clinicians consistently overestimated pretest probability but on receiver operating curve analysis were as accurate for pulmonary embolism but not acute coronary syndrome. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
DCMDN: Deep Convolutional Mixture Density Network
NASA Astrophysics Data System (ADS)
D'Isanto, Antonio; Polsterer, Kai Lars
2017-09-01
Deep Convolutional Mixture Density Network (DCMDN) estimates probabilistic photometric redshift directly from multi-band imaging data by combining a version of a deep convolutional network with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) are applied as performance criteria. DCMDN is able to predict redshift PDFs independently from the type of source, e.g. galaxies, quasars or stars and renders pre-classification of objects and feature extraction unnecessary; the method is extremely general and allows the solving of any kind of probabilistic regression problems based on imaging data, such as estimating metallicity or star formation rate in galaxies.
A methodology for estimating risks associated with landslides of contaminated soil into rivers.
Göransson, Gunnel; Norrman, Jenny; Larson, Magnus; Alén, Claes; Rosén, Lars
2014-02-15
Urban areas adjacent to surface water are exposed to soil movements such as erosion and slope failures (landslides). A landslide is a potential mechanism for mobilisation and spreading of pollutants. This mechanism is in general not included in environmental risk assessments for contaminated sites, and the consequences associated with contamination in the soil are typically not considered in landslide risk assessments. This study suggests a methodology to estimate the environmental risks associated with landslides in contaminated sites adjacent to rivers. The methodology is probabilistic and allows for datasets with large uncertainties and the use of expert judgements, providing quantitative estimates of probabilities for defined failures. The approach is illustrated by a case study along the river Göta Älv, Sweden, where failures are defined and probabilities for those failures are estimated. Failures are defined from a pollution perspective and in terms of exceeding environmental quality standards (EQSs) and acceptable contaminant loads. Models are then suggested to estimate probabilities of these failures. A landslide analysis is carried out to assess landslide probabilities based on data from a recent landslide risk classification study along the river Göta Älv. The suggested methodology is meant to be a supplement to either landslide risk assessment (LRA) or environmental risk assessment (ERA), providing quantitative estimates of the risks associated with landslide in contaminated sites. The proposed methodology can also act as a basis for communication and discussion, thereby contributing to intersectoral management solutions. From the case study it was found that the defined failures are governed primarily by the probability of a landslide occurring. The overall probabilities for failure are low; however, if a landslide occurs the probabilities of exceeding EQS are high and the probability of having at least a 10% increase in the contamination load within one year is also high. Copyright © 2013 Elsevier B.V. All rights reserved.
Andreassen, Bettina K; Myklebust, Tor Å; Haug, Erik S
2017-02-01
Reports from cancer registries often lack clinically relevant information, which would be useful in estimating the prognosis of individual patients with urothelial carcinoma of the urinary bladder (UCB). This article presents estimates of crude probabilities of death due to UCB and the expected loss of lifetime stratified for patient characteristics. In Norway, 10,332 patients were diagnosed with UCB between 2001 and 2010. The crude probabilities of death due to UCB were estimated, stratified by gender, age and T stage, using flexible parametric survival models. Based on these models, the loss in expectation of lifetime due to UCB was also estimated for the different strata. There is large variation in the estimated crude probabilities of death due to UCB (from 0.03 to 0.76 within 10 years since diagnosis) depending on age, gender and T stage. Furthermore, the expected loss of life expectancy is more than a decade for younger patients with muscle-invasive UCB and between a few months and 5 years for nonmuscle-invasive UCB. The suggested framework leads to clinically relevant prognostic risk estimates for individual patients diagnosed with UCB and the consequence in terms of loss of lifetime expectation. The published probability tables can be used in clinical praxis for risk communication.
Factors influencing reporting and harvest probabilities in North American geese
Zimmerman, G.S.; Moser, T.J.; Kendall, W.L.; Doherty, P.F.; White, Gary C.; Caswell, D.F.
2009-01-01
We assessed variation in reporting probabilities of standard bands among species, populations, harvest locations, and size classes of North American geese to enable estimation of unbiased harvest probabilities. We included reward (US10,20,30,50, or100) and control (0) banded geese from 16 recognized goose populations of 4 species: Canada (Branta canadensis), cackling (B. hutchinsii), Ross's (Chen rossii), and snow geese (C. caerulescens). We incorporated spatially explicit direct recoveries and live recaptures into a multinomial model to estimate reporting, harvest, and band-retention probabilities. We compared various models for estimating harvest probabilities at country (United States vs. Canada), flyway (5 administrative regions), and harvest area (i.e., flyways divided into northern and southern sections) scales. Mean reporting probability of standard bands was 0.73 (95 CI 0.690.77). Point estimates of reporting probabilities for goose populations or spatial units varied from 0.52 to 0.93, but confidence intervals for individual estimates overlapped and model selection indicated that models with species, population, or spatial effects were less parsimonious than those without these effects. Our estimates were similar to recently reported estimates for mallards (Anas platyrhynchos). We provide current harvest probability estimates for these populations using our direct measures of reporting probability, improving the accuracy of previous estimates obtained from recovery probabilities alone. Goose managers and researchers throughout North America can use our reporting probabilities to correct recovery probabilities estimated from standard banding operations for deriving spatially explicit harvest probabilities.
Walsh, Michael G; Haseeb, M A
2014-01-01
Toxocariasis is increasingly recognized as an important neglected infection of poverty (NIP) in developed countries, and may constitute the most important NIP in the United States (US) given its association with chronic sequelae such as asthma and poor cognitive development. Its potential public health burden notwithstanding, toxocariasis surveillance is minimal throughout the US and so the true burden of disease remains uncertain in many areas. The Third National Health and Nutrition Examination Survey conducted a representative serologic survey of toxocariasis to estimate the prevalence of infection in diverse US subpopulations across different regions of the country. Using the NHANES III surveillance data, the current study applied the predicted probabilities of toxocariasis to the sociodemographic composition of New York census tracts to estimate the local probability of infection across the city. The predicted probability of toxocariasis ranged from 6% among US-born Latino women with a university education to 57% among immigrant men with less than a high school education. The predicted probability of toxocariasis exhibited marked spatial variation across the city, with particularly high infection probabilities in large sections of Queens, and smaller, more concentrated areas of Brooklyn and northern Manhattan. This investigation is the first attempt at small-area estimation of the probability surface of toxocariasis in a major US city. While this study does not define toxocariasis risk directly, it does provide a much needed tool to aid the development of toxocariasis surveillance in New York City.
Walsh, Michael G.; Haseeb, M. A.
2014-01-01
Toxocariasis is increasingly recognized as an important neglected infection of poverty (NIP) in developed countries, and may constitute the most important NIP in the United States (US) given its association with chronic sequelae such as asthma and poor cognitive development. Its potential public health burden notwithstanding, toxocariasis surveillance is minimal throughout the US and so the true burden of disease remains uncertain in many areas. The Third National Health and Nutrition Examination Survey conducted a representative serologic survey of toxocariasis to estimate the prevalence of infection in diverse US subpopulations across different regions of the country. Using the NHANES III surveillance data, the current study applied the predicted probabilities of toxocariasis to the sociodemographic composition of New York census tracts to estimate the local probability of infection across the city. The predicted probability of toxocariasis ranged from 6% among US-born Latino women with a university education to 57% among immigrant men with less than a high school education. The predicted probability of toxocariasis exhibited marked spatial variation across the city, with particularly high infection probabilities in large sections of Queens, and smaller, more concentrated areas of Brooklyn and northern Manhattan. This investigation is the first attempt at small-area estimation of the probability surface of toxocariasis in a major US city. While this study does not define toxocariasis risk directly, it does provide a much needed tool to aid the development of toxocariasis surveillance in New York City. PMID:24918785
NASA Astrophysics Data System (ADS)
Mori, Shohei; Hirata, Shinnosuke; Yamaguchi, Tadashi; Hachiya, Hiroyuki
To develop a quantitative diagnostic method for liver fibrosis using an ultrasound B-mode image, a probability imaging method of tissue characteristics based on a multi-Rayleigh model, which expresses a probability density function of echo signals from liver fibrosis, has been proposed. In this paper, an effect of non-speckle echo signals on tissue characteristics estimated from the multi-Rayleigh model was evaluated. Non-speckle signals were determined and removed using the modeling error of the multi-Rayleigh model. The correct tissue characteristics of fibrotic tissue could be estimated with the removal of non-speckle signals.
Tornado damage risk assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinhold, T.A.; Ellingwood, B.
1982-09-01
Several proposed models were evaluated for predicting tornado wind speed probabilities at nuclear plant sites as part of a program to develop statistical data on tornadoes needed for probability-based load combination analysis. A unified model was developed which synthesized the desired aspects of tornado occurrence and damage potential. The sensitivity of wind speed probability estimates to various tornado modeling assumptions are examined, and the probability distributions of tornado wind speed that are needed for load combination studies are presented.
A global logrank test for adaptive treatment strategies based on observational studies.
Li, Zhiguo; Valenstein, Marcia; Pfeiffer, Paul; Ganoczy, Dara
2014-02-28
In studying adaptive treatment strategies, a natural question that is of paramount interest is whether there is any significant difference among all possible treatment strategies. When the outcome variable of interest is time-to-event, we propose an inverse probability weighted logrank test for testing the equivalence of a fixed set of pre-specified adaptive treatment strategies based on data from an observational study. The weights take into account both the possible selection bias in an observational study and the fact that the same subject may be consistent with more than one treatment strategy. The asymptotic distribution of the weighted logrank statistic under the null hypothesis is obtained. We show that, in an observational study where the treatment selection probabilities need to be estimated, the estimation of these probabilities does not have an effect on the asymptotic distribution of the weighted logrank statistic, as long as the estimation of the parameters in the models for these probabilities is n-consistent. Finite sample performance of the test is assessed via a simulation study. We also show in the simulation that the test can be pretty robust to misspecification of the models for the probabilities of treatment selection. The method is applied to analyze data on antidepressant adherence time from an observational database maintained at the Department of Veterans Affairs' Serious Mental Illness Treatment Research and Evaluation Center. Copyright © 2013 John Wiley & Sons, Ltd.
Probability based remaining capacity estimation using data-driven and neural network model
NASA Astrophysics Data System (ADS)
Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai
2016-05-01
Since large numbers of lithium-ion batteries are composed in pack and the batteries are complex electrochemical devices, their monitoring and safety concerns are key issues for the applications of battery technology. An accurate estimation of battery remaining capacity is crucial for optimization of the vehicle control, preventing battery from over-charging and over-discharging and ensuring the safety during its service life. The remaining capacity estimation of a battery includes the estimation of state-of-charge (SOC) and state-of-energy (SOE). In this work, a probability based adaptive estimator is presented to obtain accurate and reliable estimation results for both SOC and SOE. For the SOC estimation, an n ordered RC equivalent circuit model is employed by combining an electrochemical model to obtain more accurate voltage prediction results. For the SOE estimation, a sliding window neural network model is proposed to investigate the relationship between the terminal voltage and the model inputs. To verify the accuracy and robustness of the proposed model and estimation algorithm, experiments under different dynamic operation current profiles are performed on the commercial 1665130-type lithium-ion batteries. The results illustrate that accurate and robust estimation can be obtained by the proposed method.
Cetacean population density estimation from single fixed sensors using passive acoustics.
Küsel, Elizabeth T; Mellinger, David K; Thomas, Len; Marques, Tiago A; Moretti, David; Ward, Jessica
2011-06-01
Passive acoustic methods are increasingly being used to estimate animal population density. Most density estimation methods are based on estimates of the probability of detecting calls as functions of distance. Typically these are obtained using receivers capable of localizing calls or from studies of tagged animals. However, both approaches are expensive to implement. The approach described here uses a MonteCarlo model to estimate the probability of detecting calls from single sensors. The passive sonar equation is used to predict signal-to-noise ratios (SNRs) of received clicks, which are then combined with a detector characterization that predicts probability of detection as a function of SNR. Input distributions for source level, beam pattern, and whale depth are obtained from the literature. Acoustic propagation modeling is used to estimate transmission loss. Other inputs for density estimation are call rate, obtained from the literature, and false positive rate, obtained from manual analysis of a data sample. The method is applied to estimate density of Blainville's beaked whales over a 6-day period around a single hydrophone located in the Tongue of the Ocean, Bahamas. Results are consistent with those from previous analyses, which use additional tag data. © 2011 Acoustical Society of America
Estimation of post-test probabilities by residents: Bayesian reasoning versus heuristics?
Hall, Stacey; Phang, Sen Han; Schaefer, Jeffrey P; Ghali, William; Wright, Bruce; McLaughlin, Kevin
2014-08-01
Although the process of diagnosing invariably begins with a heuristic, we encourage our learners to support their diagnoses by analytical cognitive processes, such as Bayesian reasoning, in an attempt to mitigate the effects of heuristics on diagnosing. There are, however, limited data on the use ± impact of Bayesian reasoning on the accuracy of disease probability estimates. In this study our objective was to explore whether Internal Medicine residents use a Bayesian process to estimate disease probabilities by comparing their disease probability estimates to literature-derived Bayesian post-test probabilities. We gave 35 Internal Medicine residents four clinical vignettes in the form of a referral letter and asked them to estimate the post-test probability of the target condition in each case. We then compared these to literature-derived probabilities. For each vignette the estimated probability was significantly different from the literature-derived probability. For the two cases with low literature-derived probability our participants significantly overestimated the probability of these target conditions being the correct diagnosis, whereas for the two cases with high literature-derived probability the estimated probability was significantly lower than the calculated value. Our results suggest that residents generate inaccurate post-test probability estimates. Possible explanations for this include ineffective application of Bayesian reasoning, attribute substitution whereby a complex cognitive task is replaced by an easier one (e.g., a heuristic), or systematic rater bias, such as central tendency bias. Further studies are needed to identify the reasons for inaccuracy of disease probability estimates and to explore ways of improving accuracy.
Asquith, William H.; Kiang, Julie E.; Cohn, Timothy A.
2017-07-17
The U.S. Geological Survey (USGS), in cooperation with the U.S. Nuclear Regulatory Commission, has investigated statistical methods for probabilistic flood hazard assessment to provide guidance on very low annual exceedance probability (AEP) estimation of peak-streamflow frequency and the quantification of corresponding uncertainties using streamgage-specific data. The term “very low AEP” implies exceptionally rare events defined as those having AEPs less than about 0.001 (or 1 × 10–3 in scientific notation or for brevity 10–3). Such low AEPs are of great interest to those involved with peak-streamflow frequency analyses for critical infrastructure, such as nuclear power plants. Flood frequency analyses at streamgages are most commonly based on annual instantaneous peak streamflow data and a probability distribution fit to these data. The fitted distribution provides a means to extrapolate to very low AEPs. Within the United States, the Pearson type III probability distribution, when fit to the base-10 logarithms of streamflow, is widely used, but other distribution choices exist. The USGS-PeakFQ software, implementing the Pearson type III within the Federal agency guidelines of Bulletin 17B (method of moments) and updates to the expected moments algorithm (EMA), was specially adapted for an “Extended Output” user option to provide estimates at selected AEPs from 10–3 to 10–6. Parameter estimation methods, in addition to product moments and EMA, include L-moments, maximum likelihood, and maximum product of spacings (maximum spacing estimation). This study comprehensively investigates multiple distributions and parameter estimation methods for two USGS streamgages (01400500 Raritan River at Manville, New Jersey, and 01638500 Potomac River at Point of Rocks, Maryland). The results of this study specifically involve the four methods for parameter estimation and up to nine probability distributions, including the generalized extreme value, generalized log-normal, generalized Pareto, and Weibull. Uncertainties in streamflow estimates for corresponding AEP are depicted and quantified as two primary forms: quantile (aleatoric [random sampling] uncertainty) and distribution-choice (epistemic [model] uncertainty). Sampling uncertainties of a given distribution are relatively straightforward to compute from analytical or Monte Carlo-based approaches. Distribution-choice uncertainty stems from choices of potentially applicable probability distributions for which divergence among the choices increases as AEP decreases. Conventional goodness-of-fit statistics, such as Cramér-von Mises, and L-moment ratio diagrams are demonstrated in order to hone distribution choice. The results generally show that distribution choice uncertainty is larger than sampling uncertainty for very low AEP values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, J; Fan, J; Hu, W
Purpose: To develop a fast automatic algorithm based on the two dimensional kernel density estimation (2D KDE) to predict the dose-volume histogram (DVH) which can be employed for the investigation of radiotherapy quality assurance and automatic treatment planning. Methods: We propose a machine learning method that uses previous treatment plans to predict the DVH. The key to the approach is the framing of DVH in a probabilistic setting. The training consists of estimating, from the patients in the training set, the joint probability distribution of the dose and the predictive features. The joint distribution provides an estimation of the conditionalmore » probability of the dose given the values of the predictive features. For the new patient, the prediction consists of estimating the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimation of the DVH. The 2D KDE is implemented to predict the joint probability distribution of the training set and the distribution of the predictive features for the new patient. Two variables, including the signed minimal distance from each OAR (organs at risk) voxel to the target boundary and its opening angle with respect to the origin of voxel coordinate, are considered as the predictive features to represent the OAR-target spatial relationship. The feasibility of our method has been demonstrated with the rectum, breast and head-and-neck cancer cases by comparing the predicted DVHs with the planned ones. Results: The consistent result has been found between these two DVHs for each cancer and the average of relative point-wise differences is about 5% within the clinical acceptable extent. Conclusion: According to the result of this study, our method can be used to predict the clinical acceptable DVH and has ability to evaluate the quality and consistency of the treatment planning.« less
Jose E. Negron; Jill L. Wilson
2003-01-01
We examined attributes of pinon pine (Pinus edulis) associated with the probability of infestation by pinon ips (Ips confusus) in an outbreak in the Coconino National Forest, Arizona. We used data collected from 87 plots, 59 infested and 28 uninfested, and a logistic regression approach to estimate the probability ofinfestation based on plotand tree-level attributes....
Benoit, Julia S; Chan, Wenyaw; Doody, Rachelle S
2015-01-01
Parameter dependency within data sets in simulation studies is common, especially in models such as Continuous-Time Markov Chains (CTMC). Additionally, the literature lacks a comprehensive examination of estimation performance for the likelihood-based general multi-state CTMC. Among studies attempting to assess the estimation, none have accounted for dependency among parameter estimates. The purpose of this research is twofold: 1) to develop a multivariate approach for assessing accuracy and precision for simulation studies 2) to add to the literature a comprehensive examination of the estimation of a general 3-state CTMC model. Simulation studies are conducted to analyze longitudinal data with a trinomial outcome using a CTMC with and without covariates. Measures of performance including bias, component-wise coverage probabilities, and joint coverage probabilities are calculated. An application is presented using Alzheimer's disease caregiver stress levels. Comparisons of joint and component-wise parameter estimates yield conflicting inferential results in simulations from models with and without covariates. In conclusion, caution should be taken when conducting simulation studies aiming to assess performance and choice of inference should properly reflect the purpose of the simulation.
MRI Brain Tumor Segmentation and Necrosis Detection Using Adaptive Sobolev Snakes.
Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen
2014-03-21
Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at different points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D diffusion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.
MRI brain tumor segmentation and necrosis detection using adaptive Sobolev snakes
NASA Astrophysics Data System (ADS)
Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen
2014-03-01
Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at di erent points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D di usion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.
Zhang, Yongsheng; Wei, Heng; Zheng, Kangning
2017-01-01
Considering that metro network expansion brings us with more alternative routes, it is attractive to integrate the impacts of routes set and the interdependency among alternative routes on route choice probability into route choice modeling. Therefore, the formulation, estimation and application of a constrained multinomial probit (CMNP) route choice model in the metro network are carried out in this paper. The utility function is formulated as three components: the compensatory component is a function of influencing factors; the non-compensatory component measures the impacts of routes set on utility; following a multivariate normal distribution, the covariance of error component is structured into three parts, representing the correlation among routes, the transfer variance of route, and the unobserved variance respectively. Considering multidimensional integrals of the multivariate normal probability density function, the CMNP model is rewritten as Hierarchical Bayes formula and M-H sampling algorithm based Monte Carlo Markov Chain approach is constructed to estimate all parameters. Based on Guangzhou Metro data, reliable estimation results are gained. Furthermore, the proposed CMNP model also shows a good forecasting performance for the route choice probabilities calculation and a good application performance for transfer flow volume prediction. PMID:28591188
Probabilistic description of probable maximum precipitation
NASA Astrophysics Data System (ADS)
Ben Alaya, Mohamed Ali; Zwiers, Francis W.; Zhang, Xuebin
2017-04-01
Probable Maximum Precipitation (PMP) is the key parameter used to estimate probable Maximum Flood (PMF). PMP and PMF are important for dam safety and civil engineering purposes. Even if the current knowledge of storm mechanisms remains insufficient to properly evaluate limiting values of extreme precipitation, PMP estimation methods are still based on deterministic consideration, and give only single values. This study aims to provide a probabilistic description of the PMP based on the commonly used method, the so-called moisture maximization. To this end, a probabilistic bivariate extreme values model is proposed to address the limitations of traditional PMP estimates via moisture maximization namely: (i) the inability to evaluate uncertainty and to provide a range PMP values, (ii) the interpretation that a maximum of a data series as a physical upper limit (iii) and the assumption that a PMP event has maximum moisture availability. Results from simulation outputs of the Canadian Regional Climate Model CanRCM4 over North America reveal the high uncertainties inherent in PMP estimates and the non-validity of the assumption that PMP events have maximum moisture availability. This later assumption leads to overestimation of the PMP by an average of about 15% over North America, which may have serious implications for engineering design.
76 FR 770 - Proposed Information Collection; Comment Request; Monthly Wholesale Trade Survey
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-06
... reduces the time and cost of preparing mailout packages that contain unique variable data, while improving... developing productivity measurements. Estimates produced from the MWTS are based on a probability sample and..., excluding manufacturers' sales branches and offices. Estimated Number of Respondents: 4,500. Estimated Time...
Systematic sampling for suspended sediment
Robert B. Thomas
1991-01-01
Abstract - Because of high costs or complex logistics, scientific populations cannot be measured entirely and must be sampled. Accepted scientific practice holds that sample selection be based on statistical principles to assure objectivity when estimating totals and variances. Probability sampling--obtaining samples with known probabilities--is the only method that...
The relationship between species detection probability and local extinction probability
Alpizar-Jara, R.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Pollock, K.H.; Rosenberry, C.S.
2004-01-01
In community-level ecological studies, generally not all species present in sampled areas are detected. Many authors have proposed the use of estimation methods that allow detection probabilities that are < 1 and that are heterogeneous among species. These methods can also be used to estimate community-dynamic parameters such as species local extinction probability and turnover rates (Nichols et al. Ecol Appl 8:1213-1225; Conserv Biol 12:1390-1398). Here, we present an ad hoc approach to estimating community-level vital rates in the presence of joint heterogeneity of detection probabilities and vital rates. The method consists of partitioning the number of species into two groups using the detection frequencies and then estimating vital rates (e.g., local extinction probabilities) for each group. Estimators from each group are combined in a weighted estimator of vital rates that accounts for the effect of heterogeneity. Using data from the North American Breeding Bird Survey, we computed such estimates and tested the hypothesis that detection probabilities and local extinction probabilities were negatively related. Our analyses support the hypothesis that species detection probability covaries negatively with local probability of extinction and turnover rates. A simulation study was conducted to assess the performance of vital parameter estimators as well as other estimators relevant to questions about heterogeneity, such as coefficient of variation of detection probabilities and proportion of species in each group. Both the weighted estimator suggested in this paper and the original unweighted estimator for local extinction probability performed fairly well and provided no basis for preferring one to the other.
Estimating the Probability of Elevated Nitrate Concentrations in Ground Water in Washington State
Frans, Lonna M.
2008-01-01
Logistic regression was used to relate anthropogenic (manmade) and natural variables to the occurrence of elevated nitrate concentrations in ground water in Washington State. Variables that were analyzed included well depth, ground-water recharge rate, precipitation, population density, fertilizer application amounts, soil characteristics, hydrogeomorphic regions, and land-use types. Two models were developed: one with and one without the hydrogeomorphic regions variable. The variables in both models that best explained the occurrence of elevated nitrate concentrations (defined as concentrations of nitrite plus nitrate as nitrogen greater than 2 milligrams per liter) were the percentage of agricultural land use in a 4-kilometer radius of a well, population density, precipitation, soil drainage class, and well depth. Based on the relations between these variables and measured nitrate concentrations, logistic regression models were developed to estimate the probability of nitrate concentrations in ground water exceeding 2 milligrams per liter. Maps of Washington State were produced that illustrate these estimated probabilities for wells drilled to 145 feet below land surface (median well depth) and the estimated depth to which wells would need to be drilled to have a 90-percent probability of drawing water with a nitrate concentration less than 2 milligrams per liter. Maps showing the estimated probability of elevated nitrate concentrations indicated that the agricultural regions are most at risk followed by urban areas. The estimated depths to which wells would need to be drilled to have a 90-percent probability of obtaining water with nitrate concentrations less than 2 milligrams per liter exceeded 1,000 feet in the agricultural regions; whereas, wells in urban areas generally would need to be drilled to depths in excess of 400 feet.
Transition probability, dynamic regimes, and the critical point of financial crisis
NASA Astrophysics Data System (ADS)
Tang, Yinan; Chen, Ping
2015-07-01
An empirical and theoretical analysis of financial crises is conducted based on statistical mechanics in non-equilibrium physics. The transition probability provides a new tool for diagnosing a changing market. Both calm and turbulent markets can be described by the birth-death process for price movements driven by identical agents. The transition probability in a time window can be estimated from stock market indexes. Positive and negative feedback trading behaviors can be revealed by the upper and lower curves in transition probability. Three dynamic regimes are discovered from two time periods including linear, quasi-linear, and nonlinear patterns. There is a clear link between liberalization policy and market nonlinearity. Numerical estimation of a market turning point is close to the historical event of the US 2008 financial crisis.
Probability of the moiré effect in barrier and lenticular autostereoscopic 3D displays.
Saveljev, Vladimir; Kim, Sung-Kyu
2015-10-05
The probability of the moiré effect in LCD displays is estimated as a function of angle based on the experimental data; a theoretical function (node spacing) is proposed basing on the distance between nodes. Both functions are close to each other. The connection between the probability of the moiré effect and the Thomae's function is also found. The function proposed in this paper can be used in the minimization of the moiré effect in visual displays, especially in autostereoscopic 3D displays.
Ronald E. McRoberts
2010-01-01
Estimates of forest area are among the most common and useful information provided by national forest inventories. The estimates are used for local and national purposes and for reporting to international agreements such as the Montréal Process, the Ministerial Conference on the Protection of Forests in Europe, and the Kyoto Protocol. The estimates are usually based on...
Parameter Estimation for Geoscience Applications Using a Measure-Theoretic Approach
NASA Astrophysics Data System (ADS)
Dawson, C.; Butler, T.; Mattis, S. A.; Graham, L.; Westerink, J. J.; Vesselinov, V. V.; Estep, D.
2016-12-01
Effective modeling of complex physical systems arising in the geosciences is dependent on knowing parameters which are often difficult or impossible to measure in situ. In this talk we focus on two such problems, estimating parameters for groundwater flow and contaminant transport, and estimating parameters within a coastal ocean model. The approach we will describe, proposed by collaborators D. Estep, T. Butler and others, is based on a novel stochastic inversion technique based on measure theory. In this approach, given a probability space on certain observable quantities of interest, one searches for the sets of highest probability in parameter space which give rise to these observables. When viewed as mappings between sets, the stochastic inversion problem is well-posed in certain settings, but there are computational challenges related to the set construction. We will focus the talk on estimating scalar parameters and fields in a contaminant transport setting, and in estimating bottom friction in a complicated near-shore coastal application.
Balentine, Courtney J; Vanness, David J; Schneider, David F
2018-01-01
We evaluated whether diagnostic thyroidectomy for indeterminate thyroid nodules would be more cost-effective than genetic testing after including the costs of long-term surveillance. We used a Markov decision model to estimate the cost-effectiveness of thyroid lobectomy versus genetic testing (Afirma®) for evaluation of indeterminate (Bethesda 3-4) thyroid nodules. The base case was a 40-year-old woman with a 1-cm indeterminate nodule. Probabilities and estimates of utilities were obtained from the literature. Cost estimates were based on Medicare reimbursements with a 3% discount rate for costs and quality-adjusted life-years. During a 5-year period after the diagnosis of indeterminate thyroid nodules, lobectomy was less costly and more effective than Afirma® (lobectomy: $6,100; 4.50 quality-adjusted life- years vs Afirma®: $9,400; 4.47 quality-adjusted life-years). Only in 253 of 10,000 simulations (2.5%) did Afirma® show a net benefit at a cost-effectiveness threshold of $100,000 per quality- adjusted life-years. There was only a 0.3% probability of Afirma® being cost saving and a 14.9% probability of improving quality-adjusted life-years. Our base case estimate suggests that diagnostic lobectomy dominates genetic testing as a strategy for ruling out malignancy of indeterminate thyroid nodules. These results, however, were highly sensitive to estimates of utilities after lobectomy and living under surveillance after Afirma®. Published by Elsevier Inc.
Romer, Jeremy D.; Gitelman, Alix I.; Clements, Shaun; Schreck, Carl B.
2015-01-01
A number of researchers have attempted to estimate salmonid smolt survival during outmigration through an estuary. However, it is currently unclear how the design of such studies influences the accuracy and precision of survival estimates. In this simulation study we consider four patterns of smolt survival probability in the estuary, and test the performance of several different sampling strategies for estimating estuarine survival assuming perfect detection. The four survival probability patterns each incorporate a systematic component (constant, linearly increasing, increasing and then decreasing, and two pulses) and a random component to reflect daily fluctuations in survival probability. Generally, spreading sampling effort (tagging) across the season resulted in more accurate estimates of survival. All sampling designs in this simulation tended to under-estimate the variation in the survival estimates because seasonal and daily variation in survival probability are not incorporated in the estimation procedure. This under-estimation results in poorer performance of estimates from larger samples. Thus, tagging more fish may not result in better estimates of survival if important components of variation are not accounted for. The results of our simulation incorporate survival probabilities and run distribution data from previous studies to help illustrate the tradeoffs among sampling strategies in terms of the number of tags needed and distribution of tagging effort. This information will assist researchers in developing improved monitoring programs and encourage discussion regarding issues that should be addressed prior to implementation of any telemetry-based monitoring plan. We believe implementation of an effective estuary survival monitoring program will strengthen the robustness of life cycle models used in recovery plans by providing missing data on where and how much mortality occurs in the riverine and estuarine portions of smolt migration. These data could result in better informed management decisions and assist in guidance for more effective estuarine restoration projects.
Challenges of DNA-based mark-recapture studies of American black bears
Settlage, K.E.; Van Manen, F.T.; Clark, J.D.; King, T.L.
2008-01-01
We explored whether genetic sampling would be feasible to provide a region-wide population estimate for American black bears (Ursus americanus) in the southern Appalachians, USA. Specifically, we determined whether adequate capture probabilities (p >0.20) and population estimates with a low coefficient of variation (CV <20%) could be achieved given typical agency budget and personnel constraints. We extracted DNA from hair collected from baited barbed-wire enclosures sampled over a 10-week period on 2 study areas: a high-density black bear population in a portion of Great Smoky Mountains National Park and a lower density population on National Forest lands in North Carolina, South Carolina, and Georgia. We identified individual bears by their unique genotypes obtained from 9 microsatellite loci. We sampled 129 and 60 different bears in the National Park and National Forest study areas, respectively, and applied closed mark–recapture models to estimate population abundance. Capture probabilities and precision of the population estimates were acceptable only for sampling scenarios for which we pooled weekly sampling periods. We detected capture heterogeneity biases, probably because of inadequate spatial coverage by the hair-trapping grid. The logistical challenges of establishing and checking a sufficiently high density of hair traps make DNA-based estimates of black bears impractical for the southern Appalachian region. Alternatives are to estimate population size for smaller areas, estimate population growth rates or survival using mark–recapture methods, or use independent marking and recapturing techniques to reduce capture heterogeneity.
Multi-scale occupancy estimation and modelling using multiple detection methods
Nichols, James D.; Bailey, Larissa L.; O'Connell, Allan F.; Talancy, Neil W.; Grant, Evan H. Campbell; Gilbert, Andrew T.; Annand, Elizabeth M.; Husband, Thomas P.; Hines, James E.
2008-01-01
Occupancy estimation and modelling based on detection–nondetection data provide an effective way of exploring change in a species’ distribution across time and space in cases where the species is not always detected with certainty. Today, many monitoring programmes target multiple species, or life stages within a species, requiring the use of multiple detection methods. When multiple methods or devices are used at the same sample sites, animals can be detected by more than one method.We develop occupancy models for multiple detection methods that permit simultaneous use of data from all methods for inference about method-specific detection probabilities. Moreover, the approach permits estimation of occupancy at two spatial scales: the larger scale corresponds to species’ use of a sample unit, whereas the smaller scale corresponds to presence of the species at the local sample station or site.We apply the models to data collected on two different vertebrate species: striped skunks Mephitis mephitis and red salamanders Pseudotriton ruber. For striped skunks, large-scale occupancy estimates were consistent between two sampling seasons. Small-scale occupancy probabilities were slightly lower in the late winter/spring when skunks tend to conserve energy, and movements are limited to males in search of females for breeding. There was strong evidence of method-specific detection probabilities for skunks. As anticipated, large- and small-scale occupancy areas completely overlapped for red salamanders. The analyses provided weak evidence of method-specific detection probabilities for this species.Synthesis and applications. Increasingly, many studies are utilizing multiple detection methods at sampling locations. The modelling approach presented here makes efficient use of detections from multiple methods to estimate occupancy probabilities at two spatial scales and to compare detection probabilities associated with different detection methods. The models can be viewed as another variation of Pollock's robust design and may be applicable to a wide variety of scenarios where species occur in an area but are not always near the sampled locations. The estimation approach is likely to be especially useful in multispecies conservation programmes by providing efficient estimates using multiple detection devices and by providing device-specific detection probability estimates for use in survey design.
McCarthy, Peter M.
2006-01-01
The Yellowstone River is very important in a variety of ways to the residents of southeastern Montana; however, it is especially vulnerable to spilled contaminants. In 2004, the U.S. Geological Survey, in cooperation with Montana Department of Environmental Quality, initiated a study to develop a computer program to rapidly estimate instream travel times and concentrations of a potential contaminant in the Yellowstone River using regression equations developed in 1999 by the U.S. Geological Survey. The purpose of this report is to describe these equations and their limitations, describe the development of a computer program to apply the equations to the Yellowstone River, and provide detailed instructions on how to use the program. This program is available online at [http://pubs.water.usgs.gov/sir2006-5057/includes/ytot.xls]. The regression equations provide estimates of instream travel times and concentrations in rivers where little or no contaminant-transport data are available. Equations were developed and presented for the most probable flow velocity and the maximum probable flow velocity. These velocity estimates can then be used to calculate instream travel times and concentrations of a potential contaminant. The computer program was developed so estimation equations for instream travel times and concentrations can be solved quickly for sites along the Yellowstone River between Corwin Springs and Sidney, Montana. The basic types of data needed to run the program are spill data, streamflow data, and data for locations of interest along the Yellowstone River. Data output from the program includes spill location, river mileage at specified locations, instantaneous discharge, mean-annual discharge, drainage area, and channel slope. Travel times and concentrations are provided for estimates of the most probable velocity of the peak concentration and the maximum probable velocity of the peak concentration. Verification of estimates of instream travel times and concentrations for the Yellowstone River requires information about the flow velocity throughout the 520 mi of river in the study area. Dye-tracer studies would provide the best data about flow velocities and would provide the best verification of instream travel times and concentrations estimated from this computer program; however, data from such studies does not currently (2006) exist and new studies would be expensive and time-consuming. An alternative approach used in this study for verification of instream travel times is based on the use of flood-wave velocities determined from recorded streamflow hydrographs at selected mainstem streamflow-gaging stations along the Yellowstone River. The ratios of flood-wave velocity to the most probable velocity for the base flow estimated from the computer program are within the accepted range of 2.5 to 4.0 and indicate that flow velocities estimated from the computer program are reasonable for the Yellowstone River. The ratios of flood-wave velocity to the maximum probable velocity are within a range of 1.9 to 2.8 and indicate that the maximum probable flow velocities estimated from the computer program, which corresponds to the shortest travel times and maximum probable concentrations, are conservative and reasonable for the Yellowstone River.
Change-in-ratio density estimator for feral pigs is less biased than closed mark-recapture estimates
Hanson, L.B.; Grand, J.B.; Mitchell, M.S.; Jolley, D.B.; Sparklin, B.D.; Ditchkoff, S.S.
2008-01-01
Closed-population capture-mark-recapture (CMR) methods can produce biased density estimates for species with low or heterogeneous detection probabilities. In an attempt to address such biases, we developed a density-estimation method based on the change in ratio (CIR) of survival between two populations where survival, calculated using an open-population CMR model, is known to differ. We used our method to estimate density for a feral pig (Sus scrofa) population on Fort Benning, Georgia, USA. To assess its validity, we compared it to an estimate of the minimum density of pigs known to be alive and two estimates based on closed-population CMR models. Comparison of the density estimates revealed that the CIR estimator produced a density estimate with low precision that was reasonable with respect to minimum known density. By contrast, density point estimates using the closed-population CMR models were less than the minimum known density, consistent with biases created by low and heterogeneous capture probabilities for species like feral pigs that may occur in low density or are difficult to capture. Our CIR density estimator may be useful for tracking broad-scale, long-term changes in species, such as large cats, for which closed CMR models are unlikely to work. ?? CSIRO 2008.
PROBABILITIES OF TEMPERATURE EXTREMES IN THE U.S.
The model Temperature Extremes Version 1.0 provides the capability to estimate the probability, for 332 locations in the 50 U.S. states, that an extreme temperature will occur for one or more consecutive days and/or for any number of days in a given month or season, based on stat...
Gariepy, Aileen M; Creinin, Mitchell D; Smith, Kenneth J; Xu, Xiao
2014-08-01
To compare the expected probability of pregnancy after hysteroscopic versus laparoscopic sterilization based on available data using decision analysis. We developed an evidence-based Markov model to estimate the probability of pregnancy over 10 years after three different female sterilization procedures: hysteroscopic, laparoscopic silicone rubber band application and laparoscopic bipolar coagulation. Parameter estimates for procedure success, probability of completing follow-up testing and risk of pregnancy after different sterilization procedures were obtained from published sources. In the base case analysis at all points in time after the sterilization procedure, the initial and cumulative risk of pregnancy after sterilization is higher in women opting for hysteroscopic than either laparoscopic band or bipolar sterilization. The expected pregnancy rates per 1000 women at 1 year are 57, 7 and 3 for hysteroscopic sterilization, laparoscopic silicone rubber band application and laparoscopic bipolar coagulation, respectively. At 10 years, the cumulative pregnancy rates per 1000 women are 96, 24 and 30, respectively. Sensitivity analyses suggest that the three procedures would have an equivalent pregnancy risk of approximately 80 per 1000 women at 10 years if the probability of successful laparoscopic (band or bipolar) sterilization drops below 90% and successful coil placement on first hysteroscopic attempt increases to 98% or if the probability of undergoing a hysterosalpingogram increases to 100%. Based on available data, the expected population risk of pregnancy is higher after hysteroscopic than laparoscopic sterilization. Consistent with existing contraceptive classification, future characterization of hysteroscopic sterilization should distinguish "perfect" and "typical" use failure rates. Pregnancy probability at 1 year and over 10 years is expected to be higher in women having hysteroscopic as compared to laparoscopic sterilization. Copyright © 2014 Elsevier Inc. All rights reserved.
Population-based surveillance for bacterial meningitis in China, September 2006-December 2009.
Li, Yixing; Yin, Zundong; Shao, Zhujun; Li, Manshi; Liang, Xiaofeng; Sandhu, Hardeep S; Hadler, Stephen C; Li, Junhong; Sun, Yinqi; Li, Jing; Zou, Wenjing; Lin, Mei; Zuo, Shuyan; Mayer, Leonard W; Novak, Ryan T; Zhu, Bingqing; Xu, Li; Luo, Huiming
2014-01-01
During September 2006-December 2009, we conducted active population and sentinel laboratory-based surveillance for bacterial meningitis pathogens, including Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae type b, in 4 China prefectures. We identified 7,876 acute meningitis and encephalitis syndrome cases, including 6,388 among prefecture residents. A total of 833 resident cases from sentinel hospitals met the World Health Organization case definition for probable bacterial meningitis; 339 of these cases were among children <5 years of age. Laboratory testing confirmed bacterial meningitis in 74 of 3,391 tested cases. The estimated annual incidence (per 100,000 population) of probable bacterial meningitis ranged from 1.84 to 2.93 for the entire population and from 6.95 to 22.30 for children <5 years old. Active surveillance with laboratory confirmation has provided a population-based estimate of the number of probable bacterial meningitis cases in China, but more complete laboratory testing is needed to better define the epidemiology of the disease in this country.
Population-based Surveillance for Bacterial Meningitis in China, September 2006–December 2009
Li, Yixing; Yin, Zundong; Shao, Zhujun; Li, Manshi; Liang, Xiaofeng; Sandhu, Hardeep S.; Hadler, Stephen C.; Li, Junhong; Sun, Yinqi; Li, Jing; Zou, Wenjing; Lin, Mei; Zuo, Shuyan; Mayer, Leonard W.; Novak, Ryan T.; Zhu, Bingqing; Xu, Li
2014-01-01
During September 2006–December 2009, we conducted active population and sentinel laboratory–based surveillance for bacterial meningitis pathogens, including Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae type b, in 4 China prefectures. We identified 7,876 acute meningitis and encephalitis syndrome cases, including 6,388 among prefecture residents. A total of 833 resident cases from sentinel hospitals met the World Health Organization case definition for probable bacterial meningitis; 339 of these cases were among children <5 years of age. Laboratory testing confirmed bacterial meningitis in 74 of 3,391 tested cases. The estimated annual incidence (per 100,000 population) of probable bacterial meningitis ranged from 1.84 to 2.93 for the entire population and from 6.95 to 22.30 for children <5 years old. Active surveillance with laboratory confirmation has provided a population-based estimate of the number of probable bacterial meningitis cases in China, but more complete laboratory testing is needed to better define the epidemiology of the disease in this country. PMID:24377388
NASA Astrophysics Data System (ADS)
Nanjo, K. Z.; Sakai, S.; Kato, A.; Tsuruoka, H.; Hirata, N.
2013-05-01
Seismicity in southern Kanto activated with the 2011 March 11 Tohoku earthquake of magnitude M9.0, but does this cause a significant difference in the probability of more earthquakes at the present or in the To? future answer this question, we examine the effect of a change in the seismicity rate on the probability of earthquakes. Our data set is from the Japan Meteorological Agency earthquake catalogue, downloaded on 2012 May 30. Our approach is based on time-dependent earthquake probabilistic calculations, often used for aftershock hazard assessment, and are based on two statistical laws: the Gutenberg-Richter (GR) frequency-magnitude law and the Omori-Utsu (OU) aftershock-decay law. We first confirm that the seismicity following a quake of M4 or larger is well modelled by the GR law with b ˜ 1. Then, there is good agreement with the OU law with p ˜ 0.5, which indicates that the slow decay was notably significant. Based on these results, we then calculate the most probable estimates of future M6-7-class events for various periods, all with a starting date of 2012 May 30. The estimates are higher than pre-quake levels if we consider a period of 3-yr duration or shorter. However, for statistics-based forecasting such as this, errors that arise from parameter estimation must be considered. Taking into account the contribution of these errors to the probability calculations, we conclude that any increase in the probability of earthquakes is insignificant. Although we try to avoid overstating the change in probability, our observations combined with results from previous studies support the likelihood that afterslip (fault creep) in southern Kanto will slowly relax a stress step caused by the Tohoku earthquake. This afterslip in turn reminds us of the potential for stress redistribution to the surrounding regions. We note the importance of varying hazards not only in time but also in space to improve the probabilistic seismic hazard assessment for southern Kanto.
Interpretation of the results of statistical measurements. [search for basic probability model
NASA Technical Reports Server (NTRS)
Olshevskiy, V. V.
1973-01-01
For random processes, the calculated probability characteristic, and the measured statistical estimate are used in a quality functional, which defines the difference between the two functions. Based on the assumption that the statistical measurement procedure is organized so that the parameters for a selected model are optimized, it is shown that the interpretation of experimental research is a search for a basic probability model.
Muscle categorization using PDF estimation and Naive Bayes classification.
Adel, Tameem M; Smith, Benn E; Stashuk, Daniel W
2012-01-01
The structure of motor unit potentials (MUPs) and their times of occurrence provide information about the motor units (MUs) that created them. As such, electromyographic (EMG) data can be used to categorize muscles as normal or suffering from a neuromuscular disease. Using pattern discovery (PD) allows clinicians to understand the rationale underlying a certain muscle characterization; i.e. it is transparent. Discretization is required in PD, which leads to some loss in accuracy. In this work, characterization techniques that are based on estimating probability density functions (PDFs) for each muscle category are implemented. Characterization probabilities of each motor unit potential train (MUPT) are obtained from these PDFs and then Bayes rule is used to aggregate the MUPT characterization probabilities to calculate muscle level probabilities. Even though this technique is not as transparent as PD, its accuracy is higher than the discrete PD. Ultimately, the goal is to use a technique that is based on both PDFs and PD and make it as transparent and as efficient as possible, but first it was necessary to thoroughly assess how accurate a fully continuous approach can be. Using gaussian PDF estimation achieved improvements in muscle categorization accuracy over PD and further improvements resulted from using feature value histograms to choose more representative PDFs; for instance, using log-normal distribution to represent skewed histograms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanderNoot, Victoria A.; Haroldsen, Brent L.; Renzi, Ronald F.
2010-03-01
In a multiyear research agreement with Tenix Investments Pty. Ltd., Sandia has been developing field deployable technologies for detection of biotoxins in water supply systems. The unattended water sensor or UWS employs microfluidic chip based gel electrophoresis for monitoring biological analytes in a small integrated sensor platform. This instrument collects, prepares, and analyzes water samples in an automated manner. Sample analysis is done using the {mu}ChemLab{trademark} analysis module. This report uses analysis results of two datasets collected using the UWS to estimate performance of the device. The first dataset is made up of samples containing ricin at varying concentrations andmore » is used for assessing instrument response and detection probability. The second dataset is comprised of analyses of water samples collected at a water utility which are used to assess the false positive probability. The analyses of the two sets are used to estimate the Receiver Operating Characteristic or ROC curves for the device at one set of operational and detection algorithm parameters. For these parameters and based on a statistical estimate, the ricin probability of detection is about 0.9 at a concentration of 5 nM for a false positive probability of 1 x 10{sup -6}.« less
A model-based approach to estimating forest area
Ronald E. McRoberts
2006-01-01
A logistic regression model based on forest inventory plot data and transformations of Landsat Thematic Mapper satellite imagery was used to predict the probability of forest for 15 study areas in Indiana, USA, and 15 in Minnesota, USA. Within each study area, model-based estimates of forest area were obtained for circular areas with radii of 5 km, 10 km, and 15 km and...
A fast elitism Gaussian estimation of distribution algorithm and application for PID optimization.
Xu, Qingyang; Zhang, Chengjin; Zhang, Li
2014-01-01
Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA.
A Fast Elitism Gaussian Estimation of Distribution Algorithm and Application for PID Optimization
Xu, Qingyang; Zhang, Chengjin; Zhang, Li
2014-01-01
Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA. PMID:24892059
Brůžek, Jaroslav; Santos, Frédéric; Dutailly, Bruno; Murail, Pascal; Cunha, Eugenia
2017-10-01
A new tool for skeletal sex estimation based on measurements of the human os coxae is presented using skeletons from a metapopulation of identified adult individuals from twelve independent population samples. For reliable sex estimation, a posterior probability greater than 0.95 was considered to be the classification threshold: below this value, estimates are considered indeterminate. By providing free software, we aim to develop an even more disseminated method for sex estimation. Ten metric variables collected from 2,040 ossa coxa of adult subjects of known sex were recorded between 1986 and 2002 (reference sample). To test both the validity and reliability, a target sample consisting of two series of adult ossa coxa of known sex (n = 623) was used. The DSP2 software (Diagnose Sexuelle Probabiliste v2) is based on Linear Discriminant Analysis, and the posterior probabilities are calculated using an R script. For the reference sample, any combination of four dimensions provides a correct sex estimate in at least 99% of cases. The percentage of individuals for whom sex can be estimated depends on the number of dimensions; for all ten variables it is higher than 90%. Those results are confirmed in the target sample. Our posterior probability threshold of 0.95 for sex estimate corresponds to the traditional sectioning point used in osteological studies. DSP2 software is replacing the former version that should not be used anymore. DSP2 is a robust and reliable technique for sexing adult os coxae, and is also user friendly. © 2017 Wiley Periodicals, Inc.
Kim, Hyun Jung; Griffiths, Mansel W; Fazil, Aamir M; Lammerding, Anna M
2009-09-01
Foodborne illness contracted at food service operations is an important public health issue in Korea. In this study, the probabilities for growth of, and enterotoxin production by, Staphylococcus aureus in pork meat-based foods prepared in food service operations were estimated by the Monte Carlo simulation. Data on the prevalence and concentration of S. aureus as well as compliance to guidelines for time and temperature controls during food service operations were collected. The growth of S. aureus was initially estimated by using the U.S. Department of Agriculture's Pathogen Modeling Program. A second model based on raw pork meat was derived to compare cell number predictions. The correlation between toxin level and cell number as well as minimum toxin dose obtained from published data was adopted to quantify the probability of staphylococcal intoxication. When data gaps were found, assumptions were made based on guidelines for food service practices. Baseline risk model and scenario analyses were performed to indicate possible outcomes of staphylococcal intoxication under the scenarios generated based on these data gaps. Staphylococcal growth was predicted during holding before and after cooking, and the highest estimated concentration (4.59 log CFU/g for the 99.9th percentile value) of S. aureus was observed in raw pork initially contaminated with S. aureus and held before cooking. The estimated probability for staphylococcal intoxication was very low, using currently available data. However, scenario analyses revealed an increased possibility of staphylococcal intoxication when increased levels of initial contamination in the raw meat, andlonger holding time both before and after cooking the meat occurred.
Confidence Intervals for Proportion Estimates in Complex Samples. Research Report. ETS RR-06-21
ERIC Educational Resources Information Center
Oranje, Andreas
2006-01-01
Confidence intervals are an important tool to indicate uncertainty of estimates and to give an idea of probable values of an estimate if a different sample from the population was drawn or a different sample of measures was used. Standard symmetric confidence intervals for proportion estimates based on a normal approximation can yield bounds…
ERIC Educational Resources Information Center
Lafferty, Mark T.
2010-01-01
The number of project failures and those projects completed over cost and over schedule has been a significant issue for software project managers. Among the many reasons for failure, inaccuracy in software estimation--the basis for project bidding, budgeting, planning, and probability estimates--has been identified as a root cause of a high…
Subramanian, Sundarraman
2008-01-01
This article concerns asymptotic theory for a new estimator of a survival function in the missing censoring indicator model of random censorship. Specifically, the large sample results for an inverse probability-of-non-missingness weighted estimator of the cumulative hazard function, so far not available, are derived, including an almost sure representation with rate for a remainder term, and uniform strong consistency with rate of convergence. The estimator is based on a kernel estimate for the conditional probability of non-missingness of the censoring indicator. Expressions for its bias and variance, in turn leading to an expression for the mean squared error as a function of the bandwidth, are also obtained. The corresponding estimator of the survival function, whose weak convergence is derived, is asymptotically efficient. A numerical study, comparing the performances of the proposed and two other currently existing efficient estimators, is presented. PMID:18953423
Subramanian, Sundarraman
2006-01-01
This article concerns asymptotic theory for a new estimator of a survival function in the missing censoring indicator model of random censorship. Specifically, the large sample results for an inverse probability-of-non-missingness weighted estimator of the cumulative hazard function, so far not available, are derived, including an almost sure representation with rate for a remainder term, and uniform strong consistency with rate of convergence. The estimator is based on a kernel estimate for the conditional probability of non-missingness of the censoring indicator. Expressions for its bias and variance, in turn leading to an expression for the mean squared error as a function of the bandwidth, are also obtained. The corresponding estimator of the survival function, whose weak convergence is derived, is asymptotically efficient. A numerical study, comparing the performances of the proposed and two other currently existing efficient estimators, is presented.
NASA Astrophysics Data System (ADS)
Tachibana, Hideyuki; Suzuki, Takafumi; Mabuchi, Kunihiko
We address an estimation method of isometric muscle tension of fingers, as fundamental research for a neural signal-based prosthesis of fingers. We utilize needle electromyogram (EMG) signals, which have approximately equivalent information to peripheral neural signals. The estimating algorithm comprised two convolution operations. The first convolution is between normal distribution and a spike array, which is detected by needle EMG signals. The convolution estimates the probability density of spike-invoking time in the muscle. In this convolution, we hypothesize that each motor unit in a muscle activates spikes independently based on a same probability density function. The second convolution is between the result of the previous convolution and isometric twitch, viz., the impulse response of the motor unit. The result of the calculation is the sum of all estimated tensions of whole muscle fibers, i.e., muscle tension. We confirmed that there is good correlation between the estimated tension of the muscle and the actual tension, with >0.9 correlation coefficients at 59%, and >0.8 at 89% of all trials.
Hines, James E.; Nichols, James D.
2002-01-01
Pradel's (1996) temporal symmetry model permitting direct estimation and modelling of population growth rate, u i , provides a potentially useful tool for the study of population dynamics using marked animals. Because of its recent publication date, the approach has not seen much use, and there have been virtually no investigations directed at robustness of the resulting estimators. Here we consider several potential sources of bias, all motivated by specific uses of this estimation approach. We consider sampling situations in which the study area expands with time and present an analytic expression for the bias in u i We next consider trap response in capture probabilities and heterogeneous capture probabilities and compute large-sample and simulation-based approximations of resulting bias in u i . These approximations indicate that trap response is an especially important assumption violation that can produce substantial bias. Finally, we consider losses on capture and emphasize the importance of selecting the estimator for u i that is appropriate to the question being addressed. For studies based on only sighting and resighting data, Pradel's (1996) u i ' is the appropriate estimator.
Gavett, Brandon E
2015-03-01
The base rates of abnormal test scores in cognitively normal samples have been a focus of recent research. The goal of the current study is to illustrate how Bayes' theorem uses these base rates--along with the same base rates in cognitively impaired samples and prevalence rates of cognitive impairment--to yield probability values that are more useful for making judgments about the absence or presence of cognitive impairment. Correlation matrices, means, and standard deviations were obtained from the Wechsler Memory Scale--4th Edition (WMS-IV) Technical and Interpretive Manual and used in Monte Carlo simulations to estimate the base rates of abnormal test scores in the standardization and special groups (mixed clinical) samples. Bayes' theorem was applied to these estimates to identify probabilities of normal cognition based on the number of abnormal test scores observed. Abnormal scores were common in the standardization sample (65.4% scoring below a scaled score of 7 on at least one subtest) and more common in the mixed clinical sample (85.6% scoring below a scaled score of 7 on at least one subtest). Probabilities varied according to the number of abnormal test scores, base rates of normal cognition, and cutoff scores. The results suggest that interpretation of base rates obtained from cognitively healthy samples must also account for data from cognitively impaired samples. Bayes' theorem can help neuropsychologists answer questions about the probability that an individual examinee is cognitively healthy based on the number of abnormal test scores observed.
Probability Theory Plus Noise: Descriptive Estimation and Inferential Judgment.
Costello, Fintan; Watts, Paul
2018-01-01
We describe a computational model of two central aspects of people's probabilistic reasoning: descriptive probability estimation and inferential probability judgment. This model assumes that people's reasoning follows standard frequentist probability theory, but it is subject to random noise. This random noise has a regressive effect in descriptive probability estimation, moving probability estimates away from normative probabilities and toward the center of the probability scale. This random noise has an anti-regressive effect in inferential judgement, however. These regressive and anti-regressive effects explain various reliable and systematic biases seen in people's descriptive probability estimation and inferential probability judgment. This model predicts that these contrary effects will tend to cancel out in tasks that involve both descriptive estimation and inferential judgement, leading to unbiased responses in those tasks. We test this model by applying it to one such task, described by Gallistel et al. ). Participants' median responses in this task were unbiased, agreeing with normative probability theory over the full range of responses. Our model captures the pattern of unbiased responses in this task, while simultaneously explaining systematic biases away from normatively correct probabilities seen in other tasks. Copyright © 2018 Cognitive Science Society, Inc.
Learn-as-you-go acceleration of cosmological parameter estimates
NASA Astrophysics Data System (ADS)
Aslanyan, Grigor; Easther, Richard; Price, Layne C.
2015-09-01
Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for accelerating cosmological parameter estimation. We describe a learn-as-you-go algorithm that is implemented in the Cosmo++ code and (1) trains the emulator while simultaneously estimating posterior probabilities; (2) identifies unreliable estimates, computing the exact numerical likelihoods if necessary; and (3) progressively learns and updates the error model as the calculation progresses. We explicitly describe and model the emulation error and show how this can be propagated into the posterior probabilities. We apply these techniques to the Planck likelihood and the calculation of ΛCDM posterior probabilities. The computation is significantly accelerated without a pre-defined training set and uncertainties in the posterior probabilities are subdominant to statistical fluctuations. We have obtained a speedup factor of 6.5 for Metropolis-Hastings and 3.5 for nested sampling. Finally, we discuss the general requirements for a credible error model and show how to update them on-the-fly.
Probable flood predictions in ungauged coastal basins of El Salvador
Friedel, M.J.; Smith, M.E.; Chica, A.M.E.; Litke, D.
2008-01-01
A regionalization procedure is presented and used to predict probable flooding in four ungauged coastal river basins of El Salvador: Paz, Jiboa, Grande de San Miguel, and Goascoran. The flood-prediction problem is sequentially solved for two regions: upstream mountains and downstream alluvial plains. In the upstream mountains, a set of rainfall-runoff parameter values and recurrent peak-flow discharge hydrographs are simultaneously estimated for 20 tributary-basin models. Application of dissimilarity equations among tributary basins (soft prior information) permitted development of a parsimonious parameter structure subject to information content in the recurrent peak-flow discharge values derived using regression equations based on measurements recorded outside the ungauged study basins. The estimated joint set of parameter values formed the basis from which probable minimum and maximum peak-flow discharge limits were then estimated revealing that prediction uncertainty increases with basin size. In the downstream alluvial plain, model application of the estimated minimum and maximum peak-flow hydrographs facilitated simulation of probable 100-year flood-flow depths in confined canyons and across unconfined coastal alluvial plains. The regionalization procedure provides a tool for hydrologic risk assessment and flood protection planning that is not restricted to the case presented herein. ?? 2008 ASCE.
Learn-as-you-go acceleration of cosmological parameter estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aslanyan, Grigor; Easther, Richard; Price, Layne C., E-mail: g.aslanyan@auckland.ac.nz, E-mail: r.easther@auckland.ac.nz, E-mail: lpri691@aucklanduni.ac.nz
2015-09-01
Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for accelerating cosmological parameter estimation. We describe a learn-as-you-go algorithm that is implemented in the Cosmo++ code and (1) trains the emulator while simultaneously estimating posterior probabilities; (2) identifies unreliable estimates, computing the exact numerical likelihoods if necessary; and (3) progressively learns and updates the error model as the calculation progresses. We explicitlymore » describe and model the emulation error and show how this can be propagated into the posterior probabilities. We apply these techniques to the Planck likelihood and the calculation of ΛCDM posterior probabilities. The computation is significantly accelerated without a pre-defined training set and uncertainties in the posterior probabilities are subdominant to statistical fluctuations. We have obtained a speedup factor of 6.5 for Metropolis-Hastings and 3.5 for nested sampling. Finally, we discuss the general requirements for a credible error model and show how to update them on-the-fly.« less
Nichols, James D.; Pollock, Kenneth H.; Hines, James E.
1984-01-01
The robust design of Pollock (1982) was used to estimate parameters of a Maryland M. pennsylvanicus population. Closed model tests provided strong evidence of heterogeneity of capture probability, and model M eta (Otis et al., 1978) was selected as the most appropriate model for estimating population size. The Jolly-Seber model goodness-of-fit test indicated rejection of the model for this data set, and the M eta estimates of population size were all higher than the Jolly-Seber estimates. Both of these results are consistent with the evidence of heterogeneous capture probabilities. The authors thus used M eta estimates of population size, Jolly-Seber estimates of survival rate, and estimates of birth-immigration based on a combination of the population size and survival rate estimates. Advantages of the robust design estimates for certain inference procedures are discussed, and the design is recommended for future small mammal capture-recapture studies directed at estimation.
An alternative empirical likelihood method in missing response problems and causal inference.
Ren, Kaili; Drummond, Christopher A; Brewster, Pamela S; Haller, Steven T; Tian, Jiang; Cooper, Christopher J; Zhang, Biao
2016-11-30
Missing responses are common problems in medical, social, and economic studies. When responses are missing at random, a complete case data analysis may result in biases. A popular debias method is inverse probability weighting proposed by Horvitz and Thompson. To improve efficiency, Robins et al. proposed an augmented inverse probability weighting method. The augmented inverse probability weighting estimator has a double-robustness property and achieves the semiparametric efficiency lower bound when the regression model and propensity score model are both correctly specified. In this paper, we introduce an empirical likelihood-based estimator as an alternative to Qin and Zhang (2007). Our proposed estimator is also doubly robust and locally efficient. Simulation results show that the proposed estimator has better performance when the propensity score is correctly modeled. Moreover, the proposed method can be applied in the estimation of average treatment effect in observational causal inferences. Finally, we apply our method to an observational study of smoking, using data from the Cardiovascular Outcomes in Renal Atherosclerotic Lesions clinical trial. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Wiens, J. David; Kolar, Patrick S.; Fuller, Mark R.; Hunt, W. Grainger; Hunt, Teresa
2015-01-01
We used a multistate occupancy sampling design to estimate occupancy, breeding success, and abundance of territorial pairs of golden eagles (Aquila chrysaetos) in the Diablo Range, California, in 2014. This method uses the spatial pattern of detections and non-detections over repeated visits to survey sites to estimate probabilities of occupancy and successful reproduction while accounting for imperfect detection of golden eagles and their young during surveys. The estimated probability of detecting territorial pairs of golden eagles and their young was less than 1 and varied with time of the breeding season, as did the probability of correctly classifying a pair’s breeding status. Imperfect detection and breeding classification led to a sizeable difference between the uncorrected, naïve estimate of the proportion of occupied sites where successful reproduction was observed (0.20) and the model-based estimate (0.30). The analysis further indicated a relatively high overall probability of landscape occupancy by pairs of golden eagles (0.67, standard error = 0.06), but that areas with the greatest occupancy and reproductive potential were patchily distributed. We documented a total of 138 territorial pairs of golden eagles during surveys completed in the 2014 breeding season, which represented about one-half of the 280 pairs we estimated to occur in the broader 5,169-square kilometer region sampled. The study results emphasize the importance of accounting for imperfect detection and spatial heterogeneity in studies of site occupancy, breeding success, and abundance of golden eagles.
Inferring extinction risks from sighting records.
Thompson, C J; Lee, T E; Stone, L; McCarthy, M A; Burgman, M A
2013-12-07
Estimating the probability that a species is extinct based on historical sighting records is important when deciding how much effort and money to invest in conservation policies. The framework we offer is more general than others in the literature to date. Our formulation allows for definite and uncertain observations, and thus better accommodates the realities of sighting record quality. Typically, the probability of observing a species given it is extant/extinct is challenging to define, especially when the possibility of a false observation is included. As such, we assume that observation probabilities derive from a representative probability density function. We incorporate this randomness in two different ways ("quenched" versus "annealed") using a framework that is equivalent to a Bayes formulation. The two methods can lead to significantly different estimates for extinction. In the case of definite sightings only, we provide an explicit deterministic calculation (in which observation probabilities are point estimates). Furthermore, our formulation replicates previous work in certain limiting cases. In the case of uncertain sightings, we allow for the possibility of several independent observational types (specimen, photographs, etc.). The method is applied to the Caribbean monk seal, Monachus tropicalis (which has only definite sightings), and synthetic data, with uncertain sightings. © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Inoue, N.
2017-12-01
The conditional probability of surface ruptures is affected by various factors, such as shallow material properties, process of earthquakes, ground motions and so on. Toda (2013) pointed out difference of the conditional probability of strike and reverse fault by considering the fault dip and width of seismogenic layer. This study evaluated conditional probability of surface rupture based on following procedures. Fault geometry was determined from the randomly generated magnitude based on The Headquarters for Earthquake Research Promotion (2017) method. If the defined fault plane was not saturated in the assumed width of the seismogenic layer, the fault plane depth was randomly provided within the seismogenic layer. The logistic analysis was performed to two data sets: surface displacement calculated by dislocation methods (Wang et al., 2003) from the defined source fault, the depth of top of the defined source fault. The estimated conditional probability from surface displacement indicated higher probability of reverse faults than that of strike faults, and this result coincides to previous similar studies (i.e. Kagawa et al., 2004; Kataoka and Kusakabe, 2005). On the contrary, the probability estimated from the depth of the source fault indicated higher probability of thrust faults than that of strike and reverse faults, and this trend is similar to the conditional probability of PFDHA results (Youngs et al., 2003; Moss and Ross, 2011). The probability of combined simulated results of thrust and reverse also shows low probability. The worldwide compiled reverse fault data include low fault dip angle earthquake. On the other hand, in the case of Japanese reverse fault, there is possibility that the conditional probability of reverse faults with less low dip angle earthquake shows low probability and indicates similar probability of strike fault (i.e. Takao et al., 2013). In the future, numerical simulation by considering failure condition of surface by the source fault would be performed in order to examine the amount of the displacement and conditional probability quantitatively.
Mueller, C.S.
2010-01-01
I analyze the sensitivity of seismic-hazard estimates in the central and eastern United States (CEUS) to maximum magnitude (mmax) by exercising the U.S. Geological Survey (USGS) probabilistic hazard model with several mmax alternatives. Seismicity-based sources control the hazard in most of the CEUS, but data seldom provide an objective basis for estimating mmax. The USGS uses preferred mmax values of moment magnitude 7.0 and 7.5 for the CEUS craton and extended margin, respectively, derived from data in stable continental regions worldwide. Other approaches, for example analysis of local seismicity or judgment about a source's seismogenic potential, often lead to much smaller mmax. Alternative models span the mmax ranges from the 1980s Electric Power Research Institute/Seismicity Owners Group (EPRI/SOG) analysis. Results are presented as haz-ard ratios relative to the USGS national seismic hazard maps. One alternative model specifies mmax equal to moment magnitude 5.0 and 5.5 for the craton and margin, respectively, similar to EPRI/SOG for some sources. For 2% probability of exceedance in 50 years (about 0.0004 annual probability), the strong mmax truncation produces hazard ratios equal to 0.35-0.60 for 0.2-sec spectral acceleration, and 0.15-0.35 for 1.0-sec spectral acceleration. Hazard-controlling earthquakes interact with mmax in complex ways. There is a relatively weak dependence on probability level: hazardratios increase 0-15% for 0.002 annual exceedance probability and decrease 5-25% for 0.00001 annual exceedance probability. Although differences at some sites are tempered when faults are added, mmax clearly accounts for some of the discrepancies that are seen in comparisons between USGS-based and EPRI/SOG-based hazard results.
NASA Astrophysics Data System (ADS)
Jang, Cheng-Shin; Chen, Shih-Kai
2015-04-01
Groundwater nitrate-N contamination occurs frequently in agricultural regions, primarily resulting from surface agricultural activities. The focus of this study is to establish groundwater protection zones based on indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N in the Choushui River alluvial fan in Taiwan. The groundwater protection zones are determined by univariate indicator kriging (IK) estimation, aquifer vulnerability assessment using logistic regression (LR), and integration of the IK estimation and aquifer vulnerability using simple IK with local prior means (sIKlpm). First, according to the statistical significance of source, transport, and attenuation factors dominating the occurrence of nitrate-N pollution, a LR model was adopted to evaluate aquifer vulnerability and to characterize occurrence probability of nitrate-N exceeding 0.5 mg/L. Moreover, the probabilities estimated using LR were regarded as local prior means. IK was then used to estimate the actual extent of nitrate-N pollution. The integration of the IK estimation and aquifer vulnerability was obtained using sIKlpm. Finally, groundwater protection zones were probabilistically determined using the three aforementioned methods, and the estimated accuracy of the delineated groundwater protection zones was gauged using a cross-validation procedure based on observed nitrate-N data. The results reveal that the integration of the IK estimation and aquifer vulnerability using sIKlpm is more robust than univariate IK estimation and aquifer vulnerability assessment using LR for establishing groundwater protection zones. Rigorous management practices for fertilizer use should be implemented in orchards situated in the determined groundwater protection zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, Paul B.
Paralleling our recent computationally intensive (quasi-Monte Carlo) work for the case N=4 (e-print quant-ph/0308037), we undertake the task for N=6 of computing to high numerical accuracy, the formulas of Sommers and Zyczkowski (e-print quant-ph/0304041) for the (N{sup 2}-1)-dimensional volume and (N{sup 2}-2)-dimensional hyperarea of the (separable and nonseparable) NxN density matrices, based on the Bures (minimal monotone) metric--and also their analogous formulas (e-print quant-ph/0302197) for the (nonmonotone) flat Hilbert-Schmidt metric. With the same seven 10{sup 9} well-distributed ('low-discrepancy') sample points, we estimate the unknown volumes and hyperareas based on five additional (monotone) metrics of interest, including the Kubo-Mori and Wigner-Yanase.more » Further, we estimate all of these seven volume and seven hyperarea (unknown) quantities when restricted to the separable density matrices. The ratios of separable volumes (hyperareas) to separable plus nonseparable volumes (hyperareas) yield estimates of the separability probabilities of generically rank-6 (rank-5) density matrices. The (rank-6) separability probabilities obtained based on the 35-dimensional volumes appear to be--independently of the metric (each of the seven inducing Haar measure) employed--twice as large as those (rank-5 ones) based on the 34-dimensional hyperareas. (An additional estimate--33.9982--of the ratio of the rank-6 Hilbert-Schmidt separability probability to the rank-4 one is quite clearly close to integral too.) The doubling relationship also appears to hold for the N=4 case for the Hilbert-Schmidt metric, but not the others. We fit simple exact formulas to our estimates of the Hilbert-Schmidt separable volumes and hyperareas in both the N=4 and N=6 cases.« less
ESTIMATING ACUTE AND CRONIC TOXICITY OF CHEMICALS FOR ENDANGERED FISHES
Predictive toxicological models, including estimates of uncertainty, are necessary to perform probability-based ecological risk assessments. This is particularly true for the protection of endangered species that are not prudent to test, other species that have not been tested o...
Estimating the concordance probability in a survival analysis with a discrete number of risk groups.
Heller, Glenn; Mo, Qianxing
2016-04-01
A clinical risk classification system is an important component of a treatment decision algorithm. A measure used to assess the strength of a risk classification system is discrimination, and when the outcome is survival time, the most commonly applied global measure of discrimination is the concordance probability. The concordance probability represents the pairwise probability of lower patient risk given longer survival time. The c-index and the concordance probability estimate have been used to estimate the concordance probability when patient-specific risk scores are continuous. In the current paper, the concordance probability estimate and an inverse probability censoring weighted c-index are modified to account for discrete risk scores. Simulations are generated to assess the finite sample properties of the concordance probability estimate and the weighted c-index. An application of these measures of discriminatory power to a metastatic prostate cancer risk classification system is examined.
Last-position elimination-based learning automata.
Zhang, Junqi; Wang, Cheng; Zhou, MengChu
2014-12-01
An update scheme of the state probability vector of actions is critical for learning automata (LA). The most popular is the pursuit scheme that pursues the estimated optimal action and penalizes others. This paper proposes a reverse philosophy that leads to last-position elimination-based learning automata (LELA). The action graded last in terms of the estimated performance is penalized by decreasing its state probability and is eliminated when its state probability becomes zero. All active actions, that is, actions with nonzero state probability, equally share the penalized state probability from the last-position action at each iteration. The proposed LELA is characterized by the relaxed convergence condition for the optimal action, the accelerated step size of the state probability update scheme for the estimated optimal action, and the enriched sampling for the estimated nonoptimal actions. The proof of the ϵ-optimal property for the proposed algorithm is presented. Last-position elimination is a widespread philosophy in the real world and has proved to be also helpful for the update scheme of the learning automaton via the simulations of well-known benchmark environments. In the simulations, two versions of the LELA, using different selection strategies of the last action, are compared with the classical pursuit algorithms Discretized Pursuit Reward-Inaction (DP(RI)) and Discretized Generalized Pursuit Algorithm (DGPA). Simulation results show that the proposed schemes achieve significantly faster convergence and higher accuracy than the classical ones. Specifically, the proposed schemes reduce the interval to find the best parameter for a specific environment in the classical pursuit algorithms. Thus, they can have their parameter tuning easier to perform and can save much more time when applied to a practical case. Furthermore, the convergence curves and the corresponding variance coefficient curves of the contenders are illustrated to characterize their essential differences and verify the analysis results of the proposed algorithms.
Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis.
Chiba, Tomoaki; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru
2017-01-01
In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group's sales beat GM's sales, which is a reasonable scenario.
Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis
Chiba, Tomoaki; Akaho, Shotaro; Murata, Noboru
2017-01-01
In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group’s sales beat GM’s sales, which is a reasonable scenario. PMID:28076383
Charvat, Hadrien; Sasazuki, Shizuka; Inoue, Manami; Iwasaki, Motoki; Sawada, Norie; Shimazu, Taichi; Yamaji, Taiki; Tsugane, Shoichiro
2013-11-01
The present work aims to provide 10-year estimates of the probability of cancer occurrence in the Japanese population based on age, sex, and the pattern of adherence to five healthy lifestyle habits. The study population consisted of 74,935 participants in the Japan Public Health Center-Based Prospective Study (aged 45 to 74 years) who answered a 5-year follow-up questionnaire about various lifestyle habits between 1995 and 1999. The relationship between five previously identified healthy lifestyle habits (never smoking, moderate or no alcohol consumption, adequate physical activity, moderate salt intake, and appropriate body mass index) and cancer occurrence was assessed using a sex-specific parametric survival model. Compared to individuals not adhering to any of the five habits, never-smoking men had a nearly 30% reduction in the 10-year probability of cancer occurrence (e.g., 20.5% vs. 28.7% at age 70), and never-smoking women had a 16% reduction (e.g., 10.5% vs. 12.5% at age 70). Adherence to all five habits was estimated to reduce the 10-year probability of cancer occurrence by 1/2 in men and 1/3 in women. By quantifying the impact of lifestyle habits on the probability of cancer occurrence, this study emphasizes the importance of lifestyle improvement. © 2013.
How are flood risk estimates affected by the choice of return-periods?
NASA Astrophysics Data System (ADS)
Ward, P. J.; de Moel, H.; Aerts, J. C. J. H.
2011-12-01
Flood management is more and more adopting a risk based approach, whereby flood risk is the product of the probability and consequences of flooding. One of the most common approaches in flood risk assessment is to estimate the damage that would occur for floods of several exceedance probabilities (or return periods), to plot these on an exceedance probability-loss curve (risk curve) and to estimate risk as the area under the curve. However, there is little insight into how the selection of the return-periods (which ones and how many) used to calculate risk actually affects the final risk calculation. To gain such insights, we developed and validated an inundation model capable of rapidly simulating inundation extent and depth, and dynamically coupled this to an existing damage model. The method was applied to a section of the River Meuse in the southeast of the Netherlands. Firstly, we estimated risk based on a risk curve using yearly return periods from 2 to 10 000 yr (€ 34 million p.a.). We found that the overall risk is greatly affected by the number of return periods used to construct the risk curve, with over-estimations of annual risk between 33% and 100% when only three return periods are used. In addition, binary assumptions on dike failure can have a large effect (a factor two difference) on risk estimates. Also, the minimum and maximum return period considered in the curve affects the risk estimate considerably. The results suggest that more research is needed to develop relatively simple inundation models that can be used to produce large numbers of inundation maps, complementary to more complex 2-D-3-D hydrodynamic models. It also suggests that research into flood risk could benefit by paying more attention to the damage caused by relatively high probability floods.
Exposure to benzene in a pooled analysis of petroleum industry case-control studies.
Glass, D C; Schnatter, A R; Tang, G; Armstrong, T W; Rushton, L
2017-11-01
Cases of lymphohematopoietic cancer from three petroleum industry cohorts, matched to controls from the respective cohort, were pooled into single study. Average benzene exposure was quantitatively estimated in ppm for each job based on measured data from the relevant country, adjusted for the specific time period, site and job exposure characteristics and the certainty of the exposure estimate scored. The probability of dermal exposure and of peak exposure was also assessed. Before risk was examined, an exposure estimate comparison and rationalisation exercise was performed across the studies to ensure accuracy and consistency of approach. This article evaluates the final exposure estimates and their use in the risk assessments. Overall benzene exposure estimates were low: 90% of participants accumulated less than 20 ppm-years. Mean cumulative exposure was estimated as 5.15 ppm-years, mean duration was 22 years, and mean exposure intensity was 0.2 ppm. 46% of participants were allocated a peak exposure (>3 ppm at least weekly). 40% of participants had a high probability of dermal exposure (based on the relative probability of at least weekly exposure). There were differences in mean intensity of exposure, probability of peak, and/or dermal exposure associated with job category, job site, and decade of exposure. Terminal Operators handling benzene-containing products were the most highly exposed group, followed by Tanker Drivers carrying gasoline. Exposures were higher around 1940-1950 and lower in more recent decades. Overall confidence in the exposure estimates was highest for recently held jobs and for white-collar jobs. We used sensitivity analyses, which included and excluded case-sets on the basis of exposure certainty scores, to inform the risk assessment. The above analyses demonstrated that the different patterns of exposure across the three studies are largely attributable to differences in jobs, site types, and time frames rather than study. This provides reassurance that the previous rationalisation of exposures achieved inter-study consistency and that the data could be confidently pooled.
Potter, Gail E; Smieszek, Timo; Sailer, Kerstin
2015-09-01
Face-to-face social contacts are potentially important transmission routes for acute respiratory infections, and understanding the contact network can improve our ability to predict, contain, and control epidemics. Although workplaces are important settings for infectious disease transmission, few studies have collected workplace contact data and estimated workplace contact networks. We use contact diaries, architectural distance measures, and institutional structures to estimate social contact networks within a Swiss research institute. Some contact reports were inconsistent, indicating reporting errors. We adjust for this with a latent variable model, jointly estimating the true (unobserved) network of contacts and duration-specific reporting probabilities. We find that contact probability decreases with distance, and that research group membership, role, and shared projects are strongly predictive of contact patterns. Estimated reporting probabilities were low only for 0-5 min contacts. Adjusting for reporting error changed the estimate of the duration distribution, but did not change the estimates of covariate effects and had little effect on epidemic predictions. Our epidemic simulation study indicates that inclusion of network structure based on architectural and organizational structure data can improve the accuracy of epidemic forecasting models.
Potter, Gail E.; Smieszek, Timo; Sailer, Kerstin
2015-01-01
Face-to-face social contacts are potentially important transmission routes for acute respiratory infections, and understanding the contact network can improve our ability to predict, contain, and control epidemics. Although workplaces are important settings for infectious disease transmission, few studies have collected workplace contact data and estimated workplace contact networks. We use contact diaries, architectural distance measures, and institutional structures to estimate social contact networks within a Swiss research institute. Some contact reports were inconsistent, indicating reporting errors. We adjust for this with a latent variable model, jointly estimating the true (unobserved) network of contacts and duration-specific reporting probabilities. We find that contact probability decreases with distance, and that research group membership, role, and shared projects are strongly predictive of contact patterns. Estimated reporting probabilities were low only for 0–5 min contacts. Adjusting for reporting error changed the estimate of the duration distribution, but did not change the estimates of covariate effects and had little effect on epidemic predictions. Our epidemic simulation study indicates that inclusion of network structure based on architectural and organizational structure data can improve the accuracy of epidemic forecasting models. PMID:26634122
Methods for estimating magnitude and frequency of floods in Montana based on data through 1983
Omang, R.J.; Parrett, Charles; Hull, J.A.
1986-01-01
Equations are presented for estimating flood magnitudes for ungaged sites in Montana based on data through 1983. The State was divided into eight regions based on hydrologic conditions, and separate multiple regression equations were developed for each region. These equations relate annual flood magnitudes and frequencies to basin characteristics and are applicable only to natural flow streams. In three of the regions, equations also were developed relating flood magnitudes and frequencies to basin characteristics and channel geometry measurements. The standard errors of estimate for an exceedance probability of 1% ranged from 39% to 87%. Techniques are described for estimating annual flood magnitude and flood frequency information at ungaged sites based on data from gaged sites on the same stream. Included are curves relating flood frequency information to drainage area for eight major streams in the State. Maximum known flood magnitudes in Montana are compared with estimated 1 %-chance flood magnitudes and with maximum known floods in the United States. Values of flood magnitudes for selected exceedance probabilities and values of significant basin characteristics and channel geometry measurements for all gaging stations used in the analysis are tabulated. Included are 375 stations in Montana and 28 nearby stations in Canada and adjoining States. (Author 's abstract)
Mori, Ryosuke; Matsuya, Yusuke; Yoshii, Yuji; Date, Hiroyuki
2018-01-01
Abstract DNA double-strand breaks (DSBs) are thought to be the main cause of cell death after irradiation. In this study, we estimated the probability distribution of the number of DSBs per cell nucleus by considering the DNA amount in a cell nucleus (which depends on the cell cycle) and the statistical variation in the energy imparted to the cell nucleus by X-ray irradiation. The probability estimation of DSB induction was made following these procedures: (i) making use of the Chinese Hamster Ovary (CHO)-K1 cell line as the target example, the amounts of DNA per nucleus in the logarithmic and the plateau phases of the growth curve were measured by flow cytometry with propidium iodide (PI) dyeing; (ii) the probability distribution of the DSB number per cell nucleus for each phase after irradiation with 1.0 Gy of 200 kVp X-rays was measured by means of γ-H2AX immunofluorescent staining; (iii) the distribution of the cell-specific energy deposition via secondary electrons produced by the incident X-rays was calculated by WLTrack (in-house Monte Carlo code); (iv) according to a mathematical model for estimating the DSB number per nucleus, we deduced the induction probability density of DSBs based on the measured DNA amount (depending on the cell cycle) and the calculated dose per nucleus. The model exhibited DSB induction probabilities in good agreement with the experimental results for the two phases, suggesting that the DNA amount (depending on the cell cycle) and the statistical variation in the local energy deposition are essential for estimating the DSB induction probability after X-ray exposure. PMID:29800455
Mori, Ryosuke; Matsuya, Yusuke; Yoshii, Yuji; Date, Hiroyuki
2018-05-01
DNA double-strand breaks (DSBs) are thought to be the main cause of cell death after irradiation. In this study, we estimated the probability distribution of the number of DSBs per cell nucleus by considering the DNA amount in a cell nucleus (which depends on the cell cycle) and the statistical variation in the energy imparted to the cell nucleus by X-ray irradiation. The probability estimation of DSB induction was made following these procedures: (i) making use of the Chinese Hamster Ovary (CHO)-K1 cell line as the target example, the amounts of DNA per nucleus in the logarithmic and the plateau phases of the growth curve were measured by flow cytometry with propidium iodide (PI) dyeing; (ii) the probability distribution of the DSB number per cell nucleus for each phase after irradiation with 1.0 Gy of 200 kVp X-rays was measured by means of γ-H2AX immunofluorescent staining; (iii) the distribution of the cell-specific energy deposition via secondary electrons produced by the incident X-rays was calculated by WLTrack (in-house Monte Carlo code); (iv) according to a mathematical model for estimating the DSB number per nucleus, we deduced the induction probability density of DSBs based on the measured DNA amount (depending on the cell cycle) and the calculated dose per nucleus. The model exhibited DSB induction probabilities in good agreement with the experimental results for the two phases, suggesting that the DNA amount (depending on the cell cycle) and the statistical variation in the local energy deposition are essential for estimating the DSB induction probability after X-ray exposure.
Farmer, William H.; Koltun, Greg
2017-01-01
Study regionThe state of Ohio in the United States, a humid, continental climate.Study focusThe estimation of nonexceedance probabilities of daily streamflows as an alternative means of establishing the relative magnitudes of streamflows associated with hydrologic and water-quality observations.New hydrological insights for the regionSeveral methods for estimating nonexceedance probabilities of daily mean streamflows are explored, including single-index methodologies (nearest-neighboring index) and geospatial tools (kriging and topological kriging). These methods were evaluated by conducting leave-one-out cross-validations based on analyses of nearly 7 years of daily streamflow data from 79 unregulated streamgages in Ohio and neighboring states. The pooled, ordinary kriging model, with a median Nash–Sutcliffe performance of 0.87, was superior to the single-site index methods, though there was some bias in the tails of the probability distribution. Incorporating network structure through topological kriging did not improve performance. The pooled, ordinary kriging model was applied to 118 locations without systematic streamgaging across Ohio where instantaneous streamflow measurements had been made concurrent with water-quality sampling on at least 3 separate days. Spearman rank correlations between estimated nonexceedance probabilities and measured streamflows were high, with a median value of 0.76. In consideration of application, the degree of regulation in a set of sample sites helped to specify the streamgages required to implement kriging approaches successfully.
Ludington, S.D.; Cox, D.P.; McCammon, R.B.
1996-01-01
For this assessment, the conterminous United States was divided into 12 regions Adirondack Mountains, Central and Southern Rocky Mountains, Colorado Plateau, East Central, Great Basin, Great Plains, Lake Superior, Northern Appalachians, Northern Rocky Mountains, Pacific Coast, Southern Appalachians, and Southern Basin and Range. The assessment, which was conducted by regional assessment teams of scientists from the USGS, was based on the concepts of permissive tracts and deposit models. Permissive tracts are discrete areas of the United States for which estimates of numbers of undiscovered deposits of a particular deposit type were made. A permissive tract is defined by its geographic boundaries such that the probability of deposits of the type delineated occurring outside the boundary is neglible. Deposit models, which are based on a compilation of worldwide literature and on observation, are sets of data in a convenient form that describe a group of deposits which have similar characteristics and that contain information on the common geologic attributes of the deposits and the environments in which they are found. Within each region, the assessment teams delineated permissive tracts for those deposit models that were judged to be appropriate and, when the amount of information warranted, estimated the number of undiscovered deposits. A total of 46 deposit models were used to assess 236 separate permissive tracts. Estimates of undiscovered deposits were limited to a depth of 1 km beneath the surface of the Earth. The estimates of the number of undiscovered deposits of gold, silver, copper, lead, and zinc were expressed in the form of a probability distribution. Commonly, the number of undiscovered deposits was estimated at the 90th, 50th, and 10th percentiles. A Monte Carlo simulation computer program was used to combine the probability distribution of the number of undiscovered deposits with the grade and tonnage data sets associated with each deposit model to obtain the probability distribution for undiscovered metal.
Structuring as an Aid to Performance in Base-Rate Problems.
1988-06-01
Design. All subjects were given two base-rate problems, here called the Lightbulb problem (adapted from Lyon & Slovic, 1976) and the Dyslexia problem; both...are shown in Table 1. Approximately half the subjects received the Lightbulb problem first; the others received the Dyslexia problem first. The two...probability that this bulb is really defective? [the child really has dyslexia ]? You can probably give a good estimate if you think hard and carefully
NASA Astrophysics Data System (ADS)
D'Isanto, A.; Polsterer, K. L.
2018-01-01
Context. The need to analyze the available large synoptic multi-band surveys drives the development of new data-analysis methods. Photometric redshift estimation is one field of application where such new methods improved the results, substantially. Up to now, the vast majority of applied redshift estimation methods have utilized photometric features. Aims: We aim to develop a method to derive probabilistic photometric redshift directly from multi-band imaging data, rendering pre-classification of objects and feature extraction obsolete. Methods: A modified version of a deep convolutional network was combined with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) were applied as performance criteria. We have adopted a feature based random forest and a plain mixture density network to compare performances on experiments with data from SDSS (DR9). Results: We show that the proposed method is able to predict redshift PDFs independently from the type of source, for example galaxies, quasars or stars. Thereby the prediction performance is better than both presented reference methods and is comparable to results from the literature. Conclusions: The presented method is extremely general and allows us to solve of any kind of probabilistic regression problems based on imaging data, for example estimating metallicity or star formation rate of galaxies. This kind of methodology is tremendously important for the next generation of surveys.
Emg Amplitude Estimators Based on Probability Distribution for Muscle-Computer Interface
NASA Astrophysics Data System (ADS)
Phinyomark, Angkoon; Quaine, Franck; Laurillau, Yann; Thongpanja, Sirinee; Limsakul, Chusak; Phukpattaranont, Pornchai
To develop an advanced muscle-computer interface (MCI) based on surface electromyography (EMG) signal, the amplitude estimations of muscle activities, i.e., root mean square (RMS) and mean absolute value (MAV) are widely used as a convenient and accurate input for a recognition system. Their classification performance is comparable to advanced and high computational time-scale methods, i.e., the wavelet transform. However, the signal-to-noise-ratio (SNR) performance of RMS and MAV depends on a probability density function (PDF) of EMG signals, i.e., Gaussian or Laplacian. The PDF of upper-limb motions associated with EMG signals is still not clear, especially for dynamic muscle contraction. In this paper, the EMG PDF is investigated based on surface EMG recorded during finger, hand, wrist and forearm motions. The results show that on average the experimental EMG PDF is closer to a Laplacian density, particularly for male subject and flexor muscle. For the amplitude estimation, MAV has a higher SNR, defined as the mean feature divided by its fluctuation, than RMS. Due to a same discrimination of RMS and MAV in feature space, MAV is recommended to be used as a suitable EMG amplitude estimator for EMG-based MCIs.
Traskin, Mikhail; Wang, Wei; Ten Have, Thomas R; Small, Dylan S
2013-01-01
The PAF for an exposure is the fraction of disease cases in a population that can be attributed to that exposure. One method of estimating the PAF involves estimating the probability of having the disease given the exposure and confounding variables. In many settings, the exposure will interact with the confounders and the confounders will interact with each other. Also, in many settings, the probability of having the disease is thought, based on subject matter knowledge, to be a monotone increasing function of the exposure and possibly of some of the confounders. We develop an efficient approach for estimating logistic regression models with interactions and monotonicity constraints, and apply this approach to estimating the population attributable fraction (PAF). Our approach produces substantially more accurate estimates of the PAF in some settings than the usual approach which uses logistic regression without monotonicity constraints.
Piecewise SALT sampling for estimating suspended sediment yields
Robert B. Thomas
1989-01-01
A probability sampling method called SALT (Selection At List Time) has been developed for collecting and summarizing data on delivery of suspended sediment in rivers. It is based on sampling and estimating yield using a suspended-sediment rating curve for high discharges and simple random sampling for low flows. The method gives unbiased estimates of total yield and...
Journal: A Review of Some Tracer-Test Design Equations for ...
Determination of necessary tracer mass, initial sample-collection time, and subsequent sample-collection frequency are the three most difficult aspects to estimate for a proposed tracer test prior to conducting the tracer test. To facilitate tracer-mass estimation, 33 mass-estimation equations are reviewed here, 32 of which were evaluated using previously published tracer-test design examination parameters. Comparison of the results produced a wide range of estimated tracer mass, but no means is available by which one equation may be reasonably selected over the others. Each equation produces a simple approximation for tracer mass. Most of the equations are based primarily on estimates or measurements of discharge, transport distance, and suspected transport times. Although the basic field parameters commonly employed are appropriate for estimating tracer mass, the 33 equations are problematic in that they were all probably based on the original developers' experience in a particular field area and not necessarily on measured hydraulic parameters or solute-transport theory. Suggested sampling frequencies are typically based primarily on probable transport distance, but with little regard to expected travel times. This too is problematic in that tends to result in false negatives or data aliasing. Simulations from the recently developed efficient hydrologic tracer-test design methodology (EHTD) were compared with those obtained from 32 of the 33 published tracer-
Quantifying the origins of life on a planetary scale.
Scharf, Caleb; Cronin, Leroy
2016-07-19
A simple, heuristic formula with parallels to the Drake Equation is introduced to help focus discussion on open questions for the origins of life in a planetary context. This approach indicates a number of areas where quantitative progress can be made on parameter estimation for determining origins of life probabilities, based on constraints from Bayesian approaches. We discuss a variety of "microscale" factors and their role in determining "macroscale" abiogenesis probabilities on suitable planets. We also propose that impact ejecta exchange between planets with parallel chemistries and chemical evolution could in principle amplify the development of molecular complexity and abiogenesis probabilities. This amplification could be very significant, and both bias our conclusions about abiogenesis probabilities based on the Earth and provide a major source of variance in the probability of life arising in planetary systems. We use our heuristic formula to suggest a number of observational routes for improving constraints on origins of life probabilities.
Quantifying the origins of life on a planetary scale
NASA Astrophysics Data System (ADS)
Scharf, Caleb; Cronin, Leroy
2016-07-01
A simple, heuristic formula with parallels to the Drake Equation is introduced to help focus discussion on open questions for the origins of life in a planetary context. This approach indicates a number of areas where quantitative progress can be made on parameter estimation for determining origins of life probabilities, based on constraints from Bayesian approaches. We discuss a variety of “microscale” factors and their role in determining “macroscale” abiogenesis probabilities on suitable planets. We also propose that impact ejecta exchange between planets with parallel chemistries and chemical evolution could in principle amplify the development of molecular complexity and abiogenesis probabilities. This amplification could be very significant, and both bias our conclusions about abiogenesis probabilities based on the Earth and provide a major source of variance in the probability of life arising in planetary systems. We use our heuristic formula to suggest a number of observational routes for improving constraints on origins of life probabilities.
Estimation of the limit of detection using information theory measures.
Fonollosa, Jordi; Vergara, Alexander; Huerta, Ramón; Marco, Santiago
2014-01-31
Definitions of the limit of detection (LOD) based on the probability of false positive and/or false negative errors have been proposed over the past years. Although such definitions are straightforward and valid for any kind of analytical system, proposed methodologies to estimate the LOD are usually simplified to signals with Gaussian noise. Additionally, there is a general misconception that two systems with the same LOD provide the same amount of information on the source regardless of the prior probability of presenting a blank/analyte sample. Based upon an analogy between an analytical system and a binary communication channel, in this paper we show that the amount of information that can be extracted from an analytical system depends on the probability of presenting the two different possible states. We propose a new definition of LOD utilizing information theory tools that deals with noise of any kind and allows the introduction of prior knowledge easily. Unlike most traditional LOD estimation approaches, the proposed definition is based on the amount of information that the chemical instrumentation system provides on the chemical information source. Our findings indicate that the benchmark of analytical systems based on the ability to provide information about the presence/absence of the analyte (our proposed approach) is a more general and proper framework, while converging to the usual values when dealing with Gaussian noise. Copyright © 2013 Elsevier B.V. All rights reserved.
Occupancy Modeling Species-Environment Relationships with Non-ignorable Survey Designs.
Irvine, Kathryn M; Rodhouse, Thomas J; Wright, Wilson J; Olsen, Anthony R
2018-05-26
Statistical models supporting inferences about species occurrence patterns in relation to environmental gradients are fundamental to ecology and conservation biology. A common implicit assumption is that the sampling design is ignorable and does not need to be formally accounted for in analyses. The analyst assumes data are representative of the desired population and statistical modeling proceeds. However, if datasets from probability and non-probability surveys are combined or unequal selection probabilities are used, the design may be non ignorable. We outline the use of pseudo-maximum likelihood estimation for site-occupancy models to account for such non-ignorable survey designs. This estimation method accounts for the survey design by properly weighting the pseudo-likelihood equation. In our empirical example, legacy and newer randomly selected locations were surveyed for bats to bridge a historic statewide effort with an ongoing nationwide program. We provide a worked example using bat acoustic detection/non-detection data and show how analysts can diagnose whether their design is ignorable. Using simulations we assessed whether our approach is viable for modeling datasets composed of sites contributed outside of a probability design Pseudo-maximum likelihood estimates differed from the usual maximum likelihood occu31 pancy estimates for some bat species. Using simulations we show the maximum likelihood estimator of species-environment relationships with non-ignorable sampling designs was biased, whereas the pseudo-likelihood estimator was design-unbiased. However, in our simulation study the designs composed of a large proportion of legacy or non-probability sites resulted in estimation issues for standard errors. These issues were likely a result of highly variable weights confounded by small sample sizes (5% or 10% sampling intensity and 4 revisits). Aggregating datasets from multiple sources logically supports larger sample sizes and potentially increases spatial extents for statistical inferences. Our results suggest that ignoring the mechanism for how locations were selected for data collection (e.g., the sampling design) could result in erroneous model-based conclusions. Therefore, in order to ensure robust and defensible recommendations for evidence-based conservation decision-making, the survey design information in addition to the data themselves must be available for analysts. Details for constructing the weights used in estimation and code for implementation are provided. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Martin, Summer L; Stohs, Stephen M; Moore, Jeffrey E
2015-03-01
Fisheries bycatch is a global threat to marine megafauna. Environmental laws require bycatch assessment for protected species, but this is difficult when bycatch is rare. Low bycatch rates, combined with low observer coverage, may lead to biased, imprecise estimates when using standard ratio estimators. Bayesian model-based approaches incorporate uncertainty, produce less volatile estimates, and enable probabilistic evaluation of estimates relative to management thresholds. Here, we demonstrate a pragmatic decision-making process that uses Bayesian model-based inferences to estimate the probability of exceeding management thresholds for bycatch in fisheries with < 100% observer coverage. Using the California drift gillnet fishery as a case study, we (1) model rates of rare-event bycatch and mortality using Bayesian Markov chain Monte Carlo estimation methods and 20 years of observer data; (2) predict unobserved counts of bycatch and mortality; (3) infer expected annual mortality; (4) determine probabilities of mortality exceeding regulatory thresholds; and (5) classify the fishery as having low, medium, or high bycatch impact using those probabilities. We focused on leatherback sea turtles (Dermochelys coriacea) and humpback whales (Megaptera novaeangliae). Candidate models included Poisson or zero-inflated Poisson likelihood, fishing effort, and a bycatch rate that varied with area, time, or regulatory regime. Regulatory regime had the strongest effect on leatherback bycatch, with the highest levels occurring prior to a regulatory change. Area had the strongest effect on humpback bycatch. Cumulative bycatch estimates for the 20-year period were 104-242 leatherbacks (52-153 deaths) and 6-50 humpbacks (0-21 deaths). The probability of exceeding a regulatory threshold under the U.S. Marine Mammal Protection Act (Potential Biological Removal, PBR) of 0.113 humpback deaths was 0.58, warranting a "medium bycatch impact" classification of the fishery. No PBR thresholds exist for leatherbacks, but the probability of exceeding an anticipated level of two deaths per year, stated as part of a U.S. Endangered Species Act assessment process, was 0.0007. The approach demonstrated here would allow managers to objectively and probabilistically classify fisheries with respect to bycatch impacts on species that have population-relevant mortality reference points, and declare with a stipulated level of certainty that bycatch did or did not exceed estimated upper bounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, T.L.; Simonen, F.A.
1992-05-01
Probabilistic fracture mechanics analysis is a major element of comprehensive probabilistic methodology on which current NRC regulatory requirements for pressurized water reactor vessel integrity evaluation are based. Computer codes such as OCA-P and VISA-II perform probabilistic fracture analyses to estimate the increase in vessel failure probability that occurs as the vessel material accumulates radiation damage over the operating life of the vessel. The results of such analyses, when compared with limits of acceptable failure probabilities, provide an estimation of the residual life of a vessel. Such codes can be applied to evaluate the potential benefits of plant-specific mitigating actions designedmore » to reduce the probability of failure of a reactor vessel. 10 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, T.L.; Simonen, F.A.
1992-01-01
Probabilistic fracture mechanics analysis is a major element of comprehensive probabilistic methodology on which current NRC regulatory requirements for pressurized water reactor vessel integrity evaluation are based. Computer codes such as OCA-P and VISA-II perform probabilistic fracture analyses to estimate the increase in vessel failure probability that occurs as the vessel material accumulates radiation damage over the operating life of the vessel. The results of such analyses, when compared with limits of acceptable failure probabilities, provide an estimation of the residual life of a vessel. Such codes can be applied to evaluate the potential benefits of plant-specific mitigating actions designedmore » to reduce the probability of failure of a reactor vessel. 10 refs.« less
Faith, Daniel P
2008-12-01
New species conservation strategies, including the EDGE of Existence (EDGE) program, have expanded threatened species assessments by integrating information about species' phylogenetic distinctiveness. Distinctiveness has been measured through simple scores that assign shared credit among species for evolutionary heritage represented by the deeper phylogenetic branches. A species with a high score combined with a high extinction probability receives high priority for conservation efforts. Simple hypothetical scenarios for phylogenetic trees and extinction probabilities demonstrate how such scoring approaches can provide inefficient priorities for conservation. An existing probabilistic framework derived from the phylogenetic diversity measure (PD) properly captures the idea of shared responsibility for the persistence of evolutionary history. It avoids static scores, takes into account the status of close relatives through their extinction probabilities, and allows for the necessary updating of priorities in light of changes in species threat status. A hypothetical phylogenetic tree illustrates how changes in extinction probabilities of one or more species translate into changes in expected PD. The probabilistic PD framework provided a range of strategies that moved beyond expected PD to better consider worst-case PD losses. In another example, risk aversion gave higher priority to a conservation program that provided a smaller, but less risky, gain in expected PD. The EDGE program could continue to promote a list of top species conservation priorities through application of probabilistic PD and simple estimates of current extinction probability. The list might be a dynamic one, with all the priority scores updated as extinction probabilities change. Results of recent studies suggest that estimation of extinction probabilities derived from the red list criteria linked to changes in species range sizes may provide estimated probabilities for many different species. Probabilistic PD provides a framework for single-species assessment that is well-integrated with a broader measurement of impacts on PD owing to climate change and other factors.
NASA Astrophysics Data System (ADS)
Aller, D.; Hohl, R.; Mair, F.; Schiesser, H.-H.
2003-04-01
Extreme hailfall can cause massive damage to building structures. For the insurance and reinsurance industry it is essential to estimate the probable maximum hail loss of their portfolio. The probable maximum loss (PML) is usually defined with a return period of 1 in 250 years. Statistical extrapolation has a number of critical points, as historical hail loss data are usually only available from some events while insurance portfolios change over the years. At the moment, footprints are derived from historical hail damage data. These footprints (mean damage patterns) are then moved over a portfolio of interest to create scenario losses. However, damage patterns of past events are based on the specific portfolio that was damaged during that event and can be considerably different from the current spread of risks. A new method for estimating the probable maximum hail loss to a building portfolio is presented. It is shown that footprints derived from historical damages are different to footprints of hail kinetic energy calculated from radar reflectivity measurements. Based on the relationship between radar-derived hail kinetic energy and hail damage to buildings, scenario losses can be calculated. A systematic motion of the hail kinetic energy footprints over the underlying portfolio creates a loss set. It is difficult to estimate the return period of losses calculated with footprints derived from historical damages being moved around. To determine the return periods of the hail kinetic energy footprints over Switzerland, 15 years of radar measurements and 53 years of agricultural hail losses are available. Based on these data, return periods of several types of hailstorms were derived for different regions in Switzerland. The loss set is combined with the return periods of the event set to obtain an exceeding frequency curve, which can be used to derive the PML.
Kim, Youngwoo; Hong, Byung Woo; Kim, Seung Ja; Kim, Jong Hyo
2014-07-01
A major challenge when distinguishing glandular tissues on mammograms, especially for area-based estimations, lies in determining a boundary on a hazy transition zone from adipose to glandular tissues. This stems from the nature of mammography, which is a projection of superimposed tissues consisting of different structures. In this paper, the authors present a novel segmentation scheme which incorporates the learned prior knowledge of experts into a level set framework for fully automated mammographic density estimations. The authors modeled the learned knowledge as a population-based tissue probability map (PTPM) that was designed to capture the classification of experts' visual systems. The PTPM was constructed using an image database of a selected population consisting of 297 cases. Three mammogram experts extracted regions for dense and fatty tissues on digital mammograms, which was an independent subset used to create a tissue probability map for each ROI based on its local statistics. This tissue class probability was taken as a prior in the Bayesian formulation and was incorporated into a level set framework as an additional term to control the evolution and followed the energy surface designed to reflect experts' knowledge as well as the regional statistics inside and outside of the evolving contour. A subset of 100 digital mammograms, which was not used in constructing the PTPM, was used to validate the performance. The energy was minimized when the initial contour reached the boundary of the dense and fatty tissues, as defined by experts. The correlation coefficient between mammographic density measurements made by experts and measurements by the proposed method was 0.93, while that with the conventional level set was 0.47. The proposed method showed a marked improvement over the conventional level set method in terms of accuracy and reliability. This result suggests that the proposed method successfully incorporated the learned knowledge of the experts' visual systems and has potential to be used as an automated and quantitative tool for estimations of mammographic breast density levels.
Assessing the chances of success: naïve statistics versus kind experience.
Hogarth, Robin M; Mukherjee, Kanchan; Soyer, Emre
2013-01-01
Additive integration of information is ubiquitous in judgment and has been shown to be effective even when multiplicative rules of probability theory are prescribed. We explore the generality of these findings in the context of estimating probabilities of success in contests. We first define a normative model of these probabilities that takes account of relative skill levels in contests where only a limited number of entrants can win. We then report 4 experiments using a scenario about a competition. Experiments 1 and 2 both elicited judgments of probabilities, and, although participants' responses demonstrated considerable variability, their mean judgments provide a good fit to a simple linear model. Experiment 3 explored choices. Most participants entered most contests and showed little awareness of appropriate probabilities. Experiment 4 investigated effects of providing aids to calculate probabilities, specifically, access to expert advice and 2 simulation tools. With these aids, estimates were accurate and decisions varied appropriately with economic consequences. We discuss implications by considering when additive decision rules are dysfunctional, the interpretation of overconfidence based on contest-entry behavior, and the use of aids to help people make better decisions.
Cherry, S.; White, G.C.; Keating, K.A.; Haroldson, Mark A.; Schwartz, Charles C.
2007-01-01
Current management of the grizzly bear (Ursus arctos) population in Yellowstone National Park and surrounding areas requires annual estimation of the number of adult female bears with cubs-of-the-year. We examined the performance of nine estimators of population size via simulation. Data were simulated using two methods for different combinations of population size, sample size, and coefficient of variation of individual sighting probabilities. We show that the coefficient of variation does not, by itself, adequately describe the effects of capture heterogeneity, because two different distributions of capture probabilities can have the same coefficient of variation. All estimators produced biased estimates of population size with bias decreasing as effort increased. Based on the simulation results we recommend the Chao estimator for model M h be used to estimate the number of female bears with cubs of the year; however, the estimator of Chao and Shen may also be useful depending on the goals of the research.
Regambal, Marci J; Alden, Lynn E
2012-09-01
Individuals with posttraumatic stress disorder (PTSD) are hypothesized to have a "sense of current threat." Perceived threat from the environment (i.e., external threat), can lead to overestimating the probability of the traumatic event reoccurring (Ehlers & Clark, 2000). However, it is unclear if external threat judgments are a pre-existing vulnerability for PTSD or a consequence of trauma exposure. We used trauma analog methodology to prospectively measure probability estimates of a traumatic event, and investigate how these estimates were related to cognitive processes implicated in PTSD development. 151 participants estimated the probability of being in car-accident related situations, watched a movie of a car accident victim, and then completed a measure of data-driven processing during the movie. One week later, participants re-estimated the probabilities, and completed measures of reexperiencing symptoms and symptom appraisals/reactions. Path analysis revealed that higher pre-existing probability estimates predicted greater data-driven processing which was associated with negative appraisals and responses to intrusions. Furthermore, lower pre-existing probability estimates and negative responses to intrusions were both associated with a greater change in probability estimates. Reexperiencing symptoms were predicted by negative responses to intrusions and, to a lesser degree, by greater changes in probability estimates. The undergraduate student sample may not be representative of the general public. The reexperiencing symptoms are less severe than what would be found in a trauma sample. Threat estimates present both a vulnerability and a consequence of exposure to a distressing event. Furthermore, changes in these estimates are associated with cognitive processes implicated in PTSD. Copyright © 2012 Elsevier Ltd. All rights reserved.
Przemyslaw, Baranski; Pawel, Strumillo
2012-01-01
The paper presents an algorithm for estimating a pedestrian location in an urban environment. The algorithm is based on the particle filter and uses different data sources: a GPS receiver, inertial sensors, probability maps and a stereo camera. Inertial sensors are used to estimate a relative displacement of a pedestrian. A gyroscope estimates a change in the heading direction. An accelerometer is used to count a pedestrian's steps and their lengths. The so-called probability maps help to limit GPS inaccuracy by imposing constraints on pedestrian kinematics, e.g., it is assumed that a pedestrian cannot cross buildings, fences etc. This limits position inaccuracy to ca. 10 m. Incorporation of depth estimates derived from a stereo camera that are compared to the 3D model of an environment has enabled further reduction of positioning errors. As a result, for 90% of the time, the algorithm is able to estimate a pedestrian location with an error smaller than 2 m, compared to an error of 6.5 m for a navigation based solely on GPS. PMID:22969321
A multistate dynamic site occupancy model for spatially aggregated sessile communities
Fukaya, Keiichi; Royle, J. Andrew; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi
2017-01-01
Estimation of transition probabilities of sessile communities seems easy in principle but may still be difficult in practice because resampling error (i.e. a failure to resample exactly the same location at fixed points) may cause significant estimation bias. Previous studies have developed novel analytical methods to correct for this estimation bias. However, they did not consider the local structure of community composition induced by the aggregated distribution of organisms that is typically observed in sessile assemblages and is very likely to affect observations.We developed a multistate dynamic site occupancy model to estimate transition probabilities that accounts for resampling errors associated with local community structure. The model applies a nonparametric multivariate kernel smoothing methodology to the latent occupancy component to estimate the local state composition near each observation point, which is assumed to determine the probability distribution of data conditional on the occurrence of resampling error.By using computer simulations, we confirmed that an observation process that depends on local community structure may bias inferences about transition probabilities. By applying the proposed model to a real data set of intertidal sessile communities, we also showed that estimates of transition probabilities and of the properties of community dynamics may differ considerably when spatial dependence is taken into account.Results suggest the importance of accounting for resampling error and local community structure for developing management plans that are based on Markovian models. Our approach provides a solution to this problem that is applicable to broad sessile communities. It can even accommodate an anisotropic spatial correlation of species composition, and may also serve as a basis for inferring complex nonlinear ecological dynamics.
ERMiT: Estimating Post-Fire Erosion in Probabilistic Terms
NASA Astrophysics Data System (ADS)
Pierson, F. B.; Robichaud, P. R.; Elliot, W. J.; Hall, D. E.; Moffet, C. A.
2006-12-01
Mitigating the impact of post-wildfire runoff and erosion on life, property, and natural resources have cost the United States government tens of millions of dollars over the past decade. The decision of where, when, and how to apply the most effective mitigation treatments requires land managers to assess the risk of damaging runoff and erosion events occurring after a fire. The Erosion Risk Management Tool (ERMiT) is a web-based application that estimates erosion in probabilistic terms on burned and recovering forest, range, and chaparral lands. Unlike most erosion prediction models, ERMiT does not provide `average annual erosion rates;' rather, it provides a distribution of erosion rates with the likelihood of their occurrence. ERMiT combines rain event variability with spatial and temporal variabilities of hillslope burn severity, soil properties, and ground cover to estimate Water Erosion Prediction Project (WEPP) model input parameter values. Based on 20 to 40 individual WEPP runs, ERMiT produces a distribution of rain event erosion rates with a probability of occurrence for each of five post-fire years. Over the 5 years of modeled recovery, the occurrence probability of the less erodible soil parameters is increased and the occurrence probability of the more erodible soil parameters is decreased. In addition, the occurrence probabilities and the four spatial arrangements of burn severity (arrangements of overland flow elements (OFE's)), are shifted toward lower burn severity with each year of recovery. These yearly adjustments are based on field measurements made through post-fire recovery periods. ERMiT also provides rain event erosion rate distributions for hillslopes that have been treated with seeding, straw mulch, straw wattles and contour-felled log erosion barriers. Such output can help managers make erosion mitigation treatment decisions based on the probability of high sediment yields occurring, the value of resources at risk for damage, cost, and other management considerations.
Probabilistic safety analysis of earth retaining structures during earthquakes
NASA Astrophysics Data System (ADS)
Grivas, D. A.; Souflis, C.
1982-07-01
A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.
2010-01-01
Background Abnormal results of diagnostic laboratory tests can be difficult to interpret when disease probability is very low. Although most physicians generally do not use Bayesian calculations to interpret abnormal results, their estimates of pretest disease probability and reasons for ordering diagnostic tests may - in a more implicit manner - influence test interpretation and further management. A better understanding of this influence may help to improve test interpretation and management. Therefore, the objective of this study was to examine the influence of physicians' pretest disease probability estimates, and their reasons for ordering diagnostic tests, on test result interpretation, posttest probability estimates and further management. Methods Prospective study among 87 primary care physicians in the Netherlands who each ordered laboratory tests for 25 patients. They recorded their reasons for ordering the tests (to exclude or confirm disease or to reassure patients) and their pretest disease probability estimates. Upon receiving the results they recorded how they interpreted the tests, their posttest probability estimates and further management. Logistic regression was used to analyse whether the pretest probability and the reasons for ordering tests influenced the interpretation, the posttest probability estimates and the decisions on further management. Results The physicians ordered tests for diagnostic purposes for 1253 patients; 742 patients had an abnormal result (64%). Physicians' pretest probability estimates and their reasons for ordering diagnostic tests influenced test interpretation, posttest probability estimates and further management. Abnormal results of tests ordered for reasons of reassurance were significantly more likely to be interpreted as normal (65.8%) compared to tests ordered to confirm a diagnosis or exclude a disease (27.7% and 50.9%, respectively). The odds for abnormal results to be interpreted as normal were much lower when the physician estimated a high pretest disease probability, compared to a low pretest probability estimate (OR = 0.18, 95% CI = 0.07-0.52, p < 0.001). Conclusions Interpretation and management of abnormal test results were strongly influenced by physicians' estimation of pretest disease probability and by the reason for ordering the test. By relating abnormal laboratory results to their pretest expectations, physicians may seek a balance between over- and under-reacting to laboratory test results. PMID:20158908
Houben, Paul H H; van der Weijden, Trudy; Winkens, Bjorn; Winkens, Ron A G; Grol, Richard P T M
2010-02-16
Abnormal results of diagnostic laboratory tests can be difficult to interpret when disease probability is very low. Although most physicians generally do not use Bayesian calculations to interpret abnormal results, their estimates of pretest disease probability and reasons for ordering diagnostic tests may--in a more implicit manner--influence test interpretation and further management. A better understanding of this influence may help to improve test interpretation and management. Therefore, the objective of this study was to examine the influence of physicians' pretest disease probability estimates, and their reasons for ordering diagnostic tests, on test result interpretation, posttest probability estimates and further management. Prospective study among 87 primary care physicians in the Netherlands who each ordered laboratory tests for 25 patients. They recorded their reasons for ordering the tests (to exclude or confirm disease or to reassure patients) and their pretest disease probability estimates. Upon receiving the results they recorded how they interpreted the tests, their posttest probability estimates and further management. Logistic regression was used to analyse whether the pretest probability and the reasons for ordering tests influenced the interpretation, the posttest probability estimates and the decisions on further management. The physicians ordered tests for diagnostic purposes for 1253 patients; 742 patients had an abnormal result (64%). Physicians' pretest probability estimates and their reasons for ordering diagnostic tests influenced test interpretation, posttest probability estimates and further management. Abnormal results of tests ordered for reasons of reassurance were significantly more likely to be interpreted as normal (65.8%) compared to tests ordered to confirm a diagnosis or exclude a disease (27.7% and 50.9%, respectively). The odds for abnormal results to be interpreted as normal were much lower when the physician estimated a high pretest disease probability, compared to a low pretest probability estimate (OR = 0.18, 95% CI = 0.07-0.52, p < 0.001). Interpretation and management of abnormal test results were strongly influenced by physicians' estimation of pretest disease probability and by the reason for ordering the test. By relating abnormal laboratory results to their pretest expectations, physicians may seek a balance between over- and under-reacting to laboratory test results.
A hydroclimatological approach to predicting regional landslide probability using Landlab
NASA Astrophysics Data System (ADS)
Strauch, Ronda; Istanbulluoglu, Erkan; Nudurupati, Sai Siddhartha; Bandaragoda, Christina; Gasparini, Nicole M.; Tucker, Gregory E.
2018-02-01
We develop a hydroclimatological approach to the modeling of regional shallow landslide initiation that integrates spatial and temporal dimensions of parameter uncertainty to estimate an annual probability of landslide initiation based on Monte Carlo simulations. The physically based model couples the infinite-slope stability model with a steady-state subsurface flow representation and operates in a digital elevation model. Spatially distributed gridded data for soil properties and vegetation classification are used for parameter estimation of probability distributions that characterize model input uncertainty. Hydrologic forcing to the model is through annual maximum daily recharge to subsurface flow obtained from a macroscale hydrologic model. We demonstrate the model in a steep mountainous region in northern Washington, USA, over 2700 km2. The influence of soil depth on the probability of landslide initiation is investigated through comparisons among model output produced using three different soil depth scenarios reflecting the uncertainty of soil depth and its potential long-term variability. We found elevation-dependent patterns in probability of landslide initiation that showed the stabilizing effects of forests at low elevations, an increased landslide probability with forest decline at mid-elevations (1400 to 2400 m), and soil limitation and steep topographic controls at high alpine elevations and in post-glacial landscapes. These dominant controls manifest themselves in a bimodal distribution of spatial annual landslide probability. Model testing with limited observations revealed similarly moderate model confidence for the three hazard maps, suggesting suitable use as relative hazard products. The model is available as a component in Landlab, an open-source, Python-based landscape earth systems modeling environment, and is designed to be easily reproduced utilizing HydroShare cyberinfrastructure.
Estimation of vegetation cover at subpixel resolution using LANDSAT data
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Eagleson, Peter S.
1986-01-01
The present report summarizes the various approaches relevant to estimating canopy cover at subpixel resolution. The approaches are based on physical models of radiative transfer in non-homogeneous canopies and on empirical methods. The effects of vegetation shadows and topography are examined. Simple versions of the model are tested, using the Taos, New Mexico Study Area database. Emphasis has been placed on using relatively simple models requiring only one or two bands. Although most methods require some degree of ground truth, a two-band method is investigated whereby the percent cover can be estimated without ground truth by examining the limits of the data space. Future work is proposed which will incorporate additional surface parameters into the canopy cover algorithm, such as topography, leaf area, or shadows. The method involves deriving a probability density function for the percent canopy cover based on the joint probability density function of the observed radiances.
An information measure for class discrimination. [in remote sensing of crop observation
NASA Technical Reports Server (NTRS)
Shen, S. S.; Badhwar, G. D.
1986-01-01
This article describes a separability measure for class discrimination. This measure is based on the Fisher information measure for estimating the mixing proportion of two classes. The Fisher information measure not only provides a means to assess quantitatively the information content in the features for separating classes, but also gives the lower bound for the variance of any unbiased estimate of the mixing proportion based on observations of the features. Unlike most commonly used separability measures, this measure is not dependent on the form of the probability distribution of the features and does not imply a specific estimation procedure. This is important because the probability distribution function that describes the data for a given class does not have simple analytic forms, such as a Gaussian. Results of applying this measure to compare the information content provided by three Landsat-derived feature vectors for the purpose of separating small grains from other crops are presented.
NASA Astrophysics Data System (ADS)
Wang, Fei
2013-09-01
Geiger-mode detectors have single photon sensitivity and picoseconds timing resolution, which make it a good candidate for low light level ranging applications, especially in the case of flash three dimensional imaging applications where the received laser power is extremely limited. Another advantage of Geiger-mode APD is their capability of large output current which can drive CMOS timing circuit directly, which means that larger format focal plane arrays can be easily fabricated using the mature CMOS technology. However Geiger-mode detector based FPAs can only measure the range information of a scene but not the reflectivity. Reflectivity is a major characteristic which can help target classification and identification. According to Poisson statistic nature, detection probability is tightly connected to the incident number of photon. Employing this relation, a signal intensity estimation method based on probability inversion is proposed. Instead of measuring intensity directly, several detections are conducted, then the detection probability is obtained and the intensity is estimated using this method. The relation between the estimator's accuracy, measuring range and number of detections are discussed based on statistical theory. Finally Monte-Carlo simulation is conducted to verify the correctness of this theory. Using 100 times of detection, signal intensity equal to 4.6 photons per detection can be measured using this method. With slight modification of measuring strategy, intensity information can be obtained using current Geiger-mode detector based FPAs, which can enrich the information acquired and broaden the application field of current technology.
Flood Frequency Curves - Use of information on the likelihood of extreme floods
NASA Astrophysics Data System (ADS)
Faber, B.
2011-12-01
Investment in the infrastructure that reduces flood risk for flood-prone communities must incorporate information on the magnitude and frequency of flooding in that area. Traditionally, that information has been a probability distribution of annual maximum streamflows developed from the historical gaged record at a stream site. Practice in the United States fits a Log-Pearson type3 distribution to the annual maximum flows of an unimpaired streamflow record, using the method of moments to estimate distribution parameters. The procedure makes the assumptions that annual peak streamflow events are (1) independent, (2) identically distributed, and (3) form a representative sample of the overall probability distribution. Each of these assumptions can be challenged. We rarely have enough data to form a representative sample, and therefore must compute and display the uncertainty in the estimated flood distribution. But, is there a wet/dry cycle that makes precipitation less than independent between successive years? Are the peak flows caused by different types of events from different statistical populations? How does the watershed or climate changing over time (non-stationarity) affect the probability distribution floods? Potential approaches to avoid these assumptions vary from estimating trend and shift and removing them from early data (and so forming a homogeneous data set), to methods that estimate statistical parameters that vary with time. A further issue in estimating a probability distribution of flood magnitude (the flood frequency curve) is whether a purely statistical approach can accurately capture the range and frequency of floods that are of interest. A meteorologically-based analysis produces "probable maximum precipitation" (PMP) and subsequently a "probable maximum flood" (PMF) that attempts to describe an upper bound on flood magnitude in a particular watershed. This analysis can help constrain the upper tail of the probability distribution, well beyond the range of gaged data or even historical or paleo-flood data, which can be very important in risk analyses performed for flood risk management and dam and levee safety studies.
Covariate-adjusted Spearman's rank correlation with probability-scale residuals.
Liu, Qi; Li, Chun; Wanga, Valentine; Shepherd, Bryan E
2018-06-01
It is desirable to adjust Spearman's rank correlation for covariates, yet existing approaches have limitations. For example, the traditionally defined partial Spearman's correlation does not have a sensible population parameter, and the conditional Spearman's correlation defined with copulas cannot be easily generalized to discrete variables. We define population parameters for both partial and conditional Spearman's correlation through concordance-discordance probabilities. The definitions are natural extensions of Spearman's rank correlation in the presence of covariates and are general for any orderable random variables. We show that they can be neatly expressed using probability-scale residuals (PSRs). This connection allows us to derive simple estimators. Our partial estimator for Spearman's correlation between X and Y adjusted for Z is the correlation of PSRs from models of X on Z and of Y on Z, which is analogous to the partial Pearson's correlation derived as the correlation of observed-minus-expected residuals. Our conditional estimator is the conditional correlation of PSRs. We describe estimation and inference, and highlight the use of semiparametric cumulative probability models, which allow preservation of the rank-based nature of Spearman's correlation. We conduct simulations to evaluate the performance of our estimators and compare them with other popular measures of association, demonstrating their robustness and efficiency. We illustrate our method in two applications, a biomarker study and a large survey. © 2017, The International Biometric Society.
Bayesian alternative to the ISO-GUM's use of the Welch Satterthwaite formula
NASA Astrophysics Data System (ADS)
Kacker, Raghu N.
2006-02-01
In certain disciplines, uncertainty is traditionally expressed as an interval about an estimate for the value of the measurand. Development of such uncertainty intervals with a stated coverage probability based on the International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) requires a description of the probability distribution for the value of the measurand. The ISO-GUM propagates the estimates and their associated standard uncertainties for various input quantities through a linear approximation of the measurement equation to determine an estimate and its associated standard uncertainty for the value of the measurand. This procedure does not yield a probability distribution for the value of the measurand. The ISO-GUM suggests that under certain conditions motivated by the central limit theorem the distribution for the value of the measurand may be approximated by a scaled-and-shifted t-distribution with effective degrees of freedom obtained from the Welch-Satterthwaite (W-S) formula. The approximate t-distribution may then be used to develop an uncertainty interval with a stated coverage probability for the value of the measurand. We propose an approximate normal distribution based on a Bayesian uncertainty as an alternative to the t-distribution based on the W-S formula. A benefit of the approximate normal distribution based on a Bayesian uncertainty is that it greatly simplifies the expression of uncertainty by eliminating altogether the need for calculating effective degrees of freedom from the W-S formula. In the special case where the measurand is the difference between two means, each evaluated from statistical analyses of independent normally distributed measurements with unknown and possibly unequal variances, the probability distribution for the value of the measurand is known to be a Behrens-Fisher distribution. We compare the performance of the approximate normal distribution based on a Bayesian uncertainty and the approximate t-distribution based on the W-S formula with respect to the Behrens-Fisher distribution. The approximate normal distribution is simpler and better in this case. A thorough investigation of the relative performance of the two approximate distributions would require comparison for a range of measurement equations by numerical methods.
Wald Sequential Probability Ratio Test for Space Object Conjunction Assessment
NASA Technical Reports Server (NTRS)
Carpenter, James R.; Markley, F Landis
2014-01-01
This paper shows how satellite owner/operators may use sequential estimates of collision probability, along with a prior assessment of the base risk of collision, in a compound hypothesis ratio test to inform decisions concerning collision risk mitigation maneuvers. The compound hypothesis test reduces to a simple probability ratio test, which appears to be a novel result. The test satisfies tolerances related to targeted false alarm and missed detection rates. This result is independent of the method one uses to compute the probability density that one integrates to compute collision probability. A well-established test case from the literature shows that this test yields acceptable results within the constraints of a typical operational conjunction assessment decision timeline. Another example illustrates the use of the test in a practical conjunction assessment scenario based on operations of the International Space Station.
Predicting traffic load impact of alternative recreation developments
Gary H. Elsner; Ronald A. Oliveira
1973-01-01
Traffic load changes as a result of expansion of recreation facilities may be predicted through computations based on estimates of (a) drawing power of the recreation attracttions, overnight accommodations, and in- or out-terminals; (b) probable types of travel; (c) probable routes of travel; and (d) total number of cars in the recreation system. Once the basic model...
Joore, Manuela; Brunenberg, Danielle; Nelemans, Patricia; Wouters, Emiel; Kuijpers, Petra; Honig, Adriaan; Willems, Danielle; de Leeuw, Peter; Severens, Johan; Boonen, Annelies
2010-01-01
This article investigates whether differences in utility scores based on the EQ-5D and the SF-6D have impact on the incremental cost-utility ratios in five distinct patient groups. We used five empirical data sets of trial-based cost-utility studies that included patients with different disease conditions and severity (musculoskeletal disease, cardiovascular pulmonary disease, and psychological disorders) to calculate differences in quality-adjusted life-years (QALYs) based on EQ-5D and SF-6D utility scores. We compared incremental QALYs, incremental cost-utility ratios, and the probability that the incremental cost-utility ratio was acceptable within and across the data sets. We observed small differences in incremental QALYs, but large differences in the incremental cost-utility ratios and in the probability that these ratios were acceptable at a given threshold, in the majority of the presented cost-utility analyses. More specifically, in the patient groups with relatively mild health conditions the probability of acceptance of the incremental cost-utility ratio was considerably larger when using the EQ-5D to estimate utility. While in the patient groups with worse health conditions the probability of acceptance of the incremental cost-utility ratio was considerably larger when using the SF-6D to estimate utility. Much of the appeal in using QALYs as measure of effectiveness in economic evaluations is in the comparability across conditions and interventions. The incomparability of the results of cost-utility analyses using different instruments to estimate a single index value for health severely undermines this aspect and reduces the credibility of the use of incremental cost-utility ratios for decision-making.
NASA Astrophysics Data System (ADS)
Eleftheriadou, Anastasia K.; Baltzopoulou, Aikaterini D.; Karabinis, Athanasios I.
2016-06-01
The current seismic risk assessment is based on two discrete approaches, actual and probable, validating afterwards the produced results. In the first part of this research, the seismic risk is evaluated from the available data regarding the mean statistical repair/strengthening or replacement cost for the total number of damaged structures (180,427 buildings) after the 7/9/1999 Parnitha (Athens) earthquake. The actual evaluated seismic risk is afterwards compared to the estimated probable structural losses, which is presented in the second part of the paper, based on a damage scenario in the referring earthquake. The applied damage scenario is based on recently developed damage probability matrices (DPMs) from Athens (Greece) damage database. The seismic risk estimation refers to 750,085 buildings situated in the extended urban region of Athens. The building exposure is categorized in five typical structural types and represents 18.80 % of the entire building stock in Greece. The last information is provided by the National Statistics Service of Greece (NSSG) according to the 2000-2001 census. The seismic input is characterized by the ratio, a g/ a o, where a g is the regional peak ground acceleration (PGA) which is evaluated from the earlier estimated research macroseismic intensities, and a o is the PGA according to the hazard map of the 2003 Greek Seismic Code. Finally, the collected investigated financial data derived from different National Services responsible for the post-earthquake crisis management concerning the repair/strengthening or replacement costs or other categories of costs for the rehabilitation of earthquake victims (construction and function of settlements for earthquake homeless, rent supports, demolitions, shorings) are used to determine the final total seismic risk factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Xuehang; Chen, Xingyuan; Ye, Ming
2015-07-01
This study develops a new framework of facies-based data assimilation for characterizing spatial distribution of hydrofacies and estimating their associated hydraulic properties. This framework couples ensemble data assimilation with transition probability-based geostatistical model via a parameterization based on a level set function. The nature of ensemble data assimilation makes the framework efficient and flexible to be integrated with various types of observation data. The transition probability-based geostatistical model keeps the updated hydrofacies distributions under geological constrains. The framework is illustrated by using a two-dimensional synthetic study that estimates hydrofacies spatial distribution and permeability in each hydrofacies from transient head data.more » Our results show that the proposed framework can characterize hydrofacies distribution and associated permeability with adequate accuracy even with limited direct measurements of hydrofacies. Our study provides a promising starting point for hydrofacies delineation in complex real problems.« less
Probability-Based Recognition Framework for Underwater Landmarks Using Sonar Images †.
Lee, Yeongjun; Choi, Jinwoo; Ko, Nak Yong; Choi, Hyun-Taek
2017-08-24
This paper proposes a probability-based framework for recognizing underwater landmarks using sonar images. Current recognition methods use a single image, which does not provide reliable results because of weaknesses of the sonar image such as unstable acoustic source, many speckle noises, low resolution images, single channel image, and so on. However, using consecutive sonar images, if the status-i.e., the existence and identity (or name)-of an object is continuously evaluated by a stochastic method, the result of the recognition method is available for calculating the uncertainty, and it is more suitable for various applications. Our proposed framework consists of three steps: (1) candidate selection, (2) continuity evaluation, and (3) Bayesian feature estimation. Two probability methods-particle filtering and Bayesian feature estimation-are used to repeatedly estimate the continuity and feature of objects in consecutive images. Thus, the status of the object is repeatedly predicted and updated by a stochastic method. Furthermore, we develop an artificial landmark to increase detectability by an imaging sonar, which we apply to the characteristics of acoustic waves, such as instability and reflection depending on the roughness of the reflector surface. The proposed method is verified by conducting basin experiments, and the results are presented.
Can health care providers recognise a fibromyalgia personality?
Da Silva, José A P; Jacobs, Johannes W G; Branco, Jaime C; Canaipa, Rita; Gaspar, M Filomena; Griep, Ed N; van Helmond, Toon; Oliveira, Paula J; Zijlstra, Theo J; Geenen, Rinie
2017-01-01
To determine if experienced health care providers (HCPs) can recognise patients with fibromyalgia (FM) based on a limited set of personality items, exploring the existence of a FM personality. From the 240-item NEO-PI-R personality questionnaire, 8 HCPs from two different countries each selected 20 items they considered most discriminative of FM personality. Then, evaluating the scores on these items of 129 female patients with FM and 127 female controls, each HCP rated the probability of FM for each individual on a 0-10 scale. Personality characteristics (domains and facets) of selected items were determined. Scores of patients with FM and controls on the eight 20-item sets, and HCPs' estimates of each individual's probability of FM were analysed for their discriminative value. The eight 20-item sets discriminated for FM, with areas under the receiver operating characteristic curve ranging from 0.71-0.81. The estimated probabilities for FM showed, in general, percentages of correct classifications above 50%, with rising correct percentages for higher estimated probabilities. The most often chosen and discriminatory items were predominantly of the domain neuroticism (all with higher scores in FM), followed by some items of the facet trust (lower scores in FM). HCPs can, based on a limited set of items from a personality questionnaire, distinguish patients with FM from controls with a statistically significant probability. The HCPs' expectation that personality in FM patients is associated with higher levels for aspects of neuroticism (proneness to psychological distress) and lower scores for aspects of trust, proved to be correct.
Shwartz, Michael; Peköz, Erol A; Burgess, James F; Christiansen, Cindy L; Rosen, Amy K; Berlowitz, Dan
2014-12-01
Two approaches are commonly used for identifying high-performing facilities on a performance measure: one, that the facility is in a top quantile (eg, quintile or quartile); and two, that a confidence interval is below (or above) the average of the measure for all facilities. This type of yes/no designation often does not do well in distinguishing high-performing from average-performing facilities. To illustrate an alternative continuous-valued metric for profiling facilities--the probability a facility is in a top quantile--and show the implications of using this metric for profiling and pay-for-performance. We created a composite measure of quality from fiscal year 2007 data based on 28 quality indicators from 112 Veterans Health Administration nursing homes. A Bayesian hierarchical multivariate normal-binomial model was used to estimate shrunken rates of the 28 quality indicators, which were combined into a composite measure using opportunity-based weights. Rates were estimated using Markov Chain Monte Carlo methods as implemented in WinBUGS. The probability metric was calculated from the simulation replications. Our probability metric allowed better discrimination of high performers than the point or interval estimate of the composite score. In a pay-for-performance program, a smaller top quantile (eg, a quintile) resulted in more resources being allocated to the highest performers, whereas a larger top quantile (eg, being above the median) distinguished less among high performers and allocated more resources to average performers. The probability metric has potential but needs to be evaluated by stakeholders in different types of delivery systems.
Measuring Forest Area Loss Over Time Using FIA Plots and Satellite Imagery
Michael L. Hoppus; Andrew J. Lister
2005-01-01
How accurately can FIA plots, scattered at 1 per 6,000 acres, identify often rare forest land loss, estimated at less than 1 percent per year in the Northeast? Here we explore this question mathematically, empirically, and by comparing FIA plot estimates of forest change with satellite image based maps of forest loss. The mathematical probability of exactly estimating...
Hines, J.E.; Nichols, J.D.
2002-01-01
Pradel's (1996) temporal symmetry model permitting direct estimation and modelling of population growth rate, lambda sub i provides a potentially useful tool for the study of population dynamics using marked animals. Because of its recent publication date, the approach has not seen much use, and there have been virtually no investigations directed at robustness of the resulting estimators. Here we consider several potential sources of bias, all motivated by specific uses of this estimation approach. We consider sampling situations in which the study area expands with time and present an analytic expression for the bias in lambda hat sub i. We next consider trap response in capture probabilities and heterogeneous capture probabilities and compute large-sample and simulation-based approximations of resulting bias in lambda hat sub i. These approximations indicate that trap response is an especially important assumption violation that can produce substantial bias. Finally, we consider losses on capture and emphasize the importance of selecting the estimator for lambda sub i that is appropriate to the question being addressed. For studies based on only sighting and resighting data, Pradel's (1996) lambda hat prime sub i is the appropriate estimator.
Tree Biomass Estimation of Chinese fir (Cunninghamia lanceolata) Based on Bayesian Method
Zhang, Jianguo
2013-01-01
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is the most important conifer species for timber production with huge distribution area in southern China. Accurate estimation of biomass is required for accounting and monitoring Chinese forest carbon stocking. In the study, allometric equation was used to analyze tree biomass of Chinese fir. The common methods for estimating allometric model have taken the classical approach based on the frequency interpretation of probability. However, many different biotic and abiotic factors introduce variability in Chinese fir biomass model, suggesting that parameters of biomass model are better represented by probability distributions rather than fixed values as classical method. To deal with the problem, Bayesian method was used for estimating Chinese fir biomass model. In the Bayesian framework, two priors were introduced: non-informative priors and informative priors. For informative priors, 32 biomass equations of Chinese fir were collected from published literature in the paper. The parameter distributions from published literature were regarded as prior distributions in Bayesian model for estimating Chinese fir biomass. Therefore, the Bayesian method with informative priors was better than non-informative priors and classical method, which provides a reasonable method for estimating Chinese fir biomass. PMID:24278198
Tree biomass estimation of Chinese fir (Cunninghamia lanceolata) based on Bayesian method.
Zhang, Xiongqing; Duan, Aiguo; Zhang, Jianguo
2013-01-01
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is the most important conifer species for timber production with huge distribution area in southern China. Accurate estimation of biomass is required for accounting and monitoring Chinese forest carbon stocking. In the study, allometric equation W = a(D2H)b was used to analyze tree biomass of Chinese fir. The common methods for estimating allometric model have taken the classical approach based on the frequency interpretation of probability. However, many different biotic and abiotic factors introduce variability in Chinese fir biomass model, suggesting that parameters of biomass model are better represented by probability distributions rather than fixed values as classical method. To deal with the problem, Bayesian method was used for estimating Chinese fir biomass model. In the Bayesian framework, two priors were introduced: non-informative priors and informative priors. For informative priors, 32 biomass equations of Chinese fir were collected from published literature in the paper. The parameter distributions from published literature were regarded as prior distributions in Bayesian model for estimating Chinese fir biomass. Therefore, the Bayesian method with informative priors was better than non-informative priors and classical method, which provides a reasonable method for estimating Chinese fir biomass.
ERIC Educational Resources Information Center
Moses, Tim; Oh, Hyeonjoo J.
2009-01-01
Pseudo Bayes probability estimates are weighted averages of raw and modeled probabilities; these estimates have been studied primarily in nonpsychometric contexts. The purpose of this study was to evaluate pseudo Bayes probability estimates as applied to the estimation of psychometric test score distributions and chained equipercentile equating…
Balancing Score Adjusted Targeted Minimum Loss-based Estimation
Lendle, Samuel David; Fireman, Bruce; van der Laan, Mark J.
2015-01-01
Adjusting for a balancing score is sufficient for bias reduction when estimating causal effects including the average treatment effect and effect among the treated. Estimators that adjust for the propensity score in a nonparametric way, such as matching on an estimate of the propensity score, can be consistent when the estimated propensity score is not consistent for the true propensity score but converges to some other balancing score. We call this property the balancing score property, and discuss a class of estimators that have this property. We introduce a targeted minimum loss-based estimator (TMLE) for a treatment-specific mean with the balancing score property that is additionally locally efficient and doubly robust. We investigate the new estimator’s performance relative to other estimators, including another TMLE, a propensity score matching estimator, an inverse probability of treatment weighted estimator, and a regression-based estimator in simulation studies. PMID:26561539
Incorporating detection probability into northern Great Plains pronghorn population estimates
Jacques, Christopher N.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.; DePerno, Christopher S.
2014-01-01
Pronghorn (Antilocapra americana) abundances commonly are estimated using fixed-wing surveys, but these estimates are likely to be negatively biased because of violations of key assumptions underpinning line-transect methodology. Reducing bias and improving precision of abundance estimates through use of detection probability and mark-resight models may allow for more responsive pronghorn management actions. Given their potential application in population estimation, we evaluated detection probability and mark-resight models for use in estimating pronghorn population abundance. We used logistic regression to quantify probabilities that detecting pronghorn might be influenced by group size, animal activity, percent vegetation, cover type, and topography. We estimated pronghorn population size by study area and year using mixed logit-normal mark-resight (MLNM) models. Pronghorn detection probability increased with group size, animal activity, and percent vegetation; overall detection probability was 0.639 (95% CI = 0.612–0.667) with 396 of 620 pronghorn groups detected. Despite model selection uncertainty, the best detection probability models were 44% (range = 8–79%) and 180% (range = 139–217%) greater than traditional pronghorn population estimates. Similarly, the best MLNM models were 28% (range = 3–58%) and 147% (range = 124–180%) greater than traditional population estimates. Detection probability of pronghorn was not constant but depended on both intrinsic and extrinsic factors. When pronghorn detection probability is a function of animal group size, animal activity, landscape complexity, and percent vegetation, traditional aerial survey techniques will result in biased pronghorn abundance estimates. Standardizing survey conditions, increasing resighting occasions, or accounting for variation in individual heterogeneity in mark-resight models will increase the accuracy and precision of pronghorn population estimates.
Solid oxide fuel cell anode image segmentation based on a novel quantum-inspired fuzzy clustering
NASA Astrophysics Data System (ADS)
Fu, Xiaowei; Xiang, Yuhan; Chen, Li; Xu, Xin; Li, Xi
2015-12-01
High quality microstructure modeling can optimize the design of fuel cells. For three-phase accurate identification of Solid Oxide Fuel Cell (SOFC) microstructure, this paper proposes a novel image segmentation method on YSZ/Ni anode Optical Microscopic (OM) images. According to Quantum Signal Processing (QSP), the proposed approach exploits a quantum-inspired adaptive fuzziness factor to adaptively estimate the energy function in the fuzzy system based on Markov Random Filed (MRF). Before defuzzification, a quantum-inspired probability distribution based on distance and gray correction is proposed, which can adaptively adjust the inaccurate probability estimation of uncertain points caused by noises and edge points. In this study, the proposed method improves accuracy and effectiveness of three-phase identification on the micro-investigation. It provides firm foundation to investigate the microstructural evolution and its related properties.
Robustness of survival estimates for radio-marked animals
Bunck, C.M.; Chen, C.-L.
1992-01-01
Telemetry techniques are often used to study the survival of birds and mammals; particularly whcn mark-recapture approaches are unsuitable. Both parametric and nonparametric methods to estimate survival have becn developed or modified from other applications. An implicit assumption in these approaches is that the probability of re-locating an animal with a functioning transmitter is one. A Monte Carlo study was conducted to determine the bias and variance of the Kaplan-Meier estimator and an estimator based also on the assumption of constant hazard and to eva!uate the performance of the two-sample tests associated with each. Modifications of each estimator which allow a re-Iocation probability of less than one are described and evaluated. Generallv the unmodified estimators were biased but had lower variance. At low sample sizes all estimators performed poorly. Under the null hypothesis, the distribution of all test statistics reasonably approximated the null distribution when survival was low but not when it was high. The power of the two-sample tests were similar.
Trasande, Leonardo; Zoeller, R Thomas; Hass, Ulla; Kortenkamp, Andreas; Grandjean, Philippe; Myers, John Peterson; DiGangi, Joseph; Bellanger, Martine; Hauser, Russ; Legler, Juliette; Skakkebaek, Niels E; Heindel, Jerrold J
2015-04-01
Rapidly increasing evidence has documented that endocrine-disrupting chemicals (EDCs) contribute substantially to disease and disability. The objective was to quantify a range of health and economic costs that can be reasonably attributed to EDC exposures in the European Union (EU). A Steering Committee of scientists adapted the Intergovernmental Panel on Climate Change weight-of-evidence characterization for probability of causation based upon levels of available epidemiological and toxicological evidence for one or more chemicals contributing to disease by an endocrine disruptor mechanism. To evaluate the epidemiological evidence, the Steering Committee adapted the World Health Organization Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group criteria, whereas the Steering Committee adapted definitions recently promulgated by the Danish Environmental Protection Agency for evaluating laboratory and animal evidence of endocrine disruption. Expert panels used the Delphi method to make decisions on the strength of the data. Expert panels achieved consensus at least for probable (>20%) EDC causation for IQ loss and associated intellectual disability, autism, attention-deficit hyperactivity disorder, childhood obesity, adult obesity, adult diabetes, cryptorchidism, male infertility, and mortality associated with reduced testosterone. Accounting for probability of causation and using the midpoint of each range for probability of causation, Monte Carlo simulations produced a median cost of €157 billion (or $209 billion, corresponding to 1.23% of EU gross domestic product) annually across 1000 simulations. Notably, using the lowest end of the probability range for each relationship in the Monte Carlo simulations produced a median range of €109 billion that differed modestly from base case probability inputs. EDC exposures in the EU are likely to contribute substantially to disease and dysfunction across the life course with costs in the hundreds of billions of Euros per year. These estimates represent only those EDCs with the highest probability of causation; a broader analysis would have produced greater estimates of burden of disease and costs.
Zoeller, R. Thomas; Hass, Ulla; Kortenkamp, Andreas; Grandjean, Philippe; Myers, John Peterson; DiGangi, Joseph; Bellanger, Martine; Hauser, Russ; Legler, Juliette; Skakkebaek, Niels E.; Heindel, Jerrold J.
2015-01-01
Context: Rapidly increasing evidence has documented that endocrine-disrupting chemicals (EDCs) contribute substantially to disease and disability. Objective: The objective was to quantify a range of health and economic costs that can be reasonably attributed to EDC exposures in the European Union (EU). Design: A Steering Committee of scientists adapted the Intergovernmental Panel on Climate Change weight-of-evidence characterization for probability of causation based upon levels of available epidemiological and toxicological evidence for one or more chemicals contributing to disease by an endocrine disruptor mechanism. To evaluate the epidemiological evidence, the Steering Committee adapted the World Health Organization Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group criteria, whereas the Steering Committee adapted definitions recently promulgated by the Danish Environmental Protection Agency for evaluating laboratory and animal evidence of endocrine disruption. Expert panels used the Delphi method to make decisions on the strength of the data. Results: Expert panels achieved consensus at least for probable (>20%) EDC causation for IQ loss and associated intellectual disability, autism, attention-deficit hyperactivity disorder, childhood obesity, adult obesity, adult diabetes, cryptorchidism, male infertility, and mortality associated with reduced testosterone. Accounting for probability of causation and using the midpoint of each range for probability of causation, Monte Carlo simulations produced a median cost of €157 billion (or $209 billion, corresponding to 1.23% of EU gross domestic product) annually across 1000 simulations. Notably, using the lowest end of the probability range for each relationship in the Monte Carlo simulations produced a median range of €109 billion that differed modestly from base case probability inputs. Conclusions: EDC exposures in the EU are likely to contribute substantially to disease and dysfunction across the life course with costs in the hundreds of billions of Euros per year. These estimates represent only those EDCs with the highest probability of causation; a broader analysis would have produced greater estimates of burden of disease and costs. PMID:25742516
NASA Astrophysics Data System (ADS)
Toroody, Ahmad Bahoo; Abaiee, Mohammad Mahdi; Gholamnia, Reza; Ketabdari, Mohammad Javad
2016-09-01
Owing to the increase in unprecedented accidents with new root causes in almost all operational areas, the importance of risk management has dramatically risen. Risk assessment, one of the most significant aspects of risk management, has a substantial impact on the system-safety level of organizations, industries, and operations. If the causes of all kinds of failure and the interactions between them are considered, effective risk assessment can be highly accurate. A combination of traditional risk assessment approaches and modern scientific probability methods can help in realizing better quantitative risk assessment methods. Most researchers face the problem of minimal field data with respect to the probability and frequency of each failure. Because of this limitation in the availability of epistemic knowledge, it is important to conduct epistemic estimations by applying the Bayesian theory for identifying plausible outcomes. In this paper, we propose an algorithm and demonstrate its application in a case study for a light-weight lifting operation in the Persian Gulf of Iran. First, we identify potential accident scenarios and present them in an event tree format. Next, excluding human error, we use the event tree to roughly estimate the prior probability of other hazard-promoting factors using a minimal amount of field data. We then use the Success Likelihood Index Method (SLIM) to calculate the probability of human error. On the basis of the proposed event tree, we use the Bayesian network of the provided scenarios to compensate for the lack of data. Finally, we determine the resulting probability of each event based on its evidence in the epistemic estimation format by building on two Bayesian network types: the probability of hazard promotion factors and the Bayesian theory. The study results indicate that despite the lack of available information on the operation of floating objects, a satisfactory result can be achieved using epistemic data.
Explosion probability of unexploded ordnance: expert beliefs.
MacDonald, Jacqueline Anne; Small, Mitchell J; Morgan, M G
2008-08-01
This article reports on a study to quantify expert beliefs about the explosion probability of unexploded ordnance (UXO). Some 1,976 sites at closed military bases in the United States are contaminated with UXO and are slated for cleanup, at an estimated cost of $15-140 billion. Because no available technology can guarantee 100% removal of UXO, information about explosion probability is needed to assess the residual risks of civilian reuse of closed military bases and to make decisions about how much to invest in cleanup. This study elicited probability distributions for the chance of UXO explosion from 25 experts in explosive ordnance disposal, all of whom have had field experience in UXO identification and deactivation. The study considered six different scenarios: three different types of UXO handled in two different ways (one involving children and the other involving construction workers). We also asked the experts to rank by sensitivity to explosion 20 different kinds of UXO found at a case study site at Fort Ord, California. We found that the experts do not agree about the probability of UXO explosion, with significant differences among experts in their mean estimates of explosion probabilities and in the amount of uncertainty that they express in their estimates. In three of the six scenarios, the divergence was so great that the average of all the expert probability distributions was statistically indistinguishable from a uniform (0, 1) distribution-suggesting that the sum of expert opinion provides no information at all about the explosion risk. The experts' opinions on the relative sensitivity to explosion of the 20 UXO items also diverged. The average correlation between rankings of any pair of experts was 0.41, which, statistically, is barely significant (p= 0.049) at the 95% confidence level. Thus, one expert's rankings provide little predictive information about another's rankings. The lack of consensus among experts suggests that empirical studies are needed to better understand the explosion risks of UXO.
Barlow, Jay; Tyack, Peter L; Johnson, Mark P; Baird, Robin W; Schorr, Gregory S; Andrews, Russel D; Aguilar de Soto, Natacha
2013-09-01
Acoustic survey methods can be used to estimate density and abundance using sounds produced by cetaceans and detected using hydrophones if the probability of detection can be estimated. For passive acoustic surveys, probability of detection at zero horizontal distance from a sensor, commonly called g(0), depends on the temporal patterns of vocalizations. Methods to estimate g(0) are developed based on the assumption that a beaked whale will be detected if it is producing regular echolocation clicks directly under or above a hydrophone. Data from acoustic recording tags placed on two species of beaked whales (Cuvier's beaked whale-Ziphius cavirostris and Blainville's beaked whale-Mesoplodon densirostris) are used to directly estimate the percentage of time they produce echolocation clicks. A model of vocal behavior for these species as a function of their diving behavior is applied to other types of dive data (from time-depth recorders and time-depth-transmitting satellite tags) to indirectly determine g(0) in other locations for low ambient noise conditions. Estimates of g(0) for a single instant in time are 0.28 [standard deviation (s.d.) = 0.05] for Cuvier's beaked whale and 0.19 (s.d. = 0.01) for Blainville's beaked whale.
Schillaci, Michael A; Schillaci, Mario E
2009-02-01
The use of small sample sizes in human and primate evolutionary research is commonplace. Estimating how well small samples represent the underlying population, however, is not commonplace. Because the accuracy of determinations of taxonomy, phylogeny, and evolutionary process are dependant upon how well the study sample represents the population of interest, characterizing the uncertainty, or potential error, associated with analyses of small sample sizes is essential. We present a method for estimating the probability that the sample mean is within a desired fraction of the standard deviation of the true mean using small (n<10) or very small (n < or = 5) sample sizes. This method can be used by researchers to determine post hoc the probability that their sample is a meaningful approximation of the population parameter. We tested the method using a large craniometric data set commonly used by researchers in the field. Given our results, we suggest that sample estimates of the population mean can be reasonable and meaningful even when based on small, and perhaps even very small, sample sizes.
Park, Dong-Uk; Colt, Joanne S.; Baris, Dalsu; Schwenn, Molly; Karagas, Margaret R.; Armenti, Karla R.; Johnson, Alison; Silverman, Debra T; Stewart, Patricia A
2014-01-01
We describe here an approach for estimating the probability that study subjects were exposed to metalworking fluids (MWFs) in a population-based case-control study of bladder cancer. Study subject reports on the frequency of machining and use of specific MWFs (straight, soluble, and synthetic/semi-synthetic) were used to estimate exposure probability when available. Those reports also were used to develop estimates for job groups, which were then applied to jobs without MWF reports. Estimates using both cases and controls and controls only were developed. The prevalence of machining varied substantially across job groups (10-90%), with the greatest percentage of jobs that machined being reported by machinists and tool and die workers. Reports of straight and soluble MWF use were fairly consistent across job groups (generally, 50-70%). Synthetic MWF use was lower (13-45%). There was little difference in reports by cases and controls vs. controls only. Approximately, 1% of the entire study population was assessed as definitely exposed to straight or soluble fluids in contrast to 0.2% definitely exposed to synthetic/semi-synthetics. A comparison between the reported use of the MWFs and the US production levels by decade found high correlations (r generally >0.7). Overall, the method described here is likely to have provided a systematic and reliable ranking that better reflects the variability of exposure to three types of MWFs than approaches applied in the past. PMID:25256317
Schuenemeyer, John H.; Zientek, Michael L.; Box, Stephen E.
2011-01-01
Mineral resource assessments completed by the U.S. Geological Survey during the past three decades express geologically based estimates of numbers of undiscovered mineral deposits as probability distributions. Numbers of undiscovered deposits of a given type are estimated in geologically defined regions. Using Monte Carlo simulations, these undiscovered deposit estimates are combined with tonnage and grade models to derive a probability distribution describing amounts of commodities and rock that could be present in undiscovered deposits within a study area. In some situations, it is desirable to aggregate the assessment results from several study areas. This report provides a script developed in open-source statistical software, R, that aggregates undiscovered deposit estimates of a given type, assuming independence, total dependence, or some degree of correlation among aggregated areas, given a user-specified correlation matrix.
Exploiting the Maximum Entropy Principle to Increase Retrieval Effectiveness.
ERIC Educational Resources Information Center
Cooper, William S.
1983-01-01
Presents information retrieval design approach in which queries of computer-based system consist of sets of terms, either unweighted or weighted with subjective term precision estimates, and retrieval outputs ranked by probability of usefulness estimated by "maximum entropy principle." Boolean and weighted request systems are discussed.…
2008-12-01
between our current project and the historical projects. Therefore to refine the historical volatility estimate of the previously completed software... historical volatility estimates obtained in the form of beliefs and plausibility based on subjective probabilities that take into consideration unique
DOT National Transportation Integrated Search
2015-01-01
Traditionally, the Iowa Department of Transportation : has used the Iowa Runoff Chart and single-variable regional-regression equations (RREs) from a U.S. Geological Survey : report (published in 1987) as the primary methods to estimate : annual exce...
Extended Importance Sampling for Reliability Analysis under Evidence Theory
NASA Astrophysics Data System (ADS)
Yuan, X. K.; Chen, B.; Zhang, B. Q.
2018-05-01
In early engineering practice, the lack of data and information makes uncertainty difficult to deal with. However, evidence theory has been proposed to handle uncertainty with limited information as an alternative way to traditional probability theory. In this contribution, a simulation-based approach, called ‘Extended importance sampling’, is proposed based on evidence theory to handle problems with epistemic uncertainty. The proposed approach stems from the traditional importance sampling for reliability analysis under probability theory, and is developed to handle the problem with epistemic uncertainty. It first introduces a nominal instrumental probability density function (PDF) for every epistemic uncertainty variable, and thus an ‘equivalent’ reliability problem under probability theory is obtained. Then the samples of these variables are generated in a way of importance sampling. Based on these samples, the plausibility and belief (upper and lower bounds of probability) can be estimated. It is more efficient than direct Monte Carlo simulation. Numerical and engineering examples are given to illustrate the efficiency and feasible of the proposed approach.
Predicted liquefaction of East Bay fills during a repeat of the 1906 San Francisco earthquake
Holzer, T.L.; Blair, J.L.; Noce, T.E.; Bennett, M.J.
2006-01-01
Predicted conditional probabilities of surface manifestations of liquefaction during a repeat of the 1906 San Francisco (M7.8) earthquake range from 0.54 to 0.79 in the area underlain by the sandy artificial fills along the eastern shore of San Francisco Bay near Oakland, California. Despite widespread liquefaction in 1906 of sandy fills in San Francisco, most of the East Bay fills were emplaced after 1906 without soil improvement to increase their liquefaction resistance. They have yet to be shaken strongly. Probabilities are based on the liquefaction potential index computed from 82 CPT soundings using median (50th percentile) estimates of PGA based on a ground-motion prediction equation. Shaking estimates consider both distance from the San Andreas Fault and local site conditions. The high probabilities indicate extensive and damaging liquefaction will occur in East Bay fills during the next M ??? 7.8 earthquake on the northern San Andreas Fault. ?? 2006, Earthquake Engineering Research Institute.
Cuthbertson, Carmen C; Kucharska-Newton, Anna; Faurot, Keturah R; Stürmer, Til; Jonsson Funk, Michele; Palta, Priya; Windham, B Gwen; Thai, Sydney; Lund, Jennifer L
2018-07-01
Frailty is a geriatric syndrome characterized by weakness and weight loss and is associated with adverse health outcomes. It is often an unmeasured confounder in pharmacoepidemiologic and comparative effectiveness studies using administrative claims data. Among the Atherosclerosis Risk in Communities (ARIC) Study Visit 5 participants (2011-2013; n = 3,146), we conducted a validation study to compare a Medicare claims-based algorithm of dependency in activities of daily living (or dependency) developed as a proxy for frailty with a reference standard measure of phenotypic frailty. We applied the algorithm to the ARIC participants' claims data to generate a predicted probability of dependency. Using the claims-based algorithm, we estimated the C-statistic for predicting phenotypic frailty. We further categorized participants by their predicted probability of dependency (<5%, 5% to <20%, and ≥20%) and estimated associations with difficulties in physical abilities, falls, and mortality. The claims-based algorithm showed good discrimination of phenotypic frailty (C-statistic = 0.71; 95% confidence interval [CI] = 0.67, 0.74). Participants classified with a high predicted probability of dependency (≥20%) had higher prevalence of falls and difficulty in physical ability, and a greater risk of 1-year all-cause mortality (hazard ratio = 5.7 [95% CI = 2.5, 13]) than participants classified with a low predicted probability (<5%). Sensitivity and specificity varied across predicted probability of dependency thresholds. The Medicare claims-based algorithm showed good discrimination of phenotypic frailty and high predictive ability with adverse health outcomes. This algorithm can be used in future Medicare claims analyses to reduce confounding by frailty and improve study validity.
Austin, Peter C
2016-12-30
Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naïve model-based variance estimator; (ii) a robust sandwich-type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Reliable evaluation of the quantal determinants of synaptic efficacy using Bayesian analysis
Beato, M.
2013-01-01
Communication between neurones in the central nervous system depends on synaptic transmission. The efficacy of synapses is determined by pre- and postsynaptic factors that can be characterized using quantal parameters such as the probability of neurotransmitter release, number of release sites, and quantal size. Existing methods of estimating the quantal parameters based on multiple probability fluctuation analysis (MPFA) are limited by their requirement for long recordings to acquire substantial data sets. We therefore devised an algorithm, termed Bayesian Quantal Analysis (BQA), that can yield accurate estimates of the quantal parameters from data sets of as small a size as 60 observations for each of only 2 conditions of release probability. Computer simulations are used to compare its performance in accuracy with that of MPFA, while varying the number of observations and the simulated range in release probability. We challenge BQA with realistic complexities characteristic of complex synapses, such as increases in the intra- or intersite variances, and heterogeneity in release probabilities. Finally, we validate the method using experimental data obtained from electrophysiological recordings to show that the effect of an antagonist on postsynaptic receptors is correctly characterized by BQA by a specific reduction in the estimates of quantal size. Since BQA routinely yields reliable estimates of the quantal parameters from small data sets, it is ideally suited to identify the locus of synaptic plasticity for experiments in which repeated manipulations of the recording environment are unfeasible. PMID:23076101
Barbraud, C.; Nichols, J.D.; Hines, J.E.; Hafner, H.
2003-01-01
Coloniality has mainly been studied from an evolutionary perspective, but relatively few studies have developed methods for modelling colony dynamics. Changes in number of colonies over time provide a useful tool for predicting and evaluating the responses of colonial species to management and to environmental disturbance. Probabilistic Markov process models have been recently used to estimate colony site dynamics using presence-absence data when all colonies are detected in sampling efforts. Here, we define and develop two general approaches for the modelling and analysis of colony dynamics for sampling situations in which all colonies are, and are not, detected. For both approaches, we develop a general probabilistic model for the data and then constrain model parameters based on various hypotheses about colony dynamics. We use Akaike's Information Criterion (AIC) to assess the adequacy of the constrained models. The models are parameterised with conditional probabilities of local colony site extinction and colonization. Presence-absence data arising from Pollock's robust capture-recapture design provide the basis for obtaining unbiased estimates of extinction, colonization, and detection probabilities when not all colonies are detected. This second approach should be particularly useful in situations where detection probabilities are heterogeneous among colony sites. The general methodology is illustrated using presence-absence data on two species of herons (Purple Heron, Ardea purpurea and Grey Heron, Ardea cinerea). Estimates of the extinction and colonization rates showed interspecific differences and strong temporal and spatial variations. We were also able to test specific predictions about colony dynamics based on ideas about habitat change and metapopulation dynamics. We recommend estimators based on probabilistic modelling for future work on colony dynamics. We also believe that this methodological framework has wide application to problems in animal ecology concerning metapopulation and community dynamics.
Approaches to Evaluating Probability of Collision Uncertainty
NASA Technical Reports Server (NTRS)
Hejduk, Matthew D.; Johnson, Lauren C.
2016-01-01
While the two-dimensional probability of collision (Pc) calculation has served as the main input to conjunction analysis risk assessment for over a decade, it has done this mostly as a point estimate, with relatively little effort made to produce confidence intervals on the Pc value based on the uncertainties in the inputs. The present effort seeks to try to carry these uncertainties through the calculation in order to generate a probability density of Pc results rather than a single average value. Methods for assessing uncertainty in the primary and secondary objects' physical sizes and state estimate covariances, as well as a resampling approach to reveal the natural variability in the calculation, are presented; and an initial proposal for operationally-useful display and interpretation of these data for a particular conjunction is given.
Applying the Hájek Approach in Formula-Based Variance Estimation. Research Report. ETS RR-17-24
ERIC Educational Resources Information Center
Qian, Jiahe
2017-01-01
The variance formula derived for a two-stage sampling design without replacement employs the joint inclusion probabilities in the first-stage selection of clusters. One of the difficulties encountered in data analysis is the lack of information about such joint inclusion probabilities. One way to solve this issue is by applying Hájek's…
Inverse and forward modeling under uncertainty using MRE-based Bayesian approach
NASA Astrophysics Data System (ADS)
Hou, Z.; Rubin, Y.
2004-12-01
A stochastic inverse approach for subsurface characterization is proposed and applied to shallow vadose zone at a winery field site in north California and to a gas reservoir at the Ormen Lange field site in the North Sea. The approach is formulated in a Bayesian-stochastic framework, whereby the unknown parameters are identified in terms of their statistical moments or their probabilities. Instead of the traditional single-valued estimation /prediction provided by deterministic methods, the approach gives a probability distribution for an unknown parameter. This allows calculating the mean, the mode, and the confidence interval, which is useful for a rational treatment of uncertainty and its consequences. The approach also allows incorporating data of various types and different error levels, including measurements of state variables as well as information such as bounds on or statistical moments of the unknown parameters, which may represent prior information. To obtain minimally subjective prior probabilities required for the Bayesian approach, the principle of Minimum Relative Entropy (MRE) is employed. The approach is tested in field sites for flow parameters identification and soil moisture estimation in the vadose zone and for gas saturation estimation at great depth below the ocean floor. Results indicate the potential of coupling various types of field data within a MRE-based Bayesian formalism for improving the estimation of the parameters of interest.
Monte Carlo Perturbation Theory Estimates of Sensitivities to System Dimensions
Burke, Timothy P.; Kiedrowski, Brian C.
2017-12-11
Here, Monte Carlo methods are developed using adjoint-based perturbation theory and the differential operator method to compute the sensitivities of the k-eigenvalue, linear functions of the flux (reaction rates), and bilinear functions of the forward and adjoint flux (kinetics parameters) to system dimensions for uniform expansions or contractions. The calculation of sensitivities to system dimensions requires computing scattering and fission sources at material interfaces using collisions occurring at the interface—which is a set of events with infinitesimal probability. Kernel density estimators are used to estimate the source at interfaces using collisions occurring near the interface. The methods for computing sensitivitiesmore » of linear and bilinear ratios are derived using the differential operator method and adjoint-based perturbation theory and are shown to be equivalent to methods previously developed using a collision history–based approach. The methods for determining sensitivities to system dimensions are tested on a series of fast, intermediate, and thermal critical benchmarks as well as a pressurized water reactor benchmark problem with iterated fission probability used for adjoint-weighting. The estimators are shown to agree within 5% and 3σ of reference solutions obtained using direct perturbations with central differences for the majority of test problems.« less
Kruppa, Jochen; Liu, Yufeng; Biau, Gérard; Kohler, Michael; König, Inke R; Malley, James D; Ziegler, Andreas
2014-07-01
Probability estimation for binary and multicategory outcome using logistic and multinomial logistic regression has a long-standing tradition in biostatistics. However, biases may occur if the model is misspecified. In contrast, outcome probabilities for individuals can be estimated consistently with machine learning approaches, including k-nearest neighbors (k-NN), bagged nearest neighbors (b-NN), random forests (RF), and support vector machines (SVM). Because machine learning methods are rarely used by applied biostatisticians, the primary goal of this paper is to explain the concept of probability estimation with these methods and to summarize recent theoretical findings. Probability estimation in k-NN, b-NN, and RF can be embedded into the class of nonparametric regression learning machines; therefore, we start with the construction of nonparametric regression estimates and review results on consistency and rates of convergence. In SVMs, outcome probabilities for individuals are estimated consistently by repeatedly solving classification problems. For SVMs we review classification problem and then dichotomous probability estimation. Next we extend the algorithms for estimating probabilities using k-NN, b-NN, and RF to multicategory outcomes and discuss approaches for the multicategory probability estimation problem using SVM. In simulation studies for dichotomous and multicategory dependent variables we demonstrate the general validity of the machine learning methods and compare it with logistic regression. However, each method fails in at least one simulation scenario. We conclude with a discussion of the failures and give recommendations for selecting and tuning the methods. Applications to real data and example code are provided in a companion article (doi:10.1002/bimj.201300077). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Horton, G.E.; Letcher, B.H.
2008-01-01
The inability to account for the availability of individuals in the study area during capture-mark-recapture (CMR) studies and the resultant confounding of parameter estimates can make correct interpretation of CMR model parameter estimates difficult. Although important advances based on the Cormack-Jolly-Seber (CJS) model have resulted in estimators of true survival that work by unconfounding either death or recapture probability from availability for capture in the study area, these methods rely on the researcher's ability to select a method that is correctly matched to emigration patterns in the population. If incorrect assumptions regarding site fidelity (non-movement) are made, it may be difficult or impossible as well as costly to change the study design once the incorrect assumption is discovered. Subtleties in characteristics of movement (e.g. life history-dependent emigration, nomads vs territory holders) can lead to mixtures in the probability of being available for capture among members of the same population. The result of these mixtures may be only a partial unconfounding of emigration from other CMR model parameters. Biologically-based differences in individual movement can combine with constraints on study design to further complicate the problem. Because of the intricacies of movement and its interaction with other parameters in CMR models, quantification of and solutions to these problems are needed. Based on our work with stream-dwelling populations of Atlantic salmon Salmo salar, we used a simulation approach to evaluate existing CMR models under various mixtures of movement probabilities. The Barker joint data model provided unbiased estimates of true survival under all conditions tested. The CJS and robust design models provided similarly unbiased estimates of true survival but only when emigration information could be incorporated directly into individual encounter histories. For the robust design model, Markovian emigration (future availability for capture depends on an individual's current location) was a difficult emigration pattern to detect unless survival and especially recapture probability were high. Additionally, when local movement was high relative to study area boundaries and movement became more diffuse (e.g. a random walk), local movement and permanent emigration were difficult to distinguish and had consequences for correctly interpreting the survival parameter being estimated (apparent survival vs true survival). ?? 2008 The Authors.
Shielding and activity estimator for template-based nuclide identification methods
Nelson, Karl Einar
2013-04-09
According to one embodiment, a method for estimating an activity of one or more radio-nuclides includes receiving one or more templates, the one or more templates corresponding to one or more radio-nuclides which contribute to a probable solution, receiving one or more weighting factors, each weighting factor representing a contribution of one radio-nuclide to the probable solution, computing an effective areal density for each of the one more radio-nuclides, computing an effective atomic number (Z) for each of the one more radio-nuclides, computing an effective metric for each of the one or more radio-nuclides, and computing an estimated activity for each of the one or more radio-nuclides. In other embodiments, computer program products, systems, and other methods are presented for estimating an activity of one or more radio-nuclides.
A Dirichlet-Multinomial Bayes Classifier for Disease Diagnosis with Microbial Compositions.
Gao, Xiang; Lin, Huaiying; Dong, Qunfeng
2017-01-01
Dysbiosis of microbial communities is associated with various human diseases, raising the possibility of using microbial compositions as biomarkers for disease diagnosis. We have developed a Bayes classifier by modeling microbial compositions with Dirichlet-multinomial distributions, which are widely used to model multicategorical count data with extra variation. The parameters of the Dirichlet-multinomial distributions are estimated from training microbiome data sets based on maximum likelihood. The posterior probability of a microbiome sample belonging to a disease or healthy category is calculated based on Bayes' theorem, using the likelihood values computed from the estimated Dirichlet-multinomial distribution, as well as a prior probability estimated from the training microbiome data set or previously published information on disease prevalence. When tested on real-world microbiome data sets, our method, called DMBC (for Dirichlet-multinomial Bayes classifier), shows better classification accuracy than the only existing Bayesian microbiome classifier based on a Dirichlet-multinomial mixture model and the popular random forest method. The advantage of DMBC is its built-in automatic feature selection, capable of identifying a subset of microbial taxa with the best classification accuracy between different classes of samples based on cross-validation. This unique ability enables DMBC to maintain and even improve its accuracy at modeling species-level taxa. The R package for DMBC is freely available at https://github.com/qunfengdong/DMBC. IMPORTANCE By incorporating prior information on disease prevalence, Bayes classifiers have the potential to estimate disease probability better than other common machine-learning methods. Thus, it is important to develop Bayes classifiers specifically tailored for microbiome data. Our method shows higher classification accuracy than the only existing Bayesian classifier and the popular random forest method, and thus provides an alternative option for using microbial compositions for disease diagnosis.
A conceptual guide to detection probability for point counts and other count-based survey methods
D. Archibald McCallum
2005-01-01
Accurate and precise estimates of numbers of animals are vitally needed both to assess population status and to evaluate management decisions. Various methods exist for counting birds, but most of those used with territorial landbirds yield only indices, not true estimates of population size. The need for valid density estimates has spawned a number of models for...
Estimation of proportions in mixed pixels through their region characterization
NASA Technical Reports Server (NTRS)
Chittineni, C. B. (Principal Investigator)
1981-01-01
A region of mixed pixels can be characterized through the probability density function of proportions of classes in the pixels. Using information from the spectral vectors of a given set of pixels from the mixed pixel region, expressions are developed for obtaining the maximum likelihood estimates of the parameters of probability density functions of proportions. The proportions of classes in the mixed pixels can then be estimated. If the mixed pixels contain objects of two classes, the computation can be reduced by transforming the spectral vectors using a transformation matrix that simultaneously diagonalizes the covariance matrices of the two classes. If the proportions of the classes of a set of mixed pixels from the region are given, then expressions are developed for obtaining the estmates of the parameters of the probability density function of the proportions of mixed pixels. Development of these expressions is based on the criterion of the minimum sum of squares of errors. Experimental results from the processing of remotely sensed agricultural multispectral imagery data are presented.
Mining Rare Events Data for Assessing Customer Attrition Risk
NASA Astrophysics Data System (ADS)
Au, Tom; Chin, Meei-Ling Ivy; Ma, Guangqin
Customer attrition refers to the phenomenon whereby a customer leaves a service provider. As competition intensifies, preventing customers from leaving is a major challenge to many businesses such as telecom service providers. Research has shown that retaining existing customers is more profitable than acquiring new customers due primarily to savings on acquisition costs, the higher volume of service consumption, and customer referrals. For a large enterprise, its customer base consists of tens of millions service subscribers, more often the events, such as switching to competitors or canceling services are large in absolute number, but rare in percentage, far less than 5%. Based on a simple random sample, popular statistical procedures, such as logistic regression, tree-based method and neural network, can sharply underestimate the probability of rare events, and often result a null model (no significant predictors). To improve efficiency and accuracy for event probability estimation, a case-based data collection technique is then considered. A case-based sample is formed by taking all available events and a small, but representative fraction of nonevents from a dataset of interest. In this article we showed a consistent prior correction method for events probability estimation and demonstrated the performance of the above data collection techniques in predicting customer attrition with actual telecommunications data.
Model-Based Method for Sensor Validation
NASA Technical Reports Server (NTRS)
Vatan, Farrokh
2012-01-01
Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).
NASA Technical Reports Server (NTRS)
Freilich, M. H.; Pawka, S. S.
1987-01-01
The statistics of Sxy estimates derived from orthogonal-component measurements are examined. Based on results of Goodman (1957), the probability density function (pdf) for Sxy(f) estimates is derived, and a closed-form solution for arbitrary moments of the distribution is obtained. Characteristic functions are used to derive the exact pdf of Sxy(tot). In practice, a simple Gaussian approximation is found to be highly accurate even for relatively few degrees of freedom. Implications for experiment design are discussed, and a maximum-likelihood estimator for a posterior estimation is outlined.
Zou, Ying-min; Ni, Ke; Wang, Yang-yu; Yu, En-qing; Lui, Simon S. Y.; Cheung, Eric F. C.; Chan, Raymond C. K.
2017-01-01
Abstract Background: Deficits in reward processing, such as approaching motivation, reward learning and effort-based decision-making, have been observed in patients with schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). However, little is known about the nature of reward-processing deficits in these 3 diagnostic groups. The present study aimed to compare and contrast amotivation in these 3 diagnostic groups using an effort-based decision-making task. Methods: Sixty patients (19 SCZ patients, 18 BD patients and 23 MDD patients) and 27 healthy controls (HC) were recruited for the present study. The Effort Expenditure for Reward Task (EEfRT) was administered to evaluate their effort allocation pattern. This task required participants to choose easy or hard tasks in response to different levels of reward magnitude and reward probability. Results: Results showed that SCZ, BD, and MDD patients chose fewer hard tasks compared to HC. As reward magnitude increased, MDD patients made the least effort to gain reward compared to the other groups. When reward probability was intermediate, MDD patients chose fewer hard tasks than SCZ patients, whereas BD patients and HC chose more hard tasks than MDD and SCZ patients. When the reward probability was high, all 3 groups of patients tried fewer hard tasks than HC. Moreover, SCZ and MDD patients were less likely to choose hard tasks than BD patients and HC in the intermediate estimated value conditions. However, in the highest estimated value condition, there was no group difference in hard task choices between these 3 clinical groups, and they were all less motivated than HC. Conclusion: SCZ, BD, and MDD patients shared common deficits in gaining reward if the reward probability and estimated value were high. SCZ and MDD patients showed less motivation than BD patients in gaining reward when the reward probability and estimated value was intermediate.
Optimal clinical trial design based on a dichotomous Markov-chain mixed-effect sleep model.
Steven Ernest, C; Nyberg, Joakim; Karlsson, Mats O; Hooker, Andrew C
2014-12-01
D-optimal designs for discrete-type responses have been derived using generalized linear mixed models, simulation based methods and analytical approximations for computing the fisher information matrix (FIM) of non-linear mixed effect models with homogeneous probabilities over time. In this work, D-optimal designs using an analytical approximation of the FIM for a dichotomous, non-homogeneous, Markov-chain phase advanced sleep non-linear mixed effect model was investigated. The non-linear mixed effect model consisted of transition probabilities of dichotomous sleep data estimated as logistic functions using piecewise linear functions. Theoretical linear and nonlinear dose effects were added to the transition probabilities to modify the probability of being in either sleep stage. D-optimal designs were computed by determining an analytical approximation the FIM for each Markov component (one where the previous state was awake and another where the previous state was asleep). Each Markov component FIM was weighted either equally or by the average probability of response being awake or asleep over the night and summed to derive the total FIM (FIM(total)). The reference designs were placebo, 0.1, 1-, 6-, 10- and 20-mg dosing for a 2- to 6-way crossover study in six dosing groups. Optimized design variables were dose and number of subjects in each dose group. The designs were validated using stochastic simulation/re-estimation (SSE). Contrary to expectations, the predicted parameter uncertainty obtained via FIM(total) was larger than the uncertainty in parameter estimates computed by SSE. Nevertheless, the D-optimal designs decreased the uncertainty of parameter estimates relative to the reference designs. Additionally, the improvement for the D-optimal designs were more pronounced using SSE than predicted via FIM(total). Through the use of an approximate analytic solution and weighting schemes, the FIM(total) for a non-homogeneous, dichotomous Markov-chain phase advanced sleep model was computed and provided more efficient trial designs and increased nonlinear mixed-effects modeling parameter precision.
Transitional probability-based model for HPV clearance in HIV-1-positive adolescent females.
Kravchenko, Julia; Akushevich, Igor; Sudenga, Staci L; Wilson, Craig M; Levitan, Emily B; Shrestha, Sadeep
2012-01-01
HIV-1-positive patients clear the human papillomavirus (HPV) infection less frequently than HIV-1-negative. Datasets for estimating HPV clearance probability often have irregular measurements of HPV status and risk factors. A new transitional probability-based model for estimation of probability of HPV clearance was developed to fully incorporate information on HIV-1-related clinical data, such as CD4 counts, HIV-1 viral load (VL), highly active antiretroviral therapy (HAART), and risk factors (measured quarterly), and HPV infection status (measured at 6-month intervals). Data from 266 HIV-1-positive and 134 at-risk HIV-1-negative adolescent females from the Reaching for Excellence in Adolescent Care and Health (REACH) cohort were used in this study. First, the associations were evaluated using the Cox proportional hazard model, and the variables that demonstrated significant effects on HPV clearance were included in transitional probability models. The new model established the efficacy of CD4 cell counts as a main clearance predictor for all type-specific HPV phylogenetic groups. The 3-month probability of HPV clearance in HIV-1-infected patients significantly increased with increasing CD4 counts for HPV16/16-like (p<0.001), HPV18/18-like (p<0.001), HPV56/56-like (p = 0.05), and low-risk HPV (p<0.001) phylogenetic groups, with the lowest probability found for HPV16/16-like infections (21.60±1.81% at CD4 level 200 cells/mm(3), p<0.05; and 28.03±1.47% at CD4 level 500 cells/mm(3)). HIV-1 VL was a significant predictor for clearance of low-risk HPV infections (p<0.05). HAART (with protease inhibitor) was significant predictor of probability of HPV16 clearance (p<0.05). HPV16/16-like and HPV18/18-like groups showed heterogeneity (p<0.05) in terms of how CD4 counts, HIV VL, and HAART affected probability of clearance of each HPV infection. This new model predicts the 3-month probability of HPV infection clearance based on CD4 cell counts and other HIV-1-related clinical measurements.
Mavromoustakos, Elena; Clark, Gavin I; Rock, Adam J
2016-01-01
Probability bias regarding threat-relevant outcomes has been demonstrated across anxiety disorders but has not been investigated in flying phobia. Individual temporal orientation (time perspective) may be hypothesised to influence estimates of negative outcomes occurring. The present study investigated whether probability bias could be demonstrated in flying phobia and whether probability estimates of negative flying events was predicted by time perspective. Sixty flying phobic and fifty-five non-flying-phobic adults were recruited to complete an online questionnaire. Participants completed the Flight Anxiety Scale, Probability Scale (measuring perceived probability of flying-negative events, general-negative and general positive events) and the Past-Negative, Future and Present-Hedonistic subscales of the Zimbardo Time Perspective Inventory (variables argued to predict mental travel forward and backward in time). The flying phobic group estimated the probability of flying negative and general negative events occurring as significantly higher than non-flying phobics. Past-Negative scores (positively) and Present-Hedonistic scores (negatively) predicted probability estimates of flying negative events. The Future Orientation subscale did not significantly predict probability estimates. This study is the first to demonstrate probability bias for threat-relevant outcomes in flying phobia. Results suggest that time perspective may influence perceived probability of threat-relevant outcomes but the nature of this relationship remains to be determined.
Mavromoustakos, Elena; Clark, Gavin I.; Rock, Adam J.
2016-01-01
Probability bias regarding threat-relevant outcomes has been demonstrated across anxiety disorders but has not been investigated in flying phobia. Individual temporal orientation (time perspective) may be hypothesised to influence estimates of negative outcomes occurring. The present study investigated whether probability bias could be demonstrated in flying phobia and whether probability estimates of negative flying events was predicted by time perspective. Sixty flying phobic and fifty-five non-flying-phobic adults were recruited to complete an online questionnaire. Participants completed the Flight Anxiety Scale, Probability Scale (measuring perceived probability of flying-negative events, general-negative and general positive events) and the Past-Negative, Future and Present-Hedonistic subscales of the Zimbardo Time Perspective Inventory (variables argued to predict mental travel forward and backward in time). The flying phobic group estimated the probability of flying negative and general negative events occurring as significantly higher than non-flying phobics. Past-Negative scores (positively) and Present-Hedonistic scores (negatively) predicted probability estimates of flying negative events. The Future Orientation subscale did not significantly predict probability estimates. This study is the first to demonstrate probability bias for threat-relevant outcomes in flying phobia. Results suggest that time perspective may influence perceived probability of threat-relevant outcomes but the nature of this relationship remains to be determined. PMID:27557054
Time-dependent earthquake probabilities
Gomberg, J.; Belardinelli, M.E.; Cocco, M.; Reasenberg, P.
2005-01-01
We have attempted to provide a careful examination of a class of approaches for estimating the conditional probability of failure of a single large earthquake, particularly approaches that account for static stress perturbations to tectonic loading as in the approaches of Stein et al. (1997) and Hardebeck (2004). We have loading as in the framework based on a simple, generalized rate change formulation and applied it to these two approaches to show how they relate to one another. We also have attempted to show the connection between models of seismicity rate changes applied to (1) populations of independent faults as in background and aftershock seismicity and (2) changes in estimates of the conditional probability of failures of different members of a the notion of failure rate corresponds to successive failures of different members of a population of faults. The latter application requires specification of some probability distribution (density function of PDF) that describes some population of potential recurrence times. This PDF may reflect our imperfect knowledge of when past earthquakes have occurred on a fault (epistemic uncertainty), the true natural variability in failure times, or some combination of both. We suggest two end-member conceptual single-fault models that may explain natural variability in recurrence times and suggest how they might be distinguished observationally. When viewed deterministically, these single-fault patch models differ significantly in their physical attributes, and when faults are immature, they differ in their responses to stress perturbations. Estimates of conditional failure probabilities effectively integrate over a range of possible deterministic fault models, usually with ranges that correspond to mature faults. Thus conditional failure probability estimates usually should not differ significantly for these models. Copyright 2005 by the American Geophysical Union.
Quantifying the origins of life on a planetary scale
Scharf, Caleb; Cronin, Leroy
2016-01-01
A simple, heuristic formula with parallels to the Drake Equation is introduced to help focus discussion on open questions for the origins of life in a planetary context. This approach indicates a number of areas where quantitative progress can be made on parameter estimation for determining origins of life probabilities, based on constraints from Bayesian approaches. We discuss a variety of “microscale” factors and their role in determining “macroscale” abiogenesis probabilities on suitable planets. We also propose that impact ejecta exchange between planets with parallel chemistries and chemical evolution could in principle amplify the development of molecular complexity and abiogenesis probabilities. This amplification could be very significant, and both bias our conclusions about abiogenesis probabilities based on the Earth and provide a major source of variance in the probability of life arising in planetary systems. We use our heuristic formula to suggest a number of observational routes for improving constraints on origins of life probabilities. PMID:27382156
Spatially explicit dynamic N-mixture models
Zhao, Qing; Royle, Andy; Boomer, G. Scott
2017-01-01
Knowledge of demographic parameters such as survival, reproduction, emigration, and immigration is essential to understand metapopulation dynamics. Traditionally the estimation of these demographic parameters requires intensive data from marked animals. The development of dynamic N-mixture models makes it possible to estimate demographic parameters from count data of unmarked animals, but the original dynamic N-mixture model does not distinguish emigration and immigration from survival and reproduction, limiting its ability to explain important metapopulation processes such as movement among local populations. In this study we developed a spatially explicit dynamic N-mixture model that estimates survival, reproduction, emigration, local population size, and detection probability from count data under the assumption that movement only occurs among adjacent habitat patches. Simulation studies showed that the inference of our model depends on detection probability, local population size, and the implementation of robust sampling design. Our model provides reliable estimates of survival, reproduction, and emigration when detection probability is high, regardless of local population size or the type of sampling design. When detection probability is low, however, our model only provides reliable estimates of survival, reproduction, and emigration when local population size is moderate to high and robust sampling design is used. A sensitivity analysis showed that our model is robust against the violation of the assumption that movement only occurs among adjacent habitat patches, suggesting wide applications of this model. Our model can be used to improve our understanding of metapopulation dynamics based on count data that are relatively easy to collect in many systems.
Probability shapes perceptual precision: A study in orientation estimation.
Jabar, Syaheed B; Anderson, Britt
2015-12-01
Probability is known to affect perceptual estimations, but an understanding of mechanisms is lacking. Moving beyond binary classification tasks, we had naive participants report the orientation of briefly viewed gratings where we systematically manipulated contingent probability. Participants rapidly developed faster and more precise estimations for high-probability tilts. The shapes of their error distributions, as indexed by a kurtosis measure, also showed a distortion from Gaussian. This kurtosis metric was robust, capturing probability effects that were graded, contextual, and varying as a function of stimulus orientation. Our data can be understood as a probability-induced reduction in the variability or "shape" of estimation errors, as would be expected if probability affects the perceptual representations. As probability manipulations are an implicit component of many endogenous cuing paradigms, changes at the perceptual level could account for changes in performance that might have traditionally been ascribed to "attention." (c) 2015 APA, all rights reserved).
Contingency bias in probability judgement may arise from ambiguity regarding additional causes.
Mitchell, Chris J; Griffiths, Oren; More, Pranjal; Lovibond, Peter F
2013-09-01
In laboratory contingency learning tasks, people usually give accurate estimates of the degree of contingency between a cue and an outcome. However, if they are asked to estimate the probability of the outcome in the presence of the cue, they tend to be biased by the probability of the outcome in the absence of the cue. This bias is often attributed to an automatic contingency detection mechanism, which is said to act via an excitatory associative link to activate the outcome representation at the time of testing. We conducted 3 experiments to test alternative accounts of contingency bias. Participants were exposed to the same outcome probability in the presence of the cue, but different outcome probabilities in the absence of the cue. Phrasing the test question in terms of frequency rather than probability and clarifying the test instructions reduced but did not eliminate contingency bias. However, removal of ambiguity regarding the presence of additional causes during the test phase did eliminate contingency bias. We conclude that contingency bias may be due to ambiguity in the test question, and therefore it does not require postulation of a separate associative link-based mechanism.
Wang, Bo; Lin, Yin; Pan, Fu-shun; Yao, Chen; Zheng, Zi-Yu; Cai, Dan; Xu, Xiang-dong
2013-01-01
Wells score has been validated for estimation of pretest probability in patients with suspected deep vein thrombosis (DVT). In clinical practice, many clinicians prefer to use empirical estimation rather than Wells score. However, which method is better to increase the accuracy of clinical evaluation is not well understood. Our present study compared empirical estimation of pretest probability with the Wells score to investigate the efficiency of empirical estimation in the diagnostic process of DVT. Five hundred and fifty-five patients were enrolled in this study. One hundred and fifty patients were assigned to examine the interobserver agreement for Wells score between emergency and vascular clinicians. The other 405 patients were assigned to evaluate the pretest probability of DVT on the basis of the empirical estimation and Wells score, respectively, and plasma D-dimer levels were then determined in the low-risk patients. All patients underwent venous duplex scans and had a 45-day follow up. Weighted Cohen's κ value for interobserver agreement between emergency and vascular clinicians of the Wells score was 0.836. Compared with Wells score evaluation, empirical assessment increased the sensitivity, specificity, Youden's index, positive likelihood ratio, and positive and negative predictive values, but decreased negative likelihood ratio. In addition, the appropriate D-dimer cutoff value based on Wells score was 175 μg/l and 108 patients were excluded. Empirical assessment increased the appropriate D-dimer cutoff point to 225 μg/l and 162 patients were ruled out. Our findings indicated that empirical estimation not only improves D-dimer assay efficiency for exclusion of DVT but also increases clinical judgement accuracy in the diagnosis of DVT.
Deviney, Frank A.; Rice, Karen; Brown, Donald E.
2012-01-01
Natural resource managers require information concerning the frequency, duration, and long-term probability of occurrence of water-quality indicator (WQI) violations of defined thresholds. The timing of these threshold crossings often is hidden from the observer, who is restricted to relatively infrequent observations. Here, a model for the hidden process is linked with a model for the observations, and the parameters describing duration, return period, and long-term probability of occurrence are estimated using Bayesian methods. A simulation experiment is performed to evaluate the approach under scenarios based on the equivalent of a total monitoring period of 5-30 years and an observation frequency of 1-50 observations per year. Given constant threshold crossing rate, accuracy and precision of parameter estimates increased with longer total monitoring period and more-frequent observations. Given fixed monitoring period and observation frequency, accuracy and precision of parameter estimates increased with longer times between threshold crossings. For most cases where the long-term probability of being in violation is greater than 0.10, it was determined that at least 600 observations are needed to achieve precise estimates. An application of the approach is presented using 22 years of quasi-weekly observations of acid-neutralizing capacity from Deep Run, a stream in Shenandoah National Park, Virginia. The time series also was sub-sampled to simulate monthly and semi-monthly sampling protocols. Estimates of the long-term probability of violation were unbiased despite sampling frequency; however, the expected duration and return period were over-estimated using the sub-sampled time series with respect to the full quasi-weekly time series.
Quantitative evaluation of Alzheimer's disease
NASA Astrophysics Data System (ADS)
Duchesne, S.; Frisoni, G. B.
2009-02-01
We propose a single, quantitative metric called the disease evaluation factor (DEF) and assess its efficiency at estimating disease burden in normal, control subjects (CTRL) and probable Alzheimer's disease (AD) patients. The study group consisted in 75 patients with a diagnosis of probable AD and 75 age-matched normal CTRL without neurological or neuropsychological deficit. We calculated a reference eigenspace of MRI appearance from reference data, in which our CTRL and probable AD subjects were projected. We then calculated the multi-dimensional hyperplane separating the CTRL and probable AD groups. The DEF was estimated via a multidimensional weighted distance of eigencoordinates for a given subject and the CTRL group mean, along salient principal components forming the separating hyperplane. We used quantile plots, Kolmogorov-Smirnov and χ2 tests to compare the DEF values and test that their distribution was normal. We used a linear discriminant test to separate CTRL from probable AD based on the DEF factor, and reached an accuracy of 87%. A quantitative biomarker in AD would act as an important surrogate marker of disease status and progression.
NASA Technical Reports Server (NTRS)
Gong, Gavin; Entekhabi, Dara; Salvucci, Guido D.
1994-01-01
Simulated climates using numerical atmospheric general circulation models (GCMs) have been shown to be highly sensitive to the fraction of GCM grid area assumed to be wetted during rain events. The model hydrologic cycle and land-surface water and energy balance are influenced by the parameter bar-kappa, which is the dimensionless fractional wetted area for GCM grids. Hourly precipitation records for over 1700 precipitation stations within the contiguous United States are used to obtain observation-based estimates of fractional wetting that exhibit regional and seasonal variations. The spatial parameter bar-kappa is estimated from the temporal raingauge data using conditional probability relations. Monthly bar-kappa values are estimated for rectangular grid areas over the contiguous United States as defined by the Goddard Institute for Space Studies 4 deg x 5 deg GCM. A bias in the estimates is evident due to the unavoidably sparse raingauge network density, which causes some storms to go undetected by the network. This bias is corrected by deriving the probability of a storm escaping detection by the network. A Monte Carlo simulation study is also conducted that consists of synthetically generated storm arrivals over an artificial grid area. It is used to confirm the bar-kappa estimation procedure and to test the nature of the bias and its correction. These monthly fractional wetting estimates, based on the analysis of station precipitation data, provide an observational basis for assigning the influential parameter bar-kappa in GCM land-surface hydrology parameterizations.
An oilspill risk analysis for the Mid-Atlantic (proposed sale 76) outer continental shelf lease area
Samuels, W.B.; Hopkins, Dorothy
1982-01-01
An oilspill risk analysis was conducted for the mid-Atlantic (proposed sale 76) Outer Continental Shelf (OCS) lease area. The analysis considered: the probability of spill occurrences based on historical trends; likely movement of oil slicks based on a climatological model; and locations of environmental resources which could be vulnerable to spilled oil. The times between spill occurrence and contact with resources were estimated to aid analysts in estimating slick characteristics. Critical assumptions made for this particular analysis were (1) that oil exists in the lease area, and (2) that 0.879 billion barrels of oil will be found and produced from tracts sold in sale 76. On the basis of this resource estimate, it was calculated that 3 to 4 oilspills of 1,000 barrels or greater will occur over the 30-year production life of the proposed sale 76 lease tracts. The results also depend upon the routes and methods chosen to transport oil from 0CS platforms to shore. Given the above assumptions, the estimated probability that one or more oilspills of 1,000 barrels or larger will occur and contact land after being at sea less than 30 days is 0.36; for spills 10,000 barrels or larger, the probability is 0.22. These probabilities also reflect the following assumptions: oilspills remain intact for up to 30 days, do not weather, and are not cleaned up. It is noteworthy that over 90 percent of the risk from proposed sale 76 is due to transportation rather than production of oil. In addition, the risks from proposed sale 76 are about 1/10 to 1/15 those of existing tanker transportation of crude oil imports and refined products in the mid-Atlantic area.
Sampling designs matching species biology produce accurate and affordable abundance indices
Farley, Sean; Russell, Gareth J.; Butler, Matthew J.; Selinger, Jeff
2013-01-01
Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions, which raised capture probabilities. The grid design was least biased (−10.5%), but imprecise (CV 21.2%), and used most effort (16,100 trap-nights). The targeted configuration was more biased (−17.3%), but most precise (CV 12.3%), with least effort (7,000 trap-nights). Targeted sampling generated encounter rates four times higher, and capture and recapture probabilities 11% and 60% higher than grid sampling, in a sampling frame 88% smaller. Bears had unequal probability of capture with both sampling designs, partly because some bears never had traps available to sample them. Hence, grid and targeted sampling generated abundance indices, not estimates. Overall, targeted sampling provided the most accurate and affordable design to index abundance. Targeted sampling may offer an alternative method to index the abundance of other species inhabiting expansive and inaccessible landscapes elsewhere, provided their attraction to resource concentrations. PMID:24392290
COMDYN: Software to study the dynamics of animal communities using a capture-recapture approach
Hines, J.E.; Boulinier, T.; Nichols, J.D.; Sauer, J.R.; Pollock, K.H.
1999-01-01
COMDYN is a set of programs developed for estimation of parameters associated with community dynamics using count data from two locations or time periods. It is Internet-based, allowing remote users either to input their own data, or to use data from the North American Breeding Bird Survey for analysis. COMDYN allows probability of detection to vary among species and among locations and time periods. The basic estimator for species richness underlying all estimators is the jackknife estimator proposed by Burnham and Overton. Estimators are presented for quantities associated with temporal change in species richness, including rate of change in species richness over time, local extinction probability, local species turnover and number of local colonizing species. Estimators are also presented for quantities associated with spatial variation in species richness, including relative richness at two locations and proportion of species present in one location that are also present at a second location. Application of the estimators to species richness estimation has been previously described and justified. The potential applications of these programs are discussed.
The link between judgments of comparative risk and own risk: further evidence.
Gold, Ron S
2007-03-01
Individuals typically believe that they are less likely than the average person to experience negative events, a phenomenon termed "unrealistic optimism". The direct method of assessing unrealistic optimism employs a question of the form, "Compared with the average person, what is the chance that X will occur to you?". However, it has been proposed that responses to such a question (direct-estimates) are based essentially just on estimates that X will occur to the self (self-estimates). If this is so, any factors that affect one of these estimates should also affect the other. This prediction was tested in two experiments. In each, direct- and self-estimates for an unfamiliar health threat - homocysteine-related heart problems - were recorded. It was found that both types of estimate were affected in the same way by varying the stated probability of having unsafe levels of homocysteine (Study 1, N=149) and varying the stated probability that unsafe levels of homocysteine will lead to heart problems (Study 2, N=111). The results are consistent with the proposal that direct-estimates are constructed just from self-estimates.
Factors affecting detectability of river otters during sign surveys
Jeffress, Mackenzie R.; Paukert, Craig P.; Sandercock, Brett K.; Gipson, Philip S.
2011-01-01
Sign surveys are commonly used to study and monitor wildlife species but may be flawed when surveys are conducted only once and cover short distances, which can lead to a lack of accountability for false absences. Multiple observers surveyed for river otter (Lontra canadensis) scat and tracks along stream and reservoir shorelines at 110 randomly selected sites in eastern Kansas from January to April 2008 and 2009 to determine if detection probability differed among substrates, sign types, observers, survey lengths, and near access points. We estimated detection probabilities (p) of river otters using occupancy models in Program PRESENCE. Mean detection probability for a 400-m survey was highest in mud substrates (p = 0.60) and lowest in snow (p = 0.18) and leaf litter substrates (p = 0.27). Scat had a higher detection probability (p = 0.53) than tracks (p = 0.18), and experienced observers had higher detection probabilities (p < 0.71) than novice observers (p < 0.55). Detection probabilities increased almost 3-fold as survey length increased from 200 m to 1,000 m, and otter sign was not concentrated near access points. After accounting for imperfect detection, our estimates of otter site occupancy based on a 400-m survey increased >3-fold, providing further evidence of the potential negative bias that can occur in estimates from sign surveys when imperfect detection is not addressed. Our study identifies areas for improvement in sign survey methodologies and results are applicable for sign surveys commonly used for many species across a range of habitats.
Booms, T.L.; Schempf, P.F.; McCaffery, B.J.; Lindberg, M.S.; Fuller, M.R.
2010-01-01
We conducted repeated aerial surveys for breeding cliff-nesting raptors on the Yukon Delta National Wildlife Refuge (YDNWR) in western Alaska to estimate detection probabilities of Gyrfalcons (Falco rusticolus), Golden Eagles (Aquila chrysaetos), Rough-legged Hawks (Buteo lagopus), and also Common Ravens (Corvus corax). Using the program PRESENCE, we modeled detection histories of each species based on single species occupancy modeling. We used different observers during four helicopter replicate surveys in the Kilbuck Mountains and five fixed-wing replicate surveys in the Ingakslugwat Hills near Bethel, AK. During helicopter surveys, Gyrfalcons had the highest detection probability estimate (p^;p^ 0.79; SE 0.05), followed by Golden Eagles (p^=0.68; SE 0.05), Common Ravens (p^=0.45; SE 0.17), and Rough-legged Hawks (p^=0.10; SE 0.11). Detection probabilities from fixed-wing aircraft in the Ingakslugwat Hills were similar to those from the helicopter in the Kilbuck Mountains for Gyrfalcons and Golden Eagles, but were higher for Common Ravens (p^=0.85; SE 0.06) and Rough-legged Hawks (p^=0.42; SE 0.07). Fixed-wing aircraft provided detection probability estimates and SEs in the Ingakslugwat Hills similar to or better than those from helicopter surveys in the Kilbucks and should be considered for future cliff-nesting raptor surveys where safe, low-altitude flight is possible. Overall, detection probability varied by observer experience and in some cases, by study area/aircraft type.
Testing Models for Perceptual Discrimination Using Repeatable Noise
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Null, Cynthia H. (Technical Monitor)
1998-01-01
Adding noise to stimuli to be discriminated allows estimation of observer classification functions based on the correlation between observer responses and relevant features of the noisy stimuli. Examples will be presented of stimulus features that are found in auditory tone detection and visual Vernier acuity. Using the standard signal detection model (Thurstone scaling), we derive formulas to estimate the proportion of the observer's decision variable variance that is controlled by the added noise. One is based on the probability of agreement of the observer with him/herself on trials with the same noise sample. Another is based on the relative performance of the observer and the model. When these do not agree, the model can be rejected. A second derivation gives the probability of agreement of observer and model when the observer follows the model except for internal noise. Agreement significantly less than this amount allows rejection of the model.
Risk analysis for autonomous underwater vehicle operations in extreme environments.
Brito, Mario Paulo; Griffiths, Gwyn; Challenor, Peter
2010-12-01
Autonomous underwater vehicles (AUVs) are used increasingly to explore hazardous marine environments. Risk assessment for such complex systems is based on subjective judgment and expert knowledge as much as on hard statistics. Here, we describe the use of a risk management process tailored to AUV operations, the implementation of which requires the elicitation of expert judgment. We conducted a formal judgment elicitation process where eight world experts in AUV design and operation were asked to assign a probability of AUV loss given the emergence of each fault or incident from the vehicle's life history of 63 faults and incidents. After discussing methods of aggregation and analysis, we show how the aggregated risk estimates obtained from the expert judgments were used to create a risk model. To estimate AUV survival with mission distance, we adopted a statistical survival function based on the nonparametric Kaplan-Meier estimator. We present theoretical formulations for the estimator, its variance, and confidence limits. We also present a numerical example where the approach is applied to estimate the probability that the Autosub3 AUV would survive a set of missions under Pine Island Glacier, Antarctica in January-March 2009. © 2010 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Tan, Elcin
A new physically-based methodology for probable maximum precipitation (PMP) estimation is developed over the American River Watershed (ARW) using the Weather Research and Forecast (WRF-ARW) model. A persistent moisture flux convergence pattern, called Pineapple Express, is analyzed for 42 historical extreme precipitation events, and it is found that Pineapple Express causes extreme precipitation over the basin of interest. An average correlation between moisture flux convergence and maximum precipitation is estimated as 0.71 for 42 events. The performance of the WRF model is verified for precipitation by means of calibration and independent validation of the model. The calibration procedure is performed only for the first ranked flood event 1997 case, whereas the WRF model is validated for 42 historical cases. Three nested model domains are set up with horizontal resolutions of 27 km, 9 km, and 3 km over the basin of interest. As a result of Chi-square goodness-of-fit tests, the hypothesis that "the WRF model can be used in the determination of PMP over the ARW for both areal average and point estimates" is accepted at the 5% level of significance. The sensitivities of model physics options on precipitation are determined using 28 microphysics, atmospheric boundary layer, and cumulus parameterization schemes combinations. It is concluded that the best triplet option is Thompson microphysics, Grell 3D ensemble cumulus, and YSU boundary layer (TGY), based on 42 historical cases, and this TGY triplet is used for all analyses of this research. Four techniques are proposed to evaluate physically possible maximum precipitation using the WRF: 1. Perturbations of atmospheric conditions; 2. Shift in atmospheric conditions; 3. Replacement of atmospheric conditions among historical events; and 4. Thermodynamically possible worst-case scenario creation. Moreover, climate change effect on precipitation is discussed by emphasizing temperature increase in order to determine the physically possible upper limits of precipitation due to climate change. The simulation results indicate that the meridional shift in atmospheric conditions is the optimum method to determine maximum precipitation in consideration of cost and efficiency. Finally, exceedance probability analyses of the model results of 42 historical extreme precipitation events demonstrate that the 72-hr basin averaged probable maximum precipitation is 21.72 inches for the exceedance probability of 0.5 percent. On the other hand, the current operational PMP estimation for the American River Watershed is 28.57 inches as published in the hydrometeorological report no. 59 and a previous PMP value was 31.48 inches as published in the hydrometeorological report no. 36. According to the exceedance probability analyses of this proposed method, the exceedance probabilities of these two estimations correspond to 0.036 percent and 0.011 percent, respectively.
Snake River fall Chinook salmon life history investigations, annual report 2008
Tiffan, Kenneth F.; Connor, William P.; Bellgraph, Brian J.; Buchanan, Rebecca A.
2010-01-01
In 2009, we used radio and acoustic telemetry to evaluate the migratory behavior, survival, mortality, and delay of subyearling fall Chinook salmon in the Clearwater River and Lower Granite Reservoir. We released a total of 1,000 tagged hatchery subyearlings at Cherry Lane on the Clearwater River in mid August and we monitored them as they passed downstream through various river and reservoir reaches. Survival through the free-flowing river was high (>0.85) for both radio- and acoustic-tagged fish, but dropped substantially as fish delayed in the Transition Zone and Confluence areas. Estimates of the joint probability of migration and survival through the Transition Zone and Confluence reaches combined were similar for both radio- and acoustic-tagged fish, and ranged from about 0.30 to 0.35. Estimates of the joint probability of delaying and surviving in the combined Transition Zone and Confluence peaked at the beginning of the study, ranging from 0.323 ( SE =NA; radio-telemetry data) to 0.466 ( SE =0.024; acoustic-telemetry data), and then steadily declined throughout the remainder of the study. By the end of October, no live tagged juvenile salmon were detected in either the Transition Zone or the Confluence. As estimates of the probability of delay decreased throughout the study, estimates of the probability of mortality increased, as evidenced by the survival estimate of 0.650 ( SE =0.025) at the end of October (acoustic-telemetry data). Few fish were detected at Lower Granite Dam during our study and even fewer fish passed the dam before PIT-tag monitoring ended at the end of October. Five acoustic-tagged fish passed Lower Granite Dam in October and 12 passed the dam in November based on detections in the dam tailrace; however, too few detections were available to calculate the joint probabilities of migrating and surviving or delaying and surviving. Estimates of the joint probability of migrating and surviving through the reservoir was less than 0.2 based on acoustic-tagged fish. Migration rates of tagged fish were highest in the free-flowing river (median range = 36 to 43 km/d) but were generally less than 6 km/d in the reservoir reaches. In particular, median migration rates of radio-tagged fish through the Transition Zone and Confluence were 3.4 and 5.2 km/d, respectively. Median migration rate for acoustic-tagged fish though the Transition Zone and Confluence combined was 1 km/d.
McGowan, C.P.; Millspaugh, J.J.; Ryan, M.R.; Kruse, C.D.; Pavelka, G.
2009-01-01
Estimating reproductive success for birds with precocial young can be difficult because chicks leave nests soon after hatching and individuals or broods can be difficult to track. Researchers often turn to estimating survival during the prefledging period and, though effective, mark-recapture based approaches are not always feasible due to cost, time, and animal welfare concerns. Using a threatened population of Piping Plovers (Charadrius melodus) that breeds along the Missouri River, we present an approach for estimating chick survival during the prefledging period using long-term (1993-2005), count-based, age-class data. We used a modified catch-curve analysis, and data collected during three 5-day sampling periods near the middle of the breeding season. The approach has several ecological and statistical assumptions and our analyses were designed to minimize the probability of violating those assumptions. For example, limiting the sampling periods to only 5 days gave reasonable assurance that population size was stable during the sampling period. Annual daily survival estimates ranged from 0.825 (SD = 0.03) to 0.931 (0.02) depending on year and sampling period, with these estimates assuming constant survival during the prefledging period and no change in the age structure of the population. The average probability of survival to fledging ranged from 0.126 to 0.188. Our results are similar to other published estimates for this species in similar habitats. This method of estimating chick survival may be useful for a variety of precocial bird species when mark-recapture methods are not feasible and only count-based age class data are available. ?? 2009 Association of Field Ornithologists.
Objective estimates based on experimental data and initial and final knowledge
NASA Technical Reports Server (NTRS)
Rosenbaum, B. M.
1972-01-01
An extension of the method of Jaynes, whereby least biased probability estimates are obtained, permits such estimates to be made which account for experimental data on hand as well as prior and posterior knowledge. These estimates can be made for both discrete and continuous sample spaces. The method allows a simple interpretation of Laplace's two rules: the principle of insufficient reason and the rule of succession. Several examples are analyzed by way of illustration.
Eash, David A.; Barnes, Kimberlee K.; Veilleux, Andrea G.
2013-01-01
A statewide study was performed to develop regional regression equations for estimating selected annual exceedance-probability statistics for ungaged stream sites in Iowa. The study area comprises streamgages located within Iowa and 50 miles beyond the State’s borders. Annual exceedance-probability estimates were computed for 518 streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data through 2010. The estimation of the selected statistics included a Bayesian weighted least-squares/generalized least-squares regression analysis to update regional skew coefficients for the 518 streamgages. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low flows. Also, geographic information system software was used to measure 59 selected basin characteristics for each streamgage. Regional regression analysis, using generalized least-squares regression, was used to develop a set of equations for each flood region in Iowa for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. A total of 394 streamgages were included in the development of regional regression equations for three flood regions (regions 1, 2, and 3) that were defined for Iowa based on landform regions and soil regions. Average standard errors of prediction range from 31.8 to 45.2 percent for flood region 1, 19.4 to 46.8 percent for flood region 2, and 26.5 to 43.1 percent for flood region 3. The pseudo coefficients of determination for the generalized least-squares equations range from 90.8 to 96.2 percent for flood region 1, 91.5 to 97.9 percent for flood region 2, and 92.4 to 96.0 percent for flood region 3. The regression equations are applicable only to stream sites in Iowa with flows not significantly affected by regulation, diversion, channelization, backwater, or urbanization and with basin characteristics within the range of those used to develop the equations. These regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the eight selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided by the Web-based tool. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these eight selected statistics are provided for the streamgage.
Use and interpretation of logistic regression in habitat-selection studies
Keating, Kim A.; Cherry, Steve
2004-01-01
Logistic regression is an important tool for wildlife habitat-selection studies, but the method frequently has been misapplied due to an inadequate understanding of the logistic model, its interpretation, and the influence of sampling design. To promote better use of this method, we review its application and interpretation under 3 sampling designs: random, case-control, and use-availability. Logistic regression is appropriate for habitat use-nonuse studies employing random sampling and can be used to directly model the conditional probability of use in such cases. Logistic regression also is appropriate for studies employing case-control sampling designs, but careful attention is required to interpret results correctly. Unless bias can be estimated or probability of use is small for all habitats, results of case-control studies should be interpreted as odds ratios, rather than probability of use or relative probability of use. When data are gathered under a use-availability design, logistic regression can be used to estimate approximate odds ratios if probability of use is small, at least on average. More generally, however, logistic regression is inappropriate for modeling habitat selection in use-availability studies. In particular, using logistic regression to fit the exponential model of Manly et al. (2002:100) does not guarantee maximum-likelihood estimates, valid probabilities, or valid likelihoods. We show that the resource selection function (RSF) commonly used for the exponential model is proportional to a logistic discriminant function. Thus, it may be used to rank habitats with respect to probability of use and to identify important habitat characteristics or their surrogates, but it is not guaranteed to be proportional to probability of use. Other problems associated with the exponential model also are discussed. We describe an alternative model based on Lancaster and Imbens (1996) that offers a method for estimating conditional probability of use in use-availability studies. Although promising, this model fails to converge to a unique solution in some important situations. Further work is needed to obtain a robust method that is broadly applicable to use-availability studies.
Allocating Fire Mitigation Funds on the Basis of the Predicted Probabilities of Forest Wildfire
Ronald E. McRoberts; Greg C. Liknes; Mark D. Nelson; Krista M. Gebert; R. James Barbour; Susan L. Odell; Steven C. Yaddof
2005-01-01
A logistic regression model was used with map-based information to predict the probability of forest fire for forested areas of the United States. Model parameters were estimated using a digital layer depicting the locations of wildfires and satellite imagery depicting thermal hotspots. The area of the United States in the upper 50th percentile with respect to...
Fu, Lanxing; Aspinall, Peter; Bennett, Gary; Magidson, Jay; Tatham, Andrew J
2017-04-01
To quantify the influence of spectral domain optical coherence tomography (SDOCT) on decision-making in patients with suspected glaucoma. A prospective cross-sectional study involving 40 eyes of 20 patients referred by community optometrists due to suspected glaucoma. All patients had disc photographs and standard automated perimetry (SAP), and results were presented to 13 ophthalmologists who estimated pre-test probability of glaucoma (0-100%) for a total of 520 observations. Ophthalmologists were then permitted to modify probabilities of disease based on SDOCT retinal nerve fiber layer (RNFL) measurements (post-test probability). The effect of information from SDOCT on decision to treat, monitor, or discharge was assessed. Agreement among graders was assessed using intraclass correlation coefficients (ICC) and correlated component regression (CCR) was used to identify variables influencing management decisions. Patients had an average age of 69.0 ± 10.1 years, SAP mean deviation of 2.71 ± 3.13 dB, and RNFL thickness of 86.2 ± 16.7 μm. Average pre-test probability of glaucoma was 37.0 ± 33.6% with SDOCT resulting in a 13.3 ± 18.1% change in estimated probability. Incorporating information from SDOCT improved agreement regarding probability of glaucoma (ICC = 0.50 (95% CI 0.38 to 0.64) without SDOCT versus 0.64 (95% CI 0.52 to 0.76) with SDOCT). SDOCT led to a change from decision to "treat or monitor" to "discharge" in 22 of 520 cases and a change from "discharge" to "treat or monitor" in 11 of 520 cases. Pre-test probability and RNFL thickness were predictors of post-test probability of glaucoma, contributing 69 and 31% of the variance in post-test probability, respectively. Information from SDOCT altered estimated probability of glaucoma and improved agreement among clinicians in those suspected of having the disease.
NASA Astrophysics Data System (ADS)
Mandal, S.; Choudhury, B. U.
2015-07-01
Sagar Island, setting on the continental shelf of Bay of Bengal, is one of the most vulnerable deltas to the occurrence of extreme rainfall-driven climatic hazards. Information on probability of occurrence of maximum daily rainfall will be useful in devising risk management for sustaining rainfed agrarian economy vis-a-vis food and livelihood security. Using six probability distribution models and long-term (1982-2010) daily rainfall data, we studied the probability of occurrence of annual, seasonal and monthly maximum daily rainfall (MDR) in the island. To select the best fit distribution models for annual, seasonal and monthly time series based on maximum rank with minimum value of test statistics, three statistical goodness of fit tests, viz. Kolmogorove-Smirnov test (K-S), Anderson Darling test ( A 2 ) and Chi-Square test ( X 2) were employed. The fourth probability distribution was identified from the highest overall score obtained from the three goodness of fit tests. Results revealed that normal probability distribution was best fitted for annual, post-monsoon and summer seasons MDR, while Lognormal, Weibull and Pearson 5 were best fitted for pre-monsoon, monsoon and winter seasons, respectively. The estimated annual MDR were 50, 69, 86, 106 and 114 mm for return periods of 2, 5, 10, 20 and 25 years, respectively. The probability of getting an annual MDR of >50, >100, >150, >200 and >250 mm were estimated as 99, 85, 40, 12 and 03 % level of exceedance, respectively. The monsoon, summer and winter seasons exhibited comparatively higher probabilities (78 to 85 %) for MDR of >100 mm and moderate probabilities (37 to 46 %) for >150 mm. For different recurrence intervals, the percent probability of MDR varied widely across intra- and inter-annual periods. In the island, rainfall anomaly can pose a climatic threat to the sustainability of agricultural production and thus needs adequate adaptation and mitigation measures.
Kowall, Bernd; Kuß, Oliver; Schmidt‐Pokrzywniak, Andrea; Weinreich, Gerhard; Dragano, Nico; Moebus, Susanne; Erbel, Raimund; Jöckel, Karl‐Heinz; Stang, Andreas
2016-01-01
Aim The sleep disturbing effect of many drugs is derived from clinical trials with highly selected patient collectives. However, the generalizability of such findings to the general population is questionable. Our aim was to assess the association between intake of drugs labelled as sleep disturbing and self‐reported nocturnal sleep disturbances in a population‐based study. Methods We used data of 4221 participants (50.0% male) aged 45 to 75 years from the baseline examination of the Heinz Nixdorf Recall Study in Germany. The interview provided information on difficulties falling asleep, difficulties maintaining sleep and early morning arousal. We used the summary of product characteristics (SPC) for each drug taken and assigned the probability of sleep disturbances. Thereafter, we calculated cumulative probabilities of sleep disturbances per subject to account for polypharmacy. We estimated prevalence ratios (PR) using log Poisson regression models with robust variance. Results The adjusted PRs of any regular nocturnal sleep disorder per additional sleep disturbing drug were 1.01 (95% confidence interval (CI) 0.97, 1.06) and 1.03 (95% CI 1.00, 1.07) for men and women, respectively. Estimates for each regular nocturnal sleep disturbance were similarly close to 1. PRs for regular nocturnal sleep disturbances did not increase with rising cumulative probability for drug‐related sleep disturbances. Conclusions SPC‐based probabilities of drug‐related sleep disturbances showed barely any association with self‐reported regular nocturnal sleep disturbances. We conclude that SPC‐based probability information may lack generalizability to the general population or may be of limited data quality. PMID:27279554
A Gaussian Model-Based Probabilistic Approach for Pulse Transit Time Estimation.
Jang, Dae-Geun; Park, Seung-Hun; Hahn, Minsoo
2016-01-01
In this paper, we propose a new probabilistic approach to pulse transit time (PTT) estimation using a Gaussian distribution model. It is motivated basically by the hypothesis that PTTs normalized by RR intervals follow the Gaussian distribution. To verify the hypothesis, we demonstrate the effects of arterial compliance on the normalized PTTs using the Moens-Korteweg equation. Furthermore, we observe a Gaussian distribution of the normalized PTTs on real data. In order to estimate the PTT using the hypothesis, we first assumed that R-waves in the electrocardiogram (ECG) can be correctly identified. The R-waves limit searching ranges to detect pulse peaks in the photoplethysmogram (PPG) and to synchronize the results with cardiac beats--i.e., the peaks of the PPG are extracted within the corresponding RR interval of the ECG as pulse peak candidates. Their probabilities of being the actual pulse peak are then calculated using a Gaussian probability function. The parameters of the Gaussian function are automatically updated when a new pulse peak is identified. This update makes the probability function adaptive to variations of cardiac cycles. Finally, the pulse peak is identified as the candidate with the highest probability. The proposed approach is tested on a database where ECG and PPG waveforms are collected simultaneously during the submaximal bicycle ergometer exercise test. The results are promising, suggesting that the method provides a simple but more accurate PTT estimation in real applications.
Hawkes-diffusion process and the conditional probability of defaults in the Eurozone
NASA Astrophysics Data System (ADS)
Kim, Jungmu; Park, Yuen Jung; Ryu, Doojin
2016-05-01
This study examines market information embedded in the European sovereign CDS (credit default swap) market by analyzing the sovereign CDSs of 13 Eurozone countries from January 1, 2008, to February 29, 2012, which includes the recent Eurozone debt crisis period. We design the conditional probability of defaults for the CDS prices based on the Hawkes-diffusion process and obtain the theoretical prices of CDS indexes. To estimate the model parameters, we calibrate the model prices to empirical prices obtained from individual sovereign CDS term structure data. The estimated parameters clearly explain both cross-sectional and time-series data. Our empirical results show that the probability of a huge loss event sharply increased during the Eurozone debt crisis, indicating a contagion effect. Even countries with strong and stable economies, such as Germany and France, suffered from the contagion effect. We also find that the probability of small events is sensitive to the state of the economy, spiking several times due to the global financial crisis and the Greek government debt crisis.
Probability machines: consistent probability estimation using nonparametric learning machines.
Malley, J D; Kruppa, J; Dasgupta, A; Malley, K G; Ziegler, A
2012-01-01
Most machine learning approaches only provide a classification for binary responses. However, probabilities are required for risk estimation using individual patient characteristics. It has been shown recently that every statistical learning machine known to be consistent for a nonparametric regression problem is a probability machine that is provably consistent for this estimation problem. The aim of this paper is to show how random forests and nearest neighbors can be used for consistent estimation of individual probabilities. Two random forest algorithms and two nearest neighbor algorithms are described in detail for estimation of individual probabilities. We discuss the consistency of random forests, nearest neighbors and other learning machines in detail. We conduct a simulation study to illustrate the validity of the methods. We exemplify the algorithms by analyzing two well-known data sets on the diagnosis of appendicitis and the diagnosis of diabetes in Pima Indians. Simulations demonstrate the validity of the method. With the real data application, we show the accuracy and practicality of this approach. We provide sample code from R packages in which the probability estimation is already available. This means that all calculations can be performed using existing software. Random forest algorithms as well as nearest neighbor approaches are valid machine learning methods for estimating individual probabilities for binary responses. Freely available implementations are available in R and may be used for applications.
The exact probability distribution of the rank product statistics for replicated experiments.
Eisinga, Rob; Breitling, Rainer; Heskes, Tom
2013-03-18
The rank product method is a widely accepted technique for detecting differentially regulated genes in replicated microarray experiments. To approximate the sampling distribution of the rank product statistic, the original publication proposed a permutation approach, whereas recently an alternative approximation based on the continuous gamma distribution was suggested. However, both approximations are imperfect for estimating small tail probabilities. In this paper we relate the rank product statistic to number theory and provide a derivation of its exact probability distribution and the true tail probabilities. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Willis, Brian H; Hyde, Christopher J
2014-05-01
To determine a plausible estimate for a test's performance in a specific setting using a new method for selecting studies. It is shown how routine data from practice may be used to define an "applicable region" for studies in receiver operating characteristic space. After qualitative appraisal, studies are selected based on the probability that their study accuracy estimates arose from parameters lying in this applicable region. Three methods for calculating these probabilities are developed and used to tailor the selection of studies for meta-analysis. The Pap test applied to the UK National Health Service (NHS) Cervical Screening Programme provides a case example. The meta-analysis for the Pap test included 68 studies, but at most 17 studies were considered applicable to the NHS. For conventional meta-analysis, the sensitivity and specificity (with 95% confidence intervals) were estimated to be 72.8% (65.8, 78.8) and 75.4% (68.1, 81.5) compared with 50.9% (35.8, 66.0) and 98.0% (95.4, 99.1) from tailored meta-analysis using a binomial method for selection. Thus, for a cervical intraepithelial neoplasia (CIN) 1 prevalence of 2.2%, the post-test probability for CIN 1 would increase from 6.2% to 36.6% between the two methods of meta-analysis. Tailored meta-analysis provides a method for augmenting study selection based on the study's applicability to a setting. As such, the summary estimate is more likely to be plausible for a setting and could improve diagnostic prediction in practice. Copyright © 2014 Elsevier Inc. All rights reserved.
The oilspill risk analysis model of the U. S. Geological Survey
Smith, R.A.; Slack, J.R.; Wyant, Timothy; Lanfear, K.J.
1982-01-01
The U.S. Geological Survey has developed an oilspill risk analysis model to aid in estimating the environmental hazards of developing oil resources in Outer Continental Shelf (OCS) lease areas. The large, computerized model analyzes the probability of spill occurrence, as well as the likely paths or trajectories of spills in relation to the locations of recreational and biological resources which may be vulnerable. The analytical methodology can easily incorporate estimates of weathering rates , slick dispersion, and possible mitigating effects of cleanup. The probability of spill occurrence is estimated from information on the anticipated level of oil production and method of route of transport. Spill movement is modeled in Monte Carlo fashion with a sample of 500 spills per season, each transported by monthly surface current vectors and wind velocities sampled from 3-hour wind transition matrices. Transition matrices are based on historic wind records grouped in 41 wind velocity classes, and are constructed seasonally for up to six wind stations. Locations and monthly vulnerabilities of up to 31 categories of environmental resources are digitized within an 800,000 square kilometer study area. Model output includes tables of conditional impact probabilities (that is, the probability of hitting a target, given that a spill has occured), as well as probability distributions for oilspills occurring and contacting environmental resources within preselected vulnerability time horizons. (USGS)
The oilspill risk analysis model of the U. S. Geological Survey
Smith, R.A.; Slack, J.R.; Wyant, T.; Lanfear, K.J.
1980-01-01
The U.S. Geological Survey has developed an oilspill risk analysis model to aid in estimating the environmental hazards of developing oil resources in Outer Continental Shelf (OCS) lease areas. The large, computerized model analyzes the probability of spill occurrence, as well as the likely paths or trajectories of spills in relation to the locations of recreational and biological resources which may be vulnerable. The analytical methodology can easily incorporate estimates of weathering rates , slick dispersion, and possible mitigating effects of cleanup. The probability of spill occurrence is estimated from information on the anticipated level of oil production and method and route of transport. Spill movement is modeled in Monte Carlo fashion with a sample of 500 spills per season, each transported by monthly surface current vectors and wind velocities sampled from 3-hour wind transition matrices. Transition matrices are based on historic wind records grouped in 41 wind velocity classes, and are constructed seasonally for up to six wind stations. Locations and monthly vulnerabilities of up to 31 categories of environmental resources are digitized within an 800,000 square kilometer study area. Model output includes tables of conditional impact probabilities (that is, the probability of hitting a target, given that a spill has occurred), as well as probability distributions for oilspills occurring and contacting environmental resources within preselected vulnerability time horizons. (USGS)
Smart, Adam S; Tingley, Reid; Weeks, Andrew R; van Rooyen, Anthony R; McCarthy, Michael A
2015-10-01
Effective management of alien species requires detecting populations in the early stages of invasion. Environmental DNA (eDNA) sampling can detect aquatic species at relatively low densities, but few studies have directly compared detection probabilities of eDNA sampling with those of traditional sampling methods. We compare the ability of a traditional sampling technique (bottle trapping) and eDNA to detect a recently established invader, the smooth newt Lissotriton vulgaris vulgaris, at seven field sites in Melbourne, Australia. Over a four-month period, per-trap detection probabilities ranged from 0.01 to 0.26 among sites where L. v. vulgaris was detected, whereas per-sample eDNA estimates were much higher (0.29-1.0). Detection probabilities of both methods varied temporally (across days and months), but temporal variation appeared to be uncorrelated between methods. Only estimates of spatial variation were strongly correlated across the two sampling techniques. Environmental variables (water depth, rainfall, ambient temperature) were not clearly correlated with detection probabilities estimated via trapping, whereas eDNA detection probabilities were negatively correlated with water depth, possibly reflecting higher eDNA concentrations at lower water levels. Our findings demonstrate that eDNA sampling can be an order of magnitude more sensitive than traditional methods, and illustrate that traditional- and eDNA-based surveys can provide independent information on species distributions when occupancy surveys are conducted over short timescales.
Leyrat, Clémence; Seaman, Shaun R; White, Ian R; Douglas, Ian; Smeeth, Liam; Kim, Joseph; Resche-Rigon, Matthieu; Carpenter, James R; Williamson, Elizabeth J
2017-01-01
Inverse probability of treatment weighting is a popular propensity score-based approach to estimate marginal treatment effects in observational studies at risk of confounding bias. A major issue when estimating the propensity score is the presence of partially observed covariates. Multiple imputation is a natural approach to handle missing data on covariates: covariates are imputed and a propensity score analysis is performed in each imputed dataset to estimate the treatment effect. The treatment effect estimates from each imputed dataset are then combined to obtain an overall estimate. We call this method MIte. However, an alternative approach has been proposed, in which the propensity scores are combined across the imputed datasets (MIps). Therefore, there are remaining uncertainties about how to implement multiple imputation for propensity score analysis: (a) should we apply Rubin's rules to the inverse probability of treatment weighting treatment effect estimates or to the propensity score estimates themselves? (b) does the outcome have to be included in the imputation model? (c) how should we estimate the variance of the inverse probability of treatment weighting estimator after multiple imputation? We studied the consistency and balancing properties of the MIte and MIps estimators and performed a simulation study to empirically assess their performance for the analysis of a binary outcome. We also compared the performance of these methods to complete case analysis and the missingness pattern approach, which uses a different propensity score model for each pattern of missingness, and a third multiple imputation approach in which the propensity score parameters are combined rather than the propensity scores themselves (MIpar). Under a missing at random mechanism, complete case and missingness pattern analyses were biased in most cases for estimating the marginal treatment effect, whereas multiple imputation approaches were approximately unbiased as long as the outcome was included in the imputation model. Only MIte was unbiased in all the studied scenarios and Rubin's rules provided good variance estimates for MIte. The propensity score estimated in the MIte approach showed good balancing properties. In conclusion, when using multiple imputation in the inverse probability of treatment weighting context, MIte with the outcome included in the imputation model is the preferred approach.
Binbing Yu; Tiwari, Ram C; Feuer, Eric J
2011-06-01
Cancer patients are subject to multiple competing risks of death and may die from causes other than the cancer diagnosed. The probability of not dying from the cancer diagnosed, which is one of the patients' main concerns, is sometimes called the 'personal cure' rate. Two approaches of modelling competing-risk survival data, namely the cause-specific hazards approach and the mixture model approach, have been used to model competing-risk survival data. In this article, we first show the connection and differences between crude cause-specific survival in the presence of other causes and net survival in the absence of other causes. The mixture survival model is extended to population-based grouped survival data to estimate the personal cure rate. Using the colorectal cancer survival data from the Surveillance, Epidemiology and End Results Programme, we estimate the probabilities of dying from colorectal cancer, heart disease, and other causes by age at diagnosis, race and American Joint Committee on Cancer stage.
Script-independent text line segmentation in freestyle handwritten documents.
Li, Yi; Zheng, Yefeng; Doermann, David; Jaeger, Stefan; Li, Yi
2008-08-01
Text line segmentation in freestyle handwritten documents remains an open document analysis problem. Curvilinear text lines and small gaps between neighboring text lines present a challenge to algorithms developed for machine printed or hand-printed documents. In this paper, we propose a novel approach based on density estimation and a state-of-the-art image segmentation technique, the level set method. From an input document image, we estimate a probability map, where each element represents the probability that the underlying pixel belongs to a text line. The level set method is then exploited to determine the boundary of neighboring text lines by evolving an initial estimate. Unlike connected component based methods ( [1], [2] for example), the proposed algorithm does not use any script-specific knowledge. Extensive quantitative experiments on freestyle handwritten documents with diverse scripts, such as Arabic, Chinese, Korean, and Hindi, demonstrate that our algorithm consistently outperforms previous methods [1]-[3]. Further experiments show the proposed algorithm is robust to scale change, rotation, and noise.
Consensus in controversy: The modified Delphi method applied to Gynecologic Oncology practice.
Cohn, David E; Havrilesky, Laura J; Osann, Kathryn; Lipscomb, Joseph; Hsieh, Susie; Walker, Joan L; Wright, Alexi A; Alvarez, Ronald D; Karlan, Beth Y; Bristow, Robert E; DiSilvestro, Paul A; Wakabayashi, Mark T; Morgan, Robert; Mukamel, Dana B; Wenzel, Lari
2015-09-01
To determine the degree of consensus regarding the probabilities of outcomes associated with IP/IV and IV chemotherapy. A survey was administered to an expert panel using the Delphi method. Ten ovarian cancer experts were asked to estimate outcomes for patients receiving IP/IV or IV chemotherapy. The clinical estimates were: 1) probability of completing six cycles of chemotherapy, 2) probability of surviving five years, 3) median survival, and 4) probability of ER/hospital visits during treatment. Estimates for two patients, one with a low comorbidity index (patient 1) and the other with a moderate index (patient 2), were included. The survey was administered in three rounds, and panelists could revise their subsequent responses based on review of the anonymous opinions of their peers. The ranges were smaller for IV compared with IP/IV therapy. Ranges decreased with each round. Consensus converged around outcomes related to IP/IV chemotherapy for: 1) completion of 6 cycles of therapy (type 1 patient, 62%, type 2 patient, 43%); 2) percentage of patients surviving 5 years (type 1 patient, 66%, type 2 patient, 47%); and 3) median survival (type 1 patient, 83 months, type 2 patient, 58 months). The group required three rounds to achieve consensus on the probabilities of ER/hospital visits (type 1 patient, 24%, type 2 patient, 35%). Initial estimates of survival and adverse events associated with IP/IV chemotherapy differ among experts. The Delphi process works to build consensus and may be a pragmatic tool to inform patients of their expected outcomes. Copyright © 2015 Elsevier Inc. All rights reserved.
Eaton, Mitchell J.; Hughes, Phillip T.; Hines, James E.; Nichols, James D.
2014-01-01
Metapopulation ecology is a field that is richer in theory than in empirical results. Many existing empirical studies use an incidence function approach based on spatial patterns and key assumptions about extinction and colonization rates. Here we recast these assumptions as hypotheses to be tested using 18 years of historic detection survey data combined with four years of data from a new monitoring program for the Lower Keys marsh rabbit. We developed a new model to estimate probabilities of local extinction and colonization in the presence of nondetection, while accounting for estimated occupancy levels of neighboring patches. We used model selection to identify important drivers of population turnover and estimate the effective neighborhood size for this system. Several key relationships related to patch size and isolation that are often assumed in metapopulation models were supported: patch size was negatively related to the probability of extinction and positively related to colonization, and estimated occupancy of neighboring patches was positively related to colonization and negatively related to extinction probabilities. This latter relationship suggested the existence of rescue effects. In our study system, we inferred that coastal patches experienced higher probabilities of extinction and colonization than interior patches. Interior patches exhibited higher occupancy probabilities and may serve as refugia, permitting colonization of coastal patches following disturbances such as hurricanes and storm surges. Our modeling approach should be useful for incorporating neighbor occupancy into future metapopulation analyses and in dealing with other historic occupancy surveys that may not include the recommended levels of sampling replication.
Bayesian time series analysis of segments of the Rocky Mountain trumpeter swan population
Wright, Christopher K.; Sojda, Richard S.; Goodman, Daniel
2002-01-01
A Bayesian time series analysis technique, the dynamic linear model, was used to analyze counts of Trumpeter Swans (Cygnus buccinator) summering in Idaho, Montana, and Wyoming from 1931 to 2000. For the Yellowstone National Park segment of white birds (sub-adults and adults combined) the estimated probability of a positive growth rate is 0.01. The estimated probability of achieving the Subcommittee on Rocky Mountain Trumpeter Swans 2002 population goal of 40 white birds for the Yellowstone segment is less than 0.01. Outside of Yellowstone National Park, Wyoming white birds are estimated to have a 0.79 probability of a positive growth rate with a 0.05 probability of achieving the 2002 objective of 120 white birds. In the Centennial Valley in southwest Montana, results indicate a probability of 0.87 that the white bird population is growing at a positive rate with considerable uncertainty. The estimated probability of achieving the 2002 Centennial Valley objective of 160 white birds is 0.14 but under an alternative model falls to 0.04. The estimated probability that the Targhee National Forest segment of white birds has a positive growth rate is 0.03. In Idaho outside of the Targhee National Forest, white birds are estimated to have a 0.97 probability of a positive growth rate with a 0.18 probability of attaining the 2002 goal of 150 white birds.
... More data FRAX-based Estimates of 10-year Probability of Hip and Major Osteoporotic Fracture Among Adults ... 2016 Content source: CDC/National Center for Health Statistics Email Recommend Tweet YouTube Instagram Listen Watch RSS ...
Studies on possible propagation of microbial contamination in planetary clouds
NASA Technical Reports Server (NTRS)
Dimmick, R. L.; Chatigny, M. A.
1973-01-01
Current U.S. planetary quarantine standards based on international agreements require consideration of the probability of contamination (Pc) of the outer planets, Venus, Jupiter, Saturn, etc. One of the key parameters in estimation of the Pc of these planets is the probability of growth (Pg) of terrestrial microorganisms on or near these planets. For example, Jupiter and Saturn appear to have an atmosphere in which some microbial species could metabolize and propagate. This study includes investigation of the likelihood of metabolism and propagation of microbes suspended in dynamic atmospheres. It is directed toward providing experimental information needed to aid in rational estimation of Pg for these outer plants.
Nakai, Michikazu; Miyamoto, Yoshihiro; Higashiyama, Aya; Murakami, Yoshitaka; Nishimura, Kunihiro; Yatsuya, Hiroshi; Saitoh, Shigeyuki; Sakata, Kiyomi; Iso, Hiroyasu; Miura, Katsuyuki; Ueshima, Hirotsugu; Okamura, Tomonori
2016-01-01
In Japan Atherosclerosis Society guidelines for the prevention of atherosclerotic cardiovascular diseases 2012 (JAS2012), NIPPON DATA80 risk assessment chart (ND80RAC) was adopted to estimate the 10-year probability of coronary artery disease (CAD) mortality. However, there was no comparison between the estimated mortality calculated by ND80RAC and actual mortality in external populations. Accordingly, we used the large pooled database of cohorts in Japan, EPOCH-JAPAN, as an external population. The participants of EPOCH-JAPAN without a history of cardiovascular disease (15,091 men and 18,589 women aged 40-74 years) were analyzed based on sex. The probability of a 10-year risk of CAD/stroke mortality was estimated by ND80RAC. The participants were divided into both decile of their estimated mortality and three categories according to JAS2012. The calibration between the mean estimated mortality and the actual mortality was performed by the Hosmer and Lemeshow (H-L) test. In both sexes, the estimated CAD mortality was higher than the actual mortality, particularly in higher deciles of estimated mortality, and the estimated stroke mortality was almost concordant with the actual mortality in low/moderate deciles of estimated mortality. As for the categories according to JAS2012, the estimated CAD mortality was higher than the actual mortality in both sexes; actual mortality in Category III was lower than that in Category II in women. However, it increased in the ascending order of category when we excluded the presence of diabetes from Category III. The estimated CAD mortality by ND80RAC tended to be higher than the actual mortality in the population in which the baseline survey was more recently performed.
NASA Astrophysics Data System (ADS)
Karbalaee, Negar; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan
2017-04-01
This study explores using Passive Microwave (PMW) rainfall estimation for spatial and temporal adjustment of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). The PERSIANN-CCS algorithm collects information from infrared images to estimate rainfall. PERSIANN-CCS is one of the algorithms used in the Integrated Multisatellite Retrievals for GPM (Global Precipitation Mission) estimation for the time period PMW rainfall estimations are limited or not available. Continued improvement of PERSIANN-CCS will support Integrated Multisatellite Retrievals for GPM for current as well as retrospective estimations of global precipitation. This study takes advantage of the high spatial and temporal resolution of GEO-based PERSIANN-CCS estimation and the more effective, but lower sample frequency, PMW estimation. The Probability Matching Method (PMM) was used to adjust the rainfall distribution of GEO-based PERSIANN-CCS toward that of PMW rainfall estimation. The results show that a significant improvement of global PERSIANN-CCS rainfall estimation is obtained.
NASA Astrophysics Data System (ADS)
Hughes, J. D.; Metz, P. A.
2014-12-01
Most watershed studies include observation-based water budget analyses to develop first-order estimates of significant flow terms. Surface-water/groundwater (SWGW) exchange is typically assumed to be equal to the residual of the sum of inflows and outflows in a watershed. These estimates of SWGW exchange, however, are highly uncertain as a result of the propagation of uncertainty inherent in the calculation or processing of the other terms of the water budget, such as stage-area-volume relations, and uncertainties associated with land-cover based evapotranspiration (ET) rate estimates. Furthermore, the uncertainty of estimated SWGW exchanges can be magnified in large wetland systems that transition from dry to wet during wet periods. Although it is well understood that observation-based estimates of SWGW exchange are uncertain it is uncommon for the uncertainty of these estimates to be directly quantified. High-level programming languages like Python can greatly reduce the effort required to (1) quantify the uncertainty of estimated SWGW exchange in large wetland systems and (2) evaluate how different approaches for partitioning land-cover data in a watershed may affect the water-budget uncertainty. We have used Python with the Numpy, Scipy.stats, and pyDOE packages to implement an unconstrained Monte Carlo approach with Latin Hypercube sampling to quantify the uncertainty of monthly estimates of SWGW exchange in the Floral City watershed of the Tsala Apopka wetland system in west-central Florida, USA. Possible sources of uncertainty in the water budget analysis include rainfall, ET, canal discharge, and land/bathymetric surface elevations. Each of these input variables was assigned a probability distribution based on observation error or spanning the range of probable values. The Monte Carlo integration process exposes the uncertainties in land-cover based ET rate estimates as the dominant contributor to the uncertainty in SWGW exchange estimates. We will discuss the uncertainty of SWGW exchange estimates using an ET model that partitions the watershed into open water and wetland land-cover types. We will also discuss the uncertainty of SWGW exchange estimates calculated using ET models partitioned into additional land-cover types.
Combined statistical analysis of landslide release and propagation
NASA Astrophysics Data System (ADS)
Mergili, Martin; Rohmaneo, Mohammad; Chu, Hone-Jay
2016-04-01
Statistical methods - often coupled with stochastic concepts - are commonly employed to relate areas affected by landslides with environmental layers, and to estimate spatial landslide probabilities by applying these relationships. However, such methods only concern the release of landslides, disregarding their motion. Conceptual models for mass flow routing are used for estimating landslide travel distances and possible impact areas. Automated approaches combining release and impact probabilities are rare. The present work attempts to fill this gap by a fully automated procedure combining statistical and stochastic elements, building on the open source GRASS GIS software: (1) The landslide inventory is subset into release and deposition zones. (2) We employ a traditional statistical approach to estimate the spatial release probability of landslides. (3) We back-calculate the probability distribution of the angle of reach of the observed landslides, employing the software tool r.randomwalk. One set of random walks is routed downslope from each pixel defined as release area. Each random walk stops when leaving the observed impact area of the landslide. (4) The cumulative probability function (cdf) derived in (3) is used as input to route a set of random walks downslope from each pixel in the study area through the DEM, assigning the probability gained from the cdf to each pixel along the path (impact probability). The impact probability of a pixel is defined as the average impact probability of all sets of random walks impacting a pixel. Further, the average release probabilities of the release pixels of all sets of random walks impacting a given pixel are stored along with the area of the possible release zone. (5) We compute the zonal release probability by increasing the release probability according to the size of the release zone - the larger the zone, the larger the probability that a landslide will originate from at least one pixel within this zone. We quantify this relationship by a set of empirical curves. (6) Finally, we multiply the zonal release probability with the impact probability in order to estimate the combined impact probability for each pixel. We demonstrate the model with a 167 km² study area in Taiwan, using an inventory of landslides triggered by the typhoon Morakot. Analyzing the model results leads us to a set of key conclusions: (i) The average composite impact probability over the entire study area corresponds well to the density of observed landside pixels. Therefore we conclude that the method is valid in general, even though the concept of the zonal release probability bears some conceptual issues that have to be kept in mind. (ii) The parameters used as predictors cannot fully explain the observed distribution of landslides. The size of the release zone influences the composite impact probability to a larger degree than the pixel-based release probability. (iii) The prediction rate increases considerably when excluding the largest, deep-seated, landslides from the analysis. We conclude that such landslides are mainly related to geological features hardly reflected in the predictor layers used.
Estimating the probability that the Taser directly causes human ventricular fibrillation.
Sun, H; Haemmerich, D; Rahko, P S; Webster, J G
2010-04-01
This paper describes the first methodology and results for estimating the order of probability for Tasers directly causing human ventricular fibrillation (VF). The probability of an X26 Taser causing human VF was estimated using: (1) current density near the human heart estimated by using 3D finite-element (FE) models; (2) prior data of the maximum dart-to-heart distances that caused VF in pigs; (3) minimum skin-to-heart distances measured in erect humans by echocardiography; and (4) dart landing distribution estimated from police reports. The estimated mean probability of human VF was 0.001 for data from a pig having a chest wall resected to the ribs and 0.000006 for data from a pig with no resection when inserting a blunt probe. The VF probability for a given dart location decreased with the dart-to-heart horizontal distance (radius) on the skin surface.
A robust design mark-resight abundance estimator allowing heterogeneity in resighting probabilities
McClintock, B.T.; White, Gary C.; Burnham, K.P.
2006-01-01
This article introduces the beta-binomial estimator (BBE), a closed-population abundance mark-resight model combining the favorable qualities of maximum likelihood theory and the allowance of individual heterogeneity in sighting probability (p). The model may be parameterized for a robust sampling design consisting of multiple primary sampling occasions where closure need not be met between primary occasions. We applied the model to brown bear data from three study areas in Alaska and compared its performance to the joint hypergeometric estimator (JHE) and Bowden's estimator (BOWE). BBE estimates suggest heterogeneity levels were non-negligible and discourage the use of JHE for these data. Compared to JHE and BOWE, confidence intervals were considerably shorter for the AICc model-averaged BBE. To evaluate the properties of BBE relative to JHE and BOWE when sample sizes are small, simulations were performed with data from three primary occasions generated under both individual heterogeneity and temporal variation in p. All models remained consistent regardless of levels of variation in p. In terms of precision, the AICc model-averaged BBE showed advantages over JHE and BOWE when heterogeneity was present and mean sighting probabilities were similar between primary occasions. Based on the conditions examined, BBE is a reliable alternative to JHE or BOWE and provides a framework for further advances in mark-resight abundance estimation. ?? 2006 American Statistical Association and the International Biometric Society.
Deep convolutional neural network for mammographic density segmentation
NASA Astrophysics Data System (ADS)
Wei, Jun; Li, Songfeng; Chan, Heang-Ping; Helvie, Mark A.; Roubidoux, Marilyn A.; Lu, Yao; Zhou, Chuan; Hadjiiski, Lubomir; Samala, Ravi K.
2018-02-01
Breast density is one of the most significant factors for cancer risk. In this study, we proposed a supervised deep learning approach for automated estimation of percentage density (PD) on digital mammography (DM). The deep convolutional neural network (DCNN) was trained to estimate a probability map of breast density (PMD). PD was calculated as the ratio of the dense area to the breast area based on the probability of each pixel belonging to dense region or fatty region at a decision threshold of 0.5. The DCNN estimate was compared to a feature-based statistical learning approach, in which gray level, texture and morphological features were extracted from each ROI and the least absolute shrinkage and selection operator (LASSO) was used to select and combine the useful features to generate the PMD. The reference PD of each image was provided by two experienced MQSA radiologists. With IRB approval, we retrospectively collected 347 DMs from patient files at our institution. The 10-fold cross-validation results showed a strong correlation r=0.96 between the DCNN estimation and interactive segmentation by radiologists while that of the feature-based statistical learning approach vs radiologists' segmentation had a correlation r=0.78. The difference between the segmentation by DCNN and by radiologists was significantly smaller than that between the feature-based learning approach and radiologists (p < 0.0001) by two-tailed paired t-test. This study demonstrated that the DCNN approach has the potential to replace radiologists' interactive thresholding in PD estimation on DMs.
Creating a stage-based deterministic PVA model - the western prairie fringed orchid [Exercise 12
Carolyn Hull Sieg; Rudy M. King; Fred Van Dyke
2003-01-01
Contemporary efforts to conserve populations and species often employ population viability analysis (PVA), a specific application of population modeling that estimates the effects of environmental and demographic processes on population growth rates. These models can also be used to estimate probabilities that a population will fall below a certain level. This...
Gilliom, Robert J.; Helsel, Dennis R.
1986-01-01
A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations, for determining the best performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilliom, R.J.; Helsel, D.R.
1986-02-01
A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensoredmore » observations, for determining the best performing parameter estimation method for any particular data det. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification.« less
New Insights into the Estimation of Extreme Geomagnetic Storm Occurrences
NASA Astrophysics Data System (ADS)
Ruffenach, Alexis; Winter, Hugo; Lavraud, Benoit; Bernardara, Pietro
2017-04-01
Space weather events such as intense geomagnetic storms are major disturbances of the near-Earth environment that may lead to serious impacts on our modern society. As such, it is of great importance to estimate their probability, and in particular that of extreme events. One approach largely used in statistical sciences for extreme events probability estimates is Extreme Value Analysis (EVA). Using this rigorous statistical framework, estimations of the occurrence of extreme geomagnetic storms are performed here based on the most relevant global parameters related to geomagnetic storms, such as ground parameters (e.g. geomagnetic Dst and aa indexes), and space parameters related to the characteristics of Coronal Mass Ejections (CME) (velocity, southward magnetic field component, electric field). Using our fitted model, we estimate the annual probability of a Carrington-type event (Dst = -850nT) to be on the order of 10-3, with a lower limit of the uncertainties on the return period of ˜500 years. Our estimate is significantly higher than that of most past studies, which typically had a return period of a few 100 years at maximum. Thus precautions are required when extrapolating intense values. Currently, the complexity of the processes and the length of available data inevitably leads to significant uncertainties in return period estimates for the occurrence of extreme geomagnetic storms. However, our application of extreme value models for extrapolating into the tail of the distribution provides a mathematically justified framework for the estimation of extreme return periods, thereby enabling the determination of more accurate estimates and reduced associated uncertainties.
Shabat, Yael Ben; Shitzer, Avraham; Fiala, Dusan
2014-08-01
Wind chill equivalent temperatures (WCETs) were estimated by a modified Fiala's whole body thermoregulation model of a clothed person. Facial convective heat exchange coefficients applied in the computations concurrently with environmental radiation effects were taken from a recently derived human-based correlation. Apart from these, the analysis followed the methodology used in the derivation of the currently used wind chill charts. WCET values are summarized by the following equation:[Formula: see text]Results indicate consistently lower estimated facial skin temperatures and consequently higher WCETs than those listed in the literature and used by the North American weather services. Calculated dynamic facial skin temperatures were additionally applied in the estimation of probabilities for the occurrence of risks of frostbite. Predicted weather combinations for probabilities of "Practically no risk of frostbite for most people," for less than 5 % risk at wind speeds above 40 km h(-1), were shown to occur at air temperatures above -10 °C compared to the currently published air temperature of -15 °C. At air temperatures below -35 °C, the presently calculated weather combination of 40 km h(-1)/-35 °C, at which the transition for risks to incur a frostbite in less than 2 min, is less conservative than that published: 60 km h(-1)/-40 °C. The present results introduce a fundamentally improved scientific basis for estimating facial skin temperatures, wind chill temperatures and risk probabilities for frostbites over those currently practiced.
NASA Astrophysics Data System (ADS)
Shabat, Yael Ben; Shitzer, Avraham; Fiala, Dusan
2014-08-01
Wind chill equivalent temperatures (WCETs) were estimated by a modified Fiala's whole body thermoregulation model of a clothed person. Facial convective heat exchange coefficients applied in the computations concurrently with environmental radiation effects were taken from a recently derived human-based correlation. Apart from these, the analysis followed the methodology used in the derivation of the currently used wind chill charts. WCET values are summarized by the following equation: Results indicate consistently lower estimated facial skin temperatures and consequently higher WCETs than those listed in the literature and used by the North American weather services. Calculated dynamic facial skin temperatures were additionally applied in the estimation of probabilities for the occurrence of risks of frostbite. Predicted weather combinations for probabilities of "Practically no risk of frostbite for most people," for less than 5 % risk at wind speeds above 40 km h-1, were shown to occur at air temperatures above -10 °C compared to the currently published air temperature of -15 °C. At air temperatures below -35 °C, the presently calculated weather combination of 40 km h-1/-35 °C, at which the transition for risks to incur a frostbite in less than 2 min, is less conservative than that published: 60 km h-1/-40 °C. The present results introduce a fundamentally improved scientific basis for estimating facial skin temperatures, wind chill temperatures and risk probabilities for frostbites over those currently practiced.
Khor, Y H; Tolson, J; Churchward, T; Rochford, P; Worsnop, C
2015-08-01
Home polysomnography (PSG) is an alternative method for diagnosis of obstructive sleep apnoea (OSA). Some types 3 and 4 PSG do not monitor sleep and so rely on patients' estimation of total sleep time (TST). To compare patients' subjective sleep duration estimation with objective measures in patients who underwent type 2 PSG for probable OSA. A prospective clinical audit of 536 consecutive patients of one of the authors between 2006 and 2013. A standard questionnaire was completed by the patients the morning after the home PSG to record the time of lights being turned off and estimated time of sleep onset and offset. PSG was scored based on the guidelines of the American Academy of Sleep Medicine. Median estimated sleep latency (SL) was 20 min compared with 10 min for measured SL (P < 0.0001). There was also a significant difference between the estimated and measured sleep offset time (median difference = -1 min, P = 0.01). Estimated TST was significantly shorter than the measured TST (median difference = -18.5 min, P = 0.002). No factors have been identified to affect patients' accuracy of sleep perception. Only 2% of patients had a change in their diagnosis of OSA based on calculated apnoea-hypopnoea index. Overall estimated TST in the patients with probable OSA was significantly shorter than measured with significant individual variability. Collectively, inaccurate sleep time estimation had not resulted in significant difference in the diagnosis of OSA. © 2015 Royal Australasian College of Physicians.
Nakamura, Yoshihiro; Hasegawa, Osamu
2017-01-01
With the ongoing development and expansion of communication networks and sensors, massive amounts of data are continuously generated in real time from real environments. Beforehand, prediction of a distribution underlying such data is difficult; furthermore, the data include substantial amounts of noise. These factors make it difficult to estimate probability densities. To handle these issues and massive amounts of data, we propose a nonparametric density estimator that rapidly learns data online and has high robustness. Our approach is an extension of both kernel density estimation (KDE) and a self-organizing incremental neural network (SOINN); therefore, we call our approach KDESOINN. An SOINN provides a clustering method that learns about the given data as networks of prototype of data; more specifically, an SOINN can learn the distribution underlying the given data. Using this information, KDESOINN estimates the probability density function. The results of our experiments show that KDESOINN outperforms or achieves performance comparable to the current state-of-the-art approaches in terms of robustness, learning time, and accuracy.
Nguyen, Trang Quynh; Webb-Vargas, Yenny; Koning, Ina M; Stuart, Elizabeth A
We investigate a method to estimate the combined effect of multiple continuous/ordinal mediators on a binary outcome: 1) fit a structural equation model with probit link for the outcome and identity/probit link for continuous/ordinal mediators, 2) predict potential outcome probabilities, and 3) compute natural direct and indirect effects. Step 2 involves rescaling the latent continuous variable underlying the outcome to address residual mediator variance/covariance. We evaluate the estimation of risk-difference- and risk-ratio-based effects (RDs, RRs) using the ML, WLSMV and Bayes estimators in Mplus. Across most variations in path-coefficient and mediator-residual-correlation signs and strengths, and confounding situations investigated, the method performs well with all estimators, but favors ML/WLSMV for RDs with continuous mediators, and Bayes for RRs with ordinal mediators. Bayes outperforms WLSMV/ML regardless of mediator type when estimating RRs with small potential outcome probabilities and in two other special cases. An adolescent alcohol prevention study is used for illustration.
Change-in-ratio estimators for populations with more than two subclasses
Udevitz, Mark S.; Pollock, Kenneth H.
1991-01-01
Change-in-ratio methods have been developed to estimate the size of populations with two or three population subclasses. Most of these methods require the often unreasonable assumption of equal sampling probabilities for individuals in all subclasses. This paper presents new models based on the weaker assumption that ratios of sampling probabilities are constant over time for populations with three or more subclasses. Estimation under these models requires that a value be assumed for one of these ratios when there are two samples. Explicit expressions are given for the maximum likelihood estimators under models for two samples with three or more subclasses and for three samples with two subclasses. A numerical method using readily available statistical software is described for obtaining the estimators and their standard errors under all of the models. Likelihood ratio tests that can be used in model selection are discussed. Emphasis is on the two-sample, three-subclass models for which Monte-Carlo simulation results and an illustrative example are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Shangjie; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California; Hara, Wendy
Purpose: To develop a reliable method to estimate electron density based on anatomic magnetic resonance imaging (MRI) of the brain. Methods and Materials: We proposed a unifying multi-atlas approach for electron density estimation based on standard T1- and T2-weighted MRI. First, a composite atlas was constructed through a voxelwise matching process using multiple atlases, with the goal of mitigating effects of inherent anatomic variations between patients. Next we computed for each voxel 2 kinds of conditional probabilities: (1) electron density given its image intensity on T1- and T2-weighted MR images; and (2) electron density given its spatial location in a referencemore » anatomy, obtained by deformable image registration. These were combined into a unifying posterior probability density function using the Bayesian formalism, which provided the optimal estimates for electron density. We evaluated the method on 10 patients using leave-one-patient-out cross-validation. Receiver operating characteristic analyses for detecting different tissue types were performed. Results: The proposed method significantly reduced the errors in electron density estimation, with a mean absolute Hounsfield unit error of 119, compared with 140 and 144 (P<.0001) using conventional T1-weighted intensity and geometry-based approaches, respectively. For detection of bony anatomy, the proposed method achieved an 89% area under the curve, 86% sensitivity, 88% specificity, and 90% accuracy, which improved upon intensity and geometry-based approaches (area under the curve: 79% and 80%, respectively). Conclusion: The proposed multi-atlas approach provides robust electron density estimation and bone detection based on anatomic MRI. If validated on a larger population, our work could enable the use of MRI as a primary modality for radiation treatment planning.« less
Unbiased multi-fidelity estimate of failure probability of a free plane jet
NASA Astrophysics Data System (ADS)
Marques, Alexandre; Kramer, Boris; Willcox, Karen; Peherstorfer, Benjamin
2017-11-01
Estimating failure probability related to fluid flows is a challenge because it requires a large number of evaluations of expensive models. We address this challenge by leveraging multiple low fidelity models of the flow dynamics to create an optimal unbiased estimator. In particular, we investigate the effects of uncertain inlet conditions in the width of a free plane jet. We classify a condition as failure when the corresponding jet width is below a small threshold, such that failure is a rare event (failure probability is smaller than 0.001). We estimate failure probability by combining the frameworks of multi-fidelity importance sampling and optimal fusion of estimators. Multi-fidelity importance sampling uses a low fidelity model to explore the parameter space and create a biasing distribution. An unbiased estimate is then computed with a relatively small number of evaluations of the high fidelity model. In the presence of multiple low fidelity models, this framework offers multiple competing estimators. Optimal fusion combines all competing estimators into a single estimator with minimal variance. We show that this combined framework can significantly reduce the cost of estimating failure probabilities, and thus can have a large impact in fluid flow applications. This work was funded by DARPA.
Bayesian Estimation of Small Effects in Exercise and Sports Science.
Mengersen, Kerrie L; Drovandi, Christopher C; Robert, Christian P; Pyne, David B; Gore, Christopher J
2016-01-01
The aim of this paper is to provide a Bayesian formulation of the so-called magnitude-based inference approach to quantifying and interpreting effects, and in a case study example provide accurate probabilistic statements that correspond to the intended magnitude-based inferences. The model is described in the context of a published small-scale athlete study which employed a magnitude-based inference approach to compare the effect of two altitude training regimens (live high-train low (LHTL), and intermittent hypoxic exposure (IHE)) on running performance and blood measurements of elite triathletes. The posterior distributions, and corresponding point and interval estimates, for the parameters and associated effects and comparisons of interest, were estimated using Markov chain Monte Carlo simulations. The Bayesian analysis was shown to provide more direct probabilistic comparisons of treatments and able to identify small effects of interest. The approach avoided asymptotic assumptions and overcame issues such as multiple testing. Bayesian analysis of unscaled effects showed a probability of 0.96 that LHTL yields a substantially greater increase in hemoglobin mass than IHE, a 0.93 probability of a substantially greater improvement in running economy and a greater than 0.96 probability that both IHE and LHTL yield a substantially greater improvement in maximum blood lactate concentration compared to a Placebo. The conclusions are consistent with those obtained using a 'magnitude-based inference' approach that has been promoted in the field. The paper demonstrates that a fully Bayesian analysis is a simple and effective way of analysing small effects, providing a rich set of results that are straightforward to interpret in terms of probabilistic statements.
Polynomial probability distribution estimation using the method of moments
Mattsson, Lars; Rydén, Jesper
2017-01-01
We suggest a procedure for estimating Nth degree polynomial approximations to unknown (or known) probability density functions (PDFs) based on N statistical moments from each distribution. The procedure is based on the method of moments and is setup algorithmically to aid applicability and to ensure rigor in use. In order to show applicability, polynomial PDF approximations are obtained for the distribution families Normal, Log-Normal, Weibull as well as for a bimodal Weibull distribution and a data set of anonymized household electricity use. The results are compared with results for traditional PDF series expansion methods of Gram–Charlier type. It is concluded that this procedure is a comparatively simple procedure that could be used when traditional distribution families are not applicable or when polynomial expansions of probability distributions might be considered useful approximations. In particular this approach is practical for calculating convolutions of distributions, since such operations become integrals of polynomial expressions. Finally, in order to show an advanced applicability of the method, it is shown to be useful for approximating solutions to the Smoluchowski equation. PMID:28394949
A statistical method to estimate low-energy hadronic cross sections
NASA Astrophysics Data System (ADS)
Balassa, Gábor; Kovács, Péter; Wolf, György
2018-02-01
In this article we propose a model based on the Statistical Bootstrap approach to estimate the cross sections of different hadronic reactions up to a few GeV in c.m.s. energy. The method is based on the idea, when two particles collide a so-called fireball is formed, which after a short time period decays statistically into a specific final state. To calculate the probabilities we use a phase space description extended with quark combinatorial factors and the possibility of more than one fireball formation. In a few simple cases the probability of a specific final state can be calculated analytically, where we show that the model is able to reproduce the ratios of the considered cross sections. We also show that the model is able to describe proton-antiproton annihilation at rest. In the latter case we used a numerical method to calculate the more complicated final state probabilities. Additionally, we examined the formation of strange and charmed mesons as well, where we used existing data to fit the relevant model parameters.
Polynomial probability distribution estimation using the method of moments.
Munkhammar, Joakim; Mattsson, Lars; Rydén, Jesper
2017-01-01
We suggest a procedure for estimating Nth degree polynomial approximations to unknown (or known) probability density functions (PDFs) based on N statistical moments from each distribution. The procedure is based on the method of moments and is setup algorithmically to aid applicability and to ensure rigor in use. In order to show applicability, polynomial PDF approximations are obtained for the distribution families Normal, Log-Normal, Weibull as well as for a bimodal Weibull distribution and a data set of anonymized household electricity use. The results are compared with results for traditional PDF series expansion methods of Gram-Charlier type. It is concluded that this procedure is a comparatively simple procedure that could be used when traditional distribution families are not applicable or when polynomial expansions of probability distributions might be considered useful approximations. In particular this approach is practical for calculating convolutions of distributions, since such operations become integrals of polynomial expressions. Finally, in order to show an advanced applicability of the method, it is shown to be useful for approximating solutions to the Smoluchowski equation.
Ssematimba, Amos; Elbers, Armin R. W.; Hagenaars, Thomas J.; de Jong, Mart C. M.
2012-01-01
Estimates of the per-contact probability of transmission between farms of Highly Pathogenic Avian Influenza virus of H7N7 subtype during the 2003 epidemic in the Netherlands are important for the design of better control and biosecurity strategies. We used standardized data collected during the epidemic and a model to extract data for untraced contacts based on the daily number of infectious farms within a given distance of a susceptible farm. With these data, we used a maximum likelihood estimation approach to estimate the transmission probabilities by the individual contact types, both traced and untraced. The estimated conditional probabilities, conditional on the contact originating from an infectious farm, of virus transmission were: 0.000057 per infectious farm within 1 km per day, 0.000413 per infectious farm between 1 and 3 km per day, 0.0000895 per infectious farm between 3 and 10 km per day, 0.0011 per crisis organisation contact, 0.0414 per feed delivery contact, 0.308 per egg transport contact, 0.133 per other-professional contact and, 0.246 per rendering contact. We validate these outcomes against literature data on virus genetic sequences for outbreak farms. These estimates can be used to inform further studies on the role that improved biosecurity between contacts and/or contact frequency reduction can play in eliminating between-farm spread of the virus during future epidemics. The findings also highlight the need to; 1) understand the routes underlying the infections without traced contacts and, 2) to review whether the contact-tracing protocol is exhaustive in relation to all the farm’s day-to-day activities and practices. PMID:22808285
The estimation of tree posterior probabilities using conditional clade probability distributions.
Larget, Bret
2013-07-01
In this article I introduce the idea of conditional independence of separated subtrees as a principle by which to estimate the posterior probability of trees using conditional clade probability distributions rather than simple sample relative frequencies. I describe an algorithm for these calculations and software which implements these ideas. I show that these alternative calculations are very similar to simple sample relative frequencies for high probability trees but are substantially more accurate for relatively low probability trees. The method allows the posterior probability of unsampled trees to be calculated when these trees contain only clades that are in other sampled trees. Furthermore, the method can be used to estimate the total probability of the set of sampled trees which provides a measure of the thoroughness of a posterior sample.
Denison, Stephanie; Trikutam, Pallavi; Xu, Fei
2014-08-01
A rich tradition in developmental psychology explores physical reasoning in infancy. However, no research to date has investigated whether infants can reason about physical objects that behave probabilistically, rather than deterministically. Physical events are often quite variable, in that similar-looking objects can be placed in similar contexts with different outcomes. Can infants rapidly acquire probabilistic physical knowledge, such as some leaves fall and some glasses break by simply observing the statistical regularity with which objects behave and apply that knowledge in subsequent reasoning? We taught 11-month-old infants physical constraints on objects and asked them to reason about the probability of different outcomes when objects were drawn from a large distribution. Infants could have reasoned either by using the perceptual similarity between the samples and larger distributions or by applying physical rules to adjust base rates and estimate the probabilities. Infants learned the physical constraints quickly and used them to estimate probabilities, rather than relying on similarity, a version of the representativeness heuristic. These results indicate that infants can rapidly and flexibly acquire physical knowledge about objects following very brief exposure and apply it in subsequent reasoning. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Kasaragod, Deepa; Makita, Shuichi; Hong, Young-Joo; Yasuno, Yoshiaki
2017-01-01
This paper presents a noise-stochastic corrected maximum a posteriori estimator for birefringence imaging using Jones matrix optical coherence tomography. The estimator described in this paper is based on the relationship between probability distribution functions of the measured birefringence and the effective signal to noise ratio (ESNR) as well as the true birefringence and the true ESNR. The Monte Carlo method is used to numerically describe this relationship and adaptive 2D kernel density estimation provides the likelihood for a posteriori estimation of the true birefringence. Improved estimation is shown for the new estimator with stochastic model of ESNR in comparison to the old estimator, both based on the Jones matrix noise model. A comparison with the mean estimator is also done. Numerical simulation validates the superiority of the new estimator. The superior performance of the new estimator was also shown by in vivo measurement of optic nerve head. PMID:28270974
Haber, M; An, Q; Foppa, I M; Shay, D K; Ferdinands, J M; Orenstein, W A
2015-05-01
As influenza vaccination is now widely recommended, randomized clinical trials are no longer ethical in many populations. Therefore, observational studies on patients seeking medical care for acute respiratory illnesses (ARIs) are a popular option for estimating influenza vaccine effectiveness (VE). We developed a probability model for evaluating and comparing bias and precision of estimates of VE against symptomatic influenza from two commonly used case-control study designs: the test-negative design and the traditional case-control design. We show that when vaccination does not affect the probability of developing non-influenza ARI then VE estimates from test-negative design studies are unbiased even if vaccinees and non-vaccinees have different probabilities of seeking medical care against ARI, as long as the ratio of these probabilities is the same for illnesses resulting from influenza and non-influenza infections. Our numerical results suggest that in general, estimates from the test-negative design have smaller bias compared to estimates from the traditional case-control design as long as the probability of non-influenza ARI is similar among vaccinated and unvaccinated individuals. We did not find consistent differences between the standard errors of the estimates from the two study designs.
Nonparametric Estimation of the Probability of Ruin.
1985-02-01
MATHEMATICS RESEARCH CENTER I E N FREES FEB 85 MRC/TSR...in NONPARAMETRIC ESTIMATION OF THE PROBABILITY OF RUIN Lf Edward W. Frees * Mathematics Research Center University of Wisconsin-Madison 610 Walnut...34 - .. --- - • ’. - -:- - - ..- . . .- -- .-.-. . -. . .- •. . - . . - . . .’ . ’- - .. -’vi . .-" "-- -" ,’- UNIVERSITY OF WISCONSIN-MADISON MATHEMATICS RESEARCH CENTER NONPARAMETRIC ESTIMATION OF THE PROBABILITY
Real Time Data Management for Estimating Probabilities of Incidents and Near Misses
NASA Astrophysics Data System (ADS)
Stanitsas, P. D.; Stephanedes, Y. J.
2011-08-01
Advances in real-time data collection, data storage and computational systems have led to development of algorithms for transport administrators and engineers that improve traffic safety and reduce cost of road operations. Despite these advances, problems in effectively integrating real-time data acquisition, processing, modelling and road-use strategies at complex intersections and motorways remain. These are related to increasing system performance in identification, analysis, detection and prediction of traffic state in real time. This research develops dynamic models to estimate the probability of road incidents, such as crashes and conflicts, and incident-prone conditions based on real-time data. The models support integration of anticipatory information and fee-based road use strategies in traveller information and management. Development includes macroscopic/microscopic probabilistic models, neural networks, and vector autoregressions tested via machine vision at EU and US sites.
Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat
NASA Astrophysics Data System (ADS)
Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.; Feridun Turkman, K.
2018-02-01
We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts, as provided by the Satellite Application Facility for Land Surface Analysis (LSA SAF) and the European Centre for Medium-Range Weather Forecasts (ECMWF). Fire danger is estimated based on daily probabilities of exceedance of daily energy released by fires occurring at the pixel level. Daily probability considers meteorological factors by means of the Canadian Fire Weather Index (FWI) and is estimated using a daily model based on a generalized Pareto distribution. Five classes of fire danger are then associated with daily probability estimated by the daily model. The model is calibrated using 13 years of data (2004-2016) and validated against the period of January-September 2017. Results obtained show that about 72 % of events releasing daily energy above 10 000 GJ belong to the extreme
class of fire danger, a considerably high fraction that is more than 1.5 times the values obtained when using the currently operational Fire Danger Forecast module of the European Forest Fire Information System (EFFIS) or the Fire Risk Map (FRM) product disseminated by the LSA SAF. Besides assisting in wildfire management, the procedure is expected to help in decision making on prescribed burning within the framework of agricultural and forest management practices.
Monte Carlo role in radiobiological modelling of radiotherapy outcomes
NASA Astrophysics Data System (ADS)
El Naqa, Issam; Pater, Piotr; Seuntjens, Jan
2012-06-01
Radiobiological models are essential components of modern radiotherapy. They are increasingly applied to optimize and evaluate the quality of different treatment planning modalities. They are frequently used in designing new radiotherapy clinical trials by estimating the expected therapeutic ratio of new protocols. In radiobiology, the therapeutic ratio is estimated from the expected gain in tumour control probability (TCP) to the risk of normal tissue complication probability (NTCP). However, estimates of TCP/NTCP are currently based on the deterministic and simplistic linear-quadratic formalism with limited prediction power when applied prospectively. Given the complex and stochastic nature of the physical, chemical and biological interactions associated with spatial and temporal radiation induced effects in living tissues, it is conjectured that methods based on Monte Carlo (MC) analysis may provide better estimates of TCP/NTCP for radiotherapy treatment planning and trial design. Indeed, over the past few decades, methods based on MC have demonstrated superior performance for accurate simulation of radiation transport, tumour growth and particle track structures; however, successful application of modelling radiobiological response and outcomes in radiotherapy is still hampered with several challenges. In this review, we provide an overview of some of the main techniques used in radiobiological modelling for radiotherapy, with focus on the MC role as a promising computational vehicle. We highlight the current challenges, issues and future potentials of the MC approach towards a comprehensive systems-based framework in radiobiological modelling for radiotherapy.
A new estimator of the discovery probability.
Favaro, Stefano; Lijoi, Antonio; Prünster, Igor
2012-12-01
Species sampling problems have a long history in ecological and biological studies and a number of issues, including the evaluation of species richness, the design of sampling experiments, and the estimation of rare species variety, are to be addressed. Such inferential problems have recently emerged also in genomic applications, however, exhibiting some peculiar features that make them more challenging: specifically, one has to deal with very large populations (genomic libraries) containing a huge number of distinct species (genes) and only a small portion of the library has been sampled (sequenced). These aspects motivate the Bayesian nonparametric approach we undertake, since it allows to achieve the degree of flexibility typically needed in this framework. Based on an observed sample of size n, focus will be on prediction of a key aspect of the outcome from an additional sample of size m, namely, the so-called discovery probability. In particular, conditionally on an observed basic sample of size n, we derive a novel estimator of the probability of detecting, at the (n+m+1)th observation, species that have been observed with any given frequency in the enlarged sample of size n+m. Such an estimator admits a closed-form expression that can be exactly evaluated. The result we obtain allows us to quantify both the rate at which rare species are detected and the achieved sample coverage of abundant species, as m increases. Natural applications are represented by the estimation of the probability of discovering rare genes within genomic libraries and the results are illustrated by means of two expressed sequence tags datasets. © 2012, The International Biometric Society.
Elmore, Joann G.; Nelson, Heidi D.; Pepe, Margaret S.; Longton, Gary M.; Tosteson, Anna N.A.; Geller, Berta; Onega, Tracy; Carney, Patricia A.; Jackson, Sara L.; Allison, Kimberly H.; Weaver, Donald L.
2016-01-01
Background The effect of physician diagnostic variability on accuracy at a population level depends on the prevalence of diagnoses. Objective To estimate how diagnostic variability affects accuracy from the perspective of a U.S. woman aged 50 to 59 years having a breast biopsy. Design Applied probability using Bayes theorem. Setting B-Path (Breast Pathology) Study comparing pathologists’ interpretations of a single biopsy slide versus a reference consensus interpretation from 3 experts. Participants 115 practicing pathologists (6900 total interpretations from 240 distinct cases). Measurements A single representative slide from each of the 240 cases was used to estimate the proportion of biopsies with a diagnosis that would be verified if the same slide were interpreted by a reference group of 3 expert pathologists. Probabilities of confirmation (predictive values) were estimated using B-Path Study results and prevalence of biopsy diagnoses for women aged 50 to 59 years in the Breast Cancer Surveillance Consortium. Results Overall, if 1 representative slide were used per case, 92.3% (95% CI, 91.4% to 93.1%) of breast biopsy diagnoses would be verified by reference consensus diagnoses, with 4.6% (CI, 3.9% to 5.3%) overinterpreted and 3.2% (CI, 2.7% to 3.6%) underinterpreted. Verification of invasive breast cancer and benign without atypia diagnoses is highly probable; estimated predictive values were 97.7% (CI, 96.5% to 98.7%) and 97.1% (CI, 96.7% to 97.4%), respectively. Verification is less probable for atypia (53.6% overinterpreted and 8.6% underinterpreted) and ductal carcinoma in situ (DCIS) (18.5% overinterpreted and 11.8% underinterpreted). Limitations Estimates are based on a testing situation with 1 slide used per case and without access to second opinions. Population-adjusted estimates may differ for women from other age groups, unscreened women, or women in different practice settings. Conclusion This analysis, based on interpretation of a single breast biopsy slide per case, predicts a low likelihood that a diagnosis of atypia or DCIS would be verified by a reference consensus diagnosis. This diagnostic gray zone should be considered in clinical management decisions in patients with these diagnoses. Primary Funding Source National Cancer Institute. PMID:26999810
Samuels, W.B.
1982-01-01
An oilspill risk analysis was conducted for the South Atlantic (proposed sale 78) Outer Continental Shelf (OCS) lease area. The analysis considered the probability of spill occurrences based on historical trends; likely movement of oil slicks based on a climatological model ; and locations of environmental resources which could be vulnerable to spilled oil. The times between spill occurrence and contact with resources were estimated to aid analysts in estimating slick characteristics. Critical assumptions made for this particular analysis were: (1) that oil exists in the lease area, (2) that either 0.228 billion (mean case) or 1.14 billion (high case) barrels of oil will be found and produced from tracts sold in sale 78, and (3) that all the oil will be found either in the northern or the southern portion of the lease area. On the basis of these resource estimates, it was estimated that 1 to 5 oilspills of 1,000 barrels or greater will occur over the 25 to 30-year production life of the proposed sale 78 tracts. The results also depend upon the routes and methods chosen to transport oil from OCS platforms to shore. Given the above assumptions, the estimated probability that one or more oilspills of 1,000 barrels or larger will occur and contact land after being at sea less than 30 days is less than 15 percent for all cases considered; for spills 10,000 barrels or larger, the probability is less than 10 percent. These probabilities also reflect the following assumptions: oilspills remain intact for up to 30 days, do not weather, and are not cleaned up. It is noteworthy that over 80 percent of the risk of oilspill occurrence from proposed sale 78 is due to transportation rather than production of oil. In addition, the risks of oilspill occurrence from proposed sale 78 (mean resource estimate) are less than one-tenth of the risks of existing tanker transportation of crude oil imports and refined products in the South Atlantic area.
Robust location and spread measures for nonparametric probability density function estimation.
López-Rubio, Ezequiel
2009-10-01
Robustness against outliers is a desirable property of any unsupervised learning scheme. In particular, probability density estimators benefit from incorporating this feature. A possible strategy to achieve this goal is to substitute the sample mean and the sample covariance matrix by more robust location and spread estimators. Here we use the L1-median to develop a nonparametric probability density function (PDF) estimator. We prove its most relevant properties, and we show its performance in density estimation and classification applications.
Klaus, Christian A; Carrasco, Luis E; Goldberg, Daniel W; Henry, Kevin A; Sherman, Recinda L
2015-09-15
The utility of patient attributes associated with the spatiotemporal analysis of medical records lies not just in their values but also the strength of association between them. Estimating the extent to which a hierarchy of conditional probability exists between patient attribute associations such as patient identifying fields, patient and date of diagnosis, and patient and address at diagnosis is fundamental to estimating the strength of association between patient and geocode, and patient and enumeration area. We propose a hierarchy for the attribute associations within medical records that enable spatiotemporal relationships. We also present a set of metrics that store attribute association error probability (AAEP), to estimate error probability for all attribute associations upon which certainty in a patient geocode depends. A series of experiments were undertaken to understand how error estimation could be operationalized within health data and what levels of AAEP in real data reveal themselves using these methods. Specifically, the goals of this evaluation were to (1) assess if the concept of our error assessment techniques could be implemented by a population-based cancer registry; (2) apply the techniques to real data from a large health data agency and characterize the observed levels of AAEP; and (3) demonstrate how detected AAEP might impact spatiotemporal health research. We present an evaluation of AAEP metrics generated for cancer cases in a North Carolina county. We show examples of how we estimated AAEP for selected attribute associations and circumstances. We demonstrate the distribution of AAEP in our case sample across attribute associations, and demonstrate ways in which disease registry specific operations influence the prevalence of AAEP estimates for specific attribute associations. The effort to detect and store estimates of AAEP is worthwhile because of the increase in confidence fostered by the attribute association level approach to the assessment of uncertainty in patient geocodes, relative to existing geocoding related uncertainty metrics.
On estimating probability of presence from use-availability or presence-background data.
Phillips, Steven J; Elith, Jane
2013-06-01
A fundamental ecological modeling task is to estimate the probability that a species is present in (or uses) a site, conditional on environmental variables. For many species, available data consist of "presence" data (locations where the species [or evidence of it] has been observed), together with "background" data, a random sample of available environmental conditions. Recently published papers disagree on whether probability of presence is identifiable from such presence-background data alone. This paper aims to resolve the disagreement, demonstrating that additional information is required. We defined seven simulated species representing various simple shapes of response to environmental variables (constant, linear, convex, unimodal, S-shaped) and ran five logistic model-fitting methods using 1000 presence samples and 10 000 background samples; the simulations were repeated 100 times. The experiment revealed a stark contrast between two groups of methods: those based on a strong assumption that species' true probability of presence exactly matches a given parametric form had highly variable predictions and much larger RMS error than methods that take population prevalence (the fraction of sites in which the species is present) as an additional parameter. For six species, the former group grossly under- or overestimated probability of presence. The cause was not model structure or choice of link function, because all methods were logistic with linear and, where necessary, quadratic terms. Rather, the experiment demonstrates that an estimate of prevalence is not just helpful, but is necessary (except in special cases) for identifying probability of presence. We therefore advise against use of methods that rely on the strong assumption, due to Lele and Keim (recently advocated by Royle et al.) and Lancaster and Imbens. The methods are fragile, and their strong assumption is unlikely to be true in practice. We emphasize, however, that we are not arguing against standard statistical methods such as logistic regression, generalized linear models, and so forth, none of which requires the strong assumption. If probability of presence is required for a given application, there is no panacea for lack of data. Presence-background data must be augmented with an additional datum, e.g., species' prevalence, to reliably estimate absolute (rather than relative) probability of presence.
Guyette, Richard; Stambaugh, Michael C; Dey, Daniel; Muzika, Rose Marie
2017-01-01
The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical, and biological processes. We use an ecosystem combustion equation developed with the physical chemistry of atmospheric variables to estimate and simulate fire probability and mean fire interval (MFI). The calibration of ecosystem fire probability with basic combustion chemistry and physics offers a quantitative method to address wildland fire in addition to the well-studied forcing factors such as topography, ignition, and vegetation. We develop a graphic analysis tool for estimating climate forced fire probability with temperature and precipitation based on an empirical assessment of combustion theory and fire prediction in ecosystems. Climate-affected fire probability for any period, past or future, is estimated with given temperature and precipitation. A graphic analyses of wildland fire dynamics driven by climate supports a dialectic in hydrologic processes that affect ecosystem combustion: 1) the water needed by plants to produce carbon bonds (fuel) and 2) the inhibition of successful reactant collisions by water molecules (humidity and fuel moisture). These two postulates enable a classification scheme for ecosystems into three or more climate categories using their position relative to change points defined by precipitation in combustion dynamics equations. Three classifications of combustion dynamics in ecosystems fire probability include: 1) precipitation insensitive, 2) precipitation unstable, and 3) precipitation sensitive. All three classifications interact in different ways with variable levels of temperature.
Guyette, Richard; Stambaugh, Michael C.; Dey, Daniel
2017-01-01
The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical, and biological processes. We use an ecosystem combustion equation developed with the physical chemistry of atmospheric variables to estimate and simulate fire probability and mean fire interval (MFI). The calibration of ecosystem fire probability with basic combustion chemistry and physics offers a quantitative method to address wildland fire in addition to the well-studied forcing factors such as topography, ignition, and vegetation. We develop a graphic analysis tool for estimating climate forced fire probability with temperature and precipitation based on an empirical assessment of combustion theory and fire prediction in ecosystems. Climate-affected fire probability for any period, past or future, is estimated with given temperature and precipitation. A graphic analyses of wildland fire dynamics driven by climate supports a dialectic in hydrologic processes that affect ecosystem combustion: 1) the water needed by plants to produce carbon bonds (fuel) and 2) the inhibition of successful reactant collisions by water molecules (humidity and fuel moisture). These two postulates enable a classification scheme for ecosystems into three or more climate categories using their position relative to change points defined by precipitation in combustion dynamics equations. Three classifications of combustion dynamics in ecosystems fire probability include: 1) precipitation insensitive, 2) precipitation unstable, and 3) precipitation sensitive. All three classifications interact in different ways with variable levels of temperature. PMID:28704457
McGinn, Thomas; Jervis, Ramiro; Wisnivesky, Juan; Keitz, Sheri
2008-01-01
Background Clinical prediction rules (CPR) are tools that clinicians can use to predict the most likely diagnosis, prognosis, or response to treatment in a patient based on individual characteristics. CPRs attempt to standardize, simplify, and increase the accuracy of clinicians’ diagnostic and prognostic assessments. The teaching tips series is designed to give teachers advice and materials they can use to attain specific educational objectives. Educational Objectives In this article, we present 3 teaching tips aimed at helping clinical learners use clinical prediction rules and to more accurately assess pretest probability in every day practice. The first tip is designed to demonstrate variability in physician estimation of pretest probability. The second tip demonstrates how the estimate of pretest probability influences the interpretation of diagnostic tests and patient management. The third tip exposes learners to various examples and different types of Clinical Prediction Rules (CPR) and how to apply them in practice. Pilot Testing We field tested all 3 tips with 16 learners, a mix of interns and senior residents. Teacher preparatory time was approximately 2 hours. The field test utilized a board and a data projector; 3 handouts were prepared. The tips were felt to be clear and the educational objectives reached. Potential teaching pitfalls were identified. Conclusion Teaching with these tips will help physicians appreciate the importance of applying evidence to their every day decisions. In 2 or 3 short teaching sessions, clinicians can also become familiar with the use of CPRs in applying evidence consistently in everyday practice. PMID:18491194
Balekian, Alex A; Silvestri, Gerard A; Simkovich, Suzanne M; Mestaz, Peter J; Sanders, Gillian D; Daniel, Jamie; Porcel, Jackie; Gould, Michael K
2013-12-01
Management of pulmonary nodules depends critically on the probability of malignancy. Models to estimate probability have been developed and validated, but most clinicians rely on judgment. The aim of this study was to compare the accuracy of clinical judgment with that of two prediction models. Physician participants reviewed up to five clinical vignettes, selected at random from a larger pool of 35 vignettes, all based on actual patients with lung nodules of known final diagnosis. Vignettes included clinical information and a representative slice from computed tomography. Clinicians estimated the probability of malignancy for each vignette. To examine agreement with models, we calculated intraclass correlation coefficients (ICC) and kappa statistics. To examine accuracy, we compared areas under the receiver operator characteristic curve (AUC). Thirty-six participants completed 179 vignettes, 47% of which described patients with malignant nodules. Agreement between participants and models was fair for the Mayo Clinic model (ICC, 0.37; 95% confidence interval [CI], 0.23-0.50) and moderate for the Veterans Affairs model (ICC, 0.46; 95% CI, 0.34-0.57). There was no difference in accuracy between participants (AUC, 0.70; 95% CI, 0.62-0.77) and the Mayo Clinic model (AUC, 0.71; 95% CI, 0.62-0.80; P = 0.90) or the Veterans Affairs model (AUC, 0.72; 95% CI, 0.64-0.80; P = 0.54). In this vignette-based study, clinical judgment and models appeared to have similar accuracy for lung nodule characterization, but agreement between judgment and the models was modest, suggesting that qualitative and quantitative approaches may provide complementary information.
Estimating the Probability of a Diffusing Target Encountering a Stationary Sensor.
1985-07-01
7 RD-R1577 6- 44 ESTIMATING THE PROBABILITY OF A DIFFUSING TARGET i/i ENCOUNTERING R STATIONARY SENSOR(U) NAVAL POSTGRADUATE U SCHOOL MONTEREY CA...8217,: *.:.; - -*.. ,’.-,:;;’.’.. ’,. ,. .*.’.- 4 6 6- ..- .-,,.. : .-.;.- -. NPS55-85-013 NAVAL POSTGRADUATE SCHOOL Monterey, California ESTIMATING THE PROBABILITY OF A DIFFUSING TARGET...PROBABILITY OF A DIFFUSING Technical TARGET ENCOUNTERING A STATIONARY SENSOR S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(@) S. CONTRACT OR GRANT NUMBER(a
Nilsson, Håkan; Juslin, Peter; Winman, Anders
2016-01-01
Costello and Watts (2014) present a model assuming that people's knowledge of probabilities adheres to probability theory, but that their probability judgments are perturbed by a random noise in the retrieval from memory. Predictions for the relationships between probability judgments for constituent events and their disjunctions and conjunctions, as well as for sums of such judgments were derived from probability theory. Costello and Watts (2014) report behavioral data showing that subjective probability judgments accord with these predictions. Based on the finding that subjective probability judgments follow probability theory, Costello and Watts (2014) conclude that the results imply that people's probability judgments embody the rules of probability theory and thereby refute theories of heuristic processing. Here, we demonstrate the invalidity of this conclusion by showing that all of the tested predictions follow straightforwardly from an account assuming heuristic probability integration (Nilsson, Winman, Juslin, & Hansson, 2009). We end with a discussion of a number of previous findings that harmonize very poorly with the predictions by the model suggested by Costello and Watts (2014). (c) 2015 APA, all rights reserved).
Gul, Naheed; Quadri, Mujtaba
2011-09-01
To evaluate the clinical diagnostic reasoning process as a tool to decrease the number of unnecessary endoscopies for diagnosing peptic ulcer disease. tudy Cross-sectional KAP study. Shifa College of Medicine, Islamabad, from April to August 2010. Two hundred doctors were assessed with three common clinical scenarios of low, intermediate and high pre-test probability for peptic ulcer disease using a questionnaire. The differences between the reference estimates and the respondents' estimates of pre-test and post test probability were used for assessing the ability of estimating the pretest probability and the post test probability of the disease. Doctors were also enquired about the cost-effectiveness and safety of endoscopy. Consecutive sampling technique was used and the data was analyzed using SPSS version 16. In the low pre-test probability settings, overestimation of the disease probability suggested the doctors' inability to rule out the disease. The post test probabilities were similarly overestimated. In intermediate pre-test probability settings, both over and under estimation of probabilities were noticed. In high pre-test probability setting, there was no significant difference in the reference and the responders' intuitive estimates of post test probability. Doctors were more likely to consider ordering the test as the disease probability increased. Most respondents were of the opinion that endoscopy is not a cost-effective procedure and may be associated with a potential harm. Improvement is needed in doctors' diagnostic ability by more emphasis on clinical decision-making and application of bayesian probabilistic thinking to real clinical situations.
The Estimation of Tree Posterior Probabilities Using Conditional Clade Probability Distributions
Larget, Bret
2013-01-01
In this article I introduce the idea of conditional independence of separated subtrees as a principle by which to estimate the posterior probability of trees using conditional clade probability distributions rather than simple sample relative frequencies. I describe an algorithm for these calculations and software which implements these ideas. I show that these alternative calculations are very similar to simple sample relative frequencies for high probability trees but are substantially more accurate for relatively low probability trees. The method allows the posterior probability of unsampled trees to be calculated when these trees contain only clades that are in other sampled trees. Furthermore, the method can be used to estimate the total probability of the set of sampled trees which provides a measure of the thoroughness of a posterior sample. [Bayesian phylogenetics; conditional clade distributions; improved accuracy; posterior probabilities of trees.] PMID:23479066
Improving online risk assessment with equipment prognostics and health monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coble, Jamie B.; Liu, Xiaotong; Briere, Chris
The current approach to evaluating the risk of nuclear power plant (NPP) operation relies on static probabilities of component failure, which are based on industry experience with the existing fleet of nominally similar light water reactors (LWRs). As the nuclear industry looks to advanced reactor designs that feature non-light water coolants (e.g., liquid metal, high temperature gas, molten salt), this operating history is not available. Many advanced reactor designs use advanced components, such as electromagnetic pumps, that have not been used in the US commercial nuclear fleet. Given the lack of rich operating experience, we cannot accurately estimate the evolvingmore » probability of failure for basic components to populate the fault trees and event trees that typically comprise probabilistic risk assessment (PRA) models. Online equipment prognostics and health management (PHM) technologies can bridge this gap to estimate the failure probabilities for components under operation. The enhanced risk monitor (ERM) incorporates equipment condition assessment into the existing PRA and risk monitor framework to provide accurate and timely estimates of operational risk.« less
A Continuous Method for Gene Flow
Palczewski, Michal; Beerli, Peter
2013-01-01
Most modern population genetics inference methods are based on the coalescence framework. Methods that allow estimating parameters of structured populations commonly insert migration events into the genealogies. For these methods the calculation of the coalescence probability density of a genealogy requires a product over all time periods between events. Data sets that contain populations with high rates of gene flow among them require an enormous number of calculations. A new method, transition probability-structured coalescence (TPSC), replaces the discrete migration events with probability statements. Because the speed of calculation is independent of the amount of gene flow, this method allows calculating the coalescence densities efficiently. The current implementation of TPSC uses an approximation simplifying the interaction among lineages. Simulations and coverage comparisons of TPSC vs. MIGRATE show that TPSC allows estimation of high migration rates more precisely, but because of the approximation the estimation of low migration rates is biased. The implementation of TPSC into programs that calculate quantities on phylogenetic tree structures is straightforward, so the TPSC approach will facilitate more general inferences in many computer programs. PMID:23666937
NASA Astrophysics Data System (ADS)
Foufoula-Georgiou, E.
1989-05-01
A storm transposition approach is investigated as a possible tool of assessing the frequency of extreme precipitation depths, that is, depths of return period much greater than 100 years. This paper focuses on estimation of the annual exceedance probability of extreme average precipitation depths over a catchment. The probabilistic storm transposition methodology is presented, and the several conceptual and methodological difficulties arising in this approach are identified. The method is implemented and is partially evaluated by means of a semihypothetical example involving extreme midwestern storms and two hypothetical catchments (of 100 and 1000 mi2 (˜260 and 2600 km2)) located in central Iowa. The results point out the need for further research to fully explore the potential of this approach as a tool for assessing the probabilities of rare storms, and eventually floods, a necessary element of risk-based analysis and design of large hydraulic structures.
NASA Astrophysics Data System (ADS)
Boslough, M.
2011-12-01
Climate-related uncertainty is traditionally presented as an error bar, but it is becoming increasingly common to express it in terms of a probability density function (PDF). PDFs are a necessary component of probabilistic risk assessments, for which simple "best estimate" values are insufficient. Many groups have generated PDFs for climate sensitivity using a variety of methods. These PDFs are broadly consistent, but vary significantly in their details. One axiom of the verification and validation community is, "codes don't make predictions, people make predictions." This is a statement of the fact that subject domain experts generate results using assumptions within a range of epistemic uncertainty and interpret them according to their expert opinion. Different experts with different methods will arrive at different PDFs. For effective decision support, a single consensus PDF would be useful. We suggest that market methods can be used to aggregate an ensemble of opinions into a single distribution that expresses the consensus. Prediction markets have been shown to be highly successful at forecasting the outcome of events ranging from elections to box office returns. In prediction markets, traders can take a position on whether some future event will or will not occur. These positions are expressed as contracts that are traded in a double-action market that aggregates price, which can be interpreted as a consensus probability that the event will take place. Since climate sensitivity cannot directly be measured, it cannot be predicted. However, the changes in global mean surface temperature are a direct consequence of climate sensitivity, changes in forcing, and internal variability. Viable prediction markets require an undisputed event outcome on a specific date. Climate-related markets exist on Intrade.com, an online trading exchange. One such contract is titled "Global Temperature Anomaly for Dec 2011 to be greater than 0.65 Degrees C." Settlement is based global temperature anomaly data published by NASS GISS. Typical climate contracts predict the probability of a specified future temperature, but not the probability density or best estimate. One way to generate a probability distribution would be to create a family of contracts over a range of specified temperatures and interpret the price of each contract as its exceedance probability. The resulting plot of probability vs. anomaly is the market-based cumulative density function. The best estimate can be determined by interpolation, and the market-based uncertainty estimate can be based on the spread. One requirement for an effective prediction market is liquidity. Climate contracts are currently considered somewhat of a novelty and often lack sufficient liquidity, but climate change has the potential to generate both tremendous losses for some (e.g. agricultural collapse and extreme weather events) and wealth for others (access to natural resources and trading routes). Use of climate markets by large stakeholders has the potential to generate the liquidity necessary to make them viable. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE's NNSA under contract DE-AC04-94AL85000.
NASA Technical Reports Server (NTRS)
Holmquist, R.; Pearl, D.
1980-01-01
Theoretical equations are derived for molecular divergence with respect to gene and protein structure in the presence of genetic events with unequal probabilities: amino acid and base compositions, the frequencies of nucleotide replacements, the usage of degenerate codons, the distribution of fixed base replacements within codons and the distribution of fixed base replacements among codons. Results are presented in the form of tables relating the probabilities of given numbers of codon base changes with respect to the original codon for the alpha hemoglobin, beta hemoglobin, myoglobin, cytochrome c and parvalbumin group gene families. Application of the calculations to the rabbit alpha and beta hemoglobin mRNAs and proteins indicates that the genes are separated by about 425 fixed based replacements distributed over 114 codon sites, which is a factor of two greater than previous estimates. The theoretical results also suggest that many more base replacements are required to effect a given gene or protein structural change than previously believed.
Probability of survival during accidental immersion in cold water.
Wissler, Eugene H
2003-01-01
Estimating the probability of survival during accidental immersion in cold water presents formidable challenges for both theoreticians and empirics. A number of theoretical models have been developed assuming that death occurs when the central body temperature, computed using a mathematical model, falls to a certain level. This paper describes a different theoretical approach to estimating the probability of survival. The human thermal model developed by Wissler is used to compute the central temperature during immersion in cold water. Simultaneously, a survival probability function is computed by solving a differential equation that defines how the probability of survival decreases with increasing time. The survival equation assumes that the probability of occurrence of a fatal event increases as the victim's central temperature decreases. Generally accepted views of the medical consequences of hypothermia and published reports of various accidents provide information useful for defining a "fatality function" that increases exponentially with decreasing central temperature. The particular function suggested in this paper yields a relationship between immersion time for 10% probability of survival and water temperature that agrees very well with Molnar's empirical observations based on World War II data. The method presented in this paper circumvents a serious difficulty with most previous models--that one's ability to survive immersion in cold water is determined almost exclusively by the ability to maintain a high level of shivering metabolism.
Probability Forecasting Using Monte Carlo Simulation
NASA Astrophysics Data System (ADS)
Duncan, M.; Frisbee, J.; Wysack, J.
2014-09-01
Space Situational Awareness (SSA) is defined as the knowledge and characterization of all aspects of space. SSA is now a fundamental and critical component of space operations. Increased dependence on our space assets has in turn lead to a greater need for accurate, near real-time knowledge of all space activities. With the growth of the orbital debris population, satellite operators are performing collision avoidance maneuvers more frequently. Frequent maneuver execution expends fuel and reduces the operational lifetime of the spacecraft. Thus the need for new, more sophisticated collision threat characterization methods must be implemented. The collision probability metric is used operationally to quantify the collision risk. The collision probability is typically calculated days into the future, so that high risk and potential high risk conjunction events are identified early enough to develop an appropriate course of action. As the time horizon to the conjunction event is reduced, the collision probability changes. A significant change in the collision probability will change the satellite mission stakeholder's course of action. So constructing a method for estimating how the collision probability will evolve improves operations by providing satellite operators with a new piece of information, namely an estimate or 'forecast' of how the risk will change as time to the event is reduced. Collision probability forecasting is a predictive process where the future risk of a conjunction event is estimated. The method utilizes a Monte Carlo simulation that produces a likelihood distribution for a given collision threshold. Using known state and state uncertainty information, the simulation generates a set possible trajectories for a given space object pair. Each new trajectory produces a unique event geometry at the time of close approach. Given state uncertainty information for both objects, a collision probability value can be computed for every trail. This yields a collision probability distribution given known, predicted uncertainty. This paper presents the details of the collision probability forecasting method. We examine various conjunction event scenarios and numerically demonstrate the utility of this approach in typical event scenarios. We explore the utility of a probability-based track scenario simulation that models expected tracking data frequency as the tasking levels are increased. The resulting orbital uncertainty is subsequently used in the forecasting algorithm.
Chen, Wei-Yu; Liao, Chung-Min
2012-11-01
The purpose of this study was to link toxicokinetics/toxicodynamics (TK/TD) and bioavailability-based metal uptake kinetics to assess arsenic (As) uptake and bioaccumulation in three common farmed species of tilapia (Oreochromis mossambicus), milkfish (Chanos chanos), and freshwater clam (Corbicula fluminea). We developed a mechanistic framework by linking damage assessment model (DAM) and bioavailability-based Michaelis-Menten model for describing TK/TD and As uptake mechanisms. The proposed model was verified with published acute toxicity data. The estimated TK/TD parameters were used to simulate the relationship between bioavailable As uptake and susceptibility probability. The As toxicity was also evaluated based on a constructed elimination-recovery scheme. Absorption rate constants were estimated to be 0.025, 0.016, and 0.175 mL g(-1) h(-1) and As uptake rate constant estimates were 22.875, 63.125, and 788.318 ng g(-1) h(-1) for tilapia, milkfish, and freshwater clam, respectively. Here we showed that a potential trade-off between capacities of As elimination and damage recovery was found among three farmed species. Moreover, the susceptibility probability can also be estimated by the elimination-recovery relations. This study suggested that bioavailability-based uptake kinetics and TK/TD-based DAM could be integrated for assessing metal uptake and toxicity in aquatic organisms. This study is useful to quantitatively assess the complex environmental behavior of metal uptake and implicate to risk assessment of metals in aquaculture systems.
Ródenas Quiñonero, I; Plasencia Martínez, J M; García Santos, J M
2018-02-24
When the probability of pulmonary embolism is low, the decision to do a computed tomography angiography (CTA) of the pulmonary vessels is based on the D-dimer concentration. However, excessive dependence on this parameter can result in unnecessary imaging studies, inappropriate treatment, or an inappropriate increase in the estimated probability of venous thromboembolism developing. The main objective of this study was to determine when CTA of pulmonary vessels could be avoided in patients with low clinical probability of pulmonary embolism through an efficient literature search of studies published about this question. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Estimation of distributional parameters for censored trace-level water-quality data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilliom, R.J.; Helsel, D.R.
1984-01-01
A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water-sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations,more » for determining the best-performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least-squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification. 6 figs., 6 tabs.« less
Fisher classifier and its probability of error estimation
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
Computationally efficient expressions are derived for estimating the probability of error using the leave-one-out method. The optimal threshold for the classification of patterns projected onto Fisher's direction is derived. A simple generalization of the Fisher classifier to multiple classes is presented. Computational expressions are developed for estimating the probability of error of the multiclass Fisher classifier.
Arnold, W Ray; Warren-Hicks, William J
2007-01-01
The object of this study was to estimate site- and region-specific dissolved copper criteria for a large embayment, the Chesapeake Bay, USA. The intent is to show the utility of 2 copper saltwater quality site-specific criteria estimation models and associated region-specific criteria selection methods. The criteria estimation models and selection methods are simple, efficient, and cost-effective tools for resource managers. The methods are proposed as potential substitutes for the US Environmental Protection Agency's water effect ratio methods. Dissolved organic carbon data and the copper criteria models were used to produce probability-based estimates of site-specific copper saltwater quality criteria. Site- and date-specific criteria estimations were made for 88 sites (n = 5,296) in the Chesapeake Bay. The average and range of estimated site-specific chronic dissolved copper criteria for the Chesapeake Bay were 7.5 and 5.3 to 16.9 microg Cu/L. The average and range of estimated site-specific acute dissolved copper criteria for the Chesapeake Bay were 11.7 and 8.3 to 26.4 microg Cu/L. The results suggest that applicable national and state copper criteria can increase in much of the Chesapeake Bay and remain protective. Virginia Department of Environmental Quality copper criteria near the mouth of the Chesapeake Bay, however, need to decrease to protect species of equal or greater sensitivity to that of the marine mussel, Mytilus sp.
Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.
Hodgson, Amanda; Peel, David; Kelly, Natalie
2017-06-01
Aerial surveys are conducted for various fauna to assess abundance, distribution, and habitat use over large spatial scales. They are traditionally conducted using light aircraft with observers recording sightings in real time. Unmanned Aerial Vehicles (UAVs) offer an alternative with many potential advantages, including eliminating human risk. To be effective, this emerging platform needs to provide detection rates of animals comparable to traditional methods. UAVs can also acquire new types of information, and this new data requires a reevaluation of traditional analyses used in aerial surveys; including estimating the probability of detecting animals. We conducted 17 replicate UAV surveys of humpback whales (Megaptera novaeangliae) while simultaneously obtaining a 'census' of the population from land-based observations, to assess UAV detection probability. The ScanEagle UAV, carrying a digital SLR camera, continuously captured images (with 75% overlap) along transects covering the visual range of land-based observers. We also used ScanEagle to conduct focal follows of whale pods (n = 12, mean duration = 40 min), to assess a new method of estimating availability. A comparison of the whale detections from the UAV to the land-based census provided an estimated UAV detection probability of 0.33 (CV = 0.25; incorporating both availability and perception biases), which was not affected by environmental covariates (Beaufort sea state, glare, and cloud cover). According to our focal follows, the mean availability was 0.63 (CV = 0.37), with pods including mother/calf pairs having a higher availability (0.86, CV = 0.20) than those without (0.59, CV = 0.38). The follows also revealed (and provided a potential correction for) a downward bias in group size estimates from the UAV surveys, which resulted from asynchronous diving within whale pods, and a relatively short observation window of 9 s. We have shown that UAVs are an effective alternative to traditional methods, providing a detection probability that is within the range of previous studies for our target species. We also describe a method of assessing availability bias that represents spatial and temporal characteristics of a survey, from the same perspective as the survey platform, is benign, and provides additional data on animal behavior. © 2017 by the Ecological Society of America.
Hierarchical models and the analysis of bird survey information
Sauer, J.R.; Link, W.A.
2003-01-01
Management of birds often requires analysis of collections of estimates. We describe a hierarchical modeling approach to the analysis of these data, in which parameters associated with the individual species estimates are treated as random variables, and probability statements are made about the species parameters conditioned on the data. A Markov-Chain Monte Carlo (MCMC) procedure is used to fit the hierarchical model. This approach is computer intensive, and is based upon simulation. MCMC allows for estimation both of parameters and of derived statistics. To illustrate the application of this method, we use the case in which we are interested in attributes of a collection of estimates of population change. Using data for 28 species of grassland-breeding birds from the North American Breeding Bird Survey, we estimate the number of species with increasing populations, provide precision-adjusted rankings of species trends, and describe a measure of population stability as the probability that the trend for a species is within a certain interval. Hierarchical models can be applied to a variety of bird survey applications, and we are investigating their use in estimation of population change from survey data.
A double-observer approach for estimating detection probability and abundance from point counts
Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Fallon, F.W.; Fallon, J.E.; Heglund, P.J.
2000-01-01
Although point counts are frequently used in ornithological studies, basic assumptions about detection probabilities often are untested. We apply a double-observer approach developed to estimate detection probabilities for aerial surveys (Cook and Jacobson 1979) to avian point counts. At each point count, a designated 'primary' observer indicates to another ('secondary') observer all birds detected. The secondary observer records all detections of the primary observer as well as any birds not detected by the primary observer. Observers alternate primary and secondary roles during the course of the survey. The approach permits estimation of observer-specific detection probabilities and bird abundance. We developed a set of models that incorporate different assumptions about sources of variation (e.g. observer, bird species) in detection probability. Seventeen field trials were conducted, and models were fit to the resulting data using program SURVIV. Single-observer point counts generally miss varying proportions of the birds actually present, and observer and bird species were found to be relevant sources of variation in detection probabilities. Overall detection probabilities (probability of being detected by at least one of the two observers) estimated using the double-observer approach were very high (>0.95), yielding precise estimates of avian abundance. We consider problems with the approach and recommend possible solutions, including restriction of the approach to fixed-radius counts to reduce the effect of variation in the effective radius of detection among various observers and to provide a basis for using spatial sampling to estimate bird abundance on large areas of interest. We believe that most questions meriting the effort required to carry out point counts also merit serious attempts to estimate detection probabilities associated with the counts. The double-observer approach is a method that can be used for this purpose.
Friesen, Melissa C.
2013-01-01
Objectives: Algorithm-based exposure assessments based on patterns in questionnaire responses and professional judgment can readily apply transparent exposure decision rules to thousands of jobs quickly. However, we need to better understand how algorithms compare to a one-by-one job review by an exposure assessor. We compared algorithm-based estimates of diesel exhaust exposure to those of three independent raters within the New England Bladder Cancer Study, a population-based case–control study, and identified conditions under which disparities occurred in the assessments of the algorithm and the raters. Methods: Occupational diesel exhaust exposure was assessed previously using an algorithm and a single rater for all 14 983 jobs reported by 2631 study participants during personal interviews conducted from 2001 to 2004. Two additional raters independently assessed a random subset of 324 jobs that were selected based on strata defined by the cross-tabulations of the algorithm and the first rater’s probability assessments for each job, oversampling their disagreements. The algorithm and each rater assessed the probability, intensity and frequency of occupational diesel exhaust exposure, as well as a confidence rating for each metric. Agreement among the raters, their aggregate rating (average of the three raters’ ratings) and the algorithm were evaluated using proportion of agreement, kappa and weighted kappa (κw). Agreement analyses on the subset used inverse probability weighting to extrapolate the subset to estimate agreement for all jobs. Classification and Regression Tree (CART) models were used to identify patterns in questionnaire responses that predicted disparities in exposure status (i.e., unexposed versus exposed) between the first rater and the algorithm-based estimates. Results: For the probability, intensity and frequency exposure metrics, moderate to moderately high agreement was observed among raters (κw = 0.50–0.76) and between the algorithm and the individual raters (κw = 0.58–0.81). For these metrics, the algorithm estimates had consistently higher agreement with the aggregate rating (κw = 0.82) than with the individual raters. For all metrics, the agreement between the algorithm and the aggregate ratings was highest for the unexposed category (90–93%) and was poor to moderate for the exposed categories (9–64%). Lower agreement was observed for jobs with a start year <1965 versus ≥1965. For the confidence metrics, the agreement was poor to moderate among raters (κw = 0.17–0.45) and between the algorithm and the individual raters (κw = 0.24–0.61). CART models identified patterns in the questionnaire responses that predicted a fair-to-moderate (33–89%) proportion of the disagreements between the raters’ and the algorithm estimates. Discussion: The agreement between any two raters was similar to the agreement between an algorithm-based approach and individual raters, providing additional support for using the more efficient and transparent algorithm-based approach. CART models identified some patterns in disagreements between the first rater and the algorithm. Given the absence of a gold standard for estimating exposure, these patterns can be reviewed by a team of exposure assessors to determine whether the algorithm should be revised for future studies. PMID:23184256
Conflict Probability Estimation for Free Flight
DOT National Transportation Integrated Search
1996-01-01
The safety and efficiency of free flight will benefit from automated conflict : prediction and resolution advisories. Conflict prediction is based on : trajectory prediction and is less certain the farther in advance the prediction, : however. An est...
Utility of inverse probability weighting in molecular pathological epidemiology.
Liu, Li; Nevo, Daniel; Nishihara, Reiko; Cao, Yin; Song, Mingyang; Twombly, Tyler S; Chan, Andrew T; Giovannucci, Edward L; VanderWeele, Tyler J; Wang, Molin; Ogino, Shuji
2018-04-01
As one of causal inference methodologies, the inverse probability weighting (IPW) method has been utilized to address confounding and account for missing data when subjects with missing data cannot be included in a primary analysis. The transdisciplinary field of molecular pathological epidemiology (MPE) integrates molecular pathological and epidemiological methods, and takes advantages of improved understanding of pathogenesis to generate stronger biological evidence of causality and optimize strategies for precision medicine and prevention. Disease subtyping based on biomarker analysis of biospecimens is essential in MPE research. However, there are nearly always cases that lack subtype information due to the unavailability or insufficiency of biospecimens. To address this missing subtype data issue, we incorporated inverse probability weights into Cox proportional cause-specific hazards regression. The weight was inverse of the probability of biomarker data availability estimated based on a model for biomarker data availability status. The strategy was illustrated in two example studies; each assessed alcohol intake or family history of colorectal cancer in relation to the risk of developing colorectal carcinoma subtypes classified by tumor microsatellite instability (MSI) status, using a prospective cohort study, the Nurses' Health Study. Logistic regression was used to estimate the probability of MSI data availability for each cancer case with covariates of clinical features and family history of colorectal cancer. This application of IPW can reduce selection bias caused by nonrandom variation in biospecimen data availability. The integration of causal inference methods into the MPE approach will likely have substantial potentials to advance the field of epidemiology.
Fuzzy multinomial logistic regression analysis: A multi-objective programming approach
NASA Astrophysics Data System (ADS)
Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan
2017-05-01
Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.
Rare event simulation in radiation transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollman, Craig
1993-10-01
This dissertation studies methods for estimating extremely small probabilities by Monte Carlo simulation. Problems in radiation transport typically involve estimating very rare events or the expected value of a random variable which is with overwhelming probability equal to zero. These problems often have high dimensional state spaces and irregular geometries so that analytic solutions are not possible. Monte Carlo simulation must be used to estimate the radiation dosage being transported to a particular location. If the area is well shielded the probability of any one particular particle getting through is very small. Because of the large number of particles involved,more » even a tiny fraction penetrating the shield may represent an unacceptable level of radiation. It therefore becomes critical to be able to accurately estimate this extremely small probability. Importance sampling is a well known technique for improving the efficiency of rare event calculations. Here, a new set of probabilities is used in the simulation runs. The results are multiple by the likelihood ratio between the true and simulated probabilities so as to keep the estimator unbiased. The variance of the resulting estimator is very sensitive to which new set of transition probabilities are chosen. It is shown that a zero variance estimator does exist, but that its computation requires exact knowledge of the solution. A simple random walk with an associated killing model for the scatter of neutrons is introduced. Large deviation results for optimal importance sampling in random walks are extended to the case where killing is present. An adaptive ``learning`` algorithm for implementing importance sampling is given for more general Markov chain models of neutron scatter. For finite state spaces this algorithm is shown to give with probability one, a sequence of estimates converging exponentially fast to the true solution.« less
Computerized Classification Testing with the Rasch Model
ERIC Educational Resources Information Center
Eggen, Theo J. H. M.
2011-01-01
If classification in a limited number of categories is the purpose of testing, computerized adaptive tests (CATs) with algorithms based on sequential statistical testing perform better than estimation-based CATs (e.g., Eggen & Straetmans, 2000). In these computerized classification tests (CCTs), the Sequential Probability Ratio Test (SPRT) (Wald,…
NASA Astrophysics Data System (ADS)
Nie, Xiaokai; Coca, Daniel
2018-01-01
The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.
Nie, Xiaokai; Coca, Daniel
2018-01-01
The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.
NASA Technical Reports Server (NTRS)
Galvan, Jose Ramon; Saxena, Abhinav; Goebel, Kai Frank
2012-01-01
This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process, and how it relates to uncertainty representation, management and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for two while considering prognostics in making critical decisions.
Friesen, Melissa C.; Wheeler, David C.; Vermeulen, Roel; Locke, Sarah J.; Zaebst, Dennis D.; Koutros, Stella; Pronk, Anjoeka; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Malats, Nuria; Schwenn, Molly; Johnson, Alison; Armenti, Karla R.; Rothman, Nathanial; Stewart, Patricia A.; Kogevinas, Manolis; Silverman, Debra T.
2016-01-01
Objectives: To efficiently and reproducibly assess occupational diesel exhaust exposure in a Spanish case-control study, we examined the utility of applying decision rules that had been extracted from expert estimates and questionnaire response patterns using classification tree (CT) models from a similar US study. Methods: First, previously extracted CT decision rules were used to obtain initial ordinal (0–3) estimates of the probability, intensity, and frequency of occupational exposure to diesel exhaust for the 10 182 jobs reported in a Spanish case-control study of bladder cancer. Second, two experts reviewed the CT estimates for 350 jobs randomly selected from strata based on each CT rule’s agreement with the expert ratings in the original study [agreement rate, from 0 (no agreement) to 1 (perfect agreement)]. Their agreement with each other and with the CT estimates was calculated using weighted kappa (κ w) and guided our choice of jobs for subsequent expert review. Third, an expert review comprised all jobs with lower confidence (low-to-moderate agreement rates or discordant assignments, n = 931) and a subset of jobs with a moderate to high CT probability rating and with moderately high agreement rates (n = 511). Logistic regression was used to examine the likelihood that an expert provided a different estimate than the CT estimate based on the CT rule agreement rates, the CT ordinal rating, and the availability of a module with diesel-related questions. Results: Agreement between estimates made by two experts and between estimates made by each of the experts and the CT estimates was very high for jobs with estimates that were determined by rules with high CT agreement rates (κ w: 0.81–0.90). For jobs with estimates based on rules with lower agreement rates, moderate agreement was observed between the two experts (κ w: 0.42–0.67) and poor-to-moderate agreement was observed between the experts and the CT estimates (κ w: 0.09–0.57). In total, the expert review of 1442 jobs changed 156 probability estimates, 128 intensity estimates, and 614 frequency estimates. The expert was more likely to provide a different estimate when the CT rule agreement rate was <0.8, when the CT ordinal ratings were low to moderate, or when a module with diesel questions was available. Conclusions: Our reliability assessment provided important insight into where to prioritize additional expert review; as a result, only 14% of the jobs underwent expert review, substantially reducing the exposure assessment burden. Overall, we found that we could efficiently, reproducibly, and reliably apply CT decision rules from one study to assess exposure in another study. PMID:26732820
A Decision Support System for effective use of probability forecasts
NASA Astrophysics Data System (ADS)
De Kleermaeker, Simone; Verkade, Jan
2013-04-01
Often, water management decisions are based on hydrological forecasts. These forecasts, however, are affected by inherent uncertainties. It is increasingly common for forecasting agencies to make explicit estimates of these uncertainties and thus produce probabilistic forecasts. Associated benefits include the decision makers' increased awareness of forecasting uncertainties and the potential for risk-based decision-making. Also, a stricter separation of responsibilities between forecasters and decision maker can be made. However, simply having probabilistic forecasts available is not sufficient to realise the associated benefits. Additional effort is required in areas such as forecast visualisation and communication, decision making in uncertainty and forecast verification. Also, revised separation of responsibilities requires a shift in institutional arrangements and responsibilities. A recent study identified a number of additional issues related to the effective use of probability forecasts. When moving from deterministic to probability forecasting, a dimension is added to an already multi-dimensional problem; this makes it increasingly difficult for forecast users to extract relevant information from a forecast. A second issue is that while probability forecasts provide a necessary ingredient for risk-based decision making, other ingredients may not be present. For example, in many cases no estimates of flood damage, of costs of management measures and of damage reduction are available. This paper presents the results of the study, including some suggestions for resolving these issues and the integration of those solutions in a prototype decision support system (DSS). A pathway for further development of the DSS is outlined.
Comparison of methods for estimating bird abundance and trends from historical count data
Frank R. Thompson; Frank A. La Sorte
2008-01-01
The use of bird counts as indices has come under increasing scrutiny because assumptions concerning detection probabilities may not be met, but there also seems to be some resistance to use of model-based approaches to estimating abundance. We used data from the United States Forest Service, Southern Region bird monitoring program to compare several common approaches...
ERIC Educational Resources Information Center
Boskin, Michael J.
A model of occupational choice based on the theory of human capital is developed and estimated by conditional logit analysis. The empirical results estimated the probability of individuals with certain characteristics (such as race, sex, age, and education) entering each of 11 occupational groups. The results indicate that individuals tend to…
Confidence level estimation in multi-target classification problems
NASA Astrophysics Data System (ADS)
Chang, Shi; Isaacs, Jason; Fu, Bo; Shin, Jaejeong; Zhu, Pingping; Ferrari, Silvia
2018-04-01
This paper presents an approach for estimating the confidence level in automatic multi-target classification performed by an imaging sensor on an unmanned vehicle. An automatic target recognition algorithm comprised of a deep convolutional neural network in series with a support vector machine classifier detects and classifies targets based on the image matrix. The joint posterior probability mass function of target class, features, and classification estimates is learned from labeled data, and recursively updated as additional images become available. Based on the learned joint probability mass function, the approach presented in this paper predicts the expected confidence level of future target classifications, prior to obtaining new images. The proposed approach is tested with a set of simulated sonar image data. The numerical results show that the estimated confidence level provides a close approximation to the actual confidence level value determined a posteriori, i.e. after the new image is obtained by the on-board sensor. Therefore, the expected confidence level function presented in this paper can be used to adaptively plan the path of the unmanned vehicle so as to optimize the expected confidence levels and ensure that all targets are classified with satisfactory confidence after the path is executed.
2017-03-23
PUBLIC RELEASE; DISTRIBUTION UNLIMITED Using Multiple and Logistic Regression to Estimate the Median Will- Cost and Probability of Cost and... Cost and Probability of Cost and Schedule Overrun for Program Managers Ryan C. Trudelle Follow this and additional works at: https://scholar.afit.edu...afit.edu. Recommended Citation Trudelle, Ryan C., "Using Multiple and Logistic Regression to Estimate the Median Will- Cost and Probability of Cost and
Electrofishing capture probability of smallmouth bass in streams
Dauwalter, D.C.; Fisher, W.L.
2007-01-01
Abundance estimation is an integral part of understanding the ecology and advancing the management of fish populations and communities. Mark-recapture and removal methods are commonly used to estimate the abundance of stream fishes. Alternatively, abundance can be estimated by dividing the number of individuals sampled by the probability of capture. We conducted a mark-recapture study and used multiple repeated-measures logistic regression to determine the influence of fish size, sampling procedures, and stream habitat variables on the cumulative capture probability for smallmouth bass Micropterus dolomieu in two eastern Oklahoma streams. The predicted capture probability was used to adjust the number of individuals sampled to obtain abundance estimates. The observed capture probabilities were higher for larger fish and decreased with successive electrofishing passes for larger fish only. Model selection suggested that the number of electrofishing passes, fish length, and mean thalweg depth affected capture probabilities the most; there was little evidence for any effect of electrofishing power density and woody debris density on capture probability. Leave-one-out cross validation showed that the cumulative capture probability model predicts smallmouth abundance accurately. ?? Copyright by the American Fisheries Society 2007.
Factors associated with automobile accidents and survival.
Kim, Hong Sok; Kim, Hyung Jin; Son, Bongsoo
2006-09-01
This paper develops an econometric model for vehicles' inherent mortality rate and estimates the probability of accidents and survival in the United States. Logistic regression model is used to estimate probability of survival, and censored regression model is used to estimate probability of accidents. The estimation results indicated that the probability of accident and survival are influenced by the physical characteristics of the vehicles involved in the accident, and by the characteristics of the driver and the occupants. Using restrain system and riding in heavy vehicle increased the survival rate. Middle-aged drivers are less susceptible to involve in an accident, and surprisingly, female drivers are more likely to have an accident than male drivers. Riding in powerful vehicles (high horsepower) and driving late night increase the probability of accident. Overall, the driving behavior and characteristics of vehicle does matter and affects the probabilities of having a fatal accident for different types of vehicles.
Optimizing Probability of Detection Point Estimate Demonstration
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2017-01-01
Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.
Schuppers, M E; Stegeman, J A; Kramps, J A; Stärk, K D C
2012-07-01
International trade of livestock and livestock products poses a significant potential threat for spread of diseases, and importing countries therefore often require that imported animals and products are free from certain pathogens. However, absolute freedom from infection cannot be documented, since all test protocols are imperfect and can lead to false-negative results. It is possible instead to estimate the "probability of freedom from infection" and its opposite, the probability of infection despite having a negative test result. These probabilities can be estimated based on a pre-defined target prevalence, known surveillance efforts in the target population and known test characteristics of any pre-export test. Here, calculations are demonstrated using the example of bovine herpes virus-1 (BoHV-1). In a population that recently became free of BoHV-1 without using vaccination, the probability of being infected of an animal randomly selected for trade is 800 per 1 million and this probability is reduced to 64 (95% probability interval PI 6-161) per 1 million when this animal is tested negatively prior to export with a gB-ELISA. In a population that recently became free of BoHV-1 using vaccination, the probability of being infected of an animal randomly selected for trade is 200 per 1 million, and this probability can be reduced to 63 (95% PI 42-87) when this animal is tested negatively prior to export with a gE-ELISA. Similar estimations can be made on a herd level when assumptions are made about the herd size and the intensity of the surveillance efforts. Subsequently, the overall probability for an importing country of importing at least 1 infected animal can be assessed by taking into account the trade volume. Definition of the acceptable level of risk, including the probability of false-negative results to occur, is part of risk management. Internationally harmonized target prevalence levels for the declaration of freedom from infection from selected pathogens provide a significant contribution to the facilitation of international trade of livestock and livestock products by allowing exporting countries to design tailor-made output-based surveillance programs, while providing equivalent guarantees regarding the probability of freedom from infection of the population. Combining this with an approach to assess the overall probability of introducing at least 1 infected animal into an importing country during a defined time interval will help importing countries to achieve their desired level of acceptable risk and will help to assess the equivalence of animal health and food safety standards between trading partners. Copyright © 2011 Elsevier B.V. All rights reserved.
Determining animal drug combinations based on efficacy and safety.
Kratzer, D D; Geng, S
1986-08-01
A procedure for deriving drug combinations for animal health is used to derive an optimal combination of 200 mg of novobiocin and 650,000 IU of penicillin for nonlactating cow mastitis treatment. The procedure starts with an estimated second order polynomial response surface equation. That surface is translated into a probability surface with contours called isoprobs. The isoprobs show drug amounts that have equal probability to produce maximal efficacy. Safety factors are incorporated into the probability surface via a noncentrality parameter that causes the isoprobs to expand as safety decreases, resulting in lower amounts of drug being used.
A Method for Evaluating Tuning Functions of Single Neurons based on Mutual Information Maximization
NASA Astrophysics Data System (ADS)
Brostek, Lukas; Eggert, Thomas; Ono, Seiji; Mustari, Michael J.; Büttner, Ulrich; Glasauer, Stefan
2011-03-01
We introduce a novel approach for evaluation of neuronal tuning functions, which can be expressed by the conditional probability of observing a spike given any combination of independent variables. This probability can be estimated out of experimentally available data. By maximizing the mutual information between the probability distribution of the spike occurrence and that of the variables, the dependence of the spike on the input variables is maximized as well. We used this method to analyze the dependence of neuronal activity in cortical area MSTd on signals related to movement of the eye and retinal image movement.
Survival estimates for Florida manatees from the photo-identification of individuals
Langtimm, C.A.; Beck, C.A.; Edwards, H.H.; Fick-Child, K. J.; Ackerman, B.B.; Barton, S.L.; Hartley, W.C.
2004-01-01
We estimated adult survival probabilities for the endangered Florida manatee (Trichechus manatus latirostris) in four regional populations using photo-identification data and open-population capture-recapture statistical models. The mean annual adult survival probability over the most recent 10-yr period of available estimates was as follows: Northwest - 0.956 (SE 0.007), Upper St. Johns River - 0.960 (0.011), Atlantic Coast - 0.937 (0.008), and Southwest - 0.908 (0.019). Estimates of temporal variance independent of sampling error, calculated from the survival estimates, indicated constant survival in the Upper St. Johns River, true temporal variability in the Northwest and Atlantic Coast, and large sampling variability obscuring estimates for the Southwest. Calf and subadult survival probabilities were estimated for the Upper St. Johns River from the only available data for known-aged individuals: 0.810 (95% CI 0.727-0.873) for 1st year calves, 0.915 (0.827-0.960) for 2nd year calves, and 0.969 (0.946-0.982) for manatee 3 yr or older. These estimates of survival probabilities and temporal variance, in conjunction with estimates of reproduction probabilities from photoidentification data can be used to model manatee population dynamics, estimate population growth rates, and provide an integrated measure of regional status.
Transition probabilities of health states for workers in Malaysia using a Markov chain model
NASA Astrophysics Data System (ADS)
Samsuddin, Shamshimah; Ismail, Noriszura
2017-04-01
The aim of our study is to estimate the transition probabilities of health states for workers in Malaysia who contribute to the Employment Injury Scheme under the Social Security Organization Malaysia using the Markov chain model. Our study uses four states of health (active, temporary disability, permanent disability and death) based on the data collected from the longitudinal studies of workers in Malaysia for 5 years. The transition probabilities vary by health state, age and gender. The results show that men employees are more likely to have higher transition probabilities to any health state compared to women employees. The transition probabilities can be used to predict the future health of workers in terms of a function of current age, gender and health state.
NASA Astrophysics Data System (ADS)
Gao, Shengguo; Zhu, Zhongli; Liu, Shaomin; Jin, Rui; Yang, Guangchao; Tan, Lei
2014-10-01
Soil moisture (SM) plays a fundamental role in the land-atmosphere exchange process. Spatial estimation based on multi in situ (network) data is a critical way to understand the spatial structure and variation of land surface soil moisture. Theoretically, integrating densely sampled auxiliary data spatially correlated with soil moisture into the procedure of spatial estimation can improve its accuracy. In this study, we present a novel approach to estimate the spatial pattern of soil moisture by using the BME method based on wireless sensor network data and auxiliary information from ASTER (Terra) land surface temperature measurements. For comparison, three traditional geostatistic methods were also applied: ordinary kriging (OK), which used the wireless sensor network data only, regression kriging (RK) and ordinary co-kriging (Co-OK) which both integrated the ASTER land surface temperature as a covariate. In Co-OK, LST was linearly contained in the estimator, in RK, estimator is expressed as the sum of the regression estimate and the kriged estimate of the spatially correlated residual, but in BME, the ASTER land surface temperature was first retrieved as soil moisture based on the linear regression, then, the t-distributed prediction interval (PI) of soil moisture was estimated and used as soft data in probability form. The results indicate that all three methods provide reasonable estimations. Co-OK, RK and BME can provide a more accurate spatial estimation by integrating the auxiliary information Compared to OK. RK and BME shows more obvious improvement compared to Co-OK, and even BME can perform slightly better than RK. The inherent issue of spatial estimation (overestimation in the range of low values and underestimation in the range of high values) can also be further improved in both RK and BME. We can conclude that integrating auxiliary data into spatial estimation can indeed improve the accuracy, BME and RK take better advantage of the auxiliary information compared to Co-OK, and BME outperforms RK by integrating the auxiliary data in a probability form.
A predictive model to estimate the pretest probability of metastasis in patients with osteosarcoma.
Wang, Sisheng; Zheng, Shaoluan; Hu, Kongzu; Sun, Heyan; Zhang, Jinling; Rong, Genxiang; Gao, Jie; Ding, Nan; Gui, Binjie
2017-01-01
Osteosarcomas (OSs) represent a huge challenge to improve the overall survival, especially in metastatic patients. Increasing evidence indicates that both tumor-associated elements but also on host-associated elements are under a remarkable effect on the prognosis of cancer patients, especially systemic inflammatory response. By analyzing a series prognosis of factors, including age, gender, primary tumor size, tumor location, tumor grade, and histological classification, monocyte ratio, and NLR ratio, a clinical predictive model was established by using stepwise logistic regression involved circulating leukocyte to compute the estimated probabilities of metastases for OS patients. The clinical predictive model was described by the following equations: probability of developing metastases = ex/(1 + ex), x = -2.150 + (1.680 × monocyte ratio) + (1.533 × NLR ratio), where is the base of the natural logarithm, the assignment to each of the 2 variables is 1 if the ratio >1 (otherwise 0). The calculated AUC of the receiver-operating characteristic curve as 0.793 revealed well accuracy of this model (95% CI, 0.740-0.845). The predicted probabilities that we generated with the cross-validation procedure had a similar AUC (0.743; 95% CI, 0.684-0.803). The present model could be used to improve the outcomes of the metastases by developing a predictive model considering circulating leukocyte influence to estimate the pretest probability of developing metastases in patients with OS.
Hung, Kristin J; Awtrey, Christopher S; Tsai, Alexander C
2014-04-01
To estimate the association between urinary incontinence (UI) and probable depression, work disability, and workforce exit. The analytic sample consisted of 4,511 women enrolled in the population-based Health and Retirement Study cohort. The analysis baseline was 1996, the year that questions about UI were added to the survey instrument, and at which time study participants were 54-65 years of age. Women were followed-up with biennial interviews until 2010-2011. Outcomes of interest were onset of probable depression, work disability, and workforce exit. Urinary incontinence was specified in different ways based on questions about experience and frequency of urine loss. We fit Cox proportional hazards regression models to the data, adjusting the estimates for baseline sociodemographic and health status variables previously found to confound the association between UI and the outcomes of interest. At baseline, 727 participants (survey-weighted prevalence, 16.6%; 95% confidence interval [CI] 15.4-18.0) reported any UI, of which 212 (survey-weighted prevalence, 29.2%; 95% CI 25.4-33.3) reported urine loss on more than 15 days in the past month; and 1,052 participants were categorized as having probable depression (survey-weighted prevalence, 21.6%; 95% CI 19.8-23.6). Urinary incontinence was associated with increased risks for probable depression (adjusted hazard ratio, 1.43; 95% CI 1.27-1.62) and work disability (adjusted hazard ratio, 1.21; 95% CI 1.01-1.45), but not workforce exit (adjusted hazard ratio, 1.06; 95% CI 0.93-1.21). In a population-based cohort of women between ages 54 and 65 years, UI was associated with increased risks for probable depression and work disability. Improved diagnosis and management of UI may yield significant economic and psychosocial benefits.
Optimizing probability of detection point estimate demonstration
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2017-04-01
The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using point estimate method. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. Traditionally largest flaw size in the set is considered to be a conservative estimate of the flaw size with minimum 90% probability and 95% confidence. The flaw size is denoted as α90/95PE. The paper investigates relationship between range of flaw sizes in relation to α90, i.e. 90% probability flaw size, to provide a desired PPD. The range of flaw sizes is expressed as a proportion of the standard deviation of the probability density distribution. Difference between median or average of the 29 flaws and α90 is also expressed as a proportion of standard deviation of the probability density distribution. In general, it is concluded that, if probability of detection increases with flaw size, average of 29 flaw sizes would always be larger than or equal to α90 and is an acceptable measure of α90/95PE. If NDE technique has sufficient sensitivity and signal-to-noise ratio, then the 29 flaw-set can be optimized to meet requirements of minimum required PPD, maximum allowable POF, requirements on flaw size tolerance about mean flaw size and flaw size detectability requirements. The paper provides procedure for optimizing flaw sizes in the point estimate demonstration flaw-set.
About an adaptively weighted Kaplan-Meier estimate.
Plante, Jean-François
2009-09-01
The minimum averaged mean squared error nonparametric adaptive weights use data from m possibly different populations to infer about one population of interest. The definition of these weights is based on the properties of the empirical distribution function. We use the Kaplan-Meier estimate to let the weights accommodate right-censored data and use them to define the weighted Kaplan-Meier estimate. The proposed estimate is smoother than the usual Kaplan-Meier estimate and converges uniformly in probability to the target distribution. Simulations show that the performances of the weighted Kaplan-Meier estimate on finite samples exceed that of the usual Kaplan-Meier estimate. A case study is also presented.
Optimum nonparametric estimation of population density based on ordered distances
Patil, S.A.; Kovner, J.L.; Burnham, Kenneth P.
1982-01-01
The asymptotic mean and error mean square are determined for the nonparametric estimator of plant density by distance sampling proposed by Patil, Burnham and Kovner (1979, Biometrics 35, 597-604. On the basis of these formulae, a bias-reduced version of this estimator is given, and its specific form is determined which gives minimum mean square error under varying assumptions about the true probability density function of the sampled data. Extension is given to line-transect sampling.
Shaikh, Nader; Hoberman, Alejandro; Hum, Stephanie W; Alberty, Anastasia; Muniz, Gysella; Kurs-Lasky, Marcia; Landsittel, Douglas; Shope, Timothy
2018-06-01
Accurately estimating the probability of urinary tract infection (UTI) in febrile preverbal children is necessary to appropriately target testing and treatment. To develop and test a calculator (UTICalc) that can first estimate the probability of UTI based on clinical variables and then update that probability based on laboratory results. Review of electronic medical records of febrile children aged 2 to 23 months who were brought to the emergency department of Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania. An independent training database comprising 1686 patients brought to the emergency department between January 1, 2007, and April 30, 2013, and a validation database of 384 patients were created. Five multivariable logistic regression models for predicting risk of UTI were trained and tested. The clinical model included only clinical variables; the remaining models incorporated laboratory results. Data analysis was performed between June 18, 2013, and January 12, 2018. Documented temperature of 38°C or higher in children aged 2 months to less than 2 years. With the use of culture-confirmed UTI as the main outcome, cutoffs for high and low UTI risk were identified for each model. The resultant models were incorporated into a calculation tool, UTICalc, which was used to evaluate medical records. A total of 2070 children were included in the study. The training database comprised 1686 children, of whom 1216 (72.1%) were female and 1167 (69.2%) white. The validation database comprised 384 children, of whom 291 (75.8%) were female and 200 (52.1%) white. Compared with the American Academy of Pediatrics algorithm, the clinical model in UTICalc reduced testing by 8.1% (95% CI, 4.2%-12.0%) and decreased the number of UTIs that were missed from 3 cases to none. Compared with empirically treating all children with a leukocyte esterase test result of 1+ or higher, the dipstick model in UTICalc would have reduced the number of treatment delays by 10.6% (95% CI, 0.9%-20.4%). UTICalc estimates the probability of UTI by evaluating the risk factors present in the individual child. As a result, testing and treatment can be tailored, thereby improving outcomes for children with UTI.
Estimating The Probability Of Achieving Shortleaf Pine Regeneration At Variable Specified Levels
Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin
2002-01-01
A model was developed that can be used to estimate the probability of achieving regeneration at a variety of specified stem density levels. The model was fitted to shortleaf pine (Pinus echinata Mill.) regeneration data, and can be used to estimate the probability of achieving desired levels of regeneration between 300 and 700 stems per acre 9-l 0...
Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.
2004-01-01
Results of a present preliminary assessment of the probability of debris-flow activity and estimates of peak discharges that can potentially be generated by debris flows issuing from basins burned by the Padua Fire of October 2003 in southern California in response to 25-year, 10-year, and 2-year recurrence, 1-hour duration rain storms are presented. The resulting probability maps are based on the application of a logistic multiple-regression model (Cannon and others, 2004) that describes the percent chance of debris-flow production from an individual basin as a function of burned extent, soil properties, basin gradients, and storm rainfall. The resulting peak discharge maps are based on application of a multiple-regression model (Cannon and others, 2004) that can be used to estimate debris-flow peak discharge at a basin outlet as a function of basin gradient, burn extent, and storm rainfall. Probabilities of debris-flow occurrence for the Padua Fire range between 0 and 99% and estimates of debris-flow peak discharges range between 1211 and 6,096 ft3/s (34 to 173 m3/s). These maps are intended to identify those basins that are most prone to the largest debris-flow events and provide information for the preliminary design of mitigation measures and for the planning of evacuation timing and routes.
United States Geological Survey fire science: fire danger monitoring and forecasting
Eidenshink, Jeff C.; Howard, Stephen M.
2012-01-01
Each day, the U.S. Geological Survey produces 7-day forecasts for all Federal lands of the distributions of number of ignitions, number of fires above a given size, and conditional probabilities of fires growing larger than a specified size. The large fire probability map is an estimate of the likelihood that ignitions will become large fires. The large fire forecast map is a probability estimate of the number of fires on federal lands exceeding 100 acres in the forthcoming week. The ignition forecast map is a probability estimate of the number of fires on Federal land greater than 1 acre in the forthcoming week. The extreme event forecast is the probability estimate of the number of fires on Federal land that may exceed 5,000 acres in the forthcoming week.
Beeler, Nicholas M.; Roeloffs, Evelyn A.; McCausland, Wendy
2013-01-01
Mazzotti and Adams (2004) estimated that rapid deep slip during typically two week long episodes beneath northern Washington and southern British Columbia increases the probability of a great Cascadia earthquake by 30–100 times relative to the probability during the ∼58 weeks between slip events. Because the corresponding absolute probability remains very low at ∼0.03% per week, their conclusion is that though it is more likely that a great earthquake will occur during a rapid slip event than during other times, a great earthquake is unlikely to occur during any particular rapid slip event. This previous estimate used a failure model in which great earthquakes initiate instantaneously at a stress threshold. We refine the estimate, assuming a delayed failure model that is based on laboratory‐observed earthquake initiation. Laboratory tests show that failure of intact rock in shear and the onset of rapid slip on pre‐existing faults do not occur at a threshold stress. Instead, slip onset is gradual and shows a damped response to stress and loading rate changes. The characteristic time of failure depends on loading rate and effective normal stress. Using this model, the probability enhancement during the period of rapid slip in Cascadia is negligible (<10%) for effective normal stresses of 10 MPa or more and only increases by 1.5 times for an effective normal stress of 1 MPa. We present arguments that the hypocentral effective normal stress exceeds 1 MPa. In addition, the probability enhancement due to rapid slip extends into the interevent period. With this delayed failure model for effective normal stresses greater than or equal to 50 kPa, it is more likely that a great earthquake will occur between the periods of rapid deep slip than during them. Our conclusion is that great earthquake occurrence is not significantly enhanced by episodic deep slip events.
Assessing relative abundance and reproductive success of shrubsteppe raptors
Lehman, Robert N.; Carpenter, L.B.; Steenhof, Karen; Kochert, Michael N.
1998-01-01
From 1991-1994, we quantified relative abundance and reproductive success of the Ferruginous Hawk (Buteo regalis), Northern Harrier (Circus cyaneus), Burrowing Owl (Speotytoc unicularia), and Short-eared Owl (Asio flammeus) on the shrubsteppe plateaus (benchlands) in and near the Snake River Birds of Prey National Conservation Area in southwestern Idaho. To assess relative abundance, we searched randomly selected plots using four sampling methods: point counts, line transects, and quadrats of two sizes. On a persampling-effort basis, transects were slightly more effective than point counts and quadrats for locating raptor nests (3.4 pairs detected/100 h of effort vs. 2.2-3.1 pairs). Random sampling using quadrats failed to detect a Short-eared Owl population increase from 1993 to 1994. To evaluate nesting success, we tried to determine reproductive outcome for all nesting attempts located during random, historical, and incidental nest searches. We compared nesting success estimates based on all nesting attempts, on attempts found during incubation, and the Mayfield model. Most pairs used to evaluate success were pairs found incidentally. Visits to historical nesting areas yielded the highest number of pairs per sampling effort (14.6/100 h), but reoccupancy rates for most species decreased through time. Estimates based on all attempts had the highest sample sizes but probably overestimated success for all species except the Ferruginous Hawk. Estimates of success based on nesting attempts found during incubation had the lowest sample sizes. All three methods yielded biased nesting snccess estimates for the Northern Harrier and Short-eared Owl. The estimate based on pairs found during incubation probably provided the least biased estimate for the Burrowing Owl. Assessments of nesting success were hindered by difficulties in confirming egg laying and nesting success for all species except the Ferruginous hawk.
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Null, Cynthia H. (Technical Monitor)
1998-01-01
Adding noise to stimuli to be discriminated allows estimation of observer classification functions based on the correlation between observer responses and relevant features of the noisy stimuli. Examples will be presented of stimulus features that are found in auditory tone detection and visual vernier acuity. using the standard signal detection model (Thurstone scaling), we derive formulas to estimate the proportion of the observers decision variable variance that is controlled by the added noise. one is based on the probability of agreement of the observer with him/herself on trials with the same noise sample. Another is based on the relative performance of the observer and the model. When these do not agree, the model can be rejected. A second derivation gives the probability of agreement of observer and model when the observer follows the model except for internal noise. Agreement significantly less than this amount allows rejection of the model.
Validation of a polygenic risk score for dementia in black and white individuals
Marden, Jessica R; Walter, Stefan; Tchetgen Tchetgen, Eric J; Kawachi, Ichiro; Glymour, M Maria
2014-01-01
Objective To determine whether a polygenic risk score for Alzheimer's disease (AD) predicts dementia probability and memory functioning in non-Hispanic black (NHB) and non-Hispanic white (NHW) participants from a sample not used in previous genome-wide association studies. Methods Non-Hispanic white and NHB Health and Retirement Study (HRS) participants provided genetic information and either a composite memory score (n = 10,401) or a dementia probability score (n = 7690). Dementia probability score was estimated for participants' age 65+ from 2006 to 2010, while memory score was available for participants age 50+. We calculated AD genetic risk scores (AD-GRS) based on 10 polymorphisms confirmed to predict AD, weighting alleles by beta coefficients reported in AlzGene meta-analyses. We used pooled logistic regression to estimate the association of the AD-GRS with dementia probability and generalized linear models to estimate its effect on memory score. Results Each 0.10 unit change in the AD-GRS was associated with larger relative effects on dementia among NHW aged 65+ (OR = 2.22; 95% CI: 1.79, 2.74; P < 0.001) than NHB (OR=1.33; 95% CI: 1.00, 1.77; P = 0.047), although additive effect estimates were similar. Each 0.10 unit change in the AD-GRS was associated with a −0.07 (95% CI: −0.09, −0.05; P < 0.001) SD difference in memory score among NHW aged 50+, but no significant differences among NHB (β = −0.01; 95% CI: −0.04, 0.01; P = 0.546). [Correction added on 29 July 2014, after first online publication: confidence intervalshave been amended.] The estimated effect of the GRS was significantly smaller among NHB than NHW (P < 0.05) for both outcomes. Conclusion This analysis provides evidence for differential relative effects of the GRS on dementia probability and memory score among NHW and NHB in a new, national data set. PMID:25328845
Extreme weather and experience influence reproduction in an endangered bird
Reichert, Brian E.; Cattau, Christopher E.; Fletcher, Robert J.; Kendall, William L.; Kitchens, Wiley M.
2012-01-01
Using a 14-year time series spanning large variation in climatic conditions and the entirety of a population's breeding range, we estimated the effects of extreme weather conditions (drought) on the state-specific probabilities of breeding and survival of an endangered bird, the Florida Snail Kite (Rostrhamus sociabilis plumbeus). Our analysis accounted for uncertainty in breeding status assignment, a common source of uncertainty that is often ignored when states are based on field observations. Breeding probabilities in adult kites (>1 year of age) decreased during droughts, whereas the probability of breeding in young kites (1 year of age) tended to increase. Individuals attempting to breed showed no evidence of reduced future survival. Although population viability analyses of this species and other species often implicitly assume that all adults will attempt to breed, we find that breeding probabilities were significantly <1 for all 13 estimable years considered. Our results suggest that experience is an important factor determining whether or not individuals attempt to breed during harsh environmental conditions and that reproductive effort may be constrained by an individual's quality and/or despotic behavior among individuals attempting to breed.
Modeling habitat dynamics accounting for possible misclassification
Veran, Sophie; Kleiner, Kevin J.; Choquet, Remi; Collazo, Jaime; Nichols, James D.
2012-01-01
Land cover data are widely used in ecology as land cover change is a major component of changes affecting ecological systems. Landscape change estimates are characterized by classification errors. Researchers have used error matrices to adjust estimates of areal extent, but estimation of land cover change is more difficult and more challenging, with error in classification being confused with change. We modeled land cover dynamics for a discrete set of habitat states. The approach accounts for state uncertainty to produce unbiased estimates of habitat transition probabilities using ground information to inform error rates. We consider the case when true and observed habitat states are available for the same geographic unit (pixel) and when true and observed states are obtained at one level of resolution, but transition probabilities estimated at a different level of resolution (aggregations of pixels). Simulation results showed a strong bias when estimating transition probabilities if misclassification was not accounted for. Scaling-up does not necessarily decrease the bias and can even increase it. Analyses of land cover data in the Southeast region of the USA showed that land change patterns appeared distorted if misclassification was not accounted for: rate of habitat turnover was artificially increased and habitat composition appeared more homogeneous. Not properly accounting for land cover misclassification can produce misleading inferences about habitat state and dynamics and also misleading predictions about species distributions based on habitat. Our models that explicitly account for state uncertainty should be useful in obtaining more accurate inferences about change from data that include errors.
Sasidharan, Lekshmi; Donnell, Eric T
2014-10-01
Accurate estimation of the expected number of crashes at different severity levels for entities with and without countermeasures plays a vital role in selecting countermeasures in the framework of the safety management process. The current practice is to use the American Association of State Highway and Transportation Officials' Highway Safety Manual crash prediction algorithms, which combine safety performance functions and crash modification factors, to estimate the effects of safety countermeasures on different highway and street facility types. Many of these crash prediction algorithms are based solely on crash frequency, or assume that severity outcomes are unchanged when planning for, or implementing, safety countermeasures. Failing to account for the uncertainty associated with crash severity outcomes, and assuming crash severity distributions remain unchanged in safety performance evaluations, limits the utility of the Highway Safety Manual crash prediction algorithms in assessing the effect of safety countermeasures on crash severity. This study demonstrates the application of a propensity scores-potential outcomes framework to estimate the probability distribution for the occurrence of different crash severity levels by accounting for the uncertainties associated with them. The probability of fatal and severe injury crash occurrence at lighted and unlighted intersections is estimated in this paper using data from Minnesota. The results show that the expected probability of occurrence of fatal and severe injury crashes at a lighted intersection was 1 in 35 crashes and the estimated risk ratio indicates that the respective probabilities at an unlighted intersection was 1.14 times higher compared to lighted intersections. The results from the potential outcomes-propensity scores framework are compared to results obtained from traditional binary logit models, without application of propensity scores matching. Traditional binary logit analysis suggests that the probability of occurrence of severe injury crashes is higher at lighted intersections compared to unlighted intersections, which contradicts the findings obtained from the propensity scores-potential outcomes framework. This finding underscores the importance of having comparable treated and untreated entities in traffic safety countermeasure evaluations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brookian stratigraphic plays in the National Petroleum Reserve - Alaska (NPRA)
Houseknecht, David W.
2003-01-01
The Brookian megasequence in the National Petroleum Reserve in Alaska (NPRA) includes bottomset and clinoform seismic facies of the Torok Formation (mostly Albian age) and generally coeval, topset seismic facies of the uppermost Torok Formation and the Nanushuk Group. These strata are part of a composite total petroleum system involving hydrocarbons expelled from three stratigraphic intervals of source rocks, the Lower Cretaceous gamma-ray zone (GRZ), the Lower Jurassic Kingak Shale, and the Triassic Shublik Formation. The potential for undiscovered oil and gas resources in the Brookian megasequence in NPRA was assessed by defining five plays (assessment units), one in the topset seismic facies and four in the bottomset-clinoform seismic facies. The Brookian Topset Play is estimated to contain between 60 (95-percent probability) and 465 (5-percent probability) million barrels of technically recoverable oil, with a mean (expected value) of 239 million barrels. The Brookian Topset Play is estimated to contain between 0 (95-percent probability) and 679 (5-percent probability) billion cubic feet of technically recoverable, nonassociated natural gas, with a mean (expected value) of 192 billion cubic feet. The Brookian Clinoform North Play, which extends across northern NPRA, is estimated to contain between 538 (95-percent probability) and 2,257 (5-percent probability) million barrels of technically recoverable oil, with a mean (expected value) of 1,306 million barrels. The Brookian Clinoform North Play is estimated to contain between 0 (95-percent probability) and 1,969 (5-percent probability) billion cubic feet of technically recoverable, nonassociated natural gas, with a mean (expected value) of 674 billion cubic feet. The Brookian Clinoform Central Play, which extends across central NPRA, is estimated to contain between 299 (95-percent probability) and 1,849 (5-percent probability) million barrels of technically recoverable oil, with a mean (expected value) of 973 million barrels. The Brookian Clinoform Central Play is estimated to contain between 1,806 (95-percent probability) and 10,076 (5-percent probability) billion cubic feet of technically recoverable, nonassociated natural gas, with a mean (expected value) of 5,405 billion cubic feet. The Brookian Clinoform South-Shallow Play is estimated to contain between 0 (95-percent probability) and 1,254 (5-percent probability) million barrels of technically recoverable oil, with a mean (expected value) of 508 million barrels. The Brookian Clinoform South-Shallow Play is estimated to contain between 0 (95-percent probability) and 5,809 (5-percent probability) billion cubic feet of technically recoverable, nonassociated natural gas, with a mean (expected value) of 2,405 billion cubic feet. The Brookian Clinoform South-Deep Play is estimated to contain between 0 (95-percent probability) and 8,796 (5-percent probability) billion cubic feet of technically recoverable, nonassociated natural gas, with a mean (expected value) of 3,788 billion cubic feet. No technically recoverable oil is assessed in the Brookian Clinoform South-Deep Play, as it lies at depths that are entirely in the gas window. Among the Brookian stratigraphic plays in NPRA, the Brookian Clinoform North Play and the Brookian Clinoform Central Play are most likely to be objectives of exploration activity in the near-term future because they are estimated to contain multiple oil accumulations larger than 128 million barrels technically recoverable oil, and because some of those accumulations may occur near existing infrastructure in the eastern parts of the plays. The other Brookian stratigraphic plays are not likely to be the focus of exploration activity because they are estimated to contain maximum accumulation sizes that are smaller, but they may be an objective of satellite exploration if infrastructure is extended into the play areas. The total volumes of natural gas estimated to occur in B
Assessing the impact of climate and land use changes on extreme floods in a large tropical catchment
NASA Astrophysics Data System (ADS)
Jothityangkoon, Chatchai; Hirunteeyakul, Chow; Boonrawd, Kowit; Sivapalan, Murugesu
2013-05-01
In the wake of the recent catastrophic floods in Thailand, there is considerable concern about the safety of large dams designed and built some 50 years ago. In this paper a distributed rainfall-runoff model appropriate for extreme flood conditions is used to generate revised estimates of the Probable Maximum Flood (PMF) for the Upper Ping River catchment (area 26,386 km2) in northern Thailand, upstream of location of the large Bhumipol Dam. The model has two components: a continuous water balance model based on a configuration of parameters estimated from climate, soil and vegetation data and a distributed flood routing model based on non-linear storage-discharge relationships of the river network under extreme flood conditions. The model is implemented under several alternative scenarios regarding the Probable Maximum Precipitation (PMP) estimates and is also used to estimate the potential effects of both climate change and land use and land cover changes on the extreme floods. These new estimates are compared against estimates using other hydrological models, including the application of the original prediction methods under current conditions. Model simulations and sensitivity analyses indicate that a reasonable Probable Maximum Flood (PMF) at the dam site is 6311 m3/s, which is only slightly higher than the original design flood of 6000 m3/s. As part of an uncertainty assessment, the estimated PMF is sensitive to the design method, input PMP, land use changes and the floodplain inundation effect. The increase of PMP depth by 5% can cause a 7.5% increase in PMF. Deforestation by 10%, 20%, 30% can result in PMF increases of 3.1%, 6.2%, 9.2%, respectively. The modest increase of the estimated PMF (to just 6311 m3/s) in spite of these changes is due to the factoring of the hydraulic effects of trees and buildings on the floodplain as the flood situation changes from normal floods to extreme floods, when over-bank flows may be the dominant flooding process, leading to a substantial reduction in the PMF estimates.
Internal Medicine residents use heuristics to estimate disease probability.
Phang, Sen Han; Ravani, Pietro; Schaefer, Jeffrey; Wright, Bruce; McLaughlin, Kevin
2015-01-01
Training in Bayesian reasoning may have limited impact on accuracy of probability estimates. In this study, our goal was to explore whether residents previously exposed to Bayesian reasoning use heuristics rather than Bayesian reasoning to estimate disease probabilities. We predicted that if residents use heuristics then post-test probability estimates would be increased by non-discriminating clinical features or a high anchor for a target condition. We randomized 55 Internal Medicine residents to different versions of four clinical vignettes and asked them to estimate probabilities of target conditions. We manipulated the clinical data for each vignette to be consistent with either 1) using a representative heuristic, by adding non-discriminating prototypical clinical features of the target condition, or 2) using anchoring with adjustment heuristic, by providing a high or low anchor for the target condition. When presented with additional non-discriminating data the odds of diagnosing the target condition were increased (odds ratio (OR) 2.83, 95% confidence interval [1.30, 6.15], p = 0.009). Similarly, the odds of diagnosing the target condition were increased when a high anchor preceded the vignette (OR 2.04, [1.09, 3.81], p = 0.025). Our findings suggest that despite previous exposure to the use of Bayesian reasoning, residents use heuristics, such as the representative heuristic and anchoring with adjustment, to estimate probabilities. Potential reasons for attribute substitution include the relative cognitive ease of heuristics vs. Bayesian reasoning or perhaps residents in their clinical practice use gist traces rather than precise probability estimates when diagnosing.
Reliability based fatigue design and maintenance procedures
NASA Technical Reports Server (NTRS)
Hanagud, S.
1977-01-01
A stochastic model has been developed to describe a probability for fatigue process by assuming a varying hazard rate. This stochastic model can be used to obtain the desired probability of a crack of certain length at a given location after a certain number of cycles or time. Quantitative estimation of the developed model was also discussed. Application of the model to develop a procedure for reliability-based cost-effective fail-safe structural design is presented. This design procedure includes the reliability improvement due to inspection and repair. Methods of obtaining optimum inspection and maintenance schemes are treated.
Markov Chain-Based Acute Effect Estimation of Air Pollution on Elder Asthma Hospitalization
Luo, Li; Zhang, Fengyi; Sun, Lin; Li, Chunyang; Huang, Debin; Han, Gao; Wang, Bin
2017-01-01
Background Asthma caused substantial economic and health care burden and is susceptible to air pollution. Particularly, when it comes to elder asthma patient (older than 65), the phenomenon is more significant. The aim of this study is to investigate the Markov-based acute effects of air pollution on elder asthma hospitalizations, in forms of transition probabilities. Methods A retrospective, population-based study design was used to assess temporal patterns in hospitalizations for asthma in a region of Sichuan province, China. Approximately 12 million residents were covered during this period. Relative risk analysis and Markov chain model were employed on daily hospitalization state estimation. Results Among PM2.5, PM10, NO2, and SO2, only SO2 was significant. When air pollution is severe, the transition probability from a low-admission state (previous day) to high-admission state (next day) is 35.46%, while it is 20.08% when air pollution is mild. In particular, for female-cold subgroup, the counterparts are 30.06% and 0.01%, respectively. Conclusions SO2 was a significant risk factor for elder asthma hospitalization. When air pollution worsened, the transition probabilities from each state to high admission states increase dramatically. This phenomenon appeared more evidently, especially in female-cold subgroup (which is in cold season for female admissions). Based on our work, admission amount forecast, asthma intervention, and corresponding healthcare allocation can be done. PMID:29147496
Fractional Gaussian model in global optimization
NASA Astrophysics Data System (ADS)
Dimri, V. P.; Srivastava, R. P.
2009-12-01
Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.
Quantum probability ranking principle for ligand-based virtual screening.
Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal
2017-04-01
Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.
Quantum probability ranking principle for ligand-based virtual screening
NASA Astrophysics Data System (ADS)
Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal
2017-04-01
Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.
Estimation and classification by sigmoids based on mutual information
NASA Technical Reports Server (NTRS)
Baram, Yoram
1994-01-01
An estimate of the probability density function of a random vector is obtained by maximizing the mutual information between the input and the output of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's s method, applied to an estimated density, yields a recursive maximum likelihood estimator, consisting of a single internal layer of sigmoids, for a random variable or a random sequence. Applications to the diamond classification and to the prediction of a sun-spot process are demonstrated.
Inferences about landbird abundance from count data: recent advances and future directions
Nichols, J.D.; Thomas, L.; Conn, P.B.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.
2009-01-01
We summarize results of a November 2006 workshop dealing with recent research on the estimation of landbird abundance from count data. Our conceptual framework includes a decomposition of the probability of detecting a bird potentially exposed to sampling efforts into four separate probabilities. Primary inference methods are described and include distance sampling, multiple observers, time of detection, and repeated counts. The detection parameters estimated by these different approaches differ, leading to different interpretations of resulting estimates of density and abundance. Simultaneous use of combinations of these different inference approaches can not only lead to increased precision but also provides the ability to decompose components of the detection process. Recent efforts to test the efficacy of these different approaches using natural systems and a new bird radio test system provide sobering conclusions about the ability of observers to detect and localize birds in auditory surveys. Recent research is reported on efforts to deal with such potential sources of error as bird misclassification, measurement error, and density gradients. Methods for inference about spatial and temporal variation in avian abundance are outlined. Discussion topics include opinions about the need to estimate detection probability when drawing inference about avian abundance, methodological recommendations based on the current state of knowledge and suggestions for future research.
Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis
Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina
2015-01-01
Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed. PMID:26167524
Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis.
Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina
2015-01-01
Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.
POF-Darts: Geometric adaptive sampling for probability of failure
Ebeida, Mohamed S.; Mitchell, Scott A.; Swiler, Laura P.; ...
2016-06-18
We introduce a novel technique, POF-Darts, to estimate the Probability Of Failure based on random disk-packing in the uncertain parameter space. POF-Darts uses hyperplane sampling to explore the unexplored part of the uncertain space. We use the function evaluation at a sample point to determine whether it belongs to failure or non-failure regions, and surround it with a protection sphere region to avoid clustering. We decompose the domain into Voronoi cells around the function evaluations as seeds and choose the radius of the protection sphere depending on the local Lipschitz continuity. As sampling proceeds, regions uncovered with spheres will shrink,more » improving the estimation accuracy. After exhausting the function evaluation budget, we build a surrogate model using the function evaluations associated with the sample points and estimate the probability of failure by exhaustive sampling of that surrogate. In comparison to other similar methods, our algorithm has the advantages of decoupling the sampling step from the surrogate construction one, the ability to reach target POF values with fewer samples, and the capability of estimating the number and locations of disconnected failure regions, not just the POF value. Furthermore, we present various examples to demonstrate the efficiency of our novel approach.« less
Using Geothermal Play Types as an Analogue for Estimating Potential Resource Size
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terry, Rachel; Young, Katherine
Blind geothermal systems are becoming increasingly common as more geothermal fields are developed. Geothermal development is known to have high risk in the early stages of a project development because reservoir characteristics are relatively unknown until wells are drilled. Play types (or occurrence models) categorize potential geothermal fields into groups based on geologic characteristics. To aid in lowering exploration risk, these groups' reservoir characteristics can be used as analogues in new site exploration. The play type schemes used in this paper were Moeck and Beardsmore play types (Moeck et al. 2014) and Brophy occurrence models (Brophy et al. 2011). Operatingmore » geothermal fields throughout the world were classified based on their associated play type, and then reservoir characteristics data were catalogued. The distributions of these characteristics were plotted in histograms to develop probability density functions for each individual characteristic. The probability density functions can be used as input analogues in Monte Carlo estimations of resource potential for similar play types in early exploration phases. A spreadsheet model was created to estimate resource potential in undeveloped fields. The user can choose to input their own values for each reservoir characteristic or choose to use the probability distribution functions provided from the selected play type. This paper also addresses the United States Geological Survey's 1978 and 2008 assessment of geothermal resources by comparing their estimated values to reported values from post-site development. Information from the collected data was used in the comparison for thirty developed sites in the United States. No significant trends or suggestions for methodologies could be made by the comparison.« less
Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.
2004-03-01
The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates basedmore » on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four projections, and associated kriging variances, were averaged using the posterior model probabilities as weights. Finally, cross-validation was conducted by eliminating from consideration all data from one borehole at a time, repeating the above process, and comparing the predictive capability of the model-averaged result with that of each individual model. Using two quantitative measures of comparison, the model-averaged result was superior to any individual geostatistical model of log permeability considered.« less
Generalized Wishart Mixtures for Unsupervised Classification of PolSAR Data
NASA Astrophysics Data System (ADS)
Li, Lan; Chen, Erxue; Li, Zengyuan
2013-01-01
This paper presents an unsupervised clustering algorithm based upon the expectation maximization (EM) algorithm for finite mixture modelling, using the complex wishart probability density function (PDF) for the probabilities. The mixture model enables to consider heterogeneous thematic classes which could not be better fitted by the unimodal wishart distribution. In order to make it fast and robust to calculate, we use the recently proposed generalized gamma distribution (GΓD) for the single polarization intensity data to make the initial partition. Then we use the wishart probability density function for the corresponding sample covariance matrix to calculate the posterior class probabilities for each pixel. The posterior class probabilities are used for the prior probability estimates of each class and weights for all class parameter updates. The proposed method is evaluated and compared with the wishart H-Alpha-A classification. Preliminary results show that the proposed method has better performance.
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
In a coded communication system with equiprobable signaling, MLD minimizes the word error probability and delivers the most likely codeword associated with the corresponding received sequence. This decoding has two drawbacks. First, minimization of the word error probability is not equivalent to minimization of the bit error probability. Therefore, MLD becomes suboptimum with respect to the bit error probability. Second, MLD delivers a hard-decision estimate of the received sequence, so that information is lost between the input and output of the ML decoder. This information is important in coded schemes where the decoded sequence is further processed, such as concatenated coding schemes, multi-stage and iterative decoding schemes. In this chapter, we first present a decoding algorithm which both minimizes bit error probability, and provides the corresponding soft information at the output of the decoder. This algorithm is referred to as the MAP (maximum aposteriori probability) decoding algorithm.
Inverse sequential detection of parameter changes in developing time series
NASA Technical Reports Server (NTRS)
Radok, Uwe; Brown, Timothy J.
1992-01-01
Progressive values of two probabilities are obtained for parameter estimates derived from an existing set of values and from the same set enlarged by one or more new values, respectively. One probability is that of erroneously preferring the second of these estimates for the existing data ('type 1 error'), while the second probability is that of erroneously accepting their estimates for the enlarged test ('type 2 error'). A more stable combined 'no change' probability which always falls between 0.5 and 0 is derived from the (logarithmic) width of the uncertainty region of an equivalent 'inverted' sequential probability ratio test (SPRT, Wald 1945) in which the error probabilities are calculated rather than prescribed. A parameter change is indicated when the compound probability undergoes a progressive decrease. The test is explicitly formulated and exemplified for Gaussian samples.
NASA Astrophysics Data System (ADS)
Liu, Yiming; Shi, Yimin; Bai, Xuchao; Zhan, Pei
2018-01-01
In this paper, we study the estimation for the reliability of a multicomponent system, named N- M-cold-standby redundancy system, based on progressive Type-II censoring sample. In the system, there are N subsystems consisting of M statistically independent distributed strength components, and only one of these subsystems works under the impact of stresses at a time and the others remain as standbys. Whenever the working subsystem fails, one from the standbys takes its place. The system fails when the entire subsystems fail. It is supposed that the underlying distributions of random strength and stress both belong to the generalized half-logistic distribution with different shape parameter. The reliability of the system is estimated by using both classical and Bayesian statistical inference. Uniformly minimum variance unbiased estimator and maximum likelihood estimator for the reliability of the system are derived. Under squared error loss function, the exact expression of the Bayes estimator for the reliability of the system is developed by using the Gauss hypergeometric function. The asymptotic confidence interval and corresponding coverage probabilities are derived based on both the Fisher and the observed information matrices. The approximate highest probability density credible interval is constructed by using Monte Carlo method. Monte Carlo simulations are performed to compare the performances of the proposed reliability estimators. A real data set is also analyzed for an illustration of the findings.
Lin, Yu-Hsiu; McLain, Alexander C; Probst, Janice C; Bennett, Kevin J; Qureshi, Zaina P; Eberth, Jan M
2017-01-01
The purpose of this study was to develop county-level estimates of poor health-related quality of life (HRQOL) among aged 65 years and older U.S. adults and to identify spatial clusters of poor HRQOL using a multilevel, poststratification approach. Multilevel, random-intercept models were fit to HRQOL data (two domains: physical health and mental health) from the 2011-2012 Behavioral Risk Factor Surveillance System. Using a poststratification, small area estimation approach, we generated county-level probabilities of having poor HRQOL for each domain in U.S. adults aged 65 and older, and validated our model-based estimates against state and county direct estimates. County-level estimates of poor HRQOL in the United States ranged from 18.07% to 44.81% for physical health and 14.77% to 37.86% for mental health. Correlations between model-based and direct estimates were higher for physical than mental HRQOL. Counties located in the Arkansas, Kentucky, and Mississippi exhibited the worst physical HRQOL scores, but this pattern did not hold for mental HRQOL, which had the highest probability of mentally unhealthy days in Illinois, Indiana, and Vermont. Substantial geographic variation in physical and mental HRQOL scores exists among older U.S. adults. State and local policy makers should consider these local conditions in targeting interventions and policies to counties with high levels of poor HRQOL scores. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lazri, Mourad; Ameur, Soltane
2016-09-01
In this paper, an algorithm based on the probability of rainfall intensities classification for rainfall estimation from Meteosat Second Generation/Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) has been developed. The classification scheme uses various spectral parameters of SEVIRI that provide information about cloud top temperature and optical and microphysical cloud properties. The presented method is developed and trained for the north of Algeria. The calibration of the method is carried out using as a reference rain classification fields derived from radar for rainy season from November 2006 to March 2007. Rainfall rates are assigned to rain areas previously identified and classified according to the precipitation formation processes. The comparisons between satellite-derived precipitation estimates and validation data show that the developed scheme performs reasonably well. Indeed, the correlation coefficient presents a significant level (r:0.87). The values of POD, POFD and FAR are 80%, 13% and 25%, respectively. Also, for a rainfall estimation of about 614 mm, the RMSD, Bias, MAD and PD indicate 102.06(mm), 2.18(mm), 68.07(mm) and 12.58, respectively.
Estimating the probability for major gene Alzheimer disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrer, L.A.; Cupples, L.A.
1994-02-01
Alzheimer disease (AD) is a neuropsychiatric illness caused by multiple etiologies. Prediction of whether AD is genetically based in a given family is problematic because of censoring bias among unaffected relatives as a consequence of the late onset of the disorder, diagnostic uncertainties, heterogeneity, and limited information in a single family. The authors have developed a method based on Bayesian probability to compute values for a continuous variable that ranks AD families as having a major gene form of AD (MGAD). In addition, they have compared the Bayesian method with a maximum-likelihood approach. These methods incorporate sex- and age-adjusted riskmore » estimates and allow for phenocopies and familial clustering of age on onset. Agreement is high between the two approaches for ranking families as MGAD (Spearman rank [r] = .92). When either method is used, the numerical outcomes are sensitive to assumptions of the gene frequency and cumulative incidence of the disease in the population. Consequently, risk estimates should be used cautiously for counseling purposes; however, there are numerous valid applications of these procedures in genetic and epidemiological studies. 41 refs., 4 figs., 3 tabs.« less
The discrete Laplace exponential family and estimation of Y-STR haplotype frequencies.
Andersen, Mikkel Meyer; Eriksen, Poul Svante; Morling, Niels
2013-07-21
Estimating haplotype frequencies is important in e.g. forensic genetics, where the frequencies are needed to calculate the likelihood ratio for the evidential weight of a DNA profile found at a crime scene. Estimation is naturally based on a population model, motivating the investigation of the Fisher-Wright model of evolution for haploid lineage DNA markers. An exponential family (a class of probability distributions that is well understood in probability theory such that inference is easily made by using existing software) called the 'discrete Laplace distribution' is described. We illustrate how well the discrete Laplace distribution approximates a more complicated distribution that arises by investigating the well-known population genetic Fisher-Wright model of evolution by a single-step mutation process. It was shown how the discrete Laplace distribution can be used to estimate haplotype frequencies for haploid lineage DNA markers (such as Y-chromosomal short tandem repeats), which in turn can be used to assess the evidential weight of a DNA profile found at a crime scene. This was done by making inference in a mixture of multivariate, marginally independent, discrete Laplace distributions using the EM algorithm to estimate the probabilities of membership of a set of unobserved subpopulations. The discrete Laplace distribution can be used to estimate haplotype frequencies with lower prediction error than other existing estimators. Furthermore, the calculations could be performed on a normal computer. This method was implemented in the freely available open source software R that is supported on Linux, MacOS and MS Windows. Copyright © 2013 Elsevier Ltd. All rights reserved.
Comparative analysis of old-age mortality estimations in Africa.
Bendavid, Eran; Seligman, Benjamin; Kubo, Jessica
2011-01-01
Survival to old ages is increasing in many African countries. While demographic tools for estimating mortality up to age 60 have improved greatly, mortality patterns above age 60 rely on models based on little or no demographic data. These estimates are important for social planning and demographic projections. We provide direct estimations of older-age mortality using survey data. Since 2005, nationally representative household surveys in ten sub-Saharan countries record counts of living and recently deceased household members: Burkina Faso, Côte d'Ivoire, Ethiopia, Namibia, Nigeria, Swaziland, Tanzania, Uganda, Zambia, and Zimbabwe. After accounting for age heaping using multiple imputation, we use this information to estimate probability of death in 5-year intervals ((5)q(x)). We then compare our (5)q(x) estimates to those provided by the World Health Organization (WHO) and the United Nations Population Division (UNPD) to estimate the differences in mortality estimates, especially among individuals older than 60 years old. We obtained information on 505,827 individuals (18.4% over age 60, 1.64% deceased). WHO and UNPD mortality models match our estimates closely up to age 60 (mean difference in probability of death -1.1%). However, mortality probabilities above age 60 are lower using our estimations than either WHO or UNPD. The mean difference between our sample and the WHO is 5.9% (95% CI 3.8-7.9%) and between our sample is UNPD is 13.5% (95% CI 11.6-15.5%). Regardless of the comparator, the difference in mortality estimations rises monotonically above age 60. Mortality estimations above age 60 in ten African countries exhibit large variations depending on the method of estimation. The observed patterns suggest the possibility that survival in some African countries among adults older than age 60 is better than previously thought. Improving the quality and coverage of vital information in developing countries will become increasingly important with future reductions in mortality.
Tanadini, Lorenzo G; Schmidt, Benedikt R
2011-01-01
Monitoring is an integral part of species conservation. Monitoring programs must take imperfect detection of species into account in order to be reliable. Theory suggests that detection probability may be determined by population size but this relationship has not yet been assessed empirically. Population size is particularly important because it may induce heterogeneity in detection probability and thereby cause bias in estimates of biodiversity. We used a site occupancy model to analyse data from a volunteer-based amphibian monitoring program to assess how well different variables explain variation in detection probability. An index to population size best explained detection probabilities for four out of six species (to avoid circular reasoning, we used the count of individuals at a previous site visit as an index to current population size). The relationship between the population index and detection probability was positive. Commonly used weather variables best explained detection probabilities for two out of six species. Estimates of site occupancy probabilities differed depending on whether the population index was or was not used to model detection probability. The relationship between the population index and detectability has implications for the design of monitoring and species conservation. Most importantly, because many small populations are likely to be overlooked, monitoring programs should be designed in such a way that small populations are not overlooked. The results also imply that methods cannot be standardized in such a way that detection probabilities are constant. As we have shown here, one can easily account for variation in population size in the analysis of data from long-term monitoring programs by using counts of individuals from surveys at the same site in previous years. Accounting for variation in population size is important because it can affect the results of long-term monitoring programs and ultimately the conservation of imperiled species.
Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin
2003-01-01
A logistic equation is the basis for a model that predicts the probability of obtaining regeneration at specified densities. The density of regeneration (trees/ha) for which an estimate of probability is desired can be specified by means of independent variables in the model. When estimating parameters, the dependent variable is set to 1 if the regeneration density (...
Comparison of methods for estimating the attributable risk in the context of survival analysis.
Gassama, Malamine; Bénichou, Jacques; Dartois, Laureen; Thiébaut, Anne C M
2017-01-23
The attributable risk (AR) measures the proportion of disease cases that can be attributed to an exposure in the population. Several definitions and estimation methods have been proposed for survival data. Using simulations, we compared four methods for estimating AR defined in terms of survival functions: two nonparametric methods based on Kaplan-Meier's estimator, one semiparametric based on Cox's model, and one parametric based on the piecewise constant hazards model, as well as one simpler method based on estimated exposure prevalence at baseline and Cox's model hazard ratio. We considered a fixed binary exposure with varying exposure probabilities and strengths of association, and generated event times from a proportional hazards model with constant or monotonic (decreasing or increasing) Weibull baseline hazard, as well as from a nonproportional hazards model. We simulated 1,000 independent samples of size 1,000 or 10,000. The methods were compared in terms of mean bias, mean estimated standard error, empirical standard deviation and 95% confidence interval coverage probability at four equally spaced time points. Under proportional hazards, all five methods yielded unbiased results regardless of sample size. Nonparametric methods displayed greater variability than other approaches. All methods showed satisfactory coverage except for nonparametric methods at the end of follow-up for a sample size of 1,000 especially. With nonproportional hazards, nonparametric methods yielded similar results to those under proportional hazards, whereas semiparametric and parametric approaches that both relied on the proportional hazards assumption performed poorly. These methods were applied to estimate the AR of breast cancer due to menopausal hormone therapy in 38,359 women of the E3N cohort. In practice, our study suggests to use the semiparametric or parametric approaches to estimate AR as a function of time in cohort studies if the proportional hazards assumption appears appropriate.
Comparative dynamics of avian communities across edges and interiors of North American ecoregions
Karanth, K.K.; Nichols, J.D.; Sauer, J.R.; Hines, J.E.
2006-01-01
Aim Based on a priori hypotheses, we developed predictions about how avian communities might differ at the edges vs. interiors of ecoregions. Specifically, we predicted lower species richness and greater local turnover and extinction probabilities for regional edges. We tested these predictions using North American Breeding Bird Survey (BBS) data across nine ecoregions over a 20-year time period. Location Data from 2238 BBS routes within nine ecoregions of the United States were used. Methods The estimation methods used accounted for species detection probabilities < 1. Parameter estimates for species richness, local turnover and extinction probabilities were obtained using the program COMDYN. We examined the difference in community-level parameters estimated from within exterior edges (the habitat interface between ecoregions), interior edges (the habitat interface between two bird conservation regions within the same ecoregion) and interior (habitat excluding interfaces). General linear models were constructed to examine sources of variation in community parameters for five ecoregions (containing all three habitat types) and all nine ecoregions (containing two habitat types). Results Analyses provided evidence that interior habitats and interior edges had on average higher bird species richness than exterior edges, providing some evidence of reduced species richness near habitat edges. Lower average extinction probabilities and turnover rates in interior habitats (five-region analysis) provided some support for our predictions about these quantities. However, analyses directed at all three response variables, i.e. species richness, local turnover, and local extinction probability, provided evidence of an interaction between habitat and region, indicating that the relationships did not hold in all regions. Main conclusions The overall predictions of lower species richness, higher local turnover and extinction probabilities in regional edge habitats, as opposed to interior habitats, were generally supported. However, these predicted tendencies did not hold in all regions.
Modeling highway travel time distribution with conditional probability models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira Neto, Francisco Moraes; Chin, Shih-Miao; Hwang, Ho-Ling
ABSTRACT Under the sponsorship of the Federal Highway Administration's Office of Freight Management and Operations, the American Transportation Research Institute (ATRI) has developed performance measures through the Freight Performance Measures (FPM) initiative. Under this program, travel speed information is derived from data collected using wireless based global positioning systems. These telemetric data systems are subscribed and used by trucking industry as an operations management tool. More than one telemetric operator submits their data dumps to ATRI on a regular basis. Each data transmission contains truck location, its travel time, and a clock time/date stamp. Data from the FPM program providesmore » a unique opportunity for studying the upstream-downstream speed distributions at different locations, as well as different time of the day and day of the week. This research is focused on the stochastic nature of successive link travel speed data on the continental United States Interstates network. Specifically, a method to estimate route probability distributions of travel time is proposed. This method uses the concepts of convolution of probability distributions and bivariate, link-to-link, conditional probability to estimate the expected distributions for the route travel time. Major contribution of this study is the consideration of speed correlation between upstream and downstream contiguous Interstate segments through conditional probability. The established conditional probability distributions, between successive segments, can be used to provide travel time reliability measures. This study also suggests an adaptive method for calculating and updating route travel time distribution as new data or information is added. This methodology can be useful to estimate performance measures as required by the recent Moving Ahead for Progress in the 21st Century Act (MAP 21).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion J
2015-12-22
NetMOD is a tool to model the performance of global ground-based explosion monitoring systems. The version 2.0 of the software supports the simulation of seismic, hydroacoustic, and infrasonic detection capability. The tool provides a user interface to execute simulations based upon a hypothetical definition of the monitoring system configuration, geophysical properties of the Earth, and detection analysis criteria. NetMOD will be distributed with a project file defining the basic performance characteristics of the International Monitoring System (IMS), a network of sensors operated by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). Network modeling is needed to be able to assess and explainmore » the potential effect of changes to the IMS, to prioritize station deployment and repair, and to assess the overall CTBTO monitoring capability currently and in the future. Currently the CTBTO uses version 1.0 of NetMOD, provided to them in early 2014. NetMOD will provide a modern tool that will cover all the simulations currently available and allow for the development of additional simulation capabilities of the IMS in the future. NetMOD simulates the performance of monitoring networks by estimating the relative amplitudes of the signal and noise measured at each of the stations within the network based upon known geophysical principles. From these signal and noise estimates, a probability of detection may be determined for each of the stations. The detection probabilities at each of the stations may then be combined to produce an estimate of the detection probability for the entire monitoring network.« less
Relationships between rainfall and Combined Sewer Overflow (CSO) occurrences
NASA Astrophysics Data System (ADS)
Mailhot, A.; Talbot, G.; Lavallée, B.
2015-04-01
Combined Sewer Overflow (CSO) has been recognized as a major environmental issue in many countries. In Canada, the proposed reinforcement of the CSO frequency regulations will result in new constraints on municipal development. Municipalities will have to demonstrate that new developments do not increase CSO frequency above a reference level based on historical CSO records. Governmental agencies will also have to define a framework to assess the impact of new developments on CSO frequency and the efficiency of the various proposed measures to maintain CSO frequency at its historic level. In such a context, it is important to correctly assess the average number of days with CSO and to define relationships between CSO frequency and rainfall characteristics. This paper investigates such relationships using available CSO and rainfall datasets for Quebec. CSO records for 4285 overflow structures (OS) were analyzed. A simple model based on rainfall thresholds was developed to forecast the occurrence of CSO on a given day based on daily rainfall values. The estimated probability of days with CSO have been used to estimate the rainfall threshold value at each OS by imposing that the probability of exceeding this rainfall value for a given day be equal to the estimated probability of days with CSO. The forecast skill of this model was assessed for 3437 OS using contingency tables. The statistical significance of the forecast skill could be assessed for 64.2% of these OS. The threshold model has demonstrated significant forecast skill for 91.3% of these OS confirming that for most OS a simple threshold model can be used to assess the occurrence of CSO.
A nonparametric multiple imputation approach for missing categorical data.
Zhou, Muhan; He, Yulei; Yu, Mandi; Hsu, Chiu-Hsieh
2017-06-06
Incomplete categorical variables with more than two categories are common in public health data. However, most of the existing missing-data methods do not use the information from nonresponse (missingness) probabilities. We propose a nearest-neighbour multiple imputation approach to impute a missing at random categorical outcome and to estimate the proportion of each category. The donor set for imputation is formed by measuring distances between each missing value with other non-missing values. The distance function is calculated based on a predictive score, which is derived from two working models: one fits a multinomial logistic regression for predicting the missing categorical outcome (the outcome model) and the other fits a logistic regression for predicting missingness probabilities (the missingness model). A weighting scheme is used to accommodate contributions from two working models when generating the predictive score. A missing value is imputed by randomly selecting one of the non-missing values with the smallest distances. We conduct a simulation to evaluate the performance of the proposed method and compare it with several alternative methods. A real-data application is also presented. The simulation study suggests that the proposed method performs well when missingness probabilities are not extreme under some misspecifications of the working models. However, the calibration estimator, which is also based on two working models, can be highly unstable when missingness probabilities for some observations are extremely high. In this scenario, the proposed method produces more stable and better estimates. In addition, proper weights need to be chosen to balance the contributions from the two working models and achieve optimal results for the proposed method. We conclude that the proposed multiple imputation method is a reasonable approach to dealing with missing categorical outcome data with more than two levels for assessing the distribution of the outcome. In terms of the choices for the working models, we suggest a multinomial logistic regression for predicting the missing outcome and a binary logistic regression for predicting the missingness probability.
An Opportunity to Get More Aid to Florida Students. Information Brief. Volume 7, Issue 2
ERIC Educational Resources Information Center
Florida Board of Governors, State University System, 2009
2009-01-01
Estimates indicate that more than one in five low-income State University System undergraduates may not be applying for federal Pell grants and other need-based awards for which they are likely eligible. It is estimated that thousands of Florida students with family incomes of $40,000 or less are probably eligible but are not applying for…
Schell, Greggory J; Lavieri, Mariel S; Stein, Joshua D; Musch, David C
2013-12-21
Open-angle glaucoma (OAG) is a prevalent, degenerate ocular disease which can lead to blindness without proper clinical management. The tests used to assess disease progression are susceptible to process and measurement noise. The aim of this study was to develop a methodology which accounts for the inherent noise in the data and improve significant disease progression identification. Longitudinal observations from the Collaborative Initial Glaucoma Treatment Study (CIGTS) were used to parameterize and validate a Kalman filter model and logistic regression function. The Kalman filter estimates the true value of biomarkers associated with OAG and forecasts future values of these variables. We develop two logistic regression models via generalized estimating equations (GEE) for calculating the probability of experiencing significant OAG progression: one model based on the raw measurements from CIGTS and another model based on the Kalman filter estimates of the CIGTS data. Receiver operating characteristic (ROC) curves and associated area under the ROC curve (AUC) estimates are calculated using cross-fold validation. The logistic regression model developed using Kalman filter estimates as data input achieves higher sensitivity and specificity than the model developed using raw measurements. The mean AUC for the Kalman filter-based model is 0.961 while the mean AUC for the raw measurements model is 0.889. Hence, using the probability function generated via Kalman filter estimates and GEE for logistic regression, we are able to more accurately classify patients and instances as experiencing significant OAG progression. A Kalman filter approach for estimating the true value of OAG biomarkers resulted in data input which improved the accuracy of a logistic regression classification model compared to a model using raw measurements as input. This methodology accounts for process and measurement noise to enable improved discrimination between progression and nonprogression in chronic diseases.
NASA Astrophysics Data System (ADS)
Ransom, Katherine M.; Bell, Andrew M.; Barber, Quinn E.; Kourakos, George; Harter, Thomas
2018-05-01
This study is focused on nitrogen loading from a wide variety of crop and land-use types in the Central Valley, California, USA, an intensively farmed region with high agricultural crop diversity. Nitrogen loading rates for several crop types have been measured based on field-scale experiments, and recent research has calculated nitrogen loading rates for crops throughout the Central Valley based on a mass balance approach. However, research is lacking to infer nitrogen loading rates for the broad diversity of crop and land-use types directly from groundwater nitrate measurements. Relating groundwater nitrate measurements to specific crops must account for the uncertainty about and multiplicity in contributing crops (and other land uses) to individual well measurements, and for the variability of nitrogen loading within farms and from farm to farm for the same crop type. In this study, we developed a Bayesian regression model that allowed us to estimate land-use-specific groundwater nitrogen loading rate probability distributions for 15 crop and land-use groups based on a database of recent nitrate measurements from 2149 private wells in the Central Valley. The water and natural, rice, and alfalfa and pasture groups had the lowest median estimated nitrogen loading rates, each with a median estimate below 5 kg N ha-1 yr-1. Confined animal feeding operations (dairies) and citrus and subtropical crops had the greatest median estimated nitrogen loading rates at approximately 269 and 65 kg N ha-1 yr-1, respectively. In general, our probability-based estimates compare favorably with previous direct measurements and with mass-balance-based estimates of nitrogen loading. Nitrogen mass-balance-based estimates are larger than our groundwater nitrate derived estimates for manured and nonmanured forage, nuts, cotton, tree fruit, and rice crops. These discrepancies are thought to be due to groundwater age mixing, dilution from infiltrating river water, or denitrification between the time when nitrogen leaves the root zone (point of reference for mass-balance-derived loading) and the time and location of groundwater measurement.
ERIC Educational Resources Information Center
Zwick, Rebecca; Lenaburg, Lubella
2009-01-01
In certain data analyses (e.g., multiple discriminant analysis and multinomial log-linear modeling), classification decisions are made based on the estimated posterior probabilities that individuals belong to each of several distinct categories. In the Bayesian network literature, this type of classification is often accomplished by assigning…
Lyons, James E.; Andrew, Royle J.; Thomas, Susan M.; Elliott-Smith, Elise; Evenson, Joseph R.; Kelly, Elizabeth G.; Milner, Ruth L.; Nysewander, David R.; Andres, Brad A.
2012-01-01
Large-scale monitoring of bird populations is often based on count data collected across spatial scales that may include multiple physiographic regions and habitat types. Monitoring at large spatial scales may require multiple survey platforms (e.g., from boats and land when monitoring coastal species) and multiple survey methods. It becomes especially important to explicitly account for detection probability when analyzing count data that have been collected using multiple survey platforms or methods. We evaluated a new analytical framework, N-mixture models, to estimate actual abundance while accounting for multiple detection biases. During May 2006, we made repeated counts of Black Oystercatchers (Haematopus bachmani) from boats in the Puget Sound area of Washington (n = 55 sites) and from land along the coast of Oregon (n = 56 sites). We used a Bayesian analysis of N-mixture models to (1) assess detection probability as a function of environmental and survey covariates and (2) estimate total Black Oystercatcher abundance during the breeding season in the two regions. Probability of detecting individuals during boat-based surveys was 0.75 (95% credible interval: 0.42–0.91) and was not influenced by tidal stage. Detection probability from surveys conducted on foot was 0.68 (0.39–0.90); the latter was not influenced by fog, wind, or number of observers but was ~35% lower during rain. The estimated population size was 321 birds (262–511) in Washington and 311 (276–382) in Oregon. N-mixture models provide a flexible framework for modeling count data and covariates in large-scale bird monitoring programs designed to understand population change.
76 FR 62331 - Atlantic Highly Migratory Species; Atlantic Shark Management Measures
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
...) or 2099. The target year for rebuilding ranged from 2081 to 2257 depending on the state of nature (i... probability of rebuilding by 2099. The base model also estimated that with the current fishing mortality rate...
Lienkaemper, J.J.; Schwartz, D.P.; Kelson, K.I.; Lettis, W.R.; Simpson, Gary D.; Southon, J.R.; Wanket, J.A.; Williams, P.L.
1999-01-01
The Working Group on California Earthquake Probabilities estimated that the northern Hayward fault had the highest probability (0.28) of producing a M7 Bay Area earthquake in 30 years (WGCEP, 1990). This probability was based, in part, on the assumption that the last large earthquake occurred on this segment in 1836. However, a recent study of historical documents concludes that the 1836 earthquake did not occur on the northern Hayward fault, thereby extending the elapsed time to at least 220 yr ago, the beginning of the written record. The average recurrence interval for a M7 on the northern Hayward is unknown. WGCEP (1990) assumed an interval of 167 years. The 1996 Working Group on Northern California Earthquake Potential estimated ~210 yr, based on extrapolations from southern Hayward paleoseismological studies and a revised estimate of 1868 slip on the southern Hayward fault. To help constrain the timing of paleoearthquakes on the northern Hayward fault for the 1999 Bay Area probability update, we excavated two trenches that cross the fault and a sag pond on the Mira Vista golf course. As the site is on the second fairway, we were limited to less than ten days to document these trenches. Analysis was aided by rapid C-14 dating of more than 90 samples which gave near real-time results with the trenches still open. A combination of upward fault terminations, disrupted strata, and discordant angular relations indicates at least four, and possibly seven or more, surface faulting earthquakes occurred during a 1630-2130 yr interval. Hence, average recurrence time could be <270 yr, but is no more than 710 yr. The most recent earthquake (MRE) occurred after AD 1640. Preliminary analysis of calibrated dates supports the assumption that no large historical (post-1776) earthquakes have ruptured the surface here, but the youngest dates need more corroboration. Analyses of pollen for presence of non-native species help to constrain the time of the MRE. The earthquake recurrence estimates described in this report are preliminary and should not be used as a basis for hazard estimates. Additional trenching is planned for this location to answer questions raised during the initial phase of trenching.
The Influence of Mark-Recapture Sampling Effort on Estimates of Rock Lobster Survival
Kordjazi, Ziya; Frusher, Stewart; Buxton, Colin; Gardner, Caleb; Bird, Tomas
2016-01-01
Five annual capture-mark-recapture surveys on Jasus edwardsii were used to evaluate the effect of sample size and fishing effort on the precision of estimated survival probability. Datasets of different numbers of individual lobsters (ranging from 200 to 1,000 lobsters) were created by random subsampling from each annual survey. This process of random subsampling was also used to create 12 datasets of different levels of effort based on three levels of the number of traps (15, 30 and 50 traps per day) and four levels of the number of sampling-days (2, 4, 6 and 7 days). The most parsimonious Cormack-Jolly-Seber (CJS) model for estimating survival probability shifted from a constant model towards sex-dependent models with increasing sample size and effort. A sample of 500 lobsters or 50 traps used on four consecutive sampling-days was required for obtaining precise survival estimations for males and females, separately. Reduced sampling effort of 30 traps over four sampling days was sufficient if a survival estimate for both sexes combined was sufficient for management of the fishery. PMID:26990561
Nguyen, Trang Quynh; Webb-Vargas, Yenny; Koning, Ina M.; Stuart, Elizabeth A.
2016-01-01
We investigate a method to estimate the combined effect of multiple continuous/ordinal mediators on a binary outcome: 1) fit a structural equation model with probit link for the outcome and identity/probit link for continuous/ordinal mediators, 2) predict potential outcome probabilities, and 3) compute natural direct and indirect effects. Step 2 involves rescaling the latent continuous variable underlying the outcome to address residual mediator variance/covariance. We evaluate the estimation of risk-difference- and risk-ratio-based effects (RDs, RRs) using the ML, WLSMV and Bayes estimators in Mplus. Across most variations in path-coefficient and mediator-residual-correlation signs and strengths, and confounding situations investigated, the method performs well with all estimators, but favors ML/WLSMV for RDs with continuous mediators, and Bayes for RRs with ordinal mediators. Bayes outperforms WLSMV/ML regardless of mediator type when estimating RRs with small potential outcome probabilities and in two other special cases. An adolescent alcohol prevention study is used for illustration. PMID:27158217
O'Shea, T.J.; Ellison, L.E.; Neubaum, D.J.; Neubaum, M.A.; Reynolds, C.A.; Bowen, R.A.
2010-01-01
We used markrecapture estimation techniques and radiography to test hypotheses about 3 important aspects of recruitment in big brown bats (Eptesicus fuscus) in Fort Collins, Colorado: adult breeding probabilities, litter size, and 1st-year survival of young. We marked 2,968 females with passive integrated transponder (PIT) tags at multiple sites during 2001-2005 and based our assessments on direct recaptures (breeding probabilities) and passive detection with automated PIT tag readers (1st-year survival). We interpreted our data in relation to hypotheses regarding demographic influences of bat age, roost, and effects of years with unusual environmental conditions: extreme drought (2002) and arrival of a West Nile virus epizootic (2003). Conditional breeding probabilities at 6 roosts sampled in 2002-2005 were estimated as 0.64 (95% confidence interval [95% CI] = 0.530.73) in 1-year-old females, but were consistently high (95% CI = 0.940.96) and did not vary by roost, year, or prior year breeding status in older adults. Mean litter size was 1.11 (95% CI = 1.051.17), based on examination of 112 pregnant females by radiography. Litter size was not higher in older or larger females and was similar to results of other studies in western North America despite wide variation in latitude. First-year survival was estimated as 0.67 (95% CI = 0.610.73) for weaned females at 5 maternity roosts over 5 consecutive years, was lower than adult survival (0.79; 95% CI = 0.770.81), and varied by roost. Based on model selection criteria, strong evidence exists for complex roost and year effects on 1st-year survival. First-year survival was lowest in bats born during the drought year. Juvenile females that did not return to roosts as 1-year-olds had lower body condition indices in late summer of their natal year than those known to survive. ?? 2009 American Society of Mammalogists.
Madsen, Thomas; Braun, Danielle; Peng, Gang; Parmigiani, Giovanni; Trippa, Lorenzo
2018-06-25
The Elston-Stewart peeling algorithm enables estimation of an individual's probability of harboring germline risk alleles based on pedigree data, and serves as the computational backbone of important genetic counseling tools. However, it remains limited to the analysis of risk alleles at a small number of genetic loci because its computing time grows exponentially with the number of loci considered. We propose a novel, approximate version of this algorithm, dubbed the peeling and paring algorithm, which scales polynomially in the number of loci. This allows extending peeling-based models to include many genetic loci. The algorithm creates a trade-off between accuracy and speed, and allows the user to control this trade-off. We provide exact bounds on the approximation error and evaluate it in realistic simulations. Results show that the loss of accuracy due to the approximation is negligible in important applications. This algorithm will improve genetic counseling tools by increasing the number of pathogenic risk alleles that can be addressed. To illustrate we create an extended five genes version of BRCAPRO, a widely used model for estimating the carrier probabilities of BRCA1 and BRCA2 risk alleles and assess its computational properties. © 2018 WILEY PERIODICALS, INC.
NASA Astrophysics Data System (ADS)
Schwartz, Craig R.; Thelen, Brian J.; Kenton, Arthur C.
1995-06-01
A statistical parametric multispectral sensor performance model was developed by ERIM to support mine field detection studies, multispectral sensor design/performance trade-off studies, and target detection algorithm development. The model assumes target detection algorithms and their performance models which are based on data assumed to obey multivariate Gaussian probability distribution functions (PDFs). The applicability of these algorithms and performance models can be generalized to data having non-Gaussian PDFs through the use of transforms which convert non-Gaussian data to Gaussian (or near-Gaussian) data. An example of one such transform is the Box-Cox power law transform. In practice, such a transform can be applied to non-Gaussian data prior to the introduction of a detection algorithm that is formally based on the assumption of multivariate Gaussian data. This paper presents an extension of these techniques to the case where the joint multivariate probability density function of the non-Gaussian input data is known, and where the joint estimate of the multivariate Gaussian statistics, under the Box-Cox transform, is desired. The jointly estimated multivariate Gaussian statistics can then be used to predict the performance of a target detection algorithm which has an associated Gaussian performance model.
Analysis of Advanced Respiratory Support Onboard ISS and CCV
NASA Technical Reports Server (NTRS)
Shah, Ronak V.; Kertsman, Eric L.; Alexander, David J.; Duchesne, Ted; Law, Jennifer; Roden, Sean K.
2014-01-01
NASA is collaborating with private entities for the development of commercial space vehicles. The Space and Clinical Operations Division was tasked to review the oxygen and respiratory support system and recommend what capabilities, if any, the vehicle should have to support the return of an ill or injured crewmember. The Integrated Medical Model (IMM) was utilized as a data source for the development of these recommendations. The Integrated Medical Model (IMM) was used to simulate a six month, six crew, International Space Station (ISS) mission. Three medical system scenarios were considered based on the availability of (1) oxygen only, (2) oxygen and a ventilator, or (3) neither oxygen nor ventilator. The IMM analysis provided probability estimates of medical events that would require either oxygen or ventilator support. It also provided estimates of crew health, the probability of evacuation, and the probability of loss of crew life secondary to medical events for each of the three medical system scenarios. These IMM outputs were used as objective data to enable evidence-based decisions regarding oxygen and respiratory support system requirements for commercial crew vehicles. The IMM provides data that may be utilized to support informed decisions regarding the development of medical systems for commercial crew vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sacks, H.K.; Novak, T.
2008-03-15
During the past decade, several methane/air explosions in abandoned or sealed areas of underground coal mines have been attributed to lightning. Previously published work by the authors showed, through computer simulations, that currents from lightning could propagate down steel-cased boreholes and ignite explosive methane/air mixtures. The presented work expands on the model and describes a methodology based on IEEE Standard 1410-2004 to estimate the probability of an ignition. The methodology provides a means to better estimate the likelihood that an ignition could occur underground and, more importantly, allows the calculation of what-if scenarios to investigate the effectiveness of engineering controlsmore » to reduce the hazard. The computer software used for calculating fields and potentials is also verified by comparing computed results with an independently developed theoretical model of electromagnetic field propagation through a conductive medium.« less
Risk of Skin Cancer from Space Radiation. Chapter 11
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Kim, Myung-Hee Y.; George, Kerry A.; Wu, Hong-Lu
2003-01-01
We review the methods for estimating the probability of increased incidence of skin cancers from space radiation exposure, and describe some of the individual factors that may contribute to risk projection models, including skin pigment, and synergistic effects of combined ionizing and UV exposure. The steep dose gradients from trapped electrons, protons, and heavy ions radiation during EVA and limitations in EVA dosimetry are important factors for projecting skin cancer risk of astronauts. We estimate that the probability of increased skin cancer risk varies more than 10-fold for individual astronauts and that the risk of skin cancer could exceed 1 % for future lunar base operations for astronauts with light skin color and hair. Limitations in physical dosimetry in estimating the distribution of dose at the skin suggest that new biodosimetry methods be developed for responding to accidental overexposure of the skin during future space missions.
Estimating total suspended sediment yield with probability sampling
Robert B. Thomas
1985-01-01
The ""Selection At List Time"" (SALT) scheme controls sampling of concentration for estimating total suspended sediment yield. The probability of taking a sample is proportional to its estimated contribution to total suspended sediment discharge. This procedure gives unbiased estimates of total suspended sediment yield and the variance of the...
Gray, Brian R.; Holland, Mark D.; Yi, Feng; Starcevich, Leigh Ann Harrod
2013-01-01
Site occupancy models are commonly used by ecologists to estimate the probabilities of species site occupancy and of species detection. This study addresses the influence on site occupancy and detection estimates of variation in species availability among surveys within sites. Such variation in availability may result from temporary emigration, nonavailability of the species for detection, and sampling sites spatially when species presence is not uniform within sites. We demonstrate, using Monte Carlo simulations and aquatic vegetation data, that variation in availability and heterogeneity in the probability of availability may yield biases in the expected values of the site occupancy and detection estimates that have traditionally been associated with low-detection probabilities and heterogeneity in those probabilities. These findings confirm that the effects of availability may be important for ecologists and managers, and that where such effects are expected, modification of sampling designs and/or analytical methods should be considered. Failure to limit the effects of availability may preclude reliable estimation of the probability of site occupancy.
[A graph cuts-based interactive method for segmentation of magnetic resonance images of meningioma].
Li, Shuan-qiang; Feng, Qian-jin; Chen, Wu-fan; Lin, Ya-zhong
2011-06-01
For accurate segmentation of the magnetic resonance (MR) images of meningioma, we propose a novel interactive segmentation method based on graph cuts. The high dimensional image features was extracted, and for each pixel, the probabilities of its origin, either the tumor or the background regions, were estimated by exploiting the weighted K-nearest neighborhood classifier. Based on these probabilities, a new energy function was proposed. Finally, a graph cut optimal framework was used for the solution of the energy function. The proposed method was evaluated by application in the segmentation of MR images of meningioma, and the results showed that the method significantly improved the segmentation accuracy compared with the gray level information-based graph cut method.
Effects of variability in probable maximum precipitation patterns on flood losses
NASA Astrophysics Data System (ADS)
Zischg, Andreas Paul; Felder, Guido; Weingartner, Rolf; Quinn, Niall; Coxon, Gemma; Neal, Jeffrey; Freer, Jim; Bates, Paul
2018-05-01
The assessment of the impacts of extreme floods is important for dealing with residual risk, particularly for critical infrastructure management and for insurance purposes. Thus, modelling of the probable maximum flood (PMF) from probable maximum precipitation (PMP) by coupling hydrological and hydraulic models has gained interest in recent years. Herein, we examine whether variability in precipitation patterns exceeds or is below selected uncertainty factors in flood loss estimation and if the flood losses within a river basin are related to the probable maximum discharge at the basin outlet. We developed a model experiment with an ensemble of probable maximum precipitation scenarios created by Monte Carlo simulations. For each rainfall pattern, we computed the flood losses with a model chain and benchmarked the effects of variability in rainfall distribution with other model uncertainties. The results show that flood losses vary considerably within the river basin and depend on the timing and superimposition of the flood peaks from the basin's sub-catchments. In addition to the flood hazard component, the other components of flood risk, exposure, and vulnerability contribute remarkably to the overall variability. This leads to the conclusion that the estimation of the probable maximum expectable flood losses in a river basin should not be based exclusively on the PMF. Consequently, the basin-specific sensitivities to different precipitation patterns and the spatial organization of the settlements within the river basin need to be considered in the analyses of probable maximum flood losses.
Robust versus consistent variance estimators in marginal structural Cox models.
Enders, Dirk; Engel, Susanne; Linder, Roland; Pigeot, Iris
2018-06-11
In survival analyses, inverse-probability-of-treatment (IPT) and inverse-probability-of-censoring (IPC) weighted estimators of parameters in marginal structural Cox models are often used to estimate treatment effects in the presence of time-dependent confounding and censoring. In most applications, a robust variance estimator of the IPT and IPC weighted estimator is calculated leading to conservative confidence intervals. This estimator assumes that the weights are known rather than estimated from the data. Although a consistent estimator of the asymptotic variance of the IPT and IPC weighted estimator is generally available, applications and thus information on the performance of the consistent estimator are lacking. Reasons might be a cumbersome implementation in statistical software, which is further complicated by missing details on the variance formula. In this paper, we therefore provide a detailed derivation of the variance of the asymptotic distribution of the IPT and IPC weighted estimator and explicitly state the necessary terms to calculate a consistent estimator of this variance. We compare the performance of the robust and consistent variance estimators in an application based on routine health care data and in a simulation study. The simulation reveals no substantial differences between the 2 estimators in medium and large data sets with no unmeasured confounding, but the consistent variance estimator performs poorly in small samples or under unmeasured confounding, if the number of confounders is large. We thus conclude that the robust estimator is more appropriate for all practical purposes. Copyright © 2018 John Wiley & Sons, Ltd.
CIL, AYLIN PELIN; BANG, HEEJUNG; OKTAY, KUTLUK
2013-01-01
Objective To estimate age-specific probabilities of live-birth with oocyte cryopreservation in non-donor (ND) egg cycles. Design Individual patient data (IPD) meta-analysis. Setting Assisted reproduction centers. Patients Infertile patients undergoing ND mature oocyte cryopreservation. Interventions PubMed was searched for the clinical studies on oocyte cryopreservation from January 1996 through July 2011. Randomized and non-randomized studies that used ND frozen-thawed mature oocytes with pregnancy outcomes were included. Authors of eligible studies were contacted to obtain IPD. Main outcome measures Live-birth probabilities based on age, cryopreservation method, and the number of oocytes thawed, injected, or embryos transferred. Results Original data from 10 studies including 2265 cycles from 1805 patients were obtained. Live-birth success rates declined with age regardless of the freezing technique. Despite this age-induced compromise, live-births continued to occur as late as to the ages of 42 and 44 with slowly-frozen (SF) and vitrified (VF) oocytes, respectively. Estimated probabilities of live-birth for VF oocytes were higher than those for SF. Conclusions The live-birth probabilities we calculated would enable more accurate counseling and informed decision of infertile women who consider oocyte cryopreservation. Given the success probabilities, we suggest that policy-makers should consider oocyte freezing as an integral part of prevention and treatment of infertility. PMID:23706339
Fuzzy-logic detection and probability of hail exploiting short-range X-band weather radar
NASA Astrophysics Data System (ADS)
Capozzi, Vincenzo; Picciotti, Errico; Mazzarella, Vincenzo; Marzano, Frank Silvio; Budillon, Giorgio
2018-03-01
This work proposes a new method for hail precipitation detection and probability, based on single-polarization X-band radar measurements. Using a dataset consisting of reflectivity volumes, ground truth observations and atmospheric sounding data, a probability of hail index, which provides a simple estimate of the hail potential, has been trained and adapted within Naples metropolitan environment study area. The probability of hail has been calculated starting by four different hail detection methods. The first two, based on (1) reflectivity data and temperature measurements and (2) on vertically-integrated liquid density product, respectively, have been selected from the available literature. The other two techniques are based on combined criteria of the above mentioned methods: the first one (3) is based on the linear discriminant analysis, whereas the other one (4) relies on the fuzzy-logic approach. The latter is an innovative criterion based on a fuzzyfication step performed through ramp membership functions. The performances of the four methods have been tested using an independent dataset: the results highlight that the fuzzy-oriented combined method performs slightly better in terms of false alarm ratio, critical success index and area under the relative operating characteristic. An example of application of the proposed hail detection and probability products is also presented for a relevant hail event, occurred on 21 July 2014.
PARTS: Probabilistic Alignment for RNA joinT Secondary structure prediction
Harmanci, Arif Ozgun; Sharma, Gaurav; Mathews, David H.
2008-01-01
A novel method is presented for joint prediction of alignment and common secondary structures of two RNA sequences. The joint consideration of common secondary structures and alignment is accomplished by structural alignment over a search space defined by the newly introduced motif called matched helical regions. The matched helical region formulation generalizes previously employed constraints for structural alignment and thereby better accommodates the structural variability within RNA families. A probabilistic model based on pseudo free energies obtained from precomputed base pairing and alignment probabilities is utilized for scoring structural alignments. Maximum a posteriori (MAP) common secondary structures, sequence alignment and joint posterior probabilities of base pairing are obtained from the model via a dynamic programming algorithm called PARTS. The advantage of the more general structural alignment of PARTS is seen in secondary structure predictions for the RNase P family. For this family, the PARTS MAP predictions of secondary structures and alignment perform significantly better than prior methods that utilize a more restrictive structural alignment model. For the tRNA and 5S rRNA families, the richer structural alignment model of PARTS does not offer a benefit and the method therefore performs comparably with existing alternatives. For all RNA families studied, the posterior probability estimates obtained from PARTS offer an improvement over posterior probability estimates from a single sequence prediction. When considering the base pairings predicted over a threshold value of confidence, the combination of sensitivity and positive predictive value is superior for PARTS than for the single sequence prediction. PARTS source code is available for download under the GNU public license at http://rna.urmc.rochester.edu. PMID:18304945
NASA Astrophysics Data System (ADS)
Rajakaruna, Harshana; VandenByllaardt, Julie; Kydd, Jocelyn; Bailey, Sarah
2018-03-01
The International Maritime Organization (IMO) has set limits on allowable plankton concentrations in ballast water discharge to minimize aquatic invasions globally. Previous guidance on ballast water sampling and compliance decision thresholds was based on the assumption that probability distributions of plankton are Poisson when spatially homogenous, or negative binomial when heterogeneous. We propose a hierarchical probability model, which incorporates distributions at the level of particles (i.e., discrete individuals plus colonies per unit volume) and also within particles (i.e., individuals per particle) to estimate the average plankton concentration in ballast water. We examined the performance of the models using data for plankton in the size class ≥ 10 μm and < 50 μm, collected from five different depths of a ballast tank of a commercial ship in three independent surveys. We show that the data fit to the negative binomial and the hierarchical probability models equally well, with both models performing better than the Poisson model at the scale of our sampling. The hierarchical probability model, which accounts for both the individuals and the colonies in a sample, reduces the uncertainty associated with the concentration estimation, and improves the power of rejecting the decision on ship's compliance when a ship does not truly comply with the standard. We show examples of how to test ballast water compliance using the above models.