Sample records for probability-density estimation method

  1. Comparison of methods for estimating density of forest songbirds from point counts

    Treesearch

    Jennifer L. Reidy; Frank R. Thompson; J. Wesley. Bailey

    2011-01-01

    New analytical methods have been promoted for estimating the probability of detection and density of birds from count data but few studies have compared these methods using real data. We compared estimates of detection probability and density from distance and time-removal models and survey protocols based on 5- or 10-min counts and outer radii of 50 or 100 m. We...

  2. On the quantification and efficient propagation of imprecise probabilities resulting from small datasets

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaxin; Shields, Michael D.

    2018-01-01

    This paper addresses the problem of uncertainty quantification and propagation when data for characterizing probability distributions are scarce. We propose a methodology wherein the full uncertainty associated with probability model form and parameter estimation are retained and efficiently propagated. This is achieved by applying the information-theoretic multimodel inference method to identify plausible candidate probability densities and associated probabilities that each method is the best model in the Kullback-Leibler sense. The joint parameter densities for each plausible model are then estimated using Bayes' rule. We then propagate this full set of probability models by estimating an optimal importance sampling density that is representative of all plausible models, propagating this density, and reweighting the samples according to each of the candidate probability models. This is in contrast with conventional methods that try to identify a single probability model that encapsulates the full uncertainty caused by lack of data and consequently underestimate uncertainty. The result is a complete probabilistic description of both aleatory and epistemic uncertainty achieved with several orders of magnitude reduction in computational cost. It is shown how the model can be updated to adaptively accommodate added data and added candidate probability models. The method is applied for uncertainty analysis of plate buckling strength where it is demonstrated how dataset size affects the confidence (or lack thereof) we can place in statistical estimates of response when data are lacking.

  3. Habitat suitability criteria via parametric distributions: estimation, model selection and uncertainty

    USGS Publications Warehouse

    Som, Nicholas A.; Goodman, Damon H.; Perry, Russell W.; Hardy, Thomas B.

    2016-01-01

    Previous methods for constructing univariate habitat suitability criteria (HSC) curves have ranged from professional judgement to kernel-smoothed density functions or combinations thereof. We present a new method of generating HSC curves that applies probability density functions as the mathematical representation of the curves. Compared with previous approaches, benefits of our method include (1) estimation of probability density function parameters directly from raw data, (2) quantitative methods for selecting among several candidate probability density functions, and (3) concise methods for expressing estimation uncertainty in the HSC curves. We demonstrate our method with a thorough example using data collected on the depth of water used by juvenile Chinook salmon (Oncorhynchus tschawytscha) in the Klamath River of northern California and southern Oregon. All R code needed to implement our example is provided in the appendix. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  4. High throughput nonparametric probability density estimation.

    PubMed

    Farmer, Jenny; Jacobs, Donald

    2018-01-01

    In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.

  5. High throughput nonparametric probability density estimation

    PubMed Central

    Farmer, Jenny

    2018-01-01

    In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference. PMID:29750803

  6. Estimation of the four-wave mixing noise probability-density function by the multicanonical Monte Carlo method.

    PubMed

    Neokosmidis, Ioannis; Kamalakis, Thomas; Chipouras, Aristides; Sphicopoulos, Thomas

    2005-01-01

    The performance of high-powered wavelength-division multiplexed (WDM) optical networks can be severely degraded by four-wave-mixing- (FWM-) induced distortion. The multicanonical Monte Carlo method (MCMC) is used to calculate the probability-density function (PDF) of the decision variable of a receiver, limited by FWM noise. Compared with the conventional Monte Carlo method previously used to estimate this PDF, the MCMC method is much faster and can accurately estimate smaller error probabilities. The method takes into account the correlation between the components of the FWM noise, unlike the Gaussian model, which is shown not to provide accurate results.

  7. Change-in-ratio density estimator for feral pigs is less biased than closed mark-recapture estimates

    USGS Publications Warehouse

    Hanson, L.B.; Grand, J.B.; Mitchell, M.S.; Jolley, D.B.; Sparklin, B.D.; Ditchkoff, S.S.

    2008-01-01

    Closed-population capture-mark-recapture (CMR) methods can produce biased density estimates for species with low or heterogeneous detection probabilities. In an attempt to address such biases, we developed a density-estimation method based on the change in ratio (CIR) of survival between two populations where survival, calculated using an open-population CMR model, is known to differ. We used our method to estimate density for a feral pig (Sus scrofa) population on Fort Benning, Georgia, USA. To assess its validity, we compared it to an estimate of the minimum density of pigs known to be alive and two estimates based on closed-population CMR models. Comparison of the density estimates revealed that the CIR estimator produced a density estimate with low precision that was reasonable with respect to minimum known density. By contrast, density point estimates using the closed-population CMR models were less than the minimum known density, consistent with biases created by low and heterogeneous capture probabilities for species like feral pigs that may occur in low density or are difficult to capture. Our CIR density estimator may be useful for tracking broad-scale, long-term changes in species, such as large cats, for which closed CMR models are unlikely to work. ?? CSIRO 2008.

  8. The maximum entropy method of moments and Bayesian probability theory

    NASA Astrophysics Data System (ADS)

    Bretthorst, G. Larry

    2013-08-01

    The problem of density estimation occurs in many disciplines. For example, in MRI it is often necessary to classify the types of tissues in an image. To perform this classification one must first identify the characteristics of the tissues to be classified. These characteristics might be the intensity of a T1 weighted image and in MRI many other types of characteristic weightings (classifiers) may be generated. In a given tissue type there is no single intensity that characterizes the tissue, rather there is a distribution of intensities. Often this distributions can be characterized by a Gaussian, but just as often it is much more complicated. Either way, estimating the distribution of intensities is an inference problem. In the case of a Gaussian distribution, one must estimate the mean and standard deviation. However, in the Non-Gaussian case the shape of the density function itself must be inferred. Three common techniques for estimating density functions are binned histograms [1, 2], kernel density estimation [3, 4], and the maximum entropy method of moments [5, 6]. In the introduction, the maximum entropy method of moments will be reviewed. Some of its problems and conditions under which it fails will be discussed. Then in later sections, the functional form of the maximum entropy method of moments probability distribution will be incorporated into Bayesian probability theory. It will be shown that Bayesian probability theory solves all of the problems with the maximum entropy method of moments. One gets posterior probabilities for the Lagrange multipliers, and, finally, one can put error bars on the resulting estimated density function.

  9. Effects of scale of movement, detection probability, and true population density on common methods of estimating population density

    DOE PAGES

    Keiter, David A.; Davis, Amy J.; Rhodes, Olin E.; ...

    2017-08-25

    Knowledge of population density is necessary for effective management and conservation of wildlife, yet rarely are estimators compared in their robustness to effects of ecological and observational processes, which can greatly influence accuracy and precision of density estimates. For this study, we simulate biological and observational processes using empirical data to assess effects of animal scale of movement, true population density, and probability of detection on common density estimators. We also apply common data collection and analytical techniques in the field and evaluate their ability to estimate density of a globally widespread species. We find that animal scale of movementmore » had the greatest impact on accuracy of estimators, although all estimators suffered reduced performance when detection probability was low, and we provide recommendations as to when each field and analytical technique is most appropriately employed. The large influence of scale of movement on estimator accuracy emphasizes the importance of effective post-hoc calculation of area sampled or use of methods that implicitly account for spatial variation. In particular, scale of movement impacted estimators substantially, such that area covered and spacing of detectors (e.g. cameras, traps, etc.) must reflect movement characteristics of the focal species to reduce bias in estimates of movement and thus density.« less

  10. Effects of scale of movement, detection probability, and true population density on common methods of estimating population density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, David A.; Davis, Amy J.; Rhodes, Olin E.

    Knowledge of population density is necessary for effective management and conservation of wildlife, yet rarely are estimators compared in their robustness to effects of ecological and observational processes, which can greatly influence accuracy and precision of density estimates. For this study, we simulate biological and observational processes using empirical data to assess effects of animal scale of movement, true population density, and probability of detection on common density estimators. We also apply common data collection and analytical techniques in the field and evaluate their ability to estimate density of a globally widespread species. We find that animal scale of movementmore » had the greatest impact on accuracy of estimators, although all estimators suffered reduced performance when detection probability was low, and we provide recommendations as to when each field and analytical technique is most appropriately employed. The large influence of scale of movement on estimator accuracy emphasizes the importance of effective post-hoc calculation of area sampled or use of methods that implicitly account for spatial variation. In particular, scale of movement impacted estimators substantially, such that area covered and spacing of detectors (e.g. cameras, traps, etc.) must reflect movement characteristics of the focal species to reduce bias in estimates of movement and thus density.« less

  11. Cetacean population density estimation from single fixed sensors using passive acoustics.

    PubMed

    Küsel, Elizabeth T; Mellinger, David K; Thomas, Len; Marques, Tiago A; Moretti, David; Ward, Jessica

    2011-06-01

    Passive acoustic methods are increasingly being used to estimate animal population density. Most density estimation methods are based on estimates of the probability of detecting calls as functions of distance. Typically these are obtained using receivers capable of localizing calls or from studies of tagged animals. However, both approaches are expensive to implement. The approach described here uses a MonteCarlo model to estimate the probability of detecting calls from single sensors. The passive sonar equation is used to predict signal-to-noise ratios (SNRs) of received clicks, which are then combined with a detector characterization that predicts probability of detection as a function of SNR. Input distributions for source level, beam pattern, and whale depth are obtained from the literature. Acoustic propagation modeling is used to estimate transmission loss. Other inputs for density estimation are call rate, obtained from the literature, and false positive rate, obtained from manual analysis of a data sample. The method is applied to estimate density of Blainville's beaked whales over a 6-day period around a single hydrophone located in the Tongue of the Ocean, Bahamas. Results are consistent with those from previous analyses, which use additional tag data. © 2011 Acoustical Society of America

  12. Unification of field theory and maximum entropy methods for learning probability densities

    NASA Astrophysics Data System (ADS)

    Kinney, Justin B.

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  13. Unification of field theory and maximum entropy methods for learning probability densities.

    PubMed

    Kinney, Justin B

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  14. Simplified Computation for Nonparametric Windows Method of Probability Density Function Estimation.

    PubMed

    Joshi, Niranjan; Kadir, Timor; Brady, Michael

    2011-08-01

    Recently, Kadir and Brady proposed a method for estimating probability density functions (PDFs) for digital signals which they call the Nonparametric (NP) Windows method. The method involves constructing a continuous space representation of the discrete space and sampled signal by using a suitable interpolation method. NP Windows requires only a small number of observed signal samples to estimate the PDF and is completely data driven. In this short paper, we first develop analytical formulae to obtain the NP Windows PDF estimates for 1D, 2D, and 3D signals, for different interpolation methods. We then show that the original procedure to calculate the PDF estimate can be significantly simplified and made computationally more efficient by a judicious choice of the frame of reference. We have also outlined specific algorithmic details of the procedures enabling quick implementation. Our reformulation of the original concept has directly demonstrated a close link between the NP Windows method and the Kernel Density Estimator.

  15. Predicting critical transitions in dynamical systems from time series using nonstationary probability density modeling.

    PubMed

    Kwasniok, Frank

    2013-11-01

    A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.

  16. Optimizing probability of detection point estimate demonstration

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2017-04-01

    The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using point estimate method. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. Traditionally largest flaw size in the set is considered to be a conservative estimate of the flaw size with minimum 90% probability and 95% confidence. The flaw size is denoted as α90/95PE. The paper investigates relationship between range of flaw sizes in relation to α90, i.e. 90% probability flaw size, to provide a desired PPD. The range of flaw sizes is expressed as a proportion of the standard deviation of the probability density distribution. Difference between median or average of the 29 flaws and α90 is also expressed as a proportion of standard deviation of the probability density distribution. In general, it is concluded that, if probability of detection increases with flaw size, average of 29 flaw sizes would always be larger than or equal to α90 and is an acceptable measure of α90/95PE. If NDE technique has sufficient sensitivity and signal-to-noise ratio, then the 29 flaw-set can be optimized to meet requirements of minimum required PPD, maximum allowable POF, requirements on flaw size tolerance about mean flaw size and flaw size detectability requirements. The paper provides procedure for optimizing flaw sizes in the point estimate demonstration flaw-set.

  17. Estimating abundance of mountain lions from unstructured spatial sampling

    USGS Publications Warehouse

    Russell, Robin E.; Royle, J. Andrew; Desimone, Richard; Schwartz, Michael K.; Edwards, Victoria L.; Pilgrim, Kristy P.; Mckelvey, Kevin S.

    2012-01-01

    Mountain lions (Puma concolor) are often difficult to monitor because of their low capture probabilities, extensive movements, and large territories. Methods for estimating the abundance of this species are needed to assess population status, determine harvest levels, evaluate the impacts of management actions on populations, and derive conservation and management strategies. Traditional mark–recapture methods do not explicitly account for differences in individual capture probabilities due to the spatial distribution of individuals in relation to survey effort (or trap locations). However, recent advances in the analysis of capture–recapture data have produced methods estimating abundance and density of animals from spatially explicit capture–recapture data that account for heterogeneity in capture probabilities due to the spatial organization of individuals and traps. We adapt recently developed spatial capture–recapture models to estimate density and abundance of mountain lions in western Montana. Volunteers and state agency personnel collected mountain lion DNA samples in portions of the Blackfoot drainage (7,908 km2) in west-central Montana using 2 methods: snow back-tracking mountain lion tracks to collect hair samples and biopsy darting treed mountain lions to obtain tissue samples. Overall, we recorded 72 individual capture events, including captures both with and without tissue sample collection and hair samples resulting in the identification of 50 individual mountain lions (30 females, 19 males, and 1 unknown sex individual). We estimated lion densities from 8 models containing effects of distance, sex, and survey effort on detection probability. Our population density estimates ranged from a minimum of 3.7 mountain lions/100 km2 (95% Cl 2.3–5.7) under the distance only model (including only an effect of distance on detection probability) to 6.7 (95% Cl 3.1–11.0) under the full model (including effects of distance, sex, survey effort, and distance x sex on detection probability). These numbers translate to a total estimate of 293 mountain lions (95% Cl 182–451) to 529 (95% Cl 245–870) within the Blackfoot drainage. Results from the distance model are similar to previous estimates of 3.6 mountain lions/100 km2 for the study area; however, results from all other models indicated greater numbers of mountain lions. Our results indicate that unstructured spatial sampling combined with spatial capture–recapture analysis can be an effective method for estimating large carnivore densities.

  18. On the use of the noncentral chi-square density function for the distribution of helicopter spectral estimates

    NASA Technical Reports Server (NTRS)

    Garber, Donald P.

    1993-01-01

    A probability density function for the variability of ensemble averaged spectral estimates from helicopter acoustic signals in Gaussian background noise was evaluated. Numerical methods for calculating the density function and for determining confidence limits were explored. Density functions were predicted for both synthesized and experimental data and compared with observed spectral estimate variability.

  19. Optimizing Probability of Detection Point Estimate Demonstration

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2017-01-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.

  20. DCMDN: Deep Convolutional Mixture Density Network

    NASA Astrophysics Data System (ADS)

    D'Isanto, Antonio; Polsterer, Kai Lars

    2017-09-01

    Deep Convolutional Mixture Density Network (DCMDN) estimates probabilistic photometric redshift directly from multi-band imaging data by combining a version of a deep convolutional network with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) are applied as performance criteria. DCMDN is able to predict redshift PDFs independently from the type of source, e.g. galaxies, quasars or stars and renders pre-classification of objects and feature extraction unnecessary; the method is extremely general and allows the solving of any kind of probabilistic regression problems based on imaging data, such as estimating metallicity or star formation rate in galaxies.

  1. Integrating resource selection information with spatial capture--recapture

    USGS Publications Warehouse

    Royle, J. Andrew; Chandler, Richard B.; Sun, Catherine C.; Fuller, Angela K.

    2013-01-01

    4. Finally, we find that SCR models using standard symmetric and stationary encounter probability models may not fully explain variation in encounter probability due to space usage, and therefore produce biased estimates of density when animal space usage is related to resource selection. Consequently, it is important that space usage be taken into consideration, if possible, in studies focused on estimating density using capture–recapture methods.

  2. Effect of Non-speckle Echo Signals on Tissue Characteristics for Liver Fibrosis using Probability Density Function of Ultrasonic B-mode image

    NASA Astrophysics Data System (ADS)

    Mori, Shohei; Hirata, Shinnosuke; Yamaguchi, Tadashi; Hachiya, Hiroyuki

    To develop a quantitative diagnostic method for liver fibrosis using an ultrasound B-mode image, a probability imaging method of tissue characteristics based on a multi-Rayleigh model, which expresses a probability density function of echo signals from liver fibrosis, has been proposed. In this paper, an effect of non-speckle echo signals on tissue characteristics estimated from the multi-Rayleigh model was evaluated. Non-speckle signals were determined and removed using the modeling error of the multi-Rayleigh model. The correct tissue characteristics of fibrotic tissue could be estimated with the removal of non-speckle signals.

  3. Spatial capture-recapture models for jointly estimating population density and landscape connectivity

    USGS Publications Warehouse

    Royle, J. Andrew; Chandler, Richard B.; Gazenski, Kimberly D.; Graves, Tabitha A.

    2013-01-01

    Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture–recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on “ecological distance,” i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture–recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture–recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.

  4. Spatial capture--recapture models for jointly estimating population density and landscape connectivity.

    PubMed

    Royle, J Andrew; Chandler, Richard B; Gazenski, Kimberly D; Graves, Tabitha A

    2013-02-01

    Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture--recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on "ecological distance," i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture-recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture-recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.

  5. A Balanced Approach to Adaptive Probability Density Estimation.

    PubMed

    Kovacs, Julio A; Helmick, Cailee; Wriggers, Willy

    2017-01-01

    Our development of a Fast (Mutual) Information Matching (FIM) of molecular dynamics time series data led us to the general problem of how to accurately estimate the probability density function of a random variable, especially in cases of very uneven samples. Here, we propose a novel Balanced Adaptive Density Estimation (BADE) method that effectively optimizes the amount of smoothing at each point. To do this, BADE relies on an efficient nearest-neighbor search which results in good scaling for large data sizes. Our tests on simulated data show that BADE exhibits equal or better accuracy than existing methods, and visual tests on univariate and bivariate experimental data show that the results are also aesthetically pleasing. This is due in part to the use of a visual criterion for setting the smoothing level of the density estimate. Our results suggest that BADE offers an attractive new take on the fundamental density estimation problem in statistics. We have applied it on molecular dynamics simulations of membrane pore formation. We also expect BADE to be generally useful for low-dimensional applications in other statistical application domains such as bioinformatics, signal processing and econometrics.

  6. Robust Estimation of Electron Density From Anatomic Magnetic Resonance Imaging of the Brain Using a Unifying Multi-Atlas Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Shangjie; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California; Hara, Wendy

    Purpose: To develop a reliable method to estimate electron density based on anatomic magnetic resonance imaging (MRI) of the brain. Methods and Materials: We proposed a unifying multi-atlas approach for electron density estimation based on standard T1- and T2-weighted MRI. First, a composite atlas was constructed through a voxelwise matching process using multiple atlases, with the goal of mitigating effects of inherent anatomic variations between patients. Next we computed for each voxel 2 kinds of conditional probabilities: (1) electron density given its image intensity on T1- and T2-weighted MR images; and (2) electron density given its spatial location in a referencemore » anatomy, obtained by deformable image registration. These were combined into a unifying posterior probability density function using the Bayesian formalism, which provided the optimal estimates for electron density. We evaluated the method on 10 patients using leave-one-patient-out cross-validation. Receiver operating characteristic analyses for detecting different tissue types were performed. Results: The proposed method significantly reduced the errors in electron density estimation, with a mean absolute Hounsfield unit error of 119, compared with 140 and 144 (P<.0001) using conventional T1-weighted intensity and geometry-based approaches, respectively. For detection of bony anatomy, the proposed method achieved an 89% area under the curve, 86% sensitivity, 88% specificity, and 90% accuracy, which improved upon intensity and geometry-based approaches (area under the curve: 79% and 80%, respectively). Conclusion: The proposed multi-atlas approach provides robust electron density estimation and bone detection based on anatomic MRI. If validated on a larger population, our work could enable the use of MRI as a primary modality for radiation treatment planning.« less

  7. SU-G-JeP2-02: A Unifying Multi-Atlas Approach to Electron Density Mapping Using Multi-Parametric MRI for Radiation Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, S; Tianjin University, Tianjin; Hara, W

    Purpose: MRI has a number of advantages over CT as a primary modality for radiation treatment planning (RTP). However, one key bottleneck problem still remains, which is the lack of electron density information in MRI. In the work, a reliable method to map electron density is developed by leveraging the differential contrast of multi-parametric MRI. Methods: We propose a probabilistic Bayesian approach for electron density mapping based on T1 and T2-weighted MRI, using multiple patients as atlases. For each voxel, we compute two conditional probabilities: (1) electron density given its image intensity on T1 and T2-weighted MR images, and (2)more » electron density given its geometric location in a reference anatomy. The two sources of information (image intensity and spatial location) are combined into a unifying posterior probability density function using the Bayesian formalism. The mean value of the posterior probability density function provides the estimated electron density. Results: We evaluated the method on 10 head and neck patients and performed leave-one-out cross validation (9 patients as atlases and remaining 1 as test). The proposed method significantly reduced the errors in electron density estimation, with a mean absolute HU error of 138, compared with 193 for the T1-weighted intensity approach and 261 without density correction. For bone detection (HU>200), the proposed method had an accuracy of 84% and a sensitivity of 73% at specificity of 90% (AUC = 87%). In comparison, the AUC for bone detection is 73% and 50% using the intensity approach and without density correction, respectively. Conclusion: The proposed unifying method provides accurate electron density estimation and bone detection based on multi-parametric MRI of the head with highly heterogeneous anatomy. This could allow for accurate dose calculation and reference image generation for patient setup in MRI-based radiation treatment planning.« less

  8. Electrofishing capture probability of smallmouth bass in streams

    USGS Publications Warehouse

    Dauwalter, D.C.; Fisher, W.L.

    2007-01-01

    Abundance estimation is an integral part of understanding the ecology and advancing the management of fish populations and communities. Mark-recapture and removal methods are commonly used to estimate the abundance of stream fishes. Alternatively, abundance can be estimated by dividing the number of individuals sampled by the probability of capture. We conducted a mark-recapture study and used multiple repeated-measures logistic regression to determine the influence of fish size, sampling procedures, and stream habitat variables on the cumulative capture probability for smallmouth bass Micropterus dolomieu in two eastern Oklahoma streams. The predicted capture probability was used to adjust the number of individuals sampled to obtain abundance estimates. The observed capture probabilities were higher for larger fish and decreased with successive electrofishing passes for larger fish only. Model selection suggested that the number of electrofishing passes, fish length, and mean thalweg depth affected capture probabilities the most; there was little evidence for any effect of electrofishing power density and woody debris density on capture probability. Leave-one-out cross validation showed that the cumulative capture probability model predicts smallmouth abundance accurately. ?? Copyright by the American Fisheries Society 2007.

  9. A method to deconvolve stellar rotational velocities II. The probability distribution function via Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Christen, Alejandra; Escarate, Pedro; Curé, Michel; Rial, Diego F.; Cassetti, Julia

    2016-10-01

    Aims: Knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. Because we measure the projected rotational speed v sin I, we need to solve an ill-posed problem given by a Fredholm integral of the first kind to recover the "true" rotational velocity distribution. Methods: After discretization of the Fredholm integral we apply the Tikhonov regularization method to obtain directly the probability distribution function for stellar rotational velocities. We propose a simple and straightforward procedure to determine the Tikhonov parameter. We applied Monte Carlo simulations to prove that the Tikhonov method is a consistent estimator and asymptotically unbiased. Results: This method is applied to a sample of cluster stars. We obtain confidence intervals using a bootstrap method. Our results are in close agreement with those obtained using the Lucy method for recovering the probability density distribution of rotational velocities. Furthermore, Lucy estimation lies inside our confidence interval. Conclusions: Tikhonov regularization is a highly robust method that deconvolves the rotational velocity probability density function from a sample of v sin I data directly without the need for any convergence criteria.

  10. A Continuous Method for Gene Flow

    PubMed Central

    Palczewski, Michal; Beerli, Peter

    2013-01-01

    Most modern population genetics inference methods are based on the coalescence framework. Methods that allow estimating parameters of structured populations commonly insert migration events into the genealogies. For these methods the calculation of the coalescence probability density of a genealogy requires a product over all time periods between events. Data sets that contain populations with high rates of gene flow among them require an enormous number of calculations. A new method, transition probability-structured coalescence (TPSC), replaces the discrete migration events with probability statements. Because the speed of calculation is independent of the amount of gene flow, this method allows calculating the coalescence densities efficiently. The current implementation of TPSC uses an approximation simplifying the interaction among lineages. Simulations and coverage comparisons of TPSC vs. MIGRATE show that TPSC allows estimation of high migration rates more precisely, but because of the approximation the estimation of low migration rates is biased. The implementation of TPSC into programs that calculate quantities on phylogenetic tree structures is straightforward, so the TPSC approach will facilitate more general inferences in many computer programs. PMID:23666937

  11. Photometric redshift estimation via deep learning. Generalized and pre-classification-less, image based, fully probabilistic redshifts

    NASA Astrophysics Data System (ADS)

    D'Isanto, A.; Polsterer, K. L.

    2018-01-01

    Context. The need to analyze the available large synoptic multi-band surveys drives the development of new data-analysis methods. Photometric redshift estimation is one field of application where such new methods improved the results, substantially. Up to now, the vast majority of applied redshift estimation methods have utilized photometric features. Aims: We aim to develop a method to derive probabilistic photometric redshift directly from multi-band imaging data, rendering pre-classification of objects and feature extraction obsolete. Methods: A modified version of a deep convolutional network was combined with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) were applied as performance criteria. We have adopted a feature based random forest and a plain mixture density network to compare performances on experiments with data from SDSS (DR9). Results: We show that the proposed method is able to predict redshift PDFs independently from the type of source, for example galaxies, quasars or stars. Thereby the prediction performance is better than both presented reference methods and is comparable to results from the literature. Conclusions: The presented method is extremely general and allows us to solve of any kind of probabilistic regression problems based on imaging data, for example estimating metallicity or star formation rate of galaxies. This kind of methodology is tremendously important for the next generation of surveys.

  12. Multivariate Density Estimation and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Scott, D. W.

    1983-01-01

    Current efforts to develop methods and computer algorithms to effectively represent multivariate data commonly encountered in remote sensing applications are described. While this may involve scatter diagrams, multivariate representations of nonparametric probability density estimates are emphasized. The density function provides a useful graphical tool for looking at data and a useful theoretical tool for classification. This approach is called a thunderstorm data analysis.

  13. Nonparametric Density Estimation Based on Self-Organizing Incremental Neural Network for Large Noisy Data.

    PubMed

    Nakamura, Yoshihiro; Hasegawa, Osamu

    2017-01-01

    With the ongoing development and expansion of communication networks and sensors, massive amounts of data are continuously generated in real time from real environments. Beforehand, prediction of a distribution underlying such data is difficult; furthermore, the data include substantial amounts of noise. These factors make it difficult to estimate probability densities. To handle these issues and massive amounts of data, we propose a nonparametric density estimator that rapidly learns data online and has high robustness. Our approach is an extension of both kernel density estimation (KDE) and a self-organizing incremental neural network (SOINN); therefore, we call our approach KDESOINN. An SOINN provides a clustering method that learns about the given data as networks of prototype of data; more specifically, an SOINN can learn the distribution underlying the given data. Using this information, KDESOINN estimates the probability density function. The results of our experiments show that KDESOINN outperforms or achieves performance comparable to the current state-of-the-art approaches in terms of robustness, learning time, and accuracy.

  14. Robust location and spread measures for nonparametric probability density function estimation.

    PubMed

    López-Rubio, Ezequiel

    2009-10-01

    Robustness against outliers is a desirable property of any unsupervised learning scheme. In particular, probability density estimators benefit from incorporating this feature. A possible strategy to achieve this goal is to substitute the sample mean and the sample covariance matrix by more robust location and spread estimators. Here we use the L1-median to develop a nonparametric probability density function (PDF) estimator. We prove its most relevant properties, and we show its performance in density estimation and classification applications.

  15. A tool for the estimation of the distribution of landslide area in R

    NASA Astrophysics Data System (ADS)

    Rossi, M.; Cardinali, M.; Fiorucci, F.; Marchesini, I.; Mondini, A. C.; Santangelo, M.; Ghosh, S.; Riguer, D. E. L.; Lahousse, T.; Chang, K. T.; Guzzetti, F.

    2012-04-01

    We have developed a tool in R (the free software environment for statistical computing, http://www.r-project.org/) to estimate the probability density and the frequency density of landslide area. The tool implements parametric and non-parametric approaches to the estimation of the probability density and the frequency density of landslide area, including: (i) Histogram Density Estimation (HDE), (ii) Kernel Density Estimation (KDE), and (iii) Maximum Likelihood Estimation (MLE). The tool is available as a standard Open Geospatial Consortium (OGC) Web Processing Service (WPS), and is accessible through the web using different GIS software clients. We tested the tool to compare Double Pareto and Inverse Gamma models for the probability density of landslide area in different geological, morphological and climatological settings, and to compare landslides shown in inventory maps prepared using different mapping techniques, including (i) field mapping, (ii) visual interpretation of monoscopic and stereoscopic aerial photographs, (iii) visual interpretation of monoscopic and stereoscopic VHR satellite images and (iv) semi-automatic detection and mapping from VHR satellite images. Results show that both models are applicable in different geomorphological settings. In most cases the two models provided very similar results. Non-parametric estimation methods (i.e., HDE and KDE) provided reasonable results for all the tested landslide datasets. For some of the datasets, MLE failed to provide a result, for convergence problems. The two tested models (Double Pareto and Inverse Gamma) resulted in very similar results for large and very large datasets (> 150 samples). Differences in the modeling results were observed for small datasets affected by systematic biases. A distinct rollover was observed in all analyzed landslide datasets, except for a few datasets obtained from landslide inventories prepared through field mapping or by semi-automatic mapping from VHR satellite imagery. The tool can also be used to evaluate the probability density and the frequency density of landslide volume.

  16. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis

    USGS Publications Warehouse

    Wilcox, Taylor M; Mckelvey, Kevin S.; Young, Michael K.; Sepulveda, Adam; Shepard, Bradley B.; Jane, Stephen F; Whiteley, Andrew R.; Lowe, Winsor H.; Schwartz, Michael K.

    2016-01-01

    Environmental DNA sampling (eDNA) has emerged as a powerful tool for detecting aquatic animals. Previous research suggests that eDNA methods are substantially more sensitive than traditional sampling. However, the factors influencing eDNA detection and the resulting sampling costs are still not well understood. Here we use multiple experiments to derive independent estimates of eDNA production rates and downstream persistence from brook trout (Salvelinus fontinalis) in streams. We use these estimates to parameterize models comparing the false negative detection rates of eDNA sampling and traditional backpack electrofishing. We find that using the protocols in this study eDNA had reasonable detection probabilities at extremely low animal densities (e.g., probability of detection 0.18 at densities of one fish per stream kilometer) and very high detection probabilities at population-level densities (e.g., probability of detection > 0.99 at densities of ≥ 3 fish per 100 m). This is substantially more sensitive than traditional electrofishing for determining the presence of brook trout and may translate into important cost savings when animals are rare. Our findings are consistent with a growing body of literature showing that eDNA sampling is a powerful tool for the detection of aquatic species, particularly those that are rare and difficult to sample using traditional methods.

  17. Statistical properties of a filtered Poisson process with additive random noise: distributions, correlations and moment estimation

    NASA Astrophysics Data System (ADS)

    Theodorsen, A.; E Garcia, O.; Rypdal, M.

    2017-05-01

    Filtered Poisson processes are often used as reference models for intermittent fluctuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of model parameter estimation and to identify methods for distinguishing the noise types. It is shown that the probability density function and the three lowest order moments provide accurate estimations of the model parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of identifying the noise type. The number of times the signal crosses a prescribed threshold level in the positive direction also promises to be able to differentiate the noise type.

  18. Maximum likelihood estimation for predicting the probability of obtaining variable shortleaf pine regeneration densities

    Treesearch

    Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin

    2003-01-01

    A logistic equation is the basis for a model that predicts the probability of obtaining regeneration at specified densities. The density of regeneration (trees/ha) for which an estimate of probability is desired can be specified by means of independent variables in the model. When estimating parameters, the dependent variable is set to 1 if the regeneration density (...

  19. A fast and objective multidimensional kernel density estimation method: fastKDE

    DOE PAGES

    O'Brien, Travis A.; Kashinath, Karthik; Cavanaugh, Nicholas R.; ...

    2016-03-07

    Numerous facets of scientific research implicitly or explicitly call for the estimation of probability densities. Histograms and kernel density estimates (KDEs) are two commonly used techniques for estimating such information, with the KDE generally providing a higher fidelity representation of the probability density function (PDF). Both methods require specification of either a bin width or a kernel bandwidth. While techniques exist for choosing the kernel bandwidth optimally and objectively, they are computationally intensive, since they require repeated calculation of the KDE. A solution for objectively and optimally choosing both the kernel shape and width has recently been developed by Bernacchiamore » and Pigolotti (2011). While this solution theoretically applies to multidimensional KDEs, it has not been clear how to practically do so. A method for practically extending the Bernacchia-Pigolotti KDE to multidimensions is introduced. This multidimensional extension is combined with a recently-developed computational improvement to their method that makes it computationally efficient: a 2D KDE on 10 5 samples only takes 1 s on a modern workstation. This fast and objective KDE method, called the fastKDE method, retains the excellent statistical convergence properties that have been demonstrated for univariate samples. The fastKDE method exhibits statistical accuracy that is comparable to state-of-the-science KDE methods publicly available in R, and it produces kernel density estimates several orders of magnitude faster. The fastKDE method does an excellent job of encoding covariance information for bivariate samples. This property allows for direct calculation of conditional PDFs with fastKDE. It is demonstrated how this capability might be leveraged for detecting non-trivial relationships between quantities in physical systems, such as transitional behavior.« less

  20. Estimation of vegetation cover at subpixel resolution using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Eagleson, Peter S.

    1986-01-01

    The present report summarizes the various approaches relevant to estimating canopy cover at subpixel resolution. The approaches are based on physical models of radiative transfer in non-homogeneous canopies and on empirical methods. The effects of vegetation shadows and topography are examined. Simple versions of the model are tested, using the Taos, New Mexico Study Area database. Emphasis has been placed on using relatively simple models requiring only one or two bands. Although most methods require some degree of ground truth, a two-band method is investigated whereby the percent cover can be estimated without ground truth by examining the limits of the data space. Future work is proposed which will incorporate additional surface parameters into the canopy cover algorithm, such as topography, leaf area, or shadows. The method involves deriving a probability density function for the percent canopy cover based on the joint probability density function of the observed radiances.

  1. Statistics of some atmospheric turbulence records relevant to aircraft response calculations

    NASA Technical Reports Server (NTRS)

    Mark, W. D.; Fischer, R. W.

    1981-01-01

    Methods for characterizing atmospheric turbulence are described. The methods illustrated include maximum likelihood estimation of the integral scale and intensity of records obeying the von Karman transverse power spectral form, constrained least-squares estimation of the parameters of a parametric representation of autocorrelation functions, estimation of the power spectra density of the instantaneous variance of a record with temporally fluctuating variance, and estimation of the probability density functions of various turbulence components. Descriptions of the computer programs used in the computations are given, and a full listing of these programs is included.

  2. Nonparametric estimation of plant density by the distance method

    USGS Publications Warehouse

    Patil, S.A.; Burnham, K.P.; Kovner, J.L.

    1979-01-01

    A relation between the plant density and the probability density function of the nearest neighbor distance (squared) from a random point is established under fairly broad conditions. Based upon this relationship, a nonparametric estimator for the plant density is developed and presented in terms of order statistics. Consistency and asymptotic normality of the estimator are discussed. An interval estimator for the density is obtained. The modifications of this estimator and its variance are given when the distribution is truncated. Simulation results are presented for regular, random and aggregated populations to illustrate the nonparametric estimator and its variance. A numerical example from field data is given. Merits and deficiencies of the estimator are discussed with regard to its robustness and variance.

  3. New method for estimating low-earth-orbit collision probabilities

    NASA Technical Reports Server (NTRS)

    Vedder, John D.; Tabor, Jill L.

    1991-01-01

    An unconventional but general method is described for estimating the probability of collision between an earth-orbiting spacecraft and orbital debris. This method uses a Monte Caralo simulation of the orbital motion of the target spacecraft and each discrete debris object to generate an empirical set of distances, each distance representing the separation between the spacecraft and the nearest debris object at random times. Using concepts from the asymptotic theory of extreme order statistics, an analytical density function is fitted to this set of minimum distances. From this function, it is possible to generate realistic collision estimates for the spacecraft.

  4. Analytical Plug-In Method for Kernel Density Estimator Applied to Genetic Neutrality Study

    NASA Astrophysics Data System (ADS)

    Troudi, Molka; Alimi, Adel M.; Saoudi, Samir

    2008-12-01

    The plug-in method enables optimization of the bandwidth of the kernel density estimator in order to estimate probability density functions (pdfs). Here, a faster procedure than that of the common plug-in method is proposed. The mean integrated square error (MISE) depends directly upon [InlineEquation not available: see fulltext.] which is linked to the second-order derivative of the pdf. As we intend to introduce an analytical approximation of [InlineEquation not available: see fulltext.], the pdf is estimated only once, at the end of iterations. These two kinds of algorithm are tested on different random variables having distributions known for their difficult estimation. Finally, they are applied to genetic data in order to provide a better characterisation in the mean of neutrality of Tunisian Berber populations.

  5. A population-based tissue probability map-driven level set method for fully automated mammographic density estimations.

    PubMed

    Kim, Youngwoo; Hong, Byung Woo; Kim, Seung Ja; Kim, Jong Hyo

    2014-07-01

    A major challenge when distinguishing glandular tissues on mammograms, especially for area-based estimations, lies in determining a boundary on a hazy transition zone from adipose to glandular tissues. This stems from the nature of mammography, which is a projection of superimposed tissues consisting of different structures. In this paper, the authors present a novel segmentation scheme which incorporates the learned prior knowledge of experts into a level set framework for fully automated mammographic density estimations. The authors modeled the learned knowledge as a population-based tissue probability map (PTPM) that was designed to capture the classification of experts' visual systems. The PTPM was constructed using an image database of a selected population consisting of 297 cases. Three mammogram experts extracted regions for dense and fatty tissues on digital mammograms, which was an independent subset used to create a tissue probability map for each ROI based on its local statistics. This tissue class probability was taken as a prior in the Bayesian formulation and was incorporated into a level set framework as an additional term to control the evolution and followed the energy surface designed to reflect experts' knowledge as well as the regional statistics inside and outside of the evolving contour. A subset of 100 digital mammograms, which was not used in constructing the PTPM, was used to validate the performance. The energy was minimized when the initial contour reached the boundary of the dense and fatty tissues, as defined by experts. The correlation coefficient between mammographic density measurements made by experts and measurements by the proposed method was 0.93, while that with the conventional level set was 0.47. The proposed method showed a marked improvement over the conventional level set method in terms of accuracy and reliability. This result suggests that the proposed method successfully incorporated the learned knowledge of the experts' visual systems and has potential to be used as an automated and quantitative tool for estimations of mammographic breast density levels.

  6. Geotechnical parameter spatial distribution stochastic analysis based on multi-precision information assimilation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Rubin, Y.

    2014-12-01

    Spatial distribution of important geotechnical parameter named compression modulus Es contributes considerably to the understanding of the underlying geological processes and the adequate assessment of the Es mechanics effects for differential settlement of large continuous structure foundation. These analyses should be derived using an assimilating approach that combines in-situ static cone penetration test (CPT) with borehole experiments. To achieve such a task, the Es distribution of stratum of silty clay in region A of China Expo Center (Shanghai) is studied using the Bayesian-maximum entropy method. This method integrates rigorously and efficiently multi-precision of different geotechnical investigations and sources of uncertainty. Single CPT samplings were modeled as a rational probability density curve by maximum entropy theory. Spatial prior multivariate probability density function (PDF) and likelihood PDF of the CPT positions were built by borehole experiments and the potential value of the prediction point, then, preceding numerical integration on the CPT probability density curves, the posterior probability density curve of the prediction point would be calculated by the Bayesian reverse interpolation framework. The results were compared between Gaussian Sequential Stochastic Simulation and Bayesian methods. The differences were also discussed between single CPT samplings of normal distribution and simulated probability density curve based on maximum entropy theory. It is shown that the study of Es spatial distributions can be improved by properly incorporating CPT sampling variation into interpolation process, whereas more informative estimations are generated by considering CPT Uncertainty for the estimation points. Calculation illustrates the significance of stochastic Es characterization in a stratum, and identifies limitations associated with inadequate geostatistical interpolation techniques. This characterization results will provide a multi-precision information assimilation method of other geotechnical parameters.

  7. Toward accurate and precise estimates of lion density.

    PubMed

    Elliot, Nicholas B; Gopalaswamy, Arjun M

    2017-08-01

    Reliable estimates of animal density are fundamental to understanding ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation because wildlife authorities rely on estimates to make decisions. However, it is notoriously difficult to accurately estimate density for wide-ranging carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores, such as lions (Panthera leo). Although abundance indices for lions may produce poor inferences, they continue to be used to estimate density and inform management and policy. We used sighting data from a 3-month survey and adapted a Bayesian spatially explicit capture-recapture (SECR) model to estimate spatial lion density in the Maasai Mara National Reserve and surrounding conservancies in Kenya. Our unstructured spatial capture-recapture sampling design incorporated search effort to explicitly estimate detection probability and density on a fine spatial scale, making our approach robust in the context of varying detection probabilities. Overall posterior mean lion density was estimated to be 17.08 (posterior SD 1.310) lions >1 year old/100 km 2 , and the sex ratio was estimated at 2.2 females to 1 male. Our modeling framework and narrow posterior SD demonstrate that SECR methods can produce statistically rigorous and precise estimates of population parameters, and we argue that they should be favored over less reliable abundance indices. Furthermore, our approach is flexible enough to incorporate different data types, which enables robust population estimates over relatively short survey periods in a variety of systems. Trend analyses are essential to guide conservation decisions but are frequently based on surveys of differing reliability. We therefore call for a unified framework to assess lion numbers in key populations to improve management and policy decisions. © 2016 Society for Conservation Biology.

  8. Three statistical models for estimating length of stay.

    PubMed Central

    Selvin, S

    1977-01-01

    The probability density functions implied by three methods of collecting data on the length of stay in an institution are derived. The expected values associated with these density functions are used to calculate unbiased estimates of the expected length of stay. Two of the methods require an assumption about the form of the underlying distribution of length of stay; the third method does not. The three methods are illustrated with hypothetical data exhibiting the Poisson distribution, and the third (distribution-independent) method is used to estimate the length of stay in a skilled nursing facility and in an intermediate care facility for patients enrolled in California's MediCal program. PMID:914532

  9. Three statistical models for estimating length of stay.

    PubMed

    Selvin, S

    1977-01-01

    The probability density functions implied by three methods of collecting data on the length of stay in an institution are derived. The expected values associated with these density functions are used to calculate unbiased estimates of the expected length of stay. Two of the methods require an assumption about the form of the underlying distribution of length of stay; the third method does not. The three methods are illustrated with hypothetical data exhibiting the Poisson distribution, and the third (distribution-independent) method is used to estimate the length of stay in a skilled nursing facility and in an intermediate care facility for patients enrolled in California's MediCal program.

  10. Estimation and classification by sigmoids based on mutual information

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1994-01-01

    An estimate of the probability density function of a random vector is obtained by maximizing the mutual information between the input and the output of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's s method, applied to an estimated density, yields a recursive maximum likelihood estimator, consisting of a single internal layer of sigmoids, for a random variable or a random sequence. Applications to the diamond classification and to the prediction of a sun-spot process are demonstrated.

  11. Biological dose estimation for charged-particle therapy using an improved PHITS code coupled with a microdosimetric kinetic model.

    PubMed

    Sato, Tatsuhiko; Kase, Yuki; Watanabe, Ritsuko; Niita, Koji; Sihver, Lembit

    2009-01-01

    Microdosimetric quantities such as lineal energy, y, are better indexes for expressing the RBE of HZE particles in comparison to LET. However, the use of microdosimetric quantities in computational dosimetry is severely limited because of the difficulty in calculating their probability densities in macroscopic matter. We therefore improved the particle transport simulation code PHITS, providing it with the capability of estimating the microdosimetric probability densities in a macroscopic framework by incorporating a mathematical function that can instantaneously calculate the probability densities around the trajectory of HZE particles with a precision equivalent to that of a microscopic track-structure simulation. A new method for estimating biological dose, the product of physical dose and RBE, from charged-particle therapy was established using the improved PHITS coupled with a microdosimetric kinetic model. The accuracy of the biological dose estimated by this method was tested by comparing the calculated physical doses and RBE values with the corresponding data measured in a slab phantom irradiated with several kinds of HZE particles. The simulation technique established in this study will help to optimize the treatment planning of charged-particle therapy, thereby maximizing the therapeutic effect on tumors while minimizing unintended harmful effects on surrounding normal tissues.

  12. Structural Reliability Using Probability Density Estimation Methods Within NESSUS

    NASA Technical Reports Server (NTRS)

    Chamis, Chrisos C. (Technical Monitor); Godines, Cody Ric

    2003-01-01

    A reliability analysis studies a mathematical model of a physical system taking into account uncertainties of design variables and common results are estimations of a response density, which also implies estimations of its parameters. Some common density parameters include the mean value, the standard deviation, and specific percentile(s) of the response, which are measures of central tendency, variation, and probability regions, respectively. Reliability analyses are important since the results can lead to different designs by calculating the probability of observing safe responses in each of the proposed designs. All of this is done at the expense of added computational time as compared to a single deterministic analysis which will result in one value of the response out of many that make up the density of the response. Sampling methods, such as monte carlo (MC) and latin hypercube sampling (LHS), can be used to perform reliability analyses and can compute nonlinear response density parameters even if the response is dependent on many random variables. Hence, both methods are very robust; however, they are computationally expensive to use in the estimation of the response density parameters. Both methods are 2 of 13 stochastic methods that are contained within the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) program. NESSUS is a probabilistic finite element analysis (FEA) program that was developed through funding from NASA Glenn Research Center (GRC). It has the additional capability of being linked to other analysis programs; therefore, probabilistic fluid dynamics, fracture mechanics, and heat transfer are only a few of what is possible with this software. The LHS method is the newest addition to the stochastic methods within NESSUS. Part of this work was to enhance NESSUS with the LHS method. The new LHS module is complete, has been successfully integrated with NESSUS, and been used to study four different test cases that have been proposed by the Society of Automotive Engineers (SAE). The test cases compare different probabilistic methods within NESSUS because it is important that a user can have confidence that estimates of stochastic parameters of a response will be within an acceptable error limit. For each response, the mean, standard deviation, and 0.99 percentile, are repeatedly estimated which allows confidence statements to be made for each parameter estimated, and for each method. Thus, the ability of several stochastic methods to efficiently and accurately estimate density parameters is compared using four valid test cases. While all of the reliability methods used performed quite well, for the new LHS module within NESSUS it was found that it had a lower estimation error than MC when they were used to estimate the mean, standard deviation, and 0.99 percentile of the four different stochastic responses. Also, LHS required a smaller amount of calculations to obtain low error answers with a high amount of confidence than MC. It can therefore be stated that NESSUS is an important reliability tool that has a variety of sound probabilistic methods a user can employ and the newest LHS module is a valuable new enhancement of the program.

  13. Investigation of estimators of probability density functions

    NASA Technical Reports Server (NTRS)

    Speed, F. M.

    1972-01-01

    Four research projects are summarized which include: (1) the generation of random numbers on the IBM 360/44, (2) statistical tests used to check out random number generators, (3) Specht density estimators, and (4) use of estimators of probability density functions in analyzing large amounts of data.

  14. SU-F-T-450: The Investigation of Radiotherapy Quality Assurance and Automatic Treatment Planning Based On the Kernel Density Estimation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, J; Fan, J; Hu, W

    Purpose: To develop a fast automatic algorithm based on the two dimensional kernel density estimation (2D KDE) to predict the dose-volume histogram (DVH) which can be employed for the investigation of radiotherapy quality assurance and automatic treatment planning. Methods: We propose a machine learning method that uses previous treatment plans to predict the DVH. The key to the approach is the framing of DVH in a probabilistic setting. The training consists of estimating, from the patients in the training set, the joint probability distribution of the dose and the predictive features. The joint distribution provides an estimation of the conditionalmore » probability of the dose given the values of the predictive features. For the new patient, the prediction consists of estimating the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimation of the DVH. The 2D KDE is implemented to predict the joint probability distribution of the training set and the distribution of the predictive features for the new patient. Two variables, including the signed minimal distance from each OAR (organs at risk) voxel to the target boundary and its opening angle with respect to the origin of voxel coordinate, are considered as the predictive features to represent the OAR-target spatial relationship. The feasibility of our method has been demonstrated with the rectum, breast and head-and-neck cancer cases by comparing the predicted DVHs with the planned ones. Results: The consistent result has been found between these two DVHs for each cancer and the average of relative point-wise differences is about 5% within the clinical acceptable extent. Conclusion: According to the result of this study, our method can be used to predict the clinical acceptable DVH and has ability to evaluate the quality and consistency of the treatment planning.« less

  15. Nonparametric entropy estimation using kernel densities.

    PubMed

    Lake, Douglas E

    2009-01-01

    The entropy of experimental data from the biological and medical sciences provides additional information over summary statistics. Calculating entropy involves estimates of probability density functions, which can be effectively accomplished using kernel density methods. Kernel density estimation has been widely studied and a univariate implementation is readily available in MATLAB. The traditional definition of Shannon entropy is part of a larger family of statistics, called Renyi entropy, which are useful in applications that require a measure of the Gaussianity of data. Of particular note is the quadratic entropy which is related to the Friedman-Tukey (FT) index, a widely used measure in the statistical community. One application where quadratic entropy is very useful is the detection of abnormal cardiac rhythms, such as atrial fibrillation (AF). Asymptotic and exact small-sample results for optimal bandwidth and kernel selection to estimate the FT index are presented and lead to improved methods for entropy estimation.

  16. Generalized Wishart Mixtures for Unsupervised Classification of PolSAR Data

    NASA Astrophysics Data System (ADS)

    Li, Lan; Chen, Erxue; Li, Zengyuan

    2013-01-01

    This paper presents an unsupervised clustering algorithm based upon the expectation maximization (EM) algorithm for finite mixture modelling, using the complex wishart probability density function (PDF) for the probabilities. The mixture model enables to consider heterogeneous thematic classes which could not be better fitted by the unimodal wishart distribution. In order to make it fast and robust to calculate, we use the recently proposed generalized gamma distribution (GΓD) for the single polarization intensity data to make the initial partition. Then we use the wishart probability density function for the corresponding sample covariance matrix to calculate the posterior class probabilities for each pixel. The posterior class probabilities are used for the prior probability estimates of each class and weights for all class parameter updates. The proposed method is evaluated and compared with the wishart H-Alpha-A classification. Preliminary results show that the proposed method has better performance.

  17. Neighbor-Dependent Ramachandran Probability Distributions of Amino Acids Developed from a Hierarchical Dirichlet Process Model

    PubMed Central

    Mitra, Rajib; Jordan, Michael I.; Dunbrack, Roland L.

    2010-01-01

    Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1) input data size and criteria for structure inclusion (resolution, R-factor, etc.); 2) filtering of suspect conformations and outliers using B-factors or other features; 3) secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included); 4) the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5) whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately) have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp. PMID:20442867

  18. A conceptual guide to detection probability for point counts and other count-based survey methods

    Treesearch

    D. Archibald McCallum

    2005-01-01

    Accurate and precise estimates of numbers of animals are vitally needed both to assess population status and to evaluate management decisions. Various methods exist for counting birds, but most of those used with territorial landbirds yield only indices, not true estimates of population size. The need for valid density estimates has spawned a number of models for...

  19. Estimation of tiger densities in India using photographic captures and recaptures

    USGS Publications Warehouse

    Karanth, U.; Nichols, J.D.

    1998-01-01

    Previously applied methods for estimating tiger (Panthera tigris) abundance using total counts based on tracks have proved unreliable. In this paper we use a field method proposed by Karanth (1995), combining camera-trap photography to identify individual tigers based on stripe patterns, with capture-recapture estimators. We developed a sampling design for camera-trapping and used the approach to estimate tiger population size and density in four representative tiger habitats in different parts of India. The field method worked well and provided data suitable for analysis using closed capture-recapture models. The results suggest the potential for applying this methodology for estimating abundances, survival rates and other population parameters in tigers and other low density, secretive animal species with distinctive coat patterns or other external markings. Estimated probabilities of photo-capturing tigers present in the study sites ranged from 0.75 - 1.00. The estimated mean tiger densities ranged from 4.1 (SE hat= 1.31) to 11.7 (SE hat= 1.93) tigers/100 km2. The results support the previous suggestions of Karanth and Sunquist (1995) that densities of tigers and other large felids may be primarily determined by prey community structure at a given site.

  20. Use of uninformative priors to initialize state estimation for dynamical systems

    NASA Astrophysics Data System (ADS)

    Worthy, Johnny L.; Holzinger, Marcus J.

    2017-10-01

    The admissible region must be expressed probabilistically in order to be used in Bayesian estimation schemes. When treated as a probability density function (PDF), a uniform admissible region can be shown to have non-uniform probability density after a transformation. An alternative approach can be used to express the admissible region probabilistically according to the Principle of Transformation Groups. This paper uses a fundamental multivariate probability transformation theorem to show that regardless of which state space an admissible region is expressed in, the probability density must remain the same under the Principle of Transformation Groups. The admissible region can be shown to be analogous to an uninformative prior with a probability density that remains constant under reparameterization. This paper introduces requirements on how these uninformative priors may be transformed and used for state estimation and the difference in results when initializing an estimation scheme via a traditional transformation versus the alternative approach.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Travis A.; Kashinath, Karthik; Cavanaugh, Nicholas R.

    Numerous facets of scientific research implicitly or explicitly call for the estimation of probability densities. Histograms and kernel density estimates (KDEs) are two commonly used techniques for estimating such information, with the KDE generally providing a higher fidelity representation of the probability density function (PDF). Both methods require specification of either a bin width or a kernel bandwidth. While techniques exist for choosing the kernel bandwidth optimally and objectively, they are computationally intensive, since they require repeated calculation of the KDE. A solution for objectively and optimally choosing both the kernel shape and width has recently been developed by Bernacchiamore » and Pigolotti (2011). While this solution theoretically applies to multidimensional KDEs, it has not been clear how to practically do so. A method for practically extending the Bernacchia-Pigolotti KDE to multidimensions is introduced. This multidimensional extension is combined with a recently-developed computational improvement to their method that makes it computationally efficient: a 2D KDE on 10 5 samples only takes 1 s on a modern workstation. This fast and objective KDE method, called the fastKDE method, retains the excellent statistical convergence properties that have been demonstrated for univariate samples. The fastKDE method exhibits statistical accuracy that is comparable to state-of-the-science KDE methods publicly available in R, and it produces kernel density estimates several orders of magnitude faster. The fastKDE method does an excellent job of encoding covariance information for bivariate samples. This property allows for direct calculation of conditional PDFs with fastKDE. It is demonstrated how this capability might be leveraged for detecting non-trivial relationships between quantities in physical systems, such as transitional behavior.« less

  2. Modeling utilization distributions in space and time

    USGS Publications Warehouse

    Keating, K.A.; Cherry, S.

    2009-01-01

    W. Van Winkle defined the utilization distribution (UD) as a probability density that gives an animal's relative frequency of occurrence in a two-dimensional (x, y) plane. We extend Van Winkle's work by redefining the UD as the relative frequency distribution of an animal's occurrence in all four dimensions of space and time. We then describe a product kernel model estimation method, devising a novel kernel from the wrapped Cauchy distribution to handle circularly distributed temporal covariates, such as day of year. Using Monte Carlo simulations of animal movements in space and time, we assess estimator performance. Although not unbiased, the product kernel method yields models highly correlated (Pearson's r - 0.975) with true probabilities of occurrence and successfully captures temporal variations in density of occurrence. In an empirical example, we estimate the expected UD in three dimensions (x, y, and t) for animals belonging to each of two distinct bighorn sheep {Ovis canadensis) social groups in Glacier National Park, Montana, USA. Results show the method can yield ecologically informative models that successfully depict temporal variations in density of occurrence for a seasonally migratory species. Some implications of this new approach to UD modeling are discussed. ?? 2009 by the Ecological Society of America.

  3. Stochastic sediment property inversion in Shallow Water 06.

    PubMed

    Michalopoulou, Zoi-Heleni

    2017-11-01

    Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.

  4. A unified framework for constructing, tuning and assessing photometric redshift density estimates in a selection bias setting

    NASA Astrophysics Data System (ADS)

    Freeman, P. E.; Izbicki, R.; Lee, A. B.

    2017-07-01

    Photometric redshift estimation is an indispensable tool of precision cosmology. One problem that plagues the use of this tool in the era of large-scale sky surveys is that the bright galaxies that are selected for spectroscopic observation do not have properties that match those of (far more numerous) dimmer galaxies; thus, ill-designed empirical methods that produce accurate and precise redshift estimates for the former generally will not produce good estimates for the latter. In this paper, we provide a principled framework for generating conditional density estimates (I.e. photometric redshift PDFs) that takes into account selection bias and the covariate shift that this bias induces. We base our approach on the assumption that the probability that astronomers label a galaxy (I.e. determine its spectroscopic redshift) depends only on its measured (photometric and perhaps other) properties x and not on its true redshift. With this assumption, we can explicitly write down risk functions that allow us to both tune and compare methods for estimating importance weights (I.e. the ratio of densities of unlabelled and labelled galaxies for different values of x) and conditional densities. We also provide a method for combining multiple conditional density estimates for the same galaxy into a single estimate with better properties. We apply our risk functions to an analysis of ≈106 galaxies, mostly observed by Sloan Digital Sky Survey, and demonstrate through multiple diagnostic tests that our method achieves good conditional density estimates for the unlabelled galaxies.

  5. Comparison of Fatigue Life Estimation Using Equivalent Linearization and Time Domain Simulation Methods

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Dhainaut, Jean-Michel

    2000-01-01

    The Monte Carlo simulation method in conjunction with the finite element large deflection modal formulation are used to estimate fatigue life of aircraft panels subjected to stationary Gaussian band-limited white-noise excitations. Ten loading cases varying from 106 dB to 160 dB OASPL with bandwidth 1024 Hz are considered. For each load case, response statistics are obtained from an ensemble of 10 response time histories. The finite element nonlinear modal procedure yields time histories, probability density functions (PDF), power spectral densities and higher statistical moments of the maximum deflection and stress/strain. The method of moments of PSD with Dirlik's approach is employed to estimate the panel fatigue life.

  6. Uncertain Photometric Redshifts with Deep Learning Methods

    NASA Astrophysics Data System (ADS)

    D'Isanto, A.

    2017-06-01

    The need for accurate photometric redshifts estimation is a topic that has fundamental importance in Astronomy, due to the necessity of efficiently obtaining redshift information without the need of spectroscopic analysis. We propose a method for determining accurate multi-modal photo-z probability density functions (PDFs) using Mixture Density Networks (MDN) and Deep Convolutional Networks (DCN). A comparison with a Random Forest (RF) is performed.

  7. Influence of item distribution pattern and abundance on efficiency of benthic core sampling

    USGS Publications Warehouse

    Behney, Adam C.; O'Shaughnessy, Ryan; Eichholz, Michael W.; Stafford, Joshua D.

    2014-01-01

    ore sampling is a commonly used method to estimate benthic item density, but little information exists about factors influencing the accuracy and time-efficiency of this method. We simulated core sampling in a Geographic Information System framework by generating points (benthic items) and polygons (core samplers) to assess how sample size (number of core samples), core sampler size (cm2), distribution of benthic items, and item density affected the bias and precision of estimates of density, the detection probability of items, and the time-costs. When items were distributed randomly versus clumped, bias decreased and precision increased with increasing sample size and increased slightly with increasing core sampler size. Bias and precision were only affected by benthic item density at very low values (500–1,000 items/m2). Detection probability (the probability of capturing ≥ 1 item in a core sample if it is available for sampling) was substantially greater when items were distributed randomly as opposed to clumped. Taking more small diameter core samples was always more time-efficient than taking fewer large diameter samples. We are unable to present a single, optimal sample size, but provide information for researchers and managers to derive optimal sample sizes dependent on their research goals and environmental conditions.

  8. Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration.

    PubMed

    Conner, Mary M; Saunders, W Carl; Bouwes, Nicolaas; Jordan, Chris

    2015-10-01

    Before-after-control-impact (BACI) designs are an effective method to evaluate natural and human-induced perturbations on ecological variables when treatment sites cannot be randomly chosen. While effect sizes of interest can be tested with frequentist methods, using Bayesian Markov chain Monte Carlo (MCMC) sampling methods, probabilities of effect sizes, such as a ≥20 % increase in density after restoration, can be directly estimated. Although BACI and Bayesian methods are used widely for assessing natural and human-induced impacts for field experiments, the application of hierarchal Bayesian modeling with MCMC sampling to BACI designs is less common. Here, we combine these approaches and extend the typical presentation of results with an easy to interpret ratio, which provides an answer to the main study question-"How much impact did a management action or natural perturbation have?" As an example of this approach, we evaluate the impact of a restoration project, which implemented beaver dam analogs, on survival and density of juvenile steelhead. Results indicated the probabilities of a ≥30 % increase were high for survival and density after the dams were installed, 0.88 and 0.99, respectively, while probabilities for a higher increase of ≥50 % were variable, 0.17 and 0.82, respectively. This approach demonstrates a useful extension of Bayesian methods that can easily be generalized to other study designs from simple (e.g., single factor ANOVA, paired t test) to more complicated block designs (e.g., crossover, split-plot). This approach is valuable for estimating the probabilities of restoration impacts or other management actions.

  9. Uncertainty quantification of voice signal production mechanical model and experimental updating

    NASA Astrophysics Data System (ADS)

    Cataldo, E.; Soize, C.; Sampaio, R.

    2013-11-01

    The aim of this paper is to analyze the uncertainty quantification in a voice production mechanical model and update the probability density function corresponding to the tension parameter using the Bayes method and experimental data. Three parameters are considered uncertain in the voice production mechanical model used: the tension parameter, the neutral glottal area and the subglottal pressure. The tension parameter of the vocal folds is mainly responsible for the changing of the fundamental frequency of a voice signal, generated by a mechanical/mathematical model for producing voiced sounds. The three uncertain parameters are modeled by random variables. The probability density function related to the tension parameter is considered uniform and the probability density functions related to the neutral glottal area and the subglottal pressure are constructed using the Maximum Entropy Principle. The output of the stochastic computational model is the random voice signal and the Monte Carlo method is used to solve the stochastic equations allowing realizations of the random voice signals to be generated. For each realization of the random voice signal, the corresponding realization of the random fundamental frequency is calculated and the prior pdf of this random fundamental frequency is then estimated. Experimental data are available for the fundamental frequency and the posterior probability density function of the random tension parameter is then estimated using the Bayes method. In addition, an application is performed considering a case with a pathology in the vocal folds. The strategy developed here is important mainly due to two things. The first one is related to the possibility of updating the probability density function of a parameter, the tension parameter of the vocal folds, which cannot be measured direct and the second one is related to the construction of the likelihood function. In general, it is predefined using the known pdf. Here, it is constructed in a new and different manner, using the own system considered.

  10. Fusion of Hard and Soft Information in Nonparametric Density Estimation

    DTIC Science & Technology

    2015-06-10

    and stochastic optimization models, in analysis of simulation output, and when instantiating probability models. We adopt a constrained maximum...particular, density estimation is needed for generation of input densities to simulation and stochastic optimization models, in analysis of simulation output...an essential step in simulation analysis and stochastic optimization is the generation of probability densities for input random variables; see for

  11. Individualized statistical learning from medical image databases: application to identification of brain lesions.

    PubMed

    Erus, Guray; Zacharaki, Evangelia I; Davatzikos, Christos

    2014-04-01

    This paper presents a method for capturing statistical variation of normal imaging phenotypes, with emphasis on brain structure. The method aims to estimate the statistical variation of a normative set of images from healthy individuals, and identify abnormalities as deviations from normality. A direct estimation of the statistical variation of the entire volumetric image is challenged by the high-dimensionality of images relative to smaller sample sizes. To overcome this limitation, we iteratively sample a large number of lower dimensional subspaces that capture image characteristics ranging from fine and localized to coarser and more global. Within each subspace, a "target-specific" feature selection strategy is applied to further reduce the dimensionality, by considering only imaging characteristics present in a test subject's images. Marginal probability density functions of selected features are estimated through PCA models, in conjunction with an "estimability" criterion that limits the dimensionality of estimated probability densities according to available sample size and underlying anatomy variation. A test sample is iteratively projected to the subspaces of these marginals as determined by PCA models, and its trajectory delineates potential abnormalities. The method is applied to segmentation of various brain lesion types, and to simulated data on which superiority of the iterative method over straight PCA is demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Conditional Density Estimation with HMM Based Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Hu, Fasheng; Liu, Zhenqiu; Jia, Chunxin; Chen, Dechang

    Conditional density estimation is very important in financial engineer, risk management, and other engineering computing problem. However, most regression models have a latent assumption that the probability density is a Gaussian distribution, which is not necessarily true in many real life applications. In this paper, we give a framework to estimate or predict the conditional density mixture dynamically. Through combining the Input-Output HMM with SVM regression together and building a SVM model in each state of the HMM, we can estimate a conditional density mixture instead of a single gaussian. With each SVM in each node, this model can be applied for not only regression but classifications as well. We applied this model to denoise the ECG data. The proposed method has the potential to apply to other time series such as stock market return predictions.

  13. Shielding and activity estimator for template-based nuclide identification methods

    DOEpatents

    Nelson, Karl Einar

    2013-04-09

    According to one embodiment, a method for estimating an activity of one or more radio-nuclides includes receiving one or more templates, the one or more templates corresponding to one or more radio-nuclides which contribute to a probable solution, receiving one or more weighting factors, each weighting factor representing a contribution of one radio-nuclide to the probable solution, computing an effective areal density for each of the one more radio-nuclides, computing an effective atomic number (Z) for each of the one more radio-nuclides, computing an effective metric for each of the one or more radio-nuclides, and computing an estimated activity for each of the one or more radio-nuclides. In other embodiments, computer program products, systems, and other methods are presented for estimating an activity of one or more radio-nuclides.

  14. Use of spatial capture-recapture modeling and DNA data to estimate densities of elusive animals

    USGS Publications Warehouse

    Kery, Marc; Gardner, Beth; Stoeckle, Tabea; Weber, Darius; Royle, J. Andrew

    2011-01-01

    Assessment of abundance, survival, recruitment rates, and density (i.e., population assessment) is especially challenging for elusive species most in need of protection (e.g., rare carnivores). Individual identification methods, such as DNA sampling, provide ways of studying such species efficiently and noninvasively. Additionally, statistical methods that correct for undetected animals and account for locations where animals are captured are available to efficiently estimate density and other demographic parameters. We collected hair samples of European wildcat (Felis silvestris) from cheek-rub lure sticks, extracted DNA from the samples, and identified each animals' genotype. To estimate the density of wildcats, we used Bayesian inference in a spatial capture-recapture model. We used WinBUGS to fit a model that accounted for differences in detection probability among individuals and seasons and between two lure arrays. We detected 21 individual wildcats (including possible hybrids) 47 times. Wildcat density was estimated at 0.29/km2 (SE 0.06), and 95% of the activity of wildcats was estimated to occur within 1.83 km from their home-range center. Lures located systematically were associated with a greater number of detections than lures placed in a cell on the basis of expert opinion. Detection probability of individual cats was greatest in late March. Our model is a generalized linear mixed model; hence, it can be easily extended, for instance, to incorporate trap- and individual-level covariates. We believe that the combined use of noninvasive sampling techniques and spatial capture-recapture models will improve population assessments, especially for rare and elusive animals.

  15. Multidimensional density shaping by sigmoids.

    PubMed

    Roth, Z; Baram, Y

    1996-01-01

    An estimate of the probability density function of a random vector is obtained by maximizing the output entropy of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's optimization method, applied to the estimated density, yields a recursive estimator for a random variable or a random sequence. A constrained connectivity structure yields a linear estimator, which is particularly suitable for "real time" prediction. A Gaussian nonlinearity yields a closed-form solution for the network's parameters, which may also be used for initializing the optimization algorithm when other nonlinearities are employed. A triangular connectivity between the neurons and the input, which is naturally suggested by the statistical setting, reduces the number of parameters. Applications to classification and forecasting problems are demonstrated.

  16. Inferences about landbird abundance from count data: recent advances and future directions

    USGS Publications Warehouse

    Nichols, J.D.; Thomas, L.; Conn, P.B.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.

    2009-01-01

    We summarize results of a November 2006 workshop dealing with recent research on the estimation of landbird abundance from count data. Our conceptual framework includes a decomposition of the probability of detecting a bird potentially exposed to sampling efforts into four separate probabilities. Primary inference methods are described and include distance sampling, multiple observers, time of detection, and repeated counts. The detection parameters estimated by these different approaches differ, leading to different interpretations of resulting estimates of density and abundance. Simultaneous use of combinations of these different inference approaches can not only lead to increased precision but also provides the ability to decompose components of the detection process. Recent efforts to test the efficacy of these different approaches using natural systems and a new bird radio test system provide sobering conclusions about the ability of observers to detect and localize birds in auditory surveys. Recent research is reported on efforts to deal with such potential sources of error as bird misclassification, measurement error, and density gradients. Methods for inference about spatial and temporal variation in avian abundance are outlined. Discussion topics include opinions about the need to estimate detection probability when drawing inference about avian abundance, methodological recommendations based on the current state of knowledge and suggestions for future research.

  17. Reply to Efford on ‘Integrating resource selection information with spatial capture-recapture’

    USGS Publications Warehouse

    Royle, Andy; Chandler, Richard; Sun, Catherine C.; Fuller, Angela K.

    2014-01-01

    3. A key point of Royle et al. (Methods in Ecology and Evolution, 2013, 4) was that active resource selection induces heterogeneity in encounter probability which, if unaccounted for, should bias estimates of population size or density. The models of Royle et al. (Methods in Ecology and Evolution, 2013, 4) and Efford (Methods in Ecology and Evolution, 2014, 000, 000) merely amount to alternative models of resource selection, and hence varying amounts of heterogeneity in encounter probability.

  18. A new estimator method for GARCH models

    NASA Astrophysics Data System (ADS)

    Onody, R. N.; Favaro, G. M.; Cazaroto, E. R.

    2007-06-01

    The GARCH (p, q) model is a very interesting stochastic process with widespread applications and a central role in empirical finance. The Markovian GARCH (1, 1) model has only 3 control parameters and a much discussed question is how to estimate them when a series of some financial asset is given. Besides the maximum likelihood estimator technique, there is another method which uses the variance, the kurtosis and the autocorrelation time to determine them. We propose here to use the standardized 6th moment. The set of parameters obtained in this way produces a very good probability density function and a much better time autocorrelation function. This is true for both studied indexes: NYSE Composite and FTSE 100. The probability of return to the origin is investigated at different time horizons for both Gaussian and Laplacian GARCH models. In spite of the fact that these models show almost identical performances with respect to the final probability density function and to the time autocorrelation function, their scaling properties are, however, very different. The Laplacian GARCH model gives a better scaling exponent for the NYSE time series, whereas the Gaussian dynamics fits better the FTSE scaling exponent.

  19. Testing the consistency of wildlife data types before combining them: the case of camera traps and telemetry.

    PubMed

    Popescu, Viorel D; Valpine, Perry; Sweitzer, Rick A

    2014-04-01

    Wildlife data gathered by different monitoring techniques are often combined to estimate animal density. However, methods to check whether different types of data provide consistent information (i.e., can information from one data type be used to predict responses in the other?) before combining them are lacking. We used generalized linear models and generalized linear mixed-effects models to relate camera trap probabilities for marked animals to independent space use from telemetry relocations using 2 years of data for fishers (Pekania pennanti) as a case study. We evaluated (1) camera trap efficacy by estimating how camera detection probabilities are related to nearby telemetry relocations and (2) whether home range utilization density estimated from telemetry data adequately predicts camera detection probabilities, which would indicate consistency of the two data types. The number of telemetry relocations within 250 and 500 m from camera traps predicted detection probability well. For the same number of relocations, females were more likely to be detected during the first year. During the second year, all fishers were more likely to be detected during the fall/winter season. Models predicting camera detection probability and photo counts solely from telemetry utilization density had the best or nearly best Akaike Information Criterion (AIC), suggesting that telemetry and camera traps provide consistent information on space use. Given the same utilization density, males were more likely to be photo-captured due to larger home ranges and higher movement rates. Although methods that combine data types (spatially explicit capture-recapture) make simple assumptions about home range shapes, it is reasonable to conclude that in our case, camera trap data do reflect space use in a manner consistent with telemetry data. However, differences between the 2 years of data suggest that camera efficacy is not fully consistent across ecological conditions and make the case for integrating other sources of space-use data.

  20. DENSITY: software for analysing capture-recapture data from passive detector arrays

    USGS Publications Warehouse

    Efford, M.G.; Dawson, D.K.; Robbins, C.S.

    2004-01-01

    A general computer-intensive method is described for fitting spatial detection functions to capture-recapture data from arrays of passive detectors such as live traps and mist nets. The method is used to estimate the population density of 10 species of breeding birds sampled by mist-netting in deciduous forest at Patuxent Research Refuge, Laurel, Maryland, U.S.A., from 1961 to 1972. Total density (9.9 ? 0.6 ha-1 mean ? SE) appeared to decline over time (slope -0.41 ? 0.15 ha-1y-1). The mean precision of annual estimates for all 10 species pooled was acceptable (CV(D) = 14%). Spatial analysis of closed-population capture-recapture data highlighted deficiencies in non-spatial methodologies. For example, effective trapping area cannot be assumed constant when detection probability is variable. Simulation may be used to evaluate alternative designs for mist net arrays where density estimation is a study goal.

  1. Challenges of DNA-based mark-recapture studies of American black bears

    USGS Publications Warehouse

    Settlage, K.E.; Van Manen, F.T.; Clark, J.D.; King, T.L.

    2008-01-01

    We explored whether genetic sampling would be feasible to provide a region-wide population estimate for American black bears (Ursus americanus) in the southern Appalachians, USA. Specifically, we determined whether adequate capture probabilities (p >0.20) and population estimates with a low coefficient of variation (CV <20%) could be achieved given typical agency budget and personnel constraints. We extracted DNA from hair collected from baited barbed-wire enclosures sampled over a 10-week period on 2 study areas: a high-density black bear population in a portion of Great Smoky Mountains National Park and a lower density population on National Forest lands in North Carolina, South Carolina, and Georgia. We identified individual bears by their unique genotypes obtained from 9 microsatellite loci. We sampled 129 and 60 different bears in the National Park and National Forest study areas, respectively, and applied closed mark–recapture models to estimate population abundance. Capture probabilities and precision of the population estimates were acceptable only for sampling scenarios for which we pooled weekly sampling periods. We detected capture heterogeneity biases, probably because of inadequate spatial coverage by the hair-trapping grid. The logistical challenges of establishing and checking a sufficiently high density of hair traps make DNA-based estimates of black bears impractical for the southern Appalachian region. Alternatives are to estimate population size for smaller areas, estimate population growth rates or survival using mark–recapture methods, or use independent marking and recapturing techniques to reduce capture heterogeneity.

  2. Moments of the phase-space density, coincidence probabilities, and entropies of a multiparticle system

    NASA Astrophysics Data System (ADS)

    Bialas, A.

    2006-04-01

    A method to estimate moments of the phase-space density from event-by-event fluctuations is reviewed and its accuracy analyzed. Relation of these measurements to the determination of the entropy of the system is discussed. This is a summary of the results obtained recently together with W.Czyz and K.Zalewski.

  3. Functional Data Analysis in NTCP Modeling: A New Method to Explore the Radiation Dose-Volume Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benadjaoud, Mohamed Amine, E-mail: mohamedamine.benadjaoud@gustaveroussy.fr; Université Paris sud, Le Kremlin-Bicêtre; Institut Gustave Roussy, Villejuif

    2014-11-01

    Purpose/Objective(s): To describe a novel method to explore radiation dose-volume effects. Functional data analysis is used to investigate the information contained in differential dose-volume histograms. The method is applied to the normal tissue complication probability modeling of rectal bleeding (RB) for patients irradiated in the prostatic bed by 3-dimensional conformal radiation therapy. Methods and Materials: Kernel density estimation was used to estimate the individual probability density functions from each of the 141 rectum differential dose-volume histograms. Functional principal component analysis was performed on the estimated probability density functions to explore the variation modes in the dose distribution. The functional principalmore » components were then tested for association with RB using logistic regression adapted to functional covariates (FLR). For comparison, 3 other normal tissue complication probability models were considered: the Lyman-Kutcher-Burman model, logistic model based on standard dosimetric parameters (LM), and logistic model based on multivariate principal component analysis (PCA). Results: The incidence rate of grade ≥2 RB was 14%. V{sub 65Gy} was the most predictive factor for the LM (P=.058). The best fit for the Lyman-Kutcher-Burman model was obtained with n=0.12, m = 0.17, and TD50 = 72.6 Gy. In PCA and FLR, the components that describe the interdependence between the relative volumes exposed at intermediate and high doses were the most correlated to the complication. The FLR parameter function leads to a better understanding of the volume effect by including the treatment specificity in the delivered mechanistic information. For RB grade ≥2, patients with advanced age are significantly at risk (odds ratio, 1.123; 95% confidence interval, 1.03-1.22), and the fits of the LM, PCA, and functional principal component analysis models are significantly improved by including this clinical factor. Conclusion: Functional data analysis provides an attractive method for flexibly estimating the dose-volume effect for normal tissues in external radiation therapy.« less

  4. On the use of Bayesian Monte-Carlo in evaluation of nuclear data

    NASA Astrophysics Data System (ADS)

    De Saint Jean, Cyrille; Archier, Pascal; Privas, Edwin; Noguere, Gilles

    2017-09-01

    As model parameters, necessary ingredients of theoretical models, are not always predicted by theory, a formal mathematical framework associated to the evaluation work is needed to obtain the best set of parameters (resonance parameters, optical models, fission barrier, average width, multigroup cross sections) with Bayesian statistical inference by comparing theory to experiment. The formal rule related to this methodology is to estimate the posterior density probability function of a set of parameters by solving an equation of the following type: pdf(posterior) ˜ pdf(prior) × a likelihood function. A fitting procedure can be seen as an estimation of the posterior density probability of a set of parameters (referred as x→?) knowing a prior information on these parameters and a likelihood which gives the probability density function of observing a data set knowing x→?. To solve this problem, two major paths could be taken: add approximations and hypothesis and obtain an equation to be solved numerically (minimum of a cost function or Generalized least Square method, referred as GLS) or use Monte-Carlo sampling of all prior distributions and estimate the final posterior distribution. Monte Carlo methods are natural solution for Bayesian inference problems. They avoid approximations (existing in traditional adjustment procedure based on chi-square minimization) and propose alternative in the choice of probability density distribution for priors and likelihoods. This paper will propose the use of what we are calling Bayesian Monte Carlo (referred as BMC in the rest of the manuscript) in the whole energy range from thermal, resonance and continuum range for all nuclear reaction models at these energies. Algorithms will be presented based on Monte-Carlo sampling and Markov chain. The objectives of BMC are to propose a reference calculation for validating the GLS calculations and approximations, to test probability density distributions effects and to provide the framework of finding global minimum if several local minimums exist. Application to resolved resonance, unresolved resonance and continuum evaluation as well as multigroup cross section data assimilation will be presented.

  5. Individualized Statistical Learning from Medical Image Databases: Application to Identification of Brain Lesions

    PubMed Central

    Erus, Guray; Zacharaki, Evangelia I.; Davatzikos, Christos

    2014-01-01

    This paper presents a method for capturing statistical variation of normal imaging phenotypes, with emphasis on brain structure. The method aims to estimate the statistical variation of a normative set of images from healthy individuals, and identify abnormalities as deviations from normality. A direct estimation of the statistical variation of the entire volumetric image is challenged by the high-dimensionality of images relative to smaller sample sizes. To overcome this limitation, we iteratively sample a large number of lower dimensional subspaces that capture image characteristics ranging from fine and localized to coarser and more global. Within each subspace, a “target-specific” feature selection strategy is applied to further reduce the dimensionality, by considering only imaging characteristics present in a test subject’s images. Marginal probability density functions of selected features are estimated through PCA models, in conjunction with an “estimability” criterion that limits the dimensionality of estimated probability densities according to available sample size and underlying anatomy variation. A test sample is iteratively projected to the subspaces of these marginals as determined by PCA models, and its trajectory delineates potential abnormalities. The method is applied to segmentation of various brain lesion types, and to simulated data on which superiority of the iterative method over straight PCA is demonstrated. PMID:24607564

  6. Estimation of density of mongooses with capture-recapture and distance sampling

    USGS Publications Warehouse

    Corn, J.L.; Conroy, M.J.

    1998-01-01

    We captured mongooses (Herpestes javanicus) in live traps arranged in trapping webs in Antigua, West Indies, and used capture-recapture and distance sampling to estimate density. Distance estimation and program DISTANCE were used to provide estimates of density from the trapping-web data. Mean density based on trapping webs was 9.5 mongooses/ha (range, 5.9-10.2/ha); estimates had coefficients of variation ranging from 29.82-31.58% (X?? = 30.46%). Mark-recapture models were used to estimate abundance, which was converted to density using estimates of effective trap area. Tests of model assumptions provided by CAPTURE indicated pronounced heterogeneity in capture probabilities and some indication of behavioral response and variation over time. Mean estimated density was 1.80 mongooses/ha (range, 1.37-2.15/ha) with estimated coefficients of variation of 4.68-11.92% (X?? = 7.46%). Estimates of density based on mark-recapture data depended heavily on assumptions about animal home ranges; variances of densities also may be underestimated, leading to unrealistically narrow confidence intervals. Estimates based on trap webs require fewer assumptions, and estimated variances may be a more realistic representation of sampling variation. Because trap webs are established easily and provide adequate data for estimation in a few sample occasions, the method should be efficient and reliable for estimating densities of mongooses.

  7. Nowcasting Cloud Fields for U.S. Air Force Special Operations

    DTIC Science & Technology

    2017-03-01

    application of Bayes’ Rule offers many advantages over Kernel Density Estimation (KDE) and other commonly used statistical post-processing methods...reflectance and probability of cloud. A statistical post-processing technique is applied using Bayesian estimation to train the system from a set of past...nowcasting, low cloud forecasting, cloud reflectance, ISR, Bayesian estimation, statistical post-processing, machine learning 15. NUMBER OF PAGES

  8. Non-Gaussian probabilistic MEG source localisation based on kernel density estimation☆

    PubMed Central

    Mohseni, Hamid R.; Kringelbach, Morten L.; Woolrich, Mark W.; Baker, Adam; Aziz, Tipu Z.; Probert-Smith, Penny

    2014-01-01

    There is strong evidence to suggest that data recorded from magnetoencephalography (MEG) follows a non-Gaussian distribution. However, existing standard methods for source localisation model the data using only second order statistics, and therefore use the inherent assumption of a Gaussian distribution. In this paper, we present a new general method for non-Gaussian source estimation of stationary signals for localising brain activity from MEG data. By providing a Bayesian formulation for MEG source localisation, we show that the source probability density function (pdf), which is not necessarily Gaussian, can be estimated using multivariate kernel density estimators. In the case of Gaussian data, the solution of the method is equivalent to that of widely used linearly constrained minimum variance (LCMV) beamformer. The method is also extended to handle data with highly correlated sources using the marginal distribution of the estimated joint distribution, which, in the case of Gaussian measurements, corresponds to the null-beamformer. The proposed non-Gaussian source localisation approach is shown to give better spatial estimates than the LCMV beamformer, both in simulations incorporating non-Gaussian signals, and in real MEG measurements of auditory and visual evoked responses, where the highly correlated sources are known to be difficult to estimate. PMID:24055702

  9. High-Density Signal Interface Electromagnetic Radiation Prediction for Electromagnetic Compatibility Evaluation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halligan, Matthew

    Radiated power calculation approaches for practical scenarios of incomplete high- density interface characterization information and incomplete incident power information are presented. The suggested approaches build upon a method that characterizes power losses through the definition of power loss constant matrices. Potential radiated power estimates include using total power loss information, partial radiated power loss information, worst case analysis, and statistical bounding analysis. A method is also proposed to calculate radiated power when incident power information is not fully known for non-periodic signals at the interface. Incident data signals are modeled from a two-state Markov chain where bit state probabilities aremore » derived. The total spectrum for windowed signals is postulated as the superposition of spectra from individual pulses in a data sequence. Statistical bounding methods are proposed as a basis for the radiated power calculation due to the statistical calculation complexity to find a radiated power probability density function.« less

  10. Association of earthquakes and faults in the San Francisco Bay area using Bayesian inference

    USGS Publications Warehouse

    Wesson, R.L.; Bakun, W.H.; Perkins, D.M.

    2003-01-01

    Bayesian inference provides a method to use seismic intensity data or instrumental locations, together with geologic and seismologic data, to make quantitative estimates of the probabilities that specific past earthquakes are associated with specific faults. Probability density functions are constructed for the location of each earthquake, and these are combined with prior probabilities through Bayes' theorem to estimate the probability that an earthquake is associated with a specific fault. Results using this method are presented here for large, preinstrumental, historical earthquakes and for recent earthquakes with instrumental locations in the San Francisco Bay region. The probabilities for individual earthquakes can be summed to construct a probabilistic frequency-magnitude relationship for a fault segment. Other applications of the technique include the estimation of the probability of background earthquakes, that is, earthquakes not associated with known or considered faults, and the estimation of the fraction of the total seismic moment associated with earthquakes less than the characteristic magnitude. Results for the San Francisco Bay region suggest that potentially damaging earthquakes with magnitudes less than the characteristic magnitudes should be expected. Comparisons of earthquake locations and the surface traces of active faults as determined from geologic data show significant disparities, indicating that a complete understanding of the relationship between earthquakes and faults remains elusive.

  11. RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection.

    PubMed

    Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S

    Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request.

  12. RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection

    PubMed Central

    Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S.

    2015-01-01

    Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request. PMID:25685112

  13. Nonparametric probability density estimation by optimization theoretic techniques

    NASA Technical Reports Server (NTRS)

    Scott, D. W.

    1976-01-01

    Two nonparametric probability density estimators are considered. The first is the kernel estimator. The problem of choosing the kernel scaling factor based solely on a random sample is addressed. An interactive mode is discussed and an algorithm proposed to choose the scaling factor automatically. The second nonparametric probability estimate uses penalty function techniques with the maximum likelihood criterion. A discrete maximum penalized likelihood estimator is proposed and is shown to be consistent in the mean square error. A numerical implementation technique for the discrete solution is discussed and examples displayed. An extensive simulation study compares the integrated mean square error of the discrete and kernel estimators. The robustness of the discrete estimator is demonstrated graphically.

  14. A pdf-Free Change Detection Test Based on Density Difference Estimation.

    PubMed

    Bu, Li; Alippi, Cesare; Zhao, Dongbin

    2018-02-01

    The ability to detect online changes in stationarity or time variance in a data stream is a hot research topic with striking implications. In this paper, we propose a novel probability density function-free change detection test, which is based on the least squares density-difference estimation method and operates online on multidimensional inputs. The test does not require any assumption about the underlying data distribution, and is able to operate immediately after having been configured by adopting a reservoir sampling mechanism. Thresholds requested to detect a change are automatically derived once a false positive rate is set by the application designer. Comprehensive experiments validate the effectiveness in detection of the proposed method both in terms of detection promptness and accuracy.

  15. Estimating detection and density of the Andean cat in the high Andes

    USGS Publications Warehouse

    Reppucci, J.; Gardner, B.; Lucherini, M.

    2011-01-01

    The Andean cat (Leopardus jacobita) is one of the most endangered, yet least known, felids. Although the Andean cat is considered at risk of extinction, rigorous quantitative population studies are lacking. Because physical observations of the Andean cat are difficult to make in the wild, we used a camera-trapping array to photo-capture individuals. The survey was conducted in northwestern Argentina at an elevation of approximately 4,200 m during October-December 2006 and April-June 2007. In each year we deployed 22 pairs of camera traps, which were strategically placed. To estimate detection probability and density we applied models for spatial capture-recapture using a Bayesian framework. Estimated densities were 0.07 and 0.12 individual/km 2 for 2006 and 2007, respectively. Mean baseline detection probability was estimated at 0.07. By comparison, densities of the Pampas cat (Leopardus colocolo), another poorly known felid that shares its habitat with the Andean cat, were estimated at 0.74-0.79 individual/km2 in the same study area for 2006 and 2007, and its detection probability was estimated at 0.02. Despite having greater detectability, the Andean cat is rarer in the study region than the Pampas cat. Properly accounting for the detection probability is important in making reliable estimates of density, a key parameter in conservation and management decisions for any species. ?? 2011 American Society of Mammalogists.

  16. Estimating detection and density of the Andean cat in the high Andes

    USGS Publications Warehouse

    Reppucci, Juan; Gardner, Beth; Lucherini, Mauro

    2011-01-01

    The Andean cat (Leopardus jacobita) is one of the most endangered, yet least known, felids. Although the Andean cat is considered at risk of extinction, rigorous quantitative population studies are lacking. Because physical observations of the Andean cat are difficult to make in the wild, we used a camera-trapping array to photo-capture individuals. The survey was conducted in northwestern Argentina at an elevation of approximately 4,200 m during October–December 2006 and April–June 2007. In each year we deployed 22 pairs of camera traps, which were strategically placed. To estimate detection probability and density we applied models for spatial capture–recapture using a Bayesian framework. Estimated densities were 0.07 and 0.12 individual/km2 for 2006 and 2007, respectively. Mean baseline detection probability was estimated at 0.07. By comparison, densities of the Pampas cat (Leopardus colocolo), another poorly known felid that shares its habitat with the Andean cat, were estimated at 0.74–0.79 individual/km2 in the same study area for 2006 and 2007, and its detection probability was estimated at 0.02. Despite having greater detectability, the Andean cat is rarer in the study region than the Pampas cat. Properly accounting for the detection probability is important in making reliable estimates of density, a key parameter in conservation and management decisions for any species.

  17. Line transect estimation of population size: the exponential case with grouped data

    USGS Publications Warehouse

    Anderson, D.R.; Burnham, K.P.; Crain, B.R.

    1979-01-01

    Gates, Marshall, and Olson (1968) investigated the line transect method of estimating grouse population densities in the case where sighting probabilities are exponential. This work is followed by a simulation study in Gates (1969). A general overview of line transect analysis is presented by Burnham and Anderson (1976). These articles all deal with the ungrouped data case. In the present article, an analysis of line transect data is formulated under the Gates framework of exponential sighting probabilities and in the context of grouped data.

  18. A Method to Estimate the Probability That Any Individual Cloud-to-Ground Lightning Stroke Was Within Any Radius of Any Point

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.; Roeder, William P.; Merceret, Francis J.

    2010-01-01

    A new technique has been developed to estimate the probability that a nearby cloud-to-ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even within the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force station.

  19. Optimal estimation for discrete time jump processes

    NASA Technical Reports Server (NTRS)

    Vaca, M. V.; Tretter, S. A.

    1977-01-01

    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are obtained. The approach is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. A general representation for optimum estimates and recursive equations for minimum mean squared error (MMSE) estimates are obtained. MMSE estimates are nonlinear functions of the observations. The problem of estimating the rate of a DTJP when the rate is a random variable with a probability density function of the form cx super K (l-x) super m and show that the MMSE estimates are linear in this case. This class of density functions explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.

  20. Optimal estimation for discrete time jump processes

    NASA Technical Reports Server (NTRS)

    Vaca, M. V.; Tretter, S. A.

    1978-01-01

    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are derived. The approach used is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. Thus a general representation is obtained for optimum estimates, and recursive equations are derived for minimum mean-squared error (MMSE) estimates. In general, MMSE estimates are nonlinear functions of the observations. The problem is considered of estimating the rate of a DTJP when the rate is a random variable with a beta probability density function and the jump amplitudes are binomially distributed. It is shown that the MMSE estimates are linear. The class of beta density functions is rather rich and explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.

  1. Estimating Isometric Tension of Finger Muscle Using Needle EMG Signals and the Twitch Contraction Model

    NASA Astrophysics Data System (ADS)

    Tachibana, Hideyuki; Suzuki, Takafumi; Mabuchi, Kunihiko

    We address an estimation method of isometric muscle tension of fingers, as fundamental research for a neural signal-based prosthesis of fingers. We utilize needle electromyogram (EMG) signals, which have approximately equivalent information to peripheral neural signals. The estimating algorithm comprised two convolution operations. The first convolution is between normal distribution and a spike array, which is detected by needle EMG signals. The convolution estimates the probability density of spike-invoking time in the muscle. In this convolution, we hypothesize that each motor unit in a muscle activates spikes independently based on a same probability density function. The second convolution is between the result of the previous convolution and isometric twitch, viz., the impulse response of the motor unit. The result of the calculation is the sum of all estimated tensions of whole muscle fibers, i.e., muscle tension. We confirmed that there is good correlation between the estimated tension of the muscle and the actual tension, with >0.9 correlation coefficients at 59%, and >0.8 at 89% of all trials.

  2. Estimating the population size and colony boundary of subterranean termites by using the density functions of directionally averaged capture probability.

    PubMed

    Su, Nan-Yao; Lee, Sang-Hee

    2008-04-01

    Marked termites were released in a linear-connected foraging arena, and the spatial heterogeneity of their capture probabilities was averaged for both directions at distance r from release point to obtain a symmetrical distribution, from which the density function of directionally averaged capture probability P(x) was derived. We hypothesized that as marked termites move into the population and given sufficient time, the directionally averaged capture probability may reach an equilibrium P(e) over the distance r and thus satisfy the equal mixing assumption of the mark-recapture protocol. The equilibrium capture probability P(e) was used to estimate the population size N. The hypothesis was tested in a 50-m extended foraging arena to simulate the distance factor of field colonies of subterranean termites. Over the 42-d test period, the density functions of directionally averaged capture probability P(x) exhibited four phases: exponential decline phase, linear decline phase, equilibrium phase, and postequilibrium phase. The equilibrium capture probability P(e), derived as the intercept of the linear regression during the equilibrium phase, correctly projected N estimates that were not significantly different from the known number of workers in the arena. Because the area beneath the probability density function is a constant (50% in this study), preequilibrium regression parameters and P(e) were used to estimate the population boundary distance 1, which is the distance between the release point and the boundary beyond which the population is absent.

  3. Red-shouldered hawk occupancy surveys in central Minnesota, USA

    USGS Publications Warehouse

    Henneman, C.; McLeod, M.A.; Andersen, D.E.

    2007-01-01

    Forest-dwelling raptors are often difficult to detect because many species occur at low density or are secretive. Broadcasting conspecific vocalizations can increase the probability of detecting forest-dwelling raptors and has been shown to be an effective method for locating raptors and assessing their relative abundance. Recent advances in statistical techniques based on presence-absence data use probabilistic arguments to derive probability of detection when it is <1 and to provide a model and likelihood-based method for estimating proportion of sites occupied. We used these maximum-likelihood models with data from red-shouldered hawk (Buteo lineatus) call-broadcast surveys conducted in central Minnesota, USA, in 1994-1995 and 2004-2005. Our objectives were to obtain estimates of occupancy and detection probability 1) over multiple sampling seasons (yr), 2) incorporating within-season time-specific detection probabilities, 3) with call type and breeding stage included as covariates in models of probability of detection, and 4) with different sampling strategies. We visited individual survey locations 2-9 times per year, and estimates of both probability of detection (range = 0.28-0.54) and site occupancy (range = 0.81-0.97) varied among years. Detection probability was affected by inclusion of a within-season time-specific covariate, call type, and breeding stage. In 2004 and 2005 we used survey results to assess the effect that number of sample locations, double sampling, and discontinued sampling had on parameter estimates. We found that estimates of probability of detection and proportion of sites occupied were similar across different sampling strategies, and we suggest ways to reduce sampling effort in a monitoring program.

  4. Three methods for estimating a range of vehicular interactions

    NASA Astrophysics Data System (ADS)

    Krbálek, Milan; Apeltauer, Jiří; Apeltauer, Tomáš; Szabová, Zuzana

    2018-02-01

    We present three different approaches how to estimate the number of preceding cars influencing a decision-making procedure of a given driver moving in saturated traffic flows. The first method is based on correlation analysis, the second one evaluates (quantitatively) deviations from the main assumption in the convolution theorem for probability, and the third one operates with advanced instruments of the theory of counting processes (statistical rigidity). We demonstrate that universally-accepted premise on short-ranged traffic interactions may not be correct. All methods introduced have revealed that minimum number of actively-followed vehicles is two. It supports an actual idea that vehicular interactions are, in fact, middle-ranged. Furthermore, consistency between the estimations used is surprisingly credible. In all cases we have found that the interaction range (the number of actively-followed vehicles) drops with traffic density. Whereas drivers moving in congested regimes with lower density (around 30 vehicles per kilometer) react on four or five neighbors, drivers moving in high-density flows respond to two predecessors only.

  5. Density estimation in wildlife surveys

    USGS Publications Warehouse

    Bart, Jonathan; Droege, Sam; Geissler, Paul E.; Peterjohn, Bruce G.; Ralph, C. John

    2004-01-01

    Several authors have recently discussed the problems with using index methods to estimate trends in population size. Some have expressed the view that index methods should virtually never be used. Others have responded by defending index methods and questioning whether better alternatives exist. We suggest that index methods are often a cost-effective component of valid wildlife monitoring but that double-sampling or another procedure that corrects for bias or establishes bounds on bias is essential. The common assertion that index methods require constant detection rates for trend estimation is mathematically incorrect; the requirement is no long-term trend in detection "ratios" (index result/parameter of interest), a requirement that is probably approximately met by many well-designed index surveys. We urge that more attention be given to defining bird density rigorously and in ways useful to managers. Once this is done, 4 sources of bias in density estimates may be distinguished: coverage, closure, surplus birds, and detection rates. Distance, double-observer, and removal methods do not reduce bias due to coverage, closure, or surplus birds. These methods may yield unbiased estimates of the number of birds present at the time of the survey, but only if their required assumptions are met, which we doubt occurs very often in practice. Double-sampling, in contrast, produces unbiased density estimates if the plots are randomly selected and estimates on the intensive surveys are unbiased. More work is needed, however, to determine the feasibility of double-sampling in different populations and habitats. We believe the tension that has developed over appropriate survey methods can best be resolved through increased appreciation of the mathematical aspects of indices, especially the effects of bias, and through studies in which candidate methods are evaluated against known numbers determined through intensive surveys.

  6. Inferring extinction risks from sighting records.

    PubMed

    Thompson, C J; Lee, T E; Stone, L; McCarthy, M A; Burgman, M A

    2013-12-07

    Estimating the probability that a species is extinct based on historical sighting records is important when deciding how much effort and money to invest in conservation policies. The framework we offer is more general than others in the literature to date. Our formulation allows for definite and uncertain observations, and thus better accommodates the realities of sighting record quality. Typically, the probability of observing a species given it is extant/extinct is challenging to define, especially when the possibility of a false observation is included. As such, we assume that observation probabilities derive from a representative probability density function. We incorporate this randomness in two different ways ("quenched" versus "annealed") using a framework that is equivalent to a Bayes formulation. The two methods can lead to significantly different estimates for extinction. In the case of definite sightings only, we provide an explicit deterministic calculation (in which observation probabilities are point estimates). Furthermore, our formulation replicates previous work in certain limiting cases. In the case of uncertain sightings, we allow for the possibility of several independent observational types (specimen, photographs, etc.). The method is applied to the Caribbean monk seal, Monachus tropicalis (which has only definite sightings), and synthetic data, with uncertain sightings. © 2013 Elsevier Ltd. All rights reserved.

  7. I Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader.

    PubMed

    Smart, Adam S; Tingley, Reid; Weeks, Andrew R; van Rooyen, Anthony R; McCarthy, Michael A

    2015-10-01

    Effective management of alien species requires detecting populations in the early stages of invasion. Environmental DNA (eDNA) sampling can detect aquatic species at relatively low densities, but few studies have directly compared detection probabilities of eDNA sampling with those of traditional sampling methods. We compare the ability of a traditional sampling technique (bottle trapping) and eDNA to detect a recently established invader, the smooth newt Lissotriton vulgaris vulgaris, at seven field sites in Melbourne, Australia. Over a four-month period, per-trap detection probabilities ranged from 0.01 to 0.26 among sites where L. v. vulgaris was detected, whereas per-sample eDNA estimates were much higher (0.29-1.0). Detection probabilities of both methods varied temporally (across days and months), but temporal variation appeared to be uncorrelated between methods. Only estimates of spatial variation were strongly correlated across the two sampling techniques. Environmental variables (water depth, rainfall, ambient temperature) were not clearly correlated with detection probabilities estimated via trapping, whereas eDNA detection probabilities were negatively correlated with water depth, possibly reflecting higher eDNA concentrations at lower water levels. Our findings demonstrate that eDNA sampling can be an order of magnitude more sensitive than traditional methods, and illustrate that traditional- and eDNA-based surveys can provide independent information on species distributions when occupancy surveys are conducted over short timescales.

  8. Statistical methods for thermonuclear reaction rates and nucleosynthesis simulations

    NASA Astrophysics Data System (ADS)

    Iliadis, Christian; Longland, Richard; Coc, Alain; Timmes, F. X.; Champagne, Art E.

    2015-03-01

    Rigorous statistical methods for estimating thermonuclear reaction rates and nucleosynthesis are becoming increasingly established in nuclear astrophysics. The main challenge being faced is that experimental reaction rates are highly complex quantities derived from a multitude of different measured nuclear parameters (e.g., astrophysical S-factors, resonance energies and strengths, particle and γ-ray partial widths). We discuss the application of the Monte Carlo method to two distinct, but related, questions. First, given a set of measured nuclear parameters, how can one best estimate the resulting thermonuclear reaction rates and associated uncertainties? Second, given a set of appropriate reaction rates, how can one best estimate the abundances from nucleosynthesis (i.e., reaction network) calculations? The techniques described here provide probability density functions that can be used to derive statistically meaningful reaction rates and final abundances for any desired coverage probability. Examples are given for applications to s-process neutron sources, core-collapse supernovae, classical novae, and Big Bang nucleosynthesis.

  9. Estimating loblolly pine size-density trajectories across a range of planting densities

    Treesearch

    Curtis L. VanderSchaaf; Harold E. Burkhart

    2013-01-01

    Size-density trajectories on the logarithmic (ln) scale are generally thought to consist of two major stages. The first is often referred to as the density-independent mortality stage where the probability of mortality is independent of stand density; in the second, often referred to as the density-dependent mortality or self-thinning stage, the probability of...

  10. Representation of Probability Density Functions from Orbit Determination using the Particle Filter

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda K.; Garrison, James; Carpenter, J. Russell

    2012-01-01

    Statistical orbit determination enables us to obtain estimates of the state and the statistical information of its region of uncertainty. In order to obtain an accurate representation of the probability density function (PDF) that incorporates higher order statistical information, we propose the use of nonlinear estimation methods such as the Particle Filter. The Particle Filter (PF) is capable of providing a PDF representation of the state estimates whose accuracy is dependent on the number of particles or samples used. For this method to be applicable to real case scenarios, we need a way of accurately representing the PDF in a compressed manner with little information loss. Hence we propose using the Independent Component Analysis (ICA) as a non-Gaussian dimensional reduction method that is capable of maintaining higher order statistical information obtained using the PF. Methods such as the Principal Component Analysis (PCA) are based on utilizing up to second order statistics, hence will not suffice in maintaining maximum information content. Both the PCA and the ICA are applied to two scenarios that involve a highly eccentric orbit with a lower apriori uncertainty covariance and a less eccentric orbit with a higher a priori uncertainty covariance, to illustrate the capability of the ICA in relation to the PCA.

  11. APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES.

    PubMed

    Han, Qiyang; Wellner, Jon A

    2016-01-01

    In this paper, we study the approximation and estimation of s -concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s -concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [ Ann. Statist. 38 (2010) 2998-3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q : if Q n → Q in the Wasserstein metric, then the projected densities converge in weighted L 1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s -concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s -concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s -concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s -concave.

  12. APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES

    PubMed Central

    Han, Qiyang; Wellner, Jon A.

    2017-01-01

    In this paper, we study the approximation and estimation of s-concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s-concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [Ann. Statist. 38 (2010) 2998–3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q: if Qn → Q in the Wasserstein metric, then the projected densities converge in weighted L1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s-concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s-concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s-concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s-concave. PMID:28966410

  13. Direct Importance Estimation with Gaussian Mixture Models

    NASA Astrophysics Data System (ADS)

    Yamada, Makoto; Sugiyama, Masashi

    The ratio of two probability densities is called the importance and its estimation has gathered a great deal of attention these days since the importance can be used for various data processing purposes. In this paper, we propose a new importance estimation method using Gaussian mixture models (GMMs). Our method is an extention of the Kullback-Leibler importance estimation procedure (KLIEP), an importance estimation method using linear or kernel models. An advantage of GMMs is that covariance matrices can also be learned through an expectation-maximization procedure, so the proposed method — which we call the Gaussian mixture KLIEP (GM-KLIEP) — is expected to work well when the true importance function has high correlation. Through experiments, we show the validity of the proposed approach.

  14. Probability density function learning by unsupervised neurons.

    PubMed

    Fiori, S

    2001-10-01

    In a recent work, we introduced the concept of pseudo-polynomial adaptive activation function neuron (FAN) and presented an unsupervised information-theoretic learning theory for such structure. The learning model is based on entropy optimization and provides a way of learning probability distributions from incomplete data. The aim of the present paper is to illustrate some theoretical features of the FAN neuron, to extend its learning theory to asymmetrical density function approximation, and to provide an analytical and numerical comparison with other known density function estimation methods, with special emphasis to the universal approximation ability. The paper also provides a survey of PDF learning from incomplete data, as well as results of several experiments performed on real-world problems and signals.

  15. Fractional Gaussian model in global optimization

    NASA Astrophysics Data System (ADS)

    Dimri, V. P.; Srivastava, R. P.

    2009-12-01

    Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.

  16. A removal model for estimating detection probabilities from point-count surveys

    USGS Publications Warehouse

    Farnsworth, G.L.; Pollock, K.H.; Nichols, J.D.; Simons, T.R.; Hines, J.E.; Sauer, J.R.

    2000-01-01

    We adapted a removal model to estimate detection probability during point count surveys. The model assumes one factor influencing detection during point counts is the singing frequency of birds. This may be true for surveys recording forest songbirds when most detections are by sound. The model requires counts to be divided into several time intervals. We used time intervals of 2, 5, and 10 min to develop a maximum-likelihood estimator for the detectability of birds during such surveys. We applied this technique to data from bird surveys conducted in Great Smoky Mountains National Park. We used model selection criteria to identify whether detection probabilities varied among species, throughout the morning, throughout the season, and among different observers. The overall detection probability for all birds was 75%. We found differences in detection probability among species. Species that sing frequently such as Winter Wren and Acadian Flycatcher had high detection probabilities (about 90%) and species that call infrequently such as Pileated Woodpecker had low detection probability (36%). We also found detection probabilities varied with the time of day for some species (e.g. thrushes) and between observers for other species. This method of estimating detectability during point count surveys offers a promising new approach to using count data to address questions of the bird abundance, density, and population trends.

  17. Protein single-model quality assessment by feature-based probability density functions.

    PubMed

    Cao, Renzhi; Cheng, Jianlin

    2016-04-04

    Protein quality assessment (QA) has played an important role in protein structure prediction. We developed a novel single-model quality assessment method-Qprob. Qprob calculates the absolute error for each protein feature value against the true quality scores (i.e. GDT-TS scores) of protein structural models, and uses them to estimate its probability density distribution for quality assessment. Qprob has been blindly tested on the 11th Critical Assessment of Techniques for Protein Structure Prediction (CASP11) as MULTICOM-NOVEL server. The official CASP result shows that Qprob ranks as one of the top single-model QA methods. In addition, Qprob makes contributions to our protein tertiary structure predictor MULTICOM, which is officially ranked 3rd out of 143 predictors. The good performance shows that Qprob is good at assessing the quality of models of hard targets. These results demonstrate that this new probability density distribution based method is effective for protein single-model quality assessment and is useful for protein structure prediction. The webserver of Qprob is available at: http://calla.rnet.missouri.edu/qprob/. The software is now freely available in the web server of Qprob.

  18. Density estimation of Yangtze finless porpoises using passive acoustic sensors and automated click train detection.

    PubMed

    Kimura, Satoko; Akamatsu, Tomonari; Li, Songhai; Dong, Shouyue; Dong, Lijun; Wang, Kexiong; Wang, Ding; Arai, Nobuaki

    2010-09-01

    A method is presented to estimate the density of finless porpoises using stationed passive acoustic monitoring. The number of click trains detected by stereo acoustic data loggers (A-tag) was converted to an estimate of the density of porpoises. First, an automated off-line filter was developed to detect a click train among noise, and the detection and false-alarm rates were calculated. Second, a density estimation model was proposed. The cue-production rate was measured by biologging experiments. The probability of detecting a cue and the area size were calculated from the source level, beam patterns, and a sound-propagation model. The effect of group size on the cue-detection rate was examined. Third, the proposed model was applied to estimate the density of finless porpoises at four locations from the Yangtze River to the inside of Poyang Lake. The estimated mean density of porpoises in a day decreased from the main stream to the lake. Long-term monitoring during 466 days from June 2007 to May 2009 showed variation in the density 0-4.79. However, the density was fewer than 1 porpoise/km(2) during 94% of the period. These results suggest a potential gap and seasonal migration of the population in the bottleneck of Poyang Lake.

  19. An analytical approach to gravitational lensing by an ensemble of axisymmetric lenses

    NASA Technical Reports Server (NTRS)

    Lee, Man Hoi; Spergel, David N.

    1990-01-01

    The problem of gravitational lensing by an ensemble of identical axisymmetric lenses randomly distributed on a single lens plane is considered and a formal expression is derived for the joint probability density of finding shear and convergence at a random point on the plane. The amplification probability for a source can be accurately estimated from the distribution in shear and convergence. This method is applied to two cases: lensing by an ensemble of point masses and by an ensemble of objects with Gaussian surface mass density. There is no convergence for point masses whereas shear is negligible for wide Gaussian lenses.

  20. SOMKE: kernel density estimation over data streams by sequences of self-organizing maps.

    PubMed

    Cao, Yuan; He, Haibo; Man, Hong

    2012-08-01

    In this paper, we propose a novel method SOMKE, for kernel density estimation (KDE) over data streams based on sequences of self-organizing map (SOM). In many stream data mining applications, the traditional KDE methods are infeasible because of the high computational cost, processing time, and memory requirement. To reduce the time and space complexity, we propose a SOM structure in this paper to obtain well-defined data clusters to estimate the underlying probability distributions of incoming data streams. The main idea of this paper is to build a series of SOMs over the data streams via two operations, that is, creating and merging the SOM sequences. The creation phase produces the SOM sequence entries for windows of the data, which obtains clustering information of the incoming data streams. The size of the SOM sequences can be further reduced by combining the consecutive entries in the sequence based on the measure of Kullback-Leibler divergence. Finally, the probability density functions over arbitrary time periods along the data streams can be estimated using such SOM sequences. We compare SOMKE with two other KDE methods for data streams, the M-kernel approach and the cluster kernel approach, in terms of accuracy and processing time for various stationary data streams. Furthermore, we also investigate the use of SOMKE over nonstationary (evolving) data streams, including a synthetic nonstationary data stream, a real-world financial data stream and a group of network traffic data streams. The simulation results illustrate the effectiveness and efficiency of the proposed approach.

  1. Innovative Methods for Estimating Densities and Detection Probabilities of Secretive Reptiles Including Invasive Constrictors and Rare Upland Snakes

    DTIC Science & Technology

    2018-01-30

    1  Department of Defense Legacy Resource Management Program Agreement # W9132T-14-2-0010 ( Project # 14-754) Innovative Methods for Estimating...Upland Snakes NA 5c. PROGRAM ELEMENT NUMBER NA 6. AUTHOR(S) 5d. PROJECT NUMBER John D. Willson, Ph.D. 14-754 Shannon Pittman, Ph.D. 5e. TASK NUMBER...STATEMENT Publically available 13. SUPPLEMENTARY NOTES NA 14. ABSTRACT This project demonstrates the broad applicability of a novel simulation

  2. Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1981-01-01

    A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.

  3. A removal model for estimating detection probabilities from point-count surveys

    USGS Publications Warehouse

    Farnsworth, G.L.; Pollock, K.H.; Nichols, J.D.; Simons, T.R.; Hines, J.E.; Sauer, J.R.

    2002-01-01

    Use of point-count surveys is a popular method for collecting data on abundance and distribution of birds. However, analyses of such data often ignore potential differences in detection probability. We adapted a removal model to directly estimate detection probability during point-count surveys. The model assumes that singing frequency is a major factor influencing probability of detection when birds are surveyed using point counts. This may be appropriate for surveys in which most detections are by sound. The model requires counts to be divided into several time intervals. Point counts are often conducted for 10 min, where the number of birds recorded is divided into those first observed in the first 3 min, the subsequent 2 min, and the last 5 min. We developed a maximum-likelihood estimator for the detectability of birds recorded during counts divided into those intervals. This technique can easily be adapted to point counts divided into intervals of any length. We applied this method to unlimited-radius counts conducted in Great Smoky Mountains National Park. We used model selection criteria to identify whether detection probabilities varied among species, throughout the morning, throughout the season, and among different observers. We found differences in detection probability among species. Species that sing frequently such as Winter Wren (Troglodytes troglodytes) and Acadian Flycatcher (Empidonax virescens) had high detection probabilities (∼90%) and species that call infrequently such as Pileated Woodpecker (Dryocopus pileatus) had low detection probability (36%). We also found detection probabilities varied with the time of day for some species (e.g. thrushes) and between observers for other species. We used the same approach to estimate detection probability and density for a subset of the observations with limited-radius point counts.

  4. Script-independent text line segmentation in freestyle handwritten documents.

    PubMed

    Li, Yi; Zheng, Yefeng; Doermann, David; Jaeger, Stefan; Li, Yi

    2008-08-01

    Text line segmentation in freestyle handwritten documents remains an open document analysis problem. Curvilinear text lines and small gaps between neighboring text lines present a challenge to algorithms developed for machine printed or hand-printed documents. In this paper, we propose a novel approach based on density estimation and a state-of-the-art image segmentation technique, the level set method. From an input document image, we estimate a probability map, where each element represents the probability that the underlying pixel belongs to a text line. The level set method is then exploited to determine the boundary of neighboring text lines by evolving an initial estimate. Unlike connected component based methods ( [1], [2] for example), the proposed algorithm does not use any script-specific knowledge. Extensive quantitative experiments on freestyle handwritten documents with diverse scripts, such as Arabic, Chinese, Korean, and Hindi, demonstrate that our algorithm consistently outperforms previous methods [1]-[3]. Further experiments show the proposed algorithm is robust to scale change, rotation, and noise.

  5. Trackline and point detection probabilities for acoustic surveys of Cuvier's and Blainville's beaked whales.

    PubMed

    Barlow, Jay; Tyack, Peter L; Johnson, Mark P; Baird, Robin W; Schorr, Gregory S; Andrews, Russel D; Aguilar de Soto, Natacha

    2013-09-01

    Acoustic survey methods can be used to estimate density and abundance using sounds produced by cetaceans and detected using hydrophones if the probability of detection can be estimated. For passive acoustic surveys, probability of detection at zero horizontal distance from a sensor, commonly called g(0), depends on the temporal patterns of vocalizations. Methods to estimate g(0) are developed based on the assumption that a beaked whale will be detected if it is producing regular echolocation clicks directly under or above a hydrophone. Data from acoustic recording tags placed on two species of beaked whales (Cuvier's beaked whale-Ziphius cavirostris and Blainville's beaked whale-Mesoplodon densirostris) are used to directly estimate the percentage of time they produce echolocation clicks. A model of vocal behavior for these species as a function of their diving behavior is applied to other types of dive data (from time-depth recorders and time-depth-transmitting satellite tags) to indirectly determine g(0) in other locations for low ambient noise conditions. Estimates of g(0) for a single instant in time are 0.28 [standard deviation (s.d.) = 0.05] for Cuvier's beaked whale and 0.19 (s.d. = 0.01) for Blainville's beaked whale.

  6. A Method to Estimate the Probability that any Individual Cloud-to-Ground Lightning Stroke was Within any Radius of any Point

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.; Roeder, William P.; Merceret, Francis J.

    2011-01-01

    A new technique has been developed to estimate the probability that a nearby cloud to ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.

  7. A Method to Estimate the Probability that Any Individual Cloud-to-Ground Lightning Stroke was Within Any Radius of Any Point

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa; Roeder, WIlliam P.; Merceret, Francis J.

    2011-01-01

    A new technique has been developed to estimate the probability that a nearby cloud-to-ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even within the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force station. Future applications could include forensic meteorology.

  8. Dose-volume histogram prediction using density estimation.

    PubMed

    Skarpman Munter, Johanna; Sjölund, Jens

    2015-09-07

    Knowledge of what dose-volume histograms can be expected for a previously unseen patient could increase consistency and quality in radiotherapy treatment planning. We propose a machine learning method that uses previous treatment plans to predict such dose-volume histograms. The key to the approach is the framing of dose-volume histograms in a probabilistic setting.The training consists of estimating, from the patients in the training set, the joint probability distribution of some predictive features and the dose. The joint distribution immediately provides an estimate of the conditional probability of the dose given the values of the predictive features. The prediction consists of estimating, from the new patient, the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimate of the dose-volume histogram.To illustrate how the proposed method relates to previously proposed methods, we use the signed distance to the target boundary as a single predictive feature. As a proof-of-concept, we predicted dose-volume histograms for the brainstems of 22 acoustic schwannoma patients treated with stereotactic radiosurgery, and for the lungs of 9 lung cancer patients treated with stereotactic body radiation therapy. Comparing with two previous attempts at dose-volume histogram prediction we find that, given the same input data, the predictions are similar.In summary, we propose a method for dose-volume histogram prediction that exploits the intrinsic probabilistic properties of dose-volume histograms. We argue that the proposed method makes up for some deficiencies in previously proposed methods, thereby potentially increasing ease of use, flexibility and ability to perform well with small amounts of training data.

  9. Unsupervised Learning and Pattern Recognition of Biological Data Structures with Density Functional Theory and Machine Learning.

    PubMed

    Chen, Chien-Chang; Juan, Hung-Hui; Tsai, Meng-Yuan; Lu, Henry Horng-Shing

    2018-01-11

    By introducing the methods of machine learning into the density functional theory, we made a detour for the construction of the most probable density function, which can be estimated by learning relevant features from the system of interest. Using the properties of universal functional, the vital core of density functional theory, the most probable cluster numbers and the corresponding cluster boundaries in a studying system can be simultaneously and automatically determined and the plausibility is erected on the Hohenberg-Kohn theorems. For the method validation and pragmatic applications, interdisciplinary problems from physical to biological systems were enumerated. The amalgamation of uncharged atomic clusters validated the unsupervised searching process of the cluster numbers and the corresponding cluster boundaries were exhibited likewise. High accurate clustering results of the Fisher's iris dataset showed the feasibility and the flexibility of the proposed scheme. Brain tumor detections from low-dimensional magnetic resonance imaging datasets and segmentations of high-dimensional neural network imageries in the Brainbow system were also used to inspect the method practicality. The experimental results exhibit the successful connection between the physical theory and the machine learning methods and will benefit the clinical diagnoses.

  10. Nonparametric density estimation and optimal bandwidth selection for protein unfolding and unbinding data

    NASA Astrophysics Data System (ADS)

    Bura, E.; Zhmurov, A.; Barsegov, V.

    2009-01-01

    Dynamic force spectroscopy and steered molecular simulations have become powerful tools for analyzing the mechanical properties of proteins, and the strength of protein-protein complexes and aggregates. Probability density functions of the unfolding forces and unfolding times for proteins, and rupture forces and bond lifetimes for protein-protein complexes allow quantification of the forced unfolding and unbinding transitions, and mapping the biomolecular free energy landscape. The inference of the unknown probability distribution functions from the experimental and simulated forced unfolding and unbinding data, as well as the assessment of analytically tractable models of the protein unfolding and unbinding requires the use of a bandwidth. The choice of this quantity is typically subjective as it draws heavily on the investigator's intuition and past experience. We describe several approaches for selecting the "optimal bandwidth" for nonparametric density estimators, such as the traditionally used histogram and the more advanced kernel density estimators. The performance of these methods is tested on unimodal and multimodal skewed, long-tailed distributed data, as typically observed in force spectroscopy experiments and in molecular pulling simulations. The results of these studies can serve as a guideline for selecting the optimal bandwidth to resolve the underlying distributions from the forced unfolding and unbinding data for proteins.

  11. Bivariate sub-Gaussian model for stock index returns

    NASA Astrophysics Data System (ADS)

    Jabłońska-Sabuka, Matylda; Teuerle, Marek; Wyłomańska, Agnieszka

    2017-11-01

    Financial time series are commonly modeled with methods assuming data normality. However, the real distribution can be nontrivial, also not having an explicitly formulated probability density function. In this work we introduce novel parameter estimation and high-powered distribution testing methods which do not rely on closed form densities, but use the characteristic functions for comparison. The approach applied to a pair of stock index returns demonstrates that such a bivariate vector can be a sample coming from a bivariate sub-Gaussian distribution. The methods presented here can be applied to any nontrivially distributed financial data, among others.

  12. Information loss in approximately bayesian data assimilation: a comparison of generative and discriminative approaches to estimating agricultural yield

    USDA-ARS?s Scientific Manuscript database

    Data assimilation and regression are two commonly used methods for predicting agricultural yield from remote sensing observations. Data assimilation is a generative approach because it requires explicit approximations of the Bayesian prior and likelihood to compute the probability density function...

  13. Estimating black bear density in New Mexico using noninvasive genetic sampling coupled with spatially explicit capture-recapture methods

    USGS Publications Warehouse

    Gould, Matthew J.; Cain, James W.; Roemer, Gary W.; Gould, William R.

    2016-01-01

    During the 2004–2005 to 2015–2016 hunting seasons, the New Mexico Department of Game and Fish (NMDGF) estimated black bear abundance (Ursus americanus) across the state by coupling density estimates with the distribution of primary habitat generated by Costello et al. (2001). These estimates have been used to set harvest limits. For example, a density of 17 bears/100 km2 for the Sangre de Cristo and Sacramento Mountains and 13.2 bears/100 km2 for the Sandia Mountains were used to set harvest levels. The advancement and widespread acceptance of non-invasive sampling and mark-recapture methods, prompted the NMDGF to collaborate with the New Mexico Cooperative Fish and Wildlife Research Unit and New Mexico State University to update their density estimates for black bear populations in select mountain ranges across the state.We established 5 study areas in 3 mountain ranges: the northern (NSC; sampled in 2012) and southern Sangre de Cristo Mountains (SSC; sampled in 2013), the Sandia Mountains (Sandias; sampled in 2014), and the northern (NSacs) and southern Sacramento Mountains (SSacs; both sampled in 2014). We collected hair samples from black bears using two concurrent non-invasive sampling methods, hair traps and bear rubs. We used a gender marker and a suite of microsatellite loci to determine the individual identification of hair samples that were suitable for genetic analysis. We used these data to generate mark-recapture encounter histories for each bear and estimated density in a spatially explicit capture-recapture framework (SECR). We constructed a suite of SECR candidate models using sex, elevation, land cover type, and time to model heterogeneity in detection probability and the spatial scale over which detection probability declines. We used Akaike’s Information Criterion corrected for small sample size (AICc) to rank and select the most supported model from which we estimated density.We set 554 hair traps, 117 bear rubs and collected 4,083 hair samples. We identified 725 (367 M, 358 F) individuals; the sex ratio for each study area was approximately equal. Our density estimates varied within and among mountain ranges with an estimated density of 21.86 bears/100 km2 (95% CI: 17.83 – 26.80) for the NSC, 19.74 bears/100 km2 (95% CI: 13.77 – 28.30) in the SSC, 25.75 bears/100 km2 (95% CI: 13.22 – 50.14) in the Sandias, 21.86 bears/100 km2 (95% CI: 17.83 – 26.80) in the NSacs, and 16.55 bears/100 km2 (95% CI: 11.64 – 23.53) in the SSacs. Overall detection probability for hair traps and bear rubs, combined, was low across all study areas and ranged from 0.00001 to 0.02. We speculate that detection probabilities were affected by failure of some hair samples to produce a complete genotype due to UV degradation of DNA, and our inability to set and check some sampling devices due to wildfires in the SSC. Ultraviolet radiation levels are particularly high in New Mexico compared to other states where NGS methods have been used because New Mexico receives substantial amounts of sunshine, is relatively high in elevation (1,200 m – 4,000 m), and is at a lower latitude. Despite these sampling difficulties, we were able to produce density estimates for New Mexico black bear populations with levels of precision comparable to estimated black bear densities made elsewhere in the U.S.Our ability to generate reliable black bear density estimates for 3 New Mexico mountain ranges is attributable to our use of a statistically robust study design and analytical method. There are multiple factors that need to be considered when developing future SECR-based density estimation projects. First, the spatial extent of the population of interest and the smallest average home range size must be determined; these will dictate size of the trapping array and spacing necessary between hair traps. The number of technicians needed and access to the study areas will also influence configuration of the trapping array. We believe shorter sampling occasions could be implemented to reduce degradation of DNA due to UV radiation; this might help increase amplification rates and thereby increase both the number of unique individuals identified and the number of recaptures, improving the precision of the density estimates. A pilot study may be useful to determine the length of time hair samples can remain in the field prior to collection. In addition, researchers may consider setting hair traps and bear rubs in more shaded areas (e.g., north facing slopes) to help reduce exposure to UV radiation. To reduce the sampling interval it will be necessary to either hire more field personnel or decrease the number of hair traps per sampling session. Both of these will enhance detection of long-range movement events by individual bears, increase initial capture and recapture rates, and improve precision of the parameter estimates. We recognize that all studies are constrained by limited resources, however, increasing field personnel would also allow a larger study area to be sampled or enable higher trap density.In conclusion, we estimated the density of black bears in 5 study areas within 3 mountains ranges of New Mexico. Our estimates will aid the NMDGF in setting sustainable harvest limits. Along with estimates of density, information on additional demographic rates (e.g., survival rates and reproduction) and the potential effects that climate change and future land use may have on the demography of black bears may also help inform management of black bears in New Mexico, and may be considered as future areas for research.

  14. Estimating The Probability Of Achieving Shortleaf Pine Regeneration At Variable Specified Levels

    Treesearch

    Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin

    2002-01-01

    A model was developed that can be used to estimate the probability of achieving regeneration at a variety of specified stem density levels. The model was fitted to shortleaf pine (Pinus echinata Mill.) regeneration data, and can be used to estimate the probability of achieving desired levels of regeneration between 300 and 700 stems per acre 9-l 0...

  15. Estimating juvenile Chinook salmon (Oncorhynchus tshawytscha) abundance from beach seine data collected in the Sacramento–San Joaquin Delta and San Francisco Bay, California

    USGS Publications Warehouse

    Perry, Russell W.; Kirsch, Joseph E.; Hendrix, A. Noble

    2016-06-17

    Resource managers rely on abundance or density metrics derived from beach seine surveys to make vital decisions that affect fish population dynamics and assemblage structure. However, abundance and density metrics may be biased by imperfect capture and lack of geographic closure during sampling. Currently, there is considerable uncertainty about the capture efficiency of juvenile Chinook salmon (Oncorhynchus tshawytscha) by beach seines. Heterogeneity in capture can occur through unrealistic assumptions of closure and from variation in the probability of capture caused by environmental conditions. We evaluated the assumptions of closure and the influence of environmental conditions on capture efficiency and abundance estimates of Chinook salmon from beach seining within the Sacramento–San Joaquin Delta and the San Francisco Bay. Beach seine capture efficiency was measured using a stratified random sampling design combined with open and closed replicate depletion sampling. A total of 56 samples were collected during the spring of 2014. To assess variability in capture probability and the absolute abundance of juvenile Chinook salmon, beach seine capture efficiency data were fitted to the paired depletion design using modified N-mixture models. These models allowed us to explicitly test the closure assumption and estimate environmental effects on the probability of capture. We determined that our updated method allowing for lack of closure between depletion samples drastically outperformed traditional data analysis that assumes closure among replicate samples. The best-fit model (lowest-valued Akaike Information Criterion model) included the probability of fish being available for capture (relaxed closure assumption), capture probability modeled as a function of water velocity and percent coverage of fine sediment, and abundance modeled as a function of sample area, temperature, and water velocity. Given that beach seining is a ubiquitous sampling technique for many species, our improved sampling design and analysis could provide significant improvements in density and abundance estimation.

  16. Online Reinforcement Learning Using a Probability Density Estimation.

    PubMed

    Agostini, Alejandro; Celaya, Enric

    2017-01-01

    Function approximation in online, incremental, reinforcement learning needs to deal with two fundamental problems: biased sampling and nonstationarity. In this kind of task, biased sampling occurs because samples are obtained from specific trajectories dictated by the dynamics of the environment and are usually concentrated in particular convergence regions, which in the long term tend to dominate the approximation in the less sampled regions. The nonstationarity comes from the recursive nature of the estimations typical of temporal difference methods. This nonstationarity has a local profile, varying not only along the learning process but also along different regions of the state space. We propose to deal with these problems using an estimation of the probability density of samples represented with a gaussian mixture model. To deal with the nonstationarity problem, we use the common approach of introducing a forgetting factor in the updating formula. However, instead of using the same forgetting factor for the whole domain, we make it dependent on the local density of samples, which we use to estimate the nonstationarity of the function at any given input point. To address the biased sampling problem, the forgetting factor applied to each mixture component is modulated according to the new information provided in the updating, rather than forgetting depending only on time, thus avoiding undesired distortions of the approximation in less sampled regions.

  17. Pattern recognition for passive polarimetric data using nonparametric classifiers

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.

    2005-08-01

    Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.

  18. Using Prediction Markets to Generate Probability Density Functions for Climate Change Risk Assessment

    NASA Astrophysics Data System (ADS)

    Boslough, M.

    2011-12-01

    Climate-related uncertainty is traditionally presented as an error bar, but it is becoming increasingly common to express it in terms of a probability density function (PDF). PDFs are a necessary component of probabilistic risk assessments, for which simple "best estimate" values are insufficient. Many groups have generated PDFs for climate sensitivity using a variety of methods. These PDFs are broadly consistent, but vary significantly in their details. One axiom of the verification and validation community is, "codes don't make predictions, people make predictions." This is a statement of the fact that subject domain experts generate results using assumptions within a range of epistemic uncertainty and interpret them according to their expert opinion. Different experts with different methods will arrive at different PDFs. For effective decision support, a single consensus PDF would be useful. We suggest that market methods can be used to aggregate an ensemble of opinions into a single distribution that expresses the consensus. Prediction markets have been shown to be highly successful at forecasting the outcome of events ranging from elections to box office returns. In prediction markets, traders can take a position on whether some future event will or will not occur. These positions are expressed as contracts that are traded in a double-action market that aggregates price, which can be interpreted as a consensus probability that the event will take place. Since climate sensitivity cannot directly be measured, it cannot be predicted. However, the changes in global mean surface temperature are a direct consequence of climate sensitivity, changes in forcing, and internal variability. Viable prediction markets require an undisputed event outcome on a specific date. Climate-related markets exist on Intrade.com, an online trading exchange. One such contract is titled "Global Temperature Anomaly for Dec 2011 to be greater than 0.65 Degrees C." Settlement is based global temperature anomaly data published by NASS GISS. Typical climate contracts predict the probability of a specified future temperature, but not the probability density or best estimate. One way to generate a probability distribution would be to create a family of contracts over a range of specified temperatures and interpret the price of each contract as its exceedance probability. The resulting plot of probability vs. anomaly is the market-based cumulative density function. The best estimate can be determined by interpolation, and the market-based uncertainty estimate can be based on the spread. One requirement for an effective prediction market is liquidity. Climate contracts are currently considered somewhat of a novelty and often lack sufficient liquidity, but climate change has the potential to generate both tremendous losses for some (e.g. agricultural collapse and extreme weather events) and wealth for others (access to natural resources and trading routes). Use of climate markets by large stakeholders has the potential to generate the liquidity necessary to make them viable. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE's NNSA under contract DE-AC04-94AL85000.

  19. Monte Carlo Perturbation Theory Estimates of Sensitivities to System Dimensions

    DOE PAGES

    Burke, Timothy P.; Kiedrowski, Brian C.

    2017-12-11

    Here, Monte Carlo methods are developed using adjoint-based perturbation theory and the differential operator method to compute the sensitivities of the k-eigenvalue, linear functions of the flux (reaction rates), and bilinear functions of the forward and adjoint flux (kinetics parameters) to system dimensions for uniform expansions or contractions. The calculation of sensitivities to system dimensions requires computing scattering and fission sources at material interfaces using collisions occurring at the interface—which is a set of events with infinitesimal probability. Kernel density estimators are used to estimate the source at interfaces using collisions occurring near the interface. The methods for computing sensitivitiesmore » of linear and bilinear ratios are derived using the differential operator method and adjoint-based perturbation theory and are shown to be equivalent to methods previously developed using a collision history–based approach. The methods for determining sensitivities to system dimensions are tested on a series of fast, intermediate, and thermal critical benchmarks as well as a pressurized water reactor benchmark problem with iterated fission probability used for adjoint-weighting. The estimators are shown to agree within 5% and 3σ of reference solutions obtained using direct perturbations with central differences for the majority of test problems.« less

  20. The non-parametric Parzen's window in stereo vision matching.

    PubMed

    Pajares, G; de la Cruz, J

    2002-01-01

    This paper presents an approach to the local stereovision matching problem using edge segments as features with four attributes. From these attributes we compute a matching probability between pairs of features of the stereo images. A correspondence is said true when such a probability is maximum. We introduce a nonparametric strategy based on Parzen's window (1962) to estimate a probability density function (PDF) which is used to obtain the matching probability. This is the main finding of the paper. A comparative analysis of other recent matching methods is included to show that this finding can be justified theoretically. A generalization of the proposed method is made in order to give guidelines about its use with the similarity constraint and also in different environments where other features and attributes are more suitable.

  1. A Projection and Density Estimation Method for Knowledge Discovery

    PubMed Central

    Stanski, Adam; Hellwich, Olaf

    2012-01-01

    A key ingredient to modern data analysis is probability density estimation. However, it is well known that the curse of dimensionality prevents a proper estimation of densities in high dimensions. The problem is typically circumvented by using a fixed set of assumptions about the data, e.g., by assuming partial independence of features, data on a manifold or a customized kernel. These fixed assumptions limit the applicability of a method. In this paper we propose a framework that uses a flexible set of assumptions instead. It allows to tailor a model to various problems by means of 1d-decompositions. The approach achieves a fast runtime and is not limited by the curse of dimensionality as all estimations are performed in 1d-space. The wide range of applications is demonstrated at two very different real world examples. The first is a data mining software that allows the fully automatic discovery of patterns. The software is publicly available for evaluation. As a second example an image segmentation method is realized. It achieves state of the art performance on a benchmark dataset although it uses only a fraction of the training data and very simple features. PMID:23049675

  2. Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.

    2014-02-01

    The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.

  3. Hybrid reconstruction of quantum density matrix: when low-rank meets sparsity

    NASA Astrophysics Data System (ADS)

    Li, Kezhi; Zheng, Kai; Yang, Jingbei; Cong, Shuang; Liu, Xiaomei; Li, Zhaokai

    2017-12-01

    Both the mathematical theory and experiments have verified that the quantum state tomography based on compressive sensing is an efficient framework for the reconstruction of quantum density states. In recent physical experiments, we found that many unknown density matrices in which people are interested in are low-rank as well as sparse. Bearing this information in mind, in this paper we propose a reconstruction algorithm that combines the low-rank and the sparsity property of density matrices and further theoretically prove that the solution of the optimization function can be, and only be, the true density matrix satisfying the model with overwhelming probability, as long as a necessary number of measurements are allowed. The solver leverages the fixed-point equation technique in which a step-by-step strategy is developed by utilizing an extended soft threshold operator that copes with complex values. Numerical experiments of the density matrix estimation for real nuclear magnetic resonance devices reveal that the proposed method achieves a better accuracy compared to some existing methods. We believe that the proposed method could be leveraged as a generalized approach and widely implemented in the quantum state estimation.

  4. Polynomial probability distribution estimation using the method of moments

    PubMed Central

    Mattsson, Lars; Rydén, Jesper

    2017-01-01

    We suggest a procedure for estimating Nth degree polynomial approximations to unknown (or known) probability density functions (PDFs) based on N statistical moments from each distribution. The procedure is based on the method of moments and is setup algorithmically to aid applicability and to ensure rigor in use. In order to show applicability, polynomial PDF approximations are obtained for the distribution families Normal, Log-Normal, Weibull as well as for a bimodal Weibull distribution and a data set of anonymized household electricity use. The results are compared with results for traditional PDF series expansion methods of Gram–Charlier type. It is concluded that this procedure is a comparatively simple procedure that could be used when traditional distribution families are not applicable or when polynomial expansions of probability distributions might be considered useful approximations. In particular this approach is practical for calculating convolutions of distributions, since such operations become integrals of polynomial expressions. Finally, in order to show an advanced applicability of the method, it is shown to be useful for approximating solutions to the Smoluchowski equation. PMID:28394949

  5. Polynomial probability distribution estimation using the method of moments.

    PubMed

    Munkhammar, Joakim; Mattsson, Lars; Rydén, Jesper

    2017-01-01

    We suggest a procedure for estimating Nth degree polynomial approximations to unknown (or known) probability density functions (PDFs) based on N statistical moments from each distribution. The procedure is based on the method of moments and is setup algorithmically to aid applicability and to ensure rigor in use. In order to show applicability, polynomial PDF approximations are obtained for the distribution families Normal, Log-Normal, Weibull as well as for a bimodal Weibull distribution and a data set of anonymized household electricity use. The results are compared with results for traditional PDF series expansion methods of Gram-Charlier type. It is concluded that this procedure is a comparatively simple procedure that could be used when traditional distribution families are not applicable or when polynomial expansions of probability distributions might be considered useful approximations. In particular this approach is practical for calculating convolutions of distributions, since such operations become integrals of polynomial expressions. Finally, in order to show an advanced applicability of the method, it is shown to be useful for approximating solutions to the Smoluchowski equation.

  6. Approaches to Evaluating Probability of Collision Uncertainty

    NASA Technical Reports Server (NTRS)

    Hejduk, Matthew D.; Johnson, Lauren C.

    2016-01-01

    While the two-dimensional probability of collision (Pc) calculation has served as the main input to conjunction analysis risk assessment for over a decade, it has done this mostly as a point estimate, with relatively little effort made to produce confidence intervals on the Pc value based on the uncertainties in the inputs. The present effort seeks to try to carry these uncertainties through the calculation in order to generate a probability density of Pc results rather than a single average value. Methods for assessing uncertainty in the primary and secondary objects' physical sizes and state estimate covariances, as well as a resampling approach to reveal the natural variability in the calculation, are presented; and an initial proposal for operationally-useful display and interpretation of these data for a particular conjunction is given.

  7. An evaluation of procedures to estimate monthly precipitation probabilities

    NASA Astrophysics Data System (ADS)

    Legates, David R.

    1991-01-01

    Many frequency distributions have been used to evaluate monthly precipitation probabilities. Eight of these distributions (including Pearson type III, extreme value, and transform normal probability density functions) are comparatively examined to determine their ability to represent accurately variations in monthly precipitation totals for global hydroclimatological analyses. Results indicate that a modified version of the Box-Cox transform-normal distribution more adequately describes the 'true' precipitation distribution than does any of the other methods. This assessment was made using a cross-validation procedure for a global network of 253 stations for which at least 100 years of monthly precipitation totals were available.

  8. Robust statistical reconstruction for charged particle tomography

    DOEpatents

    Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  9. Permissible Home Range Estimation (PHRE) in restricted habitats: A new algorithm and an evaluation for sea otters

    USGS Publications Warehouse

    Tarjan, Lily M; Tinker, M. Tim

    2016-01-01

    Parametric and nonparametric kernel methods dominate studies of animal home ranges and space use. Most existing methods are unable to incorporate information about the underlying physical environment, leading to poor performance in excluding areas that are not used. Using radio-telemetry data from sea otters, we developed and evaluated a new algorithm for estimating home ranges (hereafter Permissible Home Range Estimation, or “PHRE”) that reflects habitat suitability. We began by transforming sighting locations into relevant landscape features (for sea otters, coastal position and distance from shore). Then, we generated a bivariate kernel probability density function in landscape space and back-transformed this to geographic space in order to define a permissible home range. Compared to two commonly used home range estimation methods, kernel densities and local convex hulls, PHRE better excluded unused areas and required a smaller sample size. Our PHRE method is applicable to species whose ranges are restricted by complex physical boundaries or environmental gradients and will improve understanding of habitat-use requirements and, ultimately, aid in conservation efforts.

  10. Estimating the number of terrestrial organisms on the moon.

    NASA Technical Reports Server (NTRS)

    Dillon, R. T.; Gavin, W. R.; Roark, A. L.; Trauth, C. A., Jr.

    1973-01-01

    Methods used to obtain estimates for the biological loadings on moon bound spacecraft prior to launch are reviewed, along with the mathematical models used to calculate the microorganism density on the lunar surface (such as it results from contamination deposited by manned and unmanned flights) and the probability of lunar soil sample contamination. Some of the results obtained by the use of a lunar inventory system based on these models are presented.

  11. Estimates of density, detection probability, and factors influencing detection of burrowing owls in the Mojave Desert

    USGS Publications Warehouse

    Crowe, D.E.; Longshore, K.M.

    2010-01-01

    We estimated relative abundance and density of Western Burrowing Owls (Athene cunicularia hypugaea) at two sites in the Mojave Desert (200304). We made modifications to previously established Burrowing Owl survey techniques for use in desert shrublands and evaluated several factors that might influence the detection of owls. We tested the effectiveness of the call-broadcast technique for surveying this species, the efficiency of this technique at early and late breeding stages, and the effectiveness of various numbers of vocalization intervals during broadcasting sessions. Only 1 (3) of 31 initial (new) owl responses was detected during passive-listening sessions. We found that surveying early in the nesting season was more likely to produce new owl detections compared to surveying later in the nesting season. New owls detected during each of the three vocalization intervals (each consisting of 30 sec of vocalizations followed by 30 sec of silence) of our broadcasting session were similar (37, 40, and 23; n 30). We used a combination of detection trials (sighting probability) and double-observer method to estimate the components of detection probability, i.e., availability and perception. Availability for all sites and years, as determined by detection trials, ranged from 46.158.2. Relative abundance, measured as frequency of occurrence and defined as the proportion of surveys with at least one owl, ranged from 19.232.0 for both sites and years. Density at our eastern Mojave Desert site was estimated at 0.09 ?? 0.01 (SE) owl territories/km2 and 0.16 ?? 0.02 (SE) owl territories/km2 during 2003 and 2004, respectively. In our southern Mojave Desert site, density estimates were 0.09 ?? 0.02 (SE) owl territories/km2 and 0.08 ?? 0.02 (SE) owl territories/km 2 during 2004 and 2005, respectively. ?? 2010 The Raptor Research Foundation, Inc.

  12. The use of copulas to practical estimation of multivariate stochastic differential equation mixed effects models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupšys, P.

    A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.

  13. MRI Brain Tumor Segmentation and Necrosis Detection Using Adaptive Sobolev Snakes.

    PubMed

    Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen

    2014-03-21

    Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at different points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D diffusion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.

  14. MRI brain tumor segmentation and necrosis detection using adaptive Sobolev snakes

    NASA Astrophysics Data System (ADS)

    Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen

    2014-03-01

    Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at di erent points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D di usion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.

  15. Integrating multiple fitting regression and Bayes decision for cancer diagnosis with transcriptomic data from tumor-educated blood platelets.

    PubMed

    Huang, Guangzao; Yuan, Mingshun; Chen, Moliang; Li, Lei; You, Wenjie; Li, Hanjie; Cai, James J; Ji, Guoli

    2017-10-07

    The application of machine learning in cancer diagnostics has shown great promise and is of importance in clinic settings. Here we consider applying machine learning methods to transcriptomic data derived from tumor-educated platelets (TEPs) from individuals with different types of cancer. We aim to define a reliability measure for diagnostic purposes to increase the potential for facilitating personalized treatments. To this end, we present a novel classification method called MFRB (for Multiple Fitting Regression and Bayes decision), which integrates the process of multiple fitting regression (MFR) with Bayes decision theory. MFR is first used to map multidimensional features of the transcriptomic data into a one-dimensional feature. The probability density function of each class in the mapped space is then adjusted using the Gaussian probability density function. Finally, the Bayes decision theory is used to build a probabilistic classifier with the estimated probability density functions. The output of MFRB can be used to determine which class a sample belongs to, as well as to assign a reliability measure for a given class. The classical support vector machine (SVM) and probabilistic SVM (PSVM) are used to evaluate the performance of the proposed method with simulated and real TEP datasets. Our results indicate that the proposed MFRB method achieves the best performance compared to SVM and PSVM, mainly due to its strong generalization ability for limited, imbalanced, and noisy data.

  16. METAPHOR: Probability density estimation for machine learning based photometric redshifts

    NASA Astrophysics Data System (ADS)

    Amaro, V.; Cavuoti, S.; Brescia, M.; Vellucci, C.; Tortora, C.; Longo, G.

    2017-06-01

    We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare).

  17. Estimating black bear density using DNA data from hair snares

    USGS Publications Warehouse

    Gardner, B.; Royle, J. Andrew; Wegan, M.T.; Rainbolt, R.E.; Curtis, P.D.

    2010-01-01

    DNA-based mark-recapture has become a methodological cornerstone of research focused on bear species. The objective of such studies is often to estimate population size; however, doing so is frequently complicated by movement of individual bears. Movement affects the probability of detection and the assumption of closure of the population required in most models. To mitigate the bias caused by movement of individuals, population size and density estimates are often adjusted using ad hoc methods, including buffering the minimum polygon of the trapping array. We used a hierarchical, spatial capturerecapture model that contains explicit components for the spatial-point process that governs the distribution of individuals and their exposure to (via movement), and detection by, traps. We modeled detection probability as a function of each individual's distance to the trap and an indicator variable for previous capture to account for possible behavioral responses. We applied our model to a 2006 hair-snare study of a black bear (Ursus americanus) population in northern New York, USA. Based on the microsatellite marker analysis of collected hair samples, 47 individuals were identified. We estimated mean density at 0.20 bears/km2. A positive estimate of the indicator variable suggests that bears are attracted to baited sites; therefore, including a trap-dependence covariate is important when using bait to attract individuals. Bayesian analysis of the model was implemented in WinBUGS, and we provide the model specification. The model can be applied to any spatially organized trapping array (hair snares, camera traps, mist nests, etc.) to estimate density and can also account for heterogeneity and covariate information at the trap or individual level. ?? The Wildlife Society.

  18. Optimal nonlinear filtering using the finite-volume method

    NASA Astrophysics Data System (ADS)

    Fox, Colin; Morrison, Malcolm E. K.; Norton, Richard A.; Molteno, Timothy C. A.

    2018-01-01

    Optimal sequential inference, or filtering, for the state of a deterministic dynamical system requires simulation of the Frobenius-Perron operator, that can be formulated as the solution of a continuity equation. For low-dimensional, smooth systems, the finite-volume numerical method provides a solution that conserves probability and gives estimates that converge to the optimal continuous-time values, while a Courant-Friedrichs-Lewy-type condition assures that intermediate discretized solutions remain positive density functions. This method is demonstrated in an example of nonlinear filtering for the state of a simple pendulum, with comparison to results using the unscented Kalman filter, and for a case where rank-deficient observations lead to multimodal probability distributions.

  19. Hierarchical models for estimating density from DNA mark-recapture studies

    USGS Publications Warehouse

    Gardner, B.; Royle, J. Andrew; Wegan, M.T.

    2009-01-01

    Genetic sampling is increasingly used as a tool by wildlife biologists and managers to estimate abundance and density of species. Typically, DNA is used to identify individuals captured in an array of traps ( e. g., baited hair snares) from which individual encounter histories are derived. Standard methods for estimating the size of a closed population can be applied to such data. However, due to the movement of individuals on and off the trapping array during sampling, the area over which individuals are exposed to trapping is unknown, and so obtaining unbiased estimates of density has proved difficult. We propose a hierarchical spatial capture-recapture model which contains explicit models for the spatial point process governing the distribution of individuals and their exposure to (via movement) and detection by traps. Detection probability is modeled as a function of each individual's distance to the trap. We applied this model to a black bear (Ursus americanus) study conducted in 2006 using a hair-snare trap array in the Adirondack region of New York, USA. We estimated the density of bears to be 0.159 bears/km2, which is lower than the estimated density (0.410 bears/km2) based on standard closed population techniques. A Bayesian analysis of the model is fully implemented in the software program WinBUGS.

  20. Dual Approach To Superquantile Estimation And Applications To Density Fitting

    DTIC Science & Technology

    2016-06-01

    incorporate additional constraints to improve the fidelity of density estimates in tail regions. We limit our investigation to data with heavy tails, where...samples of various heavy -tailed distributions. 14. SUBJECT TERMS probability density estimation, epi-splines, optimization, risk quantification...limit our investigation to data with heavy tails, where risk quantification is typically the most difficult. Demonstrations are provided in the form of

  1. Emg Amplitude Estimators Based on Probability Distribution for Muscle-Computer Interface

    NASA Astrophysics Data System (ADS)

    Phinyomark, Angkoon; Quaine, Franck; Laurillau, Yann; Thongpanja, Sirinee; Limsakul, Chusak; Phukpattaranont, Pornchai

    To develop an advanced muscle-computer interface (MCI) based on surface electromyography (EMG) signal, the amplitude estimations of muscle activities, i.e., root mean square (RMS) and mean absolute value (MAV) are widely used as a convenient and accurate input for a recognition system. Their classification performance is comparable to advanced and high computational time-scale methods, i.e., the wavelet transform. However, the signal-to-noise-ratio (SNR) performance of RMS and MAV depends on a probability density function (PDF) of EMG signals, i.e., Gaussian or Laplacian. The PDF of upper-limb motions associated with EMG signals is still not clear, especially for dynamic muscle contraction. In this paper, the EMG PDF is investigated based on surface EMG recorded during finger, hand, wrist and forearm motions. The results show that on average the experimental EMG PDF is closer to a Laplacian density, particularly for male subject and flexor muscle. For the amplitude estimation, MAV has a higher SNR, defined as the mean feature divided by its fluctuation, than RMS. Due to a same discrimination of RMS and MAV in feature space, MAV is recommended to be used as a suitable EMG amplitude estimator for EMG-based MCIs.

  2. How to Calculate Renyi Entropy from Heart Rate Variability, and Why it Matters for Detecting Cardiac Autonomic Neuropathy.

    PubMed

    Cornforth, David J; Tarvainen, Mika P; Jelinek, Herbert F

    2014-01-01

    Cardiac autonomic neuropathy (CAN) is a disease that involves nerve damage leading to an abnormal control of heart rate. An open question is to what extent this condition is detectable from heart rate variability (HRV), which provides information only on successive intervals between heart beats, yet is non-invasive and easy to obtain from a three-lead ECG recording. A variety of measures may be extracted from HRV, including time domain, frequency domain, and more complex non-linear measures. Among the latter, Renyi entropy has been proposed as a suitable measure that can be used to discriminate CAN from controls. However, all entropy methods require estimation of probabilities, and there are a number of ways in which this estimation can be made. In this work, we calculate Renyi entropy using several variations of the histogram method and a density method based on sequences of RR intervals. In all, we calculate Renyi entropy using nine methods and compare their effectiveness in separating the different classes of participants. We found that the histogram method using single RR intervals yields an entropy measure that is either incapable of discriminating CAN from controls, or that it provides little information that could not be gained from the SD of the RR intervals. In contrast, probabilities calculated using a density method based on sequences of RR intervals yield an entropy measure that provides good separation between groups of participants and provides information not available from the SD. The main contribution of this work is that different approaches to calculating probability may affect the success of detecting disease. Our results bring new clarity to the methods used to calculate the Renyi entropy in general, and in particular, to the successful detection of CAN.

  3. How to Calculate Renyi Entropy from Heart Rate Variability, and Why it Matters for Detecting Cardiac Autonomic Neuropathy

    PubMed Central

    Cornforth, David J.;  Tarvainen, Mika P.; Jelinek, Herbert F.

    2014-01-01

    Cardiac autonomic neuropathy (CAN) is a disease that involves nerve damage leading to an abnormal control of heart rate. An open question is to what extent this condition is detectable from heart rate variability (HRV), which provides information only on successive intervals between heart beats, yet is non-invasive and easy to obtain from a three-lead ECG recording. A variety of measures may be extracted from HRV, including time domain, frequency domain, and more complex non-linear measures. Among the latter, Renyi entropy has been proposed as a suitable measure that can be used to discriminate CAN from controls. However, all entropy methods require estimation of probabilities, and there are a number of ways in which this estimation can be made. In this work, we calculate Renyi entropy using several variations of the histogram method and a density method based on sequences of RR intervals. In all, we calculate Renyi entropy using nine methods and compare their effectiveness in separating the different classes of participants. We found that the histogram method using single RR intervals yields an entropy measure that is either incapable of discriminating CAN from controls, or that it provides little information that could not be gained from the SD of the RR intervals. In contrast, probabilities calculated using a density method based on sequences of RR intervals yield an entropy measure that provides good separation between groups of participants and provides information not available from the SD. The main contribution of this work is that different approaches to calculating probability may affect the success of detecting disease. Our results bring new clarity to the methods used to calculate the Renyi entropy in general, and in particular, to the successful detection of CAN. PMID:25250311

  4. Analysis of Ion Composition Estimation Accuracy for Incoherent Scatter Radars

    NASA Astrophysics Data System (ADS)

    Martínez Ledesma, M.; Diaz, M. A.

    2017-12-01

    The Incoherent Scatter Radar (ISR) is one of the most powerful sounding methods developed to estimate the Ionosphere. This radar system determines the plasma parameters by sending powerful electromagnetic pulses to the Ionosphere and analyzing the received backscatter. This analysis provides information about parameters such as electron and ion temperatures, electron densities, ion composition, and ion drift velocities. Nevertheless in some cases the ISR analysis has ambiguities in the determination of the plasma characteristics. It is of particular relevance the ion composition and temperature ambiguity obtained between the F1 and the lower F2 layers. In this case very similar signals are obtained with different mixtures of molecular ions (NO2+ and O2+) and atomic oxygen ions (O+), and consequently it is not possible to completely discriminate between them. The most common solution to solve this problem is the use of empirical or theoretical models of the ionosphere in the fitting of ambiguous data. More recent works take use of parameters estimated from the Plasma Line band of the radar to reduce the number of parameters to determine. In this work we propose to determine the error estimation of the ion composition ambiguity when using Plasma Line electron density measurements. The sensibility of the ion composition estimation has been also calculated depending on the accuracy of the ionospheric model, showing that the correct estimation is highly dependent on the capacity of the model to approximate the real values. Monte Carlo simulations of data fitting at different signal to noise (SNR) ratios have been done to obtain valid and invalid estimation probability curves. This analysis provides a method to determine the probability of erroneous estimation for different signal fluctuations. Also it can be used as an empirical method to compare the efficiency of the different algorithms and methods on when solving the ion composition ambiguity.

  5. Wind power error estimation in resource assessments.

    PubMed

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  6. Wind Power Error Estimation in Resource Assessments

    PubMed Central

    Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  7. Robust functional statistics applied to Probability Density Function shape screening of sEMG data.

    PubMed

    Boudaoud, S; Rix, H; Al Harrach, M; Marin, F

    2014-01-01

    Recent studies pointed out possible shape modifications of the Probability Density Function (PDF) of surface electromyographical (sEMG) data according to several contexts like fatigue and muscle force increase. Following this idea, criteria have been proposed to monitor these shape modifications mainly using High Order Statistics (HOS) parameters like skewness and kurtosis. In experimental conditions, these parameters are confronted with small sample size in the estimation process. This small sample size induces errors in the estimated HOS parameters restraining real-time and precise sEMG PDF shape monitoring. Recently, a functional formalism, the Core Shape Model (CSM), has been used to analyse shape modifications of PDF curves. In this work, taking inspiration from CSM method, robust functional statistics are proposed to emulate both skewness and kurtosis behaviors. These functional statistics combine both kernel density estimation and PDF shape distances to evaluate shape modifications even in presence of small sample size. Then, the proposed statistics are tested, using Monte Carlo simulations, on both normal and Log-normal PDFs that mimic observed sEMG PDF shape behavior during muscle contraction. According to the obtained results, the functional statistics seem to be more robust than HOS parameters to small sample size effect and more accurate in sEMG PDF shape screening applications.

  8. Multiscale Characterization of the Probability Density Functions of Velocity and Temperature Increment Fields

    NASA Astrophysics Data System (ADS)

    DeMarco, Adam Ward

    The turbulent motions with the atmospheric boundary layer exist over a wide range of spatial and temporal scales and are very difficult to characterize. Thus, to explore the behavior of such complex flow enviroments, it is customary to examine their properties from a statistical perspective. Utilizing the probability density functions of velocity and temperature increments, deltau and deltaT, respectively, this work investigates their multiscale behavior to uncover the unique traits that have yet to be thoroughly studied. Utilizing diverse datasets, including idealized, wind tunnel experiments, atmospheric turbulence field measurements, multi-year ABL tower observations, and mesoscale models simulations, this study reveals remarkable similiarities (and some differences) between the small and larger scale components of the probability density functions increments fields. This comprehensive analysis also utilizes a set of statistical distributions to showcase their ability to capture features of the velocity and temperature increments' probability density functions (pdfs) across multiscale atmospheric motions. An approach is proposed for estimating their pdfs utilizing the maximum likelihood estimation (MLE) technique, which has never been conducted utilizing atmospheric data. Using this technique, we reveal the ability to estimate higher-order moments accurately with a limited sample size, which has been a persistent concern for atmospheric turbulence research. With the use robust Goodness of Fit (GoF) metrics, we quantitatively reveal the accuracy of the distributions to the diverse dataset. Through this analysis, it is shown that the normal inverse Gaussian (NIG) distribution is a prime candidate to be used as an estimate of the increment pdfs fields. Therefore, using the NIG model and its parameters, we display the variations in the increments over a range of scales revealing some unique scale-dependent qualities under various stability and ow conditions. This novel approach can provide a method of characterizing increment fields with the sole use of only four pdf parameters. Also, we investigate the capability of the current state-of-the-art mesoscale atmospheric models to predict the features and highlight the potential for use for future model development. With the knowledge gained in this study, a number of applications can benefit by using our methodology, including the wind energy and optical wave propagation fields.

  9. Density estimates of monarch butterflies overwintering in central Mexico

    PubMed Central

    Diffendorfer, Jay E.; López-Hoffman, Laura; Oberhauser, Karen; Pleasants, John; Semmens, Brice X.; Semmens, Darius; Taylor, Orley R.; Wiederholt, Ruscena

    2017-01-01

    Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations. PMID:28462031

  10. Density estimates of monarch butterflies overwintering in central Mexico

    USGS Publications Warehouse

    Thogmartin, Wayne E.; Diffendorfer, James E.; Lopez-Hoffman, Laura; Oberhauser, Karen; Pleasants, John M.; Semmens, Brice X.; Semmens, Darius J.; Taylor, Orley R.; Wiederholt, Ruscena

    2017-01-01

    Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations.

  11. A Method to Estimate the Probability That Any Individual Lightning Stroke Contacted the Surface Within Any Radius of Any Point

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.; Roeder, William; Merceret, Francis J.

    2010-01-01

    A technique has been developed to calculate the probability that any nearby lightning stroke is within any radius of any point of interest. In practice, this provides the probability that a nearby lightning stroke was within a key distance of a facility, rather than the error ellipses centered on the stroke. This process takes the current bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to get the probability that the stroke is inside any specified radius. This new facility-centric technique will be much more useful to the space launch customers and may supersede the lightning error ellipse approach discussed in [5], [6].

  12. Characterization of Cloud Water-Content Distribution

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2010-01-01

    The development of realistic cloud parameterizations for climate models requires accurate characterizations of subgrid distributions of thermodynamic variables. To this end, a software tool was developed to characterize cloud water-content distributions in climate-model sub-grid scales. This software characterizes distributions of cloud water content with respect to cloud phase, cloud type, precipitation occurrence, and geo-location using CloudSat radar measurements. It uses a statistical method called maximum likelihood estimation to estimate the probability density function of the cloud water content.

  13. Detection limit for rate fluctuations in inhomogeneous Poisson processes

    NASA Astrophysics Data System (ADS)

    Shintani, Toshiaki; Shinomoto, Shigeru

    2012-04-01

    Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.

  14. Detection limit for rate fluctuations in inhomogeneous Poisson processes.

    PubMed

    Shintani, Toshiaki; Shinomoto, Shigeru

    2012-04-01

    Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.

  15. Probabilities and statistics for backscatter estimates obtained by a scatterometer

    NASA Technical Reports Server (NTRS)

    Pierson, Willard J., Jr.

    1989-01-01

    Methods for the recovery of winds near the surface of the ocean from measurements of the normalized radar backscattering cross section must recognize and make use of the statistics (i.e., the sampling variability) of the backscatter measurements. Radar backscatter values from a scatterometer are random variables with expected values given by a model. A model relates backscatter to properties of the waves on the ocean, which are in turn generated by the winds in the atmospheric marine boundary layer. The effective wind speed and direction at a known height for a neutrally stratified atmosphere are the values to be recovered from the model. The probability density function for the backscatter values is a normal probability distribution with the notable feature that the variance is a known function of the expected value. The sources of signal variability, the effects of this variability on the wind speed estimation, and criteria for the acceptance or rejection of models are discussed. A modified maximum likelihood method for estimating wind vectors is described. Ways to make corrections for the kinds of errors found for the Seasat SASS model function are described, and applications to a new scatterometer are given.

  16. LFSPMC: Linear feature selection program using the probability of misclassification

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.; Marion, B. P.

    1975-01-01

    The computational procedure and associated computer program for a linear feature selection technique are presented. The technique assumes that: a finite number, m, of classes exists; each class is described by an n-dimensional multivariate normal density function of its measurement vectors; the mean vector and covariance matrix for each density function are known (or can be estimated); and the a priori probability for each class is known. The technique produces a single linear combination of the original measurements which minimizes the one-dimensional probability of misclassification defined by the transformed densities.

  17. Density of American black bears in New Mexico

    USGS Publications Warehouse

    Gould, Matthew J.; Cain, James W.; Roemer, Gary W.; Gould, William R.; Liley, Stewart

    2018-01-01

    Considering advances in noninvasive genetic sampling and spatially explicit capture–recapture (SECR) models, the New Mexico Department of Game and Fish sought to update their density estimates for American black bear (Ursus americanus) populations in New Mexico, USA, to aide in setting sustainable harvest limits. We estimated black bear density in the Sangre de Cristo, Sandia, and Sacramento Mountains, New Mexico, 2012–2014. We collected hair samples from black bears using hair traps and bear rubs and used a sex marker and a suite of microsatellite loci to individually genotype hair samples. We then estimated density in a SECR framework using sex, elevation, land cover type, and time to model heterogeneity in detection probability and the spatial scale over which detection probability declines. We sampled the populations using 554 hair traps and 117 bear rubs and collected 4,083 hair samples. We identified 725 (367 male, 358 female) individuals. Our density estimates varied from 16.5 bears/100 km2 (95% CI = 11.6–23.5) in the southern Sacramento Mountains to 25.7 bears/100 km2 (95% CI = 13.2–50.1) in the Sandia Mountains. Overall, detection probability at the activity center (g0) was low across all study areas and ranged from 0.00001 to 0.02. The low values of g0 were primarily a result of half of all hair samples for which genotypes were attempted failing to produce a complete genotype. We speculate that the low success we had genotyping hair samples was due to exceedingly high levels of ultraviolet (UV) radiation that degraded the DNA in the hair. Despite sampling difficulties, we were able to produce density estimates with levels of precision comparable to those estimated for black bears elsewhere in the United States.

  18. Exposing extinction risk analysis to pathogens: Is disease just another form of density dependence?

    USGS Publications Warehouse

    Gerber, L.R.; McCallum, H.; Lafferty, K.D.; Sabo, J.L.; Dobson, A.

    2005-01-01

    In the United States and several other countries, the development of population viability analyses (PVA) is a legal requirement of any species survival plan developed for threatened and endangered species. Despite the importance of pathogens in natural populations, little attention has been given to host-pathogen dynamics in PVA. To study the effect of infectious pathogens on extinction risk estimates generated from PVA, we review and synthesize the relevance of host-pathogen dynamics in analyses of extinction risk. We then develop a stochastic, density-dependent host-parasite model to investigate the effects of disease on the persistence of endangered populations. We show that this model converges on a Ricker model of density dependence under a suite of limiting assumptions, including a high probability that epidemics will arrive and occur. Using this modeling framework, we then quantify: (1) dynamic differences between time series generated by disease and Ricker processes with the same parameters; (2) observed probabilities of quasi-extinction for populations exposed to disease or self-limitation; and (3) bias in probabilities of quasi-extinction estimated by density-independent PVAs when populations experience either form of density dependence. Our results suggest two generalities about the relationships among disease, PVA, and the management of endangered species. First, disease more strongly increases variability in host abundance and, thus, the probability of quasi-extinction, than does self-limitation. This result stems from the fact that the effects and the probability of occurrence of disease are both density dependent. Second, estimates of quasi-extinction are more often overly optimistic for populations experiencing disease than for those subject to self-limitation. Thus, although the results of density-independent PVAs may be relatively robust to some particular assumptions about density dependence, they are less robust when endangered populations are known to be susceptible to disease. If potential management actions involve manipulating pathogens, then it may be useful to model disease explicitly. ?? 2005 by the Ecological Society of America.

  19. Estimation of proportions in mixed pixels through their region characterization

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B. (Principal Investigator)

    1981-01-01

    A region of mixed pixels can be characterized through the probability density function of proportions of classes in the pixels. Using information from the spectral vectors of a given set of pixels from the mixed pixel region, expressions are developed for obtaining the maximum likelihood estimates of the parameters of probability density functions of proportions. The proportions of classes in the mixed pixels can then be estimated. If the mixed pixels contain objects of two classes, the computation can be reduced by transforming the spectral vectors using a transformation matrix that simultaneously diagonalizes the covariance matrices of the two classes. If the proportions of the classes of a set of mixed pixels from the region are given, then expressions are developed for obtaining the estmates of the parameters of the probability density function of the proportions of mixed pixels. Development of these expressions is based on the criterion of the minimum sum of squares of errors. Experimental results from the processing of remotely sensed agricultural multispectral imagery data are presented.

  20. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yumin; Lum, Kai-Yew; Wang Qingguo

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus,more » the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.« less

  1. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Wang, Qing-Guo; Lum, Kai-Yew

    2009-03-01

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

  2. High population density of black-handed spider monkeys (Ateles geoffroyi) in Costa Rican lowland wet forest.

    PubMed

    Weghorst, Jennifer A

    2007-04-01

    The main objective of this study was to estimate the population density and demographic structure of spider monkeys living in wet forest in the vicinity of Sirena Biological Station, Corcovado National Park, Costa Rica. Results of a 14-month line-transect survey showed that spider monkeys of Sirena have one of the highest population densities ever recorded for this genus. Density estimates varied, however, depending on the method chosen to estimate transect width. Data from behavioral monitoring were available to compare density estimates derived from the survey, providing a check of the survey's accuracy. A combination of factors has most probably contributed to the high density of Ateles, including habitat protection within a national park and high diversity of trees of the fig family, Moraceae. Although natural densities of spider monkeys at Sirena are substantially higher than those recorded at most other sites and in previous studies at this site, mean subgroup size and age ratios were similar to those determined in previous studies. Sex ratios were similar to those of other sites with high productivity. Although high densities of preferred fruit trees in the wet, productive forests of Sirena may support a dense population of spider monkeys, other demographic traits recorded at Sirena fall well within the range of values recorded elsewhere for the species.

  3. Simulated maximum likelihood method for estimating kinetic rates in gene expression.

    PubMed

    Tian, Tianhai; Xu, Songlin; Gao, Junbin; Burrage, Kevin

    2007-01-01

    Kinetic rate in gene expression is a key measurement of the stability of gene products and gives important information for the reconstruction of genetic regulatory networks. Recent developments in experimental technologies have made it possible to measure the numbers of transcripts and protein molecules in single cells. Although estimation methods based on deterministic models have been proposed aimed at evaluating kinetic rates from experimental observations, these methods cannot tackle noise in gene expression that may arise from discrete processes of gene expression, small numbers of mRNA transcript, fluctuations in the activity of transcriptional factors and variability in the experimental environment. In this paper, we develop effective methods for estimating kinetic rates in genetic regulatory networks. The simulated maximum likelihood method is used to evaluate parameters in stochastic models described by either stochastic differential equations or discrete biochemical reactions. Different types of non-parametric density functions are used to measure the transitional probability of experimental observations. For stochastic models described by biochemical reactions, we propose to use the simulated frequency distribution to evaluate the transitional density based on the discrete nature of stochastic simulations. The genetic optimization algorithm is used as an efficient tool to search for optimal reaction rates. Numerical results indicate that the proposed methods can give robust estimations of kinetic rates with good accuracy.

  4. Mixed effects modelling for glass category estimation from glass refractive indices.

    PubMed

    Lucy, David; Zadora, Grzegorz

    2011-10-10

    520 Glass fragments were taken from 105 glass items. Each item was either a container, a window, or glass from an automobile. Each of these three classes of use are defined as glass categories. Refractive indexes were measured both before, and after a programme of re-annealing. Because the refractive index of each fragment could not in itself be observed before and after re-annealing, a model based approach was used to estimate the change in refractive index for each glass category. It was found that less complex estimation methods would be equivalent to the full model, and were subsequently used. The change in refractive index was then used to calculate a measure of the evidential value for each item belonging to each glass category. The distributions of refractive index change were considered for each glass category, and it was found that, possibly due to small samples, members of the normal family would not adequately model the refractive index changes within two of the use types considered here. Two alternative approaches to modelling the change in refractive index were used, one employed more established kernel density estimates, the other a newer approach called log-concave estimation. Either method when applied to the change in refractive index was found to give good estimates of glass category, however, on all performance metrics kernel density estimates were found to be slightly better than log-concave estimates, although the estimates from log-concave estimation prossessed properties which had some qualitative appeal not encapsulated in the selected measures of performance. These results and implications of these two methods of estimating probability densities for glass refractive indexes are discussed. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Joint Bayesian Estimation of Quasar Continua and the Lyα Forest Flux Probability Distribution Function

    NASA Astrophysics Data System (ADS)

    Eilers, Anna-Christina; Hennawi, Joseph F.; Lee, Khee-Gan

    2017-08-01

    We present a new Bayesian algorithm making use of Markov Chain Monte Carlo sampling that allows us to simultaneously estimate the unknown continuum level of each quasar in an ensemble of high-resolution spectra, as well as their common probability distribution function (PDF) for the transmitted Lyα forest flux. This fully automated PDF regulated continuum fitting method models the unknown quasar continuum with a linear principal component analysis (PCA) basis, with the PCA coefficients treated as nuisance parameters. The method allows one to estimate parameters governing the thermal state of the intergalactic medium (IGM), such as the slope of the temperature-density relation γ -1, while marginalizing out continuum uncertainties in a fully Bayesian way. Using realistic mock quasar spectra created from a simplified semi-numerical model of the IGM, we show that this method recovers the underlying quasar continua to a precision of ≃ 7 % and ≃ 10 % at z = 3 and z = 5, respectively. Given the number of principal component spectra, this is comparable to the underlying accuracy of the PCA model itself. Most importantly, we show that we can achieve a nearly unbiased estimate of the slope γ -1 of the IGM temperature-density relation with a precision of +/- 8.6 % at z = 3 and +/- 6.1 % at z = 5, for an ensemble of ten mock high-resolution quasar spectra. Applying this method to real quasar spectra and comparing to a more realistic IGM model from hydrodynamical simulations would enable precise measurements of the thermal and cosmological parameters governing the IGM, albeit with somewhat larger uncertainties, given the increased flexibility of the model.

  6. Estimating the influence of population density and dispersal behavior on the ability to detect and monitor Agrilus planipennis (Coleoptera: Buprestidae) populations.

    PubMed

    Mercader, R J; Siegert, N W; McCullough, D G

    2012-02-01

    Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), a phloem-feeding pest of ash (Fraxinus spp.) trees native to Asia, was first discovered in North America in 2002. Since then, A. planipennis has been found in 15 states and two Canadian provinces and has killed tens of millions of ash trees. Understanding the probability of detecting and accurately delineating low density populations of A. planipennis is a key component of effective management strategies. Here we approach this issue by 1) quantifying the efficiency of sampling nongirdled ash trees to detect new infestations of A. planipennis under varying population densities and 2) evaluating the likelihood of accurately determining the localized spread of discrete A. planipennis infestations. To estimate the probability a sampled tree would be detected as infested across a gradient of A. planipennis densities, we used A. planipennis larval density estimates collected during intensive surveys conducted in three recently infested sites with known origins. Results indicated the probability of detecting low density populations by sampling nongirdled trees was very low, even when detection tools were assumed to have three-fold higher detection probabilities than nongirdled trees. Using these results and an A. planipennis spread model, we explored the expected accuracy with which the spatial extent of an A. planipennis population could be determined. Model simulations indicated a poor ability to delineate the extent of the distribution of localized A. planipennis populations, particularly when a small proportion of the population was assumed to have a higher propensity for dispersal.

  7. Estimation of insurance premiums for coverage against natural disaster risk: an application of Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Paudel, Y.; Botzen, W. J. W.; Aerts, J. C. J. H.

    2013-03-01

    This study applies Bayesian Inference to estimate flood risk for 53 dyke ring areas in the Netherlands, and focuses particularly on the data scarcity and extreme behaviour of catastrophe risk. The probability density curves of flood damage are estimated through Monte Carlo simulations. Based on these results, flood insurance premiums are estimated using two different practical methods that each account in different ways for an insurer's risk aversion and the dispersion rate of loss data. This study is of practical relevance because insurers have been considering the introduction of flood insurance in the Netherlands, which is currently not generally available.

  8. An efficient distribution method for nonlinear transport problems in stochastic porous media

    NASA Astrophysics Data System (ADS)

    Ibrahima, F.; Tchelepi, H.; Meyer, D. W.

    2015-12-01

    Because geophysical data are inexorably sparse and incomplete, stochastic treatments of simulated responses are convenient to explore possible scenarios and assess risks in subsurface problems. In particular, understanding how uncertainties propagate in porous media with nonlinear two-phase flow is essential, yet challenging, in reservoir simulation and hydrology. We give a computationally efficient and numerically accurate method to estimate the one-point probability density (PDF) and cumulative distribution functions (CDF) of the water saturation for the stochastic Buckley-Leverett problem when the probability distributions of the permeability and porosity fields are available. The method draws inspiration from the streamline approach and expresses the distributions of interest essentially in terms of an analytically derived mapping and the distribution of the time of flight. In a large class of applications the latter can be estimated at low computational costs (even via conventional Monte Carlo). Once the water saturation distribution is determined, any one-point statistics thereof can be obtained, especially its average and standard deviation. Moreover, rarely available in other approaches, yet crucial information such as the probability of rare events and saturation quantiles (e.g. P10, P50 and P90) can be derived from the method. We provide various examples and comparisons with Monte Carlo simulations to illustrate the performance of the method.

  9. Cell survival fraction estimation based on the probability densities of domain and cell nucleus specific energies using improved microdosimetric kinetic models.

    PubMed

    Sato, Tatsuhiko; Furusawa, Yoshiya

    2012-10-01

    Estimation of the survival fractions of cells irradiated with various particles over a wide linear energy transfer (LET) range is of great importance in the treatment planning of charged-particle therapy. Two computational models were developed for estimating survival fractions based on the concept of the microdosimetric kinetic model. They were designated as the double-stochastic microdosimetric kinetic and stochastic microdosimetric kinetic models. The former model takes into account the stochastic natures of both domain and cell nucleus specific energies, whereas the latter model represents the stochastic nature of domain specific energy by its approximated mean value and variance to reduce the computational time. The probability densities of the domain and cell nucleus specific energies are the fundamental quantities for expressing survival fractions in these models. These densities are calculated using the microdosimetric and LET-estimator functions implemented in the Particle and Heavy Ion Transport code System (PHITS) in combination with the convolution or database method. Both the double-stochastic microdosimetric kinetic and stochastic microdosimetric kinetic models can reproduce the measured survival fractions for high-LET and high-dose irradiations, whereas a previously proposed microdosimetric kinetic model predicts lower values for these fractions, mainly due to intrinsic ignorance of the stochastic nature of cell nucleus specific energies in the calculation. The models we developed should contribute to a better understanding of the mechanism of cell inactivation, as well as improve the accuracy of treatment planning of charged-particle therapy.

  10. Three-dimensional holoscopic image coding scheme using high-efficiency video coding with kernel-based minimum mean-square-error estimation

    NASA Astrophysics Data System (ADS)

    Liu, Deyang; An, Ping; Ma, Ran; Yang, Chao; Shen, Liquan; Li, Kai

    2016-07-01

    Three-dimensional (3-D) holoscopic imaging, also known as integral imaging, light field imaging, or plenoptic imaging, can provide natural and fatigue-free 3-D visualization. However, a large amount of data is required to represent the 3-D holoscopic content. Therefore, efficient coding schemes for this particular type of image are needed. A 3-D holoscopic image coding scheme with kernel-based minimum mean square error (MMSE) estimation is proposed. In the proposed scheme, the coding block is predicted by an MMSE estimator under statistical modeling. In order to obtain the signal statistical behavior, kernel density estimation (KDE) is utilized to estimate the probability density function of the statistical modeling. As bandwidth estimation (BE) is a key issue in the KDE problem, we also propose a BE method based on kernel trick. The experimental results demonstrate that the proposed scheme can achieve a better rate-distortion performance and a better visual rendering quality.

  11. Encircling the dark: constraining dark energy via cosmic density in spheres

    NASA Astrophysics Data System (ADS)

    Codis, S.; Pichon, C.; Bernardeau, F.; Uhlemann, C.; Prunet, S.

    2016-08-01

    The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few per cent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell-density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical-collapse dynamics is made available online, so as to provide straightforward means of testing the effect of alternative dark energy models and initial power spectra on the low-redshift matter distribution.

  12. A hierarchical model for estimating density in camera-trap studies

    USGS Publications Warehouse

    Royle, J. Andrew; Nichols, James D.; Karanth, K.Ullas; Gopalaswamy, Arjun M.

    2009-01-01

    Estimating animal density using capture–recapture data from arrays of detection devices such as camera traps has been problematic due to the movement of individuals and heterogeneity in capture probability among them induced by differential exposure to trapping.We develop a spatial capture–recapture model for estimating density from camera-trapping data which contains explicit models for the spatial point process governing the distribution of individuals and their exposure to and detection by traps.We adopt a Bayesian approach to analysis of the hierarchical model using the technique of data augmentation.The model is applied to photographic capture–recapture data on tigers Panthera tigris in Nagarahole reserve, India. Using this model, we estimate the density of tigers to be 14·3 animals per 100 km2 during 2004.Synthesis and applications. Our modelling framework largely overcomes several weaknesses in conventional approaches to the estimation of animal density from trap arrays. It effectively deals with key problems such as individual heterogeneity in capture probabilities, movement of traps, presence of potential ‘holes’ in the array and ad hoc estimation of sample area. The formulation, thus, greatly enhances flexibility in the conduct of field surveys as well as in the analysis of data, from studies that may involve physical, photographic or DNA-based ‘captures’ of individual animals.

  13. Investigation of safety analysis methods using computer vision techniques

    NASA Astrophysics Data System (ADS)

    Shirazi, Mohammad Shokrolah; Morris, Brendan Tran

    2017-09-01

    This work investigates safety analysis methods using computer vision techniques. The vision-based tracking system is developed to provide the trajectory of road users including vehicles and pedestrians. Safety analysis methods are developed to estimate time to collision (TTC) and postencroachment time (PET) that are two important safety measurements. Corresponding algorithms are presented and their advantages and drawbacks are shown through their success in capturing the conflict events in real time. The performance of the tracking system is evaluated first, and probability density estimation of TTC and PET are shown for 1-h monitoring of a Las Vegas intersection. Finally, an idea of an intersection safety map is introduced, and TTC values of two different intersections are estimated for 1 day from 8:00 a.m. to 6:00 p.m.

  14. Wald Sequential Probability Ratio Test for Space Object Conjunction Assessment

    NASA Technical Reports Server (NTRS)

    Carpenter, James R.; Markley, F Landis

    2014-01-01

    This paper shows how satellite owner/operators may use sequential estimates of collision probability, along with a prior assessment of the base risk of collision, in a compound hypothesis ratio test to inform decisions concerning collision risk mitigation maneuvers. The compound hypothesis test reduces to a simple probability ratio test, which appears to be a novel result. The test satisfies tolerances related to targeted false alarm and missed detection rates. This result is independent of the method one uses to compute the probability density that one integrates to compute collision probability. A well-established test case from the literature shows that this test yields acceptable results within the constraints of a typical operational conjunction assessment decision timeline. Another example illustrates the use of the test in a practical conjunction assessment scenario based on operations of the International Space Station.

  15. Optimum nonparametric estimation of population density based on ordered distances

    USGS Publications Warehouse

    Patil, S.A.; Kovner, J.L.; Burnham, Kenneth P.

    1982-01-01

    The asymptotic mean and error mean square are determined for the nonparametric estimator of plant density by distance sampling proposed by Patil, Burnham and Kovner (1979, Biometrics 35, 597-604. On the basis of these formulae, a bias-reduced version of this estimator is given, and its specific form is determined which gives minimum mean square error under varying assumptions about the true probability density function of the sampled data. Extension is given to line-transect sampling.

  16. Population Estimation Methods for Free-Ranging Dogs: A Systematic Review.

    PubMed

    Belo, Vinícius Silva; Werneck, Guilherme Loureiro; da Silva, Eduardo Sérgio; Barbosa, David Soeiro; Struchiner, Claudio José

    2015-01-01

    The understanding of the structure of free-roaming dog populations is of extreme importance for the planning and monitoring of populational control strategies and animal welfare. The methods used to estimate the abundance of this group of dogs are more complex than the ones used with domiciled owned dogs. In this systematic review, we analyze the techniques and the results obtained in studies that seek to estimate the size of free-ranging dog populations. Twenty-six studies were reviewed regarding the quality of execution and their capacity to generate valid estimates. Seven of the eight publications that take a simple count of the animal population did not consider the different probabilities of animal detection; only one study used methods based on distances; twelve relied on capture-recapture models for closed populations without considering heterogeneities in capture probabilities; six studies applied their own methods with different potential and limitations. Potential sources of bias in the studies were related to the inadequate description or implementation of animal capturing or viewing procedures and to inadequacies in the identification and registration of dogs. Thus, there was a predominance of estimates with low validity. Abundance and density estimates carried high variability, and all studies identified a greater number of male dogs. We point to enhancements necessary for the implementation of future studies and to potential updates and revisions to the recommendations of the World Health Organization with respect to the estimation of free-ranging dog populations.

  17. Using occupancy models to investigate the prevalence of ectoparasitic vectors on hosts: an example with fleas on prairie dogs

    USGS Publications Warehouse

    Eads, David A.; Biggins, Dean E.; Doherty, Paul F.; Gage, Kenneth L.; Huyvaert, Kathryn P.; Long, Dustin H.; Antolin, Michael F.

    2013-01-01

    Ectoparasites are often difficult to detect in the field. We developed a method that can be used with occupancy models to estimate the prevalence of ectoparasites on hosts, and to investigate factors that influence rates of ectoparasite occupancy while accounting for imperfect detection. We describe the approach using a study of fleas (Siphonaptera) on black-tailed prairie dogs (Cynomys ludovicianus). During each primary occasion (monthly trapping events), we combed a prairie dog three consecutive times to detect fleas (15 s/combing). We used robust design occupancy modeling to evaluate hypotheses for factors that might correlate with the occurrence of fleas on prairie dogs, and factors that might influence the rate at which prairie dogs are colonized by fleas. Our combing method was highly effective; dislodged fleas fell into a tub of water and could not escape, and there was an estimated 99.3% probability of detecting a flea on an occupied host when using three combings. While overall detection was high, the probability of detection was always <1.00 during each primary combing occasion, highlighting the importance of considering imperfect detection. The combing method (removal of fleas) caused a decline in detection during primary occasions, and we accounted for that decline to avoid inflated estimates of occupancy. Regarding prairie dogs, flea occupancy was heightened in old/natural colonies of prairie dogs, and on hosts that were in poor condition. Occupancy was initially low in plots with high densities of prairie dogs, but, as the study progressed, the rate of flea colonization increased in plots with high densities of prairie dogs in particular. Our methodology can be used to improve studies of ectoparasites, especially when the probability of detection is low. Moreover, the method can be modified to investigate the co-occurrence of ectoparasite species, and community level factors such as species richness and interspecific interactions.

  18. Estimating the probability that the Taser directly causes human ventricular fibrillation.

    PubMed

    Sun, H; Haemmerich, D; Rahko, P S; Webster, J G

    2010-04-01

    This paper describes the first methodology and results for estimating the order of probability for Tasers directly causing human ventricular fibrillation (VF). The probability of an X26 Taser causing human VF was estimated using: (1) current density near the human heart estimated by using 3D finite-element (FE) models; (2) prior data of the maximum dart-to-heart distances that caused VF in pigs; (3) minimum skin-to-heart distances measured in erect humans by echocardiography; and (4) dart landing distribution estimated from police reports. The estimated mean probability of human VF was 0.001 for data from a pig having a chest wall resected to the ribs and 0.000006 for data from a pig with no resection when inserting a blunt probe. The VF probability for a given dart location decreased with the dart-to-heart horizontal distance (radius) on the skin surface.

  19. Probabilities and statistics for backscatter estimates obtained by a scatterometer with applications to new scatterometer design data

    NASA Technical Reports Server (NTRS)

    Pierson, Willard J., Jr.

    1989-01-01

    The values of the Normalized Radar Backscattering Cross Section (NRCS), sigma (o), obtained by a scatterometer are random variables whose variance is a known function of the expected value. The probability density function can be obtained from the normal distribution. Models for the expected value obtain it as a function of the properties of the waves on the ocean and the winds that generated the waves. Point estimates of the expected value were found from various statistics given the parameters that define the probability density function for each value. Random intervals were derived with a preassigned probability of containing that value. A statistical test to determine whether or not successive values of sigma (o) are truly independent was derived. The maximum likelihood estimates for wind speed and direction were found, given a model for backscatter as a function of the properties of the waves on the ocean. These estimates are biased as a result of the terms in the equation that involve natural logarithms, and calculations of the point estimates of the maximum likelihood values are used to show that the contributions of the logarithmic terms are negligible and that the terms can be omitted.

  20. Estimation and simulation of multi-beam sonar noise.

    PubMed

    Holmin, Arne Johannes; Korneliussen, Rolf J; Tjøstheim, Dag

    2016-02-01

    Methods for the estimation and modeling of noise present in multi-beam sonar data, including the magnitude, probability distribution, and spatial correlation of the noise, are developed. The methods consider individual acoustic samples and facilitate compensation of highly localized noise as well as subtraction of noise estimates averaged over time. The modeled noise is included in an existing multi-beam sonar simulation model [Holmin, Handegard, Korneliussen, and Tjøstheim, J. Acoust. Soc. Am. 132, 3720-3734 (2012)], resulting in an improved model that can be used to strengthen interpretation of data collected in situ at any signal to noise ratio. Two experiments, from the former study in which multi-beam sonar data of herring schools were simulated, are repeated with inclusion of noise. These experiments demonstrate (1) the potentially large effect of changes in fish orientation on the backscatter from a school, and (2) the estimation of behavioral characteristics such as the polarization and packing density of fish schools. The latter is achieved by comparing real data with simulated data for different polarizations and packing densities.

  1. Demographics and density estimates of two three-toed box turtle (Terrapene carolina triunguis) populations within forest and restored prairie sites in central Missouri.

    PubMed

    O'Connor, Kelly M; Rittenhouse, Chadwick D; Millspaugh, Joshua J; Rittenhouse, Tracy A G

    2015-01-01

    Box turtles (Terrapene carolina) are widely distributed but vulnerable to population decline across their range. Using distance sampling, morphometric data, and an index of carapace damage, we surveyed three-toed box turtles (Terrapene carolina triunguis) at 2 sites in central Missouri, and compared differences in detection probabilities when transects were walked by one or two observers. Our estimated turtle densities within forested cover was less at the Thomas S. Baskett Wildlife Research and Education Center, a site dominated by eastern hardwood forest (d = 1.85 turtles/ha, 95% CI [1.13, 3.03]) than at the Prairie Fork Conservation Area, a site containing a mix of open field and hardwood forest (d = 4.14 turtles/ha, 95% CI [1.99, 8.62]). Turtles at Baskett were significantly older and larger than turtles at Prairie Fork. Damage to the carapace did not differ significantly between the 2 populations despite the more prevalent habitat management including mowing and prescribed fire at Prairie Fork. We achieved improved estimates of density using two rather than one observer at Prairie Fork, but negligible differences in density estimates between the two methods at Baskett. Error associated with probability of detection decreased at both sites with the addition of a second observer. We provide demographic data on three-toed box turtles that suggest the use of a range of habitat conditions by three-toed box turtles. This case study suggests that habitat management practices and their impacts on habitat composition may be a cause of the differences observed in our focal populations of turtles.

  2. Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map.

    PubMed

    Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S

    2008-04-11

    A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker-Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes.

  3. Compositional cokriging for mapping the probability risk of groundwater contamination by nitrates.

    PubMed

    Pardo-Igúzquiza, Eulogio; Chica-Olmo, Mario; Luque-Espinar, Juan A; Rodríguez-Galiano, Víctor

    2015-11-01

    Contamination by nitrates is an important cause of groundwater pollution and represents a potential risk to human health. Management decisions must be made using probability maps that assess the nitrate concentration potential of exceeding regulatory thresholds. However these maps are obtained with only a small number of sparse monitoring locations where the nitrate concentrations have been measured. It is therefore of great interest to have an efficient methodology for obtaining those probability maps. In this paper, we make use of the fact that the discrete probability density function is a compositional variable. The spatial discrete probability density function is estimated by compositional cokriging. There are several advantages in using this approach: (i) problems of classical indicator cokriging, like estimates outside the interval (0,1) and order relations, are avoided; (ii) secondary variables (e.g. aquifer parameters) can be included in the estimation of the probability maps; (iii) uncertainty maps of the probability maps can be obtained; (iv) finally there are modelling advantages because the variograms and cross-variograms of real variables that do not have the restrictions of indicator variograms and indicator cross-variograms. The methodology was applied to the Vega de Granada aquifer in Southern Spain and the advantages of the compositional cokriging approach were demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A Non-Parametric Probability Density Estimator and Some Applications.

    DTIC Science & Technology

    1984-05-01

    distributions, which are assumed to be representa- tive of platykurtic , mesokurtic, and leptokurtic distribu- tions in general. The dissertation is... platykurtic distributions. Consider, for example, the uniform distribution shown in Figure 4. 34 o . 1., Figure 4 -Sensitivity to Support Estimation The...results of the density function comparisons indicate that the new estimator is clearly -Z superior for platykurtic distributions, equal to the best 59

  5. Analysing designed experiments in distance sampling

    Treesearch

    Stephen T. Buckland; Robin E. Russell; Brett G. Dickson; Victoria A. Saab; Donal N. Gorman; William M. Block

    2009-01-01

    Distance sampling is a survey technique for estimating the abundance or density of wild animal populations. Detection probabilities of animals inherently differ by species, age class, habitats, or sex. By incorporating the change in an observer's ability to detect a particular class of animals as a function of distance, distance sampling leads to density estimates...

  6. A method for mapping flood hazard along roads.

    PubMed

    Kalantari, Zahra; Nickman, Alireza; Lyon, Steve W; Olofsson, Bo; Folkeson, Lennart

    2014-01-15

    A method was developed for estimating and mapping flood hazard probability along roads using road and catchment characteristics as physical catchment descriptors (PCDs). The method uses a Geographic Information System (GIS) to derive candidate PCDs and then identifies those PCDs that significantly predict road flooding using a statistical modelling approach. The method thus allows flood hazards to be estimated and also provides insights into the relative roles of landscape characteristics in determining road-related flood hazards. The method was applied to an area in western Sweden where severe road flooding had occurred during an intense rain event as a case study to demonstrate its utility. The results suggest that for this case study area three categories of PCDs are useful for prediction of critical spots prone to flooding along roads: i) topography, ii) soil type, and iii) land use. The main drivers among the PCDs considered were a topographical wetness index, road density in the catchment, soil properties in the catchment (mainly the amount of gravel substrate) and local channel slope at the site of a road-stream intersection. These can be proposed as strong indicators for predicting the flood probability in ungauged river basins in this region, but some care is needed in generalising the case study results other potential factors are also likely to influence the flood hazard probability. Overall, the method proposed represents a straightforward and consistent way to estimate flooding hazards to inform both the planning of future roadways and the maintenance of existing roadways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Real-time Mainshock Forecast by Statistical Discrimination of Foreshock Clusters

    NASA Astrophysics Data System (ADS)

    Nomura, S.; Ogata, Y.

    2016-12-01

    Foreshock discremination is one of the most effective ways for short-time forecast of large main shocks. Though many large earthquakes accompany their foreshocks, discreminating them from enormous small earthquakes is difficult and only probabilistic evaluation from their spatio-temporal features and magnitude evolution may be available. Logistic regression is the statistical learning method best suited to such binary pattern recognition problems where estimates of a-posteriori probability of class membership are required. Statistical learning methods can keep learning discreminating features from updating catalog and give probabilistic recognition of forecast in real time. We estimated a non-linear function of foreshock proportion by smooth spline bases and evaluate the possibility of foreshocks by the logit function. In this study, we classified foreshocks from earthquake catalog by the Japan Meteorological Agency by single-link clustering methods and learned spatial and temporal features of foreshocks by the probability density ratio estimation. We use the epicentral locations, time spans and difference in magnitudes for learning and forecasting. Magnitudes of main shocks are also predicted our method by incorporating b-values into our method. We discuss the spatial pattern of foreshocks from the classifier composed by our model. We also implement a back test to validate predictive performance of the model by this catalog.

  8. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution – Application to the jaguar (Panthera onca)

    PubMed Central

    Robinson, Hugh S.; Abarca, Maria; Zeller, Katherine A.; Velasquez, Grisel; Paemelaere, Evi A. D.; Goldberg, Joshua F.; Payan, Esteban; Hoogesteijn, Rafael; Boede, Ernesto O.; Schmidt, Krzysztof; Lampo, Margarita; Viloria, Ángel L.; Carreño, Rafael; Robinson, Nathaniel; Lukacs, Paul M.; Nowak, J. Joshua; Salom-Pérez, Roberto; Castañeda, Franklin; Boron, Valeria; Quigley, Howard

    2018-01-01

    Broad scale population estimates of declining species are desired for conservation efforts. However, for many secretive species including large carnivores, such estimates are often difficult. Based on published density estimates obtained through camera trapping, presence/absence data, and globally available predictive variables derived from satellite imagery, we modelled density and occurrence of a large carnivore, the jaguar, across the species’ entire range. We then combined these models in a hierarchical framework to estimate the total population. Our models indicate that potential jaguar density is best predicted by measures of primary productivity, with the highest densities in the most productive tropical habitats and a clear declining gradient with distance from the equator. Jaguar distribution, in contrast, is determined by the combined effects of human impacts and environmental factors: probability of jaguar occurrence increased with forest cover, mean temperature, and annual precipitation and declined with increases in human foot print index and human density. Probability of occurrence was also significantly higher for protected areas than outside of them. We estimated the world’s jaguar population at 173,000 (95% CI: 138,000–208,000) individuals, mostly concentrated in the Amazon Basin; elsewhere, populations tend to be small and fragmented. The high number of jaguars results from the large total area still occupied (almost 9 million km2) and low human densities (< 1 person/km2) coinciding with high primary productivity in the core area of jaguar range. Our results show the importance of protected areas for jaguar persistence. We conclude that combining modelling of density and distribution can reveal ecological patterns and processes at global scales, can provide robust estimates for use in species assessments, and can guide broad-scale conservation actions. PMID:29579129

  9. Python Radiative Transfer Emission code (PyRaTE): non-LTE spectral lines simulations

    NASA Astrophysics Data System (ADS)

    Tritsis, A.; Yorke, H.; Tassis, K.

    2018-05-01

    We describe PyRaTE, a new, non-local thermodynamic equilibrium (non-LTE) line radiative transfer code developed specifically for post-processing astrochemical simulations. Population densities are estimated using the escape probability method. When computing the escape probability, the optical depth is calculated towards all directions with density, molecular abundance, temperature and velocity variations all taken into account. A very easy-to-use interface, capable of importing data from simulations outputs performed with all major astrophysical codes, is also developed. The code is written in PYTHON using an "embarrassingly parallel" strategy and can handle all geometries and projection angles. We benchmark the code by comparing our results with those from RADEX (van der Tak et al. 2007) and against analytical solutions and present case studies using hydrochemical simulations. The code will be released for public use.

  10. Stan : A Probabilistic Programming Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.

    Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized maximum likelihood estimates are calculated using optimization methods such as the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm. Stan is also a platform for computing log densities and their gradients and Hessians, which can be used in alternative algorithms such as variational Bayes, expectationmore » propagation, and marginal inference using approximate integration. To this end, Stan is set up so that the densities, gradients, and Hessians, along with intermediate quantities of the algorithm such as acceptance probabilities, are easily accessible. Stan can also be called from the command line using the cmdstan package, through R using the rstan package, and through Python using the pystan package. All three interfaces support sampling and optimization-based inference with diagnostics and posterior analysis. rstan and pystan also provide access to log probabilities, gradients, Hessians, parameter transforms, and specialized plotting.« less

  11. Stan : A Probabilistic Programming Language

    DOE PAGES

    Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; ...

    2017-01-01

    Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized maximum likelihood estimates are calculated using optimization methods such as the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm. Stan is also a platform for computing log densities and their gradients and Hessians, which can be used in alternative algorithms such as variational Bayes, expectationmore » propagation, and marginal inference using approximate integration. To this end, Stan is set up so that the densities, gradients, and Hessians, along with intermediate quantities of the algorithm such as acceptance probabilities, are easily accessible. Stan can also be called from the command line using the cmdstan package, through R using the rstan package, and through Python using the pystan package. All three interfaces support sampling and optimization-based inference with diagnostics and posterior analysis. rstan and pystan also provide access to log probabilities, gradients, Hessians, parameter transforms, and specialized plotting.« less

  12. An estimation method of the direct benefit of a waterlogging control project applicable to the changing environment

    NASA Astrophysics Data System (ADS)

    Zengmei, L.; Guanghua, Q.; Zishen, C.

    2015-05-01

    The direct benefit of a waterlogging control project is reflected by the reduction or avoidance of waterlogging loss. Before and after the construction of a waterlogging control project, the disaster-inducing environment in the waterlogging-prone zone is generally different. In addition, the category, quantity and spatial distribution of the disaster-bearing bodies are also changed more or less. Therefore, under the changing environment, the direct benefit of a waterlogging control project should be the reduction of waterlogging losses compared to conditions with no control project. Moreover, the waterlogging losses with or without the project should be the mathematical expectations of the waterlogging losses when rainstorms of all frequencies meet various water levels in the drainage-accepting zone. So an estimation model of the direct benefit of waterlogging control is proposed. Firstly, on the basis of a Copula function, the joint distribution of the rainstorms and the water levels are established, so as to obtain their joint probability density function. Secondly, according to the two-dimensional joint probability density distribution, the dimensional domain of integration is determined, which is then divided into small domains so as to calculate the probability for each of the small domains and the difference between the average waterlogging loss with and without a waterlogging control project, called the regional benefit of waterlogging control project, under the condition that rainstorms in the waterlogging-prone zone meet the water level in the drainage-accepting zone. Finally, it calculates the weighted mean of the project benefit of all small domains, with probability as the weight, and gets the benefit of the waterlogging control project. Taking the estimation of benefit of a waterlogging control project in Yangshan County, Guangdong Province, as an example, the paper briefly explains the procedures in waterlogging control project benefit estimation. The results show that the waterlogging control benefit estimation model constructed is applicable to the changing conditions that occur in both the disaster-inducing environment of the waterlogging-prone zone and disaster-bearing bodies, considering all conditions when rainstorms of all frequencies meet different water levels in the drainage-accepting zone. Thus, the estimation method of waterlogging control benefit can reflect the actual situation more objectively, and offer a scientific basis for rational decision-making for waterlogging control projects.

  13. Estimation of tiger densities in the tropical dry forests of Panna, Central India, using photographic capture-recapture sampling

    USGS Publications Warehouse

    Karanth, K.Ullas; Chundawat, Raghunandan S.; Nichols, James D.; Kumar, N. Samba

    2004-01-01

    Tropical dry-deciduous forests comprise more than 45% of the tiger (Panthera tigris) habitat in India. However, in the absence of rigorously derived estimates of ecological densities of tigers in dry forests, critical baseline data for managing tiger populations are lacking. In this study tiger densities were estimated using photographic capture–recapture sampling in the dry forests of Panna Tiger Reserve in Central India. Over a 45-day survey period, 60 camera trap sites were sampled in a well-protected part of the 542-km2 reserve during 2002. A total sampling effort of 914 camera-trap-days yielded photo-captures of 11 individual tigers over 15 sampling occasions that effectively covered a 418-km2 area. The closed capture–recapture model Mh, which incorporates individual heterogeneity in capture probabilities, fitted these photographic capture history data well. The estimated capture probability/sample, p̂= 0.04, resulted in an estimated tiger population size and standard error (N̂(SÊN̂)) of 29 (9.65), and a density (D̂(SÊD̂)) of 6.94 (3.23) tigers/100 km2. The estimated tiger density matched predictions based on prey abundance. Our results suggest that, if managed appropriately, the available dry forest habitat in India has the potential to support a population size of about 9000 wild tigers.

  14. Can we estimate molluscan abundance and biomass on the continental shelf?

    NASA Astrophysics Data System (ADS)

    Powell, Eric N.; Mann, Roger; Ashton-Alcox, Kathryn A.; Kuykendall, Kelsey M.; Chase Long, M.

    2017-11-01

    Few empirical studies have focused on the effect of sample density on the estimate of abundance of the dominant carbonate-producing fauna of the continental shelf. Here, we present such a study and consider the implications of suboptimal sampling design on estimates of abundance and size-frequency distribution. We focus on a principal carbonate producer of the U.S. Atlantic continental shelf, the Atlantic surfclam, Spisula solidissima. To evaluate the degree to which the results are typical, we analyze a dataset for the principal carbonate producer of Mid-Atlantic estuaries, the Eastern oyster Crassostrea virginica, obtained from Delaware Bay. These two species occupy different habitats and display different lifestyles, yet demonstrate similar challenges to survey design and similar trends with sampling density. The median of a series of simulated survey mean abundances, the central tendency obtained over a large number of surveys of the same area, always underestimated true abundance at low sample densities. More dramatic were the trends in the probability of a biased outcome. As sample density declined, the probability of a survey availability event, defined as a survey yielding indices >125% or <75% of the true population abundance, increased and that increase was disproportionately biased towards underestimates. For these cases where a single sample accessed about 0.001-0.004% of the domain, 8-15 random samples were required to reduce the probability of a survey availability event below 40%. The problem of differential bias, in which the probabilities of a biased-high and a biased-low survey index were distinctly unequal, was resolved with fewer samples than the problem of overall bias. These trends suggest that the influence of sampling density on survey design comes with a series of incremental challenges. At woefully inadequate sampling density, the probability of a biased-low survey index will substantially exceed the probability of a biased-high index. The survey time series on the average will return an estimate of the stock that underestimates true stock abundance. If sampling intensity is increased, the frequency of biased indices balances between high and low values. Incrementing sample number from this point steadily reduces the likelihood of a biased survey; however, the number of samples necessary to drive the probability of survey availability events to a preferred level of infrequency may be daunting. Moreover, certain size classes will be disproportionately susceptible to such events and the impact on size frequency will be species specific, depending on the relative dispersion of the size classes.

  15. Benchmarks for detecting 'breakthroughs' in clinical trials: empirical assessment of the probability of large treatment effects using kernel density estimation.

    PubMed

    Miladinovic, Branko; Kumar, Ambuj; Mhaskar, Rahul; Djulbegovic, Benjamin

    2014-10-21

    To understand how often 'breakthroughs,' that is, treatments that significantly improve health outcomes, can be developed. We applied weighted adaptive kernel density estimation to construct the probability density function for observed treatment effects from five publicly funded cohorts and one privately funded group. 820 trials involving 1064 comparisons and enrolling 331,004 patients were conducted by five publicly funded cooperative groups. 40 cancer trials involving 50 comparisons and enrolling a total of 19,889 patients were conducted by GlaxoSmithKline. We calculated that the probability of detecting treatment with large effects is 10% (5-25%), and that the probability of detecting treatment with very large treatment effects is 2% (0.3-10%). Researchers themselves judged that they discovered a new, breakthrough intervention in 16% of trials. We propose these figures as the benchmarks against which future development of 'breakthrough' treatments should be measured. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Estimating population density and connectivity of American mink using spatial capture-recapture

    USGS Publications Warehouse

    Fuller, Angela K.; Sutherland, Christopher S.; Royle, Andy; Hare, Matthew P.

    2016-01-01

    Estimating the abundance or density of populations is fundamental to the conservation and management of species, and as landscapes become more fragmented, maintaining landscape connectivity has become one of the most important challenges for biodiversity conservation. Yet these two issues have never been formally integrated together in a model that simultaneously models abundance while accounting for connectivity of a landscape. We demonstrate an application of using capture–recapture to develop a model of animal density using a least-cost path model for individual encounter probability that accounts for non-Euclidean connectivity in a highly structured network. We utilized scat detection dogs (Canis lupus familiaris) as a means of collecting non-invasive genetic samples of American mink (Neovison vison) individuals and used spatial capture–recapture models (SCR) to gain inferences about mink population density and connectivity. Density of mink was not constant across the landscape, but rather increased with increasing distance from city, town, or village centers, and mink activity was associated with water. The SCR model allowed us to estimate the density and spatial distribution of individuals across a 388 km2 area. The model was used to investigate patterns of space usage and to evaluate covariate effects on encounter probabilities, including differences between sexes. This study provides an application of capture–recapture models based on ecological distance, allowing us to directly estimate landscape connectivity. This approach should be widely applicable to provide simultaneous direct estimates of density, space usage, and landscape connectivity for many species.

  17. Estimating population density and connectivity of American mink using spatial capture-recapture.

    PubMed

    Fuller, Angela K; Sutherland, Chris S; Royle, J Andrew; Hare, Matthew P

    2016-06-01

    Estimating the abundance or density of populations is fundamental to the conservation and management of species, and as landscapes become more fragmented, maintaining landscape connectivity has become one of the most important challenges for biodiversity conservation. Yet these two issues have never been formally integrated together in a model that simultaneously models abundance while accounting for connectivity of a landscape. We demonstrate an application of using capture-recapture to develop a model of animal density using a least-cost path model for individual encounter probability that accounts for non-Euclidean connectivity in a highly structured network. We utilized scat detection dogs (Canis lupus familiaris) as a means of collecting non-invasive genetic samples of American mink (Neovison vison) individuals and used spatial capture-recapture models (SCR) to gain inferences about mink population density and connectivity. Density of mink was not constant across the landscape, but rather increased with increasing distance from city, town, or village centers, and mink activity was associated with water. The SCR model allowed us to estimate the density and spatial distribution of individuals across a 388 km² area. The model was used to investigate patterns of space usage and to evaluate covariate effects on encounter probabilities, including differences between sexes. This study provides an application of capture-recapture models based on ecological distance, allowing us to directly estimate landscape connectivity. This approach should be widely applicable to provide simultaneous direct estimates of density, space usage, and landscape connectivity for many species.

  18. On Algorithms for Generating Computationally Simple Piecewise Linear Classifiers

    DTIC Science & Technology

    1989-05-01

    suffers. - Waveform classification, e.g. speech recognition, seismic analysis (i.e. discrimination between earthquakes and nuclear explosions), target...assuming Gaussian distributions (B-G) d) Bayes classifier with probability densities estimated with the k-N-N method (B- kNN ) e) The -arest neighbour...range of classifiers are chosen including a fast, easy computable and often used classifier (B-G), reliable and complex classifiers (B- kNN and NNR

  19. Nonlinear Attitude Filtering Methods

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Crassidis, John L.; Cheng, Yang

    2005-01-01

    This paper provides a survey of modern nonlinear filtering methods for attitude estimation. Early applications relied mostly on the extended Kalman filter for attitude estimation. Since these applications, several new approaches have been developed that have proven to be superior to the extended Kalman filter. Several of these approaches maintain the basic structure of the extended Kalman filter, but employ various modifications in order to provide better convergence or improve other performance characteristics. Examples of such approaches include: filter QUEST, extended QUEST, the super-iterated extended Kalman filter, the interlaced extended Kalman filter, and the second-order Kalman filter. Filters that propagate and update a discrete set of sigma points rather than using linearized equations for the mean and covariance are also reviewed. A two-step approach is discussed with a first-step state that linearizes the measurement model and an iterative second step to recover the desired attitude states. These approaches are all based on the Gaussian assumption that the probability density function is adequately specified by its mean and covariance. Other approaches that do not require this assumption are reviewed, including particle filters and a Bayesian filter based on a non-Gaussian, finite-parameter probability density function on SO(3). Finally, the predictive filter, nonlinear observers and adaptive approaches are shown. The strengths and weaknesses of the various approaches are discussed.

  20. Stream permanence influences crayfish occupancy and abundance in the Ozark Highlands, USA

    USGS Publications Warehouse

    Yarra, Allyson N.; Magoulick, Daniel D.

    2018-01-01

    Crayfish use of intermittent streams is especially important to understand in the face of global climate change. We examined the influence of stream permanence and local habitat on crayfish occupancy and species densities in the Ozark Highlands, USA. We sampled in June and July 2014 and 2015. We used a quantitative kick–seine method to sample crayfish presence and abundance at 20 stream sites with 32 surveys/site in the Upper White River drainage, and we measured associated local environmental variables each year. We modeled site occupancy and detection probabilities with the software PRESENCE, and we used multiple linear regressions to identify relationships between crayfish species densities and environmental variables. Occupancy of all crayfish species was related to stream permanence. Faxonius meeki was found exclusively in intermittent streams, whereas Faxonius neglectus and Faxonius luteushad higher occupancy and detection probability in permanent than in intermittent streams, and Faxonius williamsi was associated with intermittent streams. Estimates of detection probability ranged from 0.56 to 1, which is high relative to values found by other investigators. With the exception of F. williamsi, species densities were largely related to stream permanence rather than local habitat. Species densities did not differ by year, but total crayfish densities were significantly lower in 2015 than 2014. Increased precipitation and discharge in 2015 probably led to the lower crayfish densities observed during this year. Our study demonstrates that crayfish distribution and abundance is strongly influenced by stream permanence. Some species, including those of conservation concern (i.e., F. williamsi, F. meeki), appear dependent on intermittent streams, and conservation efforts should include consideration of intermittent streams as an important component of freshwater biodiversity.

  1. The influence of random element displacement on DOA estimates obtained with (Khatri-Rao-)root-MUSIC.

    PubMed

    Inghelbrecht, Veronique; Verhaevert, Jo; van Hecke, Tanja; Rogier, Hendrik

    2014-11-11

    Although a wide range of direction of arrival (DOA) estimation algorithms has been described for a diverse range of array configurations, no specific stochastic analysis framework has been established to assess the probability density function of the error on DOA estimates due to random errors in the array geometry. Therefore, we propose a stochastic collocation method that relies on a generalized polynomial chaos expansion to connect the statistical distribution of random position errors to the resulting distribution of the DOA estimates. We apply this technique to the conventional root-MUSIC and the Khatri-Rao-root-MUSIC methods. According to Monte-Carlo simulations, this novel approach yields a speedup by a factor of more than 100 in terms of CPU-time for a one-dimensional case and by a factor of 56 for a two-dimensional case.

  2. Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions.

    PubMed

    Brooks, Logan C; Farrow, David C; Hyun, Sangwon; Tibshirani, Ryan J; Rosenfeld, Roni

    2018-06-15

    Accurate and reliable forecasts of seasonal epidemics of infectious disease can assist in the design of countermeasures and increase public awareness and preparedness. This article describes two main contributions we made recently toward this goal: a novel approach to probabilistic modeling of surveillance time series based on "delta densities", and an optimization scheme for combining output from multiple forecasting methods into an adaptively weighted ensemble. Delta densities describe the probability distribution of the change between one observation and the next, conditioned on available data; chaining together nonparametric estimates of these distributions yields a model for an entire trajectory. Corresponding distributional forecasts cover more observed events than alternatives that treat the whole season as a unit, and improve upon multiple evaluation metrics when extracting key targets of interest to public health officials. Adaptively weighted ensembles integrate the results of multiple forecasting methods, such as delta density, using weights that can change from situation to situation. We treat selection of optimal weightings across forecasting methods as a separate estimation task, and describe an estimation procedure based on optimizing cross-validation performance. We consider some details of the data generation process, including data revisions and holiday effects, both in the construction of these forecasting methods and when performing retrospective evaluation. The delta density method and an adaptively weighted ensemble of other forecasting methods each improve significantly on the next best ensemble component when applied separately, and achieve even better cross-validated performance when used in conjunction. We submitted real-time forecasts based on these contributions as part of CDC's 2015/2016 FluSight Collaborative Comparison. Among the fourteen submissions that season, this system was ranked by CDC as the most accurate.

  3. Probability estimation with machine learning methods for dichotomous and multicategory outcome: theory.

    PubMed

    Kruppa, Jochen; Liu, Yufeng; Biau, Gérard; Kohler, Michael; König, Inke R; Malley, James D; Ziegler, Andreas

    2014-07-01

    Probability estimation for binary and multicategory outcome using logistic and multinomial logistic regression has a long-standing tradition in biostatistics. However, biases may occur if the model is misspecified. In contrast, outcome probabilities for individuals can be estimated consistently with machine learning approaches, including k-nearest neighbors (k-NN), bagged nearest neighbors (b-NN), random forests (RF), and support vector machines (SVM). Because machine learning methods are rarely used by applied biostatisticians, the primary goal of this paper is to explain the concept of probability estimation with these methods and to summarize recent theoretical findings. Probability estimation in k-NN, b-NN, and RF can be embedded into the class of nonparametric regression learning machines; therefore, we start with the construction of nonparametric regression estimates and review results on consistency and rates of convergence. In SVMs, outcome probabilities for individuals are estimated consistently by repeatedly solving classification problems. For SVMs we review classification problem and then dichotomous probability estimation. Next we extend the algorithms for estimating probabilities using k-NN, b-NN, and RF to multicategory outcomes and discuss approaches for the multicategory probability estimation problem using SVM. In simulation studies for dichotomous and multicategory dependent variables we demonstrate the general validity of the machine learning methods and compare it with logistic regression. However, each method fails in at least one simulation scenario. We conclude with a discussion of the failures and give recommendations for selecting and tuning the methods. Applications to real data and example code are provided in a companion article (doi:10.1002/bimj.201300077). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Tomographic Method for the Reconstruction of Local Probability Density Functions

    NASA Technical Reports Server (NTRS)

    Sivathanu, Y. R.; Gore, J. P.

    1993-01-01

    A method of obtaining the probability density function (PDF) of local properties from path integrated measurements is described. The approach uses a discrete probability function (DPF) method to infer the PDF of the local extinction coefficient from measurements of the PDFs of the path integrated transmittance. The local PDFs obtained using the method are compared with those obtained from direct intrusive measurements in propylene/air and ethylene/air diffusion flames. The results of this comparison are good.

  5. Empirical prediction intervals improve energy forecasting

    PubMed Central

    Kaack, Lynn H.; Apt, Jay; Morgan, M. Granger; McSharry, Patrick

    2017-01-01

    Hundreds of organizations and analysts use energy projections, such as those contained in the US Energy Information Administration (EIA)’s Annual Energy Outlook (AEO), for investment and policy decisions. Retrospective analyses of past AEO projections have shown that observed values can differ from the projection by several hundred percent, and thus a thorough treatment of uncertainty is essential. We evaluate the out-of-sample forecasting performance of several empirical density forecasting methods, using the continuous ranked probability score (CRPS). The analysis confirms that a Gaussian density, estimated on past forecasting errors, gives comparatively accurate uncertainty estimates over a variety of energy quantities in the AEO, in particular outperforming scenario projections provided in the AEO. We report probabilistic uncertainties for 18 core quantities of the AEO 2016 projections. Our work frames how to produce, evaluate, and rank probabilistic forecasts in this setting. We propose a log transformation of forecast errors for price projections and a modified nonparametric empirical density forecasting method. Our findings give guidance on how to evaluate and communicate uncertainty in future energy outlooks. PMID:28760997

  6. Fully probabilistic control for stochastic nonlinear control systems with input dependent noise.

    PubMed

    Herzallah, Randa

    2015-03-01

    Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Inference of reaction rate parameters based on summary statistics from experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, Mohammad; Chowdhary, Kamaljit Singh; Safta, Cosmin

    Here, we present the results of an application of Bayesian inference and maximum entropy methods for the estimation of the joint probability density for the Arrhenius rate para meters of the rate coefficient of the H 2/O 2-mechanism chain branching reaction H + O 2 → OH + O. Available published data is in the form of summary statistics in terms of nominal values and error bars of the rate coefficient of this reaction at a number of temperature values obtained from shock-tube experiments. Our approach relies on generating data, in this case OH concentration profiles, consistent with the givenmore » summary statistics, using Approximate Bayesian Computation methods and a Markov Chain Monte Carlo procedure. The approach permits the forward propagation of parametric uncertainty through the computational model in a manner that is consistent with the published statistics. A consensus joint posterior on the parameters is obtained by pooling the posterior parameter densities given each consistent data set. To expedite this process, we construct efficient surrogates for the OH concentration using a combination of Pad'e and polynomial approximants. These surrogate models adequately represent forward model observables and their dependence on input parameters and are computationally efficient to allow their use in the Bayesian inference procedure. We also utilize Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation resulting in orders of magnitude speedup in data likelihood evaluation. Despite the strong non-linearity in the model, the consistent data sets all res ult in nearly Gaussian conditional parameter probability density functions. The technique also accounts for nuisance parameters in the form of Arrhenius parameters of other rate coefficients with prescribed uncertainty. The resulting pooled parameter probability density function is propagated through stoichiometric hydrogen-air auto-ignition computations to illustrate the need to account for correlation among the Arrhenius rate parameters of one reaction and across rate parameters of different reactions.« less

  8. Inference of reaction rate parameters based on summary statistics from experiments

    DOE PAGES

    Khalil, Mohammad; Chowdhary, Kamaljit Singh; Safta, Cosmin; ...

    2016-10-15

    Here, we present the results of an application of Bayesian inference and maximum entropy methods for the estimation of the joint probability density for the Arrhenius rate para meters of the rate coefficient of the H 2/O 2-mechanism chain branching reaction H + O 2 → OH + O. Available published data is in the form of summary statistics in terms of nominal values and error bars of the rate coefficient of this reaction at a number of temperature values obtained from shock-tube experiments. Our approach relies on generating data, in this case OH concentration profiles, consistent with the givenmore » summary statistics, using Approximate Bayesian Computation methods and a Markov Chain Monte Carlo procedure. The approach permits the forward propagation of parametric uncertainty through the computational model in a manner that is consistent with the published statistics. A consensus joint posterior on the parameters is obtained by pooling the posterior parameter densities given each consistent data set. To expedite this process, we construct efficient surrogates for the OH concentration using a combination of Pad'e and polynomial approximants. These surrogate models adequately represent forward model observables and their dependence on input parameters and are computationally efficient to allow their use in the Bayesian inference procedure. We also utilize Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation resulting in orders of magnitude speedup in data likelihood evaluation. Despite the strong non-linearity in the model, the consistent data sets all res ult in nearly Gaussian conditional parameter probability density functions. The technique also accounts for nuisance parameters in the form of Arrhenius parameters of other rate coefficients with prescribed uncertainty. The resulting pooled parameter probability density function is propagated through stoichiometric hydrogen-air auto-ignition computations to illustrate the need to account for correlation among the Arrhenius rate parameters of one reaction and across rate parameters of different reactions.« less

  9. Automated side-chain model building and sequence assignment by template matching.

    PubMed

    Terwilliger, Thomas C

    2003-01-01

    An algorithm is described for automated building of side chains in an electron-density map once a main-chain model is built and for alignment of the protein sequence to the map. The procedure is based on a comparison of electron density at the expected side-chain positions with electron-density templates. The templates are constructed from average amino-acid side-chain densities in 574 refined protein structures. For each contiguous segment of main chain, a matrix with entries corresponding to an estimate of the probability that each of the 20 amino acids is located at each position of the main-chain model is obtained. The probability that this segment corresponds to each possible alignment with the sequence of the protein is estimated using a Bayesian approach and high-confidence matches are kept. Once side-chain identities are determined, the most probable rotamer for each side chain is built into the model. The automated procedure has been implemented in the RESOLVE software. Combined with automated main-chain model building, the procedure produces a preliminary model suitable for refinement and extension by an experienced crystallographer.

  10. An efficient distribution method for nonlinear transport problems in highly heterogeneous stochastic porous media

    NASA Astrophysics Data System (ADS)

    Ibrahima, Fayadhoi; Meyer, Daniel; Tchelepi, Hamdi

    2016-04-01

    Because geophysical data are inexorably sparse and incomplete, stochastic treatments of simulated responses are crucial to explore possible scenarios and assess risks in subsurface problems. In particular, nonlinear two-phase flows in porous media are essential, yet challenging, in reservoir simulation and hydrology. Adding highly heterogeneous and uncertain input, such as the permeability and porosity fields, transforms the estimation of the flow response into a tough stochastic problem for which computationally expensive Monte Carlo (MC) simulations remain the preferred option.We propose an alternative approach to evaluate the probability distribution of the (water) saturation for the stochastic Buckley-Leverett problem when the probability distributions of the permeability and porosity fields are available. We give a computationally efficient and numerically accurate method to estimate the one-point probability density (PDF) and cumulative distribution functions (CDF) of the (water) saturation. The distribution method draws inspiration from a Lagrangian approach of the stochastic transport problem and expresses the saturation PDF and CDF essentially in terms of a deterministic mapping and the distribution and statistics of scalar random fields. In a large class of applications these random fields can be estimated at low computational costs (few MC runs), thus making the distribution method attractive. Even though the method relies on a key assumption of fixed streamlines, we show that it performs well for high input variances, which is the case of interest. Once the saturation distribution is determined, any one-point statistics thereof can be obtained, especially the saturation average and standard deviation. Moreover, the probability of rare events and saturation quantiles (e.g. P10, P50 and P90) can be efficiently derived from the distribution method. These statistics can then be used for risk assessment, as well as data assimilation and uncertainty reduction in the prior knowledge of input distributions. We provide various examples and comparisons with MC simulations to illustrate the performance of the method.

  11. Geometric characterization and simulation of planar layered elastomeric fibrous biomaterials

    PubMed Central

    Carleton, James B.; D'Amore, Antonio; Feaver, Kristen R.; Rodin, Gregory J.; Sacks, Michael S.

    2014-01-01

    Many important biomaterials are composed of multiple layers of networked fibers. While there is a growing interest in modeling and simulation of the mechanical response of these biomaterials, a theoretical foundation for such simulations has yet to be firmly established. Moreover, correctly identifying and matching key geometric features is a critically important first step for performing reliable mechanical simulations. The present work addresses these issues in two ways. First, using methods of geometric probability we develop theoretical estimates for the mean linear and areal fiber intersection densities for two-dimensional fibrous networks. These densities are expressed in terms of the fiber density and the orientation distribution function, both of which are relatively easy-to-measure properties. Secondly, we develop a random walk algorithm for geometric simulation of two-dimensional fibrous networks which can accurately reproduce the prescribed fiber density and orientation distribution function. Furthermore, the linear and areal fiber intersection densities obtained with the algorithm are in agreement with the theoretical estimates. Both theoretical and computational results are compared with those obtained by post-processing of SEM images of actual scaffolds. These comparisons reveal difficulties inherent to resolving fine details of multilayered fibrous networks. The methods provided herein can provide a rational means to define and generate key geometric features from experimentally measured or prescribed scaffold structural data. PMID:25311685

  12. Modelling detectability of kiore (Rattus exulans) on Aguiguan, Mariana Islands, to inform possible eradication and monitoring efforts

    USGS Publications Warehouse

    Adams, A.A.Y.; Stanford, J.W.; Wiewel, A.S.; Rodda, G.H.

    2011-01-01

    Estimating the detection probability of introduced organisms during the pre-monitoring phase of an eradication effort can be extremely helpful in informing eradication and post-eradication monitoring efforts, but this step is rarely taken. We used data collected during 11 nights of mark-recapture sampling on Aguiguan, Mariana Islands, to estimate introduced kiore (Rattus exulans Peale) density and detection probability, and evaluated factors affecting detectability to help inform possible eradication efforts. Modelling of 62 captures of 48 individuals resulted in a model-averaged density estimate of 55 kiore/ha. Kiore detection probability was best explained by a model allowing neophobia to diminish linearly (i.e. capture probability increased linearly) until occasion 7, with additive effects of sex and cumulative rainfall over the prior 48 hours. Detection probability increased with increasing rainfall and females were up to three times more likely than males to be trapped. In this paper, we illustrate the type of information that can be obtained by modelling mark-recapture data collected during pre-eradication monitoring and discuss the potential of using these data to inform eradication and posteradication monitoring efforts. ?? New Zealand Ecological Society.

  13. Radiance and atmosphere propagation-based method for the target range estimation

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan

    2012-06-01

    Target range estimation is traditionally based on radar and active sonar systems in modern combat system. However, the performance of such active sensor devices is degraded tremendously by jamming signal from the enemy. This paper proposes a simple range estimation method between the target and the sensor. Passive IR sensors measures infrared (IR) light radiance radiating from objects in dierent wavelength and this method shows robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and is attenuated by various factors, in particular the distance between the sensor and the target and atmosphere environment. MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the result from MODTRAN and measured radiance, the target range is estimated. To statistically analyze the performance of proposed method, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao Lower Bound (CRLB) via the probability density function of measured radiance. And we also compare CRLB and the variance of and ML estimation using Monte-Carlo.

  14. Preantral follicle density in ovarian biopsy fragments and effects of mare age.

    PubMed

    Alves, K A; Alves, B G; Gastal, G D A; Haag, K T; Gastal, M O; Figueiredo, J R; Gambarini, M L; Gastal, E L

    2017-04-01

    The aims of the present study were to: (1) evaluate preantral follicle density in ovarian biopsy fragments within and among mares; (2) assess the effects of mare age on the density and quality of preantral follicles; and (3) determine the minimum number of ovarian fragments and histological sections needed to estimate equine follicle density using a mathematical model. The ovarian biopsy pick-up method was used in three groups of mares separated according to age (5-6, 7-10 and 11-16 years). Overall, 336 preantral follicles were recorded with a mean follicle density of 3.7 follicles per cm 2 . Follicle density differed (P<0.05) among animals, ovarian fragments from the same animal, histological sections and age groups. More (P<0.05) normal follicles were observed in the 5-6 years (97%) than the 11-16 years (84%) age group. Monte Carlo simulations showed a higher probability (90%; P<0.05) of detecting follicle density using two experimental designs with 65 histological sections and three to four ovarian fragments. In summary, equine follicle density differed among animals and within ovarian fragments from the same animal, and follicle density and morphology were negatively affected by aging. Moreover, three to four ovarian fragments with 65 histological sections were required to accurately estimate follicle density in equine ovarian biopsy fragments.

  15. Radar cross section models for limited aspect angle windows

    NASA Astrophysics Data System (ADS)

    Robinson, Mark C.

    1992-12-01

    This thesis presents a method for building Radar Cross Section (RCS) models of aircraft based on static data taken from limited aspect angle windows. These models statistically characterize static RCS. This is done to show that a limited number of samples can be used to effectively characterize static aircraft RCS. The optimum models are determined by performing both a Kolmogorov and a Chi-Square goodness-of-fit test comparing the static RCS data with a variety of probability density functions (pdf) that are known to be effective at approximating the static RCS of aircraft. The optimum parameter estimator is also determined by the goodness of-fit tests if there is a difference in pdf parameters obtained by the Maximum Likelihood Estimator (MLE) and the Method of Moments (MoM) estimators.

  16. Assessing prey fish populations in Lake Michigan: Comparison of simultaneous acoustic-midwater trawling with bottom trawling

    USGS Publications Warehouse

    Fabrizio, Mary C.; Adams, Jean V.; Curtis, Gary L.

    1997-01-01

    The Lake Michigan fish community has been monitored since the 1960s with bottom trawls, and since the late 1980s with acoustics and midwater trawls. These sampling tools are limited to different habitats: bottom trawls sample fish near bottom in areas with smooth substrates, and acoustic methods sample fish throughout the water column above all substrate types. We compared estimates of fish densities and species richness from daytime bottom trawling with those estimated from night-time acoustic and midwater trawling at a range of depths in northeastern Lake Michigan in summer 1995. We examined estimates of total fish density as well as densities of alewife Alosa pseudoharengus (Wilson), bloater Coregonus hoyi (Gill), and rainbow smelt Osmerus mordax (Mitchell) because these three species are the dominant forage of large piscivores in Lake Michigan. In shallow water (18 m), we detected more species but fewer fish (in fish/ha and kg/ha) with bottom trawls than with acoustic-midwater trawling. Large aggregations of rainbow smelt were detected by acoustic-midwater trawling at 18 m and contributed to the differences in total fish density estimates between gears at this depth. Numerical and biomass densitites of bloaters from all depths were significantly higher when based on bottom trawl samples than on acoustic-midwater trawling, and this probably contributed to the observed significant difference between methods for total fish densities (kg/ha) at 55 m. Significantly fewer alewives per ha were estimated from bottom trawling than from acoustics-midwater trawling at 55 m, and in deeper waters, no alewives were taken by bottom trawling. The differences detected between gears resulted from alewife, bloater, and rainbow smelt vertical distributions, which varied with lake depth and time of day. Because Lake Michigan fishes are both demersal and pelagic, a single sampling method cannot be used to completely describe characteristics of the fish community.

  17. Optimum quantum receiver for detecting weak signals in PAM communication systems

    NASA Astrophysics Data System (ADS)

    Sharma, Navneet; Rawat, Tarun Kumar; Parthasarathy, Harish; Gautam, Kumar

    2017-09-01

    This paper deals with the modeling of an optimum quantum receiver for pulse amplitude modulator (PAM) communication systems. The information bearing sequence {I_k}_{k=0}^{N-1} is estimated using the maximum likelihood (ML) method. The ML method is based on quantum mechanical measurements of an observable X in the Hilbert space of the quantum system at discrete times, when the Hamiltonian of the system is perturbed by an operator obtained by modulating a potential V with a PAM signal derived from the information bearing sequence {I_k}_{k=0}^{N-1}. The measurement process at each time instant causes collapse of the system state to an observable eigenstate. All probabilities of getting different outcomes from an observable are calculated using the perturbed evolution operator combined with the collapse postulate. For given probability densities, calculation of the mean square error evaluates the performance of the receiver. Finally, we present an example involving estimating an information bearing sequence that modulates a quantum electromagnetic field incident on a quantum harmonic oscillator.

  18. Series approximation to probability densities

    NASA Astrophysics Data System (ADS)

    Cohen, L.

    2018-04-01

    One of the historical and fundamental uses of the Edgeworth and Gram-Charlier series is to "correct" a Gaussian density when it is determined that the probability density under consideration has moments that do not correspond to the Gaussian [5, 6]. There is a fundamental difficulty with these methods in that if the series are truncated, then the resulting approximate density is not manifestly positive. The aim of this paper is to attempt to expand a probability density so that if it is truncated it will still be manifestly positive.

  19. Estimating parameters for probabilistic linkage of privacy-preserved datasets.

    PubMed

    Brown, Adrian P; Randall, Sean M; Ferrante, Anna M; Semmens, James B; Boyd, James H

    2017-07-10

    Probabilistic record linkage is a process used to bring together person-based records from within the same dataset (de-duplication) or from disparate datasets using pairwise comparisons and matching probabilities. The linkage strategy and associated match probabilities are often estimated through investigations into data quality and manual inspection. However, as privacy-preserved datasets comprise encrypted data, such methods are not possible. In this paper, we present a method for estimating the probabilities and threshold values for probabilistic privacy-preserved record linkage using Bloom filters. Our method was tested through a simulation study using synthetic data, followed by an application using real-world administrative data. Synthetic datasets were generated with error rates from zero to 20% error. Our method was used to estimate parameters (probabilities and thresholds) for de-duplication linkages. Linkage quality was determined by F-measure. Each dataset was privacy-preserved using separate Bloom filters for each field. Match probabilities were estimated using the expectation-maximisation (EM) algorithm on the privacy-preserved data. Threshold cut-off values were determined by an extension to the EM algorithm allowing linkage quality to be estimated for each possible threshold. De-duplication linkages of each privacy-preserved dataset were performed using both estimated and calculated probabilities. Linkage quality using the F-measure at the estimated threshold values was also compared to the highest F-measure. Three large administrative datasets were used to demonstrate the applicability of the probability and threshold estimation technique on real-world data. Linkage of the synthetic datasets using the estimated probabilities produced an F-measure that was comparable to the F-measure using calculated probabilities, even with up to 20% error. Linkage of the administrative datasets using estimated probabilities produced an F-measure that was higher than the F-measure using calculated probabilities. Further, the threshold estimation yielded results for F-measure that were only slightly below the highest possible for those probabilities. The method appears highly accurate across a spectrum of datasets with varying degrees of error. As there are few alternatives for parameter estimation, the approach is a major step towards providing a complete operational approach for probabilistic linkage of privacy-preserved datasets.

  20. Surveillance system and method having an adaptive sequential probability fault detection test

    NASA Technical Reports Server (NTRS)

    Herzog, James P. (Inventor); Bickford, Randall L. (Inventor)

    2005-01-01

    System and method providing surveillance of an asset such as a process and/or apparatus by providing training and surveillance procedures that numerically fit a probability density function to an observed residual error signal distribution that is correlative to normal asset operation and then utilizes the fitted probability density function in a dynamic statistical hypothesis test for providing improved asset surveillance.

  1. Surveillance system and method having an adaptive sequential probability fault detection test

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L. (Inventor); Herzog, James P. (Inventor)

    2006-01-01

    System and method providing surveillance of an asset such as a process and/or apparatus by providing training and surveillance procedures that numerically fit a probability density function to an observed residual error signal distribution that is correlative to normal asset operation and then utilizes the fitted probability density function in a dynamic statistical hypothesis test for providing improved asset surveillance.

  2. Surveillance System and Method having an Adaptive Sequential Probability Fault Detection Test

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L. (Inventor); Herzog, James P. (Inventor)

    2008-01-01

    System and method providing surveillance of an asset such as a process and/or apparatus by providing training and surveillance procedures that numerically fit a probability density function to an observed residual error signal distribution that is correlative to normal asset operation and then utilizes the fitted probability density function in a dynamic statistical hypothesis test for providing improved asset surveillance.

  3. Asteroid orbital error analysis: Theory and application

    NASA Technical Reports Server (NTRS)

    Muinonen, K.; Bowell, Edward

    1992-01-01

    We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).

  4. Grizzly Bear Noninvasive Genetic Tagging Surveys: Estimating the Magnitude of Missed Detections.

    PubMed

    Fisher, Jason T; Heim, Nicole; Code, Sandra; Paczkowski, John

    2016-01-01

    Sound wildlife conservation decisions require sound information, and scientists increasingly rely on remotely collected data over large spatial scales, such as noninvasive genetic tagging (NGT). Grizzly bears (Ursus arctos), for example, are difficult to study at population scales except with noninvasive data, and NGT via hair trapping informs management over much of grizzly bears' range. Considerable statistical effort has gone into estimating sources of heterogeneity, but detection error-arising when a visiting bear fails to leave a hair sample-has not been independently estimated. We used camera traps to survey grizzly bear occurrence at fixed hair traps and multi-method hierarchical occupancy models to estimate the probability that a visiting bear actually leaves a hair sample with viable DNA. We surveyed grizzly bears via hair trapping and camera trapping for 8 monthly surveys at 50 (2012) and 76 (2013) sites in the Rocky Mountains of Alberta, Canada. We used multi-method occupancy models to estimate site occupancy, probability of detection, and conditional occupancy at a hair trap. We tested the prediction that detection error in NGT studies could be induced by temporal variability within season, leading to underestimation of occupancy. NGT via hair trapping consistently underestimated grizzly bear occupancy at a site when compared to camera trapping. At best occupancy was underestimated by 50%; at worst, by 95%. Probability of false absence was reduced through successive surveys, but this mainly accounts for error imparted by movement among repeated surveys, not necessarily missed detections by extant bears. The implications of missed detections and biased occupancy estimates for density estimation-which form the crux of management plans-require consideration. We suggest hair-trap NGT studies should estimate and correct detection error using independent survey methods such as cameras, to ensure the reliability of the data upon which species management and conservation actions are based.

  5. The relationship between species detection probability and local extinction probability

    USGS Publications Warehouse

    Alpizar-Jara, R.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Pollock, K.H.; Rosenberry, C.S.

    2004-01-01

    In community-level ecological studies, generally not all species present in sampled areas are detected. Many authors have proposed the use of estimation methods that allow detection probabilities that are < 1 and that are heterogeneous among species. These methods can also be used to estimate community-dynamic parameters such as species local extinction probability and turnover rates (Nichols et al. Ecol Appl 8:1213-1225; Conserv Biol 12:1390-1398). Here, we present an ad hoc approach to estimating community-level vital rates in the presence of joint heterogeneity of detection probabilities and vital rates. The method consists of partitioning the number of species into two groups using the detection frequencies and then estimating vital rates (e.g., local extinction probabilities) for each group. Estimators from each group are combined in a weighted estimator of vital rates that accounts for the effect of heterogeneity. Using data from the North American Breeding Bird Survey, we computed such estimates and tested the hypothesis that detection probabilities and local extinction probabilities were negatively related. Our analyses support the hypothesis that species detection probability covaries negatively with local probability of extinction and turnover rates. A simulation study was conducted to assess the performance of vital parameter estimators as well as other estimators relevant to questions about heterogeneity, such as coefficient of variation of detection probabilities and proportion of species in each group. Both the weighted estimator suggested in this paper and the original unweighted estimator for local extinction probability performed fairly well and provided no basis for preferring one to the other.

  6. The Effect of Incremental Changes in Phonotactic Probability and Neighborhood Density on Word Learning by Preschool Children

    ERIC Educational Resources Information Center

    Storkel, Holly L.; Bontempo, Daniel E.; Aschenbrenner, Andrew J.; Maekawa, Junko; Lee, Su-Yeon

    2013-01-01

    Purpose: Phonotactic probability or neighborhood density has predominately been defined through the use of gross distinctions (i.e., low vs. high). In the current studies, the authors examined the influence of finer changes in probability (Experiment 1) and density (Experiment 2) on word learning. Method: The authors examined the full range of…

  7. Combined statistical analysis of landslide release and propagation

    NASA Astrophysics Data System (ADS)

    Mergili, Martin; Rohmaneo, Mohammad; Chu, Hone-Jay

    2016-04-01

    Statistical methods - often coupled with stochastic concepts - are commonly employed to relate areas affected by landslides with environmental layers, and to estimate spatial landslide probabilities by applying these relationships. However, such methods only concern the release of landslides, disregarding their motion. Conceptual models for mass flow routing are used for estimating landslide travel distances and possible impact areas. Automated approaches combining release and impact probabilities are rare. The present work attempts to fill this gap by a fully automated procedure combining statistical and stochastic elements, building on the open source GRASS GIS software: (1) The landslide inventory is subset into release and deposition zones. (2) We employ a traditional statistical approach to estimate the spatial release probability of landslides. (3) We back-calculate the probability distribution of the angle of reach of the observed landslides, employing the software tool r.randomwalk. One set of random walks is routed downslope from each pixel defined as release area. Each random walk stops when leaving the observed impact area of the landslide. (4) The cumulative probability function (cdf) derived in (3) is used as input to route a set of random walks downslope from each pixel in the study area through the DEM, assigning the probability gained from the cdf to each pixel along the path (impact probability). The impact probability of a pixel is defined as the average impact probability of all sets of random walks impacting a pixel. Further, the average release probabilities of the release pixels of all sets of random walks impacting a given pixel are stored along with the area of the possible release zone. (5) We compute the zonal release probability by increasing the release probability according to the size of the release zone - the larger the zone, the larger the probability that a landslide will originate from at least one pixel within this zone. We quantify this relationship by a set of empirical curves. (6) Finally, we multiply the zonal release probability with the impact probability in order to estimate the combined impact probability for each pixel. We demonstrate the model with a 167 km² study area in Taiwan, using an inventory of landslides triggered by the typhoon Morakot. Analyzing the model results leads us to a set of key conclusions: (i) The average composite impact probability over the entire study area corresponds well to the density of observed landside pixels. Therefore we conclude that the method is valid in general, even though the concept of the zonal release probability bears some conceptual issues that have to be kept in mind. (ii) The parameters used as predictors cannot fully explain the observed distribution of landslides. The size of the release zone influences the composite impact probability to a larger degree than the pixel-based release probability. (iii) The prediction rate increases considerably when excluding the largest, deep-seated, landslides from the analysis. We conclude that such landslides are mainly related to geological features hardly reflected in the predictor layers used.

  8. Inference about density and temporary emigration in unmarked populations

    USGS Publications Warehouse

    Chandler, Richard B.; Royle, J. Andrew; King, David I.

    2011-01-01

    Few species are distributed uniformly in space, and populations of mobile organisms are rarely closed with respect to movement, yet many models of density rely upon these assumptions. We present a hierarchical model allowing inference about the density of unmarked populations subject to temporary emigration and imperfect detection. The model can be fit to data collected using a variety of standard survey methods such as repeated point counts in which removal sampling, double-observer sampling, or distance sampling is used during each count. Simulation studies demonstrated that parameter estimators are unbiased when temporary emigration is either "completely random" or is determined by the size and location of home ranges relative to survey points. We also applied the model to repeated removal sampling data collected on Chestnut-sided Warblers (Dendroica pensylvancia) in the White Mountain National Forest, USA. The density estimate from our model, 1.09 birds/ha, was similar to an estimate of 1.11 birds/ha produced by an intensive spot-mapping effort. Our model is also applicable when processes other than temporary emigration affect the probability of being available for detection, such as in studies using cue counts. Functions to implement the model have been added to the R package unmarked.

  9. Estimating the Probability of Elevated Nitrate Concentrations in Ground Water in Washington State

    USGS Publications Warehouse

    Frans, Lonna M.

    2008-01-01

    Logistic regression was used to relate anthropogenic (manmade) and natural variables to the occurrence of elevated nitrate concentrations in ground water in Washington State. Variables that were analyzed included well depth, ground-water recharge rate, precipitation, population density, fertilizer application amounts, soil characteristics, hydrogeomorphic regions, and land-use types. Two models were developed: one with and one without the hydrogeomorphic regions variable. The variables in both models that best explained the occurrence of elevated nitrate concentrations (defined as concentrations of nitrite plus nitrate as nitrogen greater than 2 milligrams per liter) were the percentage of agricultural land use in a 4-kilometer radius of a well, population density, precipitation, soil drainage class, and well depth. Based on the relations between these variables and measured nitrate concentrations, logistic regression models were developed to estimate the probability of nitrate concentrations in ground water exceeding 2 milligrams per liter. Maps of Washington State were produced that illustrate these estimated probabilities for wells drilled to 145 feet below land surface (median well depth) and the estimated depth to which wells would need to be drilled to have a 90-percent probability of drawing water with a nitrate concentration less than 2 milligrams per liter. Maps showing the estimated probability of elevated nitrate concentrations indicated that the agricultural regions are most at risk followed by urban areas. The estimated depths to which wells would need to be drilled to have a 90-percent probability of obtaining water with nitrate concentrations less than 2 milligrams per liter exceeded 1,000 feet in the agricultural regions; whereas, wells in urban areas generally would need to be drilled to depths in excess of 400 feet.

  10. Model Considerations for Memory-based Automatic Music Transcription

    NASA Astrophysics Data System (ADS)

    Albrecht, Štěpán; Šmídl, Václav

    2009-12-01

    The problem of automatic music description is considered. The recorded music is modeled as a superposition of known sounds from a library weighted by unknown weights. Similar observation models are commonly used in statistics and machine learning. Many methods for estimation of the weights are available. These methods differ in the assumptions imposed on the weights. In Bayesian paradigm, these assumptions are typically expressed in the form of prior probability density function (pdf) on the weights. In this paper, commonly used assumptions about music signal are summarized and complemented by a new assumption. These assumptions are translated into pdfs and combined into a single prior density using combination of pdfs. Validity of the model is tested in simulation using synthetic data.

  11. Data Analysis Recipes: Using Markov Chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Hogg, David W.; Foreman-Mackey, Daniel

    2018-05-01

    Markov Chain Monte Carlo (MCMC) methods for sampling probability density functions (combined with abundant computational resources) have transformed the sciences, especially in performing probabilistic inferences, or fitting models to data. In this primarily pedagogical contribution, we give a brief overview of the most basic MCMC method and some practical advice for the use of MCMC in real inference problems. We give advice on method choice, tuning for performance, methods for initialization, tests of convergence, troubleshooting, and use of the chain output to produce or report parameter estimates with associated uncertainties. We argue that autocorrelation time is the most important test for convergence, as it directly connects to the uncertainty on the sampling estimate of any quantity of interest. We emphasize that sampling is a method for doing integrals; this guides our thinking about how MCMC output is best used. .

  12. Multi-Detection Events, Probability Density Functions, and Reduced Location Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Schrom, Brian T.

    2016-03-01

    Abstract Several efforts have been made in the Comprehensive Nuclear-Test-Ban Treaty (CTBT) community to assess the benefits of combining detections of radionuclides to improve the location estimates available from atmospheric transport modeling (ATM) backtrack calculations. We present a Bayesian estimation approach rather than a simple dilution field of regard approach to allow xenon detections and non-detections to be combined mathematically. This system represents one possible probabilistic approach to radionuclide event formation. Application of this method to a recent interesting radionuclide event shows a substantial reduction in the location uncertainty of that event.

  13. Digital simulation of two-dimensional random fields with arbitrary power spectra and non-Gaussian probability distribution functions.

    PubMed

    Yura, Harold T; Hanson, Steen G

    2012-04-01

    Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative examples with relevance for optics are given.

  14. A method to estimate stellar ages from kinematical data

    NASA Astrophysics Data System (ADS)

    Almeida-Fernandes, F.; Rocha-Pinto, H. J.

    2018-05-01

    We present a method to build a probability density function (PDF) for the age of a star based on its peculiar velocities U, V, and W and its orbital eccentricity. The sample used in this work comes from the Geneva-Copenhagen Survey (GCS) that contains the spatial velocities, orbital eccentricities, and isochronal ages for about 14 000 stars. Using the GCS stars, we fitted the parameters that describe the relations between the distributions of kinematical properties and age. This parametrization allows us to obtain an age probability from the kinematical data. From this age PDF, we estimate an individual average age for the star using the most likely age and the expected age. We have obtained the stellar age PDF for the age of 9102 stars from the GCS and have shown that the distribution of individual ages derived from our method is in good agreement with the distribution of isochronal ages. We also observe a decline in the mean metallicity with our ages for stars younger than 7 Gyr, similar to the one observed for isochronal ages. This method can be useful for the estimation of rough stellar ages for those stars that fall in areas of the Hertzsprung-Russell diagram where isochrones are tightly crowded. As an example of this method, we estimate the age of Trappist-1, which is a M8V star, obtaining the age of t(UVW) = 12.50(+0.29 - 6.23) Gyr.

  15. Exponential series approaches for nonparametric graphical models

    NASA Astrophysics Data System (ADS)

    Janofsky, Eric

    Markov Random Fields (MRFs) or undirected graphical models are parsimonious representations of joint probability distributions. This thesis studies high-dimensional, continuous-valued pairwise Markov Random Fields. We are particularly interested in approximating pairwise densities whose logarithm belongs to a Sobolev space. For this problem we propose the method of exponential series which approximates the log density by a finite-dimensional exponential family with the number of sufficient statistics increasing with the sample size. We consider two approaches to estimating these models. The first is regularized maximum likelihood. This involves optimizing the sum of the log-likelihood of the data and a sparsity-inducing regularizer. We then propose a variational approximation to the likelihood based on tree-reweighted, nonparametric message passing. This approximation allows for upper bounds on risk estimates, leverages parallelization and is scalable to densities on hundreds of nodes. We show how the regularized variational MLE may be estimated using a proximal gradient algorithm. We then consider estimation using regularized score matching. This approach uses an alternative scoring rule to the log-likelihood, which obviates the need to compute the normalizing constant of the distribution. For general continuous-valued exponential families, we provide parameter and edge consistency results. As a special case we detail a new approach to sparse precision matrix estimation which has statistical performance competitive with the graphical lasso and computational performance competitive with the state-of-the-art glasso algorithm. We then describe results for model selection in the nonparametric pairwise model using exponential series. The regularized score matching problem is shown to be a convex program; we provide scalable algorithms based on consensus alternating direction method of multipliers (ADMM) and coordinate-wise descent. We use simulations to compare our method to others in the literature as well as the aforementioned TRW estimator.

  16. Noise stochastic corrected maximum a posteriori estimator for birefringence imaging using polarization-sensitive optical coherence tomography

    PubMed Central

    Kasaragod, Deepa; Makita, Shuichi; Hong, Young-Joo; Yasuno, Yoshiaki

    2017-01-01

    This paper presents a noise-stochastic corrected maximum a posteriori estimator for birefringence imaging using Jones matrix optical coherence tomography. The estimator described in this paper is based on the relationship between probability distribution functions of the measured birefringence and the effective signal to noise ratio (ESNR) as well as the true birefringence and the true ESNR. The Monte Carlo method is used to numerically describe this relationship and adaptive 2D kernel density estimation provides the likelihood for a posteriori estimation of the true birefringence. Improved estimation is shown for the new estimator with stochastic model of ESNR in comparison to the old estimator, both based on the Jones matrix noise model. A comparison with the mean estimator is also done. Numerical simulation validates the superiority of the new estimator. The superior performance of the new estimator was also shown by in vivo measurement of optic nerve head. PMID:28270974

  17. A matrix-based approach to solving the inverse Frobenius-Perron problem using sequences of density functions of stochastically perturbed dynamical systems

    NASA Astrophysics Data System (ADS)

    Nie, Xiaokai; Coca, Daniel

    2018-01-01

    The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.

  18. A matrix-based approach to solving the inverse Frobenius-Perron problem using sequences of density functions of stochastically perturbed dynamical systems.

    PubMed

    Nie, Xiaokai; Coca, Daniel

    2018-01-01

    The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.

  19. Evaluating detection probabilities for American marten in the Black Hills, South Dakota

    USGS Publications Warehouse

    Smith, Joshua B.; Jenks, Jonathan A.; Klaver, Robert W.

    2007-01-01

    Assessing the effectiveness of monitoring techniques designed to determine presence of forest carnivores, such as American marten (Martes americana), is crucial for validation of survey results. Although comparisons between techniques have been made, little attention has been paid to the issue of detection probabilities (p). Thus, the underlying assumption has been that detection probabilities equal 1.0. We used presence-absence data obtained from a track-plate survey in conjunction with results from a saturation-trapping study to derive detection probabilities when marten occurred at high (>2 marten/10.2 km2) and low (???1 marten/10.2 km2) densities within 8 10.2-km2 quadrats. Estimated probability of detecting marten in high-density quadrats was p = 0.952 (SE = 0.047), whereas the detection probability for low-density quadrats was considerably lower (p = 0.333, SE = 0.136). Our results indicated that failure to account for imperfect detection could lead to an underestimation of marten presence in 15-52% of low-density quadrats in the Black Hills, South Dakota, USA. We recommend that repeated site-survey data be analyzed to assess detection probabilities when documenting carnivore survey results.

  20. An extension of the Saltykov method to quantify 3D grain size distributions in mylonites

    NASA Astrophysics Data System (ADS)

    Lopez-Sanchez, Marco A.; Llana-Fúnez, Sergio

    2016-12-01

    The estimation of 3D grain size distributions (GSDs) in mylonites is key to understanding the rheological properties of crystalline aggregates and to constraining dynamic recrystallization models. This paper investigates whether a common stereological method, the Saltykov method, is appropriate for the study of GSDs in mylonites. In addition, we present a new stereological method, named the two-step method, which estimates a lognormal probability density function describing the 3D GSD. Both methods are tested for reproducibility and accuracy using natural and synthetic data sets. The main conclusion is that both methods are accurate and simple enough to be systematically used in recrystallized aggregates with near-equant grains. The Saltykov method is particularly suitable for estimating the volume percentage of particular grain-size fractions with an absolute uncertainty of ±5 in the estimates. The two-step method is suitable for quantifying the shape of the actual 3D GSD in recrystallized rocks using a single value, the multiplicative standard deviation (MSD) parameter, and providing a precision in the estimate typically better than 5%. The novel method provides a MSD value in recrystallized quartz that differs from previous estimates based on apparent 2D GSDs, highlighting the inconvenience of using apparent GSDs for such tasks.

  1. Application analysis of Monte Carlo to estimate the capacity of geothermal resources in Lawu Mount

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supriyadi, E-mail: supriyadi-uno@yahoo.co.nz; Srigutomo, Wahyu; Munandar, Arif

    2014-03-24

    Monte Carlo analysis has been applied in calculation of geothermal resource capacity based on volumetric method issued by Standar Nasional Indonesia (SNI). A deterministic formula is converted into a stochastic formula to take into account the nature of uncertainties in input parameters. The method yields a range of potential power probability stored beneath Lawu Mount geothermal area. For 10,000 iterations, the capacity of geothermal resources is in the range of 139.30-218.24 MWe with the most likely value is 177.77 MWe. The risk of resource capacity above 196.19 MWe is less than 10%. The power density of the prospect area coveringmore » 17 km{sup 2} is 9.41 MWe/km{sup 2} with probability 80%.« less

  2. Estimating Lion Abundance using N-mixture Models for Social Species

    PubMed Central

    Belant, Jerrold L.; Bled, Florent; Wilton, Clay M.; Fyumagwa, Robert; Mwampeta, Stanslaus B.; Beyer, Dean E.

    2016-01-01

    Declining populations of large carnivores worldwide, and the complexities of managing human-carnivore conflicts, require accurate population estimates of large carnivores to promote their long-term persistence through well-informed management We used N-mixture models to estimate lion (Panthera leo) abundance from call-in and track surveys in southeastern Serengeti National Park, Tanzania. Because of potential habituation to broadcasted calls and social behavior, we developed a hierarchical observation process within the N-mixture model conditioning lion detectability on their group response to call-ins and individual detection probabilities. We estimated 270 lions (95% credible interval = 170–551) using call-ins but were unable to estimate lion abundance from track data. We found a weak negative relationship between predicted track density and predicted lion abundance from the call-in surveys. Luminosity was negatively correlated with individual detection probability during call-in surveys. Lion abundance and track density were influenced by landcover, but direction of the corresponding effects were undetermined. N-mixture models allowed us to incorporate multiple parameters (e.g., landcover, luminosity, observer effect) influencing lion abundance and probability of detection directly into abundance estimates. We suggest that N-mixture models employing a hierarchical observation process can be used to estimate abundance of other social, herding, and grouping species. PMID:27786283

  3. Estimating Lion Abundance using N-mixture Models for Social Species.

    PubMed

    Belant, Jerrold L; Bled, Florent; Wilton, Clay M; Fyumagwa, Robert; Mwampeta, Stanslaus B; Beyer, Dean E

    2016-10-27

    Declining populations of large carnivores worldwide, and the complexities of managing human-carnivore conflicts, require accurate population estimates of large carnivores to promote their long-term persistence through well-informed management We used N-mixture models to estimate lion (Panthera leo) abundance from call-in and track surveys in southeastern Serengeti National Park, Tanzania. Because of potential habituation to broadcasted calls and social behavior, we developed a hierarchical observation process within the N-mixture model conditioning lion detectability on their group response to call-ins and individual detection probabilities. We estimated 270 lions (95% credible interval = 170-551) using call-ins but were unable to estimate lion abundance from track data. We found a weak negative relationship between predicted track density and predicted lion abundance from the call-in surveys. Luminosity was negatively correlated with individual detection probability during call-in surveys. Lion abundance and track density were influenced by landcover, but direction of the corresponding effects were undetermined. N-mixture models allowed us to incorporate multiple parameters (e.g., landcover, luminosity, observer effect) influencing lion abundance and probability of detection directly into abundance estimates. We suggest that N-mixture models employing a hierarchical observation process can be used to estimate abundance of other social, herding, and grouping species.

  4. Using areas of known occupancy to identify sources of variation in detection probability of raptors: taking time lowers replication effort for surveys.

    PubMed

    Murn, Campbell; Holloway, Graham J

    2016-10-01

    Species occurring at low density can be difficult to detect and if not properly accounted for, imperfect detection will lead to inaccurate estimates of occupancy. Understanding sources of variation in detection probability and how they can be managed is a key part of monitoring. We used sightings data of a low-density and elusive raptor (white-headed vulture Trigonoceps occipitalis ) in areas of known occupancy (breeding territories) in a likelihood-based modelling approach to calculate detection probability and the factors affecting it. Because occupancy was known a priori to be 100%, we fixed the model occupancy parameter to 1.0 and focused on identifying sources of variation in detection probability. Using detection histories from 359 territory visits, we assessed nine covariates in 29 candidate models. The model with the highest support indicated that observer speed during a survey, combined with temporal covariates such as time of year and length of time within a territory, had the highest influence on the detection probability. Averaged detection probability was 0.207 (s.e. 0.033) and based on this the mean number of visits required to determine within 95% confidence that white-headed vultures are absent from a breeding area is 13 (95% CI: 9-20). Topographical and habitat covariates contributed little to the best models and had little effect on detection probability. We highlight that low detection probabilities of some species means that emphasizing habitat covariates could lead to spurious results in occupancy models that do not also incorporate temporal components. While variation in detection probability is complex and influenced by effects at both temporal and spatial scales, temporal covariates can and should be controlled as part of robust survey methods. Our results emphasize the importance of accounting for detection probability in occupancy studies, particularly during presence/absence studies for species such as raptors that are widespread and occur at low densities.

  5. Moments of the Particle Phase-Space Density at Freeze-out and Coincidence Probabilities

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyż, W.; Zalewski, K.

    2005-10-01

    It is pointed out that the moments of phase-space particle density at freeze-out can be determined from the coincidence probabilities of the events observed in multiparticle production. A method to measure the coincidence probabilities is described and its validity examined.

  6. Variable selection models for genomic selection using whole-genome sequence data and singular value decomposition.

    PubMed

    Meuwissen, Theo H E; Indahl, Ulf G; Ødegård, Jørgen

    2017-12-27

    Non-linear Bayesian genomic prediction models such as BayesA/B/C/R involve iteration and mostly Markov chain Monte Carlo (MCMC) algorithms, which are computationally expensive, especially when whole-genome sequence (WGS) data are analyzed. Singular value decomposition (SVD) of the genotype matrix can facilitate genomic prediction in large datasets, and can be used to estimate marker effects and their prediction error variances (PEV) in a computationally efficient manner. Here, we developed, implemented, and evaluated a direct, non-iterative method for the estimation of marker effects for the BayesC genomic prediction model. The BayesC model assumes a priori that markers have normally distributed effects with probability [Formula: see text] and no effect with probability (1 - [Formula: see text]). Marker effects and their PEV are estimated by using SVD and the posterior probability of the marker having a non-zero effect is calculated. These posterior probabilities are used to obtain marker-specific effect variances, which are subsequently used to approximate BayesC estimates of marker effects in a linear model. A computer simulation study was conducted to compare alternative genomic prediction methods, where a single reference generation was used to estimate marker effects, which were subsequently used for 10 generations of forward prediction, for which accuracies were evaluated. SVD-based posterior probabilities of markers having non-zero effects were generally lower than MCMC-based posterior probabilities, but for some regions the opposite occurred, resulting in clear signals for QTL-rich regions. The accuracies of breeding values estimated using SVD- and MCMC-based BayesC analyses were similar across the 10 generations of forward prediction. For an intermediate number of generations (2 to 5) of forward prediction, accuracies obtained with the BayesC model tended to be slightly higher than accuracies obtained using the best linear unbiased prediction of SNP effects (SNP-BLUP model). When reducing marker density from WGS data to 30 K, SNP-BLUP tended to yield the highest accuracies, at least in the short term. Based on SVD of the genotype matrix, we developed a direct method for the calculation of BayesC estimates of marker effects. Although SVD- and MCMC-based marker effects differed slightly, their prediction accuracies were similar. Assuming that the SVD of the marker genotype matrix is already performed for other reasons (e.g. for SNP-BLUP), computation times for the BayesC predictions were comparable to those of SNP-BLUP.

  7. A Bayesian approach to modeling 2D gravity data using polygon states

    NASA Astrophysics Data System (ADS)

    Titus, W. J.; Titus, S.; Davis, J. R.

    2015-12-01

    We present a Bayesian Markov chain Monte Carlo (MCMC) method for the 2D gravity inversion of a localized subsurface object with constant density contrast. Our models have four parameters: the density contrast, the number of vertices in a polygonal approximation of the object, an upper bound on the ratio of the perimeter squared to the area, and the vertices of a polygon container that bounds the object. Reasonable parameter values can be estimated prior to inversion using a forward model and geologic information. In addition, we assume that the field data have a common random uncertainty that lies between two bounds but that it has no systematic uncertainty. Finally, we assume that there is no uncertainty in the spatial locations of the measurement stations. For any set of model parameters, we use MCMC methods to generate an approximate probability distribution of polygons for the object. We then compute various probability distributions for the object, including the variance between the observed and predicted fields (an important quantity in the MCMC method), the area, the center of area, and the occupancy probability (the probability that a spatial point lies within the object). In addition, we compare probabilities of different models using parallel tempering, a technique which also mitigates trapping in local optima that can occur in certain model geometries. We apply our method to several synthetic data sets generated from objects of varying shape and location. We also analyze a natural data set collected across the Rio Grande Gorge Bridge in New Mexico, where the object (i.e. the air below the bridge) is known and the canyon is approximately 2D. Although there are many ways to view results, the occupancy probability proves quite powerful. We also find that the choice of the container is important. In particular, large containers should be avoided, because the more closely a container confines the object, the better the predictions match properties of object.

  8. Range estimation of passive infrared targets through the atmosphere

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan; Seo, Doochun; Choi, Seokweon

    2013-04-01

    Target range estimation is traditionally based on radar and active sonar systems in modern combat systems. However, jamming signals tremendously degrade the performance of such active sensor devices. We introduce a simple target range estimation method and the fundamental limits of the proposed method based on the atmosphere propagation model. Since passive infrared (IR) sensors measure IR signals radiating from objects in different wavelengths, this method has robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and various attenuation factors (i.e., the distance between sensor and target and atmosphere environment parameters). MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the results from MODTRAN and atmosphere propagation-based modeling, the target range can be estimated. To analyze the proposed method's performance statistically, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao lower bound (CRLB) via the probability density function of measured radiance. We also compare CRLB and the variance of MLE using Monte-Carlo simulation.

  9. Using satellite remote sensing to model and map the distribution of Bicknell's thrush (Catharus bicknelli) in the White Mountains of New Hampshire

    NASA Astrophysics Data System (ADS)

    Hale, Stephen Roy

    Landsat-7 Enhanced Thematic Mapper satellite imagery was used to model Bicknell's Thrush (Catharus bicknelli) distribution in the White Mountains of New Hampshire. The proof-of-concept was established for using satellite imagery in species-habitat modeling, where for the first time imagery spectral features were used to estimate a species-habitat model variable. The model predicted rising probabilities of thrush presence with decreasing dominant vegetation height, increasing elevation, and decreasing distance to nearest Fir Sapling cover type. To solve the model at all locations required regressor estimates at every pixel, which were not available for the dominant vegetation height and elevation variables. Topographically normalized imagery features Normalized Difference Vegetation Index and Band 1 (blue) were used to estimate dominant vegetation height using multiple linear regression; and a Digital Elevation Model was used to estimate elevation. Distance to nearest Fir Sapling cover type was obtained for each pixel from a land cover map specifically constructed for this project. The Bicknell's Thrush habitat model was derived using logistic regression, which produced the probability of detecting a singing male based on the pattern of model covariates. Model validation using Bicknell's Thrush data not used in model calibration, revealed that the model accurately estimated thrush presence at probabilities ranging from 0 to <0.40 and from 0.50 to <0.60. Probabilities from 0.40 to <0.50 and greater than 0.60 significantly underestimated and overestimated presence, respectively. Applying the model to the study area illuminated an important implication for Bicknell's Thrush conservation. The model predicted increasing numbers of presences and increasing relative density with rising elevation, with which exists a concomitant decrease in land area. Greater land area of lower density habitats may account for more total individuals and reproductive output than higher density less abundant land area. Efforts to conserve areas of highest individual density under the assumption that density reflects habitat quality could target the smallest fraction of the total population.

  10. Grizzly Bear Noninvasive Genetic Tagging Surveys: Estimating the Magnitude of Missed Detections

    PubMed Central

    Fisher, Jason T.; Heim, Nicole; Code, Sandra; Paczkowski, John

    2016-01-01

    Sound wildlife conservation decisions require sound information, and scientists increasingly rely on remotely collected data over large spatial scales, such as noninvasive genetic tagging (NGT). Grizzly bears (Ursus arctos), for example, are difficult to study at population scales except with noninvasive data, and NGT via hair trapping informs management over much of grizzly bears’ range. Considerable statistical effort has gone into estimating sources of heterogeneity, but detection error–arising when a visiting bear fails to leave a hair sample–has not been independently estimated. We used camera traps to survey grizzly bear occurrence at fixed hair traps and multi-method hierarchical occupancy models to estimate the probability that a visiting bear actually leaves a hair sample with viable DNA. We surveyed grizzly bears via hair trapping and camera trapping for 8 monthly surveys at 50 (2012) and 76 (2013) sites in the Rocky Mountains of Alberta, Canada. We used multi-method occupancy models to estimate site occupancy, probability of detection, and conditional occupancy at a hair trap. We tested the prediction that detection error in NGT studies could be induced by temporal variability within season, leading to underestimation of occupancy. NGT via hair trapping consistently underestimated grizzly bear occupancy at a site when compared to camera trapping. At best occupancy was underestimated by 50%; at worst, by 95%. Probability of false absence was reduced through successive surveys, but this mainly accounts for error imparted by movement among repeated surveys, not necessarily missed detections by extant bears. The implications of missed detections and biased occupancy estimates for density estimation–which form the crux of management plans–require consideration. We suggest hair-trap NGT studies should estimate and correct detection error using independent survey methods such as cameras, to ensure the reliability of the data upon which species management and conservation actions are based. PMID:27603134

  11. A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models.

    PubMed

    Whittington, Jesse; Sawaya, Michael A

    2015-01-01

    Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal's home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786-1.071) for females, 0.844 (0.703-0.975) for males, and 0.882 (0.779-0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758-1.024) for females, 0.825 (0.700-0.948) for males, and 0.863 (0.771-0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park's population of grizzly bears requires continued conservation-oriented management actions.

  12. A statistical treatment of bioassay pour fractions

    NASA Astrophysics Data System (ADS)

    Barengoltz, Jack; Hughes, David

    A bioassay is a method for estimating the number of bacterial spores on a spacecraft surface for the purpose of demonstrating compliance with planetary protection (PP) requirements (Ref. 1). The details of the process may be seen in the appropriate PP document (e.g., for NASA, Ref. 2). In general, the surface is mechanically sampled with a damp sterile swab or wipe. The completion of the process is colony formation in a growth medium in a plate (Petri dish); the colonies are counted. Consider a set of samples from randomly selected, known areas of one spacecraft surface, for simplicity. One may calculate the mean and standard deviation of the bioburden density, which is the ratio of counts to area sampled. The standard deviation represents an estimate of the variation from place to place of the true bioburden density commingled with the precision of the individual sample counts. The accuracy of individual sample results depends on the equipment used, the collection method, and the culturing method. One aspect that greatly influences the result is the pour fraction, which is the quantity of fluid added to the plates divided by the total fluid used in extracting spores from the sampling equipment. In an analysis of a single sample’s counts due to the pour fraction, one seeks to answer the question: What is the probability that if a certain number of spores are counted with a known pour fraction, that there are an additional number of spores in the part of the rinse not poured. This is given for specific values by the binomial distribution density, where detection (of culturable spores) is success and the probability of success is the pour fraction. A special summation over the binomial distribution, equivalent to adding for all possible values of the true total number of spores, is performed. This distribution when normalized will almost yield the desired quantity. It is the probability that the additional number of spores does not exceed a certain value. Of course, for a desired value of uncertainty, one must invert the calculation. However, this probability of finding exactly the number of spores in the poured part is correct only in the case where all values of the true number of spores greater than or equal to the adjusted count are equally probable. This is not realistic, of course, but the result can only overestimate the uncertainty. So it is useful. In probability speak, one has the conditional probability given any true total number of spores. Therefore one must multiply it by the probability of each possible true count, before the summation. If the counts for a sample set (of which this is one sample) are available, one may use the calculated variance and the normal probability distribution. In this approach, one assumes a normal distribution and neglects the contribution from spatial variation. The former is a common assumption. The latter can only add to the conservatism (over estimate the number of spores at some level of confidence). A more straightforward approach is to assume a Poisson probability distribution for the measured total sample set counts, and use the product of the number of samples and the mean number of counts per sample as the mean of the Poisson distribution. It is necessary to set the total count to 1 in the Poisson distribution when actual total count is zero. Finally, even when the planetary protection requirements for spore burden refer only to the mean values, they require an adjustment for pour fraction and method efficiency (a PP specification based on independent data). The adjusted mean values are a 50/50 proposition (e.g., the probability of the true total counts in the sample set exceeding the estimate is 0.50). However, this is highly unconservative when the total counts are zero. No adjustment to the mean values occurs for either pour fraction or efficiency. The recommended approach is once again to set the total counts to 1, but now applied to the mean values. Then one may apply the corrections to the revised counts. It can be shown by the methods developed in this work that this change is usually conservative enough to increase the level of confidence in the estimate to 0.5. 1. NASA. (2005) Planetary protection provisions for robotic extraterrestrial missions. NPR 8020.12C, April 2005, National Aeronautics and Space Administration, Washington, DC. 2. NASA. (2010) Handbook for the Microbiological Examination of Space Hardware, NASA-HDBK-6022, National Aeronautics and Space Administration, Washington, DC.

  13. Detection of image structures using the Fisher information and the Rao metric.

    PubMed

    Maybank, Stephen J

    2004-12-01

    In many detection problems, the structures to be detected are parameterized by the points of a parameter space. If the conditional probability density function for the measurements is known, then detection can be achieved by sampling the parameter space at a finite number of points and checking each point to see if the corresponding structure is supported by the data. The number of samples and the distances between neighboring samples are calculated using the Rao metric on the parameter space. The Rao metric is obtained from the Fisher information which is, in turn, obtained from the conditional probability density function. An upper bound is obtained for the probability of a false detection. The calculations are simplified in the low noise case by making an asymptotic approximation to the Fisher information. An application to line detection is described. Expressions are obtained for the asymptotic approximation to the Fisher information, the volume of the parameter space, and the number of samples. The time complexity for line detection is estimated. An experimental comparison is made with a Hough transform-based method for detecting lines.

  14. Fuzzy-logic detection and probability of hail exploiting short-range X-band weather radar

    NASA Astrophysics Data System (ADS)

    Capozzi, Vincenzo; Picciotti, Errico; Mazzarella, Vincenzo; Marzano, Frank Silvio; Budillon, Giorgio

    2018-03-01

    This work proposes a new method for hail precipitation detection and probability, based on single-polarization X-band radar measurements. Using a dataset consisting of reflectivity volumes, ground truth observations and atmospheric sounding data, a probability of hail index, which provides a simple estimate of the hail potential, has been trained and adapted within Naples metropolitan environment study area. The probability of hail has been calculated starting by four different hail detection methods. The first two, based on (1) reflectivity data and temperature measurements and (2) on vertically-integrated liquid density product, respectively, have been selected from the available literature. The other two techniques are based on combined criteria of the above mentioned methods: the first one (3) is based on the linear discriminant analysis, whereas the other one (4) relies on the fuzzy-logic approach. The latter is an innovative criterion based on a fuzzyfication step performed through ramp membership functions. The performances of the four methods have been tested using an independent dataset: the results highlight that the fuzzy-oriented combined method performs slightly better in terms of false alarm ratio, critical success index and area under the relative operating characteristic. An example of application of the proposed hail detection and probability products is also presented for a relevant hail event, occurred on 21 July 2014.

  15. Ant-inspired density estimation via random walks.

    PubMed

    Musco, Cameron; Su, Hsin-Hao; Lynch, Nancy A

    2017-10-03

    Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks.

  16. Constrained Kalman Filtering Via Density Function Truncation for Turbofan Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2006-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter truncates the PDF (probability density function) of the Kalman filter estimate at the known constraints and then computes the constrained filter estimate as the mean of the truncated PDF. The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is demonstrated via simulation results obtained from a turbofan engine model. The turbofan engine model contains 3 state variables, 11 measurements, and 10 component health parameters. It is also shown that the truncated Kalman filter may be a more accurate way of incorporating inequality constraints than other constrained filters (e.g., the projection approach to constrained filtering).

  17. Modeling the Effect of Density-Dependent Chemical Interference Upon Seed Germination

    PubMed Central

    Sinkkonen, Aki

    2005-01-01

    A mathematical model is presented to estimate the effects of phytochemicals on seed germination. According to the model, phytochemicals tend to prevent germination at low seed densities. The model predicts that at high seed densities they may increase the probability of seed germination and the number of germinating seeds. Hence, the effects are reminiscent of the density-dependent effects of allelochemicals on plant growth, but the involved variables are germination probability and seedling number. The results imply that it should be possible to bypass inhibitory effects of allelopathy in certain agricultural practices and to increase the efficiency of nature conservation in several plant communities. PMID:19330163

  18. Modeling the Effect of Density-Dependent Chemical Interference upon Seed Germination

    PubMed Central

    Sinkkonen, Aki

    2006-01-01

    A mathematical model is presented to estimate the effects of phytochemicals on seed germination. According to the model, phytochemicals tend to prevent germination at low seed densities. The model predicts that at high seed densities they may increase the probability of seed germination and the number of germinating seeds. Hence, the effects are reminiscent of the density-dependent effects of allelochemicals on plant growth, but the involved variables are germination probability and seedling number. The results imply that it should be possible to bypass inhibitory effects of allelopathy in certain agricultural practices and to increase the efficiency of nature conservation in several plant communities. PMID:18648596

  19. The Mass of Saturn's B ring from hidden density waves

    NASA Astrophysics Data System (ADS)

    Hedman, M. M.; Nicholson, P. D.

    2015-12-01

    The B ring is Saturn's brightest and most opaque ring, but many of its fundamental parameters, including its total mass, are not well constrained. Elsewhere in the rings, the best mass density estimates come from spiral waves driven by mean-motion resonances with Saturn's various moons, but such waves have been hard to find in the B ring. We have developed a new wavelet-based technique, for combining data from multiple stellar occultations that allows us to isolate the density wave signals from other ring structures. This method has been applied to 5 density waves using 17 occultations of the star gamma Crucis observed by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. Two of these waves (generated by the Janus 2:1 and Mimas 5:2 Inner Lindblad Resonances) are visible in individual occultation profiles, but the other three wave signatures ( associated with the Janus 3:2, Enceladus 3:1 and Pandora 3:2 Inner Lindblad Resonances ) are not visible in individual profiles and can only be detected in the combined dataset. Estimates of the ring's surface mass density derived from these five waves fall between 40 and 140 g/cm^2. Surprisingly, these mass density estimates show no obvious correlation with the ring's optical depth. Furthermore, these data indicate that the total mass of the B ring is probably between one-third and two-thirds the mass of Saturn's moon Mimas.

  20. PULSAR SIGNAL DENOISING METHOD BASED ON LAPLACE DISTRIBUTION IN NO-SUBSAMPLING WAVELET PACKET DOMAIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenbo, Wang; Yanchao, Zhao; Xiangli, Wang

    2016-11-01

    In order to improve the denoising effect of the pulsar signal, a new denoising method is proposed in the no-subsampling wavelet packet domain based on the local Laplace prior model. First, we count the true noise-free pulsar signal’s wavelet packet coefficient distribution characteristics and construct the true signal wavelet packet coefficients’ Laplace probability density function model. Then, we estimate the denosied wavelet packet coefficients by using the noisy pulsar wavelet coefficients based on maximum a posteriori criteria. Finally, we obtain the denoisied pulsar signal through no-subsampling wavelet packet reconstruction of the estimated coefficients. The experimental results show that the proposed method performs better when calculating the pulsar time of arrival than the translation-invariant wavelet denoising method.

  1. Joint constraints on galaxy bias and σ{sub 8} through the N-pdf of the galaxy number density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnalte-Mur, Pablo; Martínez, Vicent J.; Vielva, Patricio

    We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on themore » bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ{sub 8}). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both, ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes M{sub r} ≤ −20). We obtain b-circumflex  = 1.193 ± 0.074 and σ-bar{sub 8} = 0.862 ± 0.080, for galaxy number density fluctuations in cells of the size of 30h{sup −1}Mpc. Different model selection criteria show that galaxy biasing is clearly favoured.« less

  2. The effect of incremental changes in phonotactic probability and neighborhood density on word learning by preschool children

    PubMed Central

    Storkel, Holly L.; Bontempo, Daniel E.; Aschenbrenner, Andrew J.; Maekawa, Junko; Lee, Su-Yeon

    2013-01-01

    Purpose Phonotactic probability or neighborhood density have predominately been defined using gross distinctions (i.e., low vs. high). The current studies examined the influence of finer changes in probability (Experiment 1) and density (Experiment 2) on word learning. Method The full range of probability or density was examined by sampling five nonwords from each of four quartiles. Three- and 5-year-old children received training on nonword-nonobject pairs. Learning was measured in a picture-naming task immediately following training and 1-week after training. Results were analyzed using multi-level modeling. Results A linear spline model best captured nonlinearities in phonotactic probability. Specifically word learning improved as probability increased in the lowest quartile, worsened as probability increased in the midlow quartile, and then remained stable and poor in the two highest quartiles. An ordinary linear model sufficiently described neighborhood density. Here, word learning improved as density increased across all quartiles. Conclusion Given these different patterns, phonotactic probability and neighborhood density appear to influence different word learning processes. Specifically, phonotactic probability may affect recognition that a sound sequence is an acceptable word in the language and is a novel word for the child, whereas neighborhood density may influence creation of a new representation in long-term memory. PMID:23882005

  3. Thermoelectric properties of bismuth telluride nanoplate thin films determined using combined infrared spectroscopy and first-principles calculation

    NASA Astrophysics Data System (ADS)

    Wada, Kodai; Tomita, Koji; Takashiri, Masayuki

    2018-06-01

    The thermoelectric properties of bismuth telluride (Bi2Te3) nanoplate thin films were estimated using combined infrared spectroscopy and first-principles calculation, followed by comparing the estimated properties with those obtained using the standard electrical probing method. Hexagonal single-crystalline Bi2Te3 nanoplates were first prepared using solvothermal synthesis, followed by preparing Bi2Te3 nanoplate thin films using the drop-casting technique. The nanoplates were joined by thermally annealing them at 250 °C in Ar (95%)–H2 (5%) gas (atmospheric pressure). The electronic transport properties were estimated by infrared spectroscopy using the Drude model, with the effective mass being determined from the band structure using first-principles calculations based on the density functional theory. The electrical conductivity and Seebeck coefficient obtained using the combined analysis were higher than those obtained using the standard electrical probing method, probably because the contact resistance between the nanoplates was excluded from the estimation procedure of the combined analysis method.

  4. Multinomial mixture model with heterogeneous classification probabilities

    USGS Publications Warehouse

    Holland, M.D.; Gray, B.R.

    2011-01-01

    Royle and Link (Ecology 86(9):2505-2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logit-normal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated Royle-Link model yields nearly unbiased estimates of multinomial and correct classification probability estimates when classification probabilities are allowed to vary according to the normal distribution on the logit scale or according to the Beta distribution. The method is illustrated using categorical submersed aquatic vegetation data. ?? 2010 Springer Science+Business Media, LLC.

  5. Microdosimetric Modeling of Biological Effectiveness for Boron Neutron Capture Therapy Considering Intra- and Intercellular Heterogeneity in 10B Distribution.

    PubMed

    Sato, Tatsuhiko; Masunaga, Shin-Ichiro; Kumada, Hiroaki; Hamada, Nobuyuki

    2018-01-17

    We here propose a new model for estimating the biological effectiveness for boron neutron capture therapy (BNCT) considering intra- and intercellular heterogeneity in 10 B distribution. The new model was developed from our previously established stochastic microdosimetric kinetic model that determines the surviving fraction of cells irradiated with any radiations. In the model, the probability density of the absorbed doses in microscopic scales is the fundamental physical index for characterizing the radiation fields. A new computational method was established to determine the probability density for application to BNCT using the Particle and Heavy Ion Transport code System PHITS. The parameters used in the model were determined from the measured surviving fraction of tumor cells administrated with two kinds of 10 B compounds. The model quantitatively highlighted the indispensable need to consider the synergetic effect and the dose dependence of the biological effectiveness in the estimate of the therapeutic effect of BNCT. The model can predict the biological effectiveness of newly developed 10 B compounds based on their intra- and intercellular distributions, and thus, it can play important roles not only in treatment planning but also in drug discovery research for future BNCT.

  6. Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions

    PubMed Central

    Barrett, Harrison H.; Dainty, Christopher; Lara, David

    2008-01-01

    Maximum-likelihood (ML) estimation in wavefront sensing requires careful attention to all noise sources and all factors that influence the sensor data. We present detailed probability density functions for the output of the image detector in a wavefront sensor, conditional not only on wavefront parameters but also on various nuisance parameters. Practical ways of dealing with nuisance parameters are described, and final expressions for likelihoods and Fisher information matrices are derived. The theory is illustrated by discussing Shack–Hartmann sensors, and computational requirements are discussed. Simulation results show that ML estimation can significantly increase the dynamic range of a Shack–Hartmann sensor with four detectors and that it can reduce the residual wavefront error when compared with traditional methods. PMID:17206255

  7. Site specific probability of passive acoustic detection of humpback whale calls from single fixed hydrophones.

    PubMed

    Helble, Tyler A; D'Spain, Gerald L; Hildebrand, John A; Campbell, Gregory S; Campbell, Richard L; Heaney, Kevin D

    2013-09-01

    Passive acoustic monitoring of marine mammal calls is an increasingly important method for assessing population numbers, distribution, and behavior. A common mistake in the analysis of marine mammal acoustic data is formulating conclusions about these animals without first understanding how environmental properties such as bathymetry, sediment properties, water column sound speed, and ocean acoustic noise influence the detection and character of vocalizations in the acoustic data. The approach in this paper is to use Monte Carlo simulations with a full wave field acoustic propagation model to characterize the site specific probability of detection of six types of humpback whale calls at three passive acoustic monitoring locations off the California coast. Results show that the probability of detection can vary by factors greater than ten when comparing detections across locations, or comparing detections at the same location over time, due to environmental effects. Effects of uncertainties in the inputs to the propagation model are also quantified, and the model accuracy is assessed by comparing calling statistics amassed from 24,690 humpback units recorded in the month of October 2008. Under certain conditions, the probability of detection can be estimated with uncertainties sufficiently small to allow for accurate density estimates.

  8. Estimating Density and Temperature Dependence of Juvenile Vital Rates Using a Hidden Markov Model

    PubMed Central

    McElderry, Robert M.

    2017-01-01

    Organisms in the wild have cryptic life stages that are sensitive to changing environmental conditions and can be difficult to survey. In this study, I used mark-recapture methods to repeatedly survey Anaea aidea (Nymphalidae) caterpillars in nature, then modeled caterpillar demography as a hidden Markov process to assess if temporal variability in temperature and density influence the survival and growth of A. aidea over time. Individual encounter histories result from the joint likelihood of being alive and observed in a particular stage, and I have included hidden states by separating demography and observations into parallel and independent processes. I constructed a demographic matrix containing the probabilities of all possible fates for each stage, including hidden states, e.g., eggs and pupae. I observed both dead and live caterpillars with high probability. Peak caterpillar abundance attracted multiple predators, and survival of fifth instars declined as per capita predation rate increased through spring. A time lag between predator and prey abundance was likely the cause of improved fifth instar survival estimated at high density. Growth rates showed an increase with temperature, but the preferred model did not include temperature. This work illustrates how state-space models can include unobservable stages and hidden state processes to evaluate how environmental factors influence vital rates of cryptic life stages in the wild. PMID:28505138

  9. MPN estimation of qPCR target sequence recoveries from whole cell calibrator samples.

    PubMed

    Sivaganesan, Mano; Siefring, Shawn; Varma, Manju; Haugland, Richard A

    2011-12-01

    DNA extracts from enumerated target organism cells (calibrator samples) have been used for estimating Enterococcus cell equivalent densities in surface waters by a comparative cycle threshold (Ct) qPCR analysis method. To compare surface water Enterococcus density estimates from different studies by this approach, either a consistent source of calibrator cells must be used or the estimates must account for any differences in target sequence recoveries from different sources of calibrator cells. In this report we describe two methods for estimating target sequence recoveries from whole cell calibrator samples based on qPCR analyses of their serially diluted DNA extracts and most probable number (MPN) calculation. The first method employed a traditional MPN calculation approach. The second method employed a Bayesian hierarchical statistical modeling approach and a Monte Carlo Markov Chain (MCMC) simulation method to account for the uncertainty in these estimates associated with different individual samples of the cell preparations, different dilutions of the DNA extracts and different qPCR analytical runs. The two methods were applied to estimate mean target sequence recoveries per cell from two different lots of a commercially available source of enumerated Enterococcus cell preparations. The mean target sequence recovery estimates (and standard errors) per cell from Lot A and B cell preparations by the Bayesian method were 22.73 (3.4) and 11.76 (2.4), respectively, when the data were adjusted for potential false positive results. Means were similar for the traditional MPN approach which cannot comparably assess uncertainty in the estimates. Cell numbers and estimates of recoverable target sequences in calibrator samples prepared from the two cell sources were also used to estimate cell equivalent and target sequence quantities recovered from surface water samples in a comparative Ct method. Our results illustrate the utility of the Bayesian method in accounting for uncertainty, the high degree of precision attainable by the MPN approach and the need to account for the differences in target sequence recoveries from different calibrator sample cell sources when they are used in the comparative Ct method. Published by Elsevier B.V.

  10. Generalized Maximum Entropy

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Stutz, John

    2005-01-01

    A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].

  11. A Modeling and Data Analysis of Laser Beam Propagation in the Maritime Domain

    DTIC Science & Technology

    2015-05-18

    approach to computing pdfs is the Kernel Density Method (Reference [9] has an intro - duction to the method), which we will apply to compute the pdf of our...The project has two parts to it: 1) we present a computational analysis of different probability density function approximation techniques; and 2) we... computational analysis of different probability density function approximation techniques; and 2) we introduce preliminary steps towards developing a

  12. Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map

    PubMed Central

    Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S.

    2010-01-01

    SUMMARY A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker–Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes. PMID:20454468

  13. A Discussion on Uncertainty Representation and Interpretation in Model-Based Prognostics Algorithms based on Kalman Filter Estimation Applied to Prognostics of Electronics Components

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saxen, Abhinav; Goebel, Kai

    2012-01-01

    This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process and how it relates to uncertainty representation, management, and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function and the true remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for the two while considering prognostics in making critical decisions.

  14. Comparison of point counts and territory mapping for detecting effects of forest management on songbirds

    USGS Publications Warehouse

    Newell, Felicity L.; Sheehan, James; Wood, Petra Bohall; Rodewald, Amanda D.; Buehler, David A.; Keyser, Patrick D.; Larkin, Jeffrey L.; Beachy, Tiffany A.; Bakermans, Marja H.; Boves, Than J.; Evans, Andrea; George, Gregory A.; McDermott, Molly E.; Perkins, Kelly A.; White, Matthew; Wigley, T. Bently

    2013-01-01

    Point counts are commonly used to assess changes in bird abundance, including analytical approaches such as distance sampling that estimate density. Point-count methods have come under increasing scrutiny because effects of detection probability and field error are difficult to quantify. For seven forest songbirds, we compared fixed-radii counts (50 m and 100 m) and density estimates obtained from distance sampling to known numbers of birds determined by territory mapping. We applied point-count analytic approaches to a typical forest management question and compared results to those obtained by territory mapping. We used a before–after control impact (BACI) analysis with a data set collected across seven study areas in the central Appalachians from 2006 to 2010. Using a 50-m fixed radius, variance in error was at least 1.5 times that of the other methods, whereas a 100-m fixed radius underestimated actual density by >3 territories per 10 ha for the most abundant species. Distance sampling improved accuracy and precision compared to fixed-radius counts, although estimates were affected by birds counted outside 10-ha units. In the BACI analysis, territory mapping detected an overall treatment effect for five of the seven species, and effects were generally consistent each year. In contrast, all point-count methods failed to detect two treatment effects due to variance and error in annual estimates. Overall, our results highlight the need for adequate sample sizes to reduce variance, and skilled observers to reduce the level of error in point-count data. Ultimately, the advantages and disadvantages of different survey methods should be considered in the context of overall study design and objectives, allowing for trade-offs among effort, accuracy, and power to detect treatment effects.

  15. Pairing field methods to improve inference in wildlife surveys while accommodating detection covariance

    USGS Publications Warehouse

    Clare, John; McKinney, Shawn T.; DePue, John E.; Loftin, Cynthia S.

    2017-01-01

    It is common to use multiple field sampling methods when implementing wildlife surveys to compare method efficacy or cost efficiency, integrate distinct pieces of information provided by separate methods, or evaluate method-specific biases and misclassification error. Existing models that combine information from multiple field methods or sampling devices permit rigorous comparison of method-specific detection parameters, enable estimation of additional parameters such as false-positive detection probability, and improve occurrence or abundance estimates, but with the assumption that the separate sampling methods produce detections independently of one another. This assumption is tenuous if methods are paired or deployed in close proximity simultaneously, a common practice that reduces the additional effort required to implement multiple methods and reduces the risk that differences between method-specific detection parameters are confounded by other environmental factors. We develop occupancy and spatial capture–recapture models that permit covariance between the detections produced by different methods, use simulation to compare estimator performance of the new models to models assuming independence, and provide an empirical application based on American marten (Martes americana) surveys using paired remote cameras, hair catches, and snow tracking. Simulation results indicate existing models that assume that methods independently detect organisms produce biased parameter estimates and substantially understate estimate uncertainty when this assumption is violated, while our reformulated models are robust to either methodological independence or covariance. Empirical results suggested that remote cameras and snow tracking had comparable probability of detecting present martens, but that snow tracking also produced false-positive marten detections that could potentially substantially bias distribution estimates if not corrected for. Remote cameras detected marten individuals more readily than passive hair catches. Inability to photographically distinguish individual sex did not appear to induce negative bias in camera density estimates; instead, hair catches appeared to produce detection competition between individuals that may have been a source of negative bias. Our model reformulations broaden the range of circumstances in which analyses incorporating multiple sources of information can be robustly used, and our empirical results demonstrate that using multiple field-methods can enhance inferences regarding ecological parameters of interest and improve understanding of how reliably survey methods sample these parameters.

  16. Presence-absence surveys of prey and their use in predicting leopard (Panthera pardus) densities: a case study from Armenia.

    PubMed

    Khorozyan, Igor G; Malkhasyan, Alexander G; Abramov, Alexei V

    2008-12-01

    It is important to predict how many individuals of a predator species can survive in a given area on the basis of prey sufficiency and to compare predictive estimates with actual numbers to understand whether or not key threats are related to prey availability. Rugged terrain and low detection probabilities do not allow for the use of traditional prey count techniques in mountain areas. We used presence-absence occupancy modeling and camera-trapping to estimate the abundance and densities of prey species and regression analysis to predict leopard (Panthera pardus) densities from estimated prey biomass in the mountains of the Nuvadi area, Meghri Ridge, southern Armenia. The prey densities were 12.94 ± 2.18 individuals km(-2) for the bezoar goat (Capra aegagrus), 6.88 ± 1.56 for the wild boar (Sus scrofa) and 0.44 ± 0.20 for the roe deer (Capreolus capreolus). The detection probability of the prey was a strong function of the activity patterns, and was highest in diurnal bezoar goats (0.59 ± 0.09). Based on robust regression, the estimated total ungulate prey biomass (720.37 ± 142.72 kg km(-2) ) can support a leopard density of 7. 18 ± 3.06 individuals 100 km(-2) . The actual leopard density is only 0.34 individuals 100 km(-2) (i.e. one subadult male recorded over the 296.9 km(2) ), estimated from tracking and camera-trapping. The most plausible explanation for this discrepancy between predicted and actual leopard density is that poaching and disturbance caused by livestock breeding, plant gathering, deforestation and human-induced wild fires are affecting the leopard population in Armenia. © 2008 ISZS, Blackwell Publishing and IOZ/CAS.

  17. Hybrid asymptotic-numerical approach for estimating first-passage-time densities of the two-dimensional narrow capture problem.

    PubMed

    Lindsay, A E; Spoonmore, R T; Tzou, J C

    2016-10-01

    A hybrid asymptotic-numerical method is presented for obtaining an asymptotic estimate for the full probability distribution of capture times of a random walker by multiple small traps located inside a bounded two-dimensional domain with a reflecting boundary. As motivation for this study, we calculate the variance in the capture time of a random walker by a single interior trap and determine this quantity to be comparable in magnitude to the mean. This implies that the mean is not necessarily reflective of typical capture times and that the full density must be determined. To solve the underlying diffusion equation, the method of Laplace transforms is used to obtain an elliptic problem of modified Helmholtz type. In the limit of vanishing trap sizes, each trap is represented as a Dirac point source that permits the solution of the transform equation to be represented as a superposition of Helmholtz Green's functions. Using this solution, we construct asymptotic short-time solutions of the first-passage-time density, which captures peaks associated with rapid capture by the absorbing traps. When numerical evaluation of the Helmholtz Green's function is employed followed by numerical inversion of the Laplace transform, the method reproduces the density for larger times. We demonstrate the accuracy of our solution technique with a comparison to statistics obtained from a time-dependent solution of the diffusion equation and discrete particle simulations. In particular, we demonstrate that the method is capable of capturing the multimodal behavior in the capture time density that arises when the traps are strategically arranged. The hybrid method presented can be applied to scenarios involving both arbitrary domains and trap shapes.

  18. A Bayesian approach to the modelling of α Cen A

    NASA Astrophysics Data System (ADS)

    Bazot, M.; Bourguignon, S.; Christensen-Dalsgaard, J.

    2012-12-01

    Determining the physical characteristics of a star is an inverse problem consisting of estimating the parameters of models for the stellar structure and evolution, and knowing certain observable quantities. We use a Bayesian approach to solve this problem for α Cen A, which allows us to incorporate prior information on the parameters to be estimated, in order to better constrain the problem. Our strategy is based on the use of a Markov chain Monte Carlo (MCMC) algorithm to estimate the posterior probability densities of the stellar parameters: mass, age, initial chemical composition, etc. We use the stellar evolutionary code ASTEC to model the star. To constrain this model both seismic and non-seismic observations were considered. Several different strategies were tested to fit these values, using either two free parameters or five free parameters in ASTEC. We are thus able to show evidence that MCMC methods become efficient with respect to more classical grid-based strategies when the number of parameters increases. The results of our MCMC algorithm allow us to derive estimates for the stellar parameters and robust uncertainties thanks to the statistical analysis of the posterior probability densities. We are also able to compute odds for the presence of a convective core in α Cen A. When using core-sensitive seismic observational constraints, these can rise above ˜40 per cent. The comparison of results to previous studies also indicates that these seismic constraints are of critical importance for our knowledge of the structure of this star.

  19. Effects of environmental covariates and density on the catchability of fish populations and interpretation of catch per unit effort trends

    USGS Publications Warehouse

    Korman, Josh; Yard, Mike

    2017-01-01

    Article for outlet: Fisheries Research. Abstract: Quantifying temporal and spatial trends in abundance or relative abundance is required to evaluate effects of harvest and changes in habitat for exploited and endangered fish populations. In many cases, the proportion of the population or stock that is captured (catchability or capture probability) is unknown but is often assumed to be constant over space and time. We used data from a large-scale mark-recapture study to evaluate the extent of spatial and temporal variation, and the effects of fish density, fish size, and environmental covariates, on the capture probability of rainbow trout (Oncorhynchus mykiss) in the Colorado River, AZ. Estimates of capture probability for boat electrofishing varied 5-fold across five reaches, 2.8-fold across the range of fish densities that were encountered, 2.1-fold over 19 trips, and 1.6-fold over five fish size classes. Shoreline angle and turbidity were the best covariates explaining variation in capture probability across reaches and trips. Patterns in capture probability were driven by changes in gear efficiency and spatial aggregation, but the latter was more important. Failure to account for effects of fish density on capture probability when translating a historical catch per unit effort time series into a time series of abundance, led to 2.5-fold underestimation of the maximum extent of variation in abundance over the period of record, and resulted in unreliable estimates of relative change in critical years. Catch per unit effort surveys have utility for monitoring long-term trends in relative abundance, but are too imprecise and potentially biased to evaluate population response to habitat changes or to modest changes in fishing effort.

  20. a Hybrid Method in Vegetation Height Estimation Using Polinsar Images of Campaign Biosar

    NASA Astrophysics Data System (ADS)

    Dehnavi, S.; Maghsoudi, Y.

    2015-12-01

    Recently, there have been plenty of researches on the retrieval of forest height by PolInSAR data. This paper aims at the evaluation of a hybrid method in vegetation height estimation based on L-band multi-polarized air-borne SAR images. The SAR data used in this paper were collected by the airborne E-SAR system. The objective of this research is firstly to describe each interferometry cross correlation as a sum of contributions corresponding to single bounce, double bounce and volume scattering processes. Then, an ESPIRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithm is implemented, to determine the interferometric phase of each local scatterer (ground and canopy). Secondly, the canopy height is estimated by phase differencing method, according to the RVOG (Random Volume Over Ground) concept. The applied model-based decomposition method is unrivaled, as it is not limited to specific type of vegetation, unlike the previous decomposition techniques. In fact, the usage of generalized probability density function based on the nth power of a cosine-squared function, which is characterized by two parameters, makes this method useful for different vegetation types. Experimental results show the efficiency of the approach for vegetation height estimation in the test site.

  1. The 2-10 keV unabsorbed luminosity function of AGN from the LSS, CDFS, and COSMOS surveys

    NASA Astrophysics Data System (ADS)

    Ranalli, P.; Koulouridis, E.; Georgantopoulos, I.; Fotopoulou, S.; Hsu, L.-T.; Salvato, M.; Comastri, A.; Pierre, M.; Cappelluti, N.; Carrera, F. J.; Chiappetti, L.; Clerc, N.; Gilli, R.; Iwasawa, K.; Pacaud, F.; Paltani, S.; Plionis, E.; Vignali, C.

    2016-05-01

    The XMM-Large scale structure (XMM-LSS), XMM-Cosmological evolution survey (XMM-COSMOS), and XMM-Chandra deep field south (XMM-CDFS) surveys are complementary in terms of sky coverage and depth. Together, they form a clean sample with the least possible variance in instrument effective areas and point spread function. Therefore this is one of the best samples available to determine the 2-10 keV luminosity function of active galactic nuclei (AGN) and their evolution. The samples and the relevant corrections for incompleteness are described. A total of 2887 AGN is used to build the LF in the luminosity interval 1042-1046 erg s-1 and in the redshift interval 0.001-4. A new method to correct for absorption by considering the probability distribution for the column density conditioned on the hardness ratio is presented. The binned luminosity function and its evolution is determined with a variant of the Page-Carrera method, which is improved to include corrections for absorption and to account for the full probability distribution of photometric redshifts. Parametric models, namely a double power law with luminosity and density evolution (LADE) or luminosity-dependent density evolution (LDDE), are explored using Bayesian inference. We introduce the Watanabe-Akaike information criterion (WAIC) to compare the models and estimate their predictive power. Our data are best described by the LADE model, as hinted by the WAIC indicator. We also explore the recently proposed 15-parameter extended LDDE model and find that this extension is not supported by our data. The strength of our method is that it provides unabsorbed, non-parametric estimates, credible intervals for luminosity function parameters, and a model choice based on predictive power for future data. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA.Tables with the samples of the posterior probability distributions are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A80

  2. Use of spatial capture–recapture to estimate density of Andean bears in northern Ecuador

    USGS Publications Warehouse

    Molina, Santiago; Fuller, Angela K.; Morin, Dana J.; Royle, J. Andrew

    2017-01-01

    The Andean bear (Tremarctos ornatus) is the only extant species of bear in South America and is considered threatened across its range and endangered in Ecuador. Habitat loss and fragmentation is considered a critical threat to the species, and there is a lack of knowledge regarding its distribution and abundance. The species is thought to occur at low densities, making field studies designed to estimate abundance or density challenging. We conducted a pilot camera-trap study to estimate Andean bear density in a recently identified population of Andean bears northwest of Quito, Ecuador, during 2012. We compared 12 candidate spatial capture–recapture models including covariates on encounter probability and density and estimated a density of 7.45 bears/100 km2 within the region. In addition, we estimated that approximately 40 bears used a recently named Andean bear corridor established by the Secretary of Environment, and we produced a density map for this area. Use of a rub-post with vanilla scent attractant allowed us to capture numerous photographs for each event, improving our ability to identify individual bears by unique facial markings. This study provides the first empirically derived density estimate for Andean bears in Ecuador and should provide direction for future landscape-scale studies interested in conservation initiatives requiring spatially explicit estimates of density.

  3. Sampling characteristics and calibration of snorkel counts to estimate stream fish populations

    USGS Publications Warehouse

    Weaver, D.; Kwak, Thomas J.; Pollock, Kenneth

    2014-01-01

    Snorkeling is a versatile technique for estimating lotic fish population characteristics; however, few investigators have evaluated its accuracy at population or assemblage levels. We evaluated the accuracy of snorkeling using prepositioned areal electrofishing (PAE) for estimating fish populations in a medium-sized Appalachian Mountain river during fall 2008 and summer 2009. Strip-transect snorkel counts were calibrated with PAE counts in identical locations among macrohabitats, fish species or taxa, and seasons. Mean snorkeling efficiency (i.e., the proportion of individuals counted from the true population) among all taxa and seasons was 14.7% (SE, 2.5%), and the highest efficiencies were for River Chub Nocomis micropogon at 21.1% (SE, 5.9%), Central Stoneroller Campostoma anomalum at 20.3% (SE, 9.6%), and darters (Percidae) at 17.1% (SE, 3.7%), whereas efficiencies were lower for shiners (Notropis spp., Cyprinella spp., Luxilus spp.) at 8.2% (SE, 2.2%) and suckers (Catostomidae) at 6.6% (SE, 3.2%). Macrohabitat type, fish taxon, or sampling season did not significantly explain variance in snorkeling efficiency. Mean snorkeling detection probability (i.e., probability of detecting at least one individual of a taxon) among fish taxa and seasons was 58.4% (SE, 6.1%). We applied the efficiencies from our calibration study to adjust snorkel counts from an intensive snorkeling survey conducted in a nearby reach. Total fish density estimates from strip-transect counts adjusted for snorkeling efficiency were 7,288 fish/ha (SE, 1,564) during summer and 15,805 fish/ha (SE, 4,947) during fall. Precision of fish density estimates is influenced by variation in snorkeling efficiency and sample size and may be increased with additional sampling effort. These results demonstrate the sampling properties and utility of snorkeling to characterize lotic fish assemblages with acceptable efficiency and detection probability, less effort, and no mortality, compared with traditional sampling methods.

  4. Incorporating Functional Genomic Information in Genetic Association Studies Using an Empirical Bayes Approach.

    PubMed

    Spencer, Amy V; Cox, Angela; Lin, Wei-Yu; Easton, Douglas F; Michailidou, Kyriaki; Walters, Kevin

    2016-04-01

    There is a large amount of functional genetic data available, which can be used to inform fine-mapping association studies (in diseases with well-characterised disease pathways). Single nucleotide polymorphism (SNP) prioritization via Bayes factors is attractive because prior information can inform the effect size or the prior probability of causal association. This approach requires the specification of the effect size. If the information needed to estimate a priori the probability density for the effect sizes for causal SNPs in a genomic region isn't consistent or isn't available, then specifying a prior variance for the effect sizes is challenging. We propose both an empirical method to estimate this prior variance, and a coherent approach to using SNP-level functional data, to inform the prior probability of causal association. Through simulation we show that when ranking SNPs by our empirical Bayes factor in a fine-mapping study, the causal SNP rank is generally as high or higher than the rank using Bayes factors with other plausible values of the prior variance. Importantly, we also show that assigning SNP-specific prior probabilities of association based on expert prior functional knowledge of the disease mechanism can lead to improved causal SNPs ranks compared to ranking with identical prior probabilities of association. We demonstrate the use of our methods by applying the methods to the fine mapping of the CASP8 region of chromosome 2 using genotype data from the Collaborative Oncological Gene-Environment Study (COGS) Consortium. The data we analysed included approximately 46,000 breast cancer case and 43,000 healthy control samples. © 2016 The Authors. *Genetic Epidemiology published by Wiley Periodicals, Inc.

  5. From least squares to multilevel modeling: A graphical introduction to Bayesian inference

    NASA Astrophysics Data System (ADS)

    Loredo, Thomas J.

    2016-01-01

    This tutorial presentation will introduce some of the key ideas and techniques involved in applying Bayesian methods to problems in astrostatistics. The focus will be on the big picture: understanding the foundations (interpreting probability, Bayes's theorem, the law of total probability and marginalization), making connections to traditional methods (propagation of errors, least squares, chi-squared, maximum likelihood, Monte Carlo simulation), and highlighting problems where a Bayesian approach can be particularly powerful (Poisson processes, density estimation and curve fitting with measurement error). The "graphical" component of the title reflects an emphasis on pictorial representations of some of the math, but also on the use of graphical models (multilevel or hierarchical models) for analyzing complex data. Code for some examples from the talk will be available to participants, in Python and in the Stan probabilistic programming language.

  6. Time difference of arrival estimation of microseismic signals based on alpha-stable distribution

    NASA Astrophysics Data System (ADS)

    Jia, Rui-Sheng; Gong, Yue; Peng, Yan-Jun; Sun, Hong-Mei; Zhang, Xing-Li; Lu, Xin-Ming

    2018-05-01

    Microseismic signals are generally considered to follow the Gauss distribution. A comparison of the dynamic characteristics of sample variance and the symmetry of microseismic signals with the signals which follow α-stable distribution reveals that the microseismic signals have obvious pulse characteristics and that the probability density curve of the microseismic signal is approximately symmetric. Thus, the hypothesis that microseismic signals follow the symmetric α-stable distribution is proposed. On the premise of this hypothesis, the characteristic exponent α of the microseismic signals is obtained by utilizing the fractional low-order statistics, and then a new method of time difference of arrival (TDOA) estimation of microseismic signals based on fractional low-order covariance (FLOC) is proposed. Upon applying this method to the TDOA estimation of Ricker wavelet simulation signals and real microseismic signals, experimental results show that the FLOC method, which is based on the assumption of the symmetric α-stable distribution, leads to enhanced spatial resolution of the TDOA estimation relative to the generalized cross correlation (GCC) method, which is based on the assumption of the Gaussian distribution.

  7. Ant-inspired density estimation via random walks

    PubMed Central

    Musco, Cameron; Su, Hsin-Hao

    2017-01-01

    Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks. PMID:28928146

  8. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States.

    PubMed

    Vargas-Melendez, Leandro; Boada, Beatriz L; Boada, Maria Jesus L; Gauchia, Antonio; Diaz, Vicente

    2017-04-29

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33 % of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle's parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle's roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle's states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm.

  9. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States

    PubMed Central

    Vargas-Melendez, Leandro; Boada, Beatriz L.; Boada, Maria Jesus L.; Gauchia, Antonio; Diaz, Vicente

    2017-01-01

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33% of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle’s parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle’s roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle’s states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm. PMID:28468252

  10. Nonlinear Statistical Estimation with Numerical Maximum Likelihood

    DTIC Science & Technology

    1974-10-01

    probably most directly attributable to the speed, precision and compactness of the linear programming algorithm exercised ; the mutual primal-dual...discriminant analysis is to classify the individual as a member of T# or IT, 1 2 according to the relative...Introduction to the Dissertation 1 Introduction to Statistical Estimation Theory 3 Choice of Estimator.. .Density Functions 12 Choice of Estimator

  11. Reaching the Hard-to-Reach: A Probability Sampling Method for Assessing Prevalence of Driving under the Influence after Drinking in Alcohol Outlets

    PubMed Central

    De Boni, Raquel; do Nascimento Silva, Pedro Luis; Bastos, Francisco Inácio; Pechansky, Flavio; de Vasconcellos, Mauricio Teixeira Leite

    2012-01-01

    Drinking alcoholic beverages in places such as bars and clubs may be associated with harmful consequences such as violence and impaired driving. However, methods for obtaining probabilistic samples of drivers who drink at these places remain a challenge – since there is no a priori information on this mobile population – and must be continually improved. This paper describes the procedures adopted in the selection of a population-based sample of drivers who drank at alcohol selling outlets in Porto Alegre, Brazil, which we used to estimate the prevalence of intention to drive under the influence of alcohol. The sampling strategy comprises a stratified three-stage cluster sampling: 1) census enumeration areas (CEA) were stratified by alcohol outlets (AO) density and sampled with probability proportional to the number of AOs in each CEA; 2) combinations of outlets and shifts (COS) were stratified by prevalence of alcohol-related traffic crashes and sampled with probability proportional to their squared duration in hours; and, 3) drivers who drank at the selected COS were stratified by their intention to drive and sampled using inverse sampling. Sample weights were calibrated using a post-stratification estimator. 3,118 individuals were approached and 683 drivers interviewed, leading to an estimate that 56.3% (SE = 3,5%) of the drivers intended to drive after drinking in less than one hour after the interview. Prevalence was also estimated by sex and broad age groups. The combined use of stratification and inverse sampling enabled a good trade-off between resource and time allocation, while preserving the ability to generalize the findings. The current strategy can be viewed as a step forward in the efforts to improve surveys and estimation for hard-to-reach, mobile populations. PMID:22514620

  12. Estimating snow leopard population abundance using photography and capture-recapture techniques

    USGS Publications Warehouse

    Jackson, R.M.; Roe, J.D.; Wangchuk, R.; Hunter, D.O.

    2006-01-01

    Conservation and management of snow leopards (Uncia uncia) has largely relied on anecdotal evidence and presence-absence data due to their cryptic nature and the difficult terrain they inhabit. These methods generally lack the scientific rigor necessary to accurately estimate population size and monitor trends. We evaluated the use of photography in capture-mark-recapture (CMR) techniques for estimating snow leopard population abundance and density within Hemis National Park, Ladakh, India. We placed infrared camera traps along actively used travel paths, scent-sprayed rocks, and scrape sites within 16- to 30-km2 sampling grids in successive winters during January and March 2003-2004. We used head-on, oblique, and side-view camera configurations to obtain snow leopard photographs at varying body orientations. We calculated snow leopard abundance estimates using the program CAPTURE. We obtained a total of 66 and 49 snow leopard captures resulting in 8.91 and 5.63 individuals per 100 trap-nights during 2003 and 2004, respectively. We identified snow leopards based on the distinct pelage patterns located primarily on the forelimbs, flanks, and dorsal surface of the tail. Capture probabilities ranged from 0.33 to 0.67. Density estimates ranged from 8.49 (SE = 0.22; individuals per 100 km2 in 2003 to 4.45 (SE = 0.16) in 2004. We believe the density disparity between years is attributable to different trap density and placement rather than to an actual decline in population size. Our results suggest that photographic capture-mark-recapture sampling may be a useful tool for monitoring demographic patterns. However, we believe a larger sample size would be necessary for generating a statistically robust estimate of population density and abundance based on CMR models.

  13. Bootstrap imputation with a disease probability model minimized bias from misclassification due to administrative database codes.

    PubMed

    van Walraven, Carl

    2017-04-01

    Diagnostic codes used in administrative databases cause bias due to misclassification of patient disease status. It is unclear which methods minimize this bias. Serum creatinine measures were used to determine severe renal failure status in 50,074 hospitalized patients. The true prevalence of severe renal failure and its association with covariates were measured. These were compared to results for which renal failure status was determined using surrogate measures including the following: (1) diagnostic codes; (2) categorization of probability estimates of renal failure determined from a previously validated model; or (3) bootstrap methods imputation of disease status using model-derived probability estimates. Bias in estimates of severe renal failure prevalence and its association with covariates were minimal when bootstrap methods were used to impute renal failure status from model-based probability estimates. In contrast, biases were extensive when renal failure status was determined using codes or methods in which model-based condition probability was categorized. Bias due to misclassification from inaccurate diagnostic codes can be minimized using bootstrap methods to impute condition status using multivariable model-derived probability estimates. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Multi-chain Markov chain Monte Carlo methods for computationally expensive models

    NASA Astrophysics Data System (ADS)

    Huang, M.; Ray, J.; Ren, H.; Hou, Z.; Bao, J.

    2017-12-01

    Markov chain Monte Carlo (MCMC) methods are used to infer model parameters from observational data. The parameters are inferred as probability densities, thus capturing estimation error due to sparsity of the data, and the shortcomings of the model. Multiple communicating chains executing the MCMC method have the potential to explore the parameter space better, and conceivably accelerate the convergence to the final distribution. We present results from tests conducted with the multi-chain method to show how the acceleration occurs i.e., for loose convergence tolerances, the multiple chains do not make much of a difference. The ensemble of chains also seems to have the ability to accelerate the convergence of a few chains that might start from suboptimal starting points. Finally, we show the performance of the chains in the estimation of O(10) parameters using computationally expensive forward models such as the Community Land Model, where the sampling burden is distributed over multiple chains.

  15. M-dwarf exoplanet surface density distribution. A log-normal fit from 0.07 to 400 AU

    NASA Astrophysics Data System (ADS)

    Meyer, Michael R.; Amara, Adam; Reggiani, Maddalena; Quanz, Sascha P.

    2018-04-01

    Aims: We fit a log-normal function to the M-dwarf orbital surface density distribution of gas giant planets, over the mass range 1-10 times that of Jupiter, from 0.07 to 400 AU. Methods: We used a Markov chain Monte Carlo approach to explore the likelihoods of various parameter values consistent with point estimates of the data given our assumed functional form. Results: This fit is consistent with radial velocity, microlensing, and direct-imaging observations, is well-motivated from theoretical and phenomenological points of view, and predicts results of future surveys. We present probability distributions for each parameter and a maximum likelihood estimate solution. Conclusions: We suggest that this function makes more physical sense than other widely used functions, and we explore the implications of our results on the design of future exoplanet surveys.

  16. Monitoring low density avian populations: An example using Mountain Plovers

    USGS Publications Warehouse

    Dreitz, V.J.; Lukacs, P.M.; Knopf, F.L.

    2006-01-01

    Declines in avian populations highlight a need for rigorous, broad-scale monitoring programs to document trends in avian populations that occur in low densities across expansive landscapes. Accounting for the spatial variation and variation in detection probability inherent to monitoring programs is thought to be effort-intensive and time-consuming. We determined the feasibility of the analytical method developed by Royle and Nichols (2003), which uses presence-absence (detection-non-detection) field data, to estimate abundance of Mountain Plovers (Charadrius montanus) per sampling unit in agricultural fields, grassland, and prairie dog habitat in eastern Colorado. Field methods were easy to implement and results suggest that the analytical method provides valuable insight into population patterning among habitats. Mountain Plover abundance was highest in prairie dog habitat, slightly lower in agricultural fields, and substantially lower in grassland. These results provided valuable insight to focus future research into Mountain Plover ecology and conservation. ?? The Cooper Ornithological Society 2006.

  17. A MATLAB implementation of the minimum relative entropy method for linear inverse problems

    NASA Astrophysics Data System (ADS)

    Neupauer, Roseanna M.; Borchers, Brian

    2001-08-01

    The minimum relative entropy (MRE) method can be used to solve linear inverse problems of the form Gm= d, where m is a vector of unknown model parameters and d is a vector of measured data. The MRE method treats the elements of m as random variables, and obtains a multivariate probability density function for m. The probability density function is constrained by prior information about the upper and lower bounds of m, a prior expected value of m, and the measured data. The solution of the inverse problem is the expected value of m, based on the derived probability density function. We present a MATLAB implementation of the MRE method. Several numerical issues arise in the implementation of the MRE method and are discussed here. We present the source history reconstruction problem from groundwater hydrology as an example of the MRE implementation.

  18. Honest Importance Sampling with Multiple Markov Chains

    PubMed Central

    Tan, Aixin; Doss, Hani; Hobert, James P.

    2017-01-01

    Importance sampling is a classical Monte Carlo technique in which a random sample from one probability density, π1, is used to estimate an expectation with respect to another, π. The importance sampling estimator is strongly consistent and, as long as two simple moment conditions are satisfied, it obeys a central limit theorem (CLT). Moreover, there is a simple consistent estimator for the asymptotic variance in the CLT, which makes for routine computation of standard errors. Importance sampling can also be used in the Markov chain Monte Carlo (MCMC) context. Indeed, if the random sample from π1 is replaced by a Harris ergodic Markov chain with invariant density π1, then the resulting estimator remains strongly consistent. There is a price to be paid however, as the computation of standard errors becomes more complicated. First, the two simple moment conditions that guarantee a CLT in the iid case are not enough in the MCMC context. Second, even when a CLT does hold, the asymptotic variance has a complex form and is difficult to estimate consistently. In this paper, we explain how to use regenerative simulation to overcome these problems. Actually, we consider a more general set up, where we assume that Markov chain samples from several probability densities, π1, …, πk, are available. We construct multiple-chain importance sampling estimators for which we obtain a CLT based on regeneration. We show that if the Markov chains converge to their respective target distributions at a geometric rate, then under moment conditions similar to those required in the iid case, the MCMC-based importance sampling estimator obeys a CLT. Furthermore, because the CLT is based on a regenerative process, there is a simple consistent estimator of the asymptotic variance. We illustrate the method with two applications in Bayesian sensitivity analysis. The first concerns one-way random effects models under different priors. The second involves Bayesian variable selection in linear regression, and for this application, importance sampling based on multiple chains enables an empirical Bayes approach to variable selection. PMID:28701855

  19. Honest Importance Sampling with Multiple Markov Chains.

    PubMed

    Tan, Aixin; Doss, Hani; Hobert, James P

    2015-01-01

    Importance sampling is a classical Monte Carlo technique in which a random sample from one probability density, π 1 , is used to estimate an expectation with respect to another, π . The importance sampling estimator is strongly consistent and, as long as two simple moment conditions are satisfied, it obeys a central limit theorem (CLT). Moreover, there is a simple consistent estimator for the asymptotic variance in the CLT, which makes for routine computation of standard errors. Importance sampling can also be used in the Markov chain Monte Carlo (MCMC) context. Indeed, if the random sample from π 1 is replaced by a Harris ergodic Markov chain with invariant density π 1 , then the resulting estimator remains strongly consistent. There is a price to be paid however, as the computation of standard errors becomes more complicated. First, the two simple moment conditions that guarantee a CLT in the iid case are not enough in the MCMC context. Second, even when a CLT does hold, the asymptotic variance has a complex form and is difficult to estimate consistently. In this paper, we explain how to use regenerative simulation to overcome these problems. Actually, we consider a more general set up, where we assume that Markov chain samples from several probability densities, π 1 , …, π k , are available. We construct multiple-chain importance sampling estimators for which we obtain a CLT based on regeneration. We show that if the Markov chains converge to their respective target distributions at a geometric rate, then under moment conditions similar to those required in the iid case, the MCMC-based importance sampling estimator obeys a CLT. Furthermore, because the CLT is based on a regenerative process, there is a simple consistent estimator of the asymptotic variance. We illustrate the method with two applications in Bayesian sensitivity analysis. The first concerns one-way random effects models under different priors. The second involves Bayesian variable selection in linear regression, and for this application, importance sampling based on multiple chains enables an empirical Bayes approach to variable selection.

  20. The costs of evaluating species densities and composition of snakes to assess development impacts in amazonia.

    PubMed

    Fraga, Rafael de; Stow, Adam J; Magnusson, William E; Lima, Albertina P

    2014-01-01

    Studies leading to decision-making for environmental licensing often fail to provide accurate estimates of diversity. Measures of snake diversity are regularly obtained to assess development impacts in the rainforests of the Amazon Basin, but this taxonomic group may be subject to poor detection probabilities. Recently, the Brazilian government tried to standardize sampling designs by the implementation of a system (RAPELD) to quantify biological diversity using spatially-standardized sampling units. Consistency in sampling design allows the detection probabilities to be compared among taxa, and sampling effort and associated cost to be evaluated. The cost effectiveness of detecting snakes has received no attention in Amazonia. Here we tested the effects of reducing sampling effort on estimates of species densities and assemblage composition. We identified snakes in seven plot systems, each standardised with 14 plots. The 250 m long centre line of each plot followed an altitudinal contour. Surveys were repeated four times in each plot and detection probabilities were estimated for the 41 species encountered. Reducing the number of observations, or the size of the sampling modules, caused significant loss of information on species densities and local patterns of variation in assemblage composition. We estimated the cost to find a snake as $ 120 U.S., but general linear models indicated the possibility of identifying differences in assemblage composition for half the overall survey costs. Decisions to reduce sampling effort depend on the importance of lost information to target-issues, and may not be the preferred option if there is the potential for identifying individual snake species requiring specific conservation actions. However, in most studies of human disturbance on species assemblages, it is likely to be more cost-effective to focus on other groups of organisms with higher detection probabilities.

  1. The Costs of Evaluating Species Densities and Composition of Snakes to Assess Development Impacts in Amazonia

    PubMed Central

    de Fraga, Rafael; Stow, Adam J.; Magnusson, William E.; Lima, Albertina P.

    2014-01-01

    Studies leading to decision-making for environmental licensing often fail to provide accurate estimates of diversity. Measures of snake diversity are regularly obtained to assess development impacts in the rainforests of the Amazon Basin, but this taxonomic group may be subject to poor detection probabilities. Recently, the Brazilian government tried to standardize sampling designs by the implementation of a system (RAPELD) to quantify biological diversity using spatially-standardized sampling units. Consistency in sampling design allows the detection probabilities to be compared among taxa, and sampling effort and associated cost to be evaluated. The cost effectiveness of detecting snakes has received no attention in Amazonia. Here we tested the effects of reducing sampling effort on estimates of species densities and assemblage composition. We identified snakes in seven plot systems, each standardised with 14 plots. The 250 m long centre line of each plot followed an altitudinal contour. Surveys were repeated four times in each plot and detection probabilities were estimated for the 41 species encountered. Reducing the number of observations, or the size of the sampling modules, caused significant loss of information on species densities and local patterns of variation in assemblage composition. We estimated the cost to find a snake as $ 120 U.S., but general linear models indicated the possibility of identifying differences in assemblage composition for half the overall survey costs. Decisions to reduce sampling effort depend on the importance of lost information to target-issues, and may not be the preferred option if there is the potential for identifying individual snake species requiring specific conservation actions. However, in most studies of human disturbance on species assemblages, it is likely to be more cost-effective to focus on other groups of organisms with higher detection probabilities. PMID:25147930

  2. Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data.

    PubMed

    Dosso, Stan E; Nielsen, Peter L

    2002-01-01

    This paper applies the new method of fast Gibbs sampling (FGS) to estimate the uncertainties of seabed geoacoustic parameters in a broadband, shallow-water acoustic survey, with the goal of interpreting the survey results and validating the method for experimental data. FGS applies a Bayesian approach to geoacoustic inversion based on sampling the posterior probability density to estimate marginal probability distributions and parameter covariances. This requires knowledge of the statistical distribution of the data errors, including both measurement and theory errors, which is generally not available. Invoking the simplifying assumption of independent, identically distributed Gaussian errors allows a maximum-likelihood estimate of the data variance and leads to a practical inversion algorithm. However, it is necessary to validate these assumptions, i.e., to verify that the parameter uncertainties obtained represent meaningful estimates. To this end, FGS is applied to a geoacoustic experiment carried out at a site off the west coast of Italy where previous acoustic and geophysical studies have been performed. The parameter uncertainties estimated via FGS are validated by comparison with: (i) the variability in the results of inverting multiple independent data sets collected during the experiment; (ii) the results of FGS inversion of synthetic test cases designed to simulate the experiment and data errors; and (iii) the available geophysical ground truth. Comparisons are carried out for a number of different source bandwidths, ranges, and levels of prior information, and indicate that FGS provides reliable and stable uncertainty estimates for the geoacoustic inverse problem.

  3. Efficient and robust computation of PDF features from diffusion MR signal.

    PubMed

    Assemlal, Haz-Edine; Tschumperlé, David; Brun, Luc

    2009-10-01

    We present a method for the estimation of various features of the tissue micro-architecture using the diffusion magnetic resonance imaging. The considered features are designed from the displacement probability density function (PDF). The estimation is based on two steps: first the approximation of the signal by a series expansion made of Gaussian-Laguerre and Spherical Harmonics functions; followed by a projection on a finite dimensional space. Besides, we propose to tackle the problem of the robustness to Rician noise corrupting in-vivo acquisitions. Our feature estimation is expressed as a variational minimization process leading to a variational framework which is robust to noise. This approach is very flexible regarding the number of samples and enables the computation of a large set of various features of the local tissues structure. We demonstrate the effectiveness of the method with results on both synthetic phantom and real MR datasets acquired in a clinical time-frame.

  4. Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 2. Pyroclastic density current invasion maps

    NASA Astrophysics Data System (ADS)

    Neri, Augusto; Bevilacqua, Andrea; Esposti Ongaro, Tomaso; Isaia, Roberto; Aspinall, Willy P.; Bisson, Marina; Flandoli, Franco; Baxter, Peter J.; Bertagnini, Antonella; Iannuzzi, Enrico; Orsucci, Simone; Pistolesi, Marco; Rosi, Mauro; Vitale, Stefano

    2015-04-01

    Campi Flegrei (CF) is an example of an active caldera containing densely populated settlements at very high risk of pyroclastic density currents (PDCs). We present here an innovative method for assessing background spatial PDC hazard in a caldera setting with probabilistic invasion maps conditional on the occurrence of an explosive event. The method encompasses the probabilistic assessment of potential vent opening positions, derived in the companion paper, combined with inferences about the spatial density distribution of PDC invasion areas from a simplified flow model, informed by reconstruction of deposits from eruptions in the last 15 ka. The flow model describes the PDC kinematics and accounts for main effects of topography on flow propagation. Structured expert elicitation is used to incorporate certain sources of epistemic uncertainty, and a Monte Carlo approach is adopted to produce a set of probabilistic hazard maps for the whole CF area. Our findings show that, in case of eruption, almost the entire caldera is exposed to invasion with a mean probability of at least 5%, with peaks greater than 50% in some central areas. Some areas outside the caldera are also exposed to this danger, with mean probabilities of invasion of the order of 5-10%. Our analysis suggests that these probability estimates have location-specific uncertainties which can be substantial. The results prove to be robust with respect to alternative elicitation models and allow the influence on hazard mapping of different sources of uncertainty, and of theoretical and numerical assumptions, to be quantified.

  5. Assessing environmental DNA detection in controlled lentic systems.

    PubMed

    Moyer, Gregory R; Díaz-Ferguson, Edgardo; Hill, Jeffrey E; Shea, Colin

    2014-01-01

    Little consideration has been given to environmental DNA (eDNA) sampling strategies for rare species. The certainty of species detection relies on understanding false positive and false negative error rates. We used artificial ponds together with logistic regression models to assess the detection of African jewelfish eDNA at varying fish densities (0, 0.32, 1.75, and 5.25 fish/m3). Our objectives were to determine the most effective water stratum for eDNA detection, estimate true and false positive eDNA detection rates, and assess the number of water samples necessary to minimize the risk of false negatives. There were 28 eDNA detections in 324, 1-L, water samples collected from four experimental ponds. The best-approximating model indicated that the per-L-sample probability of eDNA detection was 4.86 times more likely for every 2.53 fish/m3 (1 SD) increase in fish density and 1.67 times less likely for every 1.02 C (1 SD) increase in water temperature. The best section of the water column to detect eDNA was the surface and to a lesser extent the bottom. Although no false positives were detected, the estimated likely number of false positives in samples from ponds that contained fish averaged 3.62. At high densities of African jewelfish, 3-5 L of water provided a >95% probability for the presence/absence of its eDNA. Conversely, at moderate and low densities, the number of water samples necessary to achieve a >95% probability of eDNA detection approximated 42-73 and >100 L, respectively. Potential biases associated with incomplete detection of eDNA could be alleviated via formal estimation of eDNA detection probabilities under an occupancy modeling framework; alternatively, the filtration of hundreds of liters of water may be required to achieve a high (e.g., 95%) level of certainty that African jewelfish eDNA will be detected at low densities (i.e., <0.32 fish/m3 or 1.75 g/m3).

  6. Comparison of three Bayesian methods to estimate posttest probability in patients undergoing exercise stress testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morise, A.P.; Duval, R.D.

    To determine whether recent refinements in Bayesian methods have led to improved diagnostic ability, 3 methods using Bayes' theorem and the independence assumption for estimating posttest probability after exercise stress testing were compared. Each method differed in the number of variables considered in the posttest probability estimate (method A = 5, method B = 6 and method C = 15). Method C is better known as CADENZA. There were 436 patients (250 men and 186 women) who underwent stress testing (135 had concurrent thallium scintigraphy) followed within 2 months by coronary arteriography. Coronary artery disease ((CAD), at least 1 vesselmore » with greater than or equal to 50% diameter narrowing) was seen in 169 (38%). Mean pretest probabilities using each method were not different. However, the mean posttest probabilities for CADENZA were significantly greater than those for method A or B (p less than 0.0001). Each decile of posttest probability was compared to the actual prevalence of CAD in that decile. At posttest probabilities less than or equal to 20%, there was underestimation of CAD. However, at posttest probabilities greater than or equal to 60%, there was overestimation of CAD by all methods, especially CADENZA. Comparison of sensitivity and specificity at every fifth percentile of posttest probability revealed that CADENZA was significantly more sensitive and less specific than methods A and B. Therefore, at lower probability thresholds, CADENZA was a better screening method. However, methods A or B still had merit as a means to confirm higher probabilities generated by CADENZA (especially greater than or equal to 60%).« less

  7. On-line estimation of nonlinear physical systems

    USGS Publications Warehouse

    Christakos, G.

    1988-01-01

    Recursive algorithms for estimating states of nonlinear physical systems are presented. Orthogonality properties are rediscovered and the associated polynomials are used to linearize state and observation models of the underlying random processes. This requires some key hypotheses regarding the structure of these processes, which may then take account of a wide range of applications. The latter include streamflow forecasting, flood estimation, environmental protection, earthquake engineering, and mine planning. The proposed estimation algorithm may be compared favorably to Taylor series-type filters, nonlinear filters which approximate the probability density by Edgeworth or Gram-Charlier series, as well as to conventional statistical linearization-type estimators. Moreover, the method has several advantages over nonrecursive estimators like disjunctive kriging. To link theory with practice, some numerical results for a simulated system are presented, in which responses from the proposed and extended Kalman algorithms are compared. ?? 1988 International Association for Mathematical Geology.

  8. Probability machines: consistent probability estimation using nonparametric learning machines.

    PubMed

    Malley, J D; Kruppa, J; Dasgupta, A; Malley, K G; Ziegler, A

    2012-01-01

    Most machine learning approaches only provide a classification for binary responses. However, probabilities are required for risk estimation using individual patient characteristics. It has been shown recently that every statistical learning machine known to be consistent for a nonparametric regression problem is a probability machine that is provably consistent for this estimation problem. The aim of this paper is to show how random forests and nearest neighbors can be used for consistent estimation of individual probabilities. Two random forest algorithms and two nearest neighbor algorithms are described in detail for estimation of individual probabilities. We discuss the consistency of random forests, nearest neighbors and other learning machines in detail. We conduct a simulation study to illustrate the validity of the methods. We exemplify the algorithms by analyzing two well-known data sets on the diagnosis of appendicitis and the diagnosis of diabetes in Pima Indians. Simulations demonstrate the validity of the method. With the real data application, we show the accuracy and practicality of this approach. We provide sample code from R packages in which the probability estimation is already available. This means that all calculations can be performed using existing software. Random forest algorithms as well as nearest neighbor approaches are valid machine learning methods for estimating individual probabilities for binary responses. Freely available implementations are available in R and may be used for applications.

  9. Multi-scale occupancy estimation and modelling using multiple detection methods

    USGS Publications Warehouse

    Nichols, James D.; Bailey, Larissa L.; O'Connell, Allan F.; Talancy, Neil W.; Grant, Evan H. Campbell; Gilbert, Andrew T.; Annand, Elizabeth M.; Husband, Thomas P.; Hines, James E.

    2008-01-01

    Occupancy estimation and modelling based on detection–nondetection data provide an effective way of exploring change in a species’ distribution across time and space in cases where the species is not always detected with certainty. Today, many monitoring programmes target multiple species, or life stages within a species, requiring the use of multiple detection methods. When multiple methods or devices are used at the same sample sites, animals can be detected by more than one method.We develop occupancy models for multiple detection methods that permit simultaneous use of data from all methods for inference about method-specific detection probabilities. Moreover, the approach permits estimation of occupancy at two spatial scales: the larger scale corresponds to species’ use of a sample unit, whereas the smaller scale corresponds to presence of the species at the local sample station or site.We apply the models to data collected on two different vertebrate species: striped skunks Mephitis mephitis and red salamanders Pseudotriton ruber. For striped skunks, large-scale occupancy estimates were consistent between two sampling seasons. Small-scale occupancy probabilities were slightly lower in the late winter/spring when skunks tend to conserve energy, and movements are limited to males in search of females for breeding. There was strong evidence of method-specific detection probabilities for skunks. As anticipated, large- and small-scale occupancy areas completely overlapped for red salamanders. The analyses provided weak evidence of method-specific detection probabilities for this species.Synthesis and applications. Increasingly, many studies are utilizing multiple detection methods at sampling locations. The modelling approach presented here makes efficient use of detections from multiple methods to estimate occupancy probabilities at two spatial scales and to compare detection probabilities associated with different detection methods. The models can be viewed as another variation of Pollock's robust design and may be applicable to a wide variety of scenarios where species occur in an area but are not always near the sampled locations. The estimation approach is likely to be especially useful in multispecies conservation programmes by providing efficient estimates using multiple detection devices and by providing device-specific detection probability estimates for use in survey design.

  10. Spatial and temporal Brook Trout density dynamics: Implications for conservation, management, and monitoring

    USGS Publications Warehouse

    Wagner, Tyler; Jefferson T. Deweber,; Jason Detar,; Kristine, David; John A. Sweka,

    2014-01-01

    Many potential stressors to aquatic environments operate over large spatial scales, prompting the need to assess and monitor both site-specific and regional dynamics of fish populations. We used hierarchical Bayesian models to evaluate the spatial and temporal variability in density and capture probability of age-1 and older Brook Trout Salvelinus fontinalis from three-pass removal data collected at 291 sites over a 37-year time period (1975–2011) in Pennsylvania streams. There was high between-year variability in density, with annual posterior means ranging from 2.1 to 10.2 fish/100 m2; however, there was no significant long-term linear trend. Brook Trout density was positively correlated with elevation and negatively correlated with percent developed land use in the network catchment. Probability of capture did not vary substantially across sites or years but was negatively correlated with mean stream width. Because of the low spatiotemporal variation in capture probability and a strong correlation between first-pass CPUE (catch/min) and three-pass removal density estimates, the use of an abundance index based on first-pass CPUE could represent a cost-effective alternative to conducting multiple-pass removal sampling for some Brook Trout monitoring and assessment objectives. Single-pass indices may be particularly relevant for monitoring objectives that do not require precise site-specific estimates, such as regional monitoring programs that are designed to detect long-term linear trends in density.

  11. Influence of Molecular Oxygen on Ortho-Para Conversion of Water Molecules

    NASA Astrophysics Data System (ADS)

    Valiev, R. R.; Minaev, B. F.

    2017-07-01

    The mechanism of influence of molecular oxygen on the probability of ortho-para conversion of water molecules and its relation to water magnetization are considered within the framework of the concept of paramagnetic spin catalysis. Matrix elements of the hyperfine ortho-para interaction via the Fermi contact mechanism are calculated, as well as the Maliken spin densities on water protons in H2O and O2 collisional complexes. The mechanism of penetration of the electron spin density into the water molecule due to partial spin transfer from paramagnetic oxygen is considered. The probability of ortho-para conversion of the water molecules is estimated by the quantum chemistry methods. The results obtained show that effective ortho-para conversion of the water molecules is possible during the existence of water-oxygen dimers. An external magnetic field affects the ortho-para conversion rate given that the wave functions of nuclear spin sublevels of the water protons are mixed in the complex with oxygen.

  12. Classification and assessment of retrieved electron density maps in coherent X-ray diffraction imaging using multivariate analysis.

    PubMed

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) is one of the techniques used to visualize structures of non-crystalline particles of micrometer to submicrometer size from materials and biological science. In the structural analysis of CXDI, the electron density map of a sample particle can theoretically be reconstructed from a diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction is difficult because diffraction patterns are affected by Poisson noise and miss data in small-angle regions due to the beam stop and the saturation of detector pixels. In contrast to X-ray protein crystallography, in which the phases of diffracted waves are experimentally estimated, phase retrieval in CXDI relies entirely on the computational procedure driven by the PR algorithms. Thus, objective criteria and methods to assess the accuracy of retrieved electron density maps are necessary in addition to conventional parameters monitoring the convergence of PR calculations. Here, a data analysis scheme, named ASURA, is proposed which selects the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a diffraction pattern. Each electron density map composed of J pixels is expressed as a point in a J-dimensional space. Principal component analysis is applied to describe characteristics in the distribution of the maps in the J-dimensional space. When the distribution is characterized by a small number of principal components, the distribution is classified using the k-means clustering method. The classified maps are evaluated by several parameters to assess the quality of the maps. Using the proposed scheme, structure analysis of a diffraction pattern from a non-crystalline particle is conducted in two stages: estimation of the overall shape and determination of the fine structure inside the support shape. In each stage, the most accurate and probable density maps are objectively selected. The validity of the proposed scheme is examined by application to diffraction data that were obtained from an aggregate of metal particles and a biological specimen at the XFEL facility SACLA using custom-made diffraction apparatus.

  13. Using effort information with change-in-ratio data for population estimation

    USGS Publications Warehouse

    Udevitz, Mark S.; Pollock, Kenneth H.

    1995-01-01

    Most change-in-ratio (CIR) methods for estimating fish and wildlife population sizes have been based only on assumptions about how encounter probabilities vary among population subclasses. When information on sampling effort is available, it is also possible to derive CIR estimators based on assumptions about how encounter probabilities vary over time. This paper presents a generalization of previous CIR models that allows explicit consideration of a range of assumptions about the variation of encounter probabilities among subclasses and over time. Explicit estimators are derived under this model for specific sets of assumptions about the encounter probabilities. Numerical methods are presented for obtaining estimators under the full range of possible assumptions. Likelihood ratio tests for these assumptions are described. Emphasis is on obtaining estimators based on assumptions about variation of encounter probabilities over time.

  14. Statistical tests for whether a given set of independent, identically distributed draws comes from a specified probability density.

    PubMed

    Tygert, Mark

    2010-09-21

    We discuss several tests for determining whether a given set of independent and identically distributed (i.i.d.) draws does not come from a specified probability density function. The most commonly used are Kolmogorov-Smirnov tests, particularly Kuiper's variant, which focus on discrepancies between the cumulative distribution function for the specified probability density and the empirical cumulative distribution function for the given set of i.i.d. draws. Unfortunately, variations in the probability density function often get smoothed over in the cumulative distribution function, making it difficult to detect discrepancies in regions where the probability density is small in comparison with its values in surrounding regions. We discuss tests without this deficiency, complementing the classical methods. The tests of the present paper are based on the plain fact that it is unlikely to draw a random number whose probability is small, provided that the draw is taken from the same distribution used in calculating the probability (thus, if we draw a random number whose probability is small, then we can be confident that we did not draw the number from the same distribution used in calculating the probability).

  15. Probabilistic Density Function Method for Stochastic ODEs of Power Systems with Uncertain Power Input

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Peng; Barajas-Solano, David A.; Constantinescu, Emil

    Wind and solar power generators are commonly described by a system of stochastic ordinary differential equations (SODEs) where random input parameters represent uncertainty in wind and solar energy. The existing methods for SODEs are mostly limited to delta-correlated random parameters (white noise). Here we use the Probability Density Function (PDF) method for deriving a closed-form deterministic partial differential equation (PDE) for the joint probability density function of the SODEs describing a power generator with time-correlated power input. The resulting PDE is solved numerically. A good agreement with Monte Carlo Simulations shows accuracy of the PDF method.

  16. Estimating total population size for adult female sea turtles: Accounting for non-nesters

    USGS Publications Warehouse

    Kendall, W.L.; Richardson, J.I.; Rees, Alan F.

    2008-01-01

    Assessment of population size and changes therein is important to sea turtle management and population or life history research. Investigators might be interested in testing hypotheses about the effect of current population size or density (number of animals per unit resource) on future population processes. Decision makers might want to determine a level of allowable take of individual turtles of specified life stage. Nevertheless, monitoring most stages of sea turtle life histories is difficult, because obtaining access to individuals is difficult. Although in-water assessments are becoming more common, nesting females and their hatchlings remain the most accessible life stages. In some cases adult females of a given nesting population are sufficiently philopatric that the population itself can be well defined. If a well designed tagging study is conducted on this population, survival, breeding probability, and the size of the nesting population in a given year can be estimated. However, with published statistical methodology the size of the entire breeding population (including those females skipping nesting in that year) cannot be estimated without assuming that each adult female in this population has the same probability of nesting in a given year (even those that had just nested in the previous year). We present a method for estimating the total size of a breeding population (including nesters those skipping nesting) from a tagging study limited to the nesting population, allowing for the probability of nesting in a given year to depend on an individual's nesting status in the previous year (i.e., a Markov process). From this we further develop estimators for rate of growth from year to year in both nesting population and total breeding population, and the proportion of the breeding population that is breeding in a given year. We also discuss assumptions and apply these methods to a breeding population of hawksbill sea turtles (Eretmochelys imbricata) from the Caribbean. We anticipate that this method could also be useful for in-water studies of well defined populations.

  17. How many tigers Panthera tigris are there in Huai Kha Khaeng Wildlife Sanctuary, Thailand? An estimate using photographic capture-recapture sampling

    USGS Publications Warehouse

    Simcharoen, S.; Pattanavibool, A.; Karanth, K.U.; Nichols, J.D.; Kumar, N.S.

    2007-01-01

    We used capture-recapture analyses to estimate the density of a tiger Panthera tigris population in the tropical forests of Huai Kha Khaeng Wildlife Sanctuary, Thailand, from photographic capture histories of 15 distinct individuals. The closure test results (z = 0.39, P = 0.65) provided some evidence in support of the demographic closure assumption. Fit of eight plausible closed models to the data indicated more support for model Mh, which incorporates individual heterogeneity in capture probabilities. This model generated an average capture probability $\\hat p$ = 0.42 and an abundance estimate of $\\widehat{N}(\\widehat{SE}[\\widehat{N}])$ = 19 (9.65) tigers. The sampled area of $\\widehat{A}(W)(\\widehat{SE}[\\widehat{A}(W)])$ = 477.2 (58.24) km2 yielded a density estimate of $\\widehat{D}(\\widehat{SE}[\\widehat{D}])$ = 3.98 (0.51) tigers per 100 km2. Huai Kha Khaeng Wildlife Sanctuary could therefore hold 113 tigers and the entire Western Forest Complex c. 720 tigers. Although based on field protocols that constrained us to use sub-optimal analyses, this estimated tiger density is comparable to tiger densities in Indian reserves that support moderate prey abundances. However, tiger densities in well-protected Indian reserves with high prey abundances are three times higher. If given adequate protection we believe that the Western Forest Complex of Thailand could potentially harbour >2,000 wild tigers, highlighting its importance for global tiger conservation. The monitoring approaches we recommend here would be useful for managing this tiger population.

  18. A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models

    PubMed Central

    Whittington, Jesse; Sawaya, Michael A.

    2015-01-01

    Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal’s home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786–1.071) for females, 0.844 (0.703–0.975) for males, and 0.882 (0.779–0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758–1.024) for females, 0.825 (0.700–0.948) for males, and 0.863 (0.771–0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park’s population of grizzly bears requires continued conservation-oriented management actions. PMID:26230262

  19. A line transect model for aerial surveys

    USGS Publications Warehouse

    Quang, Pham Xuan; Lanctot, Richard B.

    1991-01-01

    We employ a line transect method to estimate the density of the common and Pacific loon in the Yukon Flats National Wildlife Refuge from aerial survey data. Line transect methods have the advantage of automatically taking into account “visibility bias” due to detectability difference of animals at different distances from the transect line. However, line transect methods must overcome two difficulties when applied to inaccurate recording of sighting distances due to high travel speeds, so that in fact only a few reliable distance class counts are available. We propose a unimodal detection function that provides an estimate of the effective area lost due to the blind strip, under the assumption that a line of perfect detection exists parallel to the transect line. The unimodal detection function can also be applied when a blind strip is absent, and in certain instances when the maximum probability of detection is less than 100%. A simple bootstrap procedure to estimate standard error is illustrated. Finally, we present results from a small set of Monte Carlo experiments.

  20. Calibrating random forests for probability estimation.

    PubMed

    Dankowski, Theresa; Ziegler, Andreas

    2016-09-30

    Probabilities can be consistently estimated using random forests. It is, however, unclear how random forests should be updated to make predictions for other centers or at different time points. In this work, we present two approaches for updating random forests for probability estimation. The first method has been proposed by Elkan and may be used for updating any machine learning approach yielding consistent probabilities, so-called probability machines. The second approach is a new strategy specifically developed for random forests. Using the terminal nodes, which represent conditional probabilities, the random forest is first translated to logistic regression models. These are, in turn, used for re-calibration. The two updating strategies were compared in a simulation study and are illustrated with data from the German Stroke Study Collaboration. In most simulation scenarios, both methods led to similar improvements. In the simulation scenario in which the stricter assumptions of Elkan's method were not met, the logistic regression-based re-calibration approach for random forests outperformed Elkan's method. It also performed better on the stroke data than Elkan's method. The strength of Elkan's method is its general applicability to any probability machine. However, if the strict assumptions underlying this approach are not met, the logistic regression-based approach is preferable for updating random forests for probability estimation. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  1. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    DOE PAGES

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; ...

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less

  2. Gravity anomaly and density structure of the San Andreas fault zone

    NASA Astrophysics Data System (ADS)

    Wang, Chi-Yuen; Rui, Feng; Zhengsheng, Yao; Xingjue, Shi

    1986-01-01

    A densely spaced gravity survey across the San andreas fault zone was conducted near Bear Valley, about 180 km south of San Francisco, along a cross-section where a detailed seismic reflection profile was previously made by McEvilly (1981). With Feng and McEvilly's velocity structure (1983) of the fault zone at this cross-section as a constraint, the density structure of the fault zone is obtained through inversion of the gravity data by a method used by Parker (1973) and Oldenburg (1974). Although the resulting density picture cannot be unique, it is better constrained and contains more detailed information about the structure of the fault than was previously possible. The most striking feature of the resulting density structure is a deeply seated tongue of low-density material within the fault zone, probably representing a wedge of fault gouge between the two moving plates, which projects from the surface to the base of the seismogenic zone. From reasonable assumptions concerning the density of the solid grains and the state of saturation of the fault zone the average porosity of this low-density fault gouge is estimated as about 12%. Stress-induced cracks are not expected to create so much porosity under the pressures in the deep fault zone. Large-scaled removal of fault-zone material by hydrothermal alteration, dissolution, and subsequent fluid transport may have occurred to produce this pronounced density deficiency. In addition, a broad, funnel-shaped belt of low density appears about the upper part of the fault zone, which probably represents a belt of extensively shattered wall rocks.

  3. Electron emission produced by photointeractions in a slab target

    NASA Technical Reports Server (NTRS)

    Thinger, B. E.; Dayton, J. A., Jr.

    1973-01-01

    The current density and energy spectrum of escaping electrons generated in a uniform plane slab target which is being irradiated by the gamma flux field of a nuclear reactor are calculated by using experimental gamma energy transfer coefficients, electron range and energy relations, and escape probability computations. The probability of escape and the average path length of escaping electrons are derived for an isotropic distribution of monoenergetic photons. The method of estimating the flux and energy distribution of electrons emerging from the surface is outlined, and a sample calculation is made for a 0.33-cm-thick tungsten target located next to the core of a nuclear reactor. The results are to be used as a guide in electron beam synthesis of reactor experiments.

  4. Birds and insects as radar targets - A review

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R.

    1985-01-01

    A review of radar cross-section measurements of birds and insects is presented. A brief discussion of some possible theoretical models is also given and comparisons made with the measurements. The comparisons suggest that most targets are, at present, better modeled by a prolate spheroid having a length-to-width ratio between 3 and 10 than by the often used equivalent weight water sphere. In addition, many targets observed with linear horizontal polarization have maximum cross sections much better estimated by a resonant half-wave dipole than by a water sphere. Also considered are birds and insects in the aggregate as a local radar 'clutter' source. Order-of-magnitude estimates are given for many reasonable target number densities. These estimates are then used to predict X-band volume reflectivities. Other topics that are of interest to the radar engineer are discussed, including the doppler bandwidth due to the internal motions of a single bird, the radar cross-section probability densities of single birds and insects, the variability of the functional form of the probability density functions, and the Fourier spectra of single birds and insects.

  5. The ZpiM algorithm: a method for interferometric image reconstruction in SAR/SAS.

    PubMed

    Dias, José M B; Leitao, José M N

    2002-01-01

    This paper presents an effective algorithm for absolute phase (not simply modulo-2-pi) estimation from incomplete, noisy and modulo-2pi observations in interferometric aperture radar and sonar (InSAR/InSAS). The adopted framework is also representative of other applications such as optical interferometry, magnetic resonance imaging and diffraction tomography. The Bayesian viewpoint is adopted; the observation density is 2-pi-periodic and accounts for the interferometric pair decorrelation and system noise; the a priori probability of the absolute phase is modeled by a compound Gauss-Markov random field (CGMRF) tailored to piecewise smooth absolute phase images. We propose an iterative scheme for the computation of the maximum a posteriori probability (MAP) absolute phase estimate. Each iteration embodies a discrete optimization step (Z-step), implemented by network programming techniques and an iterative conditional modes (ICM) step (pi-step). Accordingly, the algorithm is termed ZpiM, where the letter M stands for maximization. An important contribution of the paper is the simultaneous implementation of phase unwrapping (inference of the 2pi-multiples) and smoothing (denoising of the observations). This improves considerably the accuracy of the absolute phase estimates compared to methods in which the data is low-pass filtered prior to unwrapping. A set of experimental results, comparing the proposed algorithm with alternative methods, illustrates the effectiveness of our approach.

  6. Summary of intrinsic and extrinsic factors affecting detection probability of marsh birds

    USGS Publications Warehouse

    Conway, C.J.; Gibbs, J.P.

    2011-01-01

    Many species of marsh birds (rails, bitterns, grebes, etc.) rely exclusively on emergent marsh vegetation for all phases of their life cycle, and many organizations have become concerned about the status and persistence of this group of birds. Yet, marsh birds are notoriously difficult to monitor due to their secretive habits. We synthesized the published and unpublished literature and summarized the factors that influence detection probability of secretive marsh birds in North America. Marsh birds are more likely to respond to conspecific than heterospecific calls, and seasonal peak in vocalization probability varies among co-existing species. The effectiveness of morning versus evening surveys varies among species and locations. Vocalization probability appears to be positively correlated with density in breeding Virginia Rails (Rallus limicola), Soras (Porzana carolina), and Clapper Rails (Rallus longirostris). Movement of birds toward the broadcast source creates biases when using count data from callbroadcast surveys to estimate population density. Ambient temperature, wind speed, cloud cover, and moon phase affected detection probability in some, but not all, studies. Better estimates of detection probability are needed. We provide recommendations that would help improve future marsh bird survey efforts and a list of 14 priority information and research needs that represent gaps in our current knowledge where future resources are best directed. ?? Society of Wetland Scientists 2011.

  7. Objectively combining AR5 instrumental period and paleoclimate climate sensitivity evidence

    NASA Astrophysics Data System (ADS)

    Lewis, Nicholas; Grünwald, Peter

    2018-03-01

    Combining instrumental period evidence regarding equilibrium climate sensitivity with largely independent paleoclimate proxy evidence should enable a more constrained sensitivity estimate to be obtained. Previous, subjective Bayesian approaches involved selection of a prior probability distribution reflecting the investigators' beliefs about climate sensitivity. Here a recently developed approach employing two different statistical methods—objective Bayesian and frequentist likelihood-ratio—is used to combine instrumental period and paleoclimate evidence based on data presented and assessments made in the IPCC Fifth Assessment Report. Probabilistic estimates from each source of evidence are represented by posterior probability density functions (PDFs) of physically-appropriate form that can be uniquely factored into a likelihood function and a noninformative prior distribution. The three-parameter form is shown accurately to fit a wide range of estimated climate sensitivity PDFs. The likelihood functions relating to the probabilistic estimates from the two sources are multiplicatively combined and a prior is derived that is noninformative for inference from the combined evidence. A posterior PDF that incorporates the evidence from both sources is produced using a single-step approach, which avoids the order-dependency that would arise if Bayesian updating were used. Results are compared with an alternative approach using the frequentist signed root likelihood ratio method. Results from these two methods are effectively identical, and provide a 5-95% range for climate sensitivity of 1.1-4.05 K (median 1.87 K).

  8. Large Scale Density Estimation of Blue and Fin Whales: Utilizing Sparse Array Data to Develop and Implement a New Method for Estimating Blue and Fin Whale Density

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...Utilizing Sparse Array Data to Develop and Implement a New Method for Estimating Blue and Fin Whale Density Len Thomas & Danielle Harris Centre...to develop and implement a new method for estimating blue and fin whale density that is effective over large spatial scales and is designed to cope

  9. Geometric characterization and simulation of planar layered elastomeric fibrous biomaterials

    DOE PAGES

    Carleton, James B.; D’Amore, Antonio; Feaver, Kristen R.; ...

    2014-10-13

    Many important biomaterials are composed of multiple layers of networked fibers. While there is a growing interest in modeling and simulation of the mechanical response of these biomaterials, a theoretical foundation for such simulations has yet to be firmly established. Moreover, correctly identifying and matching key geometric features is a critically important first step for performing reliable mechanical simulations. This paper addresses these issues in two ways. First, using methods of geometric probability, we develop theoretical estimates for the mean linear and areal fiber intersection densities for 2-D fibrous networks. These densities are expressed in terms of the fiber densitymore » and the orientation distribution function, both of which are relatively easy-to-measure properties. Secondly, we develop a random walk algorithm for geometric simulation of 2-D fibrous networks which can accurately reproduce the prescribed fiber density and orientation distribution function. Furthermore, the linear and areal fiber intersection densities obtained with the algorithm are in agreement with the theoretical estimates. Both theoretical and computational results are compared with those obtained by post-processing of scanning electron microscope images of actual scaffolds. These comparisons reveal difficulties inherent to resolving fine details of multilayered fibrous networks. Finally, the methods provided herein can provide a rational means to define and generate key geometric features from experimentally measured or prescribed scaffold structural data.« less

  10. Visualization of spatial patterns and temporal trends for aerial surveillance of illegal oil discharges in western Canadian marine waters.

    PubMed

    Serra-Sogas, Norma; O'Hara, Patrick D; Canessa, Rosaline; Keller, Peter; Pelot, Ronald

    2008-05-01

    This paper examines the use of exploratory spatial analysis for identifying hotspots of shipping-based oil pollution in the Pacific Region of Canada's Exclusive Economic Zone. It makes use of data collected from fiscal years 1997/1998 to 2005/2006 by the National Aerial Surveillance Program, the primary tool for monitoring and enforcing the provisions imposed by MARPOL 73/78. First, we present oil spill data as points in a "dot map" relative to coastlines, harbors and the aerial surveillance distribution. Then, we explore the intensity of oil spill events using the Quadrat Count method, and the Kernel Density Estimation methods with both fixed and adaptive bandwidths. We found that oil spill hotspots where more clearly defined using Kernel Density Estimation with an adaptive bandwidth, probably because of the "clustered" distribution of oil spill occurrences. Finally, we discuss the importance of standardizing oil spill data by controlling for surveillance effort to provide a better understanding of the distribution of illegal oil spills, and how these results can ultimately benefit a monitoring program.

  11. The estimation of tree posterior probabilities using conditional clade probability distributions.

    PubMed

    Larget, Bret

    2013-07-01

    In this article I introduce the idea of conditional independence of separated subtrees as a principle by which to estimate the posterior probability of trees using conditional clade probability distributions rather than simple sample relative frequencies. I describe an algorithm for these calculations and software which implements these ideas. I show that these alternative calculations are very similar to simple sample relative frequencies for high probability trees but are substantially more accurate for relatively low probability trees. The method allows the posterior probability of unsampled trees to be calculated when these trees contain only clades that are in other sampled trees. Furthermore, the method can be used to estimate the total probability of the set of sampled trees which provides a measure of the thoroughness of a posterior sample.

  12. Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

    DOE PAGES

    Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.; ...

    2017-07-11

    Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less

  13. Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.

    Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less

  14. Deep convolutional neural network for mammographic density segmentation

    NASA Astrophysics Data System (ADS)

    Wei, Jun; Li, Songfeng; Chan, Heang-Ping; Helvie, Mark A.; Roubidoux, Marilyn A.; Lu, Yao; Zhou, Chuan; Hadjiiski, Lubomir; Samala, Ravi K.

    2018-02-01

    Breast density is one of the most significant factors for cancer risk. In this study, we proposed a supervised deep learning approach for automated estimation of percentage density (PD) on digital mammography (DM). The deep convolutional neural network (DCNN) was trained to estimate a probability map of breast density (PMD). PD was calculated as the ratio of the dense area to the breast area based on the probability of each pixel belonging to dense region or fatty region at a decision threshold of 0.5. The DCNN estimate was compared to a feature-based statistical learning approach, in which gray level, texture and morphological features were extracted from each ROI and the least absolute shrinkage and selection operator (LASSO) was used to select and combine the useful features to generate the PMD. The reference PD of each image was provided by two experienced MQSA radiologists. With IRB approval, we retrospectively collected 347 DMs from patient files at our institution. The 10-fold cross-validation results showed a strong correlation r=0.96 between the DCNN estimation and interactive segmentation by radiologists while that of the feature-based statistical learning approach vs radiologists' segmentation had a correlation r=0.78. The difference between the segmentation by DCNN and by radiologists was significantly smaller than that between the feature-based learning approach and radiologists (p < 0.0001) by two-tailed paired t-test. This study demonstrated that the DCNN approach has the potential to replace radiologists' interactive thresholding in PD estimation on DMs.

  15. Examples of measurement uncertainty evaluations in accordance with the revised GUM

    NASA Astrophysics Data System (ADS)

    Runje, B.; Horvatic, A.; Alar, V.; Medic, S.; Bosnjakovic, A.

    2016-11-01

    The paper presents examples of the evaluation of uncertainty components in accordance with the current and revised Guide to the expression of uncertainty in measurement (GUM). In accordance with the proposed revision of the GUM a Bayesian approach was conducted for both type A and type B evaluations.The law of propagation of uncertainty (LPU) and the law of propagation of distribution applied through the Monte Carlo method, (MCM) were used to evaluate associated standard uncertainties, expanded uncertainties and coverage intervals. Furthermore, the influence of the non-Gaussian dominant input quantity and asymmetric distribution of the output quantity y on the evaluation of measurement uncertainty was analyzed. In the case when the probabilistically coverage interval is not symmetric, the coverage interval for the probability P is estimated from the experimental probability density function using the Monte Carlo method. Key highlights of the proposed revision of the GUM were analyzed through a set of examples.

  16. Two proposed convergence criteria for Monte Carlo solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forster, R.A.; Pederson, S.P.; Booth, T.E.

    1992-01-01

    The central limit theorem (CLT) can be applied to a Monte Carlo solution if two requirements are satisfied: (1) The random variable has a finite mean and a finite variance; and (2) the number N of independent observations grows large. When these two conditions are satisfied, a confidence interval (CI) based on the normal distribution with a specified coverage probability can be formed. The first requirement is generally satisfied by the knowledge of the Monte Carlo tally being used. The Monte Carlo practitioner has a limited number of marginal methods to assess the fulfillment of the second requirement, such asmore » statistical error reduction proportional to 1/[radical]N with error magnitude guidelines. Two proposed methods are discussed in this paper to assist in deciding if N is large enough: estimating the relative variance of the variance (VOV) and examining the empirical history score probability density function (pdf).« less

  17. Field evaluation of distance-estimation error during wetland-dependent bird surveys

    USGS Publications Warehouse

    Nadeau, Christopher P.; Conway, Courtney J.

    2012-01-01

    Context: The most common methods to estimate detection probability during avian point-count surveys involve recording a distance between the survey point and individual birds detected during the survey period. Accurately measuring or estimating distance is an important assumption of these methods; however, this assumption is rarely tested in the context of aural avian point-count surveys. Aims: We expand on recent bird-simulation studies to document the error associated with estimating distance to calling birds in a wetland ecosystem. Methods: We used two approaches to estimate the error associated with five surveyor's distance estimates between the survey point and calling birds, and to determine the factors that affect a surveyor's ability to estimate distance. Key results: We observed biased and imprecise distance estimates when estimating distance to simulated birds in a point-count scenario (x̄error = -9 m, s.d.error = 47 m) and when estimating distances to real birds during field trials (x̄error = 39 m, s.d.error = 79 m). The amount of bias and precision in distance estimates differed among surveyors; surveyors with more training and experience were less biased and more precise when estimating distance to both real and simulated birds. Three environmental factors were important in explaining the error associated with distance estimates, including the measured distance from the bird to the surveyor, the volume of the call and the species of bird. Surveyors tended to make large overestimations to birds close to the survey point, which is an especially serious error in distance sampling. Conclusions: Our results suggest that distance-estimation error is prevalent, but surveyor training may be the easiest way to reduce distance-estimation error. Implications: The present study has demonstrated how relatively simple field trials can be used to estimate the error associated with distance estimates used to estimate detection probability during avian point-count surveys. Evaluating distance-estimation errors will allow investigators to better evaluate the accuracy of avian density and trend estimates. Moreover, investigators who evaluate distance-estimation errors could employ recently developed models to incorporate distance-estimation error into analyses. We encourage further development of such models, including the inclusion of such models into distance-analysis software.

  18. Discrimination of relationships with the same degree of kinship using chromosomal sharing patterns estimated from high-density SNPs.

    PubMed

    Morimoto, Chie; Manabe, Sho; Fujimoto, Shuntaro; Hamano, Yuya; Tamaki, Keiji

    2018-03-01

    Distinguishing relationships with the same degree of kinship (e.g., uncle-nephew and grandfather-grandson) is generally difficult in forensic genetics by using the commonly employed short tandem repeat loci. In this study, we developed a new method for discerning such relationships between two individuals by examining the number of chromosomal shared segments estimated from high-density single nucleotide polymorphisms (SNPs). We computationally generated second-degree kinships (i.e., uncle-nephew and grandfather-grandson) and third-degree kinships (i.e., first cousins and great-grandfather-great-grandson) for 174,254 autosomal SNPs considering the effect of linkage disequilibrium and recombination for each SNP. We investigated shared chromosomal segments between two individuals that were estimated based on identity by state regions. We then counted the number of segments in each pair. Based on our results, the number of shared chromosomal segments in collateral relationships was larger than that in lineal relationships with both the second-degree and third-degree kinships. This was probably caused by differences involving chromosomal transitions and recombination between relationships. As we probabilistically evaluated the relationships between simulated pairs based on the number of shared segments using logistic regression, we could determine accurate relationships in >90% of second-degree relatives and >70% of third-degree relatives, using a probability criterion for the relationship ≥0.9. Furthermore, we could judge the true relationships of actual sample pairs from volunteers, as well as simulated data. Therefore, this method can be useful for discerning relationships between two individuals with the same degree of kinship. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Bioenergetics estimate of the effects of stocking density on hatchery production of smallmouth bass fingerlings

    USGS Publications Warehouse

    Robel, G.L.; Fisher, W.L.

    1999-01-01

    Production of and consumption by hatchery-reared tingerling (age-0) smallmouth bass Micropterus dolomieu at various simulated stocking densities were estimated with a bioenergetics model. Fish growth rates and pond water temperatures during the 1996 growing season at two hatcheries in Oklahoma were used in the model. Fish growth and simulated consumption and production differed greatly between the two hatcheries, probably because of differences in pond fertilization and mortality rates. Our results suggest that appropriate stocking density depends largely on prey availability as affected by pond fertilization and on fingerling mortality rates. The bioenergetics model provided a useful tool for estimating production at various stocking density rates. However, verification of physiological parameters for age-0 fish of hatchery-reared species is needed.

  20. Nematode Damage Functions: The Problems of Experimental and Sampling Error

    PubMed Central

    Ferris, H.

    1984-01-01

    The development and use of pest damage functions involves measurement and experimental errors associated with cultural, environmental, and distributional factors. Damage predictions are more valuable if considered with associated probability. Collapsing population densities into a geometric series of population classes allows a pseudo-replication removal of experimental and sampling error in damage function development. Recognition of the nature of sampling error for aggregated populations allows assessment of probability associated with the population estimate. The product of the probabilities incorporated in the damage function and in the population estimate provides a basis for risk analysis of the yield loss prediction and the ensuing management decision. PMID:19295865

  1. Spatial capture-recapture: a promising method for analyzing data collected using artificial cover objects

    USGS Publications Warehouse

    Sutherland, Chris; Munoz, David; Miller, David A.W.; Grant, Evan H. Campbell

    2016-01-01

    Spatial capture–recapture (SCR) is a relatively recent development in ecological statistics that provides a spatial context for estimating abundance and space use patterns, and improves inference about absolute population density. SCR has been applied to individual encounter data collected noninvasively using methods such as camera traps, hair snares, and scat surveys. Despite the widespread use of capture-based surveys to monitor amphibians and reptiles, there are few applications of SCR in the herpetological literature. We demonstrate the utility of the application of SCR for studies of reptiles and amphibians by analyzing capture–recapture data from Red-Backed Salamanders, Plethodon cinereus, collected using artificial cover boards. Using SCR to analyze spatial encounter histories of marked individuals, we found evidence that density differed little among four sites within the same forest (on average, 1.59 salamanders/m2) and that salamander detection probability peaked in early October (Julian day 278) reflecting expected surface activity patterns of the species. The spatial scale of detectability, a measure of space use, indicates that the home range size for this population of Red-Backed Salamanders in autumn was 16.89 m2. Surveying reptiles and amphibians using artificial cover boards regularly generates spatial encounter history data of known individuals, which can readily be analyzed using SCR methods, providing estimates of absolute density and inference about the spatial scale of habitat use.

  2. Using satellite radiotelemetry data to delineate and manage wildlife populations

    USGS Publications Warehouse

    Amstrup, Steven C.; McDonald, T.L.; Durner, George M.

    2004-01-01

    The greatest promise of radiotelemetry always has been a better understanding of animal movements. Telemetry has helped us know when animals are active, how active they are, how far and how fast they move, the geographic areas they occupy, and whether individuals vary in these traits. Unfortunately, the inability to estimate the error in animals utilization distributions (UDs), has prevented probabilistic linkage of movements data, which are always retrospective, with future management actions. We used the example of the harvested population of polar bears (Ursus maritimus) in the Southern Beaufort Sea to illustrate a method that provides that linkage. We employed a 2-dimensional Gaussian kernel density estimator to smooth and scale frequencies of polar bear radio locations within cells of a grid overlying our study area. True 2-dimensional smoothing allowed us to create accurate descriptions of the UDs of individuals and groups of bears. We used a new method of clustering, based upon the relative use collared bears made of each cell in our grid, to assign individual animals to populations. We applied the fast Fourier transform to make bootstrapped estimates of the error in UDs computationally feasible. Clustering and kernel smoothing identified 3 populations of polar bears in the region between Wrangel Island, Russia, and Banks Island, Canada. The relative probability of occurrence of animals from each population varied significantly among grid cells distributed across the study area. We displayed occurrence probabilities as contour maps wherein each contour line corresponded with a change in relative probability. Only at the edges of our study area and in some offshore regions were bootstrapped estimates of error in occurrence probabilities too high to allow prediction. Error estimates, which also were displayed as contours, allowed us to show that occurrence probabilities did not vary by season. Near Barrow, Alaska, 50% of bears observed are predicted to be from the Chukchi Sea population and 50% from the Southern Beaufort Sea population. At Tuktoyaktuk, Northwest Territories, Canada, 50% are from the Southern Beaufort Sea and 50% from the Northern Beaufort Sea population. The methods described here will aid managers of all wildlife that can be studied by telemetry to allocate harvests and other human perturbations to the appropriate populations, make risk assessments, and predict impacts of human activities. They will aid researchers by providing the refined descriptions of study populations that are necessary for population estimation and other investigative tasks. Arctic, Beaufort Sea, boundaries, clustering, Fourier transform, kernel, management, polar bears, population delineation, radiotelemetry, satellite, smoothing, Ursus maritimus

  3. On the development of a semi-nonparametric generalized multinomial logit model for travel-related choices

    PubMed Central

    Ye, Xin; Pendyala, Ram M.; Zou, Yajie

    2017-01-01

    A semi-nonparametric generalized multinomial logit model, formulated using orthonormal Legendre polynomials to extend the standard Gumbel distribution, is presented in this paper. The resulting semi-nonparametric function can represent a probability density function for a large family of multimodal distributions. The model has a closed-form log-likelihood function that facilitates model estimation. The proposed method is applied to model commute mode choice among four alternatives (auto, transit, bicycle and walk) using travel behavior data from Argau, Switzerland. Comparisons between the multinomial logit model and the proposed semi-nonparametric model show that violations of the standard Gumbel distribution assumption lead to considerable inconsistency in parameter estimates and model inferences. PMID:29073152

  4. On the development of a semi-nonparametric generalized multinomial logit model for travel-related choices.

    PubMed

    Wang, Ke; Ye, Xin; Pendyala, Ram M; Zou, Yajie

    2017-01-01

    A semi-nonparametric generalized multinomial logit model, formulated using orthonormal Legendre polynomials to extend the standard Gumbel distribution, is presented in this paper. The resulting semi-nonparametric function can represent a probability density function for a large family of multimodal distributions. The model has a closed-form log-likelihood function that facilitates model estimation. The proposed method is applied to model commute mode choice among four alternatives (auto, transit, bicycle and walk) using travel behavior data from Argau, Switzerland. Comparisons between the multinomial logit model and the proposed semi-nonparametric model show that violations of the standard Gumbel distribution assumption lead to considerable inconsistency in parameter estimates and model inferences.

  5. An improved probabilistic approach for linking progenitor and descendant galaxy populations using comoving number density

    NASA Astrophysics Data System (ADS)

    Wellons, Sarah; Torrey, Paul

    2017-06-01

    Galaxy populations at different cosmic epochs are often linked by cumulative comoving number density in observational studies. Many theoretical works, however, have shown that the cumulative number densities of tracked galaxy populations not only evolve in bulk, but also spread out over time. We present a method for linking progenitor and descendant galaxy populations which takes both of these effects into account. We define probability distribution functions that capture the evolution and dispersion of galaxy populations in number density space, and use these functions to assign galaxies at redshift zf probabilities of being progenitors/descendants of a galaxy population at another redshift z0. These probabilities are used as weights for calculating distributions of physical progenitor/descendant properties such as stellar mass, star formation rate or velocity dispersion. We demonstrate that this probabilistic method provides more accurate predictions for the evolution of physical properties than the assumption of either a constant number density or an evolving number density in a bin of fixed width by comparing predictions against galaxy populations directly tracked through a cosmological simulation. We find that the constant number density method performs least well at recovering galaxy properties, the evolving method density slightly better and the probabilistic method best of all. The improvement is present for predictions of stellar mass as well as inferred quantities such as star formation rate and velocity dispersion. We demonstrate that this method can also be applied robustly and easily to observational data, and provide a code package for doing so.

  6. Coincidence probability as a measure of the average phase-space density at freeze-out

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Zalewski, K.

    2006-02-01

    It is pointed out that the average semi-inclusive particle phase-space density at freeze-out can be determined from the coincidence probability of the events observed in multiparticle production. The method of measurement is described and its accuracy examined.

  7. Estimating maximum instantaneous distortion from inlet total pressure rms and PSD measurements. [Root Mean Square and Power Spectral Density methods

    NASA Technical Reports Server (NTRS)

    Melick, H. C., Jr.; Ybarra, A. H.; Bencze, D. P.

    1975-01-01

    An inexpensive method is developed to determine the extreme values of instantaneous inlet distortion. This method also provides insight into the basic mechanics of unsteady inlet flow and the associated engine reaction. The analysis is based on fundamental fluid dynamics and statistical methods to provide an understanding of the turbulent inlet flow and quantitatively relate the rms level and power spectral density (PSD) function of the measured time variant total pressure fluctuations to the strength and size of the low pressure regions. The most probable extreme value of the instantaneous distortion is then synthesized from this information in conjunction with the steady state distortion. Results of the analysis show the extreme values to be dependent upon the steady state distortion, the measured turbulence rms level and PSD function, the time on point, and the engine response characteristics. Analytical projections of instantaneous distortion are presented and compared with data obtained by a conventional, highly time correlated, 40 probe instantaneous pressure measurement system.

  8. On the asymptotic improvement of supervised learning by utilizing additional unlabeled samples - Normal mixture density case

    NASA Technical Reports Server (NTRS)

    Shahshahani, Behzad M.; Landgrebe, David A.

    1992-01-01

    The effect of additional unlabeled samples in improving the supervised learning process is studied in this paper. Three learning processes. supervised, unsupervised, and combined supervised-unsupervised, are compared by studying the asymptotic behavior of the estimates obtained under each process. Upper and lower bounds on the asymptotic covariance matrices are derived. It is shown that under a normal mixture density assumption for the probability density function of the feature space, the combined supervised-unsupervised learning is always superior to the supervised learning in achieving better estimates. Experimental results are provided to verify the theoretical concepts.

  9. Assessing tiger population dynamics using photographic capture-recapture sampling

    USGS Publications Warehouse

    Karanth, K.U.; Nichols, J.D.; Kumar, N.S.; Hines, J.E.

    2006-01-01

    Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, ?robust design? capture?recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of =K' =Y' 0.10 ? 0.069 (values are estimated mean ? SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 ? 0.051, and the estimated probability that a newly caught animal was a transient was = 0.18 ? 0.11. During the period when the sampled area was of constant size, the estimated population size Nt varied from 17 ? 1.7 to 31 ? 2.1 tigers, with a geometric mean rate of annual population change estimated as = 1.03 ? 0.020, representing a 3% annual increase. The estimated recruitment of new animals, Bt, varied from 0 ? 3.0 to 14 ? 2.9 tigers. Population density estimates, D, ranged from 7.33 ? 0.8 tigers/100 km2 to 21.73 ? 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.

  10. Assessing tiger population dynamics using photographic capture-recapture sampling.

    PubMed

    Karanth, K Ullas; Nichols, James D; Kumar, N Samba; Hines, James E

    2006-11-01

    Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, "robust design" capture-recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of gamma" = gamma' = 0.10 +/- 0.069 (values are estimated mean +/- SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 +/- 0.051, and the estimated probability that a newly caught animal was a transient was tau = 0.18 +/- 0.11. During the period when the sampled area was of constant size, the estimated population size N(t) varied from 17 +/- 1.7 to 31 +/- 2.1 tigers, with a geometric mean rate of annual population change estimated as lambda = 1.03 +/- 0.020, representing a 3% annual increase. The estimated recruitment of new animals, B(t), varied from 0 +/- 3.0 to 14 +/- 2.9 tigers. Population density estimates, D, ranged from 7.33 +/- 0.8 tigers/100 km2 to 21.73 +/- 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.

  11. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks

    PubMed Central

    Zaikin, Alexey; Míguez, Joaquín

    2017-01-01

    We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are contaminated by additive noise, we enable a principled mechanism to represent experimental uncertainties in the synthesis of the multicellular system and pave the way for the design of probabilistic methods for the estimation of any unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of the model parameters. Specifically, we compare three Monte Carlo based numerical methods for the approximation of the posterior probability density function of the unknown parameters given a set of partial and noisy observations of the system. The schemes we assess are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo (NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) scheme. We present an extensive numerical simulation study, which shows that while the three techniques can effectively solve the problem there are significant differences both in estimation accuracy and computational efficiency. PMID:28797087

  12. Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF.

    PubMed

    Duan, Chong; Kallehauge, Jesper F; Pérez-Torres, Carlos J; Bretthorst, G Larry; Beeman, Scott C; Tanderup, Kari; Ackerman, Joseph J H; Garbow, Joel R

    2018-02-01

    This study aims to develop a constrained local arterial input function (cL-AIF) to improve quantitative analysis of dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) data by accounting for the contrast-agent bolus amplitude error in the voxel-specific AIF. Bayesian probability theory-based parameter estimation and model selection were used to compare tracer kinetic modeling employing either the measured remote-AIF (R-AIF, i.e., the traditional approach) or an inferred cL-AIF against both in silico DCE-MRI data and clinical, cervical cancer DCE-MRI data. When the data model included the cL-AIF, tracer kinetic parameters were correctly estimated from in silico data under contrast-to-noise conditions typical of clinical DCE-MRI experiments. Considering the clinical cervical cancer data, Bayesian model selection was performed for all tumor voxels of the 16 patients (35,602 voxels in total). Among those voxels, a tracer kinetic model that employed the voxel-specific cL-AIF was preferred (i.e., had a higher posterior probability) in 80 % of the voxels compared to the direct use of a single R-AIF. Maps of spatial variation in voxel-specific AIF bolus amplitude and arrival time for heterogeneous tissues, such as cervical cancer, are accessible with the cL-AIF approach. The cL-AIF method, which estimates unique local-AIF amplitude and arrival time for each voxel within the tissue of interest, provides better modeling of DCE-MRI data than the use of a single, measured R-AIF. The Bayesian-based data analysis described herein affords estimates of uncertainties for each model parameter, via posterior probability density functions, and voxel-wise comparison across methods/models, via model selection in data modeling.

  13. Probability density of tunneled carrier states near heterojunctions calculated numerically by the scattering method.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, William R.; Myers, Samuel M.; Modine, Normand A.

    2017-09-01

    The energy-dependent probability density of tunneled carrier states for arbitrarily specified longitudinal potential-energy profiles in planar bipolar devices is numerically computed using the scattering method. Results agree accurately with a previous treatment based on solution of the localized eigenvalue problem, where computation times are much greater. These developments enable quantitative treatment of tunneling-assisted recombination in irradiated heterojunction bipolar transistors, where band offsets may enhance the tunneling effect by orders of magnitude. The calculations also reveal the density of non-tunneled carrier states in spatially varying potentials, and thereby test the common approximation of uniform- bulk values for such densities.

  14. What is the lifetime risk of developing cancer?: the effect of adjusting for multiple primaries

    PubMed Central

    Sasieni, P D; Shelton, J; Ormiston-Smith, N; Thomson, C S; Silcocks, P B

    2011-01-01

    Background: The ‘lifetime risk' of cancer is generally estimated by combining current incidence rates with current all-cause mortality (‘current probability' method) rather than by describing the experience of a birth cohort. As individuals may get more than one type of cancer, what is generally estimated is the average (mean) number of cancers over a lifetime. This is not the same as the probability of getting cancer. Methods: We describe a method for estimating lifetime risk that corrects for the inclusion of multiple primary cancers in the incidence rates routinely published by cancer registries. The new method applies cancer incidence rates to the estimated probability of being alive without a previous cancer. The new method is illustrated using data from the Scottish Cancer Registry and is compared with ‘gold-standard' estimates that use (unpublished) data on first primaries. Results: The effect of this correction is to make the estimated ‘lifetime risk' smaller. The new estimates are extremely similar to those obtained using incidence based on first primaries. The usual ‘current probability' method considerably overestimates the lifetime risk of all cancers combined, although the correction for any single cancer site is minimal. Conclusion: Estimation of the lifetime risk of cancer should either be based on first primaries or should use the new method. PMID:21772332

  15. PYFLOW 2.0. A new open-source software for quantifying the impact and depositional properties of dilute pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Dioguardi, Fabio; Dellino, Pierfrancesco

    2017-04-01

    Dilute pyroclastic density currents (DPDC) are ground-hugging turbulent gas-particle flows that move down volcano slopes under the combined action of density contrast and gravity. DPDCs are dangerous for human lives and infrastructures both because they exert a dynamic pressure in their direction of motion and transport volcanic ash particles, which remain in the atmosphere during the waning stage and after the passage of a DPDC. Deposits formed by the passage of a DPDC show peculiar characteristics that can be linked to flow field variables with sedimentological models. Here we present PYFLOW_2.0, a significantly improved version of the code of Dioguardi and Dellino (2014) that was already extensively used for the hazard assessment of DPDCs at Campi Flegrei and Vesuvius (Italy). In the latest new version the code structure, the computation times and the data input method have been updated and improved. A set of shape-dependent drag laws have been implemented as to better estimate the aerodynamic drag of particles transported and deposited by the flow. A depositional model for calculating the deposition time and rate of the ash and lapilli layer formed by the pyroclastic flow has also been included. This model links deposit (e.g. componentry, grainsize) to flow characteristics (e.g. flow average density and shear velocity), the latter either calculated by the code itself or given in input by the user. The deposition rate is calculated by summing the contributions of each grainsize class of all components constituting the deposit (e.g. juvenile particles, crystals, etc.), which are in turn computed as a function of particle density, terminal velocity, concentration and deposition probability. Here we apply the concept of deposition probability, previously introduced for estimating the deposition rates of turbidity currents (Stow and Bowen, 1980), to DPDCs, although with a different approach, i.e. starting from what is observed in the deposit (e.g. the weight fractions ratios between the different grainsize classes). In this way, more realistic estimates of the deposition rate can be obtained, as the deposition probability of different grainsize constituting the DPDC deposit could be different and not necessarily equal to unity. Calculations of the deposition rates of large-scale experiments, previously computed with different methods, have been performed as experimental validation and are presented. Results of model application to DPDCs and turbidity currents will also be presented. Dioguardi, F, and P. Dellino (2014), PYFLOW: A computer code for the calculation of the impact parameters of Dilute Pyroclastic Density Currents (DPDC) based on field data, Powder Technol., 66, 200-210, doi:10.1016/j.cageo.2014.01.013 Stow, D. A. V., and A. J. Bowen (1980), A physical model for the transport and sorting of fine-grained sediment by turbidity currents, Sedimentology, 27, 31-46

  16. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect.

    PubMed

    Ku, Bon Ki; Evans, Douglas E

    2012-04-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as "Maynard's estimation method") is used. Therefore, it is necessary to quantitatively investigate how much the Maynard's estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard's estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard's estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density of agglomerates improves the accuracy of the Maynard's estimation method and that an effective density should be taken into account, when known, when estimating aerosol surface area of nonspherical aerosol such as open agglomerates and fibrous particles.

  17. A three-step maximum a posteriori probability method for InSAR data inversion of coseismic rupture with application to the 14 April 2010 Mw 6.9 Yushu, China, earthquake

    NASA Astrophysics Data System (ADS)

    Sun, Jianbao; Shen, Zheng-Kang; Bürgmann, Roland; Wang, Min; Chen, Lichun; Xu, Xiwei

    2013-08-01

    develop a three-step maximum a posteriori probability method for coseismic rupture inversion, which aims at maximizing the a posterior probability density function (PDF) of elastic deformation solutions of earthquake rupture. The method originates from the fully Bayesian inversion and mixed linear-nonlinear Bayesian inversion methods and shares the same posterior PDF with them, while overcoming difficulties with convergence when large numbers of low-quality data are used and greatly improving the convergence rate using optimization procedures. A highly efficient global optimization algorithm, adaptive simulated annealing, is used to search for the maximum of a posterior PDF ("mode" in statistics) in the first step. The second step inversion approaches the "true" solution further using the Monte Carlo inversion technique with positivity constraints, with all parameters obtained from the first step as the initial solution. Then slip artifacts are eliminated from slip models in the third step using the same procedure of the second step, with fixed fault geometry parameters. We first design a fault model with 45° dip angle and oblique slip, and produce corresponding synthetic interferometric synthetic aperture radar (InSAR) data sets to validate the reliability and efficiency of the new method. We then apply this method to InSAR data inversion for the coseismic slip distribution of the 14 April 2010 Mw 6.9 Yushu, China earthquake. Our preferred slip model is composed of three segments with most of the slip occurring within 15 km depth and the maximum slip reaches 1.38 m at the surface. The seismic moment released is estimated to be 2.32e+19 Nm, consistent with the seismic estimate of 2.50e+19 Nm.

  18. Multi-scale evaluation of the environmental controls on burn probability in a southern Sierra Nevada landscape

    Treesearch

    Sean A. Parks; Marc-Andre Parisien; Carol Miller

    2011-01-01

    We examined the scale-dependent relationship between spatial fire likelihood or burn probability (BP) and some key environmental controls in the southern Sierra Nevada, California, USA. Continuous BP estimates were generated using a fire simulation model. The correspondence between BP (dependent variable) and elevation, ignition density, fuels and aspect was evaluated...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Paul B.

    Paralleling our recent computationally intensive (quasi-Monte Carlo) work for the case N=4 (e-print quant-ph/0308037), we undertake the task for N=6 of computing to high numerical accuracy, the formulas of Sommers and Zyczkowski (e-print quant-ph/0304041) for the (N{sup 2}-1)-dimensional volume and (N{sup 2}-2)-dimensional hyperarea of the (separable and nonseparable) NxN density matrices, based on the Bures (minimal monotone) metric--and also their analogous formulas (e-print quant-ph/0302197) for the (nonmonotone) flat Hilbert-Schmidt metric. With the same seven 10{sup 9} well-distributed ('low-discrepancy') sample points, we estimate the unknown volumes and hyperareas based on five additional (monotone) metrics of interest, including the Kubo-Mori and Wigner-Yanase.more » Further, we estimate all of these seven volume and seven hyperarea (unknown) quantities when restricted to the separable density matrices. The ratios of separable volumes (hyperareas) to separable plus nonseparable volumes (hyperareas) yield estimates of the separability probabilities of generically rank-6 (rank-5) density matrices. The (rank-6) separability probabilities obtained based on the 35-dimensional volumes appear to be--independently of the metric (each of the seven inducing Haar measure) employed--twice as large as those (rank-5 ones) based on the 34-dimensional hyperareas. (An additional estimate--33.9982--of the ratio of the rank-6 Hilbert-Schmidt separability probability to the rank-4 one is quite clearly close to integral too.) The doubling relationship also appears to hold for the N=4 case for the Hilbert-Schmidt metric, but not the others. We fit simple exact formulas to our estimates of the Hilbert-Schmidt separable volumes and hyperareas in both the N=4 and N=6 cases.« less

  20. Simulations of Spray Reacting Flows in a Single Element LDI Injector With and Without Invoking an Eulerian Scalar PDF Method

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2012-01-01

    This paper presents the numerical simulations of the Jet-A spray reacting flow in a single element lean direct injection (LDI) injector by using the National Combustion Code (NCC) with and without invoking the Eulerian scalar probability density function (PDF) method. The flow field is calculated by using the Reynolds averaged Navier-Stokes equations (RANS and URANS) with nonlinear turbulence models, and when the scalar PDF method is invoked, the energy and compositions or species mass fractions are calculated by solving the equation of an ensemble averaged density-weighted fine-grained probability density function that is referred to here as the averaged probability density function (APDF). A nonlinear model for closing the convection term of the scalar APDF equation is used in the presented simulations and will be briefly described. Detailed comparisons between the results and available experimental data are carried out. Some positive findings of invoking the Eulerian scalar PDF method in both improving the simulation quality and reducing the computing cost are observed.

  1. Monte Carlo method for computing density of states and quench probability of potential energy and enthalpy landscapes.

    PubMed

    Mauro, John C; Loucks, Roger J; Balakrishnan, Jitendra; Raghavan, Srikanth

    2007-05-21

    The thermodynamics and kinetics of a many-body system can be described in terms of a potential energy landscape in multidimensional configuration space. The partition function of such a landscape can be written in terms of a density of states, which can be computed using a variety of Monte Carlo techniques. In this paper, a new self-consistent Monte Carlo method for computing density of states is described that uses importance sampling and a multiplicative update factor to achieve rapid convergence. The technique is then applied to compute the equilibrium quench probability of the various inherent structures (minima) in the landscape. The quench probability depends on both the potential energy of the inherent structure and the volume of its corresponding basin in configuration space. Finally, the methodology is extended to the isothermal-isobaric ensemble in order to compute inherent structure quench probabilities in an enthalpy landscape.

  2. Identification of Stochastically Perturbed Autonomous Systems from Temporal Sequences of Probability Density Functions

    NASA Astrophysics Data System (ADS)

    Nie, Xiaokai; Luo, Jingjing; Coca, Daniel; Birkin, Mark; Chen, Jing

    2018-03-01

    The paper introduces a method for reconstructing one-dimensional iterated maps that are driven by an external control input and subjected to an additive stochastic perturbation, from sequences of probability density functions that are generated by the stochastic dynamical systems and observed experimentally.

  3. Pairing field methods to improve inference in wildlife surveys while accommodating detection covariance.

    PubMed

    Clare, John; McKinney, Shawn T; DePue, John E; Loftin, Cynthia S

    2017-10-01

    It is common to use multiple field sampling methods when implementing wildlife surveys to compare method efficacy or cost efficiency, integrate distinct pieces of information provided by separate methods, or evaluate method-specific biases and misclassification error. Existing models that combine information from multiple field methods or sampling devices permit rigorous comparison of method-specific detection parameters, enable estimation of additional parameters such as false-positive detection probability, and improve occurrence or abundance estimates, but with the assumption that the separate sampling methods produce detections independently of one another. This assumption is tenuous if methods are paired or deployed in close proximity simultaneously, a common practice that reduces the additional effort required to implement multiple methods and reduces the risk that differences between method-specific detection parameters are confounded by other environmental factors. We develop occupancy and spatial capture-recapture models that permit covariance between the detections produced by different methods, use simulation to compare estimator performance of the new models to models assuming independence, and provide an empirical application based on American marten (Martes americana) surveys using paired remote cameras, hair catches, and snow tracking. Simulation results indicate existing models that assume that methods independently detect organisms produce biased parameter estimates and substantially understate estimate uncertainty when this assumption is violated, while our reformulated models are robust to either methodological independence or covariance. Empirical results suggested that remote cameras and snow tracking had comparable probability of detecting present martens, but that snow tracking also produced false-positive marten detections that could potentially substantially bias distribution estimates if not corrected for. Remote cameras detected marten individuals more readily than passive hair catches. Inability to photographically distinguish individual sex did not appear to induce negative bias in camera density estimates; instead, hair catches appeared to produce detection competition between individuals that may have been a source of negative bias. Our model reformulations broaden the range of circumstances in which analyses incorporating multiple sources of information can be robustly used, and our empirical results demonstrate that using multiple field-methods can enhance inferences regarding ecological parameters of interest and improve understanding of how reliably survey methods sample these parameters. © 2017 by the Ecological Society of America.

  4. PROJECTED POPULATION-LEVEL EFFECTS OF THIOBENCARB EXPOSURE ON THE MYSID, AMERICAMYSIS BAHIA, AND EXTINCTION PROBABILITY IN A CONCENTRATION-DECAY EXPOSURE SYSTEM

    EPA Science Inventory



    Population-level effects of the mysid, Americamysis bahia, exposed to varying thiobencarb concentrations were estimated using stage-structured matrix models. A deterministic density-independent matrix model estimated the decrease in population growth rate, l, with increas...

  5. Multi-species genetic connectivity in a terrestrial habitat network.

    PubMed

    Marrotte, Robby R; Bowman, Jeff; Brown, Michael G C; Cordes, Chad; Morris, Kimberley Y; Prentice, Melanie B; Wilson, Paul J

    2017-01-01

    Habitat fragmentation reduces genetic connectivity for multiple species, yet conservation efforts tend to rely heavily on single-species connectivity estimates to inform land-use planning. Such conservation activities may benefit from multi-species connectivity estimates, which provide a simple and practical means to mitigate the effects of habitat fragmentation for a larger number of species. To test the validity of a multi-species connectivity model, we used neutral microsatellite genetic datasets of Canada lynx ( Lynx canadensis ), American marten ( Martes americana ), fisher ( Pekania pennanti ), and southern flying squirrel ( Glaucomys volans ) to evaluate multi-species genetic connectivity across Ontario, Canada. We used linear models to compare node-based estimates of genetic connectivity for each species to point-based estimates of landscape connectivity (current density) derived from circuit theory. To our knowledge, we are the first to evaluate current density as a measure of genetic connectivity. Our results depended on landscape context: habitat amount was more important than current density in explaining multi-species genetic connectivity in the northern part of our study area, where habitat was abundant and fragmentation was low. In the south however, where fragmentation was prevalent, genetic connectivity was correlated with current density. Contrary to our expectations however, locations with a high probability of movement as reflected by high current density were negatively associated with gene flow. Subsequent analyses of circuit theory outputs showed that high current density was also associated with high effective resistance, underscoring that the presence of pinch points is not necessarily indicative of gene flow. Overall, our study appears to provide support for the hypothesis that landscape pattern is important when habitat amount is low. We also conclude that while current density is proportional to the probability of movement per unit area, this does not imply increased gene flow, since high current density tends to be a result of neighbouring pixels with high cost of movement (e.g., low habitat amount). In other words, pinch points with high current density appear to constrict gene flow.

  6. The Estimation of Tree Posterior Probabilities Using Conditional Clade Probability Distributions

    PubMed Central

    Larget, Bret

    2013-01-01

    In this article I introduce the idea of conditional independence of separated subtrees as a principle by which to estimate the posterior probability of trees using conditional clade probability distributions rather than simple sample relative frequencies. I describe an algorithm for these calculations and software which implements these ideas. I show that these alternative calculations are very similar to simple sample relative frequencies for high probability trees but are substantially more accurate for relatively low probability trees. The method allows the posterior probability of unsampled trees to be calculated when these trees contain only clades that are in other sampled trees. Furthermore, the method can be used to estimate the total probability of the set of sampled trees which provides a measure of the thoroughness of a posterior sample. [Bayesian phylogenetics; conditional clade distributions; improved accuracy; posterior probabilities of trees.] PMID:23479066

  7. Probabilistic-driven oriented Speckle reducing anisotropic diffusion with application to cardiac ultrasonic images.

    PubMed

    Vegas-Sanchez-Ferrero, G; Aja-Fernandez, S; Martin-Fernandez, M; Frangi, A F; Palencia, C

    2010-01-01

    A novel anisotropic diffusion filter is proposed in this work with application to cardiac ultrasonic images. It includes probabilistic models which describe the probability density function (PDF) of tissues and adapts the diffusion tensor to the image iteratively. For this purpose, a preliminary study is performed in order to select the probability models that best fit the stastitical behavior of each tissue class in cardiac ultrasonic images. Then, the parameters of the diffusion tensor are defined taking into account the statistical properties of the image at each voxel. When the structure tensor of the probability of belonging to each tissue is included in the diffusion tensor definition, a better boundaries estimates can be obtained instead of calculating directly the boundaries from the image. This is the main contribution of this work. Additionally, the proposed method follows the statistical properties of the image in each iteration. This is considered as a second contribution since state-of-the-art methods suppose that noise or statistical properties of the image do not change during the filter process.

  8. Estimating the number of animals in wildlife populations

    USGS Publications Warehouse

    Lancia, R.A.; Kendall, W.L.; Pollock, K.H.; Nichols, J.D.; Braun, Clait E.

    2005-01-01

    INTRODUCTION In 1938, Howard M. Wight devoted 9 pages, which was an entire chapter in the first wildlife management techniques manual, to what he termed 'census' methods. As books and chapters such as this attest, the volume of literature on this subject has grown tremendously. Abundance estimation remains an active area of biometrical research, as reflected in the many differences between this chapter and the similar contribution in the previous manual. Our intent in this chapter is to present an overview of the basic and most widely used population estimation techniques and to provide an entree to the relevant literature. Several possible approaches could be taken in writing a chapter dealing with population estimation. For example, we could provide a detailed treatment focusing on statistical models and on derivation of estimators based on these models. Although a chapter using this approach might provide a valuable reference for quantitative biologists and biometricians, it would be of limited use to many field biologists and wildlife managers. Another approach would be to focus on details of actually applying different population estimation techniques. This approach would include both field application (e.g., how to set out a trapping grid or conduct an aerial survey) and detailed instructions on how to use the resulting data with appropriate estimation equations. We are reluctant to attempt such an approach, however, because of the tremendous diversity of real-world field situations defined by factors such as the animal being studied, habitat, available resources, and because of our resultant inability to provide detailed instructions for all possible cases. We believe it is more useful to provide the reader with the conceptual basis underlying estimation methods. Thus, we have tried to provide intuitive explanations for how basic methods work. In doing so, we present relevant estimation equations for many methods and provide citations of more detailed treatments covering both statistical considerations and field applications. We have chosen to present methods that are representative of classes of estimators, rather than address every available method. Our hope is that this chapter will provide the reader with enough background to make an informed decision about what general method(s) will likely perform well in any particular field situation. Readers with a more quantitative background may then be able to consult detailed references and tailor the selected method to suit their particular needs. Less quantitative readers should consult a biometrician, preferably one with experience in wildlife studies, for this 'tailoring,' with the hope they will be able to do so with a basic understanding of the general method, thereby permitting useful interaction and discussion with the biometrician. SUMMARY Estimating the abundance or density of animals in wild populations is not a trivial matter. Virtually all techniques involve the basic problem of estimating the probability of seeing, capturing, or otherwise detecting animals during some type of survey and, in many cases, sampling concerns as well. In the case of indices, the detection probability is assumed to be constant (but unknown). We caution against use of indices unless this assumption can be verified for the comparison(s) of interest. In the case of population estimation, many methods have been developed over the years to estimate the probability of detection associated with various kinds of count statistics. Techniques range from complete counts, where sampling concerns often dominate, to incomplete counts where detection probabilities are also important. Some examples of the latter are multiple observers, removal methods, and capture-recapture. Before embarking on a survey to estimate the size of a population, one must understand clearly what information is needed and for what purpose the information will be used. The key to derivin

  9. A surrogate accelerated multicanonical Monte Carlo method for uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Wu, Keyi; Li, Jinglai

    2016-09-01

    In this work we consider a class of uncertainty quantification problems where the system performance or reliability is characterized by a scalar parameter y. The performance parameter y is random due to the presence of various sources of uncertainty in the system, and our goal is to estimate the probability density function (PDF) of y. We propose to use the multicanonical Monte Carlo (MMC) method, a special type of adaptive importance sampling algorithms, to compute the PDF of interest. Moreover, we develop an adaptive algorithm to construct local Gaussian process surrogates to further accelerate the MMC iterations. With numerical examples we demonstrate that the proposed method can achieve several orders of magnitudes of speedup over the standard Monte Carlo methods.

  10. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect

    PubMed Central

    Ku, Bon Ki; Evans, Douglas E.

    2015-01-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard’s estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard’s estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density of agglomerates improves the accuracy of the Maynard’s estimation method and that an effective density should be taken into account, when known, when estimating aerosol surface area of nonspherical aerosol such as open agglomerates and fibrous particles. PMID:26526560

  11. An actuarial approach to retrofit savings in buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subbarao, Krishnappa; Etingov, Pavel V.; Reddy, T. A.

    An actuarial method has been developed for determining energy savings from retrofits from energy use data for a number of buildings. This method should be contrasted with the traditional method of using pre- and post-retrofit data on the same building. This method supports the U.S. Department of Energy Building Performance Database of real building performance data and related tools that enable engineering and financial practitioners to evaluate retrofits. The actuarial approach derives, from the database, probability density functions (PDFs) for energy savings from retrofits by creating peer groups for the user’s pre post buildings. From the energy use distribution ofmore » the two groups, the savings PDF is derived. This provides the basis for engineering analysis as well as financial risk analysis leading to investment decisions. Several technical issues are addressed: The savings PDF is obtained from the pre- and post-PDF through a convolution. Smoothing using kernel density estimation is applied to make the PDF more realistic. The low data density problem can be mitigated through a neighborhood methodology. Correlations between pre and post buildings are addressed to improve the savings PDF. Sample size effects are addressed through the Kolmogorov--Smirnov tests and quantile-quantile plots.« less

  12. Cluster membership probability: polarimetric approach

    NASA Astrophysics Data System (ADS)

    Medhi, Biman J.; Tamura, Motohide

    2013-04-01

    Interstellar polarimetric data of the six open clusters Hogg 15, NGC 6611, NGC 5606, NGC 6231, NGC 5749 and NGC 6250 have been used to estimate the membership probability for the stars within them. For proper-motion member stars, the membership probability estimated using the polarimetric data is in good agreement with the proper-motion cluster membership probability. However, for proper-motion non-member stars, the membership probability estimated by the polarimetric method is in total disagreement with the proper-motion cluster membership probability. The inconsistencies in the determined memberships may be because of the fundamental differences between the two methods of determination: one is based on stellar proper motion in space and the other is based on selective extinction of the stellar output by the asymmetric aligned dust grains present in the interstellar medium. The results and analysis suggest that the scatter of the Stokes vectors q (per cent) and u (per cent) for the proper-motion member stars depends on the interstellar and intracluster differential reddening in the open cluster. It is found that this method could be used to estimate the cluster membership probability if we have additional polarimetric and photometric information for a star to identify it as a probable member/non-member of a particular cluster, such as the maximum wavelength value (λmax), the unit weight error of the fit (σ1), the dispersion in the polarimetric position angles (overline{ɛ }), reddening (E(B - V)) or the differential intracluster reddening (ΔE(B - V)). This method could also be used to estimate the membership probability of known member stars having no membership probability as well as to resolve disagreements about membership among different proper-motion surveys.

  13. A very efficient approach to compute the first-passage probability density function in a time-changed Brownian model: Applications in finance

    NASA Astrophysics Data System (ADS)

    Ballestra, Luca Vincenzo; Pacelli, Graziella; Radi, Davide

    2016-12-01

    We propose a numerical method to compute the first-passage probability density function in a time-changed Brownian model. In particular, we derive an integral representation of such a density function in which the integrand functions must be obtained solving a system of Volterra equations of the first kind. In addition, we develop an ad-hoc numerical procedure to regularize and solve this system of integral equations. The proposed method is tested on three application problems of interest in mathematical finance, namely the calculation of the survival probability of an indebted firm, the pricing of a single-knock-out put option and the pricing of a double-knock-out put option. The results obtained reveal that the novel approach is extremely accurate and fast, and performs significantly better than the finite difference method.

  14. A novel Bayesian framework for discriminative feature extraction in Brain-Computer Interfaces.

    PubMed

    Suk, Heung-Il; Lee, Seong-Whan

    2013-02-01

    As there has been a paradigm shift in the learning load from a human subject to a computer, machine learning has been considered as a useful tool for Brain-Computer Interfaces (BCIs). In this paper, we propose a novel Bayesian framework for discriminative feature extraction for motor imagery classification in an EEG-based BCI in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatiospectral filter optimization is formulated as the estimation of an unknown posterior probability density function (pdf) that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. In order to estimate the posterior pdf, we propose a particle-based approximation method by extending a factored-sampling technique with a diffusion process. An information-theoretic observation model is also devised to measure discriminative power of features between classes. From the viewpoint of classifier design, the proposed method naturally allows us to construct a spectrally weighted label decision rule by linearly combining the outputs from multiple classifiers. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on three public databases.

  15. Factors affecting breeding season survival of Red-Headed Woodpeckers in South Carolina.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilgo, John, C.; Vukovich, Mark

    2011-11-18

    Red-headed woodpecker (Melanerpes erythrocephalus) populations have declined in the United States and Canada over the past 40 years. However, few demographic studies have been published on the species and none have addressed adult survival. During 2006-2007, we estimated survival probabilities of 80 radio-tagged red-headed woodpeckers during the breeding season in mature loblolly pine (Pinus taeda) forests in South Carolina. We used known-fate models in Program MARK to estimate survival within and between years and to evaluate the effects of foliar cover (number of available cover patches), snag density treatment (high density vs. low density), and sex and age of woodpeckers.more » Weekly survival probabilities followed a quadratic time trend, being lowest during mid-summer, which coincided with the late nestling and fledgling period. Avian predation, particularly by Cooper's (Accipiter cooperii) and sharp-shinned hawks (A. striatus), accounted for 85% of all mortalities. Our best-supported model estimated an 18-week breeding season survival probability of 0.72 (95% CI = 0.54-0.85) and indicated that the number of cover patches interacted with sex of woodpeckers to affect survival; females with few available cover patches had a lower probability of survival than either males or females with more cover patches. At the median number of cover patches available (n = 6), breeding season survival of females was 0.82 (95% CI = 0.54-0.94) and of males was 0.60 (95% CI = 0.42-0.76). The number of cover patches available to woodpeckers appeared in all 3 of our top models predicting weekly survival, providing further evidence that woodpecker survival was positively associated with availability of cover. Woodpecker survival was not associated with snag density. Our results suggest that protection of {ge}0.7 cover patches per ha during vegetation control activities in mature pine forests will benefit survival of this Partners In Flight Watch List species.« less

  16. The effect of access to contraceptive services on injectable use and demand for family planning in Malawi.

    PubMed

    Skiles, Martha Priedeman; Cunningham, Marc; Inglis, Andrew; Wilkes, Becky; Hatch, Ben; Bock, Ariella; Barden-O'Fallon, Janine

    2015-03-01

    Previous studies have identified positive relationships between geographic proximity to family planning services and contraceptive use, but have not accounted for the effect of contraceptive supply reliability or the diminishing influence of facility access with increasing distance. Kernel density estimation was used to geographically link Malawi women's use of injectable contraceptives and demand for birth spacing or limiting, as drawn from the 2010 Demographic and Health Survey, with contraceptive logistics data from family planning service delivery points. Linear probability models were run to identify associations between access to injectable services-measured by distance alone and by distance combined with supply reliability-and injectable use and family planning demand among rural and urban populations. Access to services was an important predictor of injectable use. The probability of injectable use among rural women with the most access by both measures was 7‒8 percentage points higher than among rural dwellers with the least access. The probability of wanting to space or limit births among urban women who had access to the most reliable supplies was 18 percentage points higher than among their counterparts with the least access. Product availability in the local service environment plays a critical role in women's demand for and use of contraceptive methods. Use of kernel density estimation in creating facility service environments provides a refined approach to linking women with services and accounts for both distance to facilities and supply reliability. Urban and rural differences should be considered when seeking to improve contraceptive access.

  17. Consistency of extreme flood estimation approaches

    NASA Astrophysics Data System (ADS)

    Felder, Guido; Paquet, Emmanuel; Penot, David; Zischg, Andreas; Weingartner, Rolf

    2017-04-01

    Estimations of low-probability flood events are frequently used for the planning of infrastructure as well as for determining the dimensions of flood protection measures. There are several well-established methodical procedures to estimate low-probability floods. However, a global assessment of the consistency of these methods is difficult to achieve, the "true value" of an extreme flood being not observable. Anyway, a detailed comparison performed on a given case study brings useful information about the statistical and hydrological processes involved in different methods. In this study, the following three different approaches for estimating low-probability floods are compared: a purely statistical approach (ordinary extreme value statistics), a statistical approach based on stochastic rainfall-runoff simulation (SCHADEX method), and a deterministic approach (physically based PMF estimation). These methods are tested for two different Swiss catchments. The results and some intermediate variables are used for assessing potential strengths and weaknesses of each method, as well as for evaluating the consistency of these methods.

  18. The effectiveness of tape playbacks in estimating Black Rail densities

    USGS Publications Warehouse

    Legare, M.; Eddleman, W.R.; Buckley, P.A.; Kelly, C.

    1999-01-01

    Tape playback is often the only efficient technique to survey for secretive birds. We measured the vocal responses and movements of radio-tagged black rails (Laterallus jamaicensis; 26 M, 17 F) to playback of vocalizations at 2 sites in Florida during the breeding seasons of 1992-95. We used coefficients from logistic regression equations to model probability of a response conditional to the birds' sex. nesting status, distance to playback source, and time of survey. With a probability of 0.811, nonnesting male black rails were ))lost likely to respond to playback, while nesting females were the least likely to respond (probability = 0.189). We used linear regression to determine daily, monthly and annual variation in response from weekly playback surveys along a fixed route during the breeding seasons of 1993-95. Significant sources of variation in the regression model were month (F3.48 = 3.89, P = 0.014), year (F2.48 = 9.37, P < 0.001), temperature (F1.48 = 5.44, P = 0.024), and month X year (F5.48 = 2.69, P = 0.031). The model was highly significant (P < 0.001) and explained 54% of the variation of mean response per survey period (r2 = 0.54). We combined response probability data from radiotagged black rails with playback survey route data to provide a density estimate of 0.25 birds/ha for the St. Johns National Wildlife Refuge. The relation between the number of black rails heard during playback surveys to the actual number present was influenced by a number of variables. We recommend caution when making density estimates from tape playback surveys

  19. Combined natural gamma ray spectral/litho-density measurements applied to complex lithologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirein, J.A.; Gardner, J.S.; Watson, J.T.

    1982-09-01

    Well log data has long been used to provide lithological descriptions of complex formations. Historically, most of the approaches used have been restrictive because they assumed fixed, known, and distinct lithologies for specified zones. The approach described in this paper attempts to alleviate this restriction by estimating the ''probability of a model'' for the models suggested as most likely by the reservoir geology. Lithological variables are simultaneously estimated from response equations for each model and combined in accordance with the probability of each respective model. The initial application of this approach has been the estimation of calcite, quartz, and dolomitemore » in the presence of clays, feldspars, anhydrite, or salt. Estimations were made by using natural gamma ray spectra, photoelectric effect, bulk density, and neutron porosity information. For each model, response equations and parameter selections are obtained from the thorium vs potassium crossplot and the apparent matrix density vs apparent volumetric photoelectric cross section crossplot. The thorium and potassium response equations are used to estimate the volumes of clay and feldspar. The apparent matrix density and volumetric cross section response equations can then be corrected for the presence of clay and feldspar. A test ensures that the clay correction lies within the limits for the assumed lithology model. Results are presented for varying lithologies. For one test well, 6,000 feet were processed in a single pass, without zoning and without adjusting more than one parameter pick. The program recognized sand, limestone, dolomite, clay, feldspar, anhydrite, and salt without analyst intervention.« less

  20. A Semi-Analytical Method for the PDFs of A Ship Rolling in Random Oblique Waves

    NASA Astrophysics Data System (ADS)

    Liu, Li-qin; Liu, Ya-liu; Xu, Wan-hai; Li, Yan; Tang, You-gang

    2018-03-01

    The PDFs (probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random oblique waves was established. The righting arm obtained by the numerical simulation was approximately fitted by an analytical function. The irregular waves were decomposed into two Gauss stationary random processes, and the CARMA (2, 1) model was used to fit the spectral density function of parametric and forced excitations. The stochastic energy envelope averaging method was used to solve the PDFs and the probability. The validity of the semi-analytical method was verified by the Monte Carlo method. The C11 ship was taken as an example, and the influences of the system parameters on the PDFs and probability were analyzed. The results show that the probability of ship rolling is affected by the characteristic wave height, wave length, and the heading angle. In order to provide proper advice for the ship's manoeuvring, the parametric excitations should be considered appropriately when the ship navigates in the oblique seas.

  1. Use of Atlantic Forest protected areas by free-ranging dogs: estimating abundance and persistence of use

    USGS Publications Warehouse

    Paschoal, Ana Maria; Massara, Rodrigo; Bailey, Larissa L.; Kendall, William L.; Doherty, Paul F.; Hirsch, Andre; Chiarello, Adriano; Paglia, Adriano

    2016-01-01

    Worldwide, domestic dogs (Canis familiaris) are one of the most common carnivoran species in natural areas and their populations are still increasing. Dogs have been shown to impact wildlife populations negatively, and their occurrence can alter the abundance, behavior, and activity patterns of native species. However, little is known about abundance and density of the free-ranging dogs that use protected areas. Here, we used camera trap data with an open-robust design mark–recapture model to estimate the number of dogs that used protected areas in Brazilian Atlantic Forest. We estimated the time period these dogs used the protected areas, and explored factors that influenced the probability of continued use (e.g., season, mammal richness, proportion of forest), while accounting for variation in detection probability. Dogs in the studied system were categorized as rural free-ranging, and their abundance varied widely across protected areas (0–73 individuals). Dogs used protected areas near human houses for longer periods (e.g., >50% of sampling occasions) compared to more distant areas. We found no evidence that their probability of continued use varied with season or mammal richness. Dog detection probability decreased linearly among occasions, possibly due to the owners confining their dogs after becoming aware of our presence. Comparing our estimates to those for native carnivoran, we found that dogs were three to 85 times more abundant than ocelots (Leopardus pardalis), two to 25 times more abundant than puma (Puma concolor), and approximately five times more abundant than the crab-eating fox (Cerdocyon thous). Combining camera trapping data with modern mark–recapture methods provides important demographic information on free-ranging dogs that can guide management strategies to directly control dogs' abundance and ranging behavior.

  2. Multi-Target State Extraction for the SMC-PHD Filter

    PubMed Central

    Si, Weijian; Wang, Liwei; Qu, Zhiyu

    2016-01-01

    The sequential Monte Carlo probability hypothesis density (SMC-PHD) filter has been demonstrated to be a favorable method for multi-target tracking. However, the time-varying target states need to be extracted from the particle approximation of the posterior PHD, which is difficult to implement due to the unknown relations between the large amount of particles and the PHD peaks representing potential target locations. To address this problem, a novel multi-target state extraction algorithm is proposed in this paper. By exploiting the information of measurements and particle likelihoods in the filtering stage, we propose a validation mechanism which aims at selecting effective measurements and particles corresponding to detected targets. Subsequently, the state estimates of the detected and undetected targets are performed separately: the former are obtained from the particle clusters directed by effective measurements, while the latter are obtained from the particles corresponding to undetected targets via clustering method. Simulation results demonstrate that the proposed method yields better estimation accuracy and reliability compared to existing methods. PMID:27322274

  3. Combining Breeding Bird Survey and distance sampling to estimate density of migrant and breeding birds

    USGS Publications Warehouse

    Somershoe, S.G.; Twedt, D.J.; Reid, B.

    2006-01-01

    We combined Breeding Bird Survey point count protocol and distance sampling to survey spring migrant and breeding birds in Vicksburg National Military Park on 33 days between March and June of 2003 and 2004. For 26 of 106 detected species, we used program DISTANCE to estimate detection probabilities and densities from 660 3-min point counts in which detections were recorded within four distance annuli. For most species, estimates of detection probability, and thereby density estimates, were improved through incorporation of the proportion of forest cover at point count locations as a covariate. Our results suggest Breeding Bird Surveys would benefit from the use of distance sampling and a quantitative characterization of habitat at point count locations. During spring migration, we estimated that the most common migrant species accounted for a population of 5000-9000 birds in Vicksburg National Military Park (636 ha). Species with average populations of 300 individuals during migration were: Blue-gray Gnatcatcher (Polioptila caerulea), Cedar Waxwing (Bombycilla cedrorum), White-eyed Vireo (Vireo griseus), Indigo Bunting (Passerina cyanea), and Ruby-crowned Kinglet (Regulus calendula). Of 56 species that bred in Vicksburg National Military Park, we estimated that the most common 18 species accounted for 8150 individuals. The six most abundant breeding species, Blue-gray Gnatcatcher, White-eyed Vireo, Summer Tanager (Piranga rubra), Northern Cardinal (Cardinalis cardinalis), Carolina Wren (Thryothorus ludovicianus), and Brown-headed Cowbird (Molothrus ater), accounted for 5800 individuals.

  4. Bounding the moment deficit rate on crustal faults using geodetic data: Methods

    DOE PAGES

    Maurer, Jeremy; Segall, Paul; Bradley, Andrew Michael

    2017-08-19

    Here, the geodetically derived interseismic moment deficit rate (MDR) provides a first-order constraint on earthquake potential and can play an important role in seismic hazard assessment, but quantifying uncertainty in MDR is a challenging problem that has not been fully addressed. We establish criteria for reliable MDR estimators, evaluate existing methods for determining the probability density of MDR, and propose and evaluate new methods. Geodetic measurements moderately far from the fault provide tighter constraints on MDR than those nearby. Previously used methods can fail catastrophically under predictable circumstances. The bootstrap method works well with strong data constraints on MDR, butmore » can be strongly biased when network geometry is poor. We propose two new methods: the Constrained Optimization Bounding Estimator (COBE) assumes uniform priors on slip rate (from geologic information) and MDR, and can be shown through synthetic tests to be a useful, albeit conservative estimator; the Constrained Optimization Bounding Linear Estimator (COBLE) is the corresponding linear estimator with Gaussian priors rather than point-wise bounds on slip rates. COBE matches COBLE with strong data constraints on MDR. We compare results from COBE and COBLE to previously published results for the interseismic MDR at Parkfield, on the San Andreas Fault, and find similar results; thus, the apparent discrepancy between MDR and the total moment release (seismic and afterslip) in the 2004 Parkfield earthquake remains.« less

  5. Bounding the moment deficit rate on crustal faults using geodetic data: Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, Jeremy; Segall, Paul; Bradley, Andrew Michael

    Here, the geodetically derived interseismic moment deficit rate (MDR) provides a first-order constraint on earthquake potential and can play an important role in seismic hazard assessment, but quantifying uncertainty in MDR is a challenging problem that has not been fully addressed. We establish criteria for reliable MDR estimators, evaluate existing methods for determining the probability density of MDR, and propose and evaluate new methods. Geodetic measurements moderately far from the fault provide tighter constraints on MDR than those nearby. Previously used methods can fail catastrophically under predictable circumstances. The bootstrap method works well with strong data constraints on MDR, butmore » can be strongly biased when network geometry is poor. We propose two new methods: the Constrained Optimization Bounding Estimator (COBE) assumes uniform priors on slip rate (from geologic information) and MDR, and can be shown through synthetic tests to be a useful, albeit conservative estimator; the Constrained Optimization Bounding Linear Estimator (COBLE) is the corresponding linear estimator with Gaussian priors rather than point-wise bounds on slip rates. COBE matches COBLE with strong data constraints on MDR. We compare results from COBE and COBLE to previously published results for the interseismic MDR at Parkfield, on the San Andreas Fault, and find similar results; thus, the apparent discrepancy between MDR and the total moment release (seismic and afterslip) in the 2004 Parkfield earthquake remains.« less

  6. Bayesian Threshold Estimation

    ERIC Educational Resources Information Center

    Gustafson, S. C.; Costello, C. S.; Like, E. C.; Pierce, S. J.; Shenoy, K. N.

    2009-01-01

    Bayesian estimation of a threshold time (hereafter simply threshold) for the receipt of impulse signals is accomplished given the following: 1) data, consisting of the number of impulses received in a time interval from zero to one and the time of the largest time impulse; 2) a model, consisting of a uniform probability density of impulse time…

  7. Aerosol-type retrieval and uncertainty quantification from OMI data

    NASA Astrophysics Data System (ADS)

    Kauppi, Anu; Kolmonen, Pekka; Laine, Marko; Tamminen, Johanna

    2017-11-01

    We discuss uncertainty quantification for aerosol-type selection in satellite-based atmospheric aerosol retrieval. The retrieval procedure uses precalculated aerosol microphysical models stored in look-up tables (LUTs) and top-of-atmosphere (TOA) spectral reflectance measurements to solve the aerosol characteristics. The forward model approximations cause systematic differences between the modelled and observed reflectance. Acknowledging this model discrepancy as a source of uncertainty allows us to produce more realistic uncertainty estimates and assists the selection of the most appropriate LUTs for each individual retrieval.This paper focuses on the aerosol microphysical model selection and characterisation of uncertainty in the retrieved aerosol type and aerosol optical depth (AOD). The concept of model evidence is used as a tool for model comparison. The method is based on Bayesian inference approach, in which all uncertainties are described as a posterior probability distribution. When there is no single best-matching aerosol microphysical model, we use a statistical technique based on Bayesian model averaging to combine AOD posterior probability densities of the best-fitting models to obtain an averaged AOD estimate. We also determine the shared evidence of the best-matching models of a certain main aerosol type in order to quantify how plausible it is that it represents the underlying atmospheric aerosol conditions.The developed method is applied to Ozone Monitoring Instrument (OMI) measurements using a multiwavelength approach for retrieving the aerosol type and AOD estimate with uncertainty quantification for cloud-free over-land pixels. Several larger pixel set areas were studied in order to investigate the robustness of the developed method. We evaluated the retrieved AOD by comparison with ground-based measurements at example sites. We found that the uncertainty of AOD expressed by posterior probability distribution reflects the difficulty in model selection. The posterior probability distribution can provide a comprehensive characterisation of the uncertainty in this kind of problem for aerosol-type selection. As a result, the proposed method can account for the model error and also include the model selection uncertainty in the total uncertainty budget.

  8. Segmentation of the Speaker's Face Region with Audiovisual Correlation

    NASA Astrophysics Data System (ADS)

    Liu, Yuyu; Sato, Yoichi

    The ability to find the speaker's face region in a video is useful for various applications. In this work, we develop a novel technique to find this region within different time windows, which is robust against the changes of view, scale, and background. The main thrust of our technique is to integrate audiovisual correlation analysis into a video segmentation framework. We analyze the audiovisual correlation locally by computing quadratic mutual information between our audiovisual features. The computation of quadratic mutual information is based on the probability density functions estimated by kernel density estimation with adaptive kernel bandwidth. The results of this audiovisual correlation analysis are incorporated into graph cut-based video segmentation to resolve a globally optimum extraction of the speaker's face region. The setting of any heuristic threshold in this segmentation is avoided by learning the correlation distributions of speaker and background by expectation maximization. Experimental results demonstrate that our method can detect the speaker's face region accurately and robustly for different views, scales, and backgrounds.

  9. Measurement Model Nonlinearity in Estimation of Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Majji, Manoranjan; Junkins, J. L.; Turner, J. D.

    2012-06-01

    The role of nonlinearity of the measurement model and its interactions with the uncertainty of measurements and geometry of the problem is studied in this paper. An examination of the transformations of the probability density function in various coordinate systems is presented for several astrodynamics applications. Smooth and analytic nonlinear functions are considered for the studies on the exact transformation of uncertainty. Special emphasis is given to understanding the role of change of variables in the calculus of random variables. The transformation of probability density functions through mappings is shown to provide insight in to understanding the evolution of uncertainty in nonlinear systems. Examples are presented to highlight salient aspects of the discussion. A sequential orbit determination problem is analyzed, where the transformation formula provides useful insights for making the choice of coordinates for estimation of dynamic systems.

  10. Automated segmentation of linear time-frequency representations of marine-mammal sounds.

    PubMed

    Dadouchi, Florian; Gervaise, Cedric; Ioana, Cornel; Huillery, Julien; Mars, Jérôme I

    2013-09-01

    Many marine mammals produce highly nonlinear frequency modulations. Determining the time-frequency support of these sounds offers various applications, which include recognition, localization, and density estimation. This study introduces a low parameterized automated spectrogram segmentation method that is based on a theoretical probabilistic framework. In the first step, the background noise in the spectrogram is fitted with a Chi-squared distribution and thresholded using a Neyman-Pearson approach. In the second step, the number of false detections in time-frequency regions is modeled as a binomial distribution, and then through a Neyman-Pearson strategy, the time-frequency bins are gathered into regions of interest. The proposed method is validated on real data of large sequences of whistles from common dolphins, collected in the Bay of Biscay (France). The proposed method is also compared with two alternative approaches: the first is smoothing and thresholding of the spectrogram; the second is thresholding of the spectrogram followed by the use of morphological operators to gather the time-frequency bins and to remove false positives. This method is shown to increase the probability of detection for the same probability of false alarms.

  11. An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia.

    PubMed

    Kidney, Darren; Rawson, Benjamin M; Borchers, David L; Stevenson, Ben C; Marques, Tiago A; Thomas, Len

    2016-01-01

    Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers' estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method an attractive option in many situations where populations can be surveyed acoustically by humans.

  12. Sequential bearings-only-tracking initiation with particle filtering method.

    PubMed

    Liu, Bin; Hao, Chengpeng

    2013-01-01

    The tracking initiation problem is examined in the context of autonomous bearings-only-tracking (BOT) of a single appearing/disappearing target in the presence of clutter measurements. In general, this problem suffers from a combinatorial explosion in the number of potential tracks resulted from the uncertainty in the linkage between the target and the measurement (a.k.a the data association problem). In addition, the nonlinear measurements lead to a non-Gaussian posterior probability density function (pdf) in the optimal Bayesian sequential estimation framework. The consequence of this nonlinear/non-Gaussian context is the absence of a closed-form solution. This paper models the linkage uncertainty and the nonlinear/non-Gaussian estimation problem jointly with solid Bayesian formalism. A particle filtering (PF) algorithm is derived for estimating the model's parameters in a sequential manner. Numerical results show that the proposed solution provides a significant benefit over the most commonly used methods, IPDA and IMMPDA. The posterior Cramér-Rao bounds are also involved for performance evaluation.

  13. Estimating site occupancy and detection probability parameters for meso- and large mammals in a coastal eosystem

    USGS Publications Warehouse

    O'Connell, Allan F.; Talancy, Neil W.; Bailey, Larissa L.; Sauer, John R.; Cook, Robert; Gilbert, Andrew T.

    2006-01-01

    Large-scale, multispecies monitoring programs are widely used to assess changes in wildlife populations but they often assume constant detectability when documenting species occurrence. This assumption is rarely met in practice because animal populations vary across time and space. As a result, detectability of a species can be influenced by a number of physical, biological, or anthropogenic factors (e.g., weather, seasonality, topography, biological rhythms, sampling methods). To evaluate some of these influences, we estimated site occupancy rates using species-specific detection probabilities for meso- and large terrestrial mammal species on Cape Cod, Massachusetts, USA. We used model selection to assess the influence of different sampling methods and major environmental factors on our ability to detect individual species. Remote cameras detected the most species (9), followed by cubby boxes (7) and hair traps (4) over a 13-month period. Estimated site occupancy rates were similar among sampling methods for most species when detection probabilities exceeded 0.15, but we question estimates obtained from methods with detection probabilities between 0.05 and 0.15, and we consider methods with lower probabilities unacceptable for occupancy estimation and inference. Estimated detection probabilities can be used to accommodate variation in sampling methods, which allows for comparison of monitoring programs using different protocols. Vegetation and seasonality produced species-specific differences in detectability and occupancy, but differences were not consistent within or among species, which suggests that our results should be considered in the context of local habitat features and life history traits for the target species. We believe that site occupancy is a useful state variable and suggest that monitoring programs for mammals using occupancy data consider detectability prior to making inferences about species distributions or population change.

  14. Fisher classifier and its probability of error estimation

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    Computationally efficient expressions are derived for estimating the probability of error using the leave-one-out method. The optimal threshold for the classification of patterns projected onto Fisher's direction is derived. A simple generalization of the Fisher classifier to multiple classes is presented. Computational expressions are developed for estimating the probability of error of the multiclass Fisher classifier.

  15. Probability Distribution Extraction from TEC Estimates based on Kernel Density Estimation

    NASA Astrophysics Data System (ADS)

    Demir, Uygar; Toker, Cenk; Çenet, Duygu

    2016-07-01

    Statistical analysis of the ionosphere, specifically the Total Electron Content (TEC), may reveal important information about its temporal and spatial characteristics. One of the core metrics that express the statistical properties of a stochastic process is its Probability Density Function (pdf). Furthermore, statistical parameters such as mean, variance and kurtosis, which can be derived from the pdf, may provide information about the spatial uniformity or clustering of the electron content. For example, the variance differentiates between a quiet ionosphere and a disturbed one, whereas kurtosis differentiates between a geomagnetic storm and an earthquake. Therefore, valuable information about the state of the ionosphere (and the natural phenomena that cause the disturbance) can be obtained by looking at the statistical parameters. In the literature, there are publications which try to fit the histogram of TEC estimates to some well-known pdf.s such as Gaussian, Exponential, etc. However, constraining a histogram to fit to a function with a fixed shape will increase estimation error, and all the information extracted from such pdf will continue to contain this error. In such techniques, it is highly likely to observe some artificial characteristics in the estimated pdf which is not present in the original data. In the present study, we use the Kernel Density Estimation (KDE) technique to estimate the pdf of the TEC. KDE is a non-parametric approach which does not impose a specific form on the TEC. As a result, better pdf estimates that almost perfectly fit to the observed TEC values can be obtained as compared to the techniques mentioned above. KDE is particularly good at representing the tail probabilities, and outliers. We also calculate the mean, variance and kurtosis of the measured TEC values. The technique is applied to the ionosphere over Turkey where the TEC values are estimated from the GNSS measurement from the TNPGN-Active (Turkish National Permanent GNSS Network) network. This study is supported by by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  16. Population density approach for discrete mRNA distributions in generalized switching models for stochastic gene expression.

    PubMed

    Stinchcombe, Adam R; Peskin, Charles S; Tranchina, Daniel

    2012-06-01

    We present a generalization of a population density approach for modeling and analysis of stochastic gene expression. In the model, the gene of interest fluctuates stochastically between an inactive state, in which transcription cannot occur, and an active state, in which discrete transcription events occur; and the individual mRNA molecules are degraded stochastically in an independent manner. This sort of model in simplest form with exponential dwell times has been used to explain experimental estimates of the discrete distribution of random mRNA copy number. In our generalization, the random dwell times in the inactive and active states, T_{0} and T_{1}, respectively, are independent random variables drawn from any specified distributions. Consequently, the probability per unit time of switching out of a state depends on the time since entering that state. Our method exploits a connection between the fully discrete random process and a related continuous process. We present numerical methods for computing steady-state mRNA distributions and an analytical derivation of the mRNA autocovariance function. We find that empirical estimates of the steady-state mRNA probability mass function from Monte Carlo simulations of laboratory data do not allow one to distinguish between underlying models with exponential and nonexponential dwell times in some relevant parameter regimes. However, in these parameter regimes and where the autocovariance function has negative lobes, the autocovariance function disambiguates the two types of models. Our results strongly suggest that temporal data beyond the autocovariance function is required in general to characterize gene switching.

  17. Density functional study for crystalline structures and electronic properties of Si1- x Sn x binary alloys

    NASA Astrophysics Data System (ADS)

    Nagae, Yuki; Kurosawa, Masashi; Shibayama, Shigehisa; Araidai, Masaaki; Sakashita, Mitsuo; Nakatsuka, Osamu; Shiraishi, Kenji; Zaima, Shigeaki

    2016-08-01

    We have carried out density functional theory (DFT) calculation for Si1- x Sn x alloy and investigated the effect of the displacement of Si and Sn atoms with strain relaxation on the lattice constant and E- k dispersion. We calculated the formation probabilities for all atomic configurations of Si1- x Sn x according to the Boltzmann distribution. The average lattice constant and E- k dispersion were weighted by the formation probability of each configuration of Si1- x Sn x . We estimated the displacement of Si and Sn atoms from the initial tetrahedral site in the Si1- x Sn x unit cell considering structural relaxation under hydrostatic pressure, and we found that the breaking of the degenerated electronic levels of the valence band edge could be caused by the breaking of the tetrahedral symmetry. We also calculated the E- k dispersion of the Si1- x Sn x alloy by the DFT+U method and found that a Sn content above 50% would be required for the indirect-direct transition.

  18. Earth resources data analysis program, phase 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The efforts and findings of the Earth Resources Data Analysis Program are summarized. Results of a detailed study of the needs of EOD with respect to an applications development system (ADS) for the analysis of remotely sensed data, including an evaluation of four existing systems with respect to these needs are described. Recommendations as to possible courses for EOD to follow to obtain a viable ADS are presented. Algorithmic development comprised of several subtasks is discussed. These subtasks include the following: (1) two algorithms for multivariate density estimation; (2) a data smoothing algorithm; (3) a method for optimally estimating prior probabilities of unclassified data; and (4) further applications of the modified Cholesky decomposition in various calculations. Little effort was expended on task 3, however, two reports were reviewed.

  19. Task-oriented comparison of power spectral density estimation methods for quantifying acoustic attenuation in diagnostic ultrasound using a reference phantom method.

    PubMed

    Rosado-Mendez, Ivan M; Nam, Kibo; Hall, Timothy J; Zagzebski, James A

    2013-07-01

    Reported here is a phantom-based comparison of methods for determining the power spectral density (PSD) of ultrasound backscattered signals. Those power spectral density values are then used to estimate parameters describing α(f), the frequency dependence of the acoustic attenuation coefficient. Phantoms were scanned with a clinical system equipped with a research interface to obtain radiofrequency echo data. Attenuation, modeled as a power law α(f)= α0 f (β), was estimated using a reference phantom method. The power spectral density was estimated using the short-time Fourier transform (STFT), Welch's periodogram, and Thomson's multitaper technique, and performance was analyzed when limiting the size of the parameter-estimation region. Errors were quantified by the bias and standard deviation of the α0 and β estimates, and by the overall power-law fit error (FE). For parameter estimation regions larger than ~34 pulse lengths (~1 cm for this experiment), an overall power-law FE of 4% was achieved with all spectral estimation methods. With smaller parameter estimation regions as in parametric image formation, the bias and standard deviation of the α0 and β estimates depended on the size of the parameter estimation region. Here, the multitaper method reduced the standard deviation of the α0 and β estimates compared with those using the other techniques. The results provide guidance for choosing methods for estimating the power spectral density in quantitative ultrasound methods.

  20. Genetic Algorithm-Based Motion Estimation Method using Orientations and EMGs for Robot Controls

    PubMed Central

    Chae, Jeongsook; Jin, Yong; Sung, Yunsick

    2018-01-01

    Demand for interactive wearable devices is rapidly increasing with the development of smart devices. To accurately utilize wearable devices for remote robot controls, limited data should be analyzed and utilized efficiently. For example, the motions by a wearable device, called Myo device, can be estimated by measuring its orientation, and calculating a Bayesian probability based on these orientation data. Given that Myo device can measure various types of data, the accuracy of its motion estimation can be increased by utilizing these additional types of data. This paper proposes a motion estimation method based on weighted Bayesian probability and concurrently measured data, orientations and electromyograms (EMG). The most probable motion among estimated is treated as a final estimated motion. Thus, recognition accuracy can be improved when compared to the traditional methods that employ only a single type of data. In our experiments, seven subjects perform five predefined motions. When orientation is measured by the traditional methods, the sum of the motion estimation errors is 37.3%; likewise, when only EMG data are used, the error in motion estimation by the proposed method was also 37.3%. The proposed combined method has an error of 25%. Therefore, the proposed method reduces motion estimation errors by 12%. PMID:29324641

  1. Comparing methods to estimate Reineke’s maximum size-density relationship species boundary line slope

    Treesearch

    Curtis L. VanderSchaaf; Harold E. Burkhart

    2010-01-01

    Maximum size-density relationships (MSDR) provide natural resource managers useful information about the relationship between tree density and average tree size. Obtaining a valid estimate of how maximum tree density changes as average tree size changes is necessary to accurately describe these relationships. This paper examines three methods to estimate the slope of...

  2. Influence of distributed delays on the dynamics of a generalized immune system cancerous cells interactions model

    NASA Astrophysics Data System (ADS)

    Piotrowska, M. J.; Bodnar, M.

    2018-01-01

    We present a generalisation of the mathematical models describing the interactions between the immune system and tumour cells which takes into account distributed time delays. For the analytical study we do not assume any particular form of the stimulus function describing the immune system reaction to presence of tumour cells but we only postulate its general properties. We analyse basic mathematical properties of the considered model such as existence and uniqueness of the solutions. Next, we discuss the existence of the stationary solutions and analytically investigate their stability depending on the forms of considered probability densities that is: Erlang, triangular and uniform probability densities separated or not from zero. Particular instability results are obtained for a general type of probability densities. Our results are compared with those for the model with discrete delays know from the literature. In addition, for each considered type of probability density, the model is fitted to the experimental data for the mice B-cell lymphoma showing mean square errors at the same comparable level. For estimated sets of parameters we discuss possibility of stabilisation of the tumour dormant steady state. Instability of this steady state results in uncontrolled tumour growth. In order to perform numerical simulation, following the idea of linear chain trick, we derive numerical procedures that allow us to solve systems with considered probability densities using standard algorithm for ordinary differential equations or differential equations with discrete delays.

  3. A composition joint PDF method for the modeling of spray flames

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1995-01-01

    This viewgraph presentation discusses an extension of the probability density function (PDF) method to the modeling of spray flames to evaluate the limitations and capabilities of this method in the modeling of gas-turbine combustor flows. The comparisons show that the general features of the flowfield are correctly predicted by the present solution procedure. The present solution appears to provide a better representation of the temperature field, particularly, in the reverse-velocity zone. The overpredictions in the centerline velocity could be attributed to the following reasons: (1) the use of k-epsilon turbulence model is known to be less precise in highly swirling flows and (2) the swirl number used here is reported to be estimated rather than measured.

  4. The Effects of Phonotactic Probability and Neighborhood Density on Adults' Word Learning in Noisy Conditions

    PubMed Central

    Storkel, Holly L.; Lee, Jaehoon; Cox, Casey

    2016-01-01

    Purpose Noisy conditions make auditory processing difficult. This study explores whether noisy conditions influence the effects of phonotactic probability (the likelihood of occurrence of a sound sequence) and neighborhood density (phonological similarity among words) on adults' word learning. Method Fifty-eight adults learned nonwords varying in phonotactic probability and neighborhood density in either an unfavorable (0-dB signal-to-noise ratio [SNR]) or a favorable (+8-dB SNR) listening condition. Word learning was assessed using a picture naming task by scoring the proportion of phonemes named correctly. Results The unfavorable 0-dB SNR condition showed a significant interaction between phonotactic probability and neighborhood density in the absence of main effects. In particular, adults learned more words when phonotactic probability and neighborhood density were both low or both high. The +8-dB SNR condition did not show this interaction. These results are inconsistent with those from a prior adult word learning study conducted under quiet listening conditions that showed main effects of word characteristics. Conclusions As the listening condition worsens, adult word learning benefits from a convergence of phonotactic probability and neighborhood density. Clinical implications are discussed for potential populations who experience difficulty with auditory perception or processing, making them more vulnerable to noise. PMID:27788276

  5. Separation of components from a scale mixture of Gaussian white noises

    NASA Astrophysics Data System (ADS)

    Vamoş, Călin; Crăciun, Maria

    2010-05-01

    The time evolution of a physical quantity associated with a thermodynamic system whose equilibrium fluctuations are modulated in amplitude by a slowly varying phenomenon can be modeled as the product of a Gaussian white noise {Zt} and a stochastic process with strictly positive values {Vt} referred to as volatility. The probability density function (pdf) of the process Xt=VtZt is a scale mixture of Gaussian white noises expressed as a time average of Gaussian distributions weighted by the pdf of the volatility. The separation of the two components of {Xt} can be achieved by imposing the condition that the absolute values of the estimated white noise be uncorrelated. We apply this method to the time series of the returns of the daily S&P500 index, which has also been analyzed by means of the superstatistics method that imposes the condition that the estimated white noise be Gaussian. The advantage of our method is that this financial time series is processed without partitioning or removal of the extreme events and the estimated white noise becomes almost Gaussian only as result of the uncorrelation condition.

  6. The effects of vent location, event scale and time forecasts on pyroclastic density current hazard maps at Campi Flegrei caldera (Italy)

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Andrea; Neri, Augusto; Bisson, Marina; Esposti Ongaro, Tomaso; Flandoli, Franco; Isaia, Roberto; Rosi, Mauro; Vitale, Stefano

    2017-09-01

    This study presents a new method for producing long-term hazard maps for pyroclastic density currents (PDC) originating at Campi Flegrei caldera. Such method is based on a doubly stochastic approach and is able to combine the uncertainty assessments on the spatial location of the volcanic vent, the size of the flow and the expected time of such an event. The results are obtained by using a Monte Carlo approach and adopting a simplified invasion model based on the box model integral approximation. Temporal assessments are modelled through a Cox-type process including self-excitement effects, based on the eruptive record of the last 15 kyr. Mean and percentile maps of PDC invasion probability are produced, exploring their sensitivity to some sources of uncertainty and to the effects of the dependence between PDC scales and the caldera sector where they originated. Conditional maps representative of PDC originating inside limited zones of the caldera, or of PDC with a limited range of scales are also produced. Finally, the effect of assuming different time windows for the hazard estimates is explored, also including the potential occurrence of a sequence of multiple events. Assuming that the last eruption of Monte Nuovo (A.D. 1538) marked the beginning of a new epoch of activity similar to the previous ones, results of the statistical analysis indicate a mean probability of PDC invasion above 5% in the next 50 years on almost the entire caldera (with a probability peak of 25% in the central part of the caldera). In contrast, probability values reduce by a factor of about 3 if the entire eruptive record is considered over the last 15 kyr, i.e. including both eruptive epochs and quiescent periods.

  7. The SDSS-XDQSO quasar targeting catalog

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Hennawi, J. F.; Hogg, D. W.; Myers, A. D.; Ross, N. P.

    2011-01-01

    We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the SDSS catalog, even at medium redshifts (2.5 < z < 3). We build models of the distributions of stars and quasars in flux space down to the flux limit by applying the extreme-deconvolution method (XD) to estimate the underlying density. We properly convolve this density with the flux uncertainties when evaluating the probability that an object is a quasar. This results in a targeting algorithm that is more principled, more efficient, and faster than other similar methods. We apply the algorithm to derive low- (z < 2.2), medium- (2.2 <= z 3.5) quasar probabilities for all 160,904,060 point-sources with dereddened i-and magnitude between 17.75 and 22.45 mag in SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar selection technique at low redshift, and out-performs all other flux-based methods for selecting the medium-redshift quasars of our primary interest. Research supported by NASA (grant NNX08AJ48G) and the NSF (grant AST-0908357).

  8. Modeling error PDF optimization based wavelet neural network modeling of dynamic system and its application in blast furnace ironmaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ping; Wang, Chenyu; Li, Mingjie

    In general, the modeling errors of dynamic system model are a set of random variables. The traditional performance index of modeling such as means square error (MSE) and root means square error (RMSE) can not fully express the connotation of modeling errors with stochastic characteristics both in the dimension of time domain and space domain. Therefore, the probability density function (PDF) is introduced to completely describe the modeling errors in both time scales and space scales. Based on it, a novel wavelet neural network (WNN) modeling method is proposed by minimizing the two-dimensional (2D) PDF shaping of modeling errors. First,more » the modeling error PDF by the tradional WNN is estimated using data-driven kernel density estimation (KDE) technique. Then, the quadratic sum of 2D deviation between the modeling error PDF and the target PDF is utilized as performance index to optimize the WNN model parameters by gradient descent method. Since the WNN has strong nonlinear approximation and adaptive capability, and all the parameters are well optimized by the proposed method, the developed WNN model can make the modeling error PDF track the target PDF, eventually. Simulation example and application in a blast furnace ironmaking process show that the proposed method has a higher modeling precision and better generalization ability compared with the conventional WNN modeling based on MSE criteria. Furthermore, the proposed method has more desirable estimation for modeling error PDF that approximates to a Gaussian distribution whose shape is high and narrow.« less

  9. Modeling error PDF optimization based wavelet neural network modeling of dynamic system and its application in blast furnace ironmaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ping; Wang, Chenyu; Li, Mingjie

    In general, the modeling errors of dynamic system model are a set of random variables. The traditional performance index of modeling such as means square error (MSE) and root means square error (RMSE) cannot fully express the connotation of modeling errors with stochastic characteristics both in the dimension of time domain and space domain. Therefore, the probability density function (PDF) is introduced to completely describe the modeling errors in both time scales and space scales. Based on it, a novel wavelet neural network (WNN) modeling method is proposed by minimizing the two-dimensional (2D) PDF shaping of modeling errors. First, themore » modeling error PDF by the traditional WNN is estimated using data-driven kernel density estimation (KDE) technique. Then, the quadratic sum of 2D deviation between the modeling error PDF and the target PDF is utilized as performance index to optimize the WNN model parameters by gradient descent method. Since the WNN has strong nonlinear approximation and adaptive capability, and all the parameters are well optimized by the proposed method, the developed WNN model can make the modeling error PDF track the target PDF, eventually. Simulation example and application in a blast furnace ironmaking process show that the proposed method has a higher modeling precision and better generalization ability compared with the conventional WNN modeling based on MSE criteria. However, the proposed method has more desirable estimation for modeling error PDF that approximates to a Gaussian distribution whose shape is high and narrow.« less

  10. Modeling error PDF optimization based wavelet neural network modeling of dynamic system and its application in blast furnace ironmaking

    DOE PAGES

    Zhou, Ping; Wang, Chenyu; Li, Mingjie; ...

    2018-01-31

    In general, the modeling errors of dynamic system model are a set of random variables. The traditional performance index of modeling such as means square error (MSE) and root means square error (RMSE) cannot fully express the connotation of modeling errors with stochastic characteristics both in the dimension of time domain and space domain. Therefore, the probability density function (PDF) is introduced to completely describe the modeling errors in both time scales and space scales. Based on it, a novel wavelet neural network (WNN) modeling method is proposed by minimizing the two-dimensional (2D) PDF shaping of modeling errors. First, themore » modeling error PDF by the traditional WNN is estimated using data-driven kernel density estimation (KDE) technique. Then, the quadratic sum of 2D deviation between the modeling error PDF and the target PDF is utilized as performance index to optimize the WNN model parameters by gradient descent method. Since the WNN has strong nonlinear approximation and adaptive capability, and all the parameters are well optimized by the proposed method, the developed WNN model can make the modeling error PDF track the target PDF, eventually. Simulation example and application in a blast furnace ironmaking process show that the proposed method has a higher modeling precision and better generalization ability compared with the conventional WNN modeling based on MSE criteria. However, the proposed method has more desirable estimation for modeling error PDF that approximates to a Gaussian distribution whose shape is high and narrow.« less

  11. On the physical nature of globular cluster candidates in the Milky Way bulge

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2018-06-01

    We present results from 2MASS JKs photometry on the physical reality of recently reported globular cluster (GC) candidates in the Milky Way (MW) bulge. We relied our analysis on photometric membership probabilities that allowed us to distinguish real stellar aggregates from the composite field star population. When building colour-magnitude diagrams and stellar density maps for stars at different membership probability levels, the genuine GC candidate populations are clearly highlighted. We then used the tip of the red giant branch (RGB) as distance estimator, resulting in heliocentric distances that place many of the objects in regions near the MW bulge, where no GC had been previously recognized. Some few GC candidates resulted to be MW halo/disc objects. Metallicities estimated from the standard RGB method are in agreement with the values expected according to the position of the GC candidates in the Galaxy. Finally, we derived, for the first time, their structural parameters. We found that the studied objects have core, half-light, and tidal radii in the ranges spanned by the population of known MW GCs. Their internal dynamical evolutionary stages will be described properly when their masses are estimated.

  12. Occupancy as a surrogate for abundance estimation

    USGS Publications Warehouse

    MacKenzie, D.I.; Nichols, J.D.

    2004-01-01

    In many monitoring programmes it may be prohibitively expensive to estimate the actual abundance of a bird species in a defined area, particularly at large spatial scales, or where birds occur at very low densities. Often it may be appropriate to consider the proportion of area occupied by the species as an alternative state variable. However, as with abundance estimation, issues of detectability must be taken into account in order to make accurate inferences: the non?detection of the species does not imply the species is genuinely absent. Here we review some recent modelling developments that permit unbiased estimation of the proportion of area occupied, colonization and local extinction probabilities. These methods allow for unequal sampling effort and enable covariate information on sampling locations to be incorporated. We also describe how these models could be extended to incorporate information from marked individuals, which would enable finer questions of population dynamics (such as turnover rate of nest sites by specific breeding pairs) to be addressed. We believe these models may be applicable to a wide range of bird species and may be useful for investigating various questions of ecological interest. For example, with respect to habitat quality, we might predict that a species is more likely to have higher local extinction probabilities, or higher turnover rates of specific breeding pairs, in poor quality habitats.

  13. Estimating site occupancy rates for aquatic plants using spatial sub-sampling designs when detection probabilities are less than one

    USGS Publications Warehouse

    Nielson, Ryan M.; Gray, Brian R.; McDonald, Lyman L.; Heglund, Patricia J.

    2011-01-01

    Estimation of site occupancy rates when detection probabilities are <1 is well established in wildlife science. Data from multiple visits to a sample of sites are used to estimate detection probabilities and the proportion of sites occupied by focal species. In this article we describe how site occupancy methods can be applied to estimate occupancy rates of plants and other sessile organisms. We illustrate this approach and the pitfalls of ignoring incomplete detection using spatial data for 2 aquatic vascular plants collected under the Upper Mississippi River's Long Term Resource Monitoring Program (LTRMP). Site occupancy models considered include: a naïve model that ignores incomplete detection, a simple site occupancy model assuming a constant occupancy rate and a constant probability of detection across sites, several models that allow site occupancy rates and probabilities of detection to vary with habitat characteristics, and mixture models that allow for unexplained variation in detection probabilities. We used information theoretic methods to rank competing models and bootstrapping to evaluate the goodness-of-fit of the final models. Results of our analysis confirm that ignoring incomplete detection can result in biased estimates of occupancy rates. Estimates of site occupancy rates for 2 aquatic plant species were 19–36% higher compared to naive estimates that ignored probabilities of detection <1. Simulations indicate that final models have little bias when 50 or more sites are sampled, and little gains in precision could be expected for sample sizes >300. We recommend applying site occupancy methods for monitoring presence of aquatic species.

  14. Development and application of a probability distribution retrieval scheme to the remote sensing of clouds and precipitation

    NASA Astrophysics Data System (ADS)

    McKague, Darren Shawn

    2001-12-01

    The statistical properties of clouds and precipitation on a global scale are important to our understanding of climate. Inversion methods exist to retrieve the needed cloud and precipitation properties from satellite data pixel-by-pixel that can then be summarized over large data sets to obtain the desired statistics. These methods can be quite computationally expensive, and typically don't provide errors on the statistics. A new method is developed to directly retrieve probability distributions of parameters from the distribution of measured radiances. The method also provides estimates of the errors on the retrieved distributions. The method can retrieve joint distributions of parameters that allows for the study of the connection between parameters. A forward radiative transfer model creates a mapping from retrieval parameter space to radiance space. A Monte Carlo procedure uses the mapping to transform probability density from the observed radiance histogram to a two- dimensional retrieval property probability distribution function (PDF). An estimate of the uncertainty in the retrieved PDF is calculated from random realizations of the radiance to retrieval parameter PDF transformation given the uncertainty of the observed radiances, the radiance PDF, the forward radiative transfer, the finite number of prior state vectors, and the non-unique mapping to retrieval parameter space. The retrieval method is also applied to the remote sensing of precipitation from SSM/I microwave data. A method of stochastically generating hydrometeor fields based on the fields from a numerical cloud model is used to create the precipitation parameter radiance space transformation. The impact of vertical and horizontal variability within the hydrometeor fields has a significant impact on algorithm performance. Beamfilling factors are computed from the simulated hydrometeor fields. The beamfilling factors vary quite a bit depending upon the horizontal structure of the rain. The algorithm is applied to SSM/I images from the eastern tropical Pacific and is compared to PDFs of rain rate computed using pixel-by-pixel retrievals from Wilheit and from Liu and Curry. Differences exist between the three methods, but good general agreement is seen between the PDF retrieval algorithm and the algorithm of Liu and Curry. (Abstract shortened by UMI.)

  15. On Orbital Elements of Extrasolar Planetary Candidates and Spectroscopic Binaries

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Black, D. C.

    2001-01-01

    We estimate probability densities of orbital elements, periods, and eccentricities, for the population of extrasolar planetary candidates (EPC) and, separately, for the population of spectroscopic binaries (SB) with solar-type primaries. We construct empirical cumulative distribution functions (CDFs) in order to infer probability distribution functions (PDFs) for orbital periods and eccentricities. We also derive a joint probability density for period-eccentricity pairs in each population. Comparison of respective distributions reveals that in all cases EPC and SB populations are, in the context of orbital elements, indistinguishable from each other to a high degree of statistical significance. Probability densities of orbital periods in both populations have P(exp -1) functional form, whereas the PDFs of eccentricities can he best characterized as a Gaussian with a mean of about 0.35 and standard deviation of about 0.2 turning into a flat distribution at small values of eccentricity. These remarkable similarities between EPC and SB must be taken into account by theories aimed at explaining the origin of extrasolar planetary candidates, and constitute an important clue us to their ultimate nature.

  16. Bayesian averaging over Decision Tree models for trauma severity scoring.

    PubMed

    Schetinin, V; Jakaite, L; Krzanowski, W

    2018-01-01

    Health care practitioners analyse possible risks of misleading decisions and need to estimate and quantify uncertainty in predictions. We have examined the "gold" standard of screening a patient's conditions for predicting survival probability, based on logistic regression modelling, which is used in trauma care for clinical purposes and quality audit. This methodology is based on theoretical assumptions about data and uncertainties. Models induced within such an approach have exposed a number of problems, providing unexplained fluctuation of predicted survival and low accuracy of estimating uncertainty intervals within which predictions are made. Bayesian method, which in theory is capable of providing accurate predictions and uncertainty estimates, has been adopted in our study using Decision Tree models. Our approach has been tested on a large set of patients registered in the US National Trauma Data Bank and has outperformed the standard method in terms of prediction accuracy, thereby providing practitioners with accurate estimates of the predictive posterior densities of interest that are required for making risk-aware decisions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR)

    NASA Astrophysics Data System (ADS)

    Peters, Christina; Malz, Alex; Hlozek, Renée

    2018-01-01

    The Bayesian Estimation Applied to Multiple Species (BEAMS) framework employs probabilistic supernova type classifications to do photometric SN cosmology. This work extends BEAMS to replace high-confidence spectroscopic redshifts with photometric redshift probability density functions, a capability that will be essential in the era the Large Synoptic Survey Telescope and other next-generation photometric surveys where it will not be possible to perform spectroscopic follow up on every SN. We present the Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR) Bayesian hierarchical model for constraining the cosmological parameters from photometric lightcurves and host galaxy photometry, which includes selection effects and is extensible to uncertainty in the redshift-dependent supernova type proportions. We create a pair of realistic mock catalogs of joint posteriors over supernova type, redshift, and distance modulus informed by photometric supernova lightcurves and over redshift from simulated host galaxy photometry. We perform inference under our model to obtain a joint posterior probability distribution over the cosmological parameters and compare our results with other methods, namely: a spectroscopic subset, a subset of high probability photometrically classified supernovae, and reducing the photometric redshift probability to a single measurement and error bar.

  18. Physics-based, Bayesian sequential detection method and system for radioactive contraband

    DOEpatents

    Candy, James V; Axelrod, Michael C; Breitfeller, Eric F; Chambers, David H; Guidry, Brian L; Manatt, Douglas R; Meyer, Alan W; Sale, Kenneth E

    2014-03-18

    A distributed sequential method and system for detecting and identifying radioactive contraband from highly uncertain (noisy) low-count, radionuclide measurements, i.e. an event mode sequence (EMS), using a statistical approach based on Bayesian inference and physics-model-based signal processing based on the representation of a radionuclide as a monoenergetic decomposition of monoenergetic sources. For a given photon event of the EMS, the appropriate monoenergy processing channel is determined using a confidence interval condition-based discriminator for the energy amplitude and interarrival time and parameter estimates are used to update a measured probability density function estimate for a target radionuclide. A sequential likelihood ratio test is then used to determine one of two threshold conditions signifying that the EMS is either identified as the target radionuclide or not, and if not, then repeating the process for the next sequential photon event of the EMS until one of the two threshold conditions is satisfied.

  19. Shallow slip amplification and enhanced tsunami hazard unravelled by dynamic simulations of mega-thrust earthquakes

    PubMed Central

    Murphy, S.; Scala, A.; Herrero, A.; Lorito, S.; Festa, G.; Trasatti, E.; Tonini, R.; Romano, F.; Molinari, I.; Nielsen, S.

    2016-01-01

    The 2011 Tohoku earthquake produced an unexpected large amount of shallow slip greatly contributing to the ensuing tsunami. How frequent are such events? How can they be efficiently modelled for tsunami hazard? Stochastic slip models, which can be computed rapidly, are used to explore the natural slip variability; however, they generally do not deal specifically with shallow slip features. We study the systematic depth-dependence of slip along a thrust fault with a number of 2D dynamic simulations using stochastic shear stress distributions and a geometry based on the cross section of the Tohoku fault. We obtain a probability density for the slip distribution, which varies both with depth, earthquake size and whether the rupture breaks the surface. We propose a method to modify stochastic slip distributions according to this dynamically-derived probability distribution. This method may be efficiently applied to produce large numbers of heterogeneous slip distributions for probabilistic tsunami hazard analysis. Using numerous M9 earthquake scenarios, we demonstrate that incorporating the dynamically-derived probability distribution does enhance the conditional probability of exceedance of maximum estimated tsunami wave heights along the Japanese coast. This technique for integrating dynamic features in stochastic models can be extended to any subduction zone and faulting style. PMID:27725733

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adelman, Jahred A.

    A measurement of the top quark mass in pmore » $$\\bar{p}$$ collisions at √s = 1.96 TeV is presented. The analysis uses a template method, in which the overconstrained kinematics of the Lepton+Jets channel of the t$$\\bar{t}$$ system are used to measure a single quantity, the reconstructed top quark mass, that is strongly correlated with the true top quark mass. in addition, the dijet mass of the hadronically decaying W boson is used to constrain in situ the uncertain jet energy scale in the CDF detector. Two-dimensional probability density functions are derived using a kernel density estimate-based machinery. Using 1.9 fb -1 of data, the top quark mass is measured to be 171.8$$+1.9\\atop{-1.9}$$(stat.) ± 1.0(syst.)GeV/c 2.« less

  1. Shape fabric development in rigid clast populations under pure shear: The influence of no-slip versus slip boundary conditions

    NASA Astrophysics Data System (ADS)

    Mulchrone, Kieran F.; Meere, Patrick A.

    2015-09-01

    Shape fabrics of elliptical objects in rocks are usually assumed to develop by passive behavior of inclusions with respect to the surrounding material leading to shape-based strain analysis methods belonging to the Rf/ϕ family. A probability density function is derived for the orientational characteristics of populations of rigid ellipses deforming in a pure shear 2D deformation with both no-slip and slip boundary conditions. Using maximum likelihood a numerical method is developed for estimating finite strain in natural populations deforming for both mechanisms. Application to a natural example indicates the importance of the slip mechanism in explaining clast shape fabrics in deformed sediments.

  2. Discovering network behind infectious disease outbreak

    NASA Astrophysics Data System (ADS)

    Maeno, Yoshiharu

    2010-11-01

    Stochasticity and spatial heterogeneity are of great interest recently in studying the spread of an infectious disease. The presented method solves an inverse problem to discover the effectively decisive topology of a heterogeneous network and reveal the transmission parameters which govern the stochastic spreads over the network from a dataset on an infectious disease outbreak in the early growth phase. Populations in a combination of epidemiological compartment models and a meta-population network model are described by stochastic differential equations. Probability density functions are derived from the equations and used for the maximal likelihood estimation of the topology and parameters. The method is tested with computationally synthesized datasets and the WHO dataset on the SARS outbreak.

  3. Survival analysis for the missing censoring indicator model using kernel density estimation techniques

    PubMed Central

    Subramanian, Sundarraman

    2008-01-01

    This article concerns asymptotic theory for a new estimator of a survival function in the missing censoring indicator model of random censorship. Specifically, the large sample results for an inverse probability-of-non-missingness weighted estimator of the cumulative hazard function, so far not available, are derived, including an almost sure representation with rate for a remainder term, and uniform strong consistency with rate of convergence. The estimator is based on a kernel estimate for the conditional probability of non-missingness of the censoring indicator. Expressions for its bias and variance, in turn leading to an expression for the mean squared error as a function of the bandwidth, are also obtained. The corresponding estimator of the survival function, whose weak convergence is derived, is asymptotically efficient. A numerical study, comparing the performances of the proposed and two other currently existing efficient estimators, is presented. PMID:18953423

  4. Survival analysis for the missing censoring indicator model using kernel density estimation techniques.

    PubMed

    Subramanian, Sundarraman

    2006-01-01

    This article concerns asymptotic theory for a new estimator of a survival function in the missing censoring indicator model of random censorship. Specifically, the large sample results for an inverse probability-of-non-missingness weighted estimator of the cumulative hazard function, so far not available, are derived, including an almost sure representation with rate for a remainder term, and uniform strong consistency with rate of convergence. The estimator is based on a kernel estimate for the conditional probability of non-missingness of the censoring indicator. Expressions for its bias and variance, in turn leading to an expression for the mean squared error as a function of the bandwidth, are also obtained. The corresponding estimator of the survival function, whose weak convergence is derived, is asymptotically efficient. A numerical study, comparing the performances of the proposed and two other currently existing efficient estimators, is presented.

  5. Modulation Based on Probability Density Functions

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2009-01-01

    A proposed method of modulating a sinusoidal carrier signal to convey digital information involves the use of histograms representing probability density functions (PDFs) that characterize samples of the signal waveform. The method is based partly on the observation that when a waveform is sampled (whether by analog or digital means) over a time interval at least as long as one half cycle of the waveform, the samples can be sorted by frequency of occurrence, thereby constructing a histogram representing a PDF of the waveform during that time interval.

  6. A dynamic programming approach to estimate the capacity value of energy storage

    DOE PAGES

    Sioshansi, Ramteen; Madaeni, Seyed Hossein; Denholm, Paul

    2013-09-17

    Here, we present a method to estimate the capacity value of storage. Our method uses a dynamic program to model the effect of power system outages on the operation and state of charge of storage in subsequent periods. We combine the optimized dispatch from the dynamic program with estimated system loss of load probabilities to compute a probability distribution for the state of charge of storage in each period. This probability distribution can be used as a forced outage rate for storage in standard reliability-based capacity value estimation methods. Our proposed method has the advantage over existing approximations that itmore » explicitly captures the effect of system shortage events on the state of charge of storage in subsequent periods. We also use a numerical case study, based on five utility systems in the U.S., to demonstrate our technique and compare it to existing approximation methods.« less

  7. Does probability of occurrence relate to population dynamics?

    USGS Publications Warehouse

    Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Georges, Damien; Dullinger, Stefan; Eckhart, Vincent M.; Edwards, Thomas C.; Gravel, Dominique; Kunstler, Georges; Merow, Cory; Moore, Kara; Piedallu, Christian; Vissault, Steve; Zimmermann, Niklaus E.; Zurell, Damaris; Schurr, Frank M.

    2014-01-01

    Hutchinson defined species' realized niche as the set of environmental conditions in which populations can persist in the presence of competitors. In terms of demography, the realized niche corresponds to the environments where the intrinsic growth rate (r) of populations is positive. Observed species occurrences should reflect the realized niche when additional processes like dispersal and local extinction lags do not have overwhelming effects. Despite the foundational nature of these ideas, quantitative assessments of the relationship between range-wide demographic performance and occurrence probability have not been made. This assessment is needed both to improve our conceptual understanding of species' niches and ranges and to develop reliable mechanistic models of species geographic distributions that incorporate demography and species interactions.The objective of this study is to analyse how demographic parameters (intrinsic growth rate r and carrying capacity K ) and population density (N ) relate to occurrence probability (Pocc ). We hypothesized that these relationships vary with species' competitive ability. Demographic parameters, density, and occurrence probability were estimated for 108 tree species from four temperate forest inventory surveys (Québec, western USA, France and Switzerland). We used published information of shade tolerance as indicators of light competition strategy, assuming that high tolerance denotes high competitive capacity in stable forest environments.Interestingly, relationships between demographic parameters and occurrence probability did not vary substantially across degrees of shade tolerance and regions. Although they were influenced by the uncertainty in the estimation of the demographic parameters, we found that r was generally negatively correlated with Pocc, while N, and for most regions K, was generally positively correlated with Pocc. Thus, in temperate forest trees the regions of highest occurrence probability are those with high densities but slow intrinsic population growth rates. The uncertain relationships between demography and occurrence probability suggests caution when linking species distribution and demographic models.

  8. Speech processing using conditional observable maximum likelihood continuity mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogden, John; Nix, David

    A computer implemented method enables the recognition of speech and speech characteristics. Parameters are initialized of first probability density functions that map between the symbols in the vocabulary of one or more sequences of speech codes that represent speech sounds and a continuity map. Parameters are also initialized of second probability density functions that map between the elements in the vocabulary of one or more desired sequences of speech transcription symbols and the continuity map. The parameters of the probability density functions are then trained to maximize the probabilities of the desired sequences of speech-transcription symbols. A new sequence ofmore » speech codes is then input to the continuity map having the trained first and second probability function parameters. A smooth path is identified on the continuity map that has the maximum probability for the new sequence of speech codes. The probability of each speech transcription symbol for each input speech code can then be output.« less

  9. Reliability estimation of a N- M-cold-standby redundancy system in a multicomponent stress-strength model with generalized half-logistic distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yiming; Shi, Yimin; Bai, Xuchao; Zhan, Pei

    2018-01-01

    In this paper, we study the estimation for the reliability of a multicomponent system, named N- M-cold-standby redundancy system, based on progressive Type-II censoring sample. In the system, there are N subsystems consisting of M statistically independent distributed strength components, and only one of these subsystems works under the impact of stresses at a time and the others remain as standbys. Whenever the working subsystem fails, one from the standbys takes its place. The system fails when the entire subsystems fail. It is supposed that the underlying distributions of random strength and stress both belong to the generalized half-logistic distribution with different shape parameter. The reliability of the system is estimated by using both classical and Bayesian statistical inference. Uniformly minimum variance unbiased estimator and maximum likelihood estimator for the reliability of the system are derived. Under squared error loss function, the exact expression of the Bayes estimator for the reliability of the system is developed by using the Gauss hypergeometric function. The asymptotic confidence interval and corresponding coverage probabilities are derived based on both the Fisher and the observed information matrices. The approximate highest probability density credible interval is constructed by using Monte Carlo method. Monte Carlo simulations are performed to compare the performances of the proposed reliability estimators. A real data set is also analyzed for an illustration of the findings.

  10. Use of generalized population ratios to obtain Fe XV line intensities and linewidths at high electron densities

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1980-01-01

    A generalized method for obtaining individual level population ratios is used to obtain relative intensities of extreme ultraviolet Fe XV emission lines in the range 284-500 A, which are density dependent for electron densities in the tokamak regime or higher. Four lines in particular are found to attain quite high intensities in the high-density limit. The same calculation provides inelastic contributions to linewidths. The method connects level populations and level widths through total probabilities t(ij), related to 'taboo' probabilities of Markov chain theory. The t(ij) are here evaluated for a real atomic system, being therefore of potential interest to random-walk theorists who have been limited to idealized systems characterized by simplified transition schemes.

  11. Use of generalized population ratios to obtain Fe XV line intensities and linewidths at high electron densities

    NASA Astrophysics Data System (ADS)

    Kastner, S. O.; Bhatia, A. K.

    1980-08-01

    A generalized method for obtaining individual level population ratios is used to obtain relative intensities of extreme ultraviolet Fe XV emission lines in the range 284-500 A, which are density dependent for electron densities in the tokamak regime or higher. Four lines in particular are found to attain quite high intensities in the high-density limit. The same calculation provides inelastic contributions to linewidths. The method connects level populations and level widths through total probabilities t(ij), related to 'taboo' probabilities of Markov chain theory. The t(ij) are here evaluated for a real atomic system, being therefore of potential interest to random-walk theorists who have been limited to idealized systems characterized by simplified transition schemes.

  12. Statistics of Sxy estimates

    NASA Technical Reports Server (NTRS)

    Freilich, M. H.; Pawka, S. S.

    1987-01-01

    The statistics of Sxy estimates derived from orthogonal-component measurements are examined. Based on results of Goodman (1957), the probability density function (pdf) for Sxy(f) estimates is derived, and a closed-form solution for arbitrary moments of the distribution is obtained. Characteristic functions are used to derive the exact pdf of Sxy(tot). In practice, a simple Gaussian approximation is found to be highly accurate even for relatively few degrees of freedom. Implications for experiment design are discussed, and a maximum-likelihood estimator for a posterior estimation is outlined.

  13. Spatial capture-recapture models allowing Markovian transience or dispersal

    USGS Publications Warehouse

    Royle, J. Andrew; Fuller, Angela K.; Sutherland, Chris

    2016-01-01

    Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.

  14. Creation of the BMA ensemble for SST using a parallel processing technique

    NASA Astrophysics Data System (ADS)

    Kim, Kwangjin; Lee, Yang Won

    2013-10-01

    Despite the same purpose, each satellite product has different value because of its inescapable uncertainty. Also the satellite products have been calculated for a long time, and the kinds of the products are various and enormous. So the efforts for reducing the uncertainty and dealing with enormous data will be necessary. In this paper, we create an ensemble Sea Surface Temperature (SST) using MODIS Aqua, MODIS Terra and COMS (Communication Ocean and Meteorological Satellite). We used Bayesian Model Averaging (BMA) as ensemble method. The principle of the BMA is synthesizing the conditional probability density function (PDF) using posterior probability as weight. The posterior probability is estimated using EM algorithm. The BMA PDF is obtained by weighted average. As the result, the ensemble SST showed the lowest RMSE and MAE, which proves the applicability of BMA for satellite data ensemble. As future work, parallel processing techniques using Hadoop framework will be adopted for more efficient computation of very big satellite data.

  15. Spatially explicit models for inference about density in unmarked or partially marked populations

    USGS Publications Warehouse

    Chandler, Richard B.; Royle, J. Andrew

    2013-01-01

    Recently developed spatial capture–recapture (SCR) models represent a major advance over traditional capture–recapture (CR) models because they yield explicit estimates of animal density instead of population size within an unknown area. Furthermore, unlike nonspatial CR methods, SCR models account for heterogeneity in capture probability arising from the juxtaposition of animal activity centers and sample locations. Although the utility of SCR methods is gaining recognition, the requirement that all individuals can be uniquely identified excludes their use in many contexts. In this paper, we develop models for situations in which individual recognition is not possible, thereby allowing SCR concepts to be applied in studies of unmarked or partially marked populations. The data required for our model are spatially referenced counts made on one or more sample occasions at a collection of closely spaced sample units such that individuals can be encountered at multiple locations. Our approach includes a spatial point process for the animal activity centers and uses the spatial correlation in counts as information about the number and location of the activity centers. Camera-traps, hair snares, track plates, sound recordings, and even point counts can yield spatially correlated count data, and thus our model is widely applicable. A simulation study demonstrated that while the posterior mean exhibits frequentist bias on the order of 5–10% in small samples, the posterior mode is an accurate point estimator as long as adequate spatial correlation is present. Marking a subset of the population substantially increases posterior precision and is recommended whenever possible. We applied our model to avian point count data collected on an unmarked population of the northern parula (Parula americana) and obtained a density estimate (posterior mode) of 0.38 (95% CI: 0.19–1.64) birds/ha. Our paper challenges sampling and analytical conventions in ecology by demonstrating that neither spatial independence nor individual recognition is needed to estimate population density—rather, spatial dependence can be informative about individual distribution and density.

  16. Relative frequencies of constrained events in stochastic processes: An analytical approach.

    PubMed

    Rusconi, S; Akhmatskaya, E; Sokolovski, D; Ballard, N; de la Cal, J C

    2015-10-01

    The stochastic simulation algorithm (SSA) and the corresponding Monte Carlo (MC) method are among the most common approaches for studying stochastic processes. They relies on knowledge of interevent probability density functions (PDFs) and on information about dependencies between all possible events. Analytical representations of a PDF are difficult to specify in advance, in many real life applications. Knowing the shapes of PDFs, and using experimental data, different optimization schemes can be applied in order to evaluate probability density functions and, therefore, the properties of the studied system. Such methods, however, are computationally demanding, and often not feasible. We show that, in the case where experimentally accessed properties are directly related to the frequencies of events involved, it may be possible to replace the heavy Monte Carlo core of optimization schemes with an analytical solution. Such a replacement not only provides a more accurate estimation of the properties of the process, but also reduces the simulation time by a factor of order of the sample size (at least ≈10(4)). The proposed analytical approach is valid for any choice of PDF. The accuracy, computational efficiency, and advantages of the method over MC procedures are demonstrated in the exactly solvable case and in the evaluation of branching fractions in controlled radical polymerization (CRP) of acrylic monomers. This polymerization can be modeled by a constrained stochastic process. Constrained systems are quite common, and this makes the method useful for various applications.

  17. Improved first-order uncertainty method for water-quality modeling

    USGS Publications Warehouse

    Melching, C.S.; Anmangandla, S.

    1992-01-01

    Uncertainties are unavoidable in water-quality modeling and subsequent management decisions. Monte Carlo simulation and first-order uncertainty analysis (involving linearization at central values of the uncertain variables) have been frequently used to estimate probability distributions for water-quality model output due to their simplicity. Each method has its drawbacks: Monte Carlo simulation's is mainly computational time; and first-order analysis are mainly questions of accuracy and representativeness, especially for nonlinear systems and extreme conditions. An improved (advanced) first-order method is presented, where the linearization point varies to match the output level whose exceedance probability is sought. The advanced first-order method is tested on the Streeter-Phelps equation to estimate the probability distribution of critical dissolved-oxygen deficit and critical dissolved oxygen using two hypothetical examples from the literature. The advanced first-order method provides a close approximation of the exceedance probability for the Streeter-Phelps model output estimated by Monte Carlo simulation using less computer time - by two orders of magnitude - regardless of the probability distributions assumed for the uncertain model parameters.

  18. Gaussianization for fast and accurate inference from cosmological data

    NASA Astrophysics Data System (ADS)

    Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.

    2016-06-01

    We present a method to transform multivariate unimodal non-Gaussian posterior probability densities into approximately Gaussian ones via non-linear mappings, such as Box-Cox transformations and generalizations thereof. This permits an analytical reconstruction of the posterior from a point sample, like a Markov chain, and simplifies the subsequent joint analysis with other experiments. This way, a multivariate posterior density can be reported efficiently, by compressing the information contained in Markov Chain Monte Carlo samples. Further, the model evidence integral (I.e. the marginal likelihood) can be computed analytically. This method is analogous to the search for normal parameters in the cosmic microwave background, but is more general. The search for the optimally Gaussianizing transformation is performed computationally through a maximum-likelihood formalism; its quality can be judged by how well the credible regions of the posterior are reproduced. We demonstrate that our method outperforms kernel density estimates in this objective. Further, we select marginal posterior samples from Planck data with several distinct strongly non-Gaussian features, and verify the reproduction of the marginal contours. To demonstrate evidence computation, we Gaussianize the joint distribution of data from weak lensing and baryon acoustic oscillations, for different cosmological models, and find a preference for flat Λcold dark matter. Comparing to values computed with the Savage-Dickey density ratio, and Population Monte Carlo, we find good agreement of our method within the spread of the other two.

  19. USING THE HERMITE POLYNOMIALS IN RADIOLOGICAL MONITORING NETWORKS.

    PubMed

    Benito, G; Sáez, J C; Blázquez, J B; Quiñones, J

    2018-03-15

    The most interesting events in Radiological Monitoring Network correspond to higher values of H*(10). The higher doses cause skewness in the probability density function (PDF) of the records, which there are not Gaussian anymore. Within this work the probability of having a dose >2 standard deviations is proposed as surveillance of higher doses. Such probability is estimated by using the Hermite polynomials for reconstructing the PDF. The result is that the probability is ~6 ± 1%, much >2.5% corresponding to Gaussian PDFs, which may be of interest in the design of alarm level for higher doses.

  20. Comparison of an automated Most Probable Number (MPN) technique to traditional plating methods for estimating populations of total aerobes, coliforms and E. coli associated with freshly processed broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Recently, an instrument (TEMPOTM) has been developed to automate the Most Probable Number (MPN) technique and reduce the effort required to estimate some bacterial populations. We compared the automated MPN technique to traditional microbiological plating methods or PetrifilmTM for estimating the t...

  1. Novel density-based and hierarchical density-based clustering algorithms for uncertain data.

    PubMed

    Zhang, Xianchao; Liu, Han; Zhang, Xiaotong

    2017-09-01

    Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A study of parameter identification

    NASA Technical Reports Server (NTRS)

    Herget, C. J.; Patterson, R. E., III

    1978-01-01

    A set of definitions for deterministic parameter identification ability were proposed. Deterministic parameter identificability properties are presented based on four system characteristics: direct parameter recoverability, properties of the system transfer function, properties of output distinguishability, and uniqueness properties of a quadratic cost functional. Stochastic parameter identifiability was defined in terms of the existence of an estimation sequence for the unknown parameters which is consistent in probability. Stochastic parameter identifiability properties are presented based on the following characteristics: convergence properties of the maximum likelihood estimate, properties of the joint probability density functions of the observations, and properties of the information matrix.

  3. Spatially explicit population estimates for black bears based on cluster sampling

    USGS Publications Warehouse

    Humm, J.; McCown, J. Walter; Scheick, B.K.; Clark, Joseph D.

    2017-01-01

    We estimated abundance and density of the 5 major black bear (Ursus americanus) subpopulations (i.e., Eglin, Apalachicola, Osceola, Ocala-St. Johns, Big Cypress) in Florida, USA with spatially explicit capture-mark-recapture (SCR) by extracting DNA from hair samples collected at barbed-wire hair sampling sites. We employed a clustered sampling configuration with sampling sites arranged in 3 × 3 clusters spaced 2 km apart within each cluster and cluster centers spaced 16 km apart (center to center). We surveyed all 5 subpopulations encompassing 38,960 km2 during 2014 and 2015. Several landscape variables, most associated with forest cover, helped refine density estimates for the 5 subpopulations we sampled. Detection probabilities were affected by site-specific behavioral responses coupled with individual capture heterogeneity associated with sex. Model-averaged bear population estimates ranged from 120 (95% CI = 59–276) bears or a mean 0.025 bears/km2 (95% CI = 0.011–0.44) for the Eglin subpopulation to 1,198 bears (95% CI = 949–1,537) or 0.127 bears/km2 (95% CI = 0.101–0.163) for the Ocala-St. Johns subpopulation. The total population estimate for our 5 study areas was 3,916 bears (95% CI = 2,914–5,451). The clustered sampling method coupled with information on land cover was efficient and allowed us to estimate abundance across extensive areas that would not have been possible otherwise. Clustered sampling combined with spatially explicit capture-recapture methods has the potential to provide rigorous population estimates for a wide array of species that are extensive and heterogeneous in their distribution.

  4. Global tracking of space debris via CPHD and consensus

    NASA Astrophysics Data System (ADS)

    Wei, Baishen; Nener, Brett; Liu, Weifeng; Ma, Liang

    2017-05-01

    Space debris tracking is of great importance for safe operation of spacecraft. This paper presents an algorithm that achieves global tracking of space debris with a multi-sensor network. The sensor network has unknown and possibly time-varying topology. A consensus algorithm is used to effectively counteract the effects of data incest. Gaussian Mixture-Cardinalized Probability Hypothesis Density (GM-CPHD) filtering is used to estimate the state of the space debris. As an example of the method, 45 clusters of sensors are used to achieve global tracking. The performance of the proposed approach is demonstrated by simulation experiments.

  5. A new LDPC decoding scheme for PDM-8QAM BICM coherent optical communication system

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhang, Wen-bo; Xi, Li-xia; Tang, Xian-feng; Zhang, Xiao-guang

    2015-11-01

    A new log-likelihood ratio (LLR) message estimation method is proposed for polarization-division multiplexing eight quadrature amplitude modulation (PDM-8QAM) bit-interleaved coded modulation (BICM) optical communication system. The formulation of the posterior probability is theoretically analyzed, and the way to reduce the pre-decoding bit error rate ( BER) of the low density parity check (LDPC) decoder for PDM-8QAM constellations is presented. Simulation results show that it outperforms the traditional scheme, i.e., the new post-decoding BER is decreased down to 50% of that of the traditional post-decoding algorithm.

  6. Estimation of the probability of success in petroleum exploration

    USGS Publications Warehouse

    Davis, J.C.

    1977-01-01

    A probabilistic model for oil exploration can be developed by assessing the conditional relationship between perceived geologic variables and the subsequent discovery of petroleum. Such a model includes two probabilistic components, the first reflecting the association between a geologic condition (structural closure, for example) and the occurrence of oil, and the second reflecting the uncertainty associated with the estimation of geologic variables in areas of limited control. Estimates of the conditional relationship between geologic variables and subsequent production can be found by analyzing the exploration history of a "training area" judged to be geologically similar to the exploration area. The geologic variables are assessed over the training area using an historical subset of the available data, whose density corresponds to the present control density in the exploration area. The success or failure of wells drilled in the training area subsequent to the time corresponding to the historical subset provides empirical estimates of the probability of success conditional upon geology. Uncertainty in perception of geological conditions may be estimated from the distribution of errors made in geologic assessment using the historical subset of control wells. These errors may be expressed as a linear function of distance from available control. Alternatively, the uncertainty may be found by calculating the semivariogram of the geologic variables used in the analysis: the two procedures will yield approximately equivalent results. The empirical probability functions may then be transferred to the exploration area and used to estimate the likelihood of success of specific exploration plays. These estimates will reflect both the conditional relationship between the geological variables used to guide exploration and the uncertainty resulting from lack of control. The technique is illustrated with case histories from the mid-Continent area of the U.S.A. ?? 1977 Plenum Publishing Corp.

  7. Word Recognition and Nonword Repetition in Children with Language Disorders: The Effects of Neighborhood Density, Lexical Frequency, and Phonotactic Probability

    ERIC Educational Resources Information Center

    Rispens, Judith; Baker, Anne; Duinmeijer, Iris

    2015-01-01

    Purpose: The effects of neighborhood density (ND) and lexical frequency on word recognition and the effects of phonotactic probability (PP) on nonword repetition (NWR) were examined to gain insight into processing at the lexical and sublexical levels in typically developing (TD) children and children with developmental language problems. Method:…

  8. Automatically-generated rectal dose constraints in intensity-modulated radiation therapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Kim, Yong Nam; Kim, Soo Kon; Kang, Sei-Kwon; Cheong, Kwang-Ho; Park, Soah; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Meyeon; Kim, Kyoung-Joo; Bae, Hoonsik; Suh, Tae-Suk

    2015-06-01

    The dose constraint during prostate intensity-modulated radiation therapy (IMRT) optimization should be patient-specific for better rectum sparing. The aims of this study are to suggest a novel method for automatically generating a patient-specific dose constraint by using an experience-based dose volume histogram (DVH) of the rectum and to evaluate the potential of such a dose constraint qualitatively. The normal tissue complication probabilities (NTCPs) of the rectum with respect to V %ratio in our study were divided into three groups, where V %ratio was defined as the percent ratio of the rectal volume overlapping the planning target volume (PTV) to the rectal volume: (1) the rectal NTCPs in the previous study (clinical data), (2) those statistically generated by using the standard normal distribution (calculated data), and (3) those generated by combining the calculated data and the clinical data (mixed data). In the calculated data, a random number whose mean value was on the fitted curve described in the clinical data and whose standard deviation was 1% was generated by using the `randn' function in the MATLAB program and was used. For each group, we validated whether the probability density function (PDF) of the rectal NTCP could be automatically generated with the density estimation method by using a Gaussian kernel. The results revealed that the rectal NTCP probability increased in proportion to V %ratio , that the predictive rectal NTCP was patient-specific, and that the starting point of IMRT optimization for the given patient might be different. The PDF of the rectal NTCP was obtained automatically for each group except that the smoothness of the probability distribution increased with increasing number of data and with increasing window width. We showed that during the prostate IMRT optimization, the patient-specific dose constraints could be automatically generated and that our method could reduce the IMRT optimization time as well as maintain the IMRT plan quality.

  9. Short-term response of Dicamptodon tenebrosus larvae to timber management in southwestern Oregon

    USGS Publications Warehouse

    Leuthold, Niels; Adams, Michael J.; Hayes, John P.

    2012-01-01

    In the Pacific Northwest, previous studies have found a negative effect of timber management on the abundance of stream amphibians, but results have been variable and region specific. These studies have generally used survey methods that did not account for differences in capture probability and focused on stands that were harvested under older management practices. We examined the influences of contemporary forest practices on larval Dicamptodon tenebrosus as part of the Hinkle Creek paired watershed study. We used a mark-recapture analysis to estimate D. tenebrosus density at 100 1-m sites spread throughout the basin and used extended linear models that accounted for correlation resulting from the repeated surveys at sites across years. Density was associated with substrate, but we found no evidence of an effect of harvest. While holding other factors constant, the model-averaged estimates indicated; 1) each 10% increase in small cobble or larger substrate increased median density of D. tenebrosus 1.05 times, 2) each 100-ha increase in the upstream area drained decreased median density of D. tenebrosus 0.96 times, and 3) increasing the fish density in the 40 m around a site by 0.01 increased median salamander density 1.01 times. Although this study took place in a single basin, it suggests that timber management in similar third-order basins of the southwestern Oregon Cascade foothills is unlikely to have short-term effects of D. tenebrosus larvae.

  10. Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media.

    PubMed

    Scanziani, Alessio; Singh, Kamaljit; Blunt, Martin J; Guadagnini, Alberto

    2017-06-15

    Multiphase flow in porous media is strongly influenced by the wettability of the system, which affects the arrangement of the interfaces of different phases residing in the pores. We present a method for estimating the effective contact angle, which quantifies the wettability and controls the local capillary pressure within the complex pore space of natural rock samples, based on the physical constraint of constant curvature of the interface between two fluids. This algorithm is able to extract a large number of measurements from a single rock core, resulting in a characteristic distribution of effective in situ contact angle for the system, that is modelled as a truncated Gaussian probability density distribution. The method is first validated on synthetic images, where the exact angle is known analytically; then the results obtained from measurements within the pore space of rock samples imaged at a resolution of a few microns are compared to direct manual assessment. Finally the method is applied to X-ray micro computed tomography (micro-CT) scans of two Ketton cores after waterflooding, that display water-wet and mixed-wet behaviour. The resulting distribution of in situ contact angles is characterized in terms of a mixture of truncated Gaussian densities. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  11. Natal and breeding philopatry in a black brant, Branta bernicla nigricans, metapopulation

    USGS Publications Warehouse

    Lindberg, Mark S.; Sedinger, James S.; Derksen, Dirk V.; Rockwell, Robert F.

    1998-01-01

    We estimated natal and breeding philopatry and dispersal probabilities for a metapopulation of Black Brant (Branta bernicla nigricans) based on observations of marked birds at six breeding colonies in Alaska, 1986–1994. Both adult females and males exhibited high (>0.90) probability of philopatry to breeding colonies. Probability of natal philopatry was significantly higher for females than males. Natal dispersal of males was recorded between every pair of colonies, whereas natal dispersal of females was observed between only half of the colony pairs. We suggest that female-biased philopatry was the result of timing of pair formation and characteristics of the mating system of brant, rather than factors related to inbreeding avoidance or optimal discrepancy. Probability of natal philopatry of females increased with age but declined with year of banding. Age-related increase in natal philopatry was positively related to higher breeding probability of older females. Declines in natal philopatry with year of banding corresponded negatively to a period of increasing population density; therefore, local population density may influence the probability of nonbreeding and gene flow among colonies.

  12. A comparison of selected parametric and imputation methods for estimating snag density and snag quality attributes

    USGS Publications Warehouse

    Eskelson, Bianca N.I.; Hagar, Joan; Temesgen, Hailemariam

    2012-01-01

    Snags (standing dead trees) are an essential structural component of forests. Because wildlife use of snags depends on size and decay stage, snag density estimation without any information about snag quality attributes is of little value for wildlife management decision makers. Little work has been done to develop models that allow multivariate estimation of snag density by snag quality class. Using climate, topography, Landsat TM data, stand age and forest type collected for 2356 forested Forest Inventory and Analysis plots in western Washington and western Oregon, we evaluated two multivariate techniques for their abilities to estimate density of snags by three decay classes. The density of live trees and snags in three decay classes (D1: recently dead, little decay; D2: decay, without top, some branches and bark missing; D3: extensive decay, missing bark and most branches) with diameter at breast height (DBH) ≥ 12.7 cm was estimated using a nonparametric random forest nearest neighbor imputation technique (RF) and a parametric two-stage model (QPORD), for which the number of trees per hectare was estimated with a Quasipoisson model in the first stage and the probability of belonging to a tree status class (live, D1, D2, D3) was estimated with an ordinal regression model in the second stage. The presence of large snags with DBH ≥ 50 cm was predicted using a logistic regression and RF imputation. Because of the more homogenous conditions on private forest lands, snag density by decay class was predicted with higher accuracies on private forest lands than on public lands, while presence of large snags was more accurately predicted on public lands, owing to the higher prevalence of large snags on public lands. RF outperformed the QPORD model in terms of percent accurate predictions, while QPORD provided smaller root mean square errors in predicting snag density by decay class. The logistic regression model achieved more accurate presence/absence classification of large snags than the RF imputation approach. Adjusting the decision threshold to account for unequal size for presence and absence classes is more straightforward for the logistic regression than for the RF imputation approach. Overall, model accuracies were poor in this study, which can be attributed to the poor predictive quality of the explanatory variables and the large range of forest types and geographic conditions observed in the data.

  13. Estimation of age at death from the pubic symphysis and the auricular surface of the ilium using a smoothing procedure.

    PubMed

    Martins, Rui; Oliveira, Paulo Eduardo; Schmitt, Aurore

    2012-06-10

    We discuss here the estimation of age at death from two indicators (pubic symphysis and the sacro-pelvic surface of the ilium) based on four different osteological series from Portugal, Great-Britain, South Africa or USA (European origin). These samples and the scoring system of the two indicators were used by Schmitt et al. (2002), applying the methodology proposed by Lucy et al. (1996). In the present work, the same data was processed using a modification of the empirical method proposed by Lucy et al. (2002). The various probability distributions are estimated from training data by using kernel density procedures and Jackknife methodology. Bayes's theorem is then used to produce the posterior distribution from which point and interval estimates may be made. This statistical approach reduces the bias of the estimates to less than 70% of what was obtained by the initial method. This reduction going up to 52% if knowledge of sex of the individual is available, and produces an age for all the individuals that improves age at death assessment. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Pretest probability estimation in the evaluation of patients with possible deep vein thrombosis.

    PubMed

    Vinson, David R; Patel, Jason P; Irving, Cedric S

    2011-07-01

    An estimation of pretest probability is integral to the proper interpretation of a negative compression ultrasound in the diagnostic assessment of lower-extremity deep vein thrombosis. We sought to determine the rate, method, and predictors of pretest probability estimation in such patients. This cross-sectional study of outpatients was conducted in a suburban community hospital in 2006. Estimation of pretest probability was done by enzyme-linked immunosorbent assay d-dimer, Wells criteria, and unstructured clinical impression. Using logistic regression analysis, we measured predictors of documented risk assessment. A cohort analysis was undertaken to compare 3-month thromboembolic outcomes between risk groups. Among 524 cases, 289 (55.2%) underwent pretest probability estimation using the following methods: enzyme-linked immunosorbent assay d-dimer (228; 43.5%), clinical impression (106; 20.2%), and Wells criteria (24; 4.6%), with 69 (13.2%) patients undergoing a combination of at least two methods. Patient factors were not predictive of pretest probability estimation, but the specialty of the clinician was predictive; emergency physicians (P < .0001) and specialty clinicians (P = .001) were less likely than primary care clinicians to perform risk assessment. Thromboembolic events within 3 months were experienced by 0 of 52 patients in the explicitly low-risk group, 4 (1.8%) of 219 in the explicitly moderate- to high-risk group, and 1 (0.4%) of 226 in the group that did not undergo explicit risk assessment. Negative ultrasounds in the workup of deep vein thrombosis are commonly interpreted in isolation apart from pretest probability estimations. Risk assessments varied by physician specialties. Opportunities exist for improvement in the diagnostic evaluation of these patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Fish community changes in the St. Louis River estuary, Lake Superior, 1989-1996: Is it ruffe or population dynamics?

    USGS Publications Warehouse

    Bronte, Charles R.; Evrard, Lori M.; Brown, William P.; Mayo, Kathleen R.; Edwards, Andrew J.

    1998-01-01

    Ruffe (Gymnocephalus cernuus) have been implicated in density declines of native species through egg predation and competition for food in some European waters where they were introduced. Density estimates for ruffe and principal native fishes in the St. Louis River estuary (western Lake Superior) were developed for 1989 to 1996 to measure changes in the fish community in response to an unintentional introduction of ruffe. During the study, ruffe density increased and the densities of several native species decreased. The reductions of native stocks to the natural population dynamics of the same species from Chequamegon Bay, Lake Superior (an area with very few ruffe) were developed, where there was a 24-year record of density. Using these data, short- and long-term variations in catch and correlations among species within years were compared, and species-specific distributions were developed of observed trends in abundance of native fishes in Chequamegon Bay indexed by the slopes of densities across years. From these distributions and our observed trend-line slopes from the St. Louis River, probabilities of measuring negative change at the magnitude observed in the St. Louis River were estimated. Compared with trends in Chequamegon Bay, there was a high probability of obtaining the negative slopes measured for most species, which suggests natural population dynamics could explain, the declines rather than interactions with ruffe. Variable recruitment, which was not related to ruffe density, and associated density-dependent changes in mortality likely were responsible for density declines of native species.

  16. Comparing scat detection dogs, cameras, and hair snares for surveying carnivores

    USGS Publications Warehouse

    Long, Robert A.; Donovan, T.M.; MacKay, Paula; Zielinski, William J.; Buzas, Jeffrey S.

    2007-01-01

    Carnivores typically require large areas of habitat, exist at low natural densities, and exhibit elusive behavior - characteristics that render them difficult to study. Noninvasive survey methods increasingly provide means to collect extensive data on carnivore occupancy, distribution, and abundance. During the summers of 2003-2004, we compared the abilities of scat detection dogs, remote cameras, and hair snares to detect black bears (Ursus americanus), fishers (Martes pennanti), and bobcats (Lynx rufus) at 168 sites throughout Vermont. All 3 methods detected black bears; neither fishers nor bobcats were detected by hair snares. Scat detection dogs yielded the highest raw detection rate and probability of detection (given presence) for each of the target species, as well as the greatest number of unique detections (i.e., occasions when only one method detected the target species). We estimated that the mean probability of detecting the target species during a single visit to a site with a detection dog was 0.87 for black bears, 0.84 for fishers, and 0.27 for bobcats. Although the cost of surveying with detection dogs was higher than that of remote cameras or hair snares, the efficiency of this method rendered it the most cost-effective survey method.

  17. Trunk density profile estimates from dual X-ray absorptiometry.

    PubMed

    Wicke, Jason; Dumas, Geneviève A; Costigan, Patrick A

    2008-01-01

    Accurate body segment parameters are necessary to estimate joint loads when using biomechanical models. Geometric methods can provide individualized data for these models but the accuracy of the geometric methods depends on accurate segment density estimates. The trunk, which is important in many biomechanical models, has the largest variability in density along its length. Therefore, the objectives of this study were to: (1) develop a new method for modeling trunk density profiles based on dual X-ray absorptiometry (DXA) and (2) develop a trunk density function for college-aged females and males that can be used in geometric methods. To this end, the density profiles of 25 females and 24 males were determined by combining the measurements from a photogrammetric method and DXA readings. A discrete Fourier transformation was then used to develop the density functions for each sex. The individual density and average density profiles compare well with the literature. There were distinct differences between the profiles of two of participants (one female and one male), and the average for their sex. It is believed that the variations in these two participants' density profiles were a result of the amount and distribution of fat they possessed. Further studies are needed to support this possibility. The new density functions eliminate the uniform density assumption associated with some geometric models thus providing more accurate trunk segment parameter estimates. In turn, more accurate moments and forces can be estimated for the kinetic analyses of certain human movements.

  18. Pair and triplet approximation of a spatial lattice population model with multiscale dispersal using Markov chains for estimating spatial autocorrelation.

    PubMed

    Hiebeler, David E; Millett, Nicholas E

    2011-06-21

    We investigate a spatial lattice model of a population employing dispersal to nearest and second-nearest neighbors, as well as long-distance dispersal across the landscape. The model is studied via stochastic spatial simulations, ordinary pair approximation, and triplet approximation. The latter method, which uses the probabilities of state configurations of contiguous blocks of three sites as its state variables, is demonstrated to be greatly superior to pair approximations for estimating spatial correlation information at various scales. Correlations between pairs of sites separated by arbitrary distances are estimated by constructing spatial Markov processes using the information from both approximations. These correlations demonstrate why pair approximation misses basic qualitative features of the model, such as decreasing population density as a large proportion of offspring are dropped on second-nearest neighbors, and why triplet approximation is able to include them. Analytical and numerical results show that, excluding long-distance dispersal, the initial growth rate of an invading population is maximized and the equilibrium population density is also roughly maximized when the population spreads its offspring evenly over nearest and second-nearest neighboring sites. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Sampling in rugged terrain

    USGS Publications Warehouse

    Dawson, D.K.; Ralph, C. John; Scott, J. Michael

    1981-01-01

    Work in rugged terrain poses some unique problems that should be considered before research is initiated. Besides the obvious physical difficulties of crossing uneven terrain, topography can influence the bird species? composition of a forest and the observer's ability to detect birds and estimate distances. Census results can also be affected by the slower rate of travel on rugged terrain. Density figures may be higher than results obtained from censuses in similar habitat on level terrain because of the greater likelihood of double-recording of individuals and of recording species that sing infrequently. In selecting a census technique, the researcher should weigh the efficiency and applicability of a technique for the objectives of his study in light of the added difficulties posed by rugged terrain. The variable circular-plot method is probably the most effective technique for estimating bird numbers. Bird counts and distance estimates are facilitated because the observer is stationary, and calculations of species? densities take into account differences in effective area covered amongst stations due to variability in terrain or vegetation structure. Institution of precautions that minimize the risk of injury to field personnel can often enhance the observer?s ability to detect birds.

  20. Committor of elementary reactions on multistate systems

    NASA Astrophysics Data System (ADS)

    Király, Péter; Kiss, Dóra Judit; Tóth, Gergely

    2018-04-01

    In our study, we extend the committor concept on multi-minima systems, where more than one reaction may proceed, but the feasible data evaluation needs the projection onto partial reactions. The elementary reaction committor and the corresponding probability density of the reactive trajectories are defined and calculated on a three-hole two-dimensional model system explored by single-particle Langevin dynamics. We propose a method to visualize more elementary reaction committor functions or probability densities of reactive trajectories on a single plot that helps to identify the most important reaction channels and the nonreactive domains simultaneously. We suggest a weighting for the energy-committor plots that correctly shows the limits of both the minimal energy path and the average energy concepts. The methods also performed well on the analysis of molecular dynamics trajectories of 2-chlorobutane, where an elementary reaction committor, the probability densities, the potential energy/committor, and the free-energy/committor curves are presented.

  1. Emissions from prescribed fire in temperate forest in south-east Australia: implications for carbon accounting

    NASA Astrophysics Data System (ADS)

    Possell, M.; Jenkins, M.; Bell, T. L.; Adams, M. A.

    2014-09-01

    We estimated of emissions of carbon, as CO2-equivalents, from planned fire in four sites in a south-eastern Australian forest. Emission estimates were calculated using measurements of fuel load and carbon content of different fuel types, before and after burning, and determination of fuel-specific emission factors. Median estimates of emissions for the four sites ranged from 20 to 139 T CO2-e ha-1. Variability in estimates was a consequence of different burning efficiencies of each fuel type from the four sites. Higher emissions resulted from more fine fuel (twigs, decomposing matter, near-surface live and leaf litter) or coarse woody debris (CWD; > 25 mm diameter) being consumed. In order to assess the effect of estimating emissions when only a few fuel variables are known, Monte-Carlo simulations were used to create seven scenarios where input parameters values were replaced by probability density functions. Calculation methods were: (1) all measured data were constrained between measured maximum and minimum values for each variable, (2) as for (1) except the proportion of carbon within a fuel type was constrained between 0 and 1, (3) as for (2) but losses of mass caused by fire were replaced with burning efficiency factors constrained between 0 and 1; and (4) emissions were calculated using default values in the Australian National Greenhouse Accounts (NGA), National Inventory Report 2011, as appropriate for our sites. Effects of including CWD in calculations were assessed for calculation Method 1, 2 and 3 but not for Method 4 as the NGA does not consider this fuel type. Simulations demonstrate that the probability of estimating true median emissions declines strongly as the amount of information available declines. Including CWD in scenarios increased uncertainty in calculations because CWD is the most variable contributor to fuel load. Inclusion of CWD in scenarios generally increased the amount of carbon lost. We discuss implications of these simulations and how emissions from prescribed burns in temperate Australian forests could be improved.

  2. Galaxy clustering with photometric surveys using PDF redshift information

    DOE PAGES

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; ...

    2016-03-28

    Here, photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colors, that are obtained through multi-band imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths aremore » $$\\Delta z=0.1$$, the use of the entire PDF reduces the typical measurement bias from 5%, when using single point estimates, to 3%.« less

  3. Multiple data sources improve DNA-based mark-recapture population estimates of grizzly bears.

    PubMed

    Boulanger, John; Kendall, Katherine C; Stetz, Jeffrey B; Roon, David A; Waits, Lisette P; Paetkau, David

    2008-04-01

    A fundamental challenge to estimating population size with mark-recapture methods is heterogeneous capture probabilities and subsequent bias of population estimates. Confronting this problem usually requires substantial sampling effort that can be difficult to achieve for some species, such as carnivores. We developed a methodology that uses two data sources to deal with heterogeneity and applied this to DNA mark-recapture data from grizzly bears (Ursus arctos). We improved population estimates by incorporating additional DNA "captures" of grizzly bears obtained by collecting hair from unbaited bear rub trees concurrently with baited, grid-based, hair snag sampling. We consider a Lincoln-Petersen estimator with hair snag captures as the initial session and rub tree captures as the recapture session and develop an estimator in program MARK that treats hair snag and rub tree samples as successive sessions. Using empirical data from a large-scale project in the greater Glacier National Park, Montana, USA, area and simulation modeling we evaluate these methods and compare the results to hair-snag-only estimates. Empirical results indicate that, compared with hair-snag-only data, the joint hair-snag-rub-tree methods produce similar but more precise estimates if capture and recapture rates are reasonably high for both methods. Simulation results suggest that estimators are potentially affected by correlation of capture probabilities between sample types in the presence of heterogeneity. Overall, closed population Huggins-Pledger estimators showed the highest precision and were most robust to sparse data, heterogeneity, and capture probability correlation among sampling types. Results also indicate that these estimators can be used when a segment of the population has zero capture probability for one of the methods. We propose that this general methodology may be useful for other species in which mark-recapture data are available from multiple sources.

  4. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin

    NASA Astrophysics Data System (ADS)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng

    2014-05-01

    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to 2008, while the intensity of such flow extremes is comparatively increasing especially for the higher return levels.

  5. A biomechanical model for fibril recruitment: Evaluation in tendons and arteries.

    PubMed

    Bevan, Tim; Merabet, Nadege; Hornsby, Jack; Watton, Paul N; Thompson, Mark S

    2018-06-06

    Simulations of soft tissue mechanobiological behaviour are increasingly important for clinical prediction of aneurysm, tendinopathy and other disorders. Mechanical behaviour at low stretches is governed by fibril straightening, transitioning into load-bearing at recruitment stretch, resulting in a tissue stiffening effect. Previous investigations have suggested theoretical relationships between stress-stretch measurements and recruitment probability density function (PDF) but not derived these rigorously nor evaluated these experimentally. Other work has proposed image-based methods for measurement of recruitment but made use of arbitrary fibril critical straightness parameters. The aim of this work was to provide a sound theoretical basis for estimating recruitment PDF from stress-stretch measurements and to evaluate this relationship using image-based methods, clearly motivating the choice of fibril critical straightness parameter in rat tail tendon and porcine artery. Rigorous derivation showed that the recruitment PDF may be estimated from the second stretch derivative of the first Piola-Kirchoff tissue stress. Image-based fibril recruitment identified the fibril straightness parameter that maximised Pearson correlation coefficients (PCC) with estimated PDFs. Using these critical straightness parameters the new method for estimating recruitment PDF showed a PCC with image-based measures of 0.915 and 0.933 for tendons and arteries respectively. This method may be used for accurate estimation of fibril recruitment PDF in mechanobiological simulation where fibril-level mechanical parameters are important for predicting cell behaviour. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. [Demography and nesting ecology of green iguana, Iguana iguana (Squamata: Iguanidae), in 2 exploited populations in Depresión Momposina, Colombia].

    PubMed

    Muñoz, Eliana M; Ortega, Angela M; Bock, Brian C; Páez, Vivian P

    2003-03-01

    We studied the demography and nesting ecology of two populations of Iguana iguana that face heavy exploitation and habitat modification in the Momposina Depression, Colombia. Lineal transect data was analyzed using the Fourier model to provide estimates of social group densities, which was found to differ both within and among populations (1.05-6.0 groups/ha). Mean group size and overall iguana density estimates varied between populations as well (1.5-13.7 iguanas/ha). The density estimates were far lower than those reported from more protected areas in Panama and Venezuela. Iguana densities were consistently higher in sites located along rivers (2.5 iguanas/group) than in sites along the margin of marshes, probably due to vegetational differences (1.5 iguanas/group). There was no correlation between density estimates and estimates of relative abundance (number of iguanas seen/hour/person) due to differing detectabilities of iguana groups among sites. The adult sex ratio (1:2.5 males:females) agreed well with other reports in the literature based upon observation of adult social groups, and probably results from the polygynous mating system in this species rather than a real demographic skew. Nesting in this population occurs from the end of January through March and hatching occurs between April and May. We monitored 34 nests, which suffered little vertebrate predation, perhaps due to the lack of a complete vertebrate fauna in this densely inhabited area, but nests suffered from inundation, cattle trampling, and infestation by phorid fly larvae. Clutch sizes in these populations were lower than all other published reports except for the iguana population on the highly xeric island of Curaçao, implying that adult females in our area are unusually small. We argue that this is more likely the result of the exploitation of these populations rather than an adaptive response to environmentally extreme conditions.

  7. Discrimination between induced, triggered, and natural earthquakes close to hydrocarbon reservoirs: A probabilistic approach based on the modeling of depletion-induced stress changes and seismological source parameters

    NASA Astrophysics Data System (ADS)

    Dahm, Torsten; Cesca, Simone; Hainzl, Sebastian; Braun, Thomas; Krüger, Frank

    2015-04-01

    Earthquakes occurring close to hydrocarbon fields under production are often under critical view of being induced or triggered. However, clear and testable rules to discriminate the different events have rarely been developed and tested. The unresolved scientific problem may lead to lengthy public disputes with unpredictable impact on the local acceptance of the exploitation and field operations. We propose a quantitative approach to discriminate induced, triggered, and natural earthquakes, which is based on testable input parameters. Maxima of occurrence probabilities are compared for the cases under question, and a single probability of being triggered or induced is reported. The uncertainties of earthquake location and other input parameters are considered in terms of the integration over probability density functions. The probability that events have been human triggered/induced is derived from the modeling of Coulomb stress changes and a rate and state-dependent seismicity model. In our case a 3-D boundary element method has been adapted for the nuclei of strain approach to estimate the stress changes outside the reservoir, which are related to pore pressure changes in the field formation. The predicted rate of natural earthquakes is either derived from the background seismicity or, in case of rare events, from an estimate of the tectonic stress rate. Instrumentally derived seismological information on the event location, source mechanism, and the size of the rupture plane is of advantage for the method. If the rupture plane has been estimated, the discrimination between induced or only triggered events is theoretically possible if probability functions are convolved with a rupture fault filter. We apply the approach to three recent main shock events: (1) the Mw 4.3 Ekofisk 2001, North Sea, earthquake close to the Ekofisk oil field; (2) the Mw 4.4 Rotenburg 2004, Northern Germany, earthquake in the vicinity of the Söhlingen gas field; and (3) the Mw 6.1 Emilia 2012, Northern Italy, earthquake in the vicinity of a hydrocarbon reservoir. The three test cases cover the complete range of possible causes: clearly "human induced," "not even human triggered," and a third case in between both extremes.

  8. Estimating factors influencing the detection probability of semiaquatic freshwater snails using quadrat survey methods

    USGS Publications Warehouse

    Roesler, Elizabeth L.; Grabowski, Timothy B.

    2018-01-01

    Developing effective monitoring methods for elusive, rare, or patchily distributed species requires extra considerations, such as imperfect detection. Although detection is frequently modeled, the opportunity to assess it empirically is rare, particularly for imperiled species. We used Pecos assiminea (Assiminea pecos), an endangered semiaquatic snail, as a case study to test detection and accuracy issues surrounding quadrat searches. Quadrats (9 × 20 cm; n = 12) were placed in suitable Pecos assiminea habitat and randomly assigned a treatment, defined as the number of empty snail shells (0, 3, 6, or 9). Ten observers rotated through each quadrat, conducting 5-min visual searches for shells. The probability of detecting a shell when present was 67.4 ± 3.0%, but it decreased with the increasing litter depth and fewer number of shells present. The mean (± SE) observer accuracy was 25.5 ± 4.3%. Accuracy was positively correlated to the number of shells in the quadrat and negatively correlated to the number of times a quadrat was searched. The results indicate quadrat surveys likely underrepresent true abundance, but accurately determine the presence or absence. Understanding detection and accuracy of elusive, rare, or imperiled species improves density estimates and aids in monitoring and conservation efforts.

  9. Statistical Orbit Determination using the Particle Filter for Incorporating Non-Gaussian Uncertainties

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda; Garrison, James L.; Carpenter, J. Russell

    2012-01-01

    The tracking of space objects requires frequent and accurate monitoring for collision avoidance. As even collision events with very low probability are important, accurate prediction of collisions require the representation of the full probability density function (PDF) of the random orbit state. Through representing the full PDF of the orbit state for orbit maintenance and collision avoidance, we can take advantage of the statistical information present in the heavy tailed distributions, more accurately representing the orbit states with low probability. The classical methods of orbit determination (i.e. Kalman Filter and its derivatives) provide state estimates based on only the second moments of the state and measurement errors that are captured by assuming a Gaussian distribution. Although the measurement errors can be accurately assumed to have a Gaussian distribution, errors with a non-Gaussian distribution could arise during propagation between observations. Moreover, unmodeled dynamics in the orbit model could introduce non-Gaussian errors into the process noise. A Particle Filter (PF) is proposed as a nonlinear filtering technique that is capable of propagating and estimating a more complete representation of the state distribution as an accurate approximation of a full PDF. The PF uses Monte Carlo runs to generate particles that approximate the full PDF representation. The PF is applied in the estimation and propagation of a highly eccentric orbit and the results are compared to the Extended Kalman Filter and Splitting Gaussian Mixture algorithms to demonstrate its proficiency.

  10. Mathematical models for nonparametric inferences from line transect data

    USGS Publications Warehouse

    Burnham, K.P.; Anderson, D.R.

    1976-01-01

    A general mathematical theory of line transects is develoepd which supplies a framework for nonparametric density estimation based on either right angle or sighting distances. The probability of observing a point given its right angle distance (y) from the line is generalized to an arbitrary function g(y). Given only that g(O) = 1, it is shown there are nonparametric approaches to density estimation using the observed right angle distances. The model is then generalized to include sighting distances (r). Let f(y/r) be the conditional distribution of right angle distance given sighting distance. It is shown that nonparametric estimation based only on sighting distances requires we know the transformation of r given by f(O/r).

  11. Variance estimation when using inverse probability of treatment weighting (IPTW) with survival analysis.

    PubMed

    Austin, Peter C

    2016-12-30

    Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naïve model-based variance estimator; (ii) a robust sandwich-type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  12. Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Markley, F. Landis

    2010-01-01

    When facing a conjunction between space objects, decision makers must chose whether to maneuver for collision avoidance or not. We apply a well-known decision procedure, the sequential probability ratio test, to this problem. We propose two approaches to the problem solution, one based on a frequentist method, and the other on a Bayesian method. The frequentist method does not require any prior knowledge concerning the conjunction, while the Bayesian method assumes knowledge of prior probability densities. Our results show that both methods achieve desired missed detection rates, but the frequentist method's false alarm performance is inferior to the Bayesian method's

  13. Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density

    DOE PAGES

    Smallwood, David O.

    1997-01-01

    The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs) of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power) spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general casemore » of matching a target probability density function using a zero memory nonlinear (ZMNL) function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV) are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.« less

  14. Effect of Phonotactic Probability and Neighborhood Density on Word-Learning Configuration by Preschoolers with Typical Development and Specific Language Impairment

    ERIC Educational Resources Information Center

    Gray, Shelley; Pittman, Andrea; Weinhold, Juliet

    2014-01-01

    Purpose: In this study, the authors assessed the effects of phonotactic probability and neighborhood density on word-learning configuration by preschoolers with specific language impairment (SLI) and typical language development (TD). Method: One hundred thirty-one children participated: 48 with SLI, 44 with TD matched on age and gender, and 39…

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Russa, D

    Purpose: The purpose of this project is to develop a robust method of parameter estimation for a Poisson-based TCP model using Bayesian inference. Methods: Bayesian inference was performed using the PyMC3 probabilistic programming framework written in Python. A Poisson-based TCP regression model that accounts for clonogen proliferation was fit to observed rates of local relapse as a function of equivalent dose in 2 Gy fractions for a population of 623 stage-I non-small-cell lung cancer patients. The Slice Markov Chain Monte Carlo sampling algorithm was used to sample the posterior distributions, and was initiated using the maximum of the posterior distributionsmore » found by optimization. The calculation of TCP with each sample step required integration over the free parameter α, which was performed using an adaptive 24-point Gauss-Legendre quadrature. Convergence was verified via inspection of the trace plot and posterior distribution for each of the fit parameters, as well as with comparisons of the most probable parameter values with their respective maximum likelihood estimates. Results: Posterior distributions for α, the standard deviation of α (σ), the average tumour cell-doubling time (Td), and the repopulation delay time (Tk), were generated assuming α/β = 10 Gy, and a fixed clonogen density of 10{sup 7} cm−{sup 3}. Posterior predictive plots generated from samples from these posterior distributions are in excellent agreement with the observed rates of local relapse used in the Bayesian inference. The most probable values of the model parameters also agree well with maximum likelihood estimates. Conclusion: A robust method of performing Bayesian inference of TCP data using a complex TCP model has been established.« less

  16. Oak regeneration and overstory density in the Missouri Ozarks

    Treesearch

    David R. Larsen; Monte A. Metzger

    1997-01-01

    Reducing overstory density is a commonly recommended method of increasing the regeneration potential of oak (Quercus) forests. However, recommendations seldom specify the probable increase in density or the size of reproduction associated with a given residual overstory density. This paper presents logistic regression models that describe this...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastner, S.O.; Bhatia, A.K.

    A generalized method for obtaining individual level population ratios is used to obtain relative intensities of extreme ultraviolet Fe XV emission lines in the range 284 --500 A, which are density dependent for electron densities in the tokamak regime or higher. Four lines in particular are found to attain quite high intensities in the high-density limit. The same calculation provides inelastic contributions to linewidths. The method connects level populations and level widths through total probabilities t/sub i/j, related to ''taboo'' probabilities of Markov chain theory. The t/sub i/j are here evaluated for a real atomic system, being therefore of potentialmore » interest to random-walk theorists who have been limited to idealized systems characterized by simplified transition schemes.« less

  18. An empirical probability model of detecting species at low densities.

    PubMed

    Delaney, David G; Leung, Brian

    2010-06-01

    False negatives, not detecting things that are actually present, are an important but understudied problem. False negatives are the result of our inability to perfectly detect species, especially those at low density such as endangered species or newly arriving introduced species. They reduce our ability to interpret presence-absence survey data and make sound management decisions (e.g., rapid response). To reduce the probability of false negatives, we need to compare the efficacy and sensitivity of different sampling approaches and quantify an unbiased estimate of the probability of detection. We conducted field experiments in the intertidal zone of New England and New York to test the sensitivity of two sampling approaches (quadrat vs. total area search, TAS), given different target characteristics (mobile vs. sessile). Using logistic regression we built detection curves for each sampling approach that related the sampling intensity and the density of targets to the probability of detection. The TAS approach reduced the probability of false negatives and detected targets faster than the quadrat approach. Mobility of targets increased the time to detection but did not affect detection success. Finally, we interpreted two years of presence-absence data on the distribution of the Asian shore crab (Hemigrapsus sanguineus) in New England and New York, using our probability model for false negatives. The type of experimental approach in this paper can help to reduce false negatives and increase our ability to detect species at low densities by refining sampling approaches, which can guide conservation strategies and management decisions in various areas of ecology such as conservation biology and invasion ecology.

  19. Presence-nonpresence surveys of golden-cheeked warblers: detection, occupancy and survey effort

    USGS Publications Warehouse

    Watson, C.A.; Weckerly, F.W.; Hatfield, J.S.; Farquhar, C.C.; Williamson, P.S.

    2008-01-01

    Surveys to detect the presence or absence of endangered species may not consistently cover an area, account for imperfect detection or consider that detection and species presence at sample units may change within a survey season. We evaluated a detection?nondetection survey method for the federally endangered golden-cheeked warbler (GCWA) Dendroica chrysoparia. Three study areas were selected across the breeding range of GCWA in central Texas. Within each area, 28-36 detection stations were placed 200 m apart. Each detection station was surveyed nine times during the breeding season in 2 consecutive years. Surveyors remained up to 8 min at each detection station recording GCWA detected by sight or sound. To assess the potential influence of environmental covariates (e.g. slope, aspect, canopy cover, study area) on detection and occupancy and possible changes in occupancy and detection probabilities within breeding seasons, 30 models were analyzed. Using information-theoretic model selection procedures, we found that detection probabilities and occupancy varied among study areas and within breeding seasons. Detection probabilities ranged from 0.20 to 0.80 and occupancy ranged from 0.56 to 0.95. Because study areas with high detection probabilities had high occupancy, a conservative survey effort (erred towards too much surveying) was estimated using the lowest detection probability. We determined that nine surveys of 35 stations were needed to have estimates of occupancy with coefficients of variation <20%. Our survey evaluation evidently captured the key environmental variable that influenced bird detection (GCWA density) and accommodated the changes in GCWA distribution throughout the breeding season.

  20. The correct estimate of the probability of false detection of the matched filter in weak-signal detection problems

    NASA Astrophysics Data System (ADS)

    Vio, R.; Andreani, P.

    2016-05-01

    The reliable detection of weak signals is a critical issue in many astronomical contexts and may have severe consequences for determining number counts and luminosity functions, but also for optimizing the use of telescope time in follow-up observations. Because of its optimal properties, one of the most popular and widely-used detection technique is the matched filter (MF). This is a linear filter designed to maximise the detectability of a signal of known structure that is buried in additive Gaussian random noise. In this work we show that in the very common situation where the number and position of the searched signals within a data sequence (e.g. an emission line in a spectrum) or an image (e.g. a point-source in an interferometric map) are unknown, this technique, when applied in its standard form, may severely underestimate the probability of false detection. This is because the correct use of the MF relies upon a priori knowledge of the position of the signal of interest. In the absence of this information, the statistical significance of features that are actually noise is overestimated and detections claimed that are actually spurious. For this reason, we present an alternative method of computing the probability of false detection that is based on the probability density function (PDF) of the peaks of a random field. It is able to provide a correct estimate of the probability of false detection for the one-, two- and three-dimensional case. We apply this technique to a real two-dimensional interferometric map obtained with ALMA.

Top