Characterization of Akiyama probe applied to dual-probes atomic force microscope
NASA Astrophysics Data System (ADS)
Wang, Hequn; Gao, Sitian; Li, Wei; Shi, Yushu; Li, Qi; Li, Shi; Zhu, Zhendong
2016-10-01
The measurement of nano-scale line-width has always been important and difficult in the field of nanometer measurements, while the rapid development of integrated circuit greatly raises the demand again. As one kind of scanning probe microscope (SPM), atomic force microscope (AFM) can realize quasi three-dimensional measurement, which is widely used in nanometer scale line-width measurement. Our team researched a dual-probes atomic force microscope, which can eliminate the prevalent effect of probe width on measurement results. In dual-probes AFM system, a novel head are newly designed. A kind of self-sensing and self-exciting probes which is Nanosensors cooperation's patented probe—Akiyama probe, is used in this novel head. The Akiyama probe applied to dual-probe atomic force microscope is one of the most important issues. The characterization of Akiyama probe would affect performance and accuracy of the whole system. The fundamental features of the Akiyama probe are electrically and optically characterized in "approach-withdraw" experiments. Further investigations include the frequency response of an Akiyama probe to small mechanical vibrations externally applied to the tip and the effective loading force yielding between the tip and the sample during the periodic contact. We hope that the characterization of the Akiyama probe described in this paper will guide application for dual-probe atomic force microscope.
Four-probe measurements with a three-probe scanning tunneling microscope.
Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A
2014-04-01
We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.
Four-probe measurements with a three-probe scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik
2014-04-15
We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position bymore » imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.« less
Coordinate metrology using scanning probe microscopes
NASA Astrophysics Data System (ADS)
Marinello, F.; Savio, E.; Bariani, P.; Carmignato, S.
2009-08-01
New positioning, probing and measuring strategies in coordinate metrology are needed for the accomplishment of true three-dimensional characterization of microstructures, with uncertainties in the nanometre range. In the present work, the implementation of scanning probe microscopes (SPMs) as systems for coordinate metrology is discussed. A new non-raster measurement approach is proposed, where the probe is moved to sense points along free paths on the sample surface, with no loss of accuracy with respect to traditional raster scanning and scan time reduction. Furthermore, new probes featuring long tips with innovative geometries suitable for coordinate metrology through SPMs are examined and reported.
NASA Astrophysics Data System (ADS)
Kim, Duckhoe; Sahin, Ozgur
2015-03-01
Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.
Qin, Shengyong; Kim, Tae-Hwan; Wang, Zhouhang; Li, An-Ping
2012-06-01
The wide variety of nanoscale structures and devices demands novel tools for handling, assembly, and fabrication at nanoscopic positioning precision. The manipulation tools should allow for in situ characterization and testing of fundamental building blocks, such as nanotubes and nanowires, as they are built into functional devices. In this paper, a bottom-up technique for nanomanipulation and nanofabrication is reported by using a 4-probe scanning tunneling microscope (STM) combined with a scanning electron microscope (SEM). The applications of this technique are demonstrated in a variety of nanosystems, from manipulating individual atoms to bending, cutting, breaking carbon nanofibers, and constructing nanodevices for electrical characterizations. The combination of the wide field of view of SEM, the atomic position resolution of STM, and the flexibility of multiple scanning probes is expected to be a valuable tool for rapid prototyping in the nanoscience and nanotechnology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santamaria, L.; Siller, H. R.; Garcia-Ortiz, C. E., E-mail: cegarcia@cicese.mx
In this work, we present an alternative optical method to determine the probe-sample separation distance in a scanning near-field optical microscope. The experimental method is based in a Lloyd’s mirror interferometer and offers a measurement precision deviation of ∼100 nm using digital image processing and numerical analysis. The technique can also be strategically combined with the characterization of piezoelectric actuators and stability evaluation of the optical system. It also opens the possibility for the development of an automatic approximation control system valid for probe-sample distances from 5 to 500 μm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enobio, Eli Christopher I.; Ohtani, Keita; Ohno, Yuzo
2013-12-02
We demonstrate the use of a Fourier Transform Infrared microscope system to detect and measure electroreflectance (ER) from mid-infrared quantum cascade laser (QCL) device. To characterize intersubband transition (ISBT) energies in a functioning QCL device, a microscope is used to focus the probe on the QCL cleaved mirror. The measured ER spectra exhibit resonance features associated to ISBTs under applied electric field in agreement with the numerical calculations and comparable to observed photocurrent, and emission peaks. The method demonstrates the potential as a characterization tool for QCL devices.
Fabrication and Characterization of Nanopillars for Silicon-Based Thermoelectrics
NASA Astrophysics Data System (ADS)
Stranz, A.; Sökmen, Ü.; Wehmann, H.-H.; Waag, A.; Peiner, E.
2010-09-01
Si-based nanopillars of various sizes were fabricated by lateral structuring using anisotropic etching and thermal oxidation. We obtained pillars of diameter <500 nm, about 25 μm in height, with an aspect ratio of more than 50. The distance between pillars was varied from 500 nm to 10 μm. Besides the fabrication and structural characterization of silicon nanopillars, implementation of adequate metrology for measuring single pillars is described. Commercial tungsten probes, self-made gold probes, and piezoresistive silicon cantilever probes were used for measurements of nanopillars in a scanning electron microscope (SEM) equipped with nanomanipulators.
Quantitative characterization of semiconductor structures with a scanning microwave microscope.
Korolyov, S A; Reznik, A N
2018-02-01
In this work, our earlier method for measuring resistance R sh of semiconductor films with a near-field scanning microwave microscope [A. N. Reznik and S. A. Korolyov, J. Appl. Phys. 119, 094504 (2016)] is studied in a 0.1 kΩ/sq < R sh < 15 kΩ/sq range. The method is based on a microscope model in the form of a monopole or dipole antenna interacting with an arbitrary layered structure. The model fitting parameters are determined from the data yielded by calibration measurements on a system of etalon samples. The performance of the method was analyzed experimentally, using strip-probe and coaxial-probe microscopes in the frequency range of 1-3 GHz. For test structures, we used doped GaN films on the Al 2 O 3 substrate and also transistor structures based on the AlGaN/GaN heterojunction and AlGaAs/GaAs/InGaAs/GaAs/AlGaAs quantum well with a conducting channel. The obtained microwave microscope data were compared with the results of measurements by the van der Pauw method. At the first stage of the experiment, the calibration etalons were bulk homogeneous samples with different permittivity/conductivity values. In this case, satisfactory agreement between the microscope and the van der Pauw data was obtained with a strip probe on all tested samples in the entire range of R sh . With a coaxial probe, such accordance was observed only in high-ohmic samples with R sh > 1 kΩ/sq. The use of GaN film structures as a calibration system helped to increase the accuracy of the coaxial-probe-aided measurement of R sh to a level of ∼10%.
Quantitative characterization of semiconductor structures with a scanning microwave microscope
NASA Astrophysics Data System (ADS)
Korolyov, S. A.; Reznik, A. N.
2018-02-01
In this work, our earlier method for measuring resistance Rsh of semiconductor films with a near-field scanning microwave microscope [A. N. Reznik and S. A. Korolyov, J. Appl. Phys. 119, 094504 (2016)] is studied in a 0.1 kΩ/sq < Rsh < 15 kΩ/sq range. The method is based on a microscope model in the form of a monopole or dipole antenna interacting with an arbitrary layered structure. The model fitting parameters are determined from the data yielded by calibration measurements on a system of etalon samples. The performance of the method was analyzed experimentally, using strip-probe and coaxial-probe microscopes in the frequency range of 1-3 GHz. For test structures, we used doped GaN films on the Al2O3 substrate and also transistor structures based on the AlGaN/GaN heterojunction and AlGaAs/GaAs/InGaAs/GaAs/AlGaAs quantum well with a conducting channel. The obtained microwave microscope data were compared with the results of measurements by the van der Pauw method. At the first stage of the experiment, the calibration etalons were bulk homogeneous samples with different permittivity/conductivity values. In this case, satisfactory agreement between the microscope and the van der Pauw data was obtained with a strip probe on all tested samples in the entire range of Rsh. With a coaxial probe, such accordance was observed only in high-ohmic samples with Rsh > 1 kΩ/sq. The use of GaN film structures as a calibration system helped to increase the accuracy of the coaxial-probe-aided measurement of Rsh to a level of ˜10%.
Development of first ever scanning probe microscopy capabilities for plutonium
NASA Astrophysics Data System (ADS)
Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; Vodnik, Douglas R.; Ramos, Michael; Richmond, Scott; Moore, David P.; Venhaus, Thomas J.; Joyce, Stephen A.; Usov, Igor O.
2017-04-01
Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. These first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.
Development of first ever scanning probe microscopy capabilities for plutonium
Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; ...
2017-04-01
Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. In conclusion, these first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.
NASA Astrophysics Data System (ADS)
Kuppers, J. D.; Gouverneur, I. M.; Rodgers, M. T.; Wenger, J.; Furlong, C.
2006-08-01
In atomic probe microscopy, micro-probes of various sizes, geometries, and materials are used to define the interface between the samples under investigation and the measuring detectors and instrumentation. Therefore, measuring resolution in atomic probe microscopy is highly dependent on the transfer function characterizing the micro-probes used. In this paper, characterization of the dynamic transfer function of specific micro-cantilever probes used in an Atomic Force Microscope (AFM) operating in the tapping mode is presented. Characterization is based on the combined application of laser Doppler vibrometry (LDV) and real-time stroboscopic optoelectronic holographic microscopy (OEHM) methodologies. LDV is used for the rapid measurement of the frequency response of the probes due to an excitation function containing multiple frequency components. Data obtained from the measured frequency response is used to identify the principal harmonics. In order to identify mode shapes corresponding to the harmonics, full-field of view OEHM is applied. This is accomplished by measurements of motion at various points on the excitation curve surrounding the identified harmonics. It is shown that the combined application of LDV and OEHM enables the high-resolution characterization of mode shapes of vibration, damping characteristics, as well as transient response of the micro-cantilever probes. Such characterization is necessary in high-resolution AFM measurements.
RTSPM: real-time Linux control software for scanning probe microscopy.
Chandrasekhar, V; Mehta, M M
2013-01-01
Real time computer control is an essential feature of scanning probe microscopes, which have become important tools for the characterization and investigation of nanometer scale samples. Most commercial (and some open-source) scanning probe data acquisition software uses digital signal processors to handle the real time data processing and control, which adds to the expense and complexity of the control software. We describe here scan control software that uses a single computer and a data acquisition card to acquire scan data. The computer runs an open-source real time Linux kernel, which permits fast acquisition and control while maintaining a responsive graphical user interface. Images from a simulated tuning-fork based microscope as well as a standard topographical sample are also presented, showing some of the capabilities of the software.
Indentation-Enabled In Situ Mechanical Characterization of Micro/Nanopillars in Electron Microscopes
NASA Astrophysics Data System (ADS)
Guo, Qiang; Fu, Xidan; Guo, Xiaolei; Liu, Zhiying; Shi, Yan; Zhang, Di
2018-04-01
Indentation-enabled micro/nanomechanical characterization of small-scale specimens provides powerful new tools for probing materials properties that were once unattainable by conventional experimental methods. Recent advancement in instrumentation further allows mechanical testing to be carried out in situ in electron microscopes, with high spatial and temporal resolution. This review discusses the recent development of nanoindentation-enabled in situ mechanical testing in electron microscopes, with an emphasis on the study of micro/nanopillars. Focus is given to novel applications beyond simple compressive and tensile testing that have been developed in the past few years, and limitations and possible future research directions in this field are proposed and discussed.
Two-probe atomic-force microscope manipulator and its applications.
Zhukov, A A; Stolyarov, V S; Kononenko, O V
2017-06-01
We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.
Interferometric scanning optical microscope for surface characterization.
Offside, M J; Somekh, M G
1992-11-01
A phase-sensitive scanning optical microscope is described that can measure surface height changes down to 0.1 nm. This is achieved by using two heterodyne Michelson interferometers in parallel. One interferometer probes the sample with a tightly focused beam, and the second has a collimated beam that illuminates a large area of the surface, providing a large area on sample reference. This is facilitated by using a specially constructed objective lens that permits the relative areas illuminated by the two probe beams to be varied both arbitrarily and independently, thus ensuring an accurate absolute phase measurement. We subtracted the phase outputs from each interferometer to provide the sample phase information, canceling the phase noise resulting from microphonics in the process. Results from a prototype version of the microscope are presented that demonstrate the advantages of the system over existing techniques.
High-Temperature RF Probe Station For Device Characterization Through 500 deg C and 50 GHz
NASA Technical Reports Server (NTRS)
Schwartz, Zachary D.; Downey, Alan N.; Alterovitz, Samuel A.; Ponchak, George E.; Williams, W. D. (Technical Monitor)
2003-01-01
A high-temperature measurement system capable of performing on-wafer microwave testing of semiconductor devices has been developed. This high temperature probe station can characterize active and passive devices and circuits at temperatures ranging from room temperature to above 500 C. The heating system uses a ceramic heater mounted on an insulating block of NASA shuttle tile material. The temperature is adjusted by a graphical computer interface and is controlled by the software-based feedback loop. The system is used with a Hewlett-Packard 8510C Network Analyzer to measure scattering parameters over a frequency range of 1 to 50 GHz. The microwave probes, cables, and inspection microscope are all shielded to protect from heat damage. The high temperature probe station has been successfully used to characterize gold transmission lines on silicon carbide at temperatures up to 540 C.
Richter, Johan C O; Haj-Hosseini, Neda; Hallbeck, Martin; Wårdell, Karin
2017-06-01
Visualization of the tumor is crucial for differentiating malignant tissue from healthy brain during surgery, especially in the tumor marginal zone. The aim of the study was to introduce a fluorescence spectroscopy-based hand-held probe (HHF-probe) for tumor identification in combination with the fluorescence guided resection surgical microscope (FGR-microscope), and evaluate them in terms of diagnostic performance and practical aspects of fluorescence detection. Eighteen operations were performed on 16 patients with suspected high-grade glioma. The HHF-probe and the FGR-microscope were used for detection of protoporphyrin (PpIX) fluorescence induced by 5-aminolevulinic acid (5-ALA) and evaluated against histopathological analysis and visual grading done through the FGR-microscope by the surgeon. A ratio of PpIX fluorescence intensity to the autofluorescence intensity (fluorescence ratio) was used to quantify the spectra detected by the probe. Fluorescence ratio medians (range 0 - 40) measured by the probe were related to the intensity of the fluorescence in the FGR-microscope, categorized as "none" (0.3, n=131), "weak" (1.6, n=34) and "strong" (5.4, n=28). Of 131 "none" points in the FGR-microscope, 88 (67%) exhibited fluorescence with the HHF-probe. For the tumor marginal zone, the area under the receiver operator characteristics (ROC) curve was 0.49 for the FGR-microscope and 0.65 for the HHF-probe. The probe was integrated in the established routine of tumor resection using the FGR-microscope. The HHF-probe was superior to the FGR-microscope in sensitivity; it detected tumor remnants after debulking under the FGR-microscope. The combination of the HHF-probe and the FGR-microscope was beneficial especially in the tumor marginal zone. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Custom Super-Resolution Microscope for the Structural Analysis of Nanostructures
2018-05-29
research community. As part of our validation of the new design approach, we performed two - color imaging of pairs of adjacent oligo probes hybridized...nanostructures and biological targets. Our microscope features a large field of view and custom optics that facilitate 3D imaging and enhanced contrast in...our imaging throughput by creating two microscopy platforms for high-throughput, super-resolution materials characterization, with the AO set-up being
Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris
2014-12-01
Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Andrew J., E-mail: berger.156@osu.edu; Page, Michael R.; Young, Justin R.
Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform themore » various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.« less
Method for nanoscale spatial registration of scanning probes with substrates and surfaces
NASA Technical Reports Server (NTRS)
Wade, Lawrence A. (Inventor)
2010-01-01
Embodiments in accordance with the present invention relate to methods and apparatuses for aligning a scanning probe used to pattern a substrate, by comparing the position of the probe to a reference location or spot on the substrate. A first light beam is focused on a surface of the substrate as a spatial reference point. A second light beam then illuminates the scanning probe being used for patterning. An optical microscope images both the focused light beam, and a diffraction pattern, shadow, or light backscattered by the illuminated scanning probe tip of a scanning probe microscope (SPM), which is typically the tip of the scanning probe on an atomic force microscope (AFM). Alignment of the scanning probe tip relative to the mark is then determined by visual observation of the microscope image. This alignment process may be repeated to allow for modification or changing of the scanning probe microscope tip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhunthan, N.; Singh, Om Pal; Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org
2015-10-15
Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films wasmore » done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.« less
Dong, Yang; Qi, Ji; He, Honghui; He, Chao; Liu, Shaoxiong; Wu, Jian; Elson, Daniel S; Ma, Hui
2017-08-01
Polarization imaging has been recognized as a potentially powerful technique for probing the microstructural information and optical properties of complex biological specimens. Recently, we have reported a Mueller matrix microscope by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission-light microscope, and applied it to differentiate human liver and cervical cancerous tissues with fibrosis. In this paper, we apply the Mueller matrix microscope for quantitative detection of human breast ductal carcinoma samples at different stages. The Mueller matrix polar decomposition and transformation parameters of the breast ductal tissues in different regions and at different stages are calculated and analyzed. For more quantitative comparisons, several widely-used image texture feature parameters are also calculated to characterize the difference in the polarimetric images. The experimental results indicate that the Mueller matrix microscope and the polarization parameters can facilitate the quantitative detection of breast ductal carcinoma tissues at different stages.
Hachtel, Jordan A.; Marvinney, Claire; Mouti, Anas; ...
2016-03-02
The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows usmore » to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. Furthermore, the approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torun, H.; Torello, D.; Degertekin, F. L.
2011-08-15
The authors describe a method of actuation for atomic force microscope (AFM) probes to improve imaging speed and displacement range simultaneously. Unlike conventional piezoelectric tube actuation, the proposed method involves a lever and fulcrum ''seesaw'' like actuation mechanism that uses a small, fast piezoelectric transducer. The lever arm of the seesaw mechanism increases the apparent displacement range by an adjustable gain factor, overcoming the standard tradeoff between imaging speed and displacement range. Experimental characterization of a cantilever holder implementing the method is provided together with comparative line scans obtained with contact mode imaging. An imaging bandwidth of 30 kHz inmore » air with the current setup was demonstrated.« less
NASA Astrophysics Data System (ADS)
Lapshin, Rostislav V.
2016-08-01
A method of distributed calibration of a probe microscope scanner is suggested. The main idea consists in a search for a net of local calibration coefficients (LCCs) in the process of automatic measurement of a standard surface, whereby each point of the movement space of the scanner can be characterized by a unique set of scale factors. Feature-oriented scanning (FOS) methodology is used as a basis for implementation of the distributed calibration permitting to exclude in situ the negative influence of thermal drift, creep and hysteresis on the obtained results. Possessing the calibration database enables correcting in one procedure all the spatial systematic distortions caused by nonlinearity, nonorthogonality and spurious crosstalk couplings of the microscope scanner piezomanipulators. To provide high precision of spatial measurements in nanometer range, the calibration is carried out using natural standards - constants of crystal lattice. One of the useful modes of the developed calibration method is a virtual mode. In the virtual mode, instead of measurement of a real surface of the standard, the calibration program makes a surface image ;measurement; of the standard, which was obtained earlier using conventional raster scanning. The application of the virtual mode permits simulation of the calibration process and detail analysis of raster distortions occurring in both conventional and counter surface scanning. Moreover, the mode allows to estimate the thermal drift and the creep velocities acting while surface scanning. Virtual calibration makes possible automatic characterization of a surface by the method of scanning probe microscopy (SPM).
Nanocarpets for Trapping Microscopic Particles
NASA Technical Reports Server (NTRS)
Noca, Flavio; Chen, Fei; Hunt, Brian; Bronikowski, Michael; Hoenk, Michael; Kowalczyk, Robert; Choi, Daniel
2004-01-01
Nanocarpets that is, carpets of carbon nanotubes are undergoing development as means of trapping microscopic particles for scientific analysis. Examples of such particles include inorganic particles, pollen, bacteria, and spores. Nanocarpets can be characterized as scaled-down versions of ordinary macroscopic floor carpets, which trap dust and other particulate matter, albeit not purposefully. Nanocarpets can also be characterized as mimicking both the structure and the particle-trapping behavior of ciliated lung epithelia, the carbon nanotubes being analogous to cilia. Carbon nanotubes can easily be chemically functionalized for selective trapping of specific particles of interest. One could, alternatively, use such other three-dimensionally-structured materials as aerogels and activated carbon for the purposeful trapping of microscopic particles. However, nanocarpets offer important advantages over these alternative materials: (1) Nanocarpets are amenable to nonintrusive probing by optical means; and (2) Nanocarpets offer greater surface-to-volume ratios.
Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Wang, Xiu; Kong, Wen; Yi, Gewen; Jia, Junhong
2011-10-01
In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.
Characterization of Cytokinetic Mutants Using Small Fluorescent Probes.
Smertenko, Andrei; Moschou, Panagiotis; Zhang, Laining; Fahy, Deirdre; Bozhkov, Peter
2016-01-01
Cytokinesis is a powerful paradigm for addressing fundamental questions of plant biology including molecular mechanisms of development, cell division, cell signaling, membrane trafficking, cell wall synthesis, and cytoskeletal dynamics. Genetics was instrumental in identification of proteins regulating cytokinesis. Characterization of mutant lines generated using forward or reverse genetics includes microscopic analysis for defects in cell division. Typically, failure of cytokinesis results in appearance of multinucleate cells, formation of cell wall stubs, and isotropic cell expansion in the root elongation zone. Small fluorescent probes served as a very effective tool for the detection of cytokinetic defects. Such probes stain living or formaldehyde-fixed specimens avoiding complex preparatory steps. Although resolution of the fluorescence probes is inferior to electron microscopy, the procedure is fast, easy, and does not require expensive materials or equipment. This chapter describes techniques for staining DNA with the probes DAPI and SYTO82, for staining membranes with FM4-64, and for staining cell wall with propidium iodide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, J.; Nicodemus, T.; Zhuang, Y., E-mail: yan.zhuang@wright.edu
2014-05-07
Grain boundary electrical conductivity of ferrite materials has been characterized using scanning microwave microscope. Structural, electrical, and magnetic properties of Fe{sub 3}O{sub 4} spin-sprayed thin films onto glass substrates for different length of growth times were investigated using a scanning microwave microscope, an atomic force microscope, a four-point probe measurement, and a made in house transmission line based magnetic permeameter. The real part of the magnetic permeability shows almost constant between 10 and 300 MHz. As the Fe{sub 3}O{sub 4} film thickness increases, the grain size becomes larger, leading to a higher DC conductivity. However, the loss in the Fe{sub 3}O{submore » 4} films at high frequency does not increase correspondingly. By measuring the reflection coefficient s{sub 11} from the scanning microwave microscope, it turns out that the grain boundaries of the Fe{sub 3}O{sub 4} films exhibit higher electric conductivity than the grains, which contributes loss at radio frequencies. This result will provide guidance for further improvement of low loss ferrite materials for high frequency applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Tevis D. B., E-mail: tjacobs@pitt.edu; Wabiszewski, Graham E.; Goodman, Alexander J.
2016-01-15
The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tipmore » has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture’s use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.« less
NASA Astrophysics Data System (ADS)
Jacobs, Tevis D. B.; Wabiszewski, Graham E.; Goodman, Alexander J.; Carpick, Robert W.
2016-01-01
The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tip has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture's use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.
Multiple-scanning-probe tunneling microscope with nanoscale positional recognition function.
Higuchi, Seiji; Kuramochi, Hiromi; Laurent, Olivier; Komatsubara, Takashi; Machida, Shinichi; Aono, Masakazu; Obori, Kenichi; Nakayama, Tomonobu
2010-07-01
Over the past decade, multiple-scanning-probe microscope systems with independently controlled probes have been developed for nanoscale electrical measurements. We developed a quadruple-scanning-probe tunneling microscope (QSPTM) that can determine and control the probe position through scanning-probe imaging. The difficulty of operating multiple probes with submicrometer precision drastically increases with the number of probes. To solve problems such as determining the relative positions of the probes and avoiding of contact between the probes, we adopted sample-scanning methods to obtain four images simultaneously and developed an original control system for QSPTM operation with a function of automatic positional recognition. These improvements make the QSPTM a more practical and useful instrument since four images can now be reliably produced, and consequently the positioning of the four probes becomes easier owing to the reduced chance of accidental contact between the probes.
Autonomous Scanning Probe Microscopy in Situ Tip Conditioning through Machine Learning.
Rashidi, Mohammad; Wolkow, Robert A
2018-05-23
Atomic-scale characterization and manipulation with scanning probe microscopy rely upon the use of an atomically sharp probe. Here we present automated methods based on machine learning to automatically detect and recondition the quality of the probe of a scanning tunneling microscope. As a model system, we employ these techniques on the technologically relevant hydrogen-terminated silicon surface, training the network to recognize abnormalities in the appearance of surface dangling bonds. Of the machine learning methods tested, a convolutional neural network yielded the greatest accuracy, achieving a positive identification of degraded tips in 97% of the test cases. By using multiple points of comparison and majority voting, the accuracy of the method is improved beyond 99%.
Investigation of the Radial Compression of Carbon Nanotubes with a Scanning Probe Microscope
NASA Astrophysics Data System (ADS)
Shen, Weidian; Jiang, Bin; Han, Bao Shan; Xie, Si-Shen
2001-03-01
Carbon nanotubes have attracted great interest since they were first synthesized. The tubes have substantial promise in a variety of applications due to their unique properties. Efforts have been made to characterize the mechanical properties of the tubes. However, previous work has concentrated on the tubes’ longitudinal properties, and studies of their radial properties lag behind. We have operated a scanning probe microscope, NanoScopeTM IIIa, in the indentation/scratching mode to carry out a nanoindentation test on the top of multiwalled carbon nanotubes. We measured the correlation between the radial stress and the tube compression, and thereby determined the radial compressive elastic modulus at different compressive forces. The measurements also allowed us to estimate the radial compressive strength of the tubes. Support of this work by an Eastern Michigan University Faculty Research Fellowship and by the K. C. Wong Education Foundation, Hong Kong is gratefully acknowledged.
Zhang, Lixin; Zheng, Xianlin; Deng, Wei; Lu, Yiqing; Lechevallier, Severine; Ye, Zhiqiang; Goldys, Ewa M; Dawes, Judith M; Piper, James A; Yuan, Jingli; Verelst, Marc; Jin, Dayong
2014-10-13
Time-gated luminescence microscopy using long-lifetime molecular probes can effectively eliminate autofluorescence to enable high contrast imaging. Here we investigate a new strategy of time-gated imaging for simultaneous visualisation of multiple species of microorganisms stained with long-lived complexes under low-background conditions. This is realized by imaging two pathogenic organisms (Giardia lamblia stained with a red europium probe and Cryptosporidium parvum with a green terbium probe) at UV wavelengths (320-400 nm) through synchronization of a flash lamp with high repetition rate (1 kHz) to a robust time-gating detection unit. This approach provides four times enhancement in signal-to-background ratio over non-time-gated imaging, while the average signal intensity also increases six-fold compared with that under UV LED excitation. The high sensitivity is further confirmed by imaging the single europium-doped Y₂O₂S nanocrystals (150 nm). We report technical details regarding the time-gating detection unit and demonstrate its compatibility with commercial epi-fluorescence microscopes, providing a valuable and convenient addition to standard laboratory equipment.
NASA Astrophysics Data System (ADS)
Zhang, Lixin; Zheng, Xianlin; Deng, Wei; Lu, Yiqing; Lechevallier, Severine; Ye, Zhiqiang; Goldys, Ewa M.; Dawes, Judith M.; Piper, James A.; Yuan, Jingli; Verelst, Marc; Jin, Dayong
2014-10-01
Time-gated luminescence microscopy using long-lifetime molecular probes can effectively eliminate autofluorescence to enable high contrast imaging. Here we investigate a new strategy of time-gated imaging for simultaneous visualisation of multiple species of microorganisms stained with long-lived complexes under low-background conditions. This is realized by imaging two pathogenic organisms (Giardia lamblia stained with a red europium probe and Cryptosporidium parvum with a green terbium probe) at UV wavelengths (320-400 nm) through synchronization of a flash lamp with high repetition rate (1 kHz) to a robust time-gating detection unit. This approach provides four times enhancement in signal-to-background ratio over non-time-gated imaging, while the average signal intensity also increases six-fold compared with that under UV LED excitation. The high sensitivity is further confirmed by imaging the single europium-doped Y2O2S nanocrystals (150 nm). We report technical details regarding the time-gating detection unit and demonstrate its compatibility with commercial epi-fluorescence microscopes, providing a valuable and convenient addition to standard laboratory equipment.
The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities
ERIC Educational Resources Information Center
Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex
2014-01-01
A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…
Effect of Silicon in U-10Mo Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kautz, Elizabeth J.; Devaraj, Arun; Kovarik, Libor
2017-08-31
This document details a method for evaluating the effect of silicon impurity content on U-10Mo alloys. Silicon concentration in U-10Mo alloys has been shown to impact the following: volume fraction of precipitate phases, effective density of the final alloy, and 235-U enrichment in the gamma-UMo matrix. This report presents a model for calculating these quantities as a function of Silicon concentration, which along with fuel foil characterization data, will serve as a reference for quality control of the U-10Mo final alloy Si content. Additionally, detailed characterization using scanning electron microscope imaging, transmission electron microscope diffraction, and atom probe tomography showedmore » that Silicon impurities present in U-10Mo alloys form a Si-rich precipitate phase.« less
Ultrafast scanning probe microscopy
Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.
1995-05-16
An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.
Ultrafast scanning probe microscopy
Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David
1995-01-01
An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.
Fundamental limits to frequency estimation: a comprehensive microscopic perspective
NASA Astrophysics Data System (ADS)
Haase, J. F.; Smirne, A.; Kołodyński, J.; Demkowicz-Dobrzański, R.; Huelga, S. F.
2018-05-01
We consider a metrology scenario in which qubit-like probes are used to sense an external field that affects their energy splitting in a linear fashion. Following the frequency estimation approach in which one optimizes the state and sensing time of the probes to maximize the sensitivity, we provide a systematic study of the attainable precision under the impact of noise originating from independent bosonic baths. Specifically, we invoke an explicit microscopic derivation of the probe dynamics using the spin-boson model with weak coupling of arbitrary geometry. We clarify how the secular approximation leads to a phase-covariant (PC) dynamics, where the noise terms commute with the field Hamiltonian, while the inclusion of non-secular contributions breaks the PC. Moreover, unless one restricts to a particular (i.e., Ohmic) spectral density of the bath modes, the noise terms may contain relevant information about the frequency to be estimated. Thus, by considering general evolutions of a single probe, we study regimes in which these two effects have a non-negligible impact on the achievable precision. We then consider baths of Ohmic spectral density yet fully accounting for the lack of PC, in order to characterize the ultimate attainable scaling of precision when N probes are used in parallel. Crucially, we show that beyond the semigroup (Lindbladian) regime the Zeno limit imposing the 1/N 3/2 scaling of the mean squared error, recently derived assuming PC, generalises to any dynamics of the probes, unless the latter are coupled to the baths in the direction perfectly transversal to the frequency encoding—when a novel scaling of 1/N 7/4 arises. As our microscopic approach covers all classes of dissipative dynamics, from semigroup to non-Markovian ones (each of them potentially non-phase-covariant), it provides an exhaustive picture, in which all the different asymptotic scalings of precision naturally emerge.
NASA Astrophysics Data System (ADS)
Guo, Tong; Wang, Siming; Zhao, Jian; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2011-12-01
A compact self-sensing atomic force microscope (AFM) head is developed for the micro-nano dimensional measurement. This AFM head works in tapping mode equipped with a commercial self-sensing probe. This kind of probe can benefit not only from the tuning fork's stable resonant frequency and high quality factor but also from the silicon cantilever's reasonable spring constant. The head is convenient to operate by its simplicity of structure, since it does not need any optical detector to measure the bending of the cantilever. The compact structure makes the head ease to combine with other measuring methods. According to the probe"s characteristics, a method is proposed to quickly calculate the cantilever"s resonance amplitude through measuring its electro-mechanical coupling factor. An experiment system is established based on the nano-measuring machine (NMM) as a high precision positioning stage. Using this system, the approach/retract test is carried out for calibrating the head. The tests can be traced to the meter definition by interferometers in NMM. Experimental results show that the non-linearity error of this AFM head is smaller than 1%, the sensitivity reaches 0.47nm/mV and the measurement stroke is several hundreds of nanometers.
Long working distance interference microscope
Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.
2004-04-13
Disclosed is a long working distance interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. The long working distance of 10-30 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-D height profiles of MEMS test structures to be acquired across an entire wafer. A well-matched pair of reference/sample objectives is not required, significantly reducing the cost of this microscope, as compared to a Linnik microinterferometer.
Contact resonances of U-shaped atomic force microscope probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezaei, E.; Turner, J. A., E-mail: jaturner@unl.edu
Recent approaches used to characterize the elastic or viscoelastic properties of materials with nanoscale resolution have focused on the contact resonances of atomic force microscope (CR-AFM) probes. The experiments for these CR-AFM methods involve measurement of several contact resonances from which the resonant frequency and peak width are found. The contact resonance values are then compared with the noncontact values in order for the sample properties to be evaluated. The data analysis requires vibration models associated with the probe during contact in order for the beam response to be deconvolved from the measured spectra. To date, the majority of CR-AFMmore » research has used rectangular probes that have a relatively simple vibration response. Recently, U-shaped AFM probes have created much interest because they allow local sample heating. However, the vibration response of these probes is much more complex such that CR-AFM is still in its infancy. In this article, a simplified analytical model of U-shaped probes is evaluated for contact resonance applications relative to a more complex finite element (FE) computational model. The tip-sample contact is modeled using three orthogonal Kelvin-Voigt elements such that the resonant frequency and peak width of each mode are functions of the contact conditions. For the purely elastic case, the frequency results of the simple model are within 8% of the FE model for the lowest six modes over a wide range of contact stiffness values. Results for the viscoelastic contact problem for which the quality factor of the lowest six modes is compared show agreement to within 13%. These results suggest that this simple model can be used effectively to evaluate CR-AFM experimental results during AFM scanning such that quantitative mapping of viscoelastic properties may be possible using U-shaped probes.« less
Nonlinear characterization of elasticity using quantitative optical coherence elastography.
Qiu, Yi; Zaki, Farzana R; Chandra, Namas; Chester, Shawn A; Liu, Xuan
2016-11-01
Optical coherence elastography (OCE) has been used to perform mechanical characterization on biological tissue at the microscopic scale. In this work, we used quantitative optical coherence elastography (qOCE), a novel technology we recently developed, to study the nonlinear elastic behavior of biological tissue. The qOCE system had a fiber-optic probe to exert a compressive force to deform tissue under the tip of the probe. Using the space-division multiplexed optical coherence tomography (OCT) signal detected by a spectral domain OCT engine, we were able to simultaneously quantify the probe deformation that was proportional to the force applied, and to quantify the tissue deformation. In other words, our qOCE system allowed us to establish the relationship between mechanical stimulus and tissue response to characterize the stiffness of biological tissue. Most biological tissues have nonlinear elastic behavior, and the apparent stress-strain relationship characterized by our qOCE system was nonlinear an extended range of strain, for a tissue-mimicking phantom as well as biological tissues. Our experimental results suggested that the quantification of force in OCE was critical for accurate characterization of tissue mechanical properties and the qOCE technique was capable of differentiating biological tissues based on the elasticity of tissue that is generally nonlinear.
Three-dimensional nanoscale characterisation of materials by atom probe tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Perea, Daniel E.; Liu, Jia
The development of three-dimensional (3D), characterization techniques with high spatial and mass resolution is crucial for understanding and developing advanced materials for many engineering applications as well as for understanding natural materials. In recent decades, atom probe tomography (APT) which combines a point projection microscope and time-of-flight mass spectrometer has evolved to be an excellent characterization technique capable of providing 3D nanoscale characterization of materials with sub-nanometer scale spatial resolution, with equal sensitivity for all elements. This review discusses the current state as of beginning of the year 2016 of APT instrumentation, new developments in sample preparation methods, experimental proceduresmore » for different material classes, reconstruction of APT results, the current status of correlative microscopy, and application of APT for microstructural characterization in established scientific areas like structural materials as well as new applications in semiconducting nanowires, semiconductor devices, battery materials, catalyst materials, geological materials and biological materials. Finally, a brief perspective is given regarding the future of APT.« less
Mössbauer study of Brazilian soapstone
NASA Astrophysics Data System (ADS)
Gonçalves, M. A.; de Jesus Filho, M. F.; Garg, V. K.
1991-11-01
Steatite mineral rocks, soapstone, have been studied by X-ray diffraction, optical microscopic analysis (modal analysis), electron probe micro analysis and Mössbauer spectroscopy for characterization, mineral percentages and chemical composition. Mössbauer spectra show both, magnetic interactions corresponding to magnetite and doublets corresponding to talc. chlorite, dolomite and tremolite. The temperature dependence of the quadrupole splitting in dolomite has been explained in terms of crystal field interaction.
Pulse-Shaping-Based Nonlinear Microscopy: Development and Applications
NASA Astrophysics Data System (ADS)
Flynn, Daniel Christopher
The combination of optical microscopy and ultrafast spectroscopy make the spatial characterization of chemical kinetics on the femtosecond time scale possible. Commercially available octave-spanning Ti:Sapphire oscillators with sub-8 fs pulse durations can drive a multitude of nonlinear transitions across a significant portion of the visible spectrum with minimal average power. Unfortunately, dispersion from microscope objectives broadens pulse durations, decreases temporal resolution and lowers the peak intensities required for driving nonlinear transitions. In this dissertation, pulse shaping is used to compress laser pulses after the microscope objective. By using a binary genetic algorithm, pulse-shapes are designed to enable selective two-photon excitation. The pulse-shapes are demonstrated in two-photon fluorescence of live COS-7 cells expressing GFP-variants mAmetrine and tdTomato. The pulse-shaping approach is applied to a new multiphoton fluorescence resonance energy transfer (FRET) stoichiometry method that quantifies donor and acceptor molecules in complex, as well as the ratio of total donor to acceptor molecules. Compared to conventional multi-photon imaging techniques that require laser tuning or multiple laser systems to selectively excite individual fluorophores, the pulse-shaping approach offers rapid selective multifluorphore imaging at biologically relevant time scales. By splitting the laser beam into two beams and building a second pulse shaper, a pulse-shaping-based pump-probe microscope is developed. The technique offers multiple imaging modalities, such as excited state absorption (ESA), ground state bleach (GSB), and stimulated emission (SE), enhancing contrast of structures via their unique quantum pathways without the addition of contrast agents. Pulse-shaping based pump-probe microscopy is demonstrated for endogenous chemical-contrast imaging of red blood cells. In the second section of this dissertation, ultrafast spectroscopic techniques are used to characterize structure-function relationships of two-photon absorbing GFP-type probes and optical limiting materials. Fluorescence lifetimes of GFP-type probes are shown to depend on functional group substitution position, therefore, enabling the synthesis of designer probes for the possible study of conformation changes and aggregation in biological systems. Similarly, it is determined that small differences in the structure and dimensionality of organometallic macrocycles result in a diverse set of optical properties, which serves as a basis for the molecular level design of nonlinear optical materials.
Cross-phase modulation spectral shifting: nonlinear phase contrast in a pump-probe microscope
Wilson, Jesse W.; Samineni, Prathyush; Warren, Warren S.; Fischer, Martin C.
2012-01-01
Microscopy with nonlinear phase contrast is achieved by a simple modification to a nonlinear pump-probe microscope. The technique measures cross-phase modulation by detecting a pump-induced spectral shift in the probe pulse. Images with nonlinear phase contrast are acquired both in transparent and absorptive media. In paraffin-embedded biopsy sections, cross-phase modulation complements the chemically-specific pump-probe images with structural context. PMID:22567580
Gysin, Urs; Glatzel, Thilo; Schmölzer, Thomas; Schöner, Adolf; Reshanov, Sergey; Bartolf, Holger; Meyer, Ernst
2015-01-01
The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip-sample interface for optically excited measurements such as local surface photo voltage detection. We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henk, C.; Garner, J.; Wandersee, J.H.
1994-12-31
We acquired and loaned several durable, easy-to use, though expensive video-probe microscopes. This hand-held, automatically focusing instrument can be used by a five year old and provides instant, excellent, in-focus images up to 200X on a video screen visible to all students simultaneously. The teacher is thus freed from the technical and logistic considerations involved in conventional classroom microscopy. K-12 teachers preview our videotape on probe utilization. They assemble and demonstrate the unit in the presence of our personnel, then check out the probe for use in their own classrooms. Extremely enthusiastic students examine samples ranging from their own fingerprintsmore » and clothing (on TV!) to pond water, prepared microscope slides, and microscope polarizing light phenomena. Teachers report heightened interest in conventional microscope use once the {open_quotes}microscopy connection{close_quotes} has been made.« less
NASA Astrophysics Data System (ADS)
Lin, Yung-Chi; Shih, Toung-Yi; Tien, Shih-Kang; Duh, Jenq-Gong
2007-11-01
Interfacial morphologies and microstructure of Sn-3Ag-0.5Cu/Ni-P under bump metallization (UBM) with various phosphorous contents were investigated by transmission electron microscope (TEM) and field emission electron probe microanalyzer (FE-EPMA). It was revealed that as the Ni-Sn-P compound was formed between the solder matrix and Ni-P UBM, the conventionally so-called phosphorous-rich (P-rich) layer was transformed to a series of layer compounds, including Ni3P, Ni12P5 and Ni2P. The relationship between Ni-Sn-P formation and evolution of P-rich layers was probed by electron microscopic characterization with the aid of the phase diagram of Ni-P. On the basis of the TEM micrograph, the selected area diffraction (SAD) pattern, and the FE-EPMA results, the detailed phase evolution of P-rich layers in the SnAgCu/Ni-P joint was revealed and proposed.
Biomolecule recognition using piezoresistive nanomechanical force probes
NASA Astrophysics Data System (ADS)
Tosolini, Giordano; Scarponi, Filippo; Cannistraro, Salvatore; Bausells, Joan
2013-06-01
Highly sensitive sensors are one of the enabling technologies for the biomarker detection in early stage diagnosis of pathologies. We have developed a self-sensing nanomechanical force probe able for detecting the unbinding of single couples of biomolecular partners in nearly physiological conditions. The embedding of a piezoresistive transducer into a nanomechanical cantilever enabled high force measurement capability with sub 10-pN resolution. Here, we present the design, microfabrication, optimization, and complete characterization of the sensor. The exceptional electromechanical performance obtained allowed us to detect biorecognition specific events underlying the biotin-avidin complex formation, by integrating the sensor in a commercial atomic force microscope.
0.4 Microns Spatial Resolution with 1 GHz (lambda = 30 cm) Evanescent Microwave Probe
NASA Technical Reports Server (NTRS)
Tabib-Azar, M.; Su, D.-P.; Pohar, A.; LeClair, S. R.; Ponchak, George E.
1999-01-01
In this article we describe evanescent field imaging of material nonuniformities with a record resolution of 0.4 microns at 1 GHz (lambda(sub g)/750000), using a resonant stripline scanning microwave probe. A chemically etched tip is used as a point-like evanescent field emitter and a probe-sample distance modulation is employed to improve the signal-to-noise ratio. Images obtained by evanescent microwave probe, by optical microscope, and by scanning tunneling microscope are presented for comparison. Probe was calibrated to perform quantitative conductivity measurements. The principal factors affecting the ultimate resolution of evanescent microwave probe are also discussed.
Understanding Imaging and Metrology with the Helium Ion Microscope
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Vladár, András E.; Ming, Bin
2009-09-01
One barrier to innovation confronting all phases of nanotechnology is the lack of accurate metrology for the characterization of nanomaterials. Ultra-high resolution microscopy is a key technology needed to achieve this goal. But, current microscope technology is being pushed to its limits. The scanning and transmission electron microscopes have incrementally improved in performance and other scanned probe technologies such as atomic force microscopy, scanning tunneling microscopy and focused ion beam microscopes have all been applied to nanotechnology with various levels of success. A relatively new tool for nanotechnology is the scanning helium ion microscope (HIM). The HIM is a new complementary imaging and metrology technology for nanotechnology which may be able to push the current resolution barrier lower. But, successful imaging and metrology with this instrument entails new ion beam/specimen interaction physics which must be fully understood. As a new methodology, HIM is beginning to show promise and the abundance of potentially advantageous applications for nanotechnology have yet to be fully exploited. This presentation will discuss some of the progress made at NIST in understanding the science behind this new technique.
Formative Assessment Probes: Representing Microscopic Life
ERIC Educational Resources Information Center
Keeley, Page
2011-01-01
This column focuses on promoting learning through assessment. The author discusses the formative assessment probe "Pond Water," which reveals how elementary children will often apply what they know about animal structures to newly discovered microscopic organisms, connecting their knowledge of the familiar to the unfamiliar through…
Multifarious applications of atomic force microscopy in forensic science investigations.
Pandey, Gaurav; Tharmavaram, Maithri; Rawtani, Deepak; Kumar, Sumit; Agrawal, Y
2017-04-01
Forensic science is a wide field comprising of several subspecialties and uses methods derived from natural sciences for finding criminals and other evidence valid in a legal court. A relatively new area; Nano-forensics brings a new era of investigation in forensic science in which instantaneous results can be produced that determine various agents such as explosive gasses, biological agents and residues in different crime scenes and terrorist activity investigations. This can be achieved by applying Nanotechnology and its associated characterization techniques in forensic sciences. Several characterization techniques exist in Nanotechnology and nano-analysis is one such technique that is used in forensic science which includes Electron microscopes (EM) like Transmission (TEM) and Scanning (SEM), Raman microscopy (Micro -Raman) and Scanning Probe Microscopes (SPMs) like Atomic Force Microscope (AFM). Atomic force microscopy enables surface characterization of different materials by examining their morphology and mechanical properties. Materials that are immeasurable such as hair, body fluids, textile fibers, documents, polymers, pressure sensitive adhesives (PSAs), etc. are often encountered during forensic investigations. This review article will mainly focus on the use of AFM in the examination of different evidence such as blood stains, forged documents, human hair samples, ammunitions, explosives, and other such applications in the field of Forensic Science. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V.
A technique for reversible surface modification with an atomic-force-microscope (AFM) probe is suggested. In this method, no significant mechanical or topographic changes occur upon a local variation in the surface potential of a sample under the AFM probe. The method allows a controlled relative change in the ohmic resistance of a channel in a Hall bridge within the range 20–25%.
Ding, Huiyang; Shi, Chaoyang; Ma, Li; Yang, Zhan; Wang, Mingyu; Wang, Yaqiong; Chen, Tao; Sun, Lining; Toshio, Fukuda
2018-04-08
The maneuvering and electrical characterization of nanotubes inside a scanning electron microscope (SEM) has historically been time-consuming and laborious for operators. Before the development of automated nanomanipulation-enabled techniques for the performance of pick-and-place and characterization of nanoobjects, these functions were still incomplete and largely operated manually. In this paper, a dual-probe nanomanipulation system vision-based feedback was demonstrated to automatically perform 3D nanomanipulation tasks, to investigate the electrical characterization of nanotubes. The XY-position of Atomic Force Microscope (AFM) cantilevers and individual carbon nanotubes (CNTs) were precisely recognized via a series of image processing operations. A coarse-to-fine positioning strategy in the Z-direction was applied through the combination of the sharpness-based depth estimation method and the contact-detection method. The use of nanorobotic magnification-regulated speed aided in improving working efficiency and reliability. Additionally, we proposed automated alignment of manipulator axes by visual tracking the movement trajectory of the end effector. The experimental results indicate the system's capability for automated measurement electrical characterization of CNTs. Furthermore, the automated nanomanipulation system has the potential to be extended to other nanomanipulation tasks.
Ding, Huiyang; Shi, Chaoyang; Ma, Li; Yang, Zhan; Wang, Mingyu; Wang, Yaqiong; Chen, Tao; Sun, Lining; Toshio, Fukuda
2018-01-01
The maneuvering and electrical characterization of nanotubes inside a scanning electron microscope (SEM) has historically been time-consuming and laborious for operators. Before the development of automated nanomanipulation-enabled techniques for the performance of pick-and-place and characterization of nanoobjects, these functions were still incomplete and largely operated manually. In this paper, a dual-probe nanomanipulation system vision-based feedback was demonstrated to automatically perform 3D nanomanipulation tasks, to investigate the electrical characterization of nanotubes. The XY-position of Atomic Force Microscope (AFM) cantilevers and individual carbon nanotubes (CNTs) were precisely recognized via a series of image processing operations. A coarse-to-fine positioning strategy in the Z-direction was applied through the combination of the sharpness-based depth estimation method and the contact-detection method. The use of nanorobotic magnification-regulated speed aided in improving working efficiency and reliability. Additionally, we proposed automated alignment of manipulator axes by visual tracking the movement trajectory of the end effector. The experimental results indicate the system’s capability for automated measurement electrical characterization of CNTs. Furthermore, the automated nanomanipulation system has the potential to be extended to other nanomanipulation tasks. PMID:29642495
NASA Astrophysics Data System (ADS)
Kwon, Yong-Su; Choi, Kee-Bong; Lim, Hyungjun; Lee, Sunghwi; Lee, Jae-Jong
2018-06-01
Simple and versatile methodologies have been reported that customize the surface of superparamagnetic iron oxide (SPIO) nanoparticles and impart additional fluorescence capabilities to these contrast agents. Herein, we present the rational design, synthesis, characterization, and biological applications of a new magnetic-based fluorescent probe. The dual modality imaging protocol was developed by labeling fluorophore with alginate natural polymers that have excellent biocompatibility and biodegradability, and using gelification method to form nanocomposites containing SPIO. The formation of alginate-based fluorescent magnetic (AFM) nanoparticles was observed in spherical and elliptical forms with a diameter of less than 500 nm by a transmission electron microscope (TEM). The fluorescent wavelength band in the range of 560 nm was also confirmed in the UV–visible spectrophotometer. In this study, we demonstrate that the multi-tasking design of AFM nanoparticles provides an ideal platform for building balanced dual-image probes of magnetic resonance imaging and optical imaging.
[Atomic force microscopy: a tool to analyze the viral cycle].
Bernaud, Julien; Castelnovo, Martin; Muriaux, Delphine; Faivre-Moskalenko, Cendrine
2015-05-01
Each step of the HIV-1 life cycle frequently involves a change in the morphology and/or mechanical properties of the viral particle or core. The atomic force microscope (AFM) constitutes a powerful tool for characterizing these physical changes at the scale of a single virus. Indeed, AFM enables the visualization of viral capsids in a controlled physiological environment and to probe their mechanical properties by nano-indentation. Finally, AFM force spectroscopy allows to characterize the affinities between viral envelope proteins and cell receptors at the single molecule level. © 2015 médecine/sciences – Inserm.
Design of small confocal endo-microscopic probe working under multiwavelength environment
NASA Astrophysics Data System (ADS)
Kim, Young-Duk; Ahn, MyoungKi; Gweon, Dae-Gab
2010-02-01
Recently, optical imaging system is widely used in medical purpose. By using optical imaging system specific diseases can be easily diagnosed at early stage because optical imaging system has high resolution performance and various imaging method. These methods are used to get high resolution image of human body and can be used to verify whether the cell is infected by virus. Confocal microscope is one of the famous imaging systems which is used for in-vivo imaging. Because most of diseases are accompanied with cellular level changes, doctors can diagnosis at early stage by observing the cellular image of human organ. Current research is focused in the development of endo-microscope that has great advantage in accessibility to human body. In this research, I designed small probe that is connected to confocal microscope through optical fiber bundle and work as endo-microscope. And this small probe is mainly designed to correct chromatic aberration to use various laser sources for both fluorescence type and reflection type confocal images. By using two kinds of laser sources at the same time we demonstrated multi-modality confocal endo-microscope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, T.; Kubo, O.; Shingaya, Y.
the research of advanced materials based on nanoscience and nanotechnology, it is often desirable to measure nanoscale local electrical conductivity at a designated position of a given sample. For this purpose, multiple-probe scanning probe microscopes (MP-SPMs), in which two, three or four scanning tunneling microscope (STM) or atomic force microscope (AFM) probes are operated independently, have been developed. Each probe in an MP-SPM is used not only for observing high-resolution STM or AFM images but also for forming an electrical contact enabling nanoscale local electrical conductivity measurement. The world's first double-probe STM (DP-STM) developed by the authors, which was subsequentlymore » modified to a triple-probe STM (TP-STM), has been used to measure the conductivities of one-dimensional metal nanowires and carbon nanotubes and also two-dimensional molecular films. A quadruple-probe STM (QP-STM) has also been developed and used to measure the conductivity of two-dimensional molecular films without the ambiguity of contact resistance between the probe and sample. Moreover, a quadruple-probe AFM (QP-AFM) with four conductive tuning-fork-type self-detection force sensing probes has been developed to measure the conductivity of a nanostructure on an insulating substrate. A general-purpose computer software to control four probes at the same time has also been developed and used in the operation of the QP-AFM. These developments and applications of MP-SPMs are reviewed in this paper.« less
Nanometer-scale surface potential and resistance mapping of wide-bandgap Cu(In,Ga)Se2 thin films
NASA Astrophysics Data System (ADS)
Jiang, C.-S.; Contreras, M. A.; Mansfield, L. M.; Moutinho, H. R.; Egaas, B.; Ramanathan, K.; Al-Jassim, M. M.
2015-01-01
We report microscopic characterization studies of wide-bandgap Cu(In,Ga)Se2 photovoltaic thin films using the nano-electrical probes of scanning Kelvin probe force microscopy and scanning spreading resistance microscopy. With increasing bandgap, the potential imaging shows significant increases in both the large potential features due to extended defects or defect aggregations and the potential fluctuation due to unresolvable point defects with single or a few charges. The resistance imaging shows increases in both overall resistance and resistance nonuniformity due to defects in the subsurface region. These defects are expected to affect open-circuit voltage after the surfaces are turned to junction upon device completion.
Vertically aligned nanostructure scanning probe microscope tips
Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.
2006-12-19
Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.
Soft control of scanning probe microscope with high flexibility.
Liu, Zhenghui; Guo, Yuzheng; Zhang, Zhaohui; Zhu, Xing
2007-01-01
Most commercial scanning probe microscopes have multiple embedded digital microprocessors and utilize complex software for system control, which is not easily obtained or modified by researchers wishing to perform novel and special applications. In this paper, we present a simple and flexible control solution that just depends on software running on a single-processor personal computer with real-time Linux operating system to carry out all the control tasks including negative feedback, tip moving, data processing and user interface. In this way, we fully exploit the potential of a personal computer in calculating and programming, enabling us to manipulate the scanning probe as required without any special digital control circuits and related technical know-how. This solution has been successfully applied to a homemade ultrahigh vacuum scanning tunneling microscope and a multiprobe scanning tunneling microscope.
Scanning optical microscope with long working distance objective
Cloutier, Sylvain G.
2010-10-19
A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.
Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study.
La Fontaine, Alexandre; Piazolo, Sandra; Trimby, Patrick; Yang, Limei; Cairney, Julie M
2017-04-01
The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth's geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.
Sensing mode atomic force microscope
Hough, Paul V. C.; Wang, Chengpu
2003-01-01
An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.
In situ electronic probing of semiconducting nanowires in an electron microscope.
Fauske, V T; Erlbeck, M B; Huh, J; Kim, D C; Munshi, A M; Dheeraj, D L; Weman, H; Fimland, B O; Van Helvoort, A T J
2016-05-01
For the development of electronic nanoscale structures, feedback on its electronic properties is crucial, but challenging. Here, we present a comparison of various in situ methods for electronically probing single, p-doped GaAs nanowires inside a scanning electron microscope. The methods used include (i) directly probing individual as-grown nanowires with a sharp nano-manipulator, (ii) contacting dispersed nanowires with two metal contacts and (iii) contacting dispersed nanowires with four metal contacts. For the last two cases, we compare the results obtained using conventional ex situ litho-graphy contacting techniques and by in situ, direct-write electron beam induced deposition of a metal (Pt). The comparison shows that 2-probe measurements gives consistent results also with contacts made by electron beam induced deposition, but that for 4-probe, stray deposition can be a problem for shorter nanowires. This comparative study demonstrates that the preferred in situ method depends on the required throughput and reliability. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Damin, Craig A; Sommer, André J
2013-11-01
Advances in fiber optic materials have allowed for the construction of fibers and waveguides capable of transmitting infrared radiation. An investigation of the transmission characteristics associated with two commonly used types of infrared-transmitting fibers/waveguides for prospective use in a fiber/waveguide-coupled attenuated total internal reflection (ATR) probe was performed. Characterization of silver halide polycrystalline fiber optics and hollow silica waveguides was done on the basis of the transmission of infrared light using a conventional fiber optic coupling accessory and an infrared microscope. Using the fiber optic coupling accessory, the average percent transmission for three silver halide fibers was 18.1 ± 6.1% relative to a benchtop reflection accessory. The average transmission for two hollow waveguides (HWGs) using the coupling accessory was 8.0 ± 0.3%. (Uncertainties in the relative percent transmission represent the standard deviations.) Reduced transmission observed for the HWGs was attributed to the high numerical aperture of the coupling accessory. Characterization of the fibers/waveguides using a zinc selenide lens objective on an infrared microscope indicated 24.1 ± 7.2% of the initial light input into the silver halide fibers was transmitted. Percent transmission obtained for the HWGs was 98.7 ± 0.1%. Increased transmission using the HWGs resulted from the absence or minimization of insertion and scattering losses due to the hollow air core and a better-matched numerical aperture. The effect of bending on the transmission characteristics of the fibers/waveguides was also investigated. Significant deviations in the transmission of infrared light by the solid-core silver halide fibers were observed for various bending angles. Percent transmission greater than 98% was consistently observed for the HWGs at the bending angles. The combined benefits of high percent transmission, reproducible instrument responses, and increased bending tolerance indicated HWGs should be preferred in the construction of a fiber/waveguide-coupled ATR probe.
Probing plasmon resonances of individual aluminum nanoparticles
NASA Astrophysics Data System (ADS)
Wei, Zhongxia; Mao, Peng; Cao, Lu; Song, Fengqi
2018-01-01
The plasmon resonances of individual aluminum nanoparticles are investigated by electron energy-loss spectroscopy (EELS) in scanning transmission electron microscope (STEM). Surface plasmon mode and bulk plasmon mode of Al nanoparticles are clearly characterized in the EEL spectra. Discrete dipole approximation (DDA) calculations show that as the particle diameter increases from 20 nm to 100 nm, the plasmon resonance shifts to lower energy and higher mode of surface plasmon arises when the diameter reaches 60 nm and larger.
2010-01-01
Use time-lapse videomicroscopy and patch-clamp techniques to characterize the motility of eGFP-transfected PC-3 cells in which MScCa/TRPC1 has been...except for GsmTx-4 (Peptides International, Louisville, KY) and fluorescent agents (Invitrogen/Molecular Probes, Carlsbad, CA). Videomicroscopy ...and Ca2+-imaging. Cell migration was monitored at 37oC by time-lapse videomicroscopy using Nomarski optics with an Epifluorescent microscope (Nikon
Fluorescent kapakahines serve as non-toxic probes for live cell Golgi imaging.
Rocha, Danilo D; Espejo, Vinson R; Rainier, Jon D; La Clair, James J; Costa-Lotufo, Letícia V
2015-09-01
There is an ongoing need for fluorescent probes that specifically-target select organelles within mammalian cells. This study describes the development of probes for the selective labeling of the Golgi apparatus and offers applications for live cell and fixed cell imaging. The kapakahines, characterized by a common C(3)-N(1') dimeric tryptophan linkage, comprise a unique family of bioactive marine depsipeptide natural products. We describe the uptake and subcellular localization of fluorescently-labeled analogs of kapakahine E. Using confocal microscopy, we identify a rapid and selective localization within the Golgi apparatus. Comparison with commercial Golgi stains indicates a unique localization pattern, which differs from currently available materials, therein offering a new tool to monitor the Golgi in live cells without toxic side effects. This study identifies a fluorescent analog of kapakahine E that is rapidly uptaken in cells and localizes within the Golgi apparatus. The advance of microscopic methods is reliant on the parallel discovery of next generation molecular probes. This study describes the advance of stable and viable probe for staining the Golgi apparatus. Copyright © 2015 Elsevier Inc. All rights reserved.
Fan, Zheng; Tao, Xinyong; Cui, Xudong; Fan, Xudong; Zhang, Xiaobin; Dong, Lixin
2012-09-21
Controlled fabrication of metal nanospheres on nanotube tips for optical antennas is investigated experimentally. Resembling soap bubble blowing using a straw, the fabrication process is based on nanofluidic mass delivery at the attogram scale using metal-filled carbon nanotubes (m@CNTs). Two methods have been investigated including electron-beam-induced bubbling (EBIB) and electromigration-based bubbling (EMBB). EBIB involves the bombardment of an m@CNT with a high energy electron beam of a transmission electron microscope (TEM), with which the encapsulated metal is melted and flowed out from the nanotube, generating a metallic particle on a nanotube tip. In the case where the encapsulated materials inside the CNT have a higher melting point than what the beam energy can reach, EMBB is an optional process to apply. Experiments show that, under a low bias (2.0-2.5 V), nanoparticles can be formed on the nanotube tips. The final shape and crystallinity of the nanoparticles are determined by the cooling rate. Instant cooling occurs with a relatively large heat sink and causes the instant shaping of the solid deposit, which is typically similar to the shape of the molten state. With a smaller heat sink as a probe, it is possible to keep the deposit in a molten state. Instant cooling by separating the deposit from the probe can result in a perfect sphere. Surface and volume plasmons characterized with electron energy loss spectroscopy (EELS) prove that resonance occurs between a pair of as-fabricated spheres on the tip structures. Such spheres on pillars can serve as nano-optical antennas and will enable devices such as scanning near-field optical microscope (SNOM) probes, scanning anodes for field emitters, and single molecule detectors, which can find applications in bio-sensing, molecular detection, and high-resolution optical microscopy.
General Mode Scanning Probe Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somnath, Suhas; Jesse, Stephen
A critical part of SPM measurements is the information transfer from the probe-sample junction to the measurement system. Current information transfer methods heavily compress the information-rich data stream by averaging the data over a time interval, or via heterodyne detection approaches such as lock-in amplifiers and phase-locked loops. As a consequence, highly valuable information at the sub-microsecond time scales or information from frequencies outside the measurement band is lost. We have developed a fundamentally new approach called General Mode (G-mode), where we can capture the complete information stream from the detectors in the microscope. The availability of the complete informationmore » allows the microscope operator to analyze the data via information-theory analysis or comprehensive physical models. Furthermore, the complete data stream enables advanced data-driven filtering algorithms, multi-resolution imaging, ultrafast spectroscropic imaging, spatial mapping of multidimensional variability in material properties, etc. Though we applied this approach to scanning probe microscopy, the general philosophy of G-mode can be applied to many other modes of microscopy. G-mode data is captured by completely custom software written in LabVIEW and Matlab. The software generates the waveforms to electrically, thermally, or mechanically excite the SPM probe. It handles real-time communications with the microscope software for operations such as moving the SPM probe position and also controls other instrumentation hardware. The software also controls multiple variants of high-speed data acquisition cards to excite the SPM probe with the excitation waveform and simultaneously measure multiple channels of information from the microscope detectors at sampling rates of 1-100 MHz. The software also saves the raw data to the computer and allows the microscope operator to visualize processed or filtered data during the experiment. The software performs all these features while offering a user-friendly interface.« less
Probe-Hole Field Emission Microscope System Controlled by Computer
NASA Astrophysics Data System (ADS)
Gong, Yunming; Zeng, Haishan
1991-09-01
A probe-hole field emission microscope system, controlled by an Apple II computer, has been developed and operated successfully for measuring the work function of a single crystal plane. The work functions on the clean W(100) and W(111) planes are measured to be 4.67 eV and 4.45 eV, respectively.
A milliKelvin scanning Hall probe microscope for high resolution magnetic imaging
NASA Astrophysics Data System (ADS)
Khotkevych, V. V.; Bending, S. J.
2009-02-01
The design and performance of a novel scanning Hall probe microscope for milliKelvin magnetic imaging with submicron lateral resolution is presented. The microscope head is housed in the vacuum chamber of a commercial 3He-refrigerator and operates between room temperature and 300 mK in magnetic fields up to 10 T. Mapping of the local magnetic induction at the sample surface is performed by a micro-fabricated 2DEG Hall probe equipped with an integrated STM tip. The latter provides a reliable mechanism of surface tracking by sensing and controlling the tunnel currents. We discuss the results of tests of the system and illustrate its potential with images of suitable reference samples captured in different modes of operation.
Hu, Zhonghan; Margulis, Claudio J
2006-01-24
In this work, we investigate the slow dynamics of 1-butyl-3-methylimidazolium hexafluorophosphate, a very popular room-temperature ionic solvent. Our study predicts the existence of heterogeneity in the liquid and shows that this heterogeneity is the underlying microscopic cause for the recently reported "red-edge effect" (REE) observed in the study of fluorescence of the organic probe 2-amino-7-nitrofluorene. This theoretical work explains in microscopic terms the relation between REE and dynamic heterogeneity in a room-temperature ionic liquid (IL). The REE is typical of micellar or colloidal systems, which are characterized by microscopic environments that are structurally very different. In contrast, in the case of this room-temperature IL, the REE occurs because of the long period during which molecules are trapped in quasistatic local solvent cages. This trapping time, which is longer than the lifetime of the excited-state probe, together with the inability of the surroundings to adiabatically relax, induces a set of site-specific spectroscopic responses. Subensembles of fluorescent molecules associated with particular local environments absorb and emit at different frequencies. We describe in detail the absorption wavelength-dependent emission spectra of 2-amino-7-nitrofluorene and show that this dependence on lambda(ex) is characteristic of the IL and, as is to be expected, is absent in the case of a normal solvent such as methanol.
Improved Process for Fabricating Carbon Nanotube Probes
NASA Technical Reports Server (NTRS)
Stevens, R.; Nguyen, C.; Cassell, A.; Delzeit, L.; Meyyappan, M.; Han, Jie
2003-01-01
An improved process has been developed for the efficient fabrication of carbon nanotube probes for use in atomic-force microscopes (AFMs) and nanomanipulators. Relative to prior nanotube tip production processes, this process offers advantages in alignment of the nanotube on the cantilever and stability of the nanotube's attachment. A procedure has also been developed at Ames that effectively sharpens the multiwalled nanotube, which improves the resolution of the multiwalled nanotube probes and, combined with the greater stability of multiwalled nanotube probes, increases the effective resolution of these probes, making them comparable in resolution to single-walled carbon nanotube probes. The robust attachment derived from this improved fabrication method and the natural strength and resiliency of the nanotube itself produces an AFM probe with an extremely long imaging lifetime. In a longevity test, a nanotube tip imaged a silicon nitride surface for 15 hours without measurable loss of resolution. In contrast, the resolution of conventional silicon probes noticeably begins to degrade within minutes. These carbon nanotube probes have many possible applications in the semiconductor industry, particularly as devices are approaching the nanometer scale and new atomic layer deposition techniques necessitate a higher resolution characterization technique. Previously at Ames, the use of nanotube probes has been demonstrated for imaging photoresist patterns with high aspect ratio. In addition, these tips have been used to analyze Mars simulant dust grains, extremophile protein crystals, and DNA structure.
NASA Astrophysics Data System (ADS)
Rispoli, Matthew; Lukin, Alexander; Ma, Ruichao; Preiss, Philipp; Tai, M. Eric; Islam, Rajibul; Greiner, Markus
2015-05-01
Ultracold atoms in optical lattices provide a versatile tool box for observing the emergence of strongly correlated physics in quantum systems. Dynamic control of optical potentials on the single-site level allows us to prepare and probe many-body quantum states through local Hamiltonian engineering. We achieve these high precision levels of optical control through spatial light modulation with a DMD (digital micro-mirror device). This allows for both arbitrary beam shaping and aberration compensation in our imaging system to produce high fidelity optical potentials. We use these techniques to control state initialization, Hamiltonian dynamics, and measurement in experiments investigating low-dimensional many-body physics - from one-dimensional correlated quantum walks to characterizing entanglement.
Characterization of Nanopipettes.
Perry, David; Momotenko, Dmitry; Lazenby, Robert A; Kang, Minkyung; Unwin, Patrick R
2016-05-17
Nanopipettes are widely used in electrochemical and analytical techniques as tools for sizing, sequencing, sensing, delivery, and imaging. For all of these applications, the response of a nanopipette is strongly affected by its geometry and surface chemistry. As the size of nanopipettes becomes smaller, precise geometric characterization is increasingly important, especially if nanopipette probes are to be used for quantitative studies and analysis. This contribution highlights the combination of data from voltage-scanning ion conductivity experiments, transmission electron microscopy and finite element method simulations to fully characterize nanopipette geometry and surface charge characteristics, with an accuracy not achievable using existing approaches. Indeed, it is shown that presently used methods for characterization can lead to highly erroneous information on nanopipettes. The new approach to characterization further facilitates high-level quantification of the behavior of nanopipettes in electrochemical systems, as demonstrated herein for a scanning ion conductance microscope setup.
Light propagation and interaction observed with electrons.
Word, Robert C; Fitzgerald, J P S; Könenkamp, R
2016-01-01
We discuss possibilities for a microscopic optical characterization of thin films and surfaces based on photoemission electron microscopy. We show that propagating light with wavelengths across the visible range can readily be visualized, and linear and non-linear materials properties can be evaluated non-invasively with nanometer spatial resolution. While femtosecond temporal resolution can be achieved in pump-probe-type experiments, the interferometric approach presented here has typical image frame times of ~200 fs. Copyright © 2015 Elsevier B.V. All rights reserved.
Synthesis and electrical characterization of magnetic bilayer graphene intercalate.
Kim, Namdong; Kim, Kwang S; Jung, Naeyoung; Brus, Louis; Kim, Philip
2011-02-09
We report synthesis and transport properties of the minimal graphite intercalation compound, a ferric chloride (FeCl(3))(n) island monolayer inside bilayer graphene. Chemical doping by the intercalant is simultaneously probed by micro-Raman spectroscopy and Hall measurements. Quantum oscillations of conductivity originate from microscopic domains of intercalated and unintercalated regions. A slight upturn in resistance related to magnetic transition is observed. Two-dimensional intercalation in bilayer graphene opens new possibilities to engineer two-dimensional properties of intercalates.
Laser interferometry force-feedback sensor for an interfacial force microscope
Houston, Jack E.; Smith, William L.
2004-04-13
A scanning force microscope is provided with a force-feedback sensor to increase sensitivity and stability in determining interfacial forces between a probe and a sample. The sensor utilizes an interferometry technique that uses a collimated light beam directed onto a deflecting member, comprising a common plate suspended above capacitor electrodes situated on a substrate forming an interference cavity with a probe on the side of the common plate opposite the side suspended above capacitor electrodes. The probe interacts with the surface of the sample and the intensity of the reflected beam is measured and used to determine the change in displacement of the probe to the sample and to control the probe distance relative to the surface of the sample.
1986-01-01
A technique has been developed for localizing hybrids formed in situ on semi-thin and ultrathin sections of Lowicryl K4M-embedded tissue. Biotinylated dUTP (Bio-11-dUTP and/or Bio-16-dUTP) was incorporated into mitochondrial rDNA and small nuclear U1 probes by nick- translation. The probes were hybridized to sections of Drosophila ovaries and subsequently detected with an anti-biotin antibody and protein A-gold complex. On semi-thin sections, probe detection was achieved by amplification steps with anti-protein A antibody and protein A-gold with subsequent silver enhancement. At the electron microscope level, specific labeling was obtained over structures known to be the site of expression of the appropriate genes (i.e., either over mitochondria or over nuclei). The labeling pattern at the light microscope level (semi-thin sections) was consistent with that obtained at the electron microscope level. The described nonradioactive procedures for hybrid detection on Lowicryl K4M-embedded tissue sections offer several advantages: rapid signal detection: superior morphological preservation and spatial resolution; and signal-to-noise ratios equivalent to radiolabeling. PMID:3084498
Apertureless scanning microscope probe as a detector of semiconductor laser emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunaevskiy, Mikhail, E-mail: Mike.Dunaeffsky@mail.ioffe.ru; National Research University of Information Technologies, Mechanics and Optics; Dontsov, Anton
2015-04-27
An operating semiconductor laser has been studied using a scanning probe microscope. A shift of the resonance frequency of probe that is due to its heating by laser radiation has been analyzed. The observed shift is proportional to the absorbed radiation and can be used to measure the laser near field or its output power. A periodical dependence of the measured signal has been observed as a function of distance between the probe and the surface of the laser due to the interference of the outgoing and cantilever-reflected waves. Due to the multiple reflections resulting in the interference, the lightmore » absorption by the probe cantilever is greatly enhanced compared with a single pass case. Interaction of infrared emission of a diode laser with different probes has been studied.« less
Sensing mode atomic force microscope
Hough, Paul V. C.; Wang, Chengpu
2006-08-22
An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.
Sensing mode atomic force microscope
Hough, Paul V.; Wang, Chengpu
2004-11-16
An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.
Electron microscopy study of the iron meteorite Santa Catharina
NASA Technical Reports Server (NTRS)
Zhang, J.; Williams, D. B.; Goldstein, J. I.; Clarke, R. S., Jr.
1990-01-01
A characterization of the microstructural features of Santa Catharina (SC) from the millimeter to submicron scale is presented. The same specimen was examined using an optical microscope, a scanning electron microscope, an electron probe microanalyzer, and an analytical electron microscope. Findings include the fact that SC metal nodules may have different bulk Ni values, leading to different microstructures upon cooling; that SC USNM 6293 is the less corroded sample, as tetrataenite exists as less than 10 nm ordered domains throughout the entire fcc matrix (it is noted that this structure is the same as that of the Twin City meteorite and identical to clear taenite II in the retained taenite regions of the octahedrites); that SC USNM 3043 has a more complicated microstructure due to corrosion; and that the low Ni phase of the cloudy zone was selectively corroded in some areas and formed the dark regions, indicating that the SC meteorite corrosion process was electrochemical in nature and may involve Cl-containing akaganeite.
Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un
2010-10-01
In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.
Bulthuis, H M; Barendregt, D S; Timmerman, M F; Loos, B G; van der Velden, U
1998-05-01
Previous research has shown that probing force and probe tine shape influence the clinically assessed probing depth. The purpose of the present study was to investigate the effect of tine shape and probing force on probe penetration, in relation to the microscopically assessed attachment level in untreated periodontal disease. In 22 patients, scheduled for partial or full mouth tooth extraction and no history of periodontal treatment, 135 teeth were selected. At mesial and distal sites of the teeth reference marks were cut. Three probe tines, mounted in a modified Florida Probe handpiece, were tested: a tapered, a parallel and a ball-ended; tip-diameter 0.5 mm. The three tines were distributed at random over the sites. At each site increasing probing forces of 0.10 N, 0.15 N, 0.20 N, 0.25 N were used. After extraction, the teeth were cleaned and stained for connective tissue fiber attachment. The distance between the reference mark and the attachment level was determined using a stereomicroscope. The results showed that the parallel and ball-ended tine measured significantly beyond the microscopically assessed attachment level at all force levels; with increasing forces, the parallel tine measured 0.96 to 1.38 mm and the ball-ended tine 0.73 to 1.06 mm deeper. The tapered tine did not deviate significantly from the microscopic values at the forces of 0.15, 0.20 and 0.25 N. It can be concluded that for the optimal assessment of the attachment level in inflamed periodontal conditions, a tapered probe with a tip diameter of 0.5 mm and exerting a probing force of 0.25 N may be most suitable.
Chang, Win-Jin; Fang, Te-Hua; Lee, Haw-Long; Yang, Yu-Ching
2005-01-01
In this paper the Rayleigh-Ritz method was used to study the scanning near-field optical microscope (SNOM) with a tapered optical fiber probe's flexural and axial sensitivity to vibration. Not only the contact stiffness but also the geometric parameters of the probe can influence the flexural and axial sensitivity to vibration. According to the analysis, the lateral and axial contact stiffness had a significant effect on the sensitivity of vibration of the SNOM's probe, each mode had a different level of sensitivity and in the first mode the tapered optical fiber probe was the most acceptive to higher levels of flexural and axial vibration. Generally, when the contact stiffness was lower, the tapered probe was more sensitive to higher levels of both axial and flexural vibration than the uniform probe. However, the situation was reversed when the contact stiffness was larger. Furthermore, the effect that the probe's length and its tapered angle had on the SNOM's probe axial and flexural vibration were significant and these two conditions should be incorporated into the design of new SNOM probes.
An interchangeable scanning Hall probe/scanning SQUID microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin
2014-08-15
We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a widemore » range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.« less
Magnetic Force Microscopy Investigation of Magnetic Domains in Nd2Fe14B
NASA Astrophysics Data System (ADS)
Talari, Mahesh Kumar; Markandeyulu, G.; Rao, K. Prasad
2010-07-01
Remenance and coercivity in Nd2Fe14B materials are strongly dependent on the microstructural aspects like phases morphology and grain size. The coercivity (Hc) of a magnetic material varies inversely with the grain size (D) and there is a critical size below which Hc∝D6. Domain wall pinning by grain boundaries and foreign phases is the important mechanism in explaining the improvement in coercivity and remenance. Nd2Fe14B intermetallic compound with stochiometric composition was prepared from pure elements (Nd -99.5%, Fe—99.95%, B -99.99%) by arc melting in argon atmosphere. Magnetic Force Microscope (MFM) gives high-resolution magnetic domain structural information of ferromagnetic samples. DI-3100 Scanning Probe Microscope with MESP probes was used For MFM characterization of the samples. Magnetic domains observed in cast ingots were very long (up to 40 μm were observed) and approximately 1-5 μm wide due to high anisotropy of the compounds. Magnetic domains have displayed different image contrast and morphologies at different locations of the samples. The domain morphologies and image contrast obtained in this analysis were explained in this paper.
CHAMP (Camera, Handlens, and Microscope Probe)
NASA Technical Reports Server (NTRS)
Mungas, Greg S.; Boynton, John E.; Balzer, Mark A.; Beegle, Luther; Sobel, Harold R.; Fisher, Ted; Klein, Dan; Deans, Matthew; Lee, Pascal; Sepulveda, Cesar A.
2005-01-01
CHAMP (Camera, Handlens And Microscope Probe)is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As a robotic arm-mounted imager, CHAMP supports stereo imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision rangefinding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. CHAMP was originally developed through the Mars Instrument Development Program (MIDP) in support of robotic field investigations, but may also find application in new areas such as robotic in-orbit servicing and maintenance operations associated with spacecraft and human operations. We overview CHAMP'S instrument performance and basic design considerations below.
Tang, Yiwei; Gao, Ziyuan; Wang, Shuo; Gao, Xue; Gao, Jingwen; Ma, Yong; Liu, Xiuying; Li, Jianrong
2015-09-15
A novel fluorescence probe based on upconversion particles, YF3:Yb(3+), Er(3+), coating with molecularly imprinted polymers (MIPs@UCPs) has been synthesized for selective recognition of the analyte clenbuterol (CLB), which was characterized by scan electron microscope and X-ray powder diffraction. The fluorescence of the MIPs@UCPs probe is quenched specifically by CLB, and the effect is much stronger than the NIPs@UCPs (non-imprinting polymers, NIPs). Good linear correlation was obtained for CLB over the concentration range of 5.0-100.0 μg L(-1) with a detection limit of 0.12 μg L(-1) (S/N=3). The developed method was also used in the determination of CLB in water and pork samples, and the recoveries ranged from 81.66% to 102.46% were obtained with relative standard deviation of 2.96-4.98% (n=3). The present study provides a new and general tactics to synthesize MIPs@UCPs fluorescence probe with highly selective recognition ability to the CLB and is desirable for application widely in the near future. Copyright © 2015 Elsevier B.V. All rights reserved.
75 FR 13486 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... nanostructures. This instrument combines an optical microscope with a scanning probe imaging system. Specifically... soft materials than other instruments, as it detects the probe coming close to the sample surface by... conventional AFM type silicon cantilevers as well as cantilevered optical fiber probes with exposed probe...
NASA Astrophysics Data System (ADS)
Usanov, D. A.; Skripal, A. V.; Astakhov, E. I.; Dobdin, S. Y.
2018-04-01
The possibilities of self-mixing interferometry for measuring nanodisplacement of a probe included in a near-field scanning microwave microscope have been considered. The features of the formation of a laser interference signal at current modulation of the wavelength of laser radiation have been investigated. Experimental responses of a semiconductor laser system included in scanning microwave microscope to control nanodisplacement of the probe have been demonstrated.To register the nanodisplacement of the probe, it is proposed to use the method of determining the stationary phase of a laser interference signal by low-frequency spectrum of a semiconductor laser. The change of the amplitudes of the spectral components in the spectrum of the interference signal due to creation of the standing wave in the external resonator of the laser self-mixing system has been shown. The form of the interference signal at current modulation of the radiation wavelength was experimentally obtained when the probe moves with a step of 80 nm. The results of measuring nanodisplacements of an electromagnetic translator STANDA 8MVT40-13 have been demonstrated. Deviation of the nanodisplacement of the proposed method does not exceed 15%.
NASA Astrophysics Data System (ADS)
Kizu, Ryosuke; Misumi, Ichiko; Hirai, Akiko; Kinoshita, Kazuto; Gonda, Satoshi
2018-07-01
A metrological atomic force microscope with a tip-tilting mechanism (tilting-mAFM) has been developed to expand the capabilities of 3D nanometrology, particularly for high-resolution topography measurements at the surfaces of vertical sidewalls and for traceable measurements of nanodevice linewidth. In the tilting-mAFM, the probe tip is tilted from vertical to 16° at maximum such that the probe tip can touch and trace the vertical sidewall of a nanometer-scale structure; the probe of a conventional atomic force microscope cannot reach the vertical surface because of its finite cone angle. Probe displacement is monitored in three axes by using high-resolution laser interferometry, which is traceable to the SI unit of length. A central-symmetric 3D scanner with a parallel spring structure allows probe scanning with extremely low interaxial crosstalk. A unique technique for scanning vertical sidewalls was also developed and applied. The experimental results indicated high repeatability in the scanned profiles and sidewall angle measurements. Moreover, the 3D measurement of a line pattern was demonstrated, and the data from both sidewalls were successfully stitched together with subnanometer accuracy. Finally, the critical dimension of the line pattern was obtained.
NASA Astrophysics Data System (ADS)
Arsov, Zoran; Urbančič, Iztok; Štrancar, Janez
2018-02-01
Generating activatable probes that report about molecular vicinity through contact-based mechanisms such as aggregation can be very convenient. Specifically, such probes change a particular spectral property only at the intended biologically relevant target. Xanthene derivatives, for example rhodamines, are able to form aggregates. It is typical to examine aggregation by absorption spectroscopy but for microscopy applications utilizing fluorescent probes it is very important to perform characterization by measuring fluorescence spectra. First we show that excitation spectra of aqueous solutions of rhodamine 6G can be very informative about the aggregation features. Next we establish the dependence of the fluorescence emission spectral maximum shift on the dimer concentration. The obtained information helped us confirm the possibility of aggregation of a recently designed and synthesized rhodamine 6G-based pH-activatable fluorescent probe and to study its pH and concentration dependence. The size of the aggregation-induced emission spectral shift at specific position on the sample can be measured by fluorescence microspectroscopy, which at particular pH allows estimation of the local concentration of the observed probe at microscopic level. Therefore, we show that besides aggregation-caused quenching and aggregation-induced emission also aggregation-induced emission spectral shift can be a useful photophysical phenomenon.
Long working distance incoherent interference microscope
Sinclair, Michael B [Albuquerque, NM; De Boer, Maarten P [Albuquerque, NM
2006-04-25
A full-field imaging, long working distance, incoherent interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. A long working distance greater than 10 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-dimensional height profiles of MEMS test structures to be acquired across an entire wafer while being actively probed, and, optionally, through a transparent window. An optically identical pair of sample and reference arm objectives is not required, which reduces the overall system cost, and also the cost and time required to change sample magnifications. Using a LED source, high magnification (e.g., 50.times.) can be obtained having excellent image quality, straight fringes, and high fringe contrast.
From Lab to Fab: Developing a Nanoscale Delivery Tool for Scalable Nanomanufacturing
NASA Astrophysics Data System (ADS)
Safi, Asmahan A.
The emergence of nanomaterials with unique properties at the nanoscale over the past two decades carries a capacity to impact society and transform or create new industries ranging from nanoelectronics to nanomedicine. However, a gap in nanomanufacturing technologies has prevented the translation of nanomaterial into real-world commercialized products. Bridging this gap requires a paradigm shift in methods for fabricating structured devices with a nanoscale resolution in a repeatable fashion. This thesis explores the new paradigms for fabricating nanoscale structures devices and systems for high throughput high registration applications. We present a robust and scalable nanoscale delivery platform, the Nanofountain Probe (NFP), for parallel direct-write of functional materials. The design and microfabrication of NFP is presented. The new generation addresses the challenges of throughput, resolution and ink replenishment characterizing tip-based nanomanufacturing. To achieve these goals, optimized probe geometry is integrated to the process along with channel sealing and cantilever bending. The capabilities of the newly fabricated probes are demonstrated through two type of delivery: protein nanopatterning and single cell nanoinjection. The broad applications of the NFP for single cell delivery are investigated. An external microfluidic packaging is developed to enable delivery in liquid environment. The system is integrated to a combined atomic force microscope and inverted fluorescence microscope. Intracellular delivery is demonstrated by injecting a fluorescent dextran into Hela cells in vitro while monitoring the injection forces. Such developments enable in vitro cellular delivery for single cell studies and high throughput gene expression. The nanomanufacturing capabilities of NFPs are explored. Nanofabrication of carbon nanotube-based electronics presents all the manufacturing challenges characterizing of assembling nanomaterials precisely onto devices. The presented study combines top-down and bottom-approaches by integrating the catalyst patterning and carbon nanotube growth directly on structures. Large array of iron-rich catalyst are patterned on an substrate for subsequent carbon nanotubes synthesis. The dependence of probe geometry and substrate wetting is assessed by modeling and experimental studies. Finally preliminary results on synthesis of carbon nanotube by catalyst assisted chemical vapor deposition suggest increasing the catalyst yield is critical. Such work will enable high throughput nanomanufacturing of carbon nanotube based devices.
Confocal Fluorescence Microscopy of Mung Beanleaves
NASA Astrophysics Data System (ADS)
Chen, Zhiwei; Liu, Dongwu
Recently, confocal microscope has become a routine technique and indispensable tool for cell biological studies and molecular investigations. The light emitted from the point out-of-focus is blocked by the pinhole and can not reach the detector, which is one of the critical features of the confocal microscope. In present studies, the probes acridine orange (AO) and rhodamine-123 were used to research stoma and mitochondria of mung bean leaves, respectively. The results indicated that the stomatal guard cells and mitochondria were clearly seen in epidermic tissue of mung bean leaves. Taken together, it is a good method to research plant cells with confocal microscope and fluorescence probes.
Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes
NASA Astrophysics Data System (ADS)
Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.
2017-11-01
A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.
High-resolution resonant and nonresonant fiber-scanning confocal microscope.
Hendriks, Benno H W; Bierhoff, Walter C J; Horikx, Jeroen J L; Desjardins, Adrien E; Hezemans, Cees A; 't Hooft, Gert W; Lucassen, Gerald W; Mihajlovic, Nenad
2011-02-01
We present a novel, hand-held microscope probe for acquiring confocal images of biological tissue. This probe generates images by scanning a fiber-lens combination with a miniature electromagnetic actuator, which allows it to be operated in resonant and nonresonant scanning modes. In the resonant scanning mode, a circular field of view with a diameter of 190 μm and an angular frequency of 127 Hz can be achieved. In the nonresonant scanning mode, a maximum field of view with a width of 69 μm can be achieved. The measured transverse and axial resolutions are 0.60 and 7.4 μm, respectively. Images of biological tissue acquired in the resonant mode are presented, which demonstrate its potential for real-time tissue differentiation. With an outer diameter of 3 mm, the microscope probe could be utilized to visualize cellular microstructures in vivo across a broad range of minimally-invasive procedures.
NASA Astrophysics Data System (ADS)
Yan, X. Y.; Peng, J. F.; Yan, S. A.; Zheng, X. J.
2018-04-01
The electromechanical characterization of the field effect transistor based on a single GaN nanobelt was performed under different loading forces by using a conductive atomic force microscope (C-AFM), and the effective Schottky barrier height (SBH) and ideality factor are simulated by the thermionic emission model. From 2-D current image, the high value of the current always appears on the nanobelt edge with the increase of the loading force less than 15 nN. The localized (I-V) characteristic reveals a typical rectifying property, and the current significantly increases with the loading force at the range of 10-190 nN. The ideality factor is simulated as 9.8 within the scope of GaN nano-Schottky diode unity (6.5-18), therefore the thermionic emission current is dominant in the electrical transport of the GaN-tip Schottky junction. The SBH is changed through the piezoelectric effect induced by the loading force, and it is attributed to the enhanced current. Furthermore, a single GaN nanobelt has a high mechanical-induced current ratio that could be made use of in a nanoelectromechanical switch.
NASA Astrophysics Data System (ADS)
Yan, X. Y.; Peng, J. F.; Yan, S. A.; Zheng, X. J.
2018-07-01
The electromechanical characterization of the field effect transistor based on a single GaN nanobelt was performed under different loading forces by using a conductive atomic force microscope (C-AFM), and the effective Schottky barrier height (SBH) and ideality factor are simulated by the thermionic emission model. From 2-D current image, the high value of the current always appears on the nanobelt edge with the increase of the loading force less than 15 nN. The localized ( I- V) characteristic reveals a typical rectifying property, and the current significantly increases with the loading force at the range of 10-190 nN. The ideality factor is simulated as 9.8 within the scope of GaN nano-Schottky diode unity (6.5-18), therefore the thermionic emission current is dominant in the electrical transport of the GaN-tip Schottky junction. The SBH is changed through the piezoelectric effect induced by the loading force, and it is attributed to the enhanced current. Furthermore, a single GaN nanobelt has a high mechanical-induced current ratio that could be made use of in a nanoelectromechanical switch.
Nanoscale Roughness and Morphology Affect the IsoElectric Point of Titania Surfaces
Borghi, Francesca; Vyas, Varun; Podestà, Alessandro; Milani, Paolo
2013-01-01
We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces. PMID:23874708
Imaging pigment chemistry in melanocytic conjunctival lesions with pump-probe microscopy
NASA Astrophysics Data System (ADS)
Wilson, Jesse W.; Vajzovic, Lejla; Robles, Francisco E.; Cummings, Thomas J.; Mruthyunjaya, Prithvi; Warren, Warren S.
2013-03-01
We extend nonlinear pump-probe microscopy, recently demonstrated to image the microscopic distribution of eumelanin and pheomelanin in unstained skin biopsy sections, to the case of melanocytic conjunctival lesions. The microscopic distribution of pigmentation chemistry serves as a functional indicator of melanocyte activity. In these conjunctival specimens (benign nevi, primary acquired melanoses, and conjunctival melanoma), we have observed pump-probe spectroscopic signatures of eumelanin, pheomelanin, hemoglobin, and surgical ink, in addition to important structural features that differentiate benign from malignant lesions. We will also discuss prospects for an in vivo `optical biopsy' to provide additional information before having to perform invasive procedures.
Torun, H; Finkler, O; Degertekin, F L
2009-07-01
The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.
Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka
2016-06-01
We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.
DC thermal microscopy: study of the thermal exchange between a probe and a sample
NASA Astrophysics Data System (ADS)
Gomès, Séverine; Trannoy, Nathalie; Grossel, Philippe
1999-09-01
The Scanning Thermal Microscopic (SThM) probe, a thin Pt resistance wire, is used in the constant force mode of an Atomic Force Microscope (AFM). Thermal signal-distance curves for differing degrees of relative humidity and different surrounding gases demonstrate how heat is transferred from the heated probe to the sample. It is known that water affects atomic force microscopy and thermal measurements; we report here on the variation of the water interaction on the thermal coupling versus the probe temperature. Measurements were taken for several solid materials and show that the predominant heat transfer mechanisms taking part in thermal coupling are dependent on the thermal conductivity of the sample. The results have important implications for any quantitative interpretation of thermal images made in air.
NASA Astrophysics Data System (ADS)
Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka
2016-06-01
We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.
A Mythical History of the Scanning Probe Microscope - How it Could Have Been
NASA Astrophysics Data System (ADS)
Elings, Virgil
2007-03-01
The path from the ground breaking Topografiner by Young et. al. in 1972 to the current Atomic Force Microscopes was tortuous, to say the least. Now as an entrepreneur, they say that you should study the problem, work out a plan, and then execute the plan. Since this rarely works for me in real life, let's follow the mythical history of Phil the physics student whose simple approach to scanning probe microscopes during his summer job may explain life better than real life did. Comparisons between Phil's experience and real life will be made along the way to show how random real life was compared to Phil's straightforward approach. We will follow Phil as he goes from the Scanning Touching Microscope (STM) to the All Fancy Microscope (AFM) and ends up with a current scanning probe microscope. The ``lesson'' in this story is that when you are doing something new, you learn so much while you are doing it that what you thought at the beginning (the plan) is rarely the best way to go. It is more important, I believe, for entrepreneurs to explore possibilities and keep their eyes open along the way rather than pretend the path they are on is the right one. Phil is mythical because he always knew where he was headed and it was always the right direction. So how does Phil's story end? I'm working on it and will tell you at the March Meeting.
Chu, Liliang; Wang, Shaowei; Li, Kanghui; Xi, Wang; Zhao, Xinyuan; Qian, Jun
2014-01-01
Near-infrared (NIR) imaging technology has been widely used for biomedical research and applications, since it can achieve deep penetration in biological tissues due to less absorption and scattering of NIR light. In our research, polymer nanoparticles with NIR fluorophores doped were synthesized. The morphology, absorption/emission features and chemical stability of the fluorescent nanoparticles were characterized, separately. NIR fluorescent nanoparticles were then utilized as bright optical probes for macro in vivo imaging of mice, including sentinel lymph node (SLN) mapping, as well as distribution and excretion monitoring of nanoparticles in animal body. Furthermore, we applied the NIR fluorescent nanoparticles in in vivo microscopic bioimaging via a confocal microscope. Under the 635 nm-CW excitation, the blood vessel architecture in the ear and the brain of mice, which were administered with nanoparticles, was visualized very clearly. The imaging depth of our one-photon microscopy, which was assisted with NIR fluorescent nanoprobes, can reach as deep as 500 μm. Our experiments show that NIR fluorescent nanoparticles have great potentials in various deep-tissue imaging applications. PMID:25426331
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int; Martins, Marco
Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discussmore » sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.« less
Development of Scanning Ultrafast Electron Microscope Capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Kimberlee Chiyoko; Talin, Albert Alec; Chandler, David W.
Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratoriesmore » based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.« less
Radical Chemistry and Charge Manipulation with an Atomic Force Microscope
NASA Astrophysics Data System (ADS)
Gross, Leo
The fuctionalization of tips by atomic manipulation dramatically increased the resolution of atomic force microscopy (AFM). The combination of high-resolution AFM with atomic manipulation now offers the unprecedented possibility to custom-design individual molecules by making and breaking bonds with the tip of the microscope and directly characterizing the products on the atomic scale. We recently applied this technique to generate and study reaction intermediates and to investigate chemical reactions trigged by atomic manipulation. We formed diradicals by dissociating halogen atoms and then reversibly triggered ring-opening and -closing reactions via atomic manipulation, allowing us to switch and control the molecule's reactivity, magnetic and optical properties. Additional information about charge states and charge distributions can be obtained by Kelvin probe force spectroscopy. On multilayer insulating films we investigated single-electron attachment, detachment and transfer between individual molecules. EU ERC AMSEL (682144), EU project PAMS (610446).
NASA Astrophysics Data System (ADS)
Babayco, Christopher B.; Land, Donald P.; Parikh, Atul N.; Kiehl, Richard A.
2014-09-01
We have devised an infrared spectromicroscopy based experimental configuration to enable structural characterization of buried molecular junctions. Our design utilizes a small mercury drop at the focal point of an infrared microscope to act as a mirror in studying metal-molecule-metal (MmM) junctions. An organic molecular monolayer is formed either directly on the mercury drop or on a thin, infrared (IR) semi-transparent layer of Au deposited onto an IR transparent, undoped silicon substrate. Following the formation of the monolayer, films on either metal can be examined independently using specular reflection spectroscopy. Furthermore, by bringing together the two monolayers, a buried molecular bilayer within the MmM junction can be characterized. Independent examination of each half of the junction prior to junction formation also allows probing any structural and/or conformational changes that occur as a result of forming the bilayer. Because our approach allows assembling and disassembling microscopic junctions by forming and withdrawing Hg drops onto the monolayer covered metal, spatial mapping of junctions can be performed simply by translating the location of the derivatized silicon wafer. Finally, the applicability of this technique for the longer-term studies of changes in molecular structure in the presence of electrical bias is discussed.
Atom probe trajectory mapping using experimental tip shape measurements.
Haley, D; Petersen, T; Ringer, S P; Smith, G D W
2011-11-01
Atom probe tomography is an accurate analytical and imaging technique which can reconstruct the complex structure and composition of a specimen in three dimensions. Despite providing locally high spatial resolution, atom probe tomography suffers from global distortions due to a complex projection function between the specimen and detector which is different for each experiment and can change during a single run. To aid characterization of this projection function, this work demonstrates a method for the reverse projection of ions from an arbitrary projection surface in 3D space back to an atom probe tomography specimen surface. Experimental data from transmission electron microscopy tilt tomography are combined with point cloud surface reconstruction algorithms and finite element modelling to generate a mapping back to the original tip surface in a physically and experimentally motivated manner. As a case study, aluminium tips are imaged using transmission electron microscopy before and after atom probe tomography, and the specimen profiles used as input in surface reconstruction methods. This reconstruction method is a general procedure that can be used to generate mappings between a selected surface and a known tip shape using numerical solutions to the electrostatic equation, with quantitative solutions to the projection problem readily achievable in tens of minutes on a contemporary workstation. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
Scanning MWCNT-Nanopipette and Probe Microscopy: Li Patterning and Transport Studies.
Larson, Jonathan M; Bharath, Satyaveda C; Cullen, William G; Reutt-Robey, Janice E
2015-10-07
A carbon-nanotube-enabling scanning probe technique/nanotechnology for manipulating and measuring lithium at the nano/mesoscale is introduced. Scanning Li-nanopipette and probe microscopy (SLi-NPM) is based on a conductive atomic force microscope (AFM) cantilever with an open-ended multi-walled carbon nanotube (MWCNT) affixed to its apex. SLi-NPM operation is demonstrated with a model system consisting of a Li thin film on a Si(111) substrate. By control of bias, separation distance, and contact time, attograms of Li can be controllably pipetted to or from the MWCNT tip. Patterned surface Li features are then directly probed via noncontact AFM measurements with the MWCNT tip. The subsequent decay of Li features is simulated with a mesoscale continuum model, developed here. The Li surface diffusion coefficient for a four (two) Li layer thick film is measured as D=8(±1.2)×10(-15) cm(2) s(-1) (D=1.75(±0.15)×10(-15) cm(2) s(-1)). Dual-Li pipetting/measuring with SLi-NPM enables a broad range of time-dependent Li and nanoelectrode characterization studies of fundamental importance to energy-storage research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microscopic diffusion processes measured in living planarians
Mamontov, Eugene
2018-03-08
Living planarian flatworms were probed using quasielastic neutron scattering to measure, on the pico-to-nanosecond time scale and nanometer length scale, microscopic diffusion of water and cell constituents in the planarians. Measurable microscopic diffusivities were surprisingly well defined in such a complex system as living animals. The overall variation in the microscopic diffusivity of cell constituents was found to be far lower than the variation in the microscopic diffusivity of water in planarians in a temperature range of 284.5 to 304.1K.
Scanning evanescent electro-magnetic microscope
Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao
2003-01-01
A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.
Scanning evanescent electro-magnetic microscope
Xiang, Xiao-Dong; Gao, Chen
2001-01-01
A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.
Microscopic diffusion processes measured in living planarians
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamontov, Eugene
Living planarian flatworms were probed using quasielastic neutron scattering to measure, on the pico-to-nanosecond time scale and nanometer length scale, microscopic diffusion of water and cell constituents in the planarians. Measurable microscopic diffusivities were surprisingly well defined in such a complex system as living animals. The overall variation in the microscopic diffusivity of cell constituents was found to be far lower than the variation in the microscopic diffusivity of water in planarians in a temperature range of 284.5 to 304.1K.
Scanning probe microscopy of biomedical interfaces
NASA Astrophysics Data System (ADS)
Vansteenkiste, S. O.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M.
1998-02-01
The development of the scanning probe microscopes over the past decade has provided a number of exciting new surface analytical techniques making a significant progress in the characterisation of biomedical interfaces. In this review, several examples are presented to illustrate that SPM is a powerful and promising tool for surface investigations including biomolecules, cell membranes, polymers and even living cells. The ability of the SPM instrument to monitor adhesion phenomena and provide quantitative information about intermolecular interactions is also described. Moreover, the huge potential of the scanning probe microscopes to study dynamic processes at interfaces under nearly physiological conditions is highlighted. Novel applications in the field of biochemistry, microbiology, biomaterial engineering, drug delivery and even medicine are discussed.
CHAMP - Camera, Handlens, and Microscope Probe
NASA Technical Reports Server (NTRS)
Mungas, G. S.; Beegle, L. W.; Boynton, J.; Sepulveda, C. A.; Balzer, M. A.; Sobel, H. R.; Fisher, T. A.; Deans, M.; Lee, P.
2005-01-01
CHAMP (Camera, Handlens And Microscope Probe) is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As an arm-mounted imager, CHAMP supports stereo-imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision range-finding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. Currently designed with a filter wheel with 4 different filters, so that color and black and white images can be obtained over the entire Field-of-View, future designs will increase the number of filter positions to include 8 different filters. Finally, CHAMP incorporates controlled white and UV illumination so that images can be obtained regardless of sun position, and any potential fluorescent species can be identified so the most astrobiologically interesting samples can be identified.
A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer-Nolte, E.; Wrachtrup, J.; 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart
2014-01-15
We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines amore » tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.« less
Precise Orientation of a Single C60 Molecule on the Tip of a Scanning Probe Microscope
NASA Astrophysics Data System (ADS)
Chiutu, C.; Sweetman, A. M.; Lakin, A. J.; Stannard, A.; Jarvis, S.; Kantorovich, L.; Dunn, J. L.; Moriarty, P.
2012-06-01
We show that the precise orientation of a C60 molecule which terminates the tip of a scanning probe microscope can be determined with atomic precision from submolecular contrast images of the fullerene cage. A comparison of experimental scanning tunneling microscopy data with images simulated using computationally inexpensive Hückel theory provides a robust method of identifying molecular rotation and tilt at the end of the probe microscope tip. Noncontact atomic force microscopy resolves the atoms of the C60 cage closest to the surface for a range of molecular orientations at tip-sample separations where the molecule-substrate interaction potential is weakly attractive. Measurements of the C60C60 pair potential acquired using a fullerene-terminated tip are in excellent agreement with theoretical predictions based on a pairwise summation of the van der Waals interactions between C atoms in each cage, i.e., the Girifalco potential [L. Girifalco, J. Phys. Chem. 95, 5370 (1991)JPCHAX0022-365410.1021/j100167a002].
Monopole antenna in quantitative near-field microwave microscopy of planar structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reznik, Alexander N.; Korolyov, Sergey A.
We have developed an analytical model of a near-field microwave microscope based on a coaxial resonator with a sharpened tip probe. The probe interacts with a layered sample that features an arbitrary depth distribution of permittivity. The microscopic tip end with the accumulated charge is regarded as a monopole antenna radiating an electric field in near zone. The impedance of such an antenna is determined within a quasi-static approximation. The proposed model is used for calculating the sample-sensitive parameters of the microscope, specifically, resonance frequency f{sub 0} and quality factor Q{sub 0}, as a function of probe-sample distance h. Themore » theory has been verified experimentally in studies of semiconductor structures, both bulk and thin films. For measurements, we built a ∼2.1 GHz microscope with an effective tip radius of about 100 μm. The theoretical and experimental dependences f{sub 0}(h) and Q{sub 0}(h) were found to be in a good agreement. The developed theory underlies the method for determining sheet resistance R{sub sh} of a semiconductor film on a dielectric substrate proposed in this article. Studies were performed on doped n-GaN films on an Al{sub 2}O{sub 3} substrate. The effective radius and height of the probe determined from calibration measurements of etalon samples were used as the model fitting parameters. For etalon samples, we employed homogeneous sapphire and doped silicon plates. We also performed four-probe dc measurements of R{sub sh}. The corresponding values for samples with R{sub sh} > 1 kΩ were found to be 50% to 100% higher than the microwave results, which are attributed to the presence of microdefects in semiconductor films.« less
Akter, Rashida; Jeong, Bongjin; Choi, Jong-Soon; Rahman, Md Aminur
2016-06-15
An ultrasensitive electrochemical nanostructured immunosensor for a breast cancer biomarker carbohydrate antigen 15-3 (CA 15-3) was fabricated using non-covalent functionalized graphene oxides (GO/Py-COOH) as sensor probe and multiwalled carbon nanotube (MWCNTs)-supported numerous ferritin as labels. The immunosensor was constructed by immobilizing a monoclonal anti-CA 15-3 antibody on the GO modified cysteamine (Cys) self-assembled monolayer (SAM) on an Au electrode (Au/Cys) through the amide bond formation between the carboxylic acid groups of GO/Py-COOH and amine groups of anti-CA 15-3. Secondary antibody conjugated MWCNT-supported ferritin labels (Ab2-MWCNT-Ferritin) were prepared through the amide bond formation between amine groups of Ab2 and ferritin and carboxylic acid groups of MWCNTs. The detection of CA 15-3 was based on the enhanced bioelectrocatalytic reduction of hydrogen peroxide mediated by hydroquinone (HQ) at the GO/Py-COOH-based sensor probe. The GO/Py-COOH-based sensor probe and Ab2-MWCNT-Ferritin labels were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), transmission electron microscope (TEM), and x-ray photoelectron spectroscopy (XPS) techniques. Using differential pulse voltammetry (DPV) technique, CA 15-3 can be selectively detected as low as 0.01 ± 0.07 U/mL in human serum samples. Additionally, the proposed CA 15-3 immunosensor showed excellent selectivity and better stability in human serum samples, which demonstrated that the proposed immunosensor has potentials in proteomic researches and diagnostics. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Morton, Kirstin Claire
Carbon is one of the most remarkable elements due to its wide abundance on Earth and its many allotropes, which include diamond and graphite. Many carbon allotropes are conductive and in recent decades scientists have discovered and synthesized many new forms of carbon, including graphene and carbon nanotubes. The work in this thesis specifically focuses on the fabrication and characterization of pyrolyzed parylene C (PPC), a conductive pyrocarbon, as an electrode material for diodes, as a conductive coating for atomic force microscopy (AFM) probes and as an ultramicroelectrode (UME) for the electrochemical interrogation of cellular systems in vitro. Herein, planar and three-dimensional (3D) PPC electrodes were microscopically, spectroscopically and electrochemically characterized. First, planar PPC films and PPC-coated nanopipettes were utilized to detect a model redox species, Ru(NH3) 6Cl3. Then, free-standing PPC thin films were chemically doped, with hydrazine and concentrated nitric acid, to yield p- and n-type carbon films. Doped PPC thin films were positioned in conjunction with doped silicon to create Schottky and p-n junction diodes for use in an alternating current half-wave rectifier circuit. Pyrolyzed parylene C has found particular merit as a 3D electrode coating of AFM probes. Current sensing-atomic force microscopy imaging in air of nanoscale metallic features was undertaken to demonstrate the electronic imaging applicability of PPC AFM probes. Upon further insulation with parylene C and modification with a focused ion beam, a PPC UME was microfabricated near the AFM probe apex and utilized for electrochemical imaging. Subsequently, scanning electrochemical microscopy-atomic force microscopy imaging was undertaken to electrochemically quantify and image the spatial location of dopamine exocytotic release, elicited mechanically via the AFM probe itself, from differentiated pheochromocytoma 12 cells in vitro.
Morishita, Shigeyuki; Ishikawa, Ryo; Kohno, Yuji; Sawada, Hidetaka; Shibata, Naoya; Ikuhara, Yuichi
2018-02-01
The achievement of a fine electron probe for high-resolution imaging in scanning transmission electron microscopy requires technological developments, especially in electron optics. For this purpose, we developed a microscope with a fifth-order aberration corrector that operates at 300 kV. The contrast flat region in an experimental Ronchigram, which indicates the aberration-free angle, was expanded to 70 mrad. By using a probe with convergence angle of 40 mrad in the scanning transmission electron microscope at 300 kV, we attained the spatial resolution of 40.5 pm, which is the projected interatomic distance between Ga-Ga atomic columns of GaN observed along [212] direction.
Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng
2015-05-01
Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface.
NASA Technical Reports Server (NTRS)
Hutcheon, I. D.; Steele, I. M.; Smith, J. V.; Clayton, R. N.
1978-01-01
Three Type B inclusions from the Allende meteorite have been analyzed. A grain-to-grain characterization of mineral chemistry and isotopic content was made possible by the use of a range of techniques, including luminescence and scanning electron microscopy and electron and ion microprobe analysis. Cathodoluminescence was used in fine-grained, optically opaque regions to distinguish between sub-micrometer phases, such as garnet and Si-rich material, subsequently identified by electron probe and scanning electron microscope analyses. Four types of luminescence patterns, due to twinning, primary sector zoning, alteration of boundaries and fractures, and shock effects, were identified in Allende plagioclase. Luminescence color exhibited a strong correlation with Mg content and provided a guide for an electron probe quantitative map of Mg and Na distributions. Ion microprobe studies of individual grains revealed large excesses of Mg-26.
Panda, Koustubh; Chawla-Sarkar, Mamta; Santos, Cecile; Koeck, Thomas; Erzurum, Serpil C; Parkinson, John F; Stuehr, Dennis J
2005-07-19
The study of nitric-oxide synthase (NOS) physiology is constrained by the lack of suitable probes to detect NOS in living cells or animals. Here, we characterized a fluorescent inducible NOS (iNOS) inhibitor called PIF (pyrimidine imidazole FITC) and examined its utility for microscopic imaging of iNOS in living cells. PIF binding to iNOS displayed high affinity, isoform selectivity, and heme specificity, and was essentially irreversible. PIF was used to successfully image iNOS expressed in RAW264.7 cells, HEK293T cells, human A549 epithelial cells, and freshly obtained human lung epithelium. PIF was used to estimate a half-life for iNOS of 1.8 h in HEK293T cells. Our work reveals that fluorescent probes like PIF will be valuable for studying iNOS cell biology and in understanding the pathophysiology of diseases that involve dysfunctional iNOS expression.
Song, Zhaoning; Werner, Jérémie; Shrestha, Niraj; Sahli, Florent; De Wolf, Stefaan; Niesen, Björn; Watthage, Suneth C; Phillips, Adam B; Ballif, Christophe; Ellingson, Randy J; Heben, Michael J
2016-12-15
Perovskite/silicon tandem solar cells with high power conversion efficiencies have the potential to become a commercially viable photovoltaic option in the near future. However, device design and optimization is challenging because conventional characterization methods do not give clear feedback on the localized chemical and physical factors that limit performance within individual subcells, especially when stability and degradation is a concern. In this study, we use light beam induced current (LBIC) to probe photocurrent collection nonuniformities in the individual subcells of perovskite/silicon tandems. The choices of lasers and light biasing conditions allow efficiency-limiting effects relating to processing defects, optical interference within the individual cells, and the evolution of water-induced device degradation to be spatially resolved. The results reveal several types of microscopic defects and demonstrate that eliminating these and managing the optical properties within the multilayer structures will be important for future optimization of perovskite/silicon tandem solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Sambit Bikas; Haldar, Arijit; Roy, Basudev
A photonic force microscope comprises of an optically trapped micro-probe and a position detection system to track the motion of the probe. Signal collection for motion detection is often carried out using the backscattered light off the probe-however, this mode has problems of low S/N due to the small backscattering cross sections of the micro-probes typically used. The position sensors often used in these cases are quadrant photodetectors. To ensure maximum sensitivity of such detectors, it would help if the detector size matched with the detection beam radius after the condenser lens (which for backscattered detection would be the trappingmore » objective itself). To suit this condition, we have used a miniature displacement sensor whose dimensions makes it ideal to work with 1:1 images of micrometer-sized trapped probes in the backscattering detection mode. The detector is based on the quadrant photo-integrated chip in the optical pick-up head of a compact disc player. Using this detector, we measured absolute displacements of an optically trapped 1.1 {mu}m probe with a resolution of {approx}10 nm for a bandwidth of 10 Hz at 95% significance without any sample or laser stabilization. We characterized our optical trap for different sized probes by measuring the power spectrum for each probe to 1% accuracy, and found that for 1.1 {mu}m diameter probes, the noise in our position measurement matched the thermal resolution limit for averaging times up to 10 ms. We also achieved a linear response range of around 385 nm with cross talk between axes {approx_equal}4% for 1.1 {mu}m diameter probes. The detector has extremely high bandwidth (few MHz) and low optical power threshold-other factors that can lead to its widespread use in photonic force microscopy.« less
NASA Astrophysics Data System (ADS)
Clarke, James; Cheng, Kwan; Shindell, Orrin; Wang, Exing
We have designed and constructed a high-throughput electrofusion chamber and an incubator to fabricate Giant Unilamellar Vesicles (GUVs) consisting of high-melting lipids, low-melting lipids, cholesterol and both ordered and disordered phase sensitive fluorescent probes (DiIC12, dehydroergosterol and BODIPY-Cholesterol). GUVs were formed in a 3 stage pulse sequence electrofusion process with voltages ranging from 50mVpp to 2.2Vpp and frequencies from 5Hz to 10Hz. Steady state and time-correlated single-photon counting (TCSPC) fluorescence lifetime (FLIM) based confocal and/or multi-photon microscopic techniques were used to characterize phase separated lipid domains in GUVs. Confocal imaging measures the probe concentration and the chemical environment of the system. TCSPC techniques determine the chemical environment through the perturbation of fluorescent lifetimes of the probes in the system. The above techniques will be applied to investigate the protein-lipid interactions involving domain formation. Specifically, the mechanisms governing lipid domain formations in the above systems that mimic the lipid rafts in cells will be explored. Murchison Fellowship at Trinity University.
Brodusch, Nicolas; Trudeau, Michel; Michaud, Pierre; Rodrigue, Lisa; Boselli, Julien; Gauvin, Raynald
2012-12-01
Aluminum-lithium alloys are widespread in the aerospace industry. The new 2099 and 2199 alloys provide improved properties, but their microstructure and texture are not well known. This article describes how state-of-the-art field-emission scanning electron microscopy (FE-SEM) can contribute to the characterization of the 2099 aluminum-lithium alloy and metallic alloys in general. Investigations were carried out on bulk and thinned samples. Backscattered electron imaging at 3 kV and scanning transmission electron microscope imaging at 30 kV along with highly efficient microanalysis permitted correlation of experimental and expected structures. Although our results confirm previous studies, this work points out possible substitutions of Mg and Zn with Li, Al, and Cu in the T1 precipitates. Zinc and magnesium are also present in "rice grain"-shaped precipitates at the grain boundaries. The versatility of the FE-SEM is highlighted as it provides information in the macro- and microscales with relevant details. Its ability to probe the distribution of precipitates from nano- to microsizes throughout the matrix makes FE-SEM an essential technique for the characterization of metallic alloys.
A high throughput array microscope for the mechanical characterization of biomaterials
NASA Astrophysics Data System (ADS)
Cribb, Jeremy; Osborne, Lukas D.; Hsiao, Joe Ping-Lin; Vicci, Leandra; Meshram, Alok; O'Brien, E. Tim; Spero, Richard Chasen; Taylor, Russell; Superfine, Richard
2015-02-01
In the last decade, the emergence of high throughput screening has enabled the development of novel drug therapies and elucidated many complex cellular processes. Concurrently, the mechanobiology community has developed tools and methods to show that the dysregulation of biophysical properties and the biochemical mechanisms controlling those properties contribute significantly to many human diseases. Despite these advances, a complete understanding of the connection between biomechanics and disease will require advances in instrumentation that enable parallelized, high throughput assays capable of probing complex signaling pathways, studying biology in physiologically relevant conditions, and capturing specimen and mechanical heterogeneity. Traditional biophysical instruments are unable to meet this need. To address the challenge of large-scale, parallelized biophysical measurements, we have developed an automated array high-throughput microscope system that utilizes passive microbead diffusion to characterize mechanical properties of biomaterials. The instrument is capable of acquiring data on twelve-channels simultaneously, where each channel in the system can independently drive two-channel fluorescence imaging at up to 50 frames per second. We employ this system to measure the concentration-dependent apparent viscosity of hyaluronan, an essential polymer found in connective tissue and whose expression has been implicated in cancer progression.
Spectral Interferometry with Electron Microscopes
Talebi, Nahid
2016-01-01
Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Vibhuti Bhushan; Parashar, Sandeep Kumar, E-mail: skparashar@rtu.ac.in
In the present paper a novel functionally graded piezoelectric (FGP) actuated Poly-Si micro cantilever probe is proposed for atomic force microscope. The shear piezoelectric coefficient d{sub 15} has much higher value than coupling coefficients d{sub 31} and d{sub 33}, hence in the present work the micro cantilever beam actuated by d{sub 15} effect is utilized. The material properties are graded in the thickness direction of actuator by a simple power law. A three dimensional finite element analysis has been performed using COMSOL Multiphysics® (version 4.2) software. Tip deflection and free vibration analysis for the micro cantilever probe has been done.more » The results presented in the paper shall be useful in the design of micro cantilever probe and their subsequent utilization in atomic force microscopes.« less
Indium nanowires at the silicon surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V.
2016-07-15
Conductive indium nanowires up to 50 nm in width and up to 10 μm in length are fabricated on the surface of silicon by local resputtering from the probe of an atomic-force microscope. The transfer of indium from the probe of the atomic-force microscope onto the silicon surface is initiated by applying a potential between the probe and the surface as they approach each other to spacings, at which the mutual repulsive force is ~10{sup –7} N. The conductivity of the nanowires ranges from 7 × 10{sup –3} to 4 × 10{sup –2} Ω cm, which is several orders ofmore » magnitude lower than that in the case of the alternative technique of heat transfer.« less
Park, Kyoung-Duck; Park, Doo Jae; Lee, Seung Gol; Choi, Geunchang; Kim, Dai-Sik; Byeon, Clare Chisu; Choi, Soo Bong; Jeong, Mun Seok
2014-02-21
A resonant shift and a decrease of resonance quality of a tuning fork attached to a conventional fiber optic probe in the vicinity of liquid is monitored systematically while varying the protrusion length and immersion depth of the probe. Stable zones where the resonance modification as a function of immersion depth is minimized are observed. A wet near-field scanning optical microscope (wet-NSOM) is operated for a sample within water by using such a stable zone.
Probing the microscopic corrugation of liquid surfaces with gas-liquid collisions
NASA Technical Reports Server (NTRS)
King, Mackenzie E.; Nathanson, Gilbert M.; Hanning-Lee, Mark A.; Minton, Timothy K.
1993-01-01
We have measured the directions and velocities of Ne, Ar, and Xe atoms scattering from perfluorinated ether and hydrocarbon liquids to probe the relationship between the microscopic roughness of liquid surfaces and gas-liquid collision dynamics. Impulsive energy transfer is governed by the angle of deflection: head-on encounters deposit more energy than grazing collisions. Many atoms scatter in the forward direction, particularly at glancing incidence. These results imply that the incoming atoms recoil locally from protruding C-H and C-F groups in hard spherelike collisions.
NASA Astrophysics Data System (ADS)
Perrone, Sandro; Volpe, Giovanni; Petrov, Dmitri
2008-10-01
We propose a technique that permits one to increase by one order of magnitude the detection range of position sensing for the photonic force microscope with quadrant photodetectors (QPDs). This technique takes advantage of the unavoidable cross-talk between output signals of the QPD and does not assume that the output signals are linear in the probe displacement. We demonstrate the increase in the detection range from 150 to 1400 nm for a trapped polystyrene sphere with radius of 300 nm as probe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perrone, Sandro; Volpe, Giovanni; Petrov, Dmitri
2008-10-15
We propose a technique that permits one to increase by one order of magnitude the detection range of position sensing for the photonic force microscope with quadrant photodetectors (QPDs). This technique takes advantage of the unavoidable cross-talk between output signals of the QPD and does not assume that the output signals are linear in the probe displacement. We demonstrate the increase in the detection range from 150 to 1400 nm for a trapped polystyrene sphere with radius of 300 nm as probe.
Perrone, Sandro; Volpe, Giovanni; Petrov, Dmitri
2008-10-01
We propose a technique that permits one to increase by one order of magnitude the detection range of position sensing for the photonic force microscope with quadrant photodetectors (QPDs). This technique takes advantage of the unavoidable cross-talk between output signals of the QPD and does not assume that the output signals are linear in the probe displacement. We demonstrate the increase in the detection range from 150 to 1400 nm for a trapped polystyrene sphere with radius of 300 nm as probe.
Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode.
Bücker, K; Picher, M; Crégut, O; LaGrange, T; Reed, B W; Park, S T; Masiel, D J; Banhart, F
2016-12-01
High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. Copyright © 2016 Elsevier B.V. All rights reserved.
Flexible high-voltage supply for experimental electron microscope
NASA Technical Reports Server (NTRS)
Chapman, G. L.; Jung, E. A.; Lewis, R. N.; Van Loon, L. S.; Welter, L. M.
1969-01-01
Scanning microscope uses a field-emission tip for the electron source, an electron gun that simultaneously accelerates and focuses electrons from the source, and one auxiliary lens to produce a final probe size at the specimen on the order of angstroms.
Ling, Xue; Wang, Yusheng; Li, Xide
2014-10-01
An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li-Etsion-Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.
NASA Astrophysics Data System (ADS)
Ling, Xue; Wang, Yusheng; Li, Xide
2014-10-01
An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li-Etsion-Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.
Gwyscan: a library to support non-equidistant scanning probe microscope measurements
NASA Astrophysics Data System (ADS)
Klapetek, Petr; Yacoot, Andrew; Grolich, Petr; Valtr, Miroslav; Nečas, David
2017-03-01
We present a software library and related methodology for enabling easy integration of adaptive step (non-equidistant) scanning techniques into metrological scanning probe microscopes or scanning probe microscopes where individual x, y position data are recorded during measurements. Scanning with adaptive steps can reduce the amount of data collected in SPM measurements thereby leading to faster data acquisition, a smaller amount of data collection required for a specific analytical task and less sensitivity to mechanical and thermal drift. Implementation of adaptive scanning routines into a custom built microscope is not normally an easy task: regular data are much easier to handle for previewing (e.g. levelling) and storage. We present an environment to make implementation of adaptive scanning easier for an instrument developer, specifically taking into account data acquisition approaches that are used in high accuracy microscopes as those developed by National Metrology Institutes. This includes a library with algorithms written in C and LabVIEW for handling data storage, regular mesh preview generation and planning the scan path on basis of different assumptions. A set of modules for Gwyddion open source software for handling these data and for their further analysis is presented. Using this combination of data acquisition and processing tools one can implement adaptive scanning in a relatively easy way into an instrument that was previously measuring on a regular grid. The performance of the presented approach is shown and general non-equidistant data processing steps are discussed.
NASA Astrophysics Data System (ADS)
Nayak, B. B.; Sahu, R. K.; Dash, T.; Pradhan, S.
2018-03-01
Circular graphite discs were treated in arc plasma by varying arcing time. Analysis of the plasma treated discs by field emission scanning electron microscope revealed globular grain morphologies on the surfaces, but when the same were observed at higher magnification and higher resolution under transmission electron microscope, growth of multiwall carbon nanotubes of around 2 nm diameter was clearly seen. In situ growth of carbon nanotube bundles/bunches consisting of around 0.7 nm tube diameter was marked in the case of 6 min treated disc surface. Both the untreated and the plasma treated graphite discs were characterized by X-ray diffraction, energy dispersive spectra of X-ray, X-ray photoelectron spectroscopy, transmission electron microscopy, micro Raman spectroscopy and BET surface area measurement. From Raman spectra, BET surface area and microstructure observed in transmission electron microscope, growth of several layers of graphene was identified. Four-point probe measurements for electrical resistivity/conductivity of the graphite discs treated under different plasma conditions showed significant increase in conductivity values over that of untreated graphite conductivity value and the best result, i.e., around eightfold increase in conductivity, was observed in the case of 6 min plasma treated sample exhibiting carbon nanotube bundles/bunches grown on disc surface. By comparing the microstructures of the untreated and plasma treated graphite discs, the electrical conductivity increase in graphite disc is attributed to carbon nanotubes (including bundles/bunches) growth on disc surface by plasma treatment.
Electromagnetic microscope compared with a conventional pulsed eddy-current probe
NASA Astrophysics Data System (ADS)
Podney, Walter N.
1998-03-01
A superconductive probe presently can detect a crack at a rivet hole that is two to three times smaller than the smallest crack detectable by a conventional probe. As the technology matures and noise resolution approaches a limit set by SQUIDS, approximately 1 fH, it will enable detecting submillimeter cracks down to approximately 15 mm.
Band Excitation for Scanning Probe Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesse, Stephen
2017-01-02
The Band Excitation (BE) technique for scanning probe microscopy uses a precisely determined waveform that contains specific frequencies to excite the cantilever or sample in an atomic force microscope to extract more information, and more reliable information from a sample. There are a myriad of details and complexities associated with implementing the BE technique. There is therefore a need to have a user friendly interface that allows typical microscopists access to this methodology. This software enables users of atomic force microscopes to easily: build complex band-excitation waveforms, set-up the microscope scanning conditions, configure the input and output electronics for generatemore » the waveform as a voltage signal and capture the response of the system, perform analysis on the captured response, and display the results of the measurement.« less
Piezoresistor-equipped fluorescence-based cantilever probe for near-field scanning.
Kan, Tetsuo; Matsumoto, Kiyoshi; Shimoyama, Isao
2007-08-01
Scanning near-field optical microscopes (SNOMs) with fluorescence-based probes are promising tools for evaluating the optical characteristics of nanoaperture devices used for biological investigations, and this article reports on the development of a microfabricated fluorescence-based SNOM probe with a piezoresistor. The piezoresistor was built into a two-legged root of a 160-microm-long cantilever. To improve the displacement sensitivity of the cantilever, the piezoresistor's doped area was shallowly formed on the cantilever surface. A fluorescent bead, 500 nm in diameter, was attached to the bottom of the cantilever end as a light-intensity-sensitive material in the visible-light range. The surface of the scanned sample was simply detected by the probe's end being displaced by contact with the sample. Measuring displacements piezoresistively is advantageous because it eliminates the noise arising from the use of the optical-lever method and is free of any disturbance in the absorption or the emission spectrum of the fluorescent material at the probe tip. The displacement sensitivity was estimated to be 6.1 x 10(-6) nm(-1), and the minimum measurable displacement was small enough for near-field measurement. This probe enabled clear scanning images of the light field near a 300 x 300 nm(2) aperture to be obtained in the near-field region where the tip-sample distance is much shorter than the light wavelength. This scanning result indicates that the piezoresistive way of tip-sample distance regulation is effective for characterizing nanoaperture optical devices.
Aron, Miles; Browning, Richard; Carugo, Dario; Sezgin, Erdinc; Bernardino de la Serna, Jorge; Eggeling, Christian; Stride, Eleanor
2017-05-12
Spectral imaging with polarity-sensitive fluorescent probes enables the quantification of cell and model membrane physical properties, including local hydration, fluidity, and lateral lipid packing, usually characterized by the generalized polarization (GP) parameter. With the development of commercial microscopes equipped with spectral detectors, spectral imaging has become a convenient and powerful technique for measuring GP and other membrane properties. The existing tools for spectral image processing, however, are insufficient for processing the large data sets afforded by this technological advancement, and are unsuitable for processing images acquired with rapidly internalized fluorescent probes. Here we present a MATLAB spectral imaging toolbox with the aim of overcoming these limitations. In addition to common operations, such as the calculation of distributions of GP values, generation of pseudo-colored GP maps, and spectral analysis, a key highlight of this tool is reliable membrane segmentation for probes that are rapidly internalized. Furthermore, handling for hyperstacks, 3D reconstruction and batch processing facilitates analysis of data sets generated by time series, z-stack, and area scan microscope operations. Finally, the object size distribution is determined, which can provide insight into the mechanisms underlying changes in membrane properties and is desirable for e.g. studies involving model membranes and surfactant coated particles. Analysis is demonstrated for cell membranes, cell-derived vesicles, model membranes, and microbubbles with environmentally-sensitive probes Laurdan, carboxyl-modified Laurdan (C-Laurdan), Di-4-ANEPPDHQ, and Di-4-AN(F)EPPTEA (FE), for quantification of the local lateral density of lipids or lipid packing. The Spectral Imaging Toolbox is a powerful tool for the segmentation and processing of large spectral imaging datasets with a reliable method for membrane segmentation and no ability in programming required. The Spectral Imaging Toolbox can be downloaded from https://uk.mathworks.com/matlabcentral/fileexchange/62617-spectral-imaging-toolbox .
Source brightness and useful beam current of carbon nanotubes and other very small emitters
NASA Astrophysics Data System (ADS)
Kruit, P.; Bezuijen, M.; Barth, J. E.
2006-01-01
The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ``brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed.
Resolution enhancement of pump-probe microscope with an inverse-annular filter
NASA Astrophysics Data System (ADS)
Kobayashi, Takayoshi; Kawasumi, Koshi; Miyazaki, Jun; Nakata, Kazuaki
2018-04-01
Optical pump-probe microscopy can provide images by detecting changes in probe light intensity induced by stimulated emission, photoinduced absorbance change, or photothermal-induced refractive index change in either transmission or reflection mode. Photothermal microscopy, which is one type of optical pump-probe microscopy, has intrinsically super resolution capability due to the bilinear dependence of signal intensity of pump and probe. We introduce new techniques for further resolution enhancement and fast imaging in photothermal microscope. First, we introduce a new pupil filter, an inverse-annular pupil filter in a pump-probe photothermal microscope, which provides resolution enhancement in three dimensions. The resolutions are proved to be improved in lateral and axial directions by imaging experiment using 20-nm gold nanoparticles. The improvement in X (perpendicular to the common pump and probe polarization direction), Y (parallel to the polarization direction), and Z (axial direction) are by 15 ± 6, 8 ± 8, and 21 ± 2% from the resolution without a pupil filter. The resolution enhancement is even better than the calculation using vector field, which predicts the corresponding enhancement of 11, 8, and 6%. The discussion is made to explain the unexpected results. We also demonstrate the photothermal imaging of thick biological samples (cells from rabbit intestine and kidney) stained with hematoxylin and eosin dye with the inverse-annular filter. Second, a fast, high-sensitivity photothermal microscope is developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope using a Galvano mirror. We confirm a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrates simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 µs. The fluorescence image visualizes neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures most probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences. Third, we have made further resolution improvement of high-sensitivity laser scanning photothermal microscopy by applying non-linear detection. By this, the new method has super resolution with 61 and 42% enhancement from the diffraction limit values of the probe and pump wavelengths, respectively, by a second-order non-linear scheme and a high-frame rate in a laser scanning microscope. The maximum resolution is determined to be 160 nm in the second-order non-linear detection mode and 270 nm in the linear detection mode by the PT signal of GNPs. The pixel rate and frame rate for 300 × 300 pixel image are 50 µs and 4.5 s, respectively. The pixel and frame rate are shorter than the rates, those are 1 ms and 100 s, using the piezo-driven stage system.
NASA Astrophysics Data System (ADS)
Töyräs, J.; Rieppo, J.; Nieminen, M. T.; Helminen, H. J.; Jurvelin, J. S.
1999-11-01
Ultrasound may provide a quantitative technique for the characterization of cartilage changes typical of early osteoarthrosis. In this study, specific changes in bovine articular cartilage were induced using collagenase and chondroitinase ABC, enzymes that selectively degrade collagen fibril network and digest proteoglycans, respectively. Changes in cartilage structure and properties were quantified using high frequency ultrasound, microscopic analyses and mechanical indentation tests. The ultrasound reflection coefficient of the physiological saline-cartilage interface (R1) decreased significantly (-96.4%, p<0.01) in the collagenase digested cartilage compared to controls. Also a significantly lower ultrasound velocity (-6.2%, p<0.01) was revealed after collagenase digestion. After chondroitinase ABC digestion, a new acoustic interface at the depth of the enzyme penetration front was detected. Cartilage thickness, as determined with ultrasound, showed a high, linear correlation (R = 0.943, n = 60, average difference 0.073 mm (4.0%)) with the thickness measured by the needle-probe method. Both enzymes induced a significant decrease in the Young's modulus of cartilage (p<0.01). Our results indicate that high frequency ultrasound provides a sensitive technique for the analysis of cartilage structure and properties. Possibly ultrasound may be utilized in vivo as a quantitative probe during arthroscopy.
NASA Astrophysics Data System (ADS)
Aprelev, Pavel; McKinney, Bonni; Walls, Chadwick; Kornev, Konstanin G.
2017-07-01
A novel design of a low-field magnetic stage for optical microscopy of droplets and films within a controlled environment is described. The stage consists of five magnetic coils with a 3D magnetic sensor in a feedback control loop, which allows one to manipulate magnetic nano- and microprobes with microtesla fields. A locally uniform time-dependent field within the focal plane of the microscope objective enables one to rotate the probes in a precisely set manner and observe their motion. The probe tracking protocol was developed to follow the probe rotation in real time and relate it with the viscosity of the host liquid. Using this magnetic stage, a method for measuring mPa s-level viscosity of nanoliter droplets and micron thick films in a 10-20 s timeframe is presented and validated. The viscosity of a rapidly changing liquid can be tracked by using only a few visible probes rotating simultaneously. Vapor pressure and temperature around the sample can be controlled to directly measure viscosity as a function of equilibrium vapor pressure; this addresses a significant challenge in characterization of volatile nanodroplets and thin films. Thin films of surfactant solutions undergoing phase transitions upon solvent evaporation were studied and their rheological properties were related to morphological changes in the material.
Lateral Membrane Diffusion Modulated by a Minimal Actin Cortex
Heinemann, Fabian; Vogel, Sven K.; Schwille, Petra
2013-01-01
Diffusion of lipids and proteins within the cell membrane is essential for numerous membrane-dependent processes including signaling and molecular interactions. It is assumed that the membrane-associated cytoskeleton modulates lateral diffusion. Here, we use a minimal actin cortex to directly study proposed effects of an actin meshwork on the diffusion in a well-defined system. The lateral diffusion of a lipid and a protein probe at varying densities of membrane-bound actin was characterized by fluorescence correlation spectroscopy (FCS). A clear correlation of actin density and reduction in mobility was observed for both the lipid and the protein probe. At high actin densities, the effect on the protein probe was ∼3.5-fold stronger compared to the lipid. Moreover, addition of myosin filaments, which contract the actin mesh, allowed switching between fast and slow diffusion in the minimal system. Spot variation FCS was in accordance with a model of fast microscopic diffusion and slower macroscopic diffusion. Complementing Monte Carlo simulations support the analysis of the experimental FCS data. Our results suggest a stronger interaction of the actin mesh with the larger protein probe compared to the lipid. This might point toward a mechanism where cortical actin controls membrane diffusion in a strong size-dependent manner. PMID:23561523
Microscopic Studies of Quantum Phase Transitions in Optical Lattices
NASA Astrophysics Data System (ADS)
Bakr, Waseem S.
2011-12-01
In this thesis, I report on experiments that microscopically probe quantum phase transitions of ultracold atoms in optical lattices. We have developed a "quantum gas microscope" that allowed, for the first time, optical imaging and manipulation of single atoms in a quantum-degenerate gas on individual sites of an optical lattice. This system acts as a quantum simulator of strongly correlated materials, which are currently the subject of intense research because of the technological potential of high--T c superconductors and spintronic materials. We have used our microscope to study the superfluid to Mott insulator transition in bosons and a magnetic quantum phase transition in a spin system. In our microscopic study of the superfluid-insulator transition, we have characterized the on-site number statistics in a space- and time-resolved manner. We observed Mott insulators with fidelities as high as 99%, corresponding to entropies of 0.06kB per particle. We also measured local quantum dynamics and directly imaged the shell structure of the Mott insulator. I report on the first quantum magnetism experiments in optical lattices. We have realized a quantum Ising chain in a magnetic field, and observed a quantum phase transition between a paramagnet and antiferromagnet. We achieved strong spin interactions by encoding spins in excitations of a Mott insulator in a tilted lattice. We detected the transition by measuring the total magnetization of the system across the transition using in-situ measurements as well as the Neel ordering in the antiferromagnetic state using noise-correlation techniques. We characterized the dynamics of domain formation in the system. The spin mapping introduced opens up a new path to realizing more exotic states in optical lattices including spin liquids and quantum valence bond solids. As our system sizes become larger, simulating their physics on classical computers will require exponentially larger resources because of entanglement build-up near a quantum phase transition. We have demonstrated a quantum simulator in which all degrees of freedom can be read out microscopically, allowing the simulation of quantum many-body systems with manageable resources. More generally, the ability to image and manipulate individual atoms in optical lattices opens an avenue towards scalable quantum computation.
NASA Astrophysics Data System (ADS)
Wanare, S. P.; Kalyankar, V. D.
2018-04-01
Friction stir welding is emerging as a promising technique for joining of lighter metal alloys due to its several advantages over conventional fusion welding processes such as low thermal distortion, good mechanical properties, fine weld joint microstructure, etc. This review article mainly focuses on analysis of microstructure and mechanical properties of friction stir welded joints. Various microstructure characterization techniques used by previous researchers such as optical microscopes, x-ray diffraction, electron probe microscope, transmission electron microscope, scanning electron microscopes with electron back scattered diffraction, electron dispersive microscopy, etc. are thoroughly overviewed and their results are discussed. The effects of friction stir welding process parameters such as tool rotational speed, welding speed, tool plunge depth, axial force, tool shoulder diameter to tool pin diameter ratio, tool geometry etc. on microstructure and mechanical properties of welded joints are studied and critical observations are noted down. The microstructure examination carried out by previous researchers on various zones of welded joints such as weld zone, heat affected zone and base metal are studied and critical remarks have been presented. Mechanical performances of friction stir welded joints based on tensile test, micro-hardness test, etc. are discussed. This article includes exhaustive literature review of standard research articles which may become ready information for subsequent researchers to establish their line of action.
Lithography-Free Fabrication of Core-Shell GaAs Nanowire Tunnel Diodes.
Darbandi, A; Kavanagh, K L; Watkins, S P
2015-08-12
GaAs core-shell p-n junction tunnel diodes were demonstrated by combining vapor-liquid-solid growth with gallium oxide deposition by atomic layer deposition for electrical isolation. The characterization of an ensemble of core-shell structures was enabled by the use of a tungsten probe in a scanning electron microscope without the need for lithographic processing. Radial tunneling transport was observed, exhibiting negative differential resistance behavior with peak-to-valley current ratios of up to 3.1. Peak current densities of up to 2.1 kA/cm(2) point the way to applications in core-shell photovoltaics and tunnel field effect transistors.
Ni-Mn-Ga shape memory nanoactuation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohl, M., E-mail: manfred.kohl@kit.edu; Schmitt, M.; Krevet, B.
2014-01-27
To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.
Ni-Mn-Ga shape memory nanoactuation
NASA Astrophysics Data System (ADS)
Kohl, M.; Schmitt, M.; Backen, A.; Schultz, L.; Krevet, B.; Fähler, S.
2014-01-01
To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.
Ultrahigh resolution multicolor colocalization of single fluorescent probes
Weiss, Shimon; Michalet, Xavier; Lacoste, Thilo D.
2005-01-18
A novel optical ruler based on ultrahigh-resolution colocalization of single fluorescent probes is described. Two unique families of fluorophores are used, namely energy-transfer fluorescent beads and semiconductor nanocrystal (NC) quantum dots, that can be excited by a single laser wavelength but emit at different wavelengths. A novel multicolor sample-scanning confocal microscope was constructed which allows one to image each fluorescent light emitter, free of chromatic aberrations, by scanning the sample with nanometer scale steps using a piezo-scanner. The resulting spots are accurately localized by fitting them to the known shape of the excitation point-spread-function of the microscope.
NASA Astrophysics Data System (ADS)
Shershulin, V. A.; Samoylenko, S. R.; Shenderova, O. A.; Konov, V. I.; Vlasov, I. I.
2017-02-01
The suitability of scanning near-field optical microscopy (SNOM) to image photoluminescent diamond nanoparticles with nanoscale resolution is demonstrated. Isolated diamond nanocrystals with an average size of 100 nm, containing negatively charged nitrogen-vacancy (NV-) centers, were chosen as tested material. The NV- luminescence was stimulated by continuous 532 nm laser light. Sizes of analyzed crystallites were monitored by an atomic force microscope. The lateral resolution of the order of 100 nm was reached in SNOM imaging of diamond nanoparticles using 150 nm square aperture of the probe.
Broadband Impedance Microscopy for Research on Complex Quantum Materials
2016-02-08
function in various materials. Figure 2. Sensitivity limit of the broadband impedance microscope (BIM). Figure 3. Preliminary BIM data on YMnO3...2 Statement of the Problem The objective of this DURIP award is to construct a broadband impedance microscope (BIM) for frequency-dependent...platforms and specialized cantilever probes [1] in the PI’s lab, the BIM can now simultaneously obtain microscopic (10 – 100 nm) and quasi- spectroscopic
Wen, Ming; Li, Bibo; Ouyang, Yu; Luo, Yi; Li, Shaolin
2009-06-01
Molecular imaging of tumor antisense gene techniques have been applied to the study of magnetic resonance (MR) gene imaging associated with malignant tumors. In this study, we designed, synthesized, and tested a novel molecular probe, in which the antisense oligodeoxynucleotide (ASODN) was labeled with superparamagnetic iron oxide (SPIO), and its efficiency was examined by in vitro MR imaging after SK-Br-3 mammary carcinoma cell lines (oncocytes) transfection. The SPIO-labeled ASODN probe was prepared through SPIO conjugated to ASODN using a chemical cross linking method. Its morphology and size were detected by atomic force microscope, size distribution were detected by laser granulometer, the conjugating rate and biological activity were determined by high performance liquid chromatography, and the stability was determined by polyacrylamide gel electrophoresis. After that, the probes were transfected into the SK-Br-3 oncocytes, cellular iron uptake was analyzed qualitatively at light and electron microscopy and was quantified at atomic absorption spectrometry, and the signal change of the transfected cells was observed and measured using MR imaging. The morphology of the SPIO-labeled ASODN probe was mostly spherical with well-distributed scattering, and the diameters were between 25 and 40 nm (95%) by atomic force microscope and laser granulometer, the conjugating rate of the probe was 99%. Moreover, this probe kept its activity under physiological conditions and could conjugate with antisense oligodeoxynucleotide. In addition, light microscopy revealed an intracellular uptake of iron oxides in the cytosol and electron microscopic studies revealed a lysosomal deposition of iron oxides in the transfected SK-Br-3 oncocytes by antisense probes, some of them gathered stacks, and the iron content of the group of transfected SK-Br-3 oncocytes by antisense probe is significantly higher (18.37 +/- 0.42 pg) than other contrast groups, the MR imaging showed that transfected SK-Br-3 oncocytes by antisense probe had the lowest signal of all. The SPIO-labeled ASODN probe shows unique features including well-distributed spherical morphology, high conjugating rate and loading efficiency, and the signal intensity of SPIO-labeled ASODN-transfected SK-Br-3 oncocytes is reduced in MR imaging. These results indicate that the SPIO-labeled ASODN probe is potentially useful as a MR targeting contrast enhancing agent to specifically diagnose tumors which had over-expression of the c-erbB2 oncogene at an early stage.
High throughput secondary electron imaging of organic residues on a graphene surface
NASA Astrophysics Data System (ADS)
Zhou, Yangbo; O'Connell, Robert; Maguire, Pierce; Zhang, Hongzhou
2014-11-01
Surface organic residues inhibit the extraordinary electronic properties of graphene, hindering the development of graphene electronics. However, fundamental understanding of the residue morphology is still absent due to a lack of high-throughput and high-resolution surface characterization methods. Here, we demonstrate that secondary electron (SE) imaging in the scanning electron microscope (SEM) and helium ion microscope (HIM) can provide sub-nanometer information of a graphene surface and reveal the morphology of surface contaminants. Nanoscale polymethyl methacrylate (PMMA) residues are visible in the SE imaging, but their contrast, i.e. the apparent lateral dimension, varies with the imaging conditions. We have demonstrated a quantitative approach to readily obtain the physical size of the surface features regardless of the contrast variation. The fidelity of SE imaging is ultimately determined by the probe size of the primary beam. HIM is thus evaluated to be a superior SE imaging technique in terms of surface sensitivity and image fidelity. A highly efficient method to reveal the residues on a graphene surface has therefore been established.
Wang, Li-juan; Zhu, Zhao-jing; Che, Ke-ke; Ju, Feng-ge
2008-09-01
The microstructures of ibuprofen-hydroxypropyl-bets-cyclodextrin (IBU-HP-beta-CyD) and ibuprofen-beta-cyclodextrin (IBU-beta-CyD) were observed by atomic force microscope (AFM). The high resolving capability of AFM has the tungsten filament probe with the spring constant of 0.06 N x m(-1). Samples were observed in a small scale scanning area of 10.5 nm x 10.5 nm and 800 x 800 pixels. The original scanning images were gained by tapping mode at room temperature. Their three-dimensional reconstruction of microstructure was performed by G3DR software. The outer diameters of HP-beta-CyD and beta-CyD are 1.53 nm. The benzene diameter of IBU is 0.62 nm, fitting to the inner diameters of HP-beta-CyD and beta-CyD. The benzene and hydrophobic chain of IBU enter into the hole of cyclodextrin at 1:1 ratio. The results were evidenced by IR, X-ray diffraction and the phase solubility.
High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.
Onishi, Keiko; Guo, Hongxuan; Nagano, Syoko; Fujita, Daisuke
2014-11-01
A Scanning Helium Ion Microscope (SHIM) is a high resolution surface observation instrument similar to a Scanning Electron Microscope (SEM) since both instruments employ finely focused particle beams of ions or electrons [1]. The apparent difference is that SHIMs can be used not only for a sub-nanometer scale resolution microscopic research, but also for the applications of very fine fabrication and direct lithography of surfaces at the nanoscale dimensions. On the other hand, atomic force microscope (AFM) is another type of high resolution microscopy which can measure a three-dimensional surface morphology by tracing a fine probe with a sharp tip apex on a specimen's surface.In order to measure highly uneven and concavo-convex surfaces by AFM, the probe of a high aspect ratio with a sharp tip is much more necessary than the probe of a general quadrangular pyramid shape. In this paper we report the manufacture of the probe tip of the high aspect ratio by ion-beam induced gas deposition using a nanoscale helium ion beam of SHIM.Gas of platinum organic compound was injected into the sample surface neighborhood in the vacuum chamber of SHIM. The decomposition of the gas and the precipitation of the involved metal brought up a platinum nano-object in a pillar shape on the normal commercial AFM probe tip. A SHIM system (Carl Zeiss, Orion Plus) equipped with the gas injection system (OmniProbe, OmniGIS) was used for the research. While the vacuum being kept to work, we injected platinum organic compound ((CH3)3(CH3C5H4)Pt) into the sample neighborhood and irradiated the helium ion beam with the shape of a point on the apex of the AFM probe tip. It is found that we can control the length of the Pt nano-pillar by irradiation time of the helium ion beam. The AFM probe which brought up a Pt nano-pillar is shown in Figure 1. It is revealed that a high-aspect-ratio Pt nano-pillar of ∼40nm diameter and up to ∼2000 nm length can be grown. In addition, for possible heating by the helium ion beam, it was observed that an original probe shape was transformed. AFM measurement of a reference sample (pitch 100-500 nm, depth 100 nm) of the lines and spaces was performed using the above probes. The conventional probes which did not bring up platinum was not able to get into the ditch enough. Therefore it was found that a salient was big and a reentrant was shallow. On the other hand, the probe which brought up platinum was able to enter enough to the depths of the ditch.jmicro;63/suppl_1/i30-a/DFU075F1F1DFU075F1Fig.1.SHIM image of the AFM probe with the Pt nano-pillar fabricated by ion-beam induced deposition. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Path-separated electron interferometry in a scanning transmission electron microscope
NASA Astrophysics Data System (ADS)
Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.
2018-05-01
We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the +1 diffraction order probe through amorphous carbon while passing the 0th and ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.
Advanced scanning probe lithography.
Garcia, Ricardo; Knoll, Armin W; Riedo, Elisa
2014-08-01
The nanoscale control afforded by scanning probe microscopes has prompted the development of a wide variety of scanning-probe-based patterning methods. Some of these methods have demonstrated a high degree of robustness and patterning capabilities that are unmatched by other lithographic techniques. However, the limited throughput of scanning probe lithography has prevented its exploitation in technological applications. Here, we review the fundamentals of scanning probe lithography and its use in materials science and nanotechnology. We focus on robust methods, such as those based on thermal effects, chemical reactions and voltage-induced processes, that demonstrate a potential for applications.
To boldly glow ... applications of laser scanning confocal microscopy in developmental biology.
Paddock, S W
1994-05-01
The laser scanning confocal microscope (LSCM) is now established as an invaluable tool in developmental biology for improved light microscope imaging of fluorescently labelled eggs, embryos and developing tissues. The universal application of the LSCM in biomedical research has stimulated improvements to the microscopes themselves and the synthesis of novel probes for imaging biological structures and physiological processes. Moreover the ability of the LSCM to produce an optical series in perfect register has made computer 3-D reconstruction and analysis of light microscope images a practical option.
NASA Astrophysics Data System (ADS)
Xu, Guan; Lei, Hao; Johnson, Laura A.; Moons, David S.; Ma, Teng; Zhou, Qifa; Rice, Michael D.; Ni, Jun; Wang, Xueding; Higgins, Peter D. R.
2017-03-01
The pathology of Crohn's disease (CD) is characterized by obstructing intestinal strictures because of inflammation (with high levels of hemoglobin), fibrosis (high levels of collagen), or a combination of both. Inflammatory strictures are medically treated. Fibrotic strictures have to be removed surgically. The accurate characterization of the strictures is therefore critical for the management of CD. Currently the comprehensive assessment of a stricture is difficult, as the standard diagnostic procedure, endoscopic biopsy, is superficial and with limited locations as well as depth. In our previous studies, photoacoustic imaging (PAI) has recovered the layered architectures and the relative content of the molecular components in human and animal tissues ex vivo. This study will investigate the capability of multispectral PAI in resolving the architecture and the molecular components of intestinal strictures in rats in vivo. PA images at 532, 1210 and 1310 nm targeting the strong optical absorption of hemoglobin, lipid and collagen were acquired using two approaches. A compact linear array, CL15-7, was used to transcutaneously acquire PA signals generated by the a fiber optics diffuser positioned within the inner lumen of the strictures. Another approach was to use an endoscopic capsule probe for acoustic resolution PA microscopy. The capsule probe is designed for human and therefore cannot fit into rat colon. The inner surface of the intestinal stricture was exposed and the probe was attached to the diseased location for imaging. The findings in PA images were confirmed by histology results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, Xue; Wang, Yusheng; Li, Xide, E-mail: lixide@tsinghua.edu.cn
An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects ofmore » the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li–Etsion–Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.« less
Moar, Peter N; Love, John D; Ladouceur, François; Cahill, Laurence W
2006-09-01
We analyze two basic aspects of a scanning near-field optical microscope (SNOM) probe's operation: (i) spot-size evolution of the electric field along the probe with and without a metal layer, and (ii) a modal analysis of the SNOM probe, particularly in close proximity to the aperture. A slab waveguide model is utilized to minimize the analytical complexity, yet provides useful quantitative results--including losses associated with the metal coating--which can then be used as design rules.
Gholipour, Yousef; Erra-Balsells, Rosa; Hiraoka, Kenzo; Nonami, Hiroshi
2013-02-01
A modified cell pressure probe and an online Orbitrap mass spectrometer were used to sample in situ plant single cells without any additional manipulation. The cell pressure probe, a quartz capillary tip filled with an oil mixture, was penetrated to various depths into parenchyma cells of tulip bulb scale, followed by a hydraulic continuity test to determine the exact location of the tip inside target cells. The operation was conducted under a digital microscope, and the capillary tip was photographed to calculate the volume of the cell sap sucked. The cell sap sample was then directly nebulized/ionized under high-voltage conditions at the entrance of the mass spectrometer. Several sugars, amino acids, organic acids, vitamins, fatty acids, and secondary metabolites were detected. Because picoliter solutions can be accurately handled and measured, known volumes of standard solutions can be added to cell sap samples inside the capillary tip to be used as references for metabolite characterization and relative quantitation. The high precision and sensitivity of the cell pressure probe and Orbitrap mass spectrometer allow for the manipulation and analysis of both femtoliter cell sap samples and standard solutions. Copyright © 2012 Elsevier Inc. All rights reserved.
Electrical DNA biosensor using aluminium interdigitated electrode for E.Coli O157:H7 detection
NASA Astrophysics Data System (ADS)
Natasha, N. Z.; Rajapaksha, R. D. A. A.; Uda, M. N. A.; Hashim, U.
2017-09-01
Escherichia Coli (E.Coli) O157:H7 is the one of the most dangerous foodborne pathogens based diseases that presence in our daily life that causes illness and death increase every year. Aluminum Interdigitated Electrode (Al IDE) biosensor was introduced to detect E.Coli O157:H7 in earlier stage. In this paper we investigated ssDNA of E.Coli O157:H7 bacteria detection through electrical behavior of Al IDE sensor. The physical properties of Al IDE biosensor has been characterized using Low Power Microscope (LPM), High Power Microscope (HPM), Scanning Electron Microscope (SEM) and 3D Nano Profiler. The bare Al IDE was electrical characterized by using I-V measurement. The surface modification was accomplished by salinization using APTES and immobilization using Carboxylic Probe E.Coli which was the first step in preparing Al IDE biosensor. Geared up prepared biosensor was hybridized with complementary, non-complementary and single based mismatch ssDNA to confirmed specificity detection of E Coli O157:H7 ssDNA target. The Current - Voltage was performed for each step such as bare Al IDE, surface modification, immobilization and hybridization. Sensitivity measurement was accomplished using different concentration of complementary ssDNA target from 1 fM - 10 µM. Selectivity measurements was achieved using same concentration which was 10 µM concentration for complement, non-complement and mismatch E.Coli O157:H7 ssDNA target. It's totally proved that the Al IDE able to detect specific and small current down to Femtomolar concentration.
Hollow fiber-optic Raman probes for small experimental animals
NASA Astrophysics Data System (ADS)
Katagiri, Takashi; Hattori, Yusuke; Suzuki, Toshiaki; Matsuura, Yuji; Sato, Hidetoshi
2007-02-01
Two types of hollow fiber-optic probes are developed to measure the in vivo Raman spectra of small animals. One is the minimized probe which is end-sealed with the micro-ball lens. The measured spectra reflect the information of the sample's sub-surface. This probe is used for the measurement of the esophagus and the stomach via an endoscope. The other probe is a confocal Raman probe which consists of a single fiber and a lens system. It is integrated into the handheld microscope. A simple and small multimodal probe is realized because the hollow optical fiber requires no optical filters. The performance of each probe is examined and the effectiveness of these probes for in vivo Raman spectroscopy is shown by animal tests.
Quadratic electromechanical strain in silicon investigated by scanning probe microscopy
NASA Astrophysics Data System (ADS)
Yu, Junxi; Esfahani, Ehsan Nasr; Zhu, Qingfeng; Shan, Dongliang; Jia, Tingting; Xie, Shuhong; Li, Jiangyu
2018-04-01
Piezoresponse force microscopy (PFM) is a powerful tool widely used to characterize piezoelectricity and ferroelectricity at the nanoscale. However, it is necessary to distinguish microscopic mechanisms between piezoelectricity and non-piezoelectric contributions measured by PFM. In this work, we systematically investigate the first and second harmonic apparent piezoresponses of a silicon wafer in both vertical and lateral modes, and we show that it exhibits an apparent electromechanical response that is quadratic to the applied electric field, possibly arising from ionic electrochemical dipoles induced by the charged probe. As a result, the electromechanical response measured is dominated by the second harmonic response in the vertical mode, and its polarity can be switched by the DC voltage with the evolving coercive field and maximum amplitude, in sharp contrast to typical ferroelectric materials we used as control. The ionic activity in silicon is also confirmed by the scanning thermo-ionic microscopy measurement, and the work points toward a set of methods to distinguish true piezoelectricity from the apparent ones.
NASA Astrophysics Data System (ADS)
Park, Eun Jin; Lee, Jun-Yong; Hyup Kim, Jun; Kug Kim, Sun; Lee, Cheol Jin; Min, Nam Ki
2010-08-01
An electrochemical DNA sensor for Legionella pneumophila detection was constructed using O2 plasma functionalized multi-walled carbon nanotube (MWCNT) film as a working electrode (WE). The cyclic voltammetry (CV) results revealed that the electrocatalytic activity of plasma functionalized MWCNT (pf-MWCNT) significantly changed depending on O2 plasma treatment time due to some oxygen containing functional groups on the pf-MWCNT surface. Scanning electron microscope (SEM) images and X-ray photoelectron spectroscopy (XPS) spectra were also presented the changes of their surface morphologies and oxygen composition before and after plasma treatment. From a comparison study, it was found that the pf-MWCNT WEs had higher electrocatalytic activity and more capability of probe DNA immobilization: therefore, electrochemical signal changes by probe DNA immobilization and hybridization on pf-MWCNT WEs were larger than on Au WEs. The pf-MWCNT based DNA sensor was able to detect a concentration range of 10 pM-100 nM of target DNA to detect L. pneumophila.
Scanning Hall probe microscopy of a diluted magnetic semiconductor
NASA Astrophysics Data System (ADS)
Kweon, Seongsoo; Samarth, Nitin; de Lozanne, Alex
2009-05-01
We have measured the micromagnetic properties of a diluted magnetic semiconductor as a function of temperature and applied field with a scanning Hall probe microscope built in our laboratory. The design philosophy for this microscope and some details are described. The samples analyzed in this work are Ga0.94Mn0.06As films grown by molecular beam epitaxy. We find that the magnetic domains are 2-4 μm wide and fairly stable with temperature. Magnetic clusters are observed above TC, which we ascribe to MnAs defects too small and sparse to be detected by a superconducting quantum interference device magnetometer.
Three dimensional time-gated tracking of non-blinking quantum dots in live cells
DeVore, Matthew S.; Werner, James H.; Goodwin, Peter M.; ...
2015-03-12
Single particle tracking has provided a wealth of information about biophysical processes such as motor protein transport and diffusion in cell membranes. However, motion out of the plane of the microscope or blinking of the fluorescent probe used as a label generally limits observation times to several seconds. Here, we overcome these limitations by using novel non-blinking quantum dots as probes and employing a custom 3D tracking microscope to actively follow motion in three dimensions (3D) in live cells. As a result, signal-to-noise is improved in the cellular milieu through the use of pulsed excitation and time-gated detection.
Probing the Inelastic Interactions in Molecular Junctions by Scanning Tunneling Microscope
NASA Astrophysics Data System (ADS)
Xu, Chen
With a sub-Kelvin scanning tunneling microscope, the energy resolution of spectroscopy is improved dramatically. Detailed studies of finer features of spectrum become possible. The asymmetry in the line shape of carbon monoxide vibrational spectra is observed to correlate with the couplings of the molecule to the tip and substrates. The spin-vibronic coupling in the molecular junctions is revisited with two metal phthalocyanine molecules, unveiling sharp spin-vibronic peaks. Finally, thanks to the improved spectrum resolution, the bonding structure of the acyclic compounds molecules is surveyed with STM inelastic tunneling probe, expanding the capability of the innovative high resolution imaging technique.
Scanning tip microwave near field microscope
Xiang, X.D.; Schultz, P.G.; Wei, T.
1998-10-13
A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an end wall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity. 17 figs.
Scanning tip microwave near field microscope
Xiang, Xiao-Dong; Schultz, Peter G.; Wei, Tao
1998-01-01
A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an endwall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity.
NASA Astrophysics Data System (ADS)
Platkov, Max; Tsun, Alexander; Nagli, Lev; Katzir, Abraham
2006-12-01
We have constructed a scanning near-field infrared microscope (SNIM) which was based on a AgClBr fiber probe whose end was etched to form an aperture of a subwavelength diameter. A detailed study of the mechanical properties of a vibrating AgClBr probe was required for proper operation of the SNIM system. We have demonstrated that the system can be used for imaging and for topographic mapping of samples with a subwavelength resolution in the middle infrared. Such a SNIM will be a powerful tool for the study of microelectronic components or subcellular structures in biological cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henn, T.; Kiessling, T., E-mail: tobias.kiessling@physik.uni-wuerzburg.de; Ossau, W.
We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables themore » investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.« less
A Plasmonic Gold Nanostar Theranostic Probe for In Vivo Tumor Imaging and Photothermal Therapy
Liu, Yang; Ashton, Jeffrey R.; Moding, Everett J.; Yuan, Hsiangkuo; Register, Janna K.; Fales, Andrew M.; Choi, Jaeyeon; Whitley, Melodi J.; Zhao, Xiaoguang; Qi, Yi; Ma, Yan; Vaidyanathan, Ganesan; Zalutsky, Michael R.; Kirsch, David G.; Badea, Cristian T.; Vo-Dinh, Tuan
2015-01-01
Nanomedicine has attracted increasing attention in recent years, because it offers great promise to provide personalized diagnostics and therapy with improved treatment efficacy and specificity. In this study, we developed a gold nanostar (GNS) probe for multi-modality theranostics including surface-enhanced Raman scattering (SERS) detection, x-ray computed tomography (CT), two-photon luminescence (TPL) imaging, and photothermal therapy (PTT). We performed radiolabeling, as well as CT and optical imaging, to investigate the GNS probe's biodistribution and intratumoral uptake at both macroscopic and microscopic scales. We also characterized the performance of the GNS nanoprobe for in vitro photothermal heating and in vivo photothermal ablation of primary sarcomas in mice. The results showed that 30-nm GNS have higher tumor uptake, as well as deeper penetration into tumor interstitial space compared to 60-nm GNS. In addition, we found that a higher injection dose of GNS can increase the percentage of tumor uptake. We also demonstrated the GNS probe's superior photothermal conversion efficiency with a highly concentrated heating effect due to a tip-enhanced plasmonic effect. In vivo photothermal therapy with a near-infrared (NIR) laser under the maximum permissible exposure (MPE) led to ablation of aggressive tumors containing GNS, but had no effect in the absence of GNS. This multifunctional GNS probe has the potential to be used for in vivo biosensing, preoperative CT imaging, intraoperative detection with optical methods (SERS and TPL), as well as image-guided photothermal therapy. PMID:26155311
Automated Weld Characterization Using the Thermoelectric Method
NASA Technical Reports Server (NTRS)
Fulton, J. P.; Wincheski, B.; Namkung, M.
1992-01-01
The effective assessment of the integrity of welds is a complicated NDE problem that continues to be a challenge. To be able to completely characterize a weld, detailed knowledge of its tensile strength, ductility, hardness, microstructure, macrostructure, and chemical composition is needed. NDE techniques which can provide information on any of these features are extremely important. In this paper, we examine a seldom used approach based on the thermoelectric (TE) effect for characterizing welds and their associated heat affected zone (HAZ). The thermoelectric method monitors the thermoelectric power which is sensitive to small changes in the kinetics of the conduction electrons near the Fermi surface that can be caused by changes in the local microstructure. The technique has been applied to metal sorting, quality testing, flaw detection, thickness gauging of layers, and microscopic structural analysis. To demonstrate the effectiveness of the technique for characterizing welds, a series of tungsten-inert-gas welded Inconel-718 samples were scanned with a computer controlled TE probe. The samples were then analyzed using a scanning electron microscope and Rockwell hardness tests to characterize the weld and the associated HAZ. We then correlated the results with the TE measurements to provide quantitative information on the size of the HAZ and the degree of hardness of the material in the weld region. This provides potentially valuable information on the strength and fatigue life of the weld. We begin the paper by providing a brief review of the TE technique and then highlight some of the factors that can effect the measurements. Next, we provide an overview of the experimental procedure and discuss the results. Finally, we summarize our findings and consider areas for future research.
Spatio-temporal characterization imaging of Ca2+ oscillations in rat hippocampal neurons
NASA Astrophysics Data System (ADS)
Zhang, Zhihong; Lu, Jinling; Zhou, Wei; Liu, Rengang; Zeng, Shaoqun; Luo, Qingming
2001-08-01
Ca2+ is the most common signal transduction element in cells and plays critical rolls in neuronal development and plasticity. Ca2+ signals encode information in their oscillation frequency or amplitude and response time to regular cellular function. In this study, in order to reveal the spatio-temporal characterization of Ca2+ oscillations in rat hippocampal neurons, two kinds of Ca2+ fluorescent probes, yellow cameleons 2.1 (YC2.1) and Fluo-3, were used to monitor the change of the intracellular free Ca2+ concentration (]Ca2+[i). Spontaneous Ca2+ oscillations and glutamate elicited Ca2+ oscillations were observed with multi-photon excitation laser scan microscope (MPELSM) and confocal laser scan microscope (CLSM). The observation showed that the spatio- temporal characterization of either spontaneous or glutamate provoked Ca2+ oscillations had difference between the neurites and somata in individual nerons, especially in some distal end of neurites. The result indicated that Ca2+ oscillations were most important signal transduction pattern in neuronal development and activation. The spatio-temporal characterization of difference of Ca2+ signals between the distal endo of neurites and the somata might be associated with the distribution of ionotropic receptor and metabotropic glutamate receptors, and Ca2+ response mechanism mediated by two kinds of glutamate receptor. Ca2+ signal elicited by glutamate in the distal end of neurites appeared more complex and generated faster than that in the somata. It was suggested that Ca2+ signal in glutamate stimulated hippacamal neurons first generated from the distal end of neurites and then transduted to the somata. The complicated Ca2+ signal characterization in the distal end of neurites might be associated with neuronal activitation, neurotransmitter releasing, and other functions of neurons.
Characterization of Dielectric Nanocomposites with Electrostatic Force Microscopy
El Khoury, D.; Fedorenko, V.; Castellon, J.; Laurentie, J.-C.; Fréchette, M.; Ramonda, M.
2017-01-01
Nanocomposites physical properties unexplainable by general mixture laws are usually supposed to be related to interphases, highly present at the nanoscale. The intrinsic dielectric constant of the interphase and its volume need to be considered in the prediction of the effective permittivity of nanodielectrics, for example. The electrostatic force microscope (EFM) constitutes a promising technique to probe interphases locally. This work reports theoretical finite-elements simulations and experimental measurements to interpret EFM signals in front of nanocomposites with the aim of detecting and characterizing interphases. According to simulations, we designed and synthesized appropriate samples to verify experimentally the ability of EFM to characterize a nanoshell covering nanoparticles, for different shell thicknesses. This type of samples constitutes a simplified electrostatic model of a nanodielectric. Experiments were conducted using either DC or AC-EFM polarization, with force gradient detection method. A comparison between our numerical model and experimental results was performed in order to validate our predictions for general EFM-interphase interactions. PMID:29109811
Sparse sampling and reconstruction for electron and scanning probe microscope imaging
Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.
2015-07-28
Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.
Building large mosaics of confocal edomicroscopic images using visual servoing.
Rosa, Benoît; Erden, Mustafa Suphi; Vercauteren, Tom; Herman, Benoît; Szewczyk, Jérôme; Morel, Guillaume
2013-04-01
Probe-based confocal laser endomicroscopy provides real-time microscopic images of tissues contacted by a small probe that can be inserted in vivo through a minimally invasive access. Mosaicking consists in sweeping the probe in contact with a tissue to be imaged while collecting the video stream, and process the images to assemble them in a large mosaic. While most of the literature in this field has focused on image processing, little attention has been paid so far to the way the probe motion can be controlled. This is a crucial issue since the precision of the probe trajectory control drastically influences the quality of the final mosaic. Robotically controlled motion has the potential of providing enough precision to perform mosaicking. In this paper, we emphasize the difficulties of implementing such an approach. First, probe-tissue contacts generate deformations that prevent from properly controlling the image trajectory. Second, in the context of minimally invasive procedures targeted by our research, robotic devices are likely to exhibit limited quality of the distal probe motion control at the microscopic scale. To cope with these problems visual servoing from real-time endomicroscopic images is proposed in this paper. It is implemented on two different devices (a high-accuracy industrial robot and a prototype minimally invasive device). Experiments on different kinds of environments (printed paper and ex vivo tissues) show that the quality of the visually servoed probe motion is sufficient to build mosaics with minimal distortion in spite of disturbances.
NASA Astrophysics Data System (ADS)
Wakayama, Takayuki; Kobayashi, Toshinari; Iwata, Nobuya; Tanifuji, Nozomi; Matsuda, Yasuaki; Yamada, Syoji
2003-12-01
We present here new cantilevers for scanning probe microscopy (SPM) and sensor applications, which consist of silicon cantilever beam and ceramic pedestal. Silicon is only used to make cantilever beams and tips. Precision-machinery-made ceramics replaces silicon pedestal part. The ceramics was recently developed by Sumikin Ceramics and Quarts Co., Ltd. and can be machined precisely with end mill cutting. Many silicon beams are fabricated at once from a wafer using batch fabrication method. Therefore, SPM probes can be fabricated in high productivity and in low cost. These beams are transferred with transfer technique and are bonded on the ceramic pedestal with epoxy glue. We demonstrate here atomic force microscope (AFM) and gas sensor applications of the hybrid structure. In a gas sensor application, the ends of the cantilever are selectively modified with zeolite crystals as a sensitive layer. The bonding strength is enough for each application.
Analytical scanning evanescent microwave microscope and control stage
Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin
2013-01-22
A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.
Analytical scanning evanescent microwave microscope and control stage
Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin
2009-06-23
A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.
Molecular Imaging of Apoptosis: From Micro to Macro
Zeng, Wenbin; Wang, Xiaobo; Xu, Pengfei; Liu, Gang; Eden, Henry S.; Chen, Xiaoyuan
2015-01-01
Apoptosis, or programmed cell death, is involved in numerous human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer, and is often confused with other types of cell death. Therefore strategies that enable visualized detection of apoptosis would be of enormous benefit in the clinic for diagnosis, patient management, and development of new therapies. In recent years, improved understanding of the apoptotic machinery and progress in imaging modalities have provided opportunities for researchers to formulate microscopic and macroscopic imaging strategies based on well-defined molecular markers and/or physiological features. Correspondingly, a large collection of apoptosis imaging probes and approaches have been documented in preclinical and clinical studies. In this review, we mainly discuss microscopic imaging assays and macroscopic imaging probes, ranging in complexity from simple attachments of reporter moieties to proteins that interact with apoptotic biomarkers, to rationally designed probes that target biochemical changes. Their clinical translation will also be our focus. PMID:25825597
Guinel, M J-F; Brodusch, N; Sha, G; Shandiz, M A; Demers, H; Trudeau, M; Ringer, S P; Gauvin, R
2014-09-01
Precipitates (ppts) in new generation aluminum-lithium alloys (AA2099 and AA2199) were characterised using scanning and transmission electron microscopy and atom probe tomography. Results obtained on the following ppts are reported: Guinier-Preston zones, T1 (Al2 CuLi), β' (Al3 Zr) and δ' (Al3 Li). The focus was placed on their composition and the presence of minor elements. X-ray energy-dispersive spectrometry in the electron microscopes and mass spectrometry in the atom probe microscope showed that T1 ppts were enriched in zinc (Zn) and magnesium up to about 1.9 and 3.5 at.%, respectively. A concentration of 2.5 at.% Zn in the δ' ppts was also measured. Unlike Li and copper, Zn in the T1 ppts could not be detected using electron energy-loss spectroscopy in the transmission electron microscope because of its too low concentration and the small sizes of these ppts. Indeed, Monte Carlo simulations of EEL spectra for the Zn L2,3 edge showed that the signal-to-noise ratio was not high enough and that the detection limit was at least 2.5 at.%, depending on the probe current. Also, the simulation of X-ray spectra confirmed that the detection limit was exceeded for the Zn Kα X-ray line because the signal-to-noise ratio was high enough in that case, which is in agreement with our observations. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
HA/Bioglass composite films deposited by pulsed laser with different substrate temperature
NASA Astrophysics Data System (ADS)
Wang, D. G.; Chen, C. Z.; Jin, Q. P.; Li, H. C.; Pan, Y. K.
2014-03-01
In this experiment, the HA/Bioglass composite films on Ti-6Al-4V were deposited by a pulsed laser at Ar atmosphere, and the influence of substrate temperature on the morphology, phase constitutions, bonding configurations and adhesive strength of the films was studied. The obtained films were characterized by an electron probe microanalyzer (EPMA), scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), scratch apparatus, and so on. The results show that the amount of the droplets, the crystallinity, and the critical load of the deposited films all increase with the increase of the substrate temperature; however, the substrate temperature has little influence on the functional groups of the films.
Characterization of LiBC by phase-contrast scanning transmission electron microscopy.
Krumeich, Frank; Wörle, Michael; Reibisch, Philipp; Nesper, Reinhard
2014-08-01
LiBC was used as a model compound for probing the applicability of phase-contrast (PC) imaging in an aberration-corrected scanning transmission electron microscope (STEM) to visualize lithium distributions. In the LiBC structure, boron and carbon are arranged to hetero graphite layers between which lithium is incorporated. The crystal structure is reflected in the PC-STEM images recorded perpendicular to the layers. The experimental images and their defocus dependence match with multi-slice simulations calculated utilizing the reciprocity principle. The observation that a part of the Li positions is not occupied is likely an effect of the intense electron beam triggering Li displacement. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gao, Fengli; Li, Xide
2018-01-01
Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p) sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode) and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode). Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing. PMID:29364847
Implementation of focused ion beam (FIB) system in characterization of nuclear fuels and materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Aitkaliyeva; J. W. Madden; B. D. Miller
2014-10-01
Beginning in 2007, a program was established at the Idaho National Laboratory to update key capabilities enabling microstructural and micro-chemical characterization of highly irradiated and/or radiologically contaminated nuclear fuels and materials at scales that previously had not been achieved for these types of materials. Such materials typically cannot be contact handled and pose unique hazards to instrument operators, facilities, and associated personnel. One of the first instruments to be acquired was a Dual Beam focused ion beam (FIB)-scanning electron microscope (SEM) to support preparation of transmission electron microscopy and atom probe tomography samples. Over the ensuing years, techniques have beenmore » developed and operational experience gained that has enabled significant advancement in the ability to characterize a variety of fuel types including metallic, ceramic, and coated particle fuels, obtaining insights into in-reactor degradation phenomena not obtainable by any other means. The following article describes insights gained, challenges encountered, and provides examples of unique results obtained in adapting Dual Beam FIB technology to nuclear fuels characterization.« less
Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy.
Upadhyay, Jaymin; Hallock, Kevin; Erb, Kelley; Kim, Dae-Shik; Ronen, Itamar
2007-11-01
In diffusion tensor imaging (DTI) the anisotropic movement of water is exploited to characterize microstructure. One confounding issue of DTI is the presence of intra- and extracellular components contributing to the measured diffusivity. This causes an ambiguity in determining the underlying cause of diffusion properties, particularly the fractional anisotropy (FA). In this study an intracellular constituent, N-acetyl aspartate (NAA), was used to probe intracellular diffusion, while water molecules were used to probe the combined intra- and extracellular diffusion. NAA and water diffusion measurements were made in anterior and medial corpus callosum (CC) regions, which are referred to as R1 and R2, respectively. FA(NAA) was found to be greater than FA(Water) in both CC regions, thus indicating a higher degree of anisotropy within the intracellular space in comparison to the combined intra- and extracellular spaces. A decreasing trend in the FA of NAA and water was observed between R1 and R2, while the radial diffusivity (RD) for both molecules increased. The increase in RD(NAA) is particularly significant, thus explaining the more significant decrease in FA(NAA) between the two regions. It is suggested that diffusion tensor spectroscopy of NAA can potentially be used to further characterize microscopic anatomic organization in white matter. Copyright 2007 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Thacker, Beth Ann
2003-01-01
Interviews university students in modern physics about their understanding of three fundamental experiments. Explores their development of models of microscopic processes. Uses interactive demonstrations to probe student understanding of modern physics experiments in two high school physics classes. Analyzes the nature of students' models and the…
Tunneling magnetic force microscopy
NASA Technical Reports Server (NTRS)
Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.
1993-01-01
We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.
Designs for a quantum electron microscope.
Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K
2016-05-01
One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kosterin, Andrey Valentinovich
2000-10-01
Polarization microscopy is a powerful technique for imaging structure and stress distributions in many transparent materials, and has been particularly useful in morphology studies of polymer films. Recently the possibility of combining polarization imaging with near-field scanning optical microscopy (NSOM) has been demonstrated, offering new opportunities for studying molecular organization with better than 50 nm resolution. However, there are challenges associated with near-field polarization experiments on organic films: (1) the films are susceptible to damage by the near-field probe; (2) the phase shift or retardation (80) is small, often <0.1 rad; (3) interpretation of near-field images is complicated by topography and probe-sample coupling. To address these challenges, we have developed a new combined near-field/confocal polarization microscope and tested its sensitivity to linear birefringence in thin polymer films. For near-field imaging, the microscope employs a commercially available scanhead with cantilevered (bent) optical fiber probes. To study soft samples (point 1), we have modified the scanhead for tapping mode feedback, which eliminates probe-sample shear forces and prolongs the lifetime of the probe, while minimizing damage to the sample. To achieve sensitivity to small phase shifts (point 2), we have implemented the phase modulation (PM) technique in the optical path. Enhanced sensitivity relative to the standard crossed polarizers scheme is achieved because of the better signal-to-noise discrimination common to lock-in detection and because the detected first harmonic intensity, Io , is linearly proportional to deltatheta instead of (deltatheta) 2. To facilitate interpretation of near-field contrast (point 3), we have incorporated near-field and confocal channels in one instrument. This allows consecutive acquisition of both near-field and far-field images on the same sample area. Since the far-field images do not suffer from the same artifacts, they can be used as a source of independent information on sample optical properties. The combined near-field/confocal polarization microscope is discussed in this thesis as well as some of its applications. Specifically we consider the results of polyethylene oxide (PEO) and crosslinked polybutadiene (PB) thin film imaging.
In vivo optical detection of pH in microscopic tissue samples of Arabidopsis thaliana.
Kašík, Ivan; Podrazký, Ondřej; Mrázek, Jan; Martan, Tomáš; Matějec, Vlastimil; Hoyerová, Klára; Kamínek, Miroslav
2013-12-01
Minimally invasive in vivo measurement of pH in microscopic biological samples of μm or μl size, e.g. plant cells, tissues and saps, may help to explain complex biological processes. Consequently, techniques to achieve such measurements are a focus of interest for botanists. This paper describes a technique for the in vivo measurement of pH in the range pH5.0 to pH7.8 in microscopic plant tissue samples of Arabidopsis thaliana based on a ratiometric fluorescence method using low-loss robust tapered fiber probes. For this purpose tapered fiber probes were prepared and coated with a detection layer containing ion-paired fluorescent pH-transducer 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (c-HPTS). A fluorescence ratiometric approach was employed based on excitation at 415 nm and 450 nm and on the comparison of the fluorescence response at 515 nm. The suitability of tapered fiber probes for local detection of pH between 5.0 and 7.8 was demonstrated. A pH sensitivity of 0.15 pH units was achieved within the pH ranges 5.0-5.9 and 7.1-7.8, and this was improved to 0.04 pH units within the pH range 5.9-7.1. Spatial resolution of the probes was better than 20 μm and a time response within 15-20s was achieved. Despite the minute dimensions of the tapered fiber probes the setup developed was relatively robust and compact in construction and performed reliably. It has been successfully employed for the in vivo local determination of pH of mechanically resistant plant tissues of A. thaliana of microscopic scale. The detection of momentary pH gradients across the intact plant seems to be a good tool for the determination of changes in pH in response to experimental treatments affecting for example enzyme activities, availability of mineral nutrients, hormonal control of plant development and plant responses to environmental cues. © 2013.
Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope
NASA Astrophysics Data System (ADS)
Qian, Hui; Egerton, Ray F.
2017-11-01
Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.
Scanning tunneling microscope with two-dimensional translator.
Nichols, J; Ng, K-W
2011-01-01
Since the invention of the scanning tunneling microscope (STM), it has been a powerful tool for probing the electronic properties of materials. Typically STM designs capable of obtaining resolution on the atomic scale are limited to a small area which can be probed. We have built an STM capable of coarse motion in two dimensions, the z- and x-directions which are, respectively, parallel and perpendicular to the tip. This allows us to image samples with very high resolution at sites separated by macroscopic distances. This device is a single unit with a compact design making it very stable. It can operate in either a horizontal or vertical configuration and at cryogenic temperatures.
Measuring localized viscoelasticity of the vitreous body using intraocular microprobes.
Pokki, Juho; Ergeneman, Olgaç; Sevim, Semih; Enzmann, Volker; Torun, Hamdi; Nelson, Bradley J
2015-10-01
Vitrectomy is a standard ophthalmic procedure to remove the vitreous body from the eye. The biomechanics of the vitreous affects its duration (by changing the removal rate) and the mechanical forces transmitted via the vitreous on the surrounding tissues during the procedure. Biomechanical characterization of the vitreous is essential for optimizing the design and control of instruments that operate within the vitreous for improved precision, safety, and efficacy. The measurements are carried out using a magnetic microprobe inserted into the vitreous, a method known as magnetic microrheology. The location of the probe is tracked by a microscope/camera while magnetic forces are exerted wirelessly by applied magnetic fields. In this work, in vitro artificial vitreous, ex vivo human vitreous and ex vivo porcine vitreous were characterized. In addition, in vivo rabbit measurements were performed using a suturelessly injected probe. Measurements indicate that viscoelasticity parameters of the ex vivo human vitreous are an order of magnitude different from those of the ex vivo porcine vitreous. The in vivo intra-operative measurements show typical viscoelastic behavior of the vitreous with a lower compliance than the ex vivo measurements. The results of the magnetic microrheology measurements were validated with those obtained by a standard atomic force microscopy (AFM) method and in vitro artificial vitreous. This method allows minimally-invasive characterization of localized mechanical properties of the vitreous in vitro, ex vivo, and in vivo. A better understanding of the characteristics of the vitreous can lead to improvements in treatments concerning vitreal manipulation such as vitrectomy.
NASA Astrophysics Data System (ADS)
Karreman, M. A.
2013-03-01
Correlative microscopy is the combined use of two different forms of microscopy in the study of a specimen, allowing for the exploitation of the advantages of both imaging tools. The integrated Laser and Electron Microscope (iLEM), developed at Utrecht University, combines a fluorescence microscope (FM) and a transmission electron microscope (TEM) in a single set-up. The region of interest in the specimen is labeled or tagged with a fluorescent probe and can easily be identified within a large field of view with the FM. Next, this same area is retraced in the TEM and can be studied at high resolution. The iLEM demands samples that can be imaged with both FM and TEM. Biological specimen, typically composed of light elements, generate low image contrast in the TEM. Therefore, these samples are often ‘contrasted’ with heavy metal stains. FM, on the other hand, images fluorescent samples. Sample preparation for correlative microscopy, and iLEM in particular, is complicated by the fact that the heavy metals stains employed for TEM quench the fluorescent signal of the probe that is imaged with FM. The first part of this thesis outlines preparation procedures for biological material yielding specimen that can be imaged with the iLEM. Here, approaches for the contrasting of thin sections of cells and tissue are introduced that do not affect the fluorescence signal of the probe that marks the region of interest. Furthermore, two novel procedures, VIS2FIXH and VIS2FIXFS are described that allow for the chemical fixation of thin sections of cryo-immobilized material. These procedures greatly expedite the sample preparation process, and open up novel possibilities for the immuno-labeling of difficult antigens, eg. proteins and lipids that are challenging to preserve. The second part of this thesis describes applications of iLEM in research in the field of life and material science. The iLEM was employed in the study of UVC induced apoptosis (programmed cell death) of human umbilical vein endothelial cells. A novel, RNA containing body was identified in the nuclei of cells going through the various stages of the apoptotic process. Furthermore, we demonstrated the potential of iLEM in the study of Facio Scapulo Humeral Dystrophy (FSHD), the third most common form of inherited muscular dystrophy. In this study, diseased cells are identified based on the immuno-labeling of proteins associated with FSHD pathology. In the field of heterogeneous catalysis, a structural and functional characterization of Fluid Catalytic Cracking (FCC) particles was performed with iLEM. FCC particles are employed in petrochemical industry, where they catalyze the breakdown of large molecules in crude oil fractions into functional products with lower molecular weight, like gasoline. The catalytic sites in the FCC particles were selectively stained with a fluorescent probe, and next their structure was investigated with TEM. The iLEM allowed for the identification and characterization of catalytically active areas in the FCC particles. Furthermore, a unique study of the deactivation processes taking place in an industrial FCC unit was performed by analyzing a sample derived from a FCC reactor
Jin, Xilang; Hao, Likai; She, Mengyao; Obst, Martin; Kappler, Andreas; Yin, Bing; Liu, Ping; Li, Jianli; Wang, Lanying; Shi, Zhen
2015-01-01
Here we present the first examples of fluorescent and colorimetric probes for microscopic TBT imaging. The fluorescent probes are highly selective and sensitive to TBT and have successfully been applied for imaging of TBT in bacterial Rhodobacter ferrooxidans sp. strain SW2 cell-EPS-mineral aggregates and in cell suspensions of the marine cyanobacterium Synechococcus PCC 7002 by using confocal laser scanning microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.
Bontempi, Alexia; Nguyen, Tran Phong; Salut, Roland; Thiery, Laurent; Teyssieux, Damien; Vairac, Pascal
2016-06-01
A novel probe for scanning thermal microscope using a micro-thermocouple probe placed on a Quartz Tuning Fork (QTF) is presented. Instead of using an external deflection with a cantilever beam for contact detection, an original combination of piezoelectric resonator and thermal probe is employed. Due to a non-contact photothermal excitation principle, the high quality factor of the QTF allows the probe-to-surface contact detection. Topographic and thermal scanning images obtained on a specific sample points out the interest of our system as an alternative to cantilevered resistive probe systems which are the most spread.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bontempi, Alexia; Nguyen, Tran Phong; Salut, Roland
A novel probe for scanning thermal microscope using a micro-thermocouple probe placed on a Quartz Tuning Fork (QTF) is presented. Instead of using an external deflection with a cantilever beam for contact detection, an original combination of piezoelectric resonator and thermal probe is employed. Due to a non-contact photothermal excitation principle, the high quality factor of the QTF allows the probe-to-surface contact detection. Topographic and thermal scanning images obtained on a specific sample points out the interest of our system as an alternative to cantilevered resistive probe systems which are the most spread.
de Graaf, S E; Danilov, A V; Adamyan, A; Kubatkin, S E
2013-02-01
We report on the design and performance of a cryogenic (300 mK) near-field scanning microwave microscope. It uses a microwave resonator as the near-field sensor, operating at a frequency of 6 GHz and microwave probing amplitudes down to 100 μV, approaching low enough photon population (N ∼ 1000) of the resonator such that coherent quantum manipulation becomes feasible. The resonator is made out of a miniaturized distributed fractal superconducting circuit that is integrated with the probing tip, micromachined to be compact enough such that it can be mounted directly on a quartz tuning-fork, and used for parallel operation as an atomic force microscope (AFM). The resonator is magnetically coupled to a transmission line for readout, and to achieve enhanced sensitivity we employ a Pound-Drever-Hall measurement scheme to lock to the resonance frequency. We achieve a well localized near-field around the tip such that the microwave resolution is comparable to the AFM resolution, and a capacitive sensitivity down to 6.4 × 10(-20) F/Hz, limited by mechanical noise. We believe that the results presented here are a significant step towards probing quantum systems at the nanoscale using near-field scanning microwave microscopy.
Photo-induced self-cleaning and sterilizing activity of Sm3+ doped ZnO nanomaterials.
Saif, M; Hafez, H; Nabeel, A I
2013-01-01
Highly active samarium doped zinc oxide self-cleaning and biocidal surfaces (x mol% Sm(3+)/ZnO where x=0, 1, 2 and 4 mol%) with crystalline porous structures were synthesized by hydrothermal method. Sm(3+)/ZnO thin films were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive spectroscopic (EDS), UV-visible diffuse reflectance and fluorescence (FL) spectroscopy. The combination between doping and hydrothermal treatments significantly altered the morphology of ZnO into rod and plate-like nanoshapes structure and enhanced its absorption and emission of ultraviolet radiation. The photo-activity in term of quantitative determination of the active oxidative species (()OH) produced on the thin film surfaces was evaluated using fluorescent probe method. The results showed that, the hydrothermally treated 2.0 mol% Sm(3+)/ZnO film (S2) is the highly active one. The optical, structural, morphology and photo-activity properties of the highly active thin film (S2) make it promising surface for self-cleaning and sterilizing applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Inada, H; Su, D; Egerton, R F; Konno, M; Wu, L; Ciston, J; Wall, J; Zhu, Y
2011-06-01
We report detailed investigation of high-resolution imaging using secondary electrons (SE) with a sub-nanometer probe in an aberration-corrected transmission electron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular dark-field (ADF) images both simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we studied the SE image intensity and contrast as functions of applied bias, atomic number, crystal tilt, and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. A possible mechanism for atomic-scale SE imaging is proposed. The ability to image both the surface and bulk of a sample at atomic-scale is unprecedented, and can have important applications in the field of electron microscopy and materials characterization. Copyright © 2010 Elsevier B.V. All rights reserved.
Optical Scatter Imaging with a digital micromirror device.
Zheng, Jing-Yi; Pasternack, Robert M; Boustany, Nada N
2009-10-26
We had developed Optical Scatter Imaging (OSI) as a method which combines light scattering spectroscopy with microscopic imaging to probe local particle size in situ. Using a variable diameter iris as a Fourier spatial filter, the technique consisted of collecting images that encoded the intensity ratio of wide-to-narrow angle scatter at each pixel in the full field of view. In this paper, we replace the variable diameter Fourier filter with a digital micromirror device (DMD) to extend our assessment of morphology to the characterization of particle shape and orientation. We describe our setup in detail and demonstrate how to eliminate aberrations associated with the placement of the DMD in a conjugate Fourier plane of our microscopic imaging system. Using bacteria and polystyrene spheres, we show how this system can be used to assess particle aspect ratio even when imaged at low resolution. We also show the feasibility of detecting alterations in organelle aspect ratio in situ within living cells. This improved OSI system could be further developed to automate morphological quantification and sorting of non-spherical particles in situ.
Fluorescence lifetime imaging microscopy using near-infrared contrast agents.
Nothdurft, R; Sarder, P; Bloch, S; Culver, J; Achilefu, S
2012-08-01
Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. © 2012 The Author Journal of Microscopy © 2012 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Durand, Yannig; Woehl, Jörg C.; Viellerobe, Bertrand; Göhde, Wolfgang; Orrit, Michel
1999-02-01
Due to the weakness of the fluorescence signal from a single fluorophore, a scanning near-field optical microscope for single molecule spectroscopy requires a very efficient setup for the collection and detection of emitted photons. We have developed a home-built microscope for operation in a l-He cryostat which uses a solid parabolic mirror in order to optimize the fluorescence collection efficiency. This microscope works with Al-coated, tapered optical fibers in illumination mode. The tip-sample separation is probed by an optical shear-force detection. First results demonstrate the capability of the microscope to image single molecules and achieve a topographical resolution of a few nanometers vertically and better than 50 nm laterally.
NASA Astrophysics Data System (ADS)
Yacoot, Andrew; Koenders, Ludger
2008-05-01
The review will describe the various scanning probe microscopy tips and cantilevers used today for scanning force microscopy and magnetic force microscopy. Work undertaken to quantify the properties of cantilevers and tips, e.g. shape and radius, is reviewed together with an overview of the various tip-sample interactions that affect dimensional measurements.
Jiang, Hongrong; Zeng, Xin; Xi, Zhijiang; Liu, Ming; Li, Chuanyan; Li, Zhiyang; Jin, Lian; Wang, Zhifei; Deng, Yan; He, Nongyue
2013-04-01
In present study, we put forward an approach to prepare three-layer core-shell Fe3O4@SiO2@Au magnetic nanocomposites via the combination of self-assembling, seed-mediated growing and multi-step chemical reduction. The Fe3O4@SiO2@Au magnetic nanocomposites were analyzed and characterized by transmission electron microscope (TEM), scanning electronic microscope (SEM), energy dispersive spectrometer analysis (EDS), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and ultraviolet and visible spectrophotometer (UV-Vis). TEM and SEM characterizations showed that the FeO4@SiO2@Au nanocomposites were obtained successfully with three-layer structures, especially a layer of thin, smooth and continuous gold shell. The average diameter of Fe3O4@SiO2@Au nanocomposites was about 600 nm and an excellent dispersity was observed for the as-prepared nanoparticles. EDS characterizations demonstrated that the nanocomposites contained three elements of the precursors, Fe, Si, and Au. Furthermore, FT-IR showed that the silica and gold shell were coated successfully. UV-Vis and VSM characterizations showed that the Fe3O4@SiO2@Au nanocomposites exhibited good optical and magnetic property, and the saturation magnetization was 25.76 emu/g. In conclusion, the Fe3O4@SiO2@Au magnetic nanocomposites with three-layer core-shell structures were prepared. Furthermore, Fe3O4@SiO2@Au magnetic nanocomposites were modified with streptavidin (SA) successfully, and it was validated that they performed low fluorescence background, suggesting that they should have good applications especially in bioassay based on fluorescence detection through bonding the biotinylated fluorescent probes.
NASA Astrophysics Data System (ADS)
Domingue, Scott R.; Chicco, Adam J.; Bartels, Randy A.; Wilson, Jesse W.
2017-02-01
Current label-free metabolic microscopy techniques are limited to obtaining contrast from fluorescent molecules NAD(P)H and FAD+, and are unable to determine redox state along the mitochondrial respiratory chain itself. The respiratory chain electron carriers do not fluoresce, but some are heme proteins that have redox-dependent absorption spectra. The most prominent of these, cytochrome c, has been extensively characterized by transient absorption spectroscopy, which suggests that pump-probe measurements in the vicinity of 450 - 600 nm can provide strong contrast between its redox states. Motivated by the success of pump-probe microscopy targeting another heme protein, hemoglobin, we seek to extend the technique to the cytochromes, with the ultimate goal of dissecting respiratory chain function of individual cells in live tissue. To that end, we have developed a new optical system producing ultrafast, visible, independently-tunable pulse pairs via sum-frequency generation of nonlinearly broadened pulses in periodically-poled lithium niobate. The system is pumped by a homebuilt fiber-based oscillator/amplifier emitting 1060 nm pulses at 1.3 W (63 MHz repetition rate), and produces tunable pulses in the vicinity of 488 and 532 nm. Pump-probe spectroscopy of cytochrome c with this source reveals differences in excited-state absorption relaxation times between redox states. Though redox contrast is weak with this setup, we argue that this can be improved with a resonant galvo-scanning microscope. Moreover, pump-probe images were acquired of brown adipose tissue (which contains dense mitochondria), demonstrating label-free contrast from excited-state absorption in respiratory chain hemes.
Exploring accessibility of pretreated poplar cell walls by measuring dynamics of fluorescent probes.
Paës, Gabriel; Habrant, Anouck; Ossemond, Jordane; Chabbert, Brigitte
2017-01-01
The lignocellulosic cell wall network is resistant to enzymatic degradation due to the complex chemical and structural features. Pretreatments are thus commonly used to overcome natural recalcitrance of lignocellulose. Characterization of their impact on architecture requires combinatory approaches. However, the accessibility of the lignocellulosic cell walls still needs further insights to provide relevant information. Poplar specimens were pretreated using different conditions. Chemical, spectral, microscopic and immunolabeling analysis revealed that poplar cell walls were more altered by sodium chlorite-acetic acid and hydrothermal pretreatments but weakly modified by soaking in aqueous ammonium. In order to evaluate the accessibility of the pretreated poplar samples, two fluorescent probes (rhodamine B-isothiocyanate-dextrans of 20 and 70 kDa) were selected, and their mobility was measured by using the fluorescence recovery after photobleaching (FRAP) technique in a full factorial experiment. The mobility of the probes was dependent on the pretreatment type, the cell wall localization (secondary cell wall and cell corner middle lamella) and the probe size. Overall, combinatory analysis of pretreated poplar samples showed that even the partial removal of hemicellulose contributed to facilitate the accessibility to the fluorescent probes. On the contrary, nearly complete removal of lignin was detrimental to accessibility due to the possible cellulose-hemicellulose collapse. Evaluation of plant cell wall accessibility through FRAP measurement brings further insights into the impact of physicochemical pretreatments on lignocellulosic samples in combination with chemical and histochemical analysis. This technique thus represents a relevant approach to better understand the effect of pretreatments on lignocellulose architecture, while considering different limitations as non-specific interactions and enzyme efficiency.
Biocytin-Derived MRI Contrast Agent for Longitudinal Brain Connectivity Studies
2011-01-01
To investigate the connectivity of brain networks noninvasively and dynamically, we have developed a new strategy to functionalize neuronal tracers and designed a biocompatible probe that can be visualized in vivo using magnetic resonance imaging (MRI). Furthermore, the multimodal design used allows combined ex vivo studies with microscopic spatial resolution by conventional histochemical techniques. We present data on the functionalization of biocytin, a well-known neuronal tract tracer, and demonstrate the validity of the approach by showing brain networks of cortical connectivity in live rats under MRI, together with the corresponding microscopic details, such as fibers and neuronal morphology under light microscopy. We further demonstrate that the developed molecule is the first MRI-visible probe to preferentially trace retrograde connections. Our study offers a new platform for the development of multimodal molecular imaging tools of broad interest in neuroscience, that capture in vivo the dynamics of large scale neural networks together with their microscopic characteristics, thereby spanning several organizational levels. PMID:22860157
Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang
2015-05-01
Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Ke-Jing; Wang, Hong; Ma, Ming; Zhang, Xian; Zhang, Hua-Shan
2007-02-01
Although the importance of nitric oxide (NO) as a signalling molecule in many biological processes is becoming increasingly evident, many proposed and potential biological functions of NO still remain unclear. Bioimaging is a good technique to visualize observation of nitric oxide in biological samples. In this report, a fluorescent probe, 1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3',4'-diaminophenyl)-difluoroboradiaza-s-indacence (TMDCDABODIPY), has been first applied to real-time image NO produced in PC12 cells, Sf9 cells and human vascular endothelial cells at the presence of l-arginine with inverted fluorescence microscope. NO production in the cells is successfully captured and imaged with fine temporal and spatial resolution. The results prove that the probe combined with inverted fluorescence microscope can be developed into a sensitive and selective method for further study of NO release from cells.
NASA Astrophysics Data System (ADS)
Jung, Jin-Oh; Choi, Seokhwan; Lee, Yeonghoon; Kim, Jinwoo; Son, Donghyeon; Lee, Jhinhwan
2017-10-01
We have built a variable temperature scanning probe microscope (SPM) that covers 4.6 K-180 K and up to 7 T whose SPM head fits in a 52 mm bore magnet. It features a temperature-controlled sample stage thermally well isolated from the SPM body in good thermal contact with the liquid helium bath. It has a 7-sample-holder storage carousel at liquid helium temperature for systematic studies using multiple samples and field emission targets intended for spin-polarized spectroscopic-imaging scanning tunneling microscopy (STM) study on samples with various compositions and doping conditions. The system is equipped with a UHV sample preparation chamber and mounted on a two-stage vibration isolation system made of a heavy concrete block and a granite table on pneumatic vibration isolators. A quartz resonator (qPlus)-based non-contact atomic force microscope (AFM) sensor is used for simultaneous STM/AFM operation for research on samples with highly insulating properties such as strongly underdoped cuprates and strongly correlated electron systems.
Imaging ac losses in superconducting films via scanning Hall probe microscopy
NASA Astrophysics Data System (ADS)
Dinner, Rafael B.; Moler, Kathryn A.; Feldmann, D. Matthew; Beasley, M. R.
2007-04-01
Various local probes have been applied to understanding current flow through superconducting films, which are often surprisingly inhomogeneous. Here, we show that magnetic imaging allows quantitative reconstruction of both current density J and electric field E resolved in time and space in a film carrying subcritical ac current. Current reconstruction entails inversion of the Biot-Savart law, while electric fields are reconstructed using Faraday’s law. We describe the corresponding numerical procedures, largely adapting existing work to the case of a strip carrying ac current, but including other methods of obtaining the complete electric field from the inductive portion determined by Faraday’s law. We also delineate the physical requirements behind the mathematical transformations. We then apply the procedures to images of a strip of YBa2Cu3O7-δ carrying an ac current at 400Hz . Our scanning Hall probe microscope produces a time series of magnetic images of the strip with 1μm spatial resolution and 25μs time resolution. Combining the reconstructed J and E , we obtain a complete characterization including local critical current density, E-J curves, and power losses. This analysis has a range of applications from fundamental studies of vortex dynamics to practical coated conductor development.
Local probing of thermal energy transfer and conversion processes in VO2 nanostructures
NASA Astrophysics Data System (ADS)
Menges, Fabian
Nanostructures of strongly correlated materials, such as metal-insulator transition (MIT) oxides, enable unusual coupling of charge and heat transport. Hence, they provide an interesting pathway to the development of non-linear thermal devices for active heat flux control. Here, we will report the characterization of local thermal non-equilibrium processes in vanadium dioxide (VO2) thin films and single-crystalline nanobeams. Using a scanning thermal microscope and calorimetric MEMS platforms, we studied the MIT triggered by electrical currents, electrical fields, near-field thermal radiation and thermal conduction. Based on out recently introduced scanning probe thermometry method, which enables direct imaging of local Joule and Peltier effects, we quantified self-heating processes in VO2 memristors using the tip of a resistively heated scanning probe both as local sensor and nanoscopic heat source. Finally, we will report on recent approaches to build radiative thermal switches and oscillators using VO2 nanostructures. We quantified variations of near-field radiative thermal transport between silicon dioxide and VO2 down to nanoscopic gap sizes, and will discuss its implications for the development of phonon polariton based radiative thermal devices. Funding of the Swiss Federal Office of Energy under Grant Agreement No. SI/501093-01 is gratefully acknowledged.
Coherent interaction with two-level fluctuators using near field scanning microwave microscopy.
de Graaf, S E; Danilov, A V; Kubatkin, S E
2015-11-24
Near field Scanning Microwave Microscopy (NSMM) is a scanning probe technique that non-invasively can obtain material properties on the nano-scale at microwave frequencies. While focus has been on developing room-temperature systems it was recently shown that this technique can potentially reach the quantum regime, opening up for applications in materials science and device characterization in solid state quantum information processing. In this paper we theoretically investigate this new regime of NSMM. Specifically we show that interaction between a resonant NSMM probe and certain types of two-level systems become possible when the NSMM probe operates in the (sub-) single photon regime, and we expect a high signal-to-noise ratio if operated under the right conditions. This would allow to detect single atomic material defects with energy splittings in the GHz range with nano-scale resolution, provided that individual defects in the material under study are well enough separated. We estimate that this condition is fulfilled for materials with loss tangents below tan δ ∼ 10(-3) which holds for materials used in today's quantum circuits and devices where typically tan δ < 10(-5). We also propose several extensions to a resonant NSMM that could improve sensitivity and functionality also for microscopes operating in a high power regime.
A combined scanning tunnelling microscope and x-ray interferometer
NASA Astrophysics Data System (ADS)
Yacoot, Andrew; Kuetgens, Ulrich; Koenders, Ludger; Weimann, Thomas
2001-10-01
A monolithic x-ray interferometer made from silicon and a scanning tunnelling microscope have been combined and used to calibrate grating structures with periodicities of 100 nm or less. The x-ray interferometer is used as a translation stage which moves in discrete steps of 0.192 nm, the lattice spacing of the silicon (220) planes. Hence, movements are traceable to the definition of the metre and the nonlinearity associated with the optical interferometers used to measure displacement in more conventional metrological scanning probe microscopes (MSPMs) removed.
Omura, Y; Losco, M; Omura, A K; Takeshige, C; Hisamitsu, T; Nakajima, H; Soejima, K; Yamamoto, S; Ishikawa, H; Kagoshima, T
1992-01-01
In 1985, Omura, Y. discovered that, when specific molecules were placed anywhere in the close vicinity of the path of a light beam (laser), their molecular information, as well as information on electrical & magnetic fields, is transmitted bi-directionally along the path of this light beam. Namely, this information is transmitted in the direction the light beam is projected and towards the direction from which the light beam is coming. This finding was applied to the following clinical and basic research: 1) In the past, using indirect Bi-Digital O-Ring Test, human or animal patients were diagnosed through an intermediate third person holding a good electrical conducting probe, the tip of which was touching the part of the patient to be examined. However, in order to diagnose the patient in isolation from a distance, or a dangerous or unmanagable unanesthesized animal, such as a lion or tiger, the author succeeded in making a diagnosis by replacing the metal conducting probe with a soft laser beam which is held by the one hand of the third person whose index finger is placed in close vicinity of the laser beam generated by a battery-powered penlight-type solid state laser generator. Thus, diagnosis within visible distance, without direct patient contact, became a reality. 2) Using a projection light microscope, by giving indirect Bi-Digital O-Ring Test while contacting with a fine electro-conductive probe on the magnified fine structure of normal and abnormal cells, various normal and abnormal intracellular substances were localized through a third person holding a pure reference control substance with the same hand that is holding the probe as an intermediary for the indirect Bi-Digital O-Ring Test. Instead of the photon beam in a light microscope, the author found that, using an electron beam passing through the close vicinity of specific molecules of specimens in an electron microscope, the molecular information is transmitted to the magnified fluorescent screen, and an indirect Bi-Digital O-Ring Test could be performed through a projected penlight-type solid state soft laser beam on the magnified intracellular structure through an observation glass window. Using the magnified fine structure of the cells, by either a light projection microscopic field or electron microscope, in various cancer cells of both humans and animals, Oncogen C-fos (AB2) and mercury were found inside of the nucleus. Integrin alpha 5 beta 1 was found on cell membranes and nuclear cell membranes of cancer cells. Acetylcholine was not found anywhere within cancer cells.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Mehl, Brian Peter
The polydispersity intrinsic to nanoscale and microscale semiconductor materials poses a major challenge to using individual objects as building blocks for device applications. The ability to manipulate the shape of ZnO structures is enormous, making it an ideal material for studying shape-dependent phenomena. We have built a nonlinear microscope used to directly image optical cavity modes in ZnO rods using second-harmonic generation. Images of second-harmonic generation in needle-shaped ZnO rods obtained from individual structures show areas of enhanced second-harmonic intensity along the longitudinal axis of the rod that are periodically distributed and symmetrically situated relative to the rod midpoint. The spatial modulation is a direct consequence of the fundamental optical field coupling into standing wave resonator modes of the ZnO structure, leading to an enhanced backscattered second-harmonic condition that cannot be achieved in bulk ZnO. A more complicated second-harmonic image is observed when excitation is below the band gap, which is attributed to whispering gallery modes. Additionally, the nonlinear microscope was combined with transient absorption pump-probe to follow the electron-hole recombination dynamics at different points within individual needle-shaped ZnO rods to characterize spatial differences in dynamical behavior. The results from pump-probe experiments are correlated with spatially resolved ultrafast emission measurements, and scanning electron microscopy provides structural details. Dramatically different electron-hole recombination dynamics are observed in the narrow tips compared to the interior, with the ends exhibiting a greater propensity for electron-hole plasma formation and faster recombination of carriers across the band gap that stem from a physical confinement of the charge carriers. In the interior of the rod, a greater fraction of the electron-hole recombination is trap-mediated and occurs on a significantly longer time scale.
Image simulation for electron energy loss spectroscopy
Oxley, Mark P.; Pennycook, Stephen J.
2007-10-22
In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations.more » Finally, the affect of the channelling of the electron probe within the sample is also discussed.« less
Thermal stability of carbon nanotubes probed by anchored tungsten nanoparticles
Wei, Xianlong; Wang, Ming-Sheng; Bando, Yoshio; Golberg, Dmitri
2011-01-01
The thermal stability of multiwalled carbon nanotubes (CNTs) was studied in high vacuum using tungsten nanoparticles as miniaturized thermal probes. The particles were placed on CNTs inside a high-resolution transmission electron microscope equipped with a scanning tunneling microscope unit. The setup allowed manipulating individual nanoparticles and heating individual CNTs by applying current to them. CNTs were found to withstand high temperatures, up to the melting point of 60-nm-diameter W particles (∼3400 K). The dynamics of W particles on a hot CNT, including particle crystallization, quasimelting, melting, sublimation and intradiffusion, were observed in real time and recorded as a video. Graphite layers reel off CNTs when melted or premelted W particles revolve along the tube axis. PMID:27877413
Vokes, David E.; Jackson, Ryan; Guo, Shuguang; Perez, Jorge A.; Su, Jianping; Ridgway, James M.; Armstrong, William B.; Chen, Zhongping; Wong, Brian J. F.
2014-01-01
Objectives Optical coherence tomography (OCT) is a new imaging modality that uses near-infrared light to produce cross-sectional images of tissue with a resolution approaching that of light microscopy. We have previously reported use of OCT imaging of the vocal folds (VFs) during direct laryngoscopy with a probe held in contact or near-contact with the VFs. This aim of this study was to develop and evaluate a novel OCT system integrated with a surgical microscope to allow hands-free OCT imaging of the VFs, which could be performed simultaneously with microscopic visualization. Methods We performed a prospective evaluation of a new method of acquiring OCT images of the VFs. Results An OCT system was successfully integrated with a surgical microscope to permit noncontact OCT imaging of the VFs of 10 patients. With this novel device we were able to identify VF epithelium and lamina propria; however, the resolution was reduced compared to that achieved with the standard contact or near-contact OCT. Conclusions Optical coherence tomography is able to produce high-resolution images of vocal fold mucosa to a maximum depth of 1.6 mm. It may be used in the diagnosis of VF lesions, particularly early squamous cell carcinoma, in which OCT can show disruption of the basement membrane. Mounting the OCT device directly onto the operating microscope allows hands-free noncontact OCT imaging and simultaneous conventional microscopic visualization of the VFs. However, the lateral resolution of the OCT microscope system is 50 µm, in contrast to the conventional handheld probe system (10 µm). Although such images at this resolution are still useful clinically, improved resolution would enhance the system’s performance, potentially enabling real-time OCT-guided microsurgery of the larynx. PMID:18700431
NASA Astrophysics Data System (ADS)
DeArmond, Fredrick Michael
As optical microscopy techniques continue to improve, most notably the development of super-resolution optical microscopy which garnered the Nobel Prize in Chemistry in 2014, renewed emphasis has been placed on the development and use of fluorescence microscopy techniques. Of particular note is a renewed interest in multiphoton excitation due to a number of inherent properties of the technique including simplified optical filtering, increased sample penetration, and inherently confocal operation. With this renewed interest in multiphoton fluorescence microscopy, comes an increased demand for robust non-linear fluorescent markers, and characterization of the associated tool set. These factors have led to an experimental setup to allow a systematized approach for identifying and characterizing properties of fluorescent probes in the hopes that the tool set will provide researchers with additional information to guide their efforts in developing novel fluorophores suitable for use in advanced optical microscopy techniques as well as identifying trends for their synthesis. Hardware was setup around a software control system previously developed. Three experimental tool sets were set up, characterized, and applied over the course of this work. These tools include scanning multiphoton fluorescence microscope with single molecule sensitivity, an interferometric autocorrelator for precise determination of the bandwidth and pulse width of the ultrafast Titanium Sapphire excitation source, and a simplified fluorescence microscope for the measurement of two-photon absorption cross sections. Resulting values for two-photon absorption cross sections and two-photon absorption action cross sections for two standardized fluorophores, four commercially available fluorophores, and ten novel fluorophores are presented as well as absorption and emission spectra.
NASA Astrophysics Data System (ADS)
Walla, Frederik; Wiecha, Matthias M.; Mecklenbeck, Nicolas; Beldi, Sabri; Keilmann, Fritz; Thomson, Mark D.; Roskos, Hartmut G.
2018-01-01
We investigated the excitation of surface plasmon polaritons on gold films with the metallized probe tip of a scattering-type scanning near-field optical microscope (s-SNOM). The emission of the polaritons from the tip, illuminated by near-infrared laser radiation, was found to be anisotropic and not circularly symmetric as expected on the basis of literature data. We furthermore identified an additional excitation channel via light that was reflected off the tip and excited the plasmon polaritons at the edge of the metal film. Our results, while obtained for a non-rotationally-symmetric type of probe tip and thus specific for this situation, indicate that when an s-SNOM is employed for the investigation of plasmonic structures, the unintentional excitation of surface waves and anisotropic surface wave propagation must be considered in order to correctly interpret the signatures of plasmon polariton generation and propagation.
Mode-mismatched confocal thermal-lens microscope with collimated probe beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabrera, Humberto, E-mail: hcabrera@ictp.it; Centro Multidisciplinartio de Ciencias, Instituto Venezolano de Investigaciones Científicas; Korte, Dorota
2015-05-15
We report a thermal lens microscope (TLM) based on an optimized mode-mismatched configuration. It takes advantage of the coaxial counter propagating tightly focused excitation and collimated probe beams, instead of both focused at the sample, as it is in currently known TLM setups. A simple mathematical model that takes into account the main features of the instrument is presented. The confocal detection scheme and the introduction of highly collimated probe beam allow enhancing the versatility, limit of detection (LOD), and sensitivity of the instrument. The theory is experimentally verified measuring ethanol’s absorption coefficient at 532.8 nm. Additionally, the presented techniquemore » is applied for detection of ultra-trace amounts of Cr(III) in liquid solution. The achieved LOD is 1.3 ppb, which represents 20-fold enhancement compared to transmission mode spectrometric techniques and a 7.5-fold improvement compared to previously reported methods for Cr(III) based on thermal lens effect.« less
Naval Research Laboratory Major Facilities 2008
2008-10-01
Development Laboratory • Secure Supercomputing Facility • CBD/Tilghman Island IR Field Evaluation Facility • Ultra-Short-Pulse Laser Effects Research...EMI Test Facility • Proximity Operations Testbed GENERAL INFORMATION • Maps EX EC U TI V E D IR EC TO RA TE Code 1100 – Institute for Nanoscience...facility: atomic force microscope (AFM); benchtop transmission electron microscope (TEM); cascade probe station; critical point dryer ; dual beam focused
Joint Services Electronics Program Annual Progress Report.
1987-10-15
polarizability of free carriers in the semiconductor perturb the index of refraction which can be detected in a Nomarski -type optical interferometer. For...interferomters. However, the charge probe relies on a different physical effect and operates by interferometrically detecting the phase change induced in an... Nomarski microscope systems. These techniques will be applied, eventually, in our real-time V.. scanning optical microscope described below. Recently
Using stochastic cell division and death to probe minimal units of cellular replication
NASA Astrophysics Data System (ADS)
Chib, Savita; Das, Suman; Venkatesan, Soumya; Sai Narain Seshasayee, Aswin; Thattai, Mukund
2018-03-01
The invariant cell initiation mass measured in bacterial growth experiments has been interpreted as a minimal unit of cellular replication. Here we argue that the existence of such minimal units induces a coupling between the rates of stochastic cell division and death. To probe this coupling we tracked live and dead cells in Escherichia coli populations treated with a ribosome-targeting antibiotic. We find that the growth exponent from macroscopic cell growth or decay measurements can be represented as the difference of microscopic first-order cell division and death rates. The boundary between cell growth and decay, at which the number of live cells remains constant over time, occurs at the minimal inhibitory concentration (MIC) of the antibiotic. This state appears macroscopically static but is microscopically dynamic: division and death rates exactly cancel at MIC but each is remarkably high, reaching 60% of the antibiotic-free division rate. A stochastic model of cells as collections of minimal replicating units we term ‘widgets’ reproduces both steady-state and transient features of our experiments. Sub-cellular fluctuations of widget numbers stochastically drive each new daughter cell to one of two alternate fates, division or death. First-order division or death rates emerge as eigenvalues of a stationary Markov process, and can be expressed in terms of the widget’s molecular properties. High division and death rates at MIC arise due to low mean and high relative fluctuations of widget number. Isolating cells at the threshold of irreversible death might allow molecular characterization of this minimal replication unit.
An integrated approach to piezoactuator positioning in high-speed atomic force microscope imaging
NASA Astrophysics Data System (ADS)
Yan, Yan; Wu, Ying; Zou, Qingze; Su, Chanmin
2008-07-01
In this paper, an integrated approach to achieve high-speed atomic force microscope (AFM) imaging of large-size samples is proposed, which combines the enhanced inversion-based iterative control technique to drive the piezotube actuator control for lateral x-y axis positioning with the use of a dual-stage piezoactuator for vertical z-axis positioning. High-speed, large-size AFM imaging is challenging because in high-speed lateral scanning of the AFM imaging at large size, large positioning error of the AFM probe relative to the sample can be generated due to the adverse effects—the nonlinear hysteresis and the vibrational dynamics of the piezotube actuator. In addition, vertical precision positioning of the AFM probe is even more challenging (than the lateral scanning) because the desired trajectory (i.e., the sample topography profile) is unknown in general, and the probe positioning is also effected by and sensitive to the probe-sample interaction. The main contribution of this article is the development of an integrated approach that combines advanced control algorithm with an advanced hardware platform. The proposed approach is demonstrated in experiments by imaging a large-size (50μm ) calibration sample at high-speed (50Hz scan rate).
A Computer-Controlled Classroom Model of an Atomic Force Microscope
NASA Astrophysics Data System (ADS)
Engstrom, Tyler A.; Johnson, Matthew M.; Eklund, Peter C.; Russin, Timothy J.
2015-12-01
The concept of "seeing by feeling" as a way to circumvent limitations on sight is universal on the macroscopic scale—reading Braille, feeling one's way around a dark room, etc. The development of the atomic force microscope (AFM) in 1986 extended this concept to imaging in the nanoscale. While there are classroom demonstrations that use a tactile probe to map the topography or some other property of a sample, the rastering of the probe over the sample is manually controlled, which is both tedious and potentially inaccurate. Other groups have used simulation or tele-operation of an AFM probe. In this paper we describe a teaching AFM with complete computer control to map out topographic and magnetic properties of a "crystal" consisting of two-dimensional arrays of spherical marble "atoms." Our AFM is well suited for lessons on the "Big Ideas of Nanoscale" such as tools and instrumentation, as well as a pre-teaching activity for groups with remote access AFM or mobile AFM. The principle of operation of our classroom AFM is the same as that of a real AFM, excepting the nature of the force between sample and probe.
A Novel SPM Probe with MOS Transistor and Nano Tip for Surface Electric Properties
NASA Astrophysics Data System (ADS)
Lee, Sang H.; Lim, Geunbae; Moon, Wonkyu
2007-03-01
In this paper, the novel SPM (Scanning Probe Microscope) probe with the planar MOS (Metal-Oxide-Semiconductor) transistor and the FIB (Focused Ion Beam) nano tip is fabricated for the surface electric properties. Since the MOS transistor has high working frequency, the device can overcome the speed limitation of EFM (Electrostatic Force Microscope) system. The sensitivity is also high, and no bulky device such as lock-in-amplifier is required. Moreover, the nano tip with nanometer scale tip radius is fabricated with FIB system, and the resolution can be improved. Therefore, the probe can rapidly detect small localized electric properties with high sensitivity and high resolution. The MOS transistor is fabricated with the common semiconductor process, and the nano tip is grown by the FIB system. The planar structure of the MOS transistor makes the fabrication process easier, which is the advantage on the commercial production. Various electric signals are applied using the function generator, and the measured data represent the well-established electric properties of the device. It shows the promising aspect of the local surface electric property detection with high sensitivity and high resolution.
Zaharov, V V; Farahi, R H; Snyder, P J; Davison, B H; Passian, A
2014-11-21
Resolving weak spectral variations in the dynamic response of materials that are either dominated or excited by stochastic processes remains a challenge. Responses that are thermal in origin are particularly relevant examples due to the delocalized nature of heat. Despite its inherent properties in dealing with stochastic processes, the Karhunen-Loève expansion has not been fully exploited in measurement of systems that are driven solely by random forces or can exhibit large thermally driven random fluctuations. Here, we present experimental results and analysis of the archetypes (a) the resonant excitation and transient response of an atomic force microscope probe by the ambient random fluctuations and nanoscale photothermal sample response, and (b) the photothermally scattered photons in pump-probe spectroscopy. In each case, the dynamic process is represented as an infinite series with random coefficients to obtain pertinent frequency shifts and spectral peaks and demonstrate spectral enhancement for a set of compounds including the spectrally complex biomass. The considered cases find important applications in nanoscale material characterization, biosensing, and spectral identification of biological and chemical agents.
Characterization of the dominant loss mechanisms in superconducting coplanar waveguide resonators
NASA Astrophysics Data System (ADS)
Calusine, Greg; Melville, Alexander; Woods, Wayne; Kim, David K.; Miloshi, Xhovalin; Sevi, Arjan; Yoder, Jonilyn; Oliver, William D.
The characterization of losses in superconducting coplanar waveguide (CPW) resonators is commonly used as a surrogate means to probe relaxation in superconducting qubit capacitor structures. However, this method is complicated by device-to-device variations that result from a sensitivity to variations in fabrication processes, packaging, and measurement methods. We present results on characterizing ensembles of aluminum, niobium, and titanium nitride superconducting CPW resonators to determine the statistical significance of the effects of fabrication process changes on resonator intrinsic quality factor. Furthermore, we report progress on experiments aimed at determining the impact of other competing loss mechanisms such as vortex trapping, package coupling, and substrate loss. These results are then applied to the study of relaxation in superconducting qubits and investigations into the microscopic origins of surface losses. This research was funded in part by the Intelligence Advanced Research Projects Activity (IARPA). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA or the US Government.
An electron microscope for the aberration-corrected era.
Krivanek, O L; Corbin, G J; Dellby, N; Elston, B F; Keyse, R J; Murfitt, M F; Own, C S; Szilagyi, Z S; Woodruff, J W
2008-02-01
Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown.
Nowak, Derek B; Lawrence, A J; Sánchez, Erik J
2010-12-10
We present the development of a versatile spectroscopic imaging tool to allow for imaging with single-molecule sensitivity and high spatial resolution. The microscope allows for near-field and subdiffraction-limited far-field imaging by integrating a shear-force microscope on top of a custom inverted microscope design. The instrument has the ability to image in ambient conditions with optical resolutions on the order of tens of nanometers in the near field. A single low-cost computer controls the microscope with a field programmable gate array data acquisition card. High spatial resolution imaging is achieved with an inexpensive CW multiphoton excitation source, using an apertureless probe and simplified optical pathways. The high-resolution, combined with high collection efficiency and single-molecule sensitive optical capabilities of the microscope, are demonstrated with a low-cost CW laser source as well as a mode-locked laser source.
Optical design and system characterization of an imaging microscope at 121.6 nm
NASA Astrophysics Data System (ADS)
Gao, Weichuan; Finan, Emily; Kim, Geon-Hee; Kim, Youngsik; Milster, Thomas D.
2018-03-01
We present the optical design and system characterization of an imaging microscope prototype at 121.6 nm. System engineering processes are demonstrated through the construction of a Schwarzschild microscope objective, including tolerance analysis, fabrication, alignment, and testing. Further improvements on the as-built system with a correction phase plate are proposed and analyzed. Finally, the microscope assembly and the imaging properties of the prototype are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.
Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique.
NASA Astrophysics Data System (ADS)
Ramachandra Rao, M. S.; Margaritondo, Giorgio
2011-11-01
Three decades ago, with a tiny tip of platinum, the scientific world saw the real space imaging of single atoms with unprecedented spatial resolution. This signalled the birth of one of the most versatile surface probes, based on the physics of quantum mechanical tunnelling: the scanning tunnelling microscope (STM). Invented in 1981 by Gerd Binnig and Heinrich Rohrer of IBM, Zurich, it led to their award of the 1986 Nobel Prize. Atoms, once speculated to be abstract entities used by theoreticians for mere calculations, can be seen to exist for real with the nano-eye of an STM tip that also gives real-space images of molecules and adsorbed complexes on surfaces. From a very fundamental perspective, the STM changed the course of surface science and engineering. STM also emerged as a powerful tool to study various fundamental phenomena relevant to the properties of surfaces in technological applications such as tribology, medical implants, catalysis, sensors and biology—besides elucidating the importance of local bonding geometries and defects, non-periodic structures and the co-existence of nano-scale phases. Atom-level probing, once considered a dream, has seen the light with the evolution of STM. An important off-shoot of STM was the atomic force microscope (AFM) for surface mapping of insulating samples. Then followed the development of a flurry of techniques under the general name of scanning probe microscopy (SPM). These techniques (STM, AFM, MFM, PFM etc) designed for atomic-scale-resolution imaging and spectroscopy, have led to brand new developments in surface analysis. All of these novel methods enabled researchers in recent years to image and analyse complex surfaces on microscopic and nanoscopic scales. All of them utilize a small probe for sensing the surface. The invention of AFM by Gerd Binnig, Calvin Quate and Christopher Gerber opened up new opportunities for characterization of a variety of materials, and various industrial applications could be envisaged. AFM observations of thin-film surfaces give us a picture of surface topography and morphology and any visible defects. The growing importance of ultra-thin films for magnetic recording in hard disk drive systems requires an in-depth understanding of the fundamental mechanisms occurring during growth. This special issue of Journal of Physics D: Applied Physics covers all of the different aspects of SPM that illustrate the achievements of this methodology: nanoscale imaging and mapping (Chiang, and Douillard and Charra), piezoresponse force microscopy (Soergel) and STM engineering (Okuyama and Hamada, and Huang et al). Chiang takes the reader on a journey along the STM imaging of atoms and molecules on surfaces. Jesse and Kalinin explore the band excitations that occur during the corresponding processes. Jia et al propose STM and molecular beam epitaxy as a winning experimental combination at the interface of science and technology. Douillard and Charra describe the high-resolution mapping of plasmonic modes using photoemission and scanning tunnelling microscopy. Cricenti et al demonstrate the importance of SPM in material science and biology. Wiebe et al have probed atomic scale magnetism, revealed by spin polarized scanning tunnelling microscopy. In addition, Simon et al present Fourier transform scanning tunnelling spectroscopy and the possibility to obtain constant energy maps and band dispersion using local measurements. Lackinger and Heckl give a perspective of the use of STM to study covalent intermolecular coupling reactions on surfaces. Okuyama and Hamada investigated hydrogen bond imaging and engineering with STM. Soergel describes the study of substrate-dependent self-assembled CuPc molecules using piezo force microscope (PFM). We are very grateful to the authors and reviewers for the papers in this special issue of Journal of Physics D: Applied Physics. Their contributions have provided a comprehensive picture of the evolution, status and potential of scanning probe microscopy, conveying to the readers the full excitement of this forefront domain of physics.
Optical probing of high intensity laser interaction with micron-sized cryogenic hydrogen jets
NASA Astrophysics Data System (ADS)
Ziegler, Tim; Rehwald, Martin; Obst, Lieselotte; Bernert, Constantin; Brack, Florian-Emanuel; Curry, Chandra B.; Gauthier, Maxence; Glenzer, Siegfried H.; Göde, Sebastian; Kazak, Lev; Kraft, Stephan D.; Kuntzsch, Michael; Loeser, Markus; Metzkes-Ng, Josefine; Rödel, Christian; Schlenvoigt, Hans-Peter; Schramm, Ulrich; Siebold, Mathias; Tiggesbäumker, Josef; Wolter, Steffen; Zeil, Karl
2018-07-01
Probing the rapid dynamics of plasma evolution in laser-driven plasma interactions provides deeper understanding of experiments in the context of laser-driven ion acceleration and facilitates the interplay with complementing numerical investigations. Besides the microscopic scales involved, strong plasma (self-)emission, predominantly around the harmonics of the driver laser, often complicates the data analysis. We present the concept and the implementation of a stand-alone probe laser system that is temporally synchronized to the driver laser, providing probing wavelengths beyond the harmonics of the driver laser. The capability of this system is shown during a full-scale laser proton acceleration experiment using renewable cryogenic hydrogen jet targets. For further improvements, we studied the influence of probe color, observation angle of the probe and temporal contrast of the driver laser on the probe image quality.
2012-07-01
developed a microscope- based , offset Helmholtz coil system with a custom-designed microcontroller. We have developed a microfabrication approach for...implemented an experimental model system using ferromagnetic beads. We have applied direct and frequency based magnetic fields for controlling magnetotactic...fields. Expanded Accomplishments We have developed a microscope- based , offset Helmholtz coil system with a custom- designed microcontroller. To be
2016-06-22
ARTICLE Received 16 Sep 2015 | Accepted 25 May 2016 | Published 22 Jun 2016 Experimental demonstration of the microscopic origin of circular...dissipation of the constituent metamolecules. Because such dissipation occurs on a nanoscale, this effect has never been experimentally probed and...never been experimentally verified because of the challenge of measuring non-radiative loss on the nanoscale. In this study we use a combination of
Optical Interferometric Micrometrology
NASA Technical Reports Server (NTRS)
Abel, Phillip B.; Lauer, James R.
1989-01-01
Resolutions in angstrom and subangstrom range sought for atomic-scale surface probes. Experimental optical micrometrological system built to demonstrate calibration of piezoelectric transducer to displacement sensitivity of few angstroms. Objective to develop relatively simple system producing and measuring translation, across surface of specimen, of stylus in atomic-force or scanning tunneling microscope. Laser interferometer used to calibrate piezoelectric transducer used in atomic-force microscope. Electronic portion of calibration system made of commercially available components.
Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application
NASA Astrophysics Data System (ADS)
Liu, Zhihai; Guo, Chengkai; Yang, Jun; Yuan, Libo
2006-12-01
A novel single tapered fiber optical tweezers is proposed and fabricated by heating and drawing technology. The microscopic particle tapping performance of this special designed tapered fiber probe is demonstrated and investigated. The distribution of the optical field emerging from the tapered fiber tip is numerically calculated based on the beam propagation method. The trapping force FDTD analysis results, both axial and transverse, are also given.
NASA Astrophysics Data System (ADS)
Lüpke, Felix; Cuma, David; Korte, Stefan; Cherepanov, Vasily; Voigtländer, Bert
2018-02-01
We present a four-point probe resistance measurement technique which uses four equivalent current measuring units, resulting in minimal hardware requirements and corresponding sources of noise. Local sample potentials are measured by a software feedback loop which adjusts the corresponding tip voltage such that no current flows to the sample. The resulting tip voltage is then equivalent to the sample potential at the tip position. We implement this measurement method into a multi-tip scanning tunneling microscope setup such that potentials can also be measured in tunneling contact, allowing in principle truly non-invasive four-probe measurements. The resulting measurement capabilities are demonstrated for \
NASA Technical Reports Server (NTRS)
Mungas, Greg S.; Gursel, Yekta; Sepulveda, Cesar A.; Anderson, Mark; La Baw, Clayton; Johnson, Kenneth R.; Deans, Matthew; Beegle, Luther; Boynton, John
2008-01-01
Conducting high resolution field microscopy with coupled laser spectroscopy that can be used to selectively analyze the surface chemistry of individual pixels in a scene is an enabling capability for next generation robotic and manned spaceflight missions, civil, and military applications. In the laboratory, we use a range of imaging and surface preparation tools that provide us with in-focus images, context imaging for identifying features that we want to investigate at high magnification, and surface-optical coupling that allows us to apply optical spectroscopic analysis techniques for analyzing surface chemistry particularly at high magnifications. The camera, hand lens, and microscope probe with scannable laser spectroscopy (CHAMP-SLS) is an imaging/spectroscopy instrument capable of imaging continuously from infinity down to high resolution microscopy (resolution of approx. 1 micron/pixel in a final camera format), the closer CHAMP-SLS is placed to a feature, the higher the resultant magnification. At hand lens to microscopic magnifications, the imaged scene can be selectively interrogated with point spectroscopic techniques such as Raman spectroscopy, microscopic Laser Induced Breakdown Spectroscopy (micro-LIBS), laser ablation mass-spectrometry, Fluorescence spectroscopy, and/or Reflectance spectroscopy. This paper summarizes the optical design, development, and testing of the CHAMP-SLS optics.
Nano Scale Mechanical Analysis of Biomaterials Using Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Dutta, Diganta
The atomic force microscope (AFM) is a probe-based microscope that uses nanoscale and structural imaging where high resolution is desired. AFM has also been used in mechanical, electrical, and thermal engineering applications. This unique technique provides vital local material properties like the modulus of elasticity, hardness, surface potential, Hamaker constant, and the surface charge density from force versus displacement curve. Therefore, AFM was used to measure both the diameter and mechanical properties of the collagen nanostraws in human costal cartilage. Human costal cartilage forms a bridge between the sternum and bony ribs. The chest wall of some humans is deformed due to defective costal cartilage. However, costal cartilage is less studied compared to load bearing cartilage. Results show that there is a difference between chemical fixation and non-chemical fixation treatments. Our findings imply that the patients' chest wall is mechanically weak and protein deposition is abnormal. This may impact the nanostraws' ability to facilitate fluid flow between the ribs and the sternum. At present, AFM is the only tool for imaging cells' ultra-structure at the nanometer scale because cells are not homogeneous. The first layer of the cell is called the cell membrane, and the layer under it is made of the cytoskeleton. Cancerous cells are different from normal cells in term of cell growth, mechanical properties, and ultra-structure. Here, force is measured with very high sensitivity and this is accomplished with highly sensitive probes such as a nano-probe. We performed experiments to determine ultra-structural differences that emerge when such cancerous cells are subject to treatments such as with drugs and electric pulses. Jurkat cells are cancerous cells. These cells were pulsed at different conditions. Pulsed and non-pulsed Jurkat cell ultra-structures were investigated at the nano meter scale using AFM. Jurkat cell mechanical properties were measured under different conditions. In addition, AFM was used to measure the charge density of cell surface in physiological conditions. We found that the treatments changed the cancer cells' ultra-structural and mechanical properties at the nanometer scale. Finally, we used AFM to characterize many non-biological materials with relevance to biomedical science. Various metals, polymers, and semi-conducting materials were characterized in air and multiple liquid media through AFM - techniques from which a plethora of industries can benefit. This applies especially to the fledging solar industry which has found much promise in nanoscopic insights. Independent of the material being examined, a reliable method to measure the surface force between a nano probe and a sample surface in a variety of ionic concentrations was also found in the process of procuring these measurements. The key findings were that the charge density increases with the increase of the medium's ionic concentration.
Historical microbiology, is it relevant in the 21st century?
Robertson, Lesley A
2015-05-01
Facsimile microscopes have been used to examine the possibilities of van Leeuwenhoek microscopes with a range of magnifications, particularly to confirm that bacteria can be seen if the microscope is strong enough. The relevance of historical microbiology in education is also illustrated by adapting versions of van Leeuwenhoek's pepper water experiment and Beijerinck's use of bioluminescent bacteria as oxygen probes. These experiments can demonstrate fundamentals such as enrichment and isolation cultures, physiology and experimental planning as well as critical reading of published material. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
; (we call this type of surface a vicinal surface). Modern scanned-probe microscopes, such as the STM Educational Education Pre-College Programs Homeschool Programs Undergraduate & Graduate Programs Teacher
Current at Metal-Organic Interfaces
NASA Astrophysics Data System (ADS)
Kern, Klaus
2012-02-01
Charge transport through atomic and molecular constrictions greatly affects the operation and performance of organic electronic devices. Much of our understanding of the charge injection and extraction processes in these systems relays on our knowledge of the electronic structure at the metal-organic interface. Despite significant experimental and theoretical advances in studying charge transport in nanoscale junctions, a microscopic understanding at the single atom/molecule level is missing. In the present talk I will present our recent results to probe directly the nanocontact between single molecules and a metal electrode using scanning probe microscopy and spectroscopy. The experiments provide unprecedented microscopic details of single molecule and atom junctions and open new avenues to study quantum critical and many body phenomena at the atomic scale. Implications for energy conversion devices and carbon based nanoelectronics will also be discussed.
Atomic force microscope based on vertical silicon probes
NASA Astrophysics Data System (ADS)
Walter, Benjamin; Mairiaux, Estelle; Faucher, Marc
2017-06-01
A family of silicon micro-sensors for Atomic Force Microscope (AFM) is presented that allows to operate with integrated transducers from medium to high frequencies together with moderate stiffness constants. The sensors are based on Micro-Electro-Mechanical-Systems technology. The vertical design specifically enables a long tip to oscillate perpendicularly to the surface to be imaged. The tip is part of a resonator including quasi-flexural composite beams, and symmetrical transducers that can be used as piezoresistive detector and/or electro-thermal actuator. Two vertical probes (Vprobes) were operated up to 4.3 MHz with stiffness constants 150 N/m to 500 N/m and the capability to oscillate from 10 pm to 90 nm. AFM images of several samples both in amplitude modulation (tapping-mode) and in frequency modulation were obtained.
The design of a microscopic system for typical fluorescent in-situ hybridization applications
NASA Astrophysics Data System (ADS)
Yi, Dingrong; Xie, Shaochuan
2013-12-01
Fluorescence in situ hybridization (FISH) is a modern molecular biology technique used for the detection of genetic abnormalities in terms of the number and structure of chromosomes and genes. The FISH technique is typically employed for prenatal diagnosis of congenital dementia in the Obstetrics and Genecology department. It is also routinely used to pick up qualifying breast cancer patients that are known to be highly curable by the prescription of Her2 targeted therapy. During the microscopic observation phase, the technician needs to count typically green probe dots and red probe dots contained in a single nucleus and calculate their ratio. This procedure need to be done to over hundreds of nuclei. Successful implementation of FISH tests critically depends on a suitable fluorescent microscope which is primarily imported from overseas due to the complexity of such a system beyond the maturity of the domestic optoelectrical industry. In this paper, the typical requirements of a fluorescent microscope that is suitable for FISH applications are first reviewed. The focus of this paper is on the system design and computational methods of an automatic florescent microscopy with high magnification APO objectives, a fast spinning automatic filter wheel, an automatic shutter, a cooled CCD camera used as a photo-detector, and a software platform for image acquisition, registration, pseudo-color generation, multi-channel fusing and multi-focus fusion. Preliminary results from FISH experiments indicate that this system satisfies routine FISH microscopic observation tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Kamal, E-mail: singhkamal204@gmail.com; Garg, Leena; Singh, Jaspal
2016-05-06
The undoped and doped composite of MWNTs (Multiwalled Carbon Nanotubes) with PANI (/Polyaniline) was prepared by chemical oxidative polymerization. The MWNTs/PANI composites have been characterized by using various techniques like Thermogravometric Analysis (TGA), Fourier transform infrared (FT-IR) spectrometer and Field emission scanning electron microscope (FE-SEM) and conductivity measurement by using two probe method. TGA results has shown that thermal stability followed the pattern undoped MWNTs/PANI composite < doped MWNTs/PANI composite. FE-SEM micrographs demonstrated the morphological changes on the surface of MWNTs as a result of composite formation. Fourier transformed infrared (FT-IR) spectra ascertained the formation of the composite. Study ofmore » electrical characteristics demonstrated that the doped MWNTs/PANI composite (1.2 × 10{sup 1} Scm{sup −1}) have better conductivity than the undoped MWNTs/PANI composite (10{sup −4} Scm{sup −1}). These CNTs based polymeric composites are of great importance in developing new nano-scale devices for future chemical, mechanical and electronic applications.« less
Thermal infrared near-field spectroscopy.
Jones, Andrew C; Raschke, Markus B
2012-03-14
Despite the seminal contributions of Kirchhoff and Planck describing far-field thermal emission, fundamentally distinct spectral characteristics of the electromagnetic thermal near-field have been predicted. However, due to their evanescent nature their direct experimental characterization has remained elusive. Combining scattering scanning near-field optical microscopy with Fourier-transform spectroscopy using a heated atomic force microscope tip as both a local thermal source and scattering probe, we spectroscopically characterize the thermal near-field in the mid-infrared. We observe the spectrally distinct and orders of magnitude enhanced resonant spectral near-field energy density associated with vibrational, phonon, and phonon-polariton modes. We describe this behavior and the associated distinct on- and off-resonance nanoscale field localization with model calculations of the near-field electromagnetic local density of states. Our results provide a basis for intrinsic and extrinsic resonant manipulation of optical forces, control of nanoscale radiative heat transfer with optical antennas, and use of this new technique of thermal infrared near-field spectroscopy for broadband chemical nanospectroscopy. © 2012 American Chemical Society
NASA Astrophysics Data System (ADS)
Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; Martino, Antonello De; Pagnoux, Dominique
2016-07-01
This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe.
Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; De Martino, Antonello; Pagnoux, Dominique
2016-07-01
This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe.
Guo, Heng; Chen, Qian; Qi, Weizhi; Chen, Xingxing; Xi, Lei
2018-04-19
Brain imaging is an important technique in cognitive neuroscience. In this article, we designed a stereotaxic-apparatus-compatible photoacoustic microscope for the studies of rat cortical hemodynamics. Compared with existing optical resolution photoacoustic microscopy (ORPAM) systems, the probe owns feature of fast, light and miniature. In this microscope, we integrated a miniaturized ultrasound transducer with a center frequency of 10 MHz to detect photoacoustic signals and a 2-dimensional (2D) microelectromechanical system (MEMS) scanner to achieve raster scanning of the optical focus. Based on phantom evaluation, this imaging probe has a high lateral resolution of 3.8 μm and an effective imaging domain of 2 × 2 mm 2 . Different from conventional ORPAMs, combining with standard stereotaxic apparatus enables broad studies of rodent brains without any motion artifact. To show its capability, we successfully captured red blood cell flow in the capillary, monitored the vascular changes during bleeding and blood infusion and visualized cortical hemodynamics induced by middle cerebral artery occlusion. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A full-field transmission x-ray microscope for time-resolved imaging of magnetic nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewald, J.; Nisius, T.; Abbati, G.
Sub-nanosecond magnetization dynamics of small permalloy (Ni{sub 80}Fe{sub 20}) elements has been investigated with a new full-field transmission microscope at the soft X-ray beamline P04 of the high brilliance synchrotron radiation source PETRA III. The soft X-ray microscope generates a flat-top illumination field of 20 μm diameter using a grating condenser. A tilted nanostructured magnetic sample can be excited by a picosecond electric current pulse via a coplanar waveguide. The transmitted light of the sample plane is directly imaged by a micro zone plate with < 65 nm resolution onto a 2D gateable X-ray detector to select one particular bunch in themore » storage ring that probes the time evolution of the dynamic information successively via XMCD spectromicroscopy in a pump-probe scheme. In the experiments it was possible to generate a homogeneously magnetized state in patterned magnetic layers by a strong magnetic Oersted field pulse of 200 ps duration and directly observe the recovery to the initial flux-closure vortex patterns.« less
Nonlinear microrheology of dense colloidal suspensions: A mode-coupling theory
NASA Astrophysics Data System (ADS)
Gazuz, I.; Fuchs, M.
2013-03-01
A mode-coupling theory for the motion of a strongly forced probe particle in a dense colloidal suspension is presented. Starting point is the Smoluchowski equation for N bath and a single probe particle. The probe performs Brownian motion under the influence of a strong constant and uniform external force Fex. It is immersed in a dense homogeneous bath of (different) particles also performing Brownian motion. Fluid and glass states are considered; solvent flow effects are neglected. Based on a formally exact generalized Green-Kubo relation, mode coupling approximations are performed and an integration through transients approach applied. A microscopic theory for the nonlinear velocity-force relations of the probe particle in a dense fluid and for the (de-) localized probe in a glass is obtained. It extends the mode coupling theory of the glass transition to strongly forced tracer motion and describes active microrheology experiments. A force threshold is identified which needs to be overcome to pull the probe particle free in a glass. For the model of hard sphere particles, the microscopic equations for the threshold force and the probability density of the localized probe are solved numerically. Neglecting the spatial structure of the theory, a schematic model is derived which contains two types of bifurcation, the glass transition and the force-induced delocalization, and which allows for analytical and numerical solutions. We discuss its phase diagram, forcing effects on the time-dependent correlation functions, and the friction increment. The model was successfully applied to simulations and experiments on colloidal hard sphere systems [Gazuz , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.248302 102, 248302 (2009)], while we provide detailed information on its derivation and general properties.
University of Maryland MRSEC - For Members
; (we call this type of surface a vicinal surface). Modern scanned-probe microscopes, such as the STM Educational Education Pre-College Programs Homeschool Programs Undergraduate & Graduate Programs Teacher
University of Maryland MRSEC - News: Calendar
; (we call this type of surface a vicinal surface). Modern scanned-probe microscopes, such as the STM Educational Education Pre-College Programs Homeschool Programs Undergraduate & Graduate Programs Teacher
Optical spectroscopies diagnose cancer
NASA Astrophysics Data System (ADS)
Alfano, Robert R.; Das, Bidyut B.; Glassman, Wenling S.; Pradhan, Asima; Tang, Gui C.
1992-02-01
Today's medical professional is looking beyond the conventional procedures of X-rays, nuclear radiation, magnetic resonance, chemical analysis, and ultrasound to diagnose diseases ranging from cancer to heart ailments. In view of the possible dangerous side effects of X-rays and nuclear radiation, a need exists for novel techniques in disease detection that can either eliminate or reduce their use in examinations. For more than half a century, fluorescence, absorption, and light scattering spectroscopies have been widely used as probes to acquire fundamental knowledge about various physical, chemical, and biological processes. Light may offer alternatives to X-rays and nuclear approaches, and in some cases is non-invasive. Optical spectroscopy and laser technology may offer techniques for the detection and characterization of physical and chemical changes that occur in diseased tissue on a microscopic level.
Science & Technology Review November 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinn, D J
2007-10-16
This month's issue has the following articles: (1) Simulating the Electromagnetic World--Commentary by Steven R. Patterson; (2) A Code to Model Electromagnetic Phenomena--EMSolve, a Livermore supercomputer code that simulates electromagnetic fields, is helping advance a wide range of research efforts; (3) Characterizing Virulent Pathogens--Livermore researchers are developing multiplexed assays for rapid detection of pathogens; (4) Imaging at the Atomic Level--A powerful new electron microscope at the Laboratory is resolving materials at the atomic level for the first time; (5) Scientists without Borders--Livermore scientists lend their expertise on peaceful nuclear applications to their counterparts in other countries; and (6) Probing Deepmore » into the Nucleus--Edward Teller's contributions to the fast-growing fields of nuclear and particle physics were part of a physics golden age.« less
Single Nanopore Investigations with Ion Conductance Microscopy
Chen, Chiao-Chen; Zhou, Yi; Baker, Lane A.
2011-01-01
A three-electrode scanning ion conductance microscope (SICM) was used to investigate the local current-voltage properties of a single nanopore. In this experimental configuration, the response measured is a function of changes in the resistances involved in the pathways of ion migration. Single nanopore membranes utilized in this study were prepared with an epoxy painting procedure to isolate a single nanopore from a track-etch multi-pore membrane. Current-voltage responses measured with the SICM probe in the vicinity of a single nanopore were investigated in detail and agreed well with equivalent circuit models proposed in this study. With this modified SICM, the current-voltage responses characterized for the case of a single cylindrical pore and a single conical pore exhibit distinct conductance properties that originate from the geometry of nanopores. PMID:21923184
A New Maraging Stainless Steel with Excellent Strength-Toughness-Corrosion Synergy.
Tian, Jialong; Wang, Wei; Babar Shahzad, M; Yan, Wei; Shan, Yiyin; Jiang, Zhouhua; Yang, Ke
2017-11-10
A new maraging stainless steel with superior strength-toughness-corrosion synergy has been developed based on an innovative concept of alloy design. The high strength-toughness combination is achieved by forming dispersive nano-sized intermetallic compounds in the soft lath martensitic matrix with a slight amount of residual austenite. The good corrosion resistance is guaranteed by exactly controlling the Co content based on understanding the synergistic effect between Co and Cr. The fine structure characteristics of two dominant strengthening precipitations including Ni₃Ti and Mo-rich phases were finely characterized associated with transmission electron microscope (TEM) and atom probe tomography (APT) analyses. The relationship among microstructure, strength and toughness is discussed. The precipitation mechanism of different precipitates in the new maraging stainless steel is revealed based on the APT analysis.
Thermoelectric Transport in Surface- and Antimony-Doped Bismuth Telluride Nanoplates
2016-07-25
0.50) using two different electron microscopes with two different high sensitivity energy dispersive x-ray spectroscopy (EDS) detectors (FEI Nova...Figure 1(b)) using an electrochemically sharpened probe. Transfer was performed in ambient conditions under an optical microscope . Samples were then...attributed to additional alloy scattering in the (Bi1−xSbx)2Te3 samples studied here. Additionally, the room temperature κlattice for bulk compounds Reuse of
A Unique Self-Sensing, Self-Actuating AFM Probe at Higher Eigenmodes
Wu, Zhichao; Guo, Tong; Tao, Ran; Liu, Leihua; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2015-01-01
With its unique structure, the Akiyama probe is a type of tuning fork atomic force microscope probe. The long, soft cantilever makes it possible to measure soft samples in tapping mode. In this article, some characteristics of the probe at its second eigenmode are revealed by use of finite element analysis (FEA) and experiments in a standard atmosphere. Although the signal-to-noise ratio in this environment is not good enough, the 2 nm resolution and 0.09 Hz/nm sensitivity prove that the Akiyama probe can be used at its second eigenmode under FM non-contact mode or low amplitude FM tapping mode, which means that it is easy to change the measuring method from normal tapping to small amplitude tapping or non-contact mode with the same probe and equipment. PMID:26580619
de Monchy, Romain; Rouyer, Julien; Destrempes, François; Chayer, Boris; Cloutier, Guy; Franceschini, Emilie
2018-04-01
Quantitative ultrasound techniques based on the backscatter coefficient (BSC) have been commonly used to characterize red blood cell (RBC) aggregation. Specifically, a scattering model is fitted to measured BSC and estimated parameters can provide a meaningful description of the RBC aggregates' structure (i.e., aggregate size and compactness). In most cases, scattering models assumed monodisperse RBC aggregates. This study proposes the Effective Medium Theory combined with the polydisperse Structure Factor Model (EMTSFM) to incorporate the polydispersity of aggregate size. From the measured BSC, this model allows estimating three structural parameters: the mean radius of the aggregate size distribution, the width of the distribution, and the compactness of the aggregates. Two successive experiments were conducted: a first experiment on blood sheared in a Couette flow device coupled with an ultrasonic probe, and a second experiment, on the same blood sample, sheared in a plane-plane rheometer coupled to a light microscope. Results demonstrated that the polydisperse EMTSFM provided the best fit to the BSC data when compared to the classical monodisperse models for the higher levels of aggregation at hematocrits between 10% and 40%. Fitting the polydisperse model yielded aggregate size distributions that were consistent with direct light microscope observations at low hematocrits.
Nano-material processing with laser radiation in the near field of a scanning probe tip
NASA Astrophysics Data System (ADS)
Jersch, J.; Demming, F.; Hildenhagen, J.; Dickmann, K.
1998-04-01
We report preliminary results of using a scanning probe microscope/laser combination to perform nanostructuring on insulator and metal surfaces in air. This technique enables processing of structures with a lateral resolution of approximately 10 nm. In this paper we present our last structuring results with both scanning tunnelling and scanning force microscopy. Some possible interaction mechanisms responsible for the structuring will be discussed.
Capillary force on a tilted cylinder: Atomic Force Microscope (AFM) measurements.
Kosgodagan Acharige, Sébastien; Laurent, Justine; Steinberger, Audrey
2017-11-01
The capillary force in situations where the liquid meniscus is asymmetric, such as the one around a tilted object, has been hitherto barely investigated even though these situations are very common in practice. In particular, the capillary force exerted on a tilted object may depend on the dipping angle i. We investigate experimentally the capillary force that applies on a tilted cylinder as a function of its dipping angle i, using a home-built tilting Atomic Force Microscope (AFM) with custom made probes. A micrometric-size rod is glued at the end of an AFM cantilever of known stiffness, whose deflection is measured when the cylindrical probe is dipped in and retracted from reference liquids. We show that a torque correction is necessary to understand the measured deflection. We give the explicit expression of this correction as a function of the probes' geometrical parameters, so that its magnitude can be readily evaluated. The results are compatible with a vertical capillary force varying as 1/cosi, in agreement with a recent theoretical prediction. Finally, we discuss the accuracy of the method for measuring the surface tension times the cosine of the contact angle of the liquid on the probe. Copyright © 2017 Elsevier Inc. All rights reserved.
University of Maryland MRSEC - For Members: Templates
; (we call this type of surface a vicinal surface). Modern scanned-probe microscopes, such as the STM Educational Education Pre-College Programs Homeschool Programs Undergraduate & Graduate Programs Teacher
NASA Astrophysics Data System (ADS)
Luo, Yanghe; Ma, Lu; Zhang, Xinghui; Liang, Aihui; Jiang, Zhiliang
2015-05-01
The reduced graphene oxide/silver nanotriangle (rGO/AgNT) composite sol was prepared by the reduction of silver ions with sodium borohydride in the presence of H2O2 and sodium citrate. In the nanosol substrate, the molecular probe of acridine red (AR) exhibited a weak surface-enhanced Raman scattering (SERS) peak at 1506 cm-1 due to its interaction with the rGO of rGO/AgNT. Upon addition of dopamine (DA), the competitive adsorption between DA and AR with the rGO took place, and the AR molecules were adsorbed on the AgNT aggregates with a strong SERS peak at 1506 cm-1 that caused the SERS peak increase. The increased SERS intensity is linear to the DA concentration in the range of 2.5-500 μmol/L. This new analytical system was investigated by SERS, fluorescence, absorption, transmission electron microscope (TEM), and scanning electron microscope (SEM) techniques, and a SERS quantitative analysis method for DA was established, using AR as a label-free molecular probe.
Jaafar, W M N Wan; Snyder, J E; Min, Gao
2013-05-01
An apparatus for measuring the Seebeck coefficient (α) and electrical resistivity (ρ) was designed to operate under an infrared microscope. A unique feature of this apparatus is its capability of measuring α and ρ of small-dimension (sub-millimeter) samples without the need for microfabrication. An essential part of this apparatus is a four-probe assembly that has one heated probe, which combines the hot probe technique with the Van der Pauw method for "simultaneous" measurements of the Seebeck coefficient and electrical resistivity. The repeatability of the apparatus was investigated over a temperature range of 40 °C-100 °C using a nickel plate as a standard reference. The results show that the apparatus has an uncertainty of ±4.9% for Seebeck coefficient and ±5.0% for electrical resistivity. The standard deviation of the apparatus against a nickel reference sample is -2.43 μVK(-1) (-12.5%) for the Seebeck coefficient and -0.4 μΩ cm (-4.6%) for the electrical resistivity, respectively.
NASA Astrophysics Data System (ADS)
Tao, Yinglei; Kumar Wickramasinghe, H.
2017-02-01
We demonstrate a coaxial AFM nanoprobe device for dielectrophoretic (DEP) trapping of DNA molecules in Tris-EDTA (TE) and phosphate-buffered saline (PBS) buffers. The DEP properties of 20 nm polystyrene beads were studied with coaxial probes in media with different conductivities. Due to the special geometry of our DEP probe device, sufficiently high electric fields were generated at the probe end to focus DNA molecules with positive DEP. DEP trapping for both polystyrene beads and DNA molecules was quantitatively analyzed over the frequency range from 100 kHz to 50 MHz and compared with the Clausius-Mossotti theory. Finally, we discussed the negative effect of medium salinity during DEP trapping.
Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, M.M.Z., E-mail: mohamed_ahmed4@s-petrol.suez.edu.eg; Department of Metallurgical and Materials Engineering, Suez Canal University, Suez 43721; Wynne, B.P.
2012-02-15
In this study a thick section (20 mm) friction stir welded AA2017A-T451 has been characterized in terms of microstructure, crystallographic texture and mechanical properties. For microstructural analysis both optical and scanning electron microscopes have been used. A detailed crystallographic texture analysis has been carried out using the electron back scattering diffraction technique. Crystallographic texture has been examined in both shoulder and probe affected regions of the weld NG. An entirely weak texture is observed at the shoulder affected region which is mainly explained by the effect of the sequential multi pass deformation experienced by both tool probe and tool shoulder.more » The texture in the probe dominated region at the AS side of the weld is relatively weak but still assembles the simple shear texture of FCC metals with B/B{sup Macron} and C components existing across the whole map. However, the texture is stronger at the RS than at the AS of the weld, mainly dominated byB/B{sup Macron} components and with C component almost absent across the map. An alternating bands between (B) components and (B{sup Macron }) component are observed only at the AS side of the weld. - Highlights: Black-Right-Pointing-Pointer Detailed investigation of microstructure and crystallographic texture. Black-Right-Pointing-Pointer The grain size is varied from the top to the bottom of the NG. Black-Right-Pointing-Pointer An entirely weak texture is observed at the shoulder affected region. Black-Right-Pointing-Pointer The texture in the probe affected region is dominated by simple shear texture.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.
Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes weremore » used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.« less
Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.
2015-10-22
Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes weremore » used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.« less
NASA Technical Reports Server (NTRS)
Mungas, Greg S.; Beegle, Luther W.; Boynton, John E.; Lee, Pascal; Shidemantle, Ritch; Fisher, Ted
2004-01-01
The Camera, Hand Lens, and Microscope Probe (CHAMP) will allow examination of martian surface features and materials (terrain, rocks, soils, samples) on spatial scales ranging from kilometers to micrometers, thus enabling both microscopy and context imaging with high operational flexibility. CHAMP is designed to allow the detailed and quantitative investigation of a wide range of geologic features and processes on Mars, leading to a better quantitative understanding of the evolution of the martian surface environment through time. In particular, CHAMP will provide key data that will help understand the local region explored by Mars Surface Laboratory (MSL) as a potential habitat for life. CHAMP will also support other anticipated MSL investigations, in particular by helping identify and select the highest priority targets for sample collection and analysis by the MSL's analytical suite.
NASA Astrophysics Data System (ADS)
Chen, LeuJen; Kim, Seong Heon; Lee, Alfred K. H.; de Lozanne, Alex
2012-01-01
We describe a new type of circuit designed for driving piezoelectric positioners that rely on the stick-slip phenomenon. The circuit can be used for inertial positioners that have only one piezoelectric element (or multiple elements that are moved simultaneously) or for designs using a sequential movement of independent piezoelectric elements. A relay switches the piezoelectric elements between a high voltage source and ground, thus creating a fast voltage step followed by a slow ramp produced by the exponential discharging of the piezoelectric elements through a series resistor. A timing cascade is generated by having each relay power the next relay in the sequence. This design is simple and inexpensive. While it was developed for scanning probe microscopes, it may be useful for any piezoelectric motor based on a fast jump followed by a slow relaxation.
NASA Astrophysics Data System (ADS)
Gao, Mingxing; Jing, Hongwei; Cao, Xuedong; Chen, Lin; Yang, Jie
2015-08-01
When using the swing arm profilometer (SAP) to measure the aspheric mirror and the off-axis aspheric mirror, the error of the effective arm length of the SAP has an obvious influence on the measurement result. In order to reduce the influence of the effective arm length and increase the measurement accuracy of the SAP, the laser tracker is adopted to measure the effective arm length. Because the space position relationship of the probe system for the SAP is needed to measured before using the laser tracker, the point source microscope (PSM) is used to measure the space positional relationship. The measurement principle of the PSM and other applications are introduced; the accuracy and repeatability of this technology are analysed; the advantages and disadvantages of this technology are summarized.
Resonant difference-frequency atomic force ultrasonic microscope
NASA Technical Reports Server (NTRS)
Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)
2010-01-01
A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.
Eddy-Current Inspection Of Tab Seals On Beverage Cans
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
1994-01-01
Eddy-current inspection system monitors tab seals on beverage cans. Device inspects all cans at usual production rate of 1,500 to 2,000 cans per minute. Automated inspection of all units replaces visual inspection by microscope aided by mass spectrometry. System detects defects in real time. Sealed cans on conveyor pass near one of two coils in differential eddy-current probe. Other coil in differential eddy-current probe positioned near stationary reference can on which tab seal is known to be of acceptable quality. Signal of certain magnitude at output of probe indicates defective can, automatically ejected from conveyor.
Developments in Scanning Hall Probe Microscopy
NASA Astrophysics Data System (ADS)
Chouinard, Taras; Chu, Ricky; David, Nigel; Broun, David
2009-05-01
Low temperature scanning Hall probe microscopy is a sensitive means of imaging magnetic structures with high spatial resolution and magnetic flux sensitivity approaching that of a Superconducting Quantum Interference Device. We have developed a scanning Hall probe microscope with novel features, including highly reliable coarse positioning, in situ optimization of sensor-sample alignment and capacitive transducers for linear, long range positioning measurement. This has been motivated by the need to reposition accurately above fabricated nanostructures such as small superconducting rings. Details of the design and performance will be presented as well as recent progress towards time-resolved measurements with sub nanosecond resolution.
Scanning laser microscope for imaging nanostructured superconductors
NASA Astrophysics Data System (ADS)
Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen
2010-10-01
The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.
Atomic Force Microscope for Imaging and Spectroscopy
NASA Technical Reports Server (NTRS)
Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.
2000-01-01
We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.
NASA Astrophysics Data System (ADS)
Pal, Robert; Beeby, Andrew
2014-09-01
An inverted microscope has been adapted to allow time-gated imaging and spectroscopy to be carried out on samples containing responsive lanthanide probes. The adaptation employs readily available components, including a pulsed light source, time-gated camera, spectrometer and photon counting detector, allowing imaging, emission spectroscopy and lifetime measurements. Each component is controlled by a suite of software written in LabVIEW and is powered via conventional USB ports.
Recent developments in dimensional nanometrology using AFMs
NASA Astrophysics Data System (ADS)
Yacoot, Andrew; Koenders, Ludger
2011-12-01
Scanning probe microscopes, in particular the atomic force microscope (AFM), have developed into sophisticated instruments that, throughout the world, are no longer used just for imaging, but for quantitative measurements. A role of the national measurement institutes has been to provide traceable metrology for these instruments. This paper presents a brief overview as to how this has been achieved, highlights the future requirements for metrology to support developments in AFM technology and describes work in progress to meet this need.
Probing Chemical Properties of Interstitial Micro-fluids in Ice
NASA Astrophysics Data System (ADS)
Cheng, J.; Colussi, A. J.; Hoffmann, M. R.
2007-12-01
Liquid is present as microscopic channels in polycrystalline ice at sub-freezing and even sub-eutectic temperatures. Not only do chemicals tend to concentrate substantially in this microscopic liquid phase, but local physicochemical properties may also differ widely from the bulk counterparts, therefore critically affecting the thermodynamics and kinetics of chemical processes occurring in frozen media such as snow, frost, and frost- flowers. This phenomenon has important implications in atmospheric chemistry such as affecting the composition of the atmospheric boundary layer in snow-covered regions. A method using con-focal laser scanning microscope equipped with a cryostat has been developed to measure physicochemical properties of the microscopic liquid phase in ice that are not readily extrapolated from the bulk data. The experimental setup allows for monitoring the freezing process of an aqueous solution with a sub- second time resolution and a submicron 3D spatial resolution. The physicochemical properties (e.g. viscosity, polarity, and acidity) can, in theory, be deduced from features of the fluorescence spectra of particular fluorescent indicators. For example, the acidity change during the freezing and melting process of electrolyte solutions has been monitored in real time by a pH-dependent dual emission fluorescent probe C-SNARF-1. The effects of temperature, freezing rate, and added electrolytes such as ammonium sulfate, sodium chloride and zwitterions are also examined. The findings complement the theory and previous experimental evidence of freezing hydrolysis.
A landmark-based 3D calibration strategy for SPM
NASA Astrophysics Data System (ADS)
Ritter, Martin; Dziomba, Thorsten; Kranzmann, Axel; Koenders, Ludger
2007-02-01
We present a new method for the complete three-dimensional (3D) calibration of scanning probe microscopes (SPM) and other high-resolution microscopes, e.g., scanning electron microscopes (SEM) and confocal laser scanning microscopes (CLSM), by applying a 3D micrometre-sized reference structure with the shape of a cascade slope-step pyramid. The 3D reference structure was produced by focused ion beam induced metal deposition. In contrast to pitch featured calibration procedures that require separate lateral and vertical reference standards such as gratings and step height structures, the new method includes the use of landmarks, which are well established in calibration and measurement tasks on a larger scale. However, the landmarks applied to the new 3D reference structures are of sub-micrometre size, the so-called 'nanomarkers'. The nanomarker coordinates are used for a geometrical calibration of the scanning process of SPM as well as of other instrument types such as SEM and CLSM. For that purpose, a parameter estimation routine involving three scale factors and three coupling factors has been developed that allows lateral and vertical calibration in only one sampling step. With this new calibration strategy, we are able to detect deviations of SPM lateral scaling errors as well as coupling effects causing, e.g., a lateral coordinate shift depending on the measured height position of the probe.
Characterization of Biofilm Community Structure by Ribosomal RNA sequences
1989-12-01
for strains of Fibrobacter, 2) Desulfobacter genus-specific probe, 3) Desulfosarcina genus-specific probe, 4) archaebacterial kingdom -specific probes...and 5) eubacterial kingdom -specific probes 5) eukaryote kingdom -specific probe and 6) a general probe encompassing all characterized sulfate-reducing...sets have been fabricated. The group-specific primer sets selectively amplify either sulfate-reducing bacteria or archaebacteria . The SRB-specific
SEM probe of IC radiation sensitivity
NASA Technical Reports Server (NTRS)
Gauthier, M. K.; Stanley, A. G.
1979-01-01
Scanning Electron Microscope (SEM) used to irradiate single integrated circuit (IC) subcomponent to test for radiation sensitivity can localize area of IC less than .03 by .03 mm for determination of exact location of radiation sensitive section.
Tomography of a Probe Potential Using Atomic Sensors on Graphene.
Wyrick, Jonathan; Natterer, Fabian D; Zhao, Yue; Watanabe, Kenji; Taniguchi, Takashi; Cullen, William G; Zhitenev, Nikolai B; Stroscio, Joseph A
2016-12-27
Our ability to access and explore the quantum world has been greatly advanced by the power of atomic manipulation and local spectroscopy with scanning tunneling and atomic force microscopes, where the key technique is the use of atomically sharp probe tips to interact with an underlying substrate. Here we employ atomic manipulation to modify and quantify the interaction between the probe and the system under study that can strongly affect any measurement in low charge density systems, such as graphene. We transfer Co atoms from a graphene surface onto a probe tip to change and control the probe's physical structure, enabling us to modify the induced potential at a graphene surface. We utilize single Co atoms on a graphene field-effect device as atomic scale sensors to quantitatively map the modified potential exerted by the scanning probe over the whole relevant spatial and energy range.
Cui, Jianlei; Yang, Lijun; Wang, Yang; Mei, Xuesong; Wang, Wenjun; Hou, Chaojian
2015-02-04
With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology.
Simplifying Nanowire Hall Effect Characterization by Using a Three-Probe Device Design.
Hultin, Olof; Otnes, Gaute; Samuelson, Lars; Storm, Kristian
2017-02-08
Electrical characterization of nanowires is a time-consuming and challenging task due to the complexity of single nanowire device fabrication and the difficulty in interpreting the measurements. We present a method to measure Hall effect in nanowires using a three-probe device that is simpler to fabricate than previous four-probe nanowire Hall devices and allows characterization of nanowires with smaller diameter. Extraction of charge carrier concentration from the three-probe measurements using an analytical model is discussed and compared to simulations. The validity of the method is experimentally verified by a comparison between results obtained with the three-probe method and results obtained using four-probe nanowire Hall measurements. In addition, a nanowire with a diameter of only 65 nm is characterized to demonstrate the capabilities of the method. The three-probe Hall effect method offers a relatively fast and simple, yet accurate way to quantify the charge carrier concentration in nanowires and has the potential to become a standard characterization technique for nanowires.
Loukanov, Alexandre; Emin, Saim
2016-09-01
We report the microemulsion synthesis of vanadium and chromium sulfide nanoparticles (NPs) and their biological application as nanoprobes for colocalization of membrane proteins. Spherical V2 S3 and Cr2 S3 NPs were prepared in reverse microemulsion droplets, as nanoreactors, obtained by the surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in nonpolar organic phase (heptane). Electron microscopic data indicated that the size distribution of the nanoparticles was uniform with an average diameter between 3 ÷ 5 nm. The prepared hydrophobic nanocrystals were transferred in aqueous phase by surface cap exchange of AOT with biotin-dihydrolipoic ligands. This substitution allows the nanoparticles solubility in aqueous solutions and confer their bioactivity. In addition, we report the conjugation procedure between α-Lipoic acid (LA) and biotin (abbreviated as biotin-LA). The biotin-LA structure was characterized by 1D and 2D NMR spectroscopy. The biotinylated vanadium and chromium sulfide nanoparticles were tested as probes for colocalization of glutamate receptors on sodium-dodecyl-sulfate-digested replica prepared from rat hippocampus. The method suggests their high labeling efficiency for study of membrane biological macromolecules. Microsc. Res. Tech. 79:799-805, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Li, Zhenzhen; Zhang, Qiyi; Huang, Huaying; Ren, Changjing; Pan, Yujin; Wang, Qing; Zhao, Qiang
2016-12-01
In the experiments, high-quality, water-soluble and near-infrared (NIR)-emitting CdSeTe and CdSeTe/CdS quantum dots (QDs) were successfully prepared. The average size of CdSeTe⁄CdS QDs was 7.68 nm and CdSeTe QDs was 4.33 nm. Arginine-glycine-aspartic-serine acid (RGDS) peptides were linked to CdSeTe/CdS QDs by N-(3-(dimethylamino)propyl)-N'-ehtylcarbodiimide hydrochloride (EDC) and N'-hydroxysuccinimide (NHS). The prepared RGDS-tagged NIR CdSeTe/CdS QDs (denoted as RGDS-CdSeTe/CdS) had an average diameter of 24.83 nm and were used for cancer cell immunofluorescence imaging. The characteristics of RGDS-conjugated CdSeTe/CdS such as morphology, structure, spectra, stability, cytotoxicity, and near-infrared microscopic imaging were investigated in detail. HepG2 cells were incubated with the novel fluorescent probe (RGDS-CdSeTe/CdS), which realized immunofluorescence targeting and imaging. The results reported here open up new perspectives for integrin-targeted near-infrared imaging and may aid in tumor detection including imaging-guided surgery.
Synthesis of zinc oxide thin films prepared by sol-gel for specific bioactivity
NASA Astrophysics Data System (ADS)
Adam, Tijjani; Basri, B.; Dhahi, Th. S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.
2017-09-01
Zinc oxide (ZnO) thin films this device to used for many application like chemical sensor, biosensor, solar energy, etc but my project to use for bioactivity(biosensor). Zinc oxide (ZnO) thin films have been grown using sol-gel technique. Characterization was done using Scanning Electron Microscope (SEM), Energy Dispersive X-ray(EDX) and Electrical Measurement(I-V). ZnO thin film was successfully synthesized using low cost sol-gel spin coating method. The coupling of DNA probe to ZnO thin film supports modified with carboxylic acid (COOH) is certainly the best practical method to make DNA immobilization and it does not require any coupling agent which could be a source of variability during the spotting with an automatic device. So, selected this coupling procedure for further experiments. The sensor was tested with initial trial with low concentrated DNA and able to detect detection of the disease effectively. Silicon-on-insulator (SOI) wafer device with ZnO can detect at different concentration in order to valid the device capabilities for detecting development. The lowest concentration 1 µM HPV DNA probe can detect is 0.1 nM HPV target DNA.
NASA Astrophysics Data System (ADS)
Rohit, Jigneshkumar V.; Kailasa, Suresh Kumar
2014-11-01
We have developed a simple and rapid colorimetric method for on-site analysis of thiram and paraquat using cyclen dithiocarbamate-functionalized silver nanoparticles (CN-DTC-Ag NPs) as a colorimetric probe. The synthesized CN-DTC-Ag NPs were characterized by UV-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy, dynamic light scattering, and transmission electron microscopic techniques. The CN-DTC molecules provide good supramolecular self assembly on the surfaces of Ag NPs to encapsulate thiram and paraquat selectively via "host-guest" chemistry, resulting in red-shift in surface plasmon resonance peak of CN-DTC-Ag NPs from 396 to 530 nm and 510 nm and color change from yellow to pink for thiram and to orange for paraquat, which can be naked-eye detected. The present method shows good linearity in the range of 10.0-20.0 µM and of 50.0-250 µM with limits of detection 2.81 × 10-6 M and 7.21 × 10-6 M for thiram and paraquat, respectively. This method was proved as a promising tool for on-site and real-time monitoring of thiram and paraquat in environmental water, potato, and wheat samples.
Synthesis and structural characterization of bulk Sb2Te3 single crystal
NASA Astrophysics Data System (ADS)
Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.
2018-05-01
We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.
Sánchez, Carolina Ramírez; Taurino, Antonietta; Bozzini, Benedetto
2016-01-01
This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR) electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy) nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE) method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i) morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM); (ii) local electrical conductivity, as measured by Scanning Probe Microscopy (SPM); and (iii) molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt). Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement. PMID:28042491
Focal depth measurement of scanning helium ion microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Hongxuan, E-mail: Guo.hongxuan@nims.go.jp; Itoh, Hiroshi; Wang, Chunmei
2014-07-14
When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at differentmore » focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.« less
Focal depth measurement of scanning helium ion microscope
NASA Astrophysics Data System (ADS)
Guo, Hongxuan; Itoh, Hiroshi; Wang, Chunmei; Zhang, Han; Fujita, Daisuke
2014-07-01
When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.
Apertureless near-field scanning optical microscope working with or without laser source.
Formanek, F; De Wilde, Y; Aigouy, L; Chen, Y
2004-01-01
An apertureless near-field scanning optical microscope (ANSOM), used indifferent configurations, is presented. Our versatile home-made setup, based on a sharp tungsten tip glued onto a quartz tuning fork and working in tapping mode, allows to perform imaging over a broad spectral range. We have recorded optical images in the visible (wavelength, lambda = 655 nm) and in the infrared (lambda = 10.6 microm), proving that the setup routinely achieves an optical resolution of <50 nm regardless of the illumination wavelength. We have also shown optical images recorded in the visible (lambda = 655 nm) in an inverted configuration where the tip does not perturb the focused spot of the illumination laser. Approach curves as well as image profiles have revealed that on demodulating the optical signal at higher harmonics, we can obtain an effective probe sharpening which results in an improvement of the resolution. Finally, we have presented optical images recorded in the infrared without any illumination, that is, the usual laser source is replaced by a simple heating of the sample. This has shown that the ANSOM can be used as a near-field thermal optical microscope (NTOM) to probe the near field generated by the thermal emission of the sample.
Pump-probe optical microscopy for imaging nonfluorescent chromophores.
Wei, Lu; Min, Wei
2012-06-01
Many chromophores absorb light intensely but have undetectable fluorescence. Hence microscopy techniques other than fluorescence are highly desirable for imaging these chromophores inside live cells, tissues, and organisms. The recently developed pump-probe optical microscopy techniques provide fluorescence-free contrast mechanisms by employing several fundamental light-molecule interactions including excited state absorption, stimulated emission, ground state depletion, and the photothermal effect. By using the pump pulse to excite molecules and the subsequent probe pulse to interrogate the created transient states on a laser scanning microscope, pump-probe microscopy offers imaging capability with high sensitivity and specificity toward nonfluorescent chromophores. Single-molecule sensitivity has even been demonstrated. Here we review and summarize the underlying principles of this emerging class of molecular imaging techniques.
Theoretical analysis of a dual-probe scanning tunneling microscope setup on graphene.
Settnes, Mikkel; Power, Stephen R; Petersen, Dirch H; Jauho, Antti-Pekka
2014-03-07
Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunneling microscopy using a Green's function formalism, and apply it to graphene. Sampling the local conduction properties at finite length scales yields real space conductance maps which show anisotropy for pristine graphene systems and quantum interference effects in the presence of isolated impurities. Spectral signatures in the Fourier transforms of real space conductance maps include characteristics that can be related to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of nonideal graphene samples on dual-probe measurements.
Spreading dynamics of 2D dipolar Langmuir monolayer phases.
Heinig, P; Wurlitzer, S; Fischer, Th M
2004-07-01
We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory.
A micromachined membrane-based active probe for biomolecular mechanics measurement
NASA Astrophysics Data System (ADS)
Torun, H.; Sutanto, J.; Sarangapani, K. K.; Joseph, P.; Degertekin, F. L.; Zhu, C.
2007-04-01
A novel micromachined, membrane-based probe has been developed and fabricated as assays to enable parallel measurements. Each probe in the array can be individually actuated, and the membrane displacement can be measured with high resolution using an integrated diffraction-based optical interferometer. To illustrate its application in single-molecule mechanics experiments, this membrane probe was used to measure unbinding forces between L-selectin reconstituted in a polymer-cushioned lipid bilayer on the probe membrane and an antibody adsorbed on an atomic force microscope cantilever. Piconewton range forces between single pairs of interacting molecules were measured from the cantilever bending while using the membrane probe as an actuator. The integrated diffraction-based optical interferometer of the probe was demonstrated to have <10 fm Hz-1/2 noise floor for frequencies as low as 3 Hz with a differential readout scheme. With soft probe membranes, this low noise level would be suitable for direct force measurements without the need for a cantilever. Furthermore, the probe membranes were shown to have 0.5 µm actuation range with a flat response up to 100 kHz, enabling measurements at fast speeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, C.; Golberg, D., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1, Tsukuba, Ibaraki 3058577
2015-08-31
Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structuremore » of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.« less
Nanoscale imaging of the photoresponse in PN junctions of InGaAs infrared detector
Xia, Hui; Li, Tian-Xin; Tang, Heng-Jing; Zhu, Liang; Li, Xue; Gong, Hai-Mei; Lu, Wei
2016-01-01
Electronic layout, such as distributions of charge carriers and electric field, in PN junction is determinant for the photovoltaic devices to realize their functionality. Considerable efforts have been dedicated to the carrier profiling of this specific region with Scanning Probe Microscope, yet reliable analysis was impeded by the difficulty in resolving carriers with high mobility and the unclear surface effect, particularly on compound semiconductors. Here we realize nanometer Scanning Capacitance Microscopic study on the cross-section of InGaAs/InP photodetctors with the featured dC/dV layout of PN junction unveiled for the first time. It enables us to probe the photo-excited minority carriers in junction region and diagnose the performance deficiency of the diode devices. This work provides an illuminating insight into the PN junction for assessing its basic capability of harvesting photo-carriers as well as blocking leakage current in nanoscopic scale. PMID:26892069
Wang, Peng; Behan, Gavin; Kirkland, Angus I; Nellist, Peter D; Cosgriff, Eireann C; D'Alfonso, Adrian J; Morgan, Andrew J; Allen, Leslie J; Hashimoto, Ayako; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki
2011-06-01
Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. Copyright © 2010 Elsevier B.V. All rights reserved.
Ju, Bing-Feng; Chen, Yuan-Liu; Zhang, Wei; Zhu, Wule; Jin, Chao; Fang, F Z
2012-05-01
A compact but practical scanning tunneling microscope (STM) with high aspect ratio and high depth capability has been specially developed. Long range scanning mechanism with tilt-adjustment stage is adopted for the purpose of adjusting the probe-sample relative angle to compensate the non-parallel effects. A periodical trench microstructure with a pitch of 10 μm has been successfully imaged with a long scanning range up to 2.0 mm. More innovatively, a deep trench with depth and step height of 23.0 μm has also been successfully measured, and slope angle of the sidewall can approximately achieve 67°. The probe can continuously climb the high step and exploring the trench bottom without tip crashing. The new STM could perform long range measurement for the deep trench and high step surfaces without image distortion. It enables accurate measurement and quality control of periodical trench microstructures.
SQCRAMscope imaging of transport in an iron-pnictide superconductor
NASA Astrophysics Data System (ADS)
Yang, Fan; Kollar, Alicia; Taylor, Stephen; Palmstrom, Johanna; Chu, Jiun-Haw; Fisher, Ian; Lev, Benjamin
2017-04-01
Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We have recently introduced a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. We will report on the first use of the SQCRAMscope for imaging a strongly correlated material. Specifically, we will present measurements of electron transport in iron-pnictide superconductors across the electron nematic phase transition at T = 135 K.
NASA Astrophysics Data System (ADS)
Li, Xiao-Fen; Kochat, Mehdi; Majkic, Goran; Selvamanickam, Venkat
2016-08-01
In this paper the authors succeeded in measuring the critical current density ({J}{{c}}) of multifilament-coated conductors (CCs) with thin filaments as low as 0.25 mm using the scanning hall probe microscope (SHPM) technique. A new iterative method of data analysis is developed to make the calculation of {J}{{c}} for thin filaments possible, even without a very small scan distance. The authors also discussed in detail the advantage and limitation of the iterative method using both simulation and experiment results. The results of the new method correspond well with the traditional fast Fourier transform method where this is still applicable. However, the new method is applicable for the filamentized CCs in much wider measurement conditions such as with thin filament and a large scan distance, thus overcoming the barrier for application of the SHPM technique on {J}{{c}} measurement of long filamentized CCs with narrow filaments.
NASA Astrophysics Data System (ADS)
Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian
1995-04-01
We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using fluorescence in situ hybridization image is useful for the diagnosis of many other type of diseases, the system we have developed should find numerous applications for the diagnosis of disease states.
NASA Astrophysics Data System (ADS)
Meng, Zhaokai; Jaiswal, Manish K.; Chitrakar, Chandani; Thakur, Teena; Gaharwar, Akhilesh K.; Yakovlev, Vladislav V.
2016-03-01
Developing new biomaterials is essential for the next-generation of materials for bioenergy, bioelectronics, basic biology, medical diagnostics, cancer research, and regenerative medicine. Specifically, recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. The physical properties of nanocomposite biomaterials, including elasticity and viscosity, play key roles in controlling cell fate, which underlines therapeutic success. Conventional mechanical tests, including uniaxial compression and tension, dynamic mechanical analysis and shear rheology, require mechanical forces to be directly exerted onto the sample and therefore may not be suitable for in situ measurements or continuous monitoring of mechanical stiffness. In this study, we employ spontaneous Brillouin spectroscopy as a viscoelasticity-specific probing technique. We utilized a Brillouin spectrometer to characterize biomaterial's microscopic elasticity and correlated those with conventional mechanical tests (e.g., rheology).
Detection of Human Ig G Using Photoluminescent Porous Silicon Interferometer.
Cho, Bomin; Kim, Seongwoong; Woo, Hee-Gweon; Kim, Sungsoo; Sohn, Honglae
2015-02-01
Photoluminescent porous silicon (PSi) interferometers having dual optical properties, both Fabry-Pérot fringe and photolumincence (PL), have been developed and used as biosensors for detection of Human Immunoglobin G (Ig G). PSi samples were prepared by electrochemical etching of p-type silicon under white light exposure. The surface of PSi was characterized using a cold field emission scanning electron microscope. The sensor system studied consisted of a single layer of porous silicon modified with Protein A. The system was probed with various fragments of aqueous human immunoglobin G (Ig G) analyte. Both reflectivity and PL were simultaneously measured under the exposure of human Ig G. An increase of optical thickness and decrease of PL were obtained under the exposure of human Ig G. Detection limit of 500 fM was observed for the human Ig G.
A New Maraging Stainless Steel with Excellent Strength–Toughness–Corrosion Synergy
Tian, Jialong; Wang, Wei; Babar Shahzad, M.; Yan, Wei; Shan, Yiyin; Jiang, Zhouhua; Yang, Ke
2017-01-01
A new maraging stainless steel with superior strength–toughness–corrosion synergy has been developed based on an innovative concept of alloy design. The high strength–toughness combination is achieved by forming dispersive nano-sized intermetallic compounds in the soft lath martensitic matrix with a slight amount of residual austenite. The good corrosion resistance is guaranteed by exactly controlling the Co content based on understanding the synergistic effect between Co and Cr. The fine structure characteristics of two dominant strengthening precipitations including Ni3Ti and Mo-rich phases were finely characterized associated with transmission electron microscope (TEM) and atom probe tomography (APT) analyses. The relationship among microstructure, strength and toughness is discussed. The precipitation mechanism of different precipitates in the new maraging stainless steel is revealed based on the APT analysis. PMID:29125550
Chen, Fengzao; Han, Deman; Gao, Yuan; Liu, Heng; Wang, Shengfu; Zhou, Fangyu; Li, Kaibin; Zhang, Siqi; Shao, Wujun; He, Yanling
2018-09-01
Hydrogen sulfide and biothiol molecules such as Cys, Hcy, and GSH play important roles in biological systems. Exploiting a probe to simultaneously detect and distinguish them is quite important. In this work, a versatile fluorescent probe that can simultaneously detect and discriminate Cys/Hcy and H 2 S is reported. The probe easily prepared by the Knoevenagel condensation of cyanoacetylindole with chlorinated phenyl-propenal possessed three potential sites that could react with biothiols and H 2 S. This probe also exhibited rapidity, high selectivity, and sensitivity for Cys/Hcy and H 2 S with distinct optical signal changes. The probe was able to display obvious fluorescence enhancement at 480 nm for Cys/Hcy and unique absorbance enhancement at 500 nm for H 2 S. We also demonstrated that the probe can be successfully applied to image Cys in MCF-7 cells suing a confocal fluorescence microscope. Copyright © 2018 Elsevier B.V. All rights reserved.
Design and Realization of 3D Printed AFM Probes.
Alsharif, Nourin; Burkatovsky, Anna; Lissandrello, Charles; Jones, Keith M; White, Alice E; Brown, Keith A
2018-05-01
Atomic force microscope (AFM) probes and AFM imaging by extension are the product of exceptionally refined silicon micromachining, but are also restricted by the limitations of these fabrication techniques. Here, the nanoscale additive manufacturing technique direct laser writing is explored as a method to print monolithic cantilevered probes for AFM. Not only are 3D printed probes found to function effectively for AFM, but they also confer several advantages, most notably the ability to image in intermittent contact mode with a bandwidth approximately ten times larger than analogous silicon probes. In addition, the arbitrary structural control afforded by 3D printing is found to enable programming the modal structure of the probe, a capability that can be useful in the context of resonantly amplifying nonlinear tip-sample interactions. Collectively, these results show that 3D printed probes complement those produced using conventional silicon micromachining and open the door to new imaging techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Dawidczyk, T. J.; Johns, G. L.; Ozgun, R.; Alley, O.; Andreou, A. G.; Markovic, N.; Katz, H. E.
2012-02-01
Charge carriers trapped in polystyrene (PS) were investigated with Kelvin probe microscopy (KPM) and thermally stimulated discharge current (TSDC). Lateral heterojunctions of pentacene/PS were scanned using KPM, effectively observing polarization along a side view of a lateral nonvolatile organic field-effect transistor dielectric interface. TSDC was used to observe charge migration out of PS films and to estimate the trap energy level inside the PS, using the initial rise method.
X-Tip: a New Tool for Nanoscience or How to Combine X-Ray Spectroscopies to Local Probe Analysis
NASA Astrophysics Data System (ADS)
Olivier, Dhez; Mario, Rodrigues; Fabio, Comin; Roberto, Felici; Joel, Chevrier
2007-01-01
With the advent of nanoscale science, the need of tools able to image samples and bring the region of interest to the X-ray beam is essential. We show the possibility of using the high resolution imaging capability of a scanning probe microscope to image and align a sample relative to the X-ray beam, as well as the possibility to record the photoelectrons emitted by the sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikova, Olga S; Nikiforov, Maxim; Bradshaw, James A
2011-01-01
Nanometer scale proximal probe thermal desorption/electrospray ionization mass spectrometry (TD/ESI-MS) was demonstrated for molecular surface sampling of caffeine from a thin film using a 30 nm diameter nano-thermal analysis (nano-TA) probe tip in an atomic force microscope (AFM) coupled via a vapor transfer line and ESI interface to a MS detection platform. Using a probe temperature of 350 C and a spot sampling time of 30 s, conical desorption craters 250 nm in diameter and 100 nm deep were created as shown through subsequent topographical imaging of the surface within the same system. Automated sampling of a 5 x 2more » array of spots, with 2 m spacing between spots, and real time selective detection of the desorbed caffeine using tandem mass spectrometry was also demonstrated. Estimated from the crater volume (~2x106 nm3), only about 10 amol (2 fg) of caffeine was liberated from each thermal desorption crater in the thin film. These results illustrate a relatively simple experimental setup and means to acquire in automated fashion sub-micrometer scale spatial sampling resolution and mass spectral detection of materials amenable to TD. The ability to achieve MS-based chemical imaging with 250 nm scale spatial resolution with this system is anticipated.« less
Electronic state of PuCoGa5 and NpCoGa5 as probed by polarized neutrons.
Hiess, A; Stunault, A; Colineau, E; Rebizant, J; Wastin, F; Caciuffo, R; Lander, G H
2008-02-22
By using single crystals and polarized neutrons, we have measured the orbital and spin components of the microscopic magnetization in the paramagnetic state of NpCoGa(5) and PuCoGa(5). The microscopic magnetization of NpCoGa(5) agrees with that observed in bulk susceptibility measurements and the magnetic moment has spin and orbital contributions as expected for intermediate coupling. In contrast, for PuCoGa(5), which is a superconductor with a high transition temperature, the microscopic magnetization in the paramagnetic state is small, temperature-independent, and significantly below the value found with bulk techniques at low temperatures. The orbital moment dominates the magnetization.
NASA Astrophysics Data System (ADS)
Efimov, Anton E.; Agapov, Igor I.; Agapova, Olga I.; Oleinikov, Vladimir A.; Mezin, Alexey V.; Molinari, Michael; Nabiev, Igor; Mochalov, Konstantin E.
2017-02-01
We present a new concept of a combined scanning probe microscope (SPM)/ultramicrotome apparatus. It enables "slice-and-view" scanning probe nanotomography measurements and 3D reconstruction of the bulk sample nanostructure from series of SPM images after consecutive ultrathin sections. The sample is fixed on a flat XYZ scanning piezostage mounted on the ultramicrotome arm. The SPM measuring head with a cantilever tip and a laser-photodiode tip detection system approaches the sample for SPM measurements of the block-face surface immediately after the ultramicrotome sectioning is performed. The SPM head is moved along guides that are also fixed on the ultramicrotome arm. Thereby, relative dysfunctional displacements of the tip, the sample, and the ultramicrotome knife are minimized. The design of the SPM head enables open frontal optical access to the sample block-face adapted for high-resolution optical lenses for correlative SPM/optical microscopy applications. The new system can be used in a wide range of applications for the study of 3D nanostructures of biological objects, biomaterials, polymer nanocomposites, and nanohybrid materials in various SPM and optical microscopy measuring modes.
Optical microscope using an interferometric source of two-color, two-beam entangled photons
Dress, William B.; Kisner, Roger A.; Richards, Roger K.
2004-07-13
Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.
Attachment of Single Multiwall WS2 Nanotubes and Single WO3-x Nanowhiskers to a Probe
NASA Astrophysics Data System (ADS)
Ashiri, I.; Gartsman, K.; Cohen, S. R.; Tenne, R.
2003-10-01
WS2 nanotubes were the first inorganic fullerene-like (IF) structures to be synthesized. Although the physical properties of IF were not fully studied it seems that the WS2 nanotubes can be suitable for applications in the nanoscale range. An approach toward nanofabrication is simulated in this study. High resolution scanning electron microscope equipped with micromanipulator was used to attach single multiwall WS2 nanotubes and single WO3-x nanowhiskers to a probe, which is an atomic force microscope (AFM) silicon tip in the present case. The imaging capabilities of this nanotube or nanowhisker tip were tested in the AFM. The WO3-x nanowhisker tip was found to be stable, but it has a low lateral resolution (100nm). The WS2 nanotube tips were found to be stable only when its length was smaller than 1 μm. The fabrication technique of WS2 nanotube tip and WO3-x nanowhisker tip was found to be controllable and reliable and it can probably be used to various applications as well as for preparation of single nanotubes samples for measurements, like mechanical or optical probes.
Handheld optical-resolution photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Lin, Li; Zhang, Pengfei; Xu, Song; Shi, Junhui; Li, Lei; Yao, Junjie; Wang, Lidai; Zou, Jun; Wang, Lihong V.
2017-04-01
Optical-resolution photoacoustic microscopy (OR-PAM) offers label-free in vivo imaging with high spatial resolution by acoustically detecting optical absorption contrasts via the photoacoustic effect. We developed a compact handheld OR-PAM probe for fast photoacoustic imaging. Different from benchtop microscopes, the handheld probe provides flexibility in imaging various anatomical sites. Resembling a cup in size, the probe uses a two-axis water-immersible microelectromechanical system mirror to scan both the illuminating optical beam and resultant acoustic beam. The system performance was tested in vivo by imaging the capillary bed in a mouse ear and both the capillary bed and a mole on a human volunteer.
Lapshin, Rostislav V
2009-06-01
Prospects for a feature-oriented scanning (FOS) approach to investigations of sample surfaces, at the micrometer and nanometer scales, with the use of scanning probe microscopy under space laboratory or planet exploration rover conditions, are examined. The problems discussed include decreasing sensitivity of the onboard scanning probe microscope (SPM) to temperature variations, providing autonomous operation, implementing the capabilities for remote control, self-checking, self-adjustment, and self-calibration. A number of topical problems of SPM measurements in outer space or on board a planet exploration rover may be solved via the application of recently proposed FOS methods.
NASA Astrophysics Data System (ADS)
Iwamoto, Mitsumasa; Manaka, Takaaki; Taguchi, Dai
2015-09-01
The probing and modeling of carrier motions in materials as well as in electronic devices is a fundamental research subject in science and electronics. According to the Maxwell electromagnetic field theory, carriers are a source of electric field. Therefore, by probing the dielectric polarization caused by the electric field arising from moving carriers and dipoles, we can find a way to visualize the carrier motions in materials and in devices. The techniques used here are an electrical Maxwell-displacement current (MDC) measurement and a novel optical method based on the electric field induced optical second harmonic generation (EFISHG) measurement. The MDC measurement probes changes of induced charge on electrodes, while the EFISHG probes nonlinear polarization induced in organic active layers due to the coupling of electron clouds of molecules and electro-magnetic waves of an incident laser beam in the presence of a DC field caused by electrons and holes. Both measurements allow us to probe dynamical carrier motions in solids through the detection of dielectric polarization phenomena originated from dipolar motions and electron transport. In this topical review, on the basis of Maxwell’s electro-magnetism theory of 1873, which stems from Faraday’s idea, the concept for probing electron and hole transport in solids by using the EFISHG is discussed in comparison with the conventional time of flight (TOF) measurement. We then visualize carrier transit in organic devices, i.e. organic field effect transistors, organic light emitting diodes, organic solar cells, and others. We also show that visualizing an EFISHG microscopic image is a novel way for characterizing anisotropic carrier transport in organic thin films. We also discuss the concept of the detection of rotational dipolar motions in monolayers by means of the MDC measurement, which is capable of probing the change of dielectric spontaneous polarization formed by dipoles in organic monolayers. Finally we conclude that the ideas and experiments on EFISHG and MDC lead to a novel way of analyzing dynamical motions of electrons, holes, and dipoles in solids, and thus are available in organic electronic device application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeghian, Hamed, E-mail: hamed.sadeghianmarnani@tno.nl, E-mail: h.sadeghianmarnani@tudelft.nl; Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft; Herfst, Rodolf
We have developed a high speed, miniature scanning probe microscope (MSPM) integrated with a Positioning Unit (PU) for accurately positioning the MSPM on a large substrate. This combination enables simultaneous, parallel operation of many units on a large sample for high throughput measurements. The size of the MSPM is 19 × 45 × 70 mm{sup 3}. It contains a one-dimensional flexure stage with counter-balanced actuation for vertical scanning with a bandwidth of 50 kHz and a z-travel range of more than 2 μm. This stage is mechanically decoupled from the rest of the MSPM by suspending it on specific dynamicallymore » determined points. The motion of the probe, which is mounted on top of the flexure stage is measured by a very compact optical beam deflection (OBD). Thermal noise spectrum measurements of short cantilevers show a bandwidth of 2 MHz and a noise of less than 15 fm/Hz{sup 1/2}. A fast approach and engagement of the probe to the substrate surface have been achieved by integrating a small stepper actuator and direct monitoring of the cantilever response to the approaching surface. The PU has the same width as the MSPM, 45 mm and can position the MSPM to a pre-chosen position within an area of 275×30 mm{sup 2} to within 100 nm accuracy within a few seconds. During scanning, the MSPM is detached from the PU which is essential to eliminate mechanical vibration and drift from the relatively low-resonance frequency and low-stiffness structure of the PU. Although the specific implementation of the MSPM we describe here has been developed as an atomic force microscope, the general architecture is applicable to any form of SPM. This high speed MSPM is now being used in a parallel SPM architecture for inspection and metrology of large samples such as semiconductor wafers and masks.« less
Homing peptide guiding optical molecular imaging for the diagnosis of bladder cancer
NASA Astrophysics Data System (ADS)
Yang, Xiao-feng; Pang, Jian-zhi; Liu, Jie-hao; Zhao, Yang; Jia, Xing-you; Li, Jun; Liu, Reng-xin; Wang, Wei; Fan, Zhen-wei; Zhang, Zi-qiang; Yan, San-hua; Luo, Jun-qian; Zhang, Xiao-lei
2014-11-01
Background: The limitations of primary transurethral resection of bladder tumor (TURBt) have led the residual tumors rates as high as 75%. The intraoperative fluorescence imaging offers a great potential for improving TURBt have been confirmed. So we aim to distinguish the residual tumors and normal mucosa using fluorescence molecular imaging formed by conjugated molecule of the CSNRDARRC bladder cancer homing peptide with fluorescent dye. The conjugated molecule was abbreviated FIuo-ACP. In our study, we will research the image features of FIuo-ACP probe targeted bladder cancer for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo. Methods: After the FIuo-ACP probe was synthetized, the binding sites, factors affecting binding rates, the specificity and the targeting of Fluo-ACP labeled with bladder cancer cells were studied respectively by laser scanning confocal microscope (LSCM), immunofluorescence and multispectral fluorescence ex vivo optical molecular imaging system. Results: The binding sites were located in nucleus and the binding rates were correlated linearly with the dose of probe and the grade of pathology. Moreover, the probe has a binding specificity with bladder cancer in vivo and ex vivo. Tumor cells being labeled by the Fluo-ACP, bright green spots were observed under LSCM. The tissue samples and tumor cells can be labeled and identified by fluorescence microscope. Optical molecular imaging of xenograft tumor tissues was exhibited as fluorescent spots under EMCCD. Conclusion: The CSNRDARRC peptides might be a useful bladder cancer targeting vector. The FIuo-ACP molecular probe was suitable for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo.
Segmenting, Grouping and Tracking Vehicles in LIDAR Data
DOT National Transportation Integrated Search
2016-01-01
This report presents the methodology and results from a study to extract empirical microscopic vehicular interactions from an instrumented probe vehicle. The contributions of this work are twofold: first, the general method and approach to seek a cos...
Integrated microfluidic probe station.
Perrault, C M; Qasaimeh, M A; Brastaviceanu, T; Anderson, K; Kabakibo, Y; Juncker, D
2010-11-01
The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution--thus hydrodynamically confining the microjet--and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface.
Steimecke, Matthias; Seiffarth, Gerda; Bron, Michael
2017-10-17
We present a spectroelectrochemical setup, in which Raman microscopy is combined with scanning electrochemical microscopy (SECM) in order to provide both spectroscopic and electrochemical information on the very same location of an electrode at the same time. The setup is applied to a subject of high academic and practical interest, namely, the oxygen evolution reaction at Ni and Ni/Fe electrodes. It comprises a transparent substrate electrode, onto which Ni and Ni/Fe thin films are deposited. An ultramicroelectrode (UME) is placed closely above the substrate to obtain electrochemical information, while a Raman microscope probes the same sample spot from below. To obtain information on oxygen evolution activity and structural changes, increasingly positive potentials from 0.1 up to 0.7 V vs Hg|HgO|1 M KOH were applied to the Ni/Fe-electrodes in 0.1 M KOH solution. Evolved oxygen is detected by reduction at a Pt UME, allowing for the determination of onset potentials, while the substrate current, which is recorded in parallel, is due to both overlapping oxygen evolution and the oxidation of Ni(OH) 2 to NiOOH. An optimum of 15% Fe in Ni/Fe films with respect to oxygen evolution activity was determined. At the same time, the potential-dependent formation of γ-NiOOH characterized by the Raman double band at 475 and 557 cm -1 allows for the conclusion that a certain amount of disorder introduced by Fe atoms is necessary to obtain high oxygen evolution reaction (OER) activity.
Isolation of a new herpes virus from human CD4 sup + T cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frenkel, N.; Schirmer, E.C.; Wyatt, L.S.
1990-01-01
A new human herpes virus has been isolated from CD4{sup +} T cells purified from peripheral blood mononuclear cells of a healthy individual (RK), following incubation of the cells under conditions promoting T-cell activation. The virus could not be recovered from nonactivated cells. Cultures of lymphocytes infected with the RK virus exhibited a cytopathic effect, and electron microscopic analyses revealed a characteristic herpes virus structure. RK virus DNA did not hybridize with large probes derived from herpes simplex virus, Epstein-Barr virus, varicella-zoster virus, and human cytomegalovirus. The genetic relatedness of the RK virus to the recently identified T-lymphotropic human herpesmore » virus 6 (HHV-6) was investigated by restriction enzyme analyses using 21 different enzymes and by blot hydridization analyses using 11 probes derived from two strains of HHV-6 (Z29 and U1102). Whereas the two HHV-6 strains exhibited only limited restriction enzyme polymorphism, cleavage of the RK virus DNA yielded distinct patterns. Of the 11 HHV-6 DNA probes tested, only 6 cross-hybridized with DNA fragments derived from the RK virus. Taken together, the maximal homology amounted to 31 kilobases of the 75 kilobases tested. The authors conclude that the RK virus is distinct from previously characterized human herpesviruses. The authors propose to designate it as the prototype of a new herpes virus, the seventh human herpes virus identified to date.« less
NASA Astrophysics Data System (ADS)
Caterina, Ingoglia; Maurizio, Triscari; Giuseppe, Sabatino
The archaeological site in Via La Farina, Block P, in Messina, is unique in many ways, due also to the high quantity of samples of iron slag. The slag was examined to identify the production centres of such materials, and, after characterization, was compared to similar material, exclusively for product typology, from different archaeological sites in the province of Messina, situated in the Peloritani Mountains (Messina city, S. Marco d'Alunzio, Milazzo, Francavilla di Sicilia, Novara di Sicilia as well as the archaeological site of Halaesa, near Tusa). Mineralogical characterization of the phases carried out by X-ray diffractometry (XRD) and Rietveld data elaboration, morphological study of slag findings and a semi-quantitative analysis by scanning electronic microscope (SEM+EDX) were performed. A chemical investigation was carried out by electron probe micro analysis (EPMA), to determine major element,. Minor and trace elements were determined by LA-ICP-MS. All the examined slag is related to iron metallurgy, and, in the case of Via La Farina, there is firm archaeological evidence pinpointing to smelting activity.
NASA Astrophysics Data System (ADS)
Shubha, L. N.; Madhusudana Rao, P.
2016-06-01
The polyaniline/copper oxide (PANI/CuO) nanocomposite was prepared by mixing solutions of polyaniline and copper oxide nanoparticles in dimethyl sulfoxide (DMSO). The synthesized polymer nanocomposites were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and UV-visible spectroscopy. The characteristic peaks in XRD and UV-visible spectra confirmed the presence of CuO in the polymer structure. SEM images indicated morphological changes in the composite matrix as compared to the pristine PANI. The DC conductivity measurements were performed using two-probe method for various temperatures. AC conductivity and dielectric response of the composites were investigated in the frequency range of 102-106Hz using LCR meter. Dielectric permittivity ɛ‧(w) and dielectric loss factor ɛ‧‧(w) were investigated. It was observed that ɛ‧(w) and ɛ‧‧(w) decrease with increase in frequency at all temperatures. At a particular frequency it is observed that both ɛ‧(w) and ɛ‧‧(w) increase with increase in temperature. It was also observed that AC conductivity increased with increase in frequency and temperature.
Highly Sophisticated Virtual Laboratory Instruments in Education
NASA Astrophysics Data System (ADS)
Gaskins, T.
2006-12-01
Many areas of Science have advanced or stalled according to the ability to see what can not normally be seen. Visual understanding has been key to many of the world's greatest breakthroughs, such as discovery of DNAs double helix. Scientists use sophisticated instruments to see what the human eye can not. Light microscopes, scanning electron microscopes (SEM), spectrometers and atomic force microscopes are employed to examine and learn the details of the extremely minute. It's rare that students prior to university have access to such instruments, or are granted full ability to probe and magnify as desired. Virtual Lab, by providing highly authentic software instruments and comprehensive imagery of real specimens, provides them this opportunity. Virtual Lab's instruments let explorers operate virtual devices on a personal computer to examine real specimens. Exhaustive sets of images systematically and robotically photographed at thousands of positions and multiple magnifications and focal points allow students to zoom in and focus on the most minute detail of each specimen. Controls on each Virtual Lab device interactively and smoothly move the viewer through these images to display the specimen as the instrument saw it. Users control position, magnification, focal length, filters and other parameters. Energy dispersion spectrometry is combined with SEM imagery to enable exploration of chemical composition at minute scale and arbitrary location. Annotation capabilities allow scientists, teachers and students to indicate important features or areas. Virtual Lab is a joint project of NASA and the Beckman Institute at the University of Illinois at Urbana- Champaign. Four instruments currently compose the Virtual Lab suite: A scanning electron microscope and companion energy dispersion spectrometer, a high-power light microscope, and a scanning probe microscope that captures surface properties to the level of atoms. Descriptions of instrument operating principles and uses are also part of Virtual Lab. The Virtual Lab software and its increasingly rich collection of specimens are free to anyone. This presentation describes Virtual Lab and its uses in formal and informal education.
Chromosome painting - principles, strategies and scope.
Sharma, A K; Sharma, A
2001-01-01
Chromosome Painting is emerging as a powerful tool in the exact localization of different gene sequences of chromosomes at the microscopic level. It is principally based on molecular hybridization in situ with sequence specific probes on chromosomes. Different strategies have been adopted for the preparation of probes, hybridization and visualization. The impact of this method lies in identification of genes for desired characters in the chromosomes, including those of genetic disorders, in cancer research, in transgenesis and in studies on biodiversity and evolution.
In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide.
Pfeiffer, Björn; Maier, Johannes; Arlt, Jonas; Nowak, Carsten
2017-04-01
Atom probe tomography is routinely used for the characterization of materials microstructures, usually assuming that the microstructure is unaltered by the analysis. When analyzing ionic conductors, however, gradients in the chemical potential and the electric field penetrating dielectric atom probe specimens can cause significant ionic mobility. Although ionic mobility is undesirable when aiming for materials characterization, it offers a strategy to manipulate materials directly in situ in the atom probe. Here, we present experimental results on the analysis of the ionic conductor lithium-manganese-oxide with different atom probe techniques. We demonstrate that, at a temperature of 30 K, characterization of the materials microstructure is possible without measurable Li mobility. Also, we show that at 298 K the material can be deintercalated, in situ in the atom probe, without changing the manganese-oxide host structure. Combining in situ atom probe deintercalation and subsequent conventional characterization, we demonstrate a new methodological approach to study ionic conductors even in early stages of deintercalation.
Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes.
Xu, Wang; Zeng, Zebing; Jiang, Jian-Hui; Chang, Young-Tae; Yuan, Lin
2016-10-24
Principle has it that even the most advanced super-resolution microscope would be futile in providing biological insight into subcellular matrices without well-designed fluorescent tags/probes. Developments in biology have increasingly been boosted by advances of chemistry, with one prominent example being small-molecule fluorescent probes that not only allow cellular-level imaging, but also subcellular imaging. A majority, if not all, of the chemical/biological events take place inside cellular organelles, and researchers have been shifting their attention towards these substructures with the help of fluorescence techniques. This Review summarizes the existing fluorescent probes that target chemical/biological events within a single organelle. More importantly, organelle-anchoring strategies are described and emphasized to inspire the design of new generations of fluorescent probes, before concluding with future prospects on the possible further development of chemical biology. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Tao; Gao, Feng; Jiang, Xiangqian
2017-10-02
This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.
Abeywickrama, Chathura S; Baumann, Hannah J; Alexander, Nicolas; Shriver, Leah P; Konopka, Michael; Pang, Yi
2018-05-09
A series of benzothiazolium-based hemicyanines (3a-3f) have been synthesized. Evaluation of their photophysical properties shows that they exhibit improved photophysical characteristics. In comparison with the available commercial MitoTrackers, the new probes revealed an enhanced Stokes shift (Δλ ∼ 80 nm) and minimized aggregation for increased sensitivity. The synthesized probes are found to exhibit excellent selectivity for mitochondrial staining in an oligodendrocyte cell line. Probes show almost no fluorescence in aqueous environments, while the fluorescence is increased by ∼10-fold in organic solvents, making it possible for mitochondrial imaging without the need for post-staining washing. Since the absorption peaks of probes are close to the laser wavelengths of 561 and 640 nm on a commercial confocal microscope, e.g.3a exhibits λabs ∼ 620 nm and λem ∼ 702 nm, they could be useful probes for mitochondrial tracking in live cells.
Modulated microwave microscopy and probes used therewith
Lai, Keji; Kelly, Michael; Shen, Zhi-Xun
2012-09-11
A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.
Boulanger, Jérôme; Muresan, Leila; Tiemann-Boege, Irene
2012-01-01
In spite of the many advances in haplotyping methods, it is still very difficult to characterize rare haplotypes in tissues and different environmental samples or to accurately assess the haplotype diversity in large mixtures. This would require a haplotyping method capable of analyzing the phase of single molecules with an unprecedented throughput. Here we describe such a haplotyping method capable of analyzing in parallel hundreds of thousands single molecules in one experiment. In this method, multiple PCR reactions amplify different polymorphic regions of a single DNA molecule on a magnetic bead compartmentalized in an emulsion drop. The allelic states of the amplified polymorphisms are identified with fluorescently labeled probes that are then decoded from images taken of the arrayed beads by a microscope. This method can evaluate the phase of up to 3 polymorphisms separated by up to 5 kilobases in hundreds of thousands single molecules. We tested the sensitivity of the method by measuring the number of mutant haplotypes synthesized by four different commercially available enzymes: Phusion, Platinum Taq, Titanium Taq, and Phire. The digital nature of the method makes it highly sensitive to detecting haplotype ratios of less than 1:10,000. We also accurately quantified chimera formation during the exponential phase of PCR by different DNA polymerases.
NASA Astrophysics Data System (ADS)
Shinde, Anant; Perinchery, Sandeep Menon; Murukeshan, Vadakke Matham
2017-04-01
An optical imaging probe with targeted multispectral and spatiotemporal illumination features has applications in many diagnostic biomedical studies. However, these systems are mostly adapted in conventional microscopes, limiting their use for in vitro applications. We present a variable resolution imaging probe using a digital micromirror device (DMD) with an achievable maximum lateral resolution of 2.7 μm and an axial resolution of 5.5 μm, along with precise shape selective targeted illumination ability. We have demonstrated switching of different wavelengths to image multiple regions in the field of view. Moreover, the targeted illumination feature allows enhanced image contrast by time averaged imaging of selected regions with different optical exposure. The region specific multidirectional scanning feature of this probe has facilitated high speed targeted confocal imaging.
Gliadins from wheat grain: an overview, from primary structure to nanostructures of aggregates.
Urade, Reiko; Sato, Nobuhiro; Sugiyama, Masaaki
2018-04-01
Gliadins are well-known wheat grain proteins, particularly important in food science. They were studied as early as the 1700s. Despite their long history, it has been difficult to identify their higher-order structure as they aggregate in aqueous solution. Consequently, most studies have been performed by extracting the proteins in 70% ethanol or dilute acidic solutions. The carboxy-terminal half of α- and γ-gliadins have α-helix-rich secondary structures stabilized with intramolecular disulfide bonds, which are present in either aqueous ethanol or pure water. The amino-terminal-repeat region of α- and γ-gliadins has poly-L-proline II and β-reverse-turn structures. ω-Gliadins also have poly-L-proline II and β-reverse-turn structures, but no α-helix structure. The size and shape of gliadin molecules have been determined by assessing a variety of parameters: their sedimentation velocity in the analytical ultracentrifuge, intrinsic viscosity, small-angle X-ray scattering profile, and images of the proteins from scanning probe microscopes such as a tunneling electron microscope and atomic force microscope. Models for gliadins are either rods or prolate ellipsoids whether in aqueous ethanol, dilute acid, or pure water. Recently, gliadins have been shown to be soluble in pure water, and a novel extraction method into pure water has been established. This has made it possible to analyze gliadins in pure water at neutral pH, and permitted the characterization of hydrated gliadins. They formed hierarchical nanoscale structures with internal density fluctuations at high protein concentrations.
Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun
2014-12-09
Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance.
Optic probe for semiconductor characterization
Sopori, Bhushan L [Denver, CO; Hambarian, Artak [Yerevan, AM
2008-09-02
Described herein is an optical probe (120) for use in characterizing surface defects in wafers, such as semiconductor wafers. The optical probe (120) detects laser light reflected from the surface (124) of the wafer (106) within various ranges of angles. Characteristics of defects in the surface (124) of the wafer (106) are determined based on the amount of reflected laser light detected in each of the ranges of angles. Additionally, a wafer characterization system (100) is described that includes the described optical probe (120).
KLASS: Kennedy Launch Academy Simulation System
NASA Technical Reports Server (NTRS)
Garner, Lesley C.
2007-01-01
Software provides access to many sophisticated scientific instrumentation (Scanning Electron Microscope (SEM), a Light Microscope, a Scanning Probe Microscope (covering Scanning Tunneling, Atomic Force, and Magnetic Force microscopy), and an Energy Dispersive Spectrometer for the SEM). Flash animation videos explain how each of the instruments work. Videos on how they are used at NASA and the sample preparation. Measuring and labeling tools provided with each instrument. Hands on experience of controlling the virtual instrument to conduct investigations, much like the real scientists at NASA do. Very open architecture. Open source on SourceForge. Extensive use of XML Target audience is high school and entry-level college students. "Many beginning students never get closer to an electron microscope than the photos in their textbooks. But anyone can get a sense of what the instrument can do by downloading this simulator from NASA's Kennedy Space Center." Science Magazine, April 8th, 2005
Arakawa, Mototaka; Shikama, Joe; Yoshida, Koki; Nagaoka, Ryo; Kobayashi, Kazuto; Saijo, Yoshifumi
2015-09-01
Biomechanics of the cell has been gathering much attention because it affects the pathological status in atherosclerosis and cancer. In the present study, an ultrasound microscope system combined with optical microscope for characterization of a single cell with multiple ultrasound parameters was developed. The central frequency of the transducer was 375 MHz and the scan area was 80 × 80 μm with up to 200 × 200 sampling points. An inverted optical microscope was incorporated in the design of the system, allowing for simultaneous optical observations of cultured cells. Two-dimensional mapping of multiple ultrasound parameters, such as sound speed, attenuation, and acoustic impedance, as well as the thickness, density, and bulk modulus of specimen/cell under investigation, etc., was realized by the system. Sound speed and thickness of a 3T3-L1 fibroblast cell were successfully obtained by the system. The ultrasound microscope system combined with optical microscope further enhances our understanding of cellular biomechanics.
Simultaneous dual-color fluorescence microscope: a characterization study.
Li, Zheng; Chen, Xiaodong; Ren, Liqiang; Song, Jie; Li, Yuhua; Zheng, Bin; Liu, Hong
2013-01-01
High spatial resolution and geometric accuracy is crucial for chromosomal analysis of clinical cytogenetic applications. High resolution and rapid simultaneous acquisition of multiple fluorescent wavelengths can be achieved by utilizing concurrent imaging with multiple detectors. However, such class of microscopic systems functions differently from traditional fluorescence microscopes. To develop a practical characterization framework to assess and optimize the performance of a high resolution and dual-color fluorescence microscope designed for clinical chromosomal analysis. A dual-band microscopic imaging system utilizes a dichroic mirror, two sets of specially selected optical filters, and two detectors to simultaneously acquire two fluorescent wavelengths. The system's geometric distortion, linearity, the modulation transfer function, and the dual detectors' alignment were characterized. Experiment results show that the geometric distortion at lens periphery is less than 1%. Both fluorescent channels show linear signal responses, but there exists discrepancy between the two due to the detectors' non-uniform response ratio to different wavelengths. In terms of the spatial resolution, the two contrast transfer function curves trend agreeably with the spatial frequency. The alignment measurement allows quantitatively assessing the cameras' alignment. A result image of adjusted alignment is demonstrated to show the reduced discrepancy by using the alignment measurement method. In this paper, we present a system characterization study and its methods for a specially designed imaging system for clinical cytogenetic applications. The presented characterization methods are not only unique to this dual-color imaging system but also applicable to evaluation and optimization of other similar multi-color microscopic image systems for improving their clinical utilities for future cytogenetic applications.
NASA Astrophysics Data System (ADS)
Amanokura, Jin; Ono, Hiroshi; Hombo, Kyoko
2011-05-01
In order to obtain a high-speed copper chemical mechanical polishing (CMP) process for through silicon vias (TSV) application, we developed a new Cu CMP slurry through friction analysis of Cu reaction layer by an atomic force microscope (AFM) technique. A lateral modulation friction force microscope (LM-FFM) is able to measure the friction value properly giving a vibration to the layer. We evaluated the torsional displacement between the probe of the LM-FFM and the Cu reaction layer under a 5 nm vibration to cancel the shape effect of the Cu reaction layer. The developed Cu CMP slurry forms a frictionally easy-removable Cu reaction layer.
Nazin, G. V.; Wu, S. W.; Ho, W.
2005-01-01
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends. PMID:15956189
Nazin, G V; Wu, S W; Ho, W
2005-06-21
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.
NASA Astrophysics Data System (ADS)
Anderson, Benjamin; Bernhardt, Elizabeth; Kuzyk, Mark
2012-10-01
Several organic dyes have been shown to self heal when doped in a polymer matrix. Most measurements to date use optical absorbance, amplified spontaneous emission, or digital imaging as a probe. Each method determines a subset of the relevant parameters. We have constructed a white light interferometric microscope, which measures the absorption spectrum and change in refractive index during decay and recovery simultaneously at multiple points in the material. We report on preliminary measurements and results concerning the microscopes spatial resolution.
Molecular cytogenetics using fluorescence in situ hybridization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, J.W.; Kuo, Wen-Lin; Lucas, J.
1990-12-07
Fluorescence in situ hybridization (FISH) with chromosome-specific probes enables several new areas of cytogenetic investigation by allowing visual determination of the presence and normality of specific genetic sequences in single metaphase or interphase cells. in this approach, termed molecular cytogenetics, the genetic loci to be analyzed are made microscopically visible in single cells using in situ hybridization with nucleic acid probes specific to these loci. To accomplish this, the DNA in the target cells is made single stranded by thermal denaturation and incubated with single-stranded, chemically modified probe under conditions where the probe will anneal only with DNA sequences tomore » which it has high DNA sequence homology. The bound probe is then made visible by treatment with a fluorescent reagent such as fluorescein that binds to the chemical modification carried by the probe. The DNA to which the probe does not bind is made visible by staining with a dye such as propidium iodide that fluoresces at a wavelength different from that of the reagent used for probe visualization. We show in this report that probes are now available that make this technique useful for biological dosimetry, prenatal diagnosis and cancer biology. 31 refs., 3 figs.« less
Thermal diffusivity imaging with the thermal lens microscope.
Dada, Oluwatosin O; Feist, Peter E; Dovichi, Norman J
2011-12-01
A coaxial thermal lens microscope was used to generate images based on both the absorbance and thermal diffusivity of histological samples. A pump beam was modulated at frequencies ranging from 50 kHz to 5 MHz using an acousto-optic modulator. The pump and a CW probe beam were combined with a dichroic mirror, directed into an inverted microscope, and focused onto the specimen. The change in the transmitted probe beam's center intensity was detected with a photodiode. The photodiode's signal and a reference signal from the modulator were sent to a high-speed lock-in amplifier. The in-phase and quadrature signals were recorded as a sample was translated through the focused beams and used to generate images based on the amplitude and phase of the lock-in amplifier's signal. The amplitude is related to the absorbance and the phase is related to the thermal diffusivity of the sample. Thin sections of stained liver and bone tissues were imaged; the contrast and signal-to-noise ratio of the phase image was highest at frequencies from 0.1-1 MHz and dropped at higher frequencies. The spatial resolution was 2.5 μm for both amplitude and phase images, limited by the pump beam spot size. © 2011 Optical Society of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus
2008-02-27
The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaroundmore » times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.« less
Lodha, G S; Yamashita, K; Kunieda, H; Tawara, Y; Yu, J; Namba, Y; Bennett, J M
1998-08-01
Grazing-incidence specular reflectance and near-specular scattering were measured at Al-K(alpha) (1.486-keV, 8.34-?) radiation on uncoated dielectric substrates whose surface topography had been measured with a scanning probe microscope and a mechanical profiler. Grazing-incidence specular reflectance was also measured on selected substrates at the Cu-K(alpha) (8.047-keV, 1.54-?) wavelength. Substrates included superpolished and conventionally polished fused silica; SiO(2) wafers; superpolished and precision-ground Zerodur; conventionally polished, float-polished, and precision-ground BK-7 glass; and superpolished and precision-ground silicon carbide. Roughnesses derived from x-ray specular reflectance and scattering measurements were in good agreement with topographic roughness values measured with a scanning probe microscope (atomic force microscope) and a mechanical profiler that included similar ranges of surface spatial wavelengths. The specular reflectance was also found to be sensitive to the density of polished surface layers and subsurface damage down to the penetration depth of the x rays. Density gradients and subsurface damage were found in the superpolished fused-silica and precision-ground Zerodur samples. These results suggest that one can nondestructively evaluate subsurface damage in transparent materials using grazing-incidence x-ray specular reflectance in the 1.5-8-keV range.
All-optical optoacoustic microscopy system based on probe beam deflection technique
NASA Astrophysics Data System (ADS)
Maswadi, Saher M.; Tsyboulskic, Dmitri; Roth, Caleb C.; Glickman, Randolph D.; Beier, Hope T.; Oraevsky, Alexander A.; Ibey, Bennett L.
2016-03-01
It is difficult to achieve sub-micron resolution in backward mode OA microscopy using conventional piezoelectric detectors, because of wavefront distortions caused by components placed in the optical path, between the sample and the objective lens, that are required to separate the acoustic wave from the optical beam. As an alternate approach, an optoacoustic microscope (OAM) was constructed using the probe beam deflection technique (PBDT) to detect laserinduced acoustic signals. The all-optical OAM detects laser-generated pressure waves using a probe beam passing through a coupling medium, such as water, filling the space between the microscope objective lens and sample. The acoustic waves generated in the sample propagate through the coupling medium, causing transient changes in the refractive index that deflect the probe beam. These deflections are measured with a high-speed, balanced photodiode position detector. The deflection amplitude is directly proportional to the magnitude of the acoustic pressure wave, and provides the data required for image reconstruction. The sensitivity of the PBDT detector expressed as noise equivalent pressure was 12 Pa, comparable to that of existing high-performance ultrasound detectors. Because of the unimpeded working distance, a high numerical aperture objective lens, i.e. NA = 1, was employed in the OAM to achieve near diffraction-limited lateral resolution of 0.5 μm at 532nm. The all-optical OAM provides several benefits over current piezoelectric detector-based systems, such as increased lateral and axial resolution, higher sensitivity, robustness, and potentially more compatibility with multimodal instruments.
USDA-ARS?s Scientific Manuscript database
Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...
NASA Astrophysics Data System (ADS)
Billaud, Pierre; Marhaba, Salem; Grillet, Nadia; Cottancin, Emmanuel; Bonnet, Christophe; Lermé, Jean; Vialle, Jean-Louis; Broyer, Michel; Pellarin, Michel
2010-04-01
This article describes a high sensitivity spectrophotometer designed to detect the overall extinction of light by a single nanoparticle (NP) in the 10-4-10-5 relative range, using a transmission measurement configuration. We focus here on the simple and low cost scheme where a white lamp is used as a light source, permitting easy and broadband extinction measurements (300-900 nm). Using a microscope, in a confocal geometry, an increased sensitivity is reached thanks to a modulation of the NP position under the light spot combined with lock-in detection. Moreover, it is shown that this technique gives access to the absolute extinction cross-sections of the single NP provided that the incident electromagnetic field distribution experienced by the NP is accurately characterized. In this respect, an experimental procedure to characterize the light spot profile in the focal plane, using a reference NP as a probe, is also laid out. The validity of this approach is discussed and confirmed by comparing experimental intensity distributions to theoretical calculations taking into account the vector character of the tightly focused beam. The calibration procedure permitting to obtain the absolute extinction cross-section of the probed NP is then fully described. Finally, the force of the present technique is illustrated through selected examples concerning spherical and slightly elongated gold and silver NPs. Absolute extinction measurements are found to be in good consistency with the NP size and shape independently obtained from transmission electron microscopy, showing that spatial modulation spectroscopy is a powerful tool to get an optical fingerprint of the NP.
Portnoy, S; Flint, J J; Blackband, S J; Stanisz, G J
2013-04-01
Oscillating gradient spin-echo (OGSE) pulse sequences have been proposed for acquiring diffusion data with very short diffusion times, which probe tissue structure at the subcellular scale. OGSE sequences are an alternative to pulsed gradient spin echo measurements, which typically probe longer diffusion times due to gradient limitations. In this investigation, a high-strength (6600 G/cm) gradient designed for small-sample microscopy was used to acquire OGSE and pulsed gradient spin echo data in a rat hippocampal specimen at microscopic resolution. Measurements covered a broad range of diffusion times (TDeff = 1.2-15.0 ms), frequencies (ω = 67-1000 Hz), and b-values (b = 0-3.2 ms/μm2). Variations in apparent diffusion coefficient with frequency and diffusion time provided microstructural information at a scale much smaller than the imaging resolution. For a more direct comparison of the techniques, OGSE and pulsed gradient spin echo data were acquired with similar effective diffusion times. Measurements with similar TDeff were consistent at low b-value (b < 1 ms/μm(2) ), but diverged at higher b-values. Experimental observations suggest that the effective diffusion time can be helpful in the interpretation of low b-value OGSE data. However, caution is required at higher b, where enhanced sensitivity to restriction and exchange render the effective diffusion time an unsuitable representation. Oscillating and pulsed gradient diffusion techniques offer unique, complementary information. In combination, the two methods provide a powerful tool for characterizing complex diffusion within biological tissues. Copyright © 2012 Wiley Periodicals, Inc.
A facile approach to a silver conductive ink with high performance for macroelectronics
NASA Astrophysics Data System (ADS)
Tao, Yu; Tao, Yuxiao; Wang, Biaobing; Wang, Liuyang; Tai, Yanlong
2013-06-01
An unusual kind of transparent and high-efficiency organic silver conductive ink (OSC ink) was synthesized with silver acetate as silver carrier, ethanolamine as additive, and different kinds of aldehyde-based materials as reduction agents and was characterized by using a thermogravimetric analyzer, X-ray diffraction, a scanning electron microscope, and a four-point probe. The results show that different reduction agents all have an important influence on the conductive properties of the ink through a series of complex chemical reactions, and especially when formic acid or dimethylformamide was used as the reduction agent and sintered at 120°C for 30 s, the resistivity can be lowered to 6 to 9 μΩ·cm. Furthermore, formula mechanism, conductive properties, temperature, and dynamic fatigue properties were investigated systematically, and the feasibility of the OSC ink was also verified through the preparation of an antenna pattern.
Mukherjee, Manjira; Pal, Siddhartha; Lohar, Somenath; Sen, Buddhadeb; Sen, Supriti; Banerjee, Samya; Banerjee, Snehasis; Chattopadhyay, Pabitra
2014-10-07
A newly synthesized and crystalographically characterized napthelene–pyrazol conjugate, 1-[(5-phenyl-1H-pyrazole-3-ylimino)-methyl]-naphthalen-2-ol (HL) behaves as an Al(III) ion-selective chemosensor through internal charge transfer (ICT)-chelation-enhanced fluorescence (CHEF) processes in 100 mM HEPES buffer (water–DMSO 5:1, v/v) at biological pH with almost no interference of other competitive ions. This mechanism is readily studied from electronic, fluorimetric and (1)H NMR titration. The probe (HL) behaved as a highly selective fluorescent sensor for Al(III) ions as low as 31.78 nM within a very short response time (15–20 s). The sensor (HL), which has no cytotoxicity, is also efficient in detecting the distribution of Al(III) ions in HeLa cells via image development under fluorescence microscope.
Microscopic origin of the magnetoelectronic phase separation in Sr-doped LaCoO3
NASA Astrophysics Data System (ADS)
Németh, Zoltán; Szabó, András; Knížek, Karel; Sikora, Marcin; Chernikov, Roman; Sas, Norbert; Bogdán, Csilla; Nagy, Dénes Lajos; Vankó, György
2013-07-01
The nanoscopic magnetoelectronic phase separation in doped La1-xSrxCoO3 perovskites was studied with local probes. The phase separation is directly observed by Mössbauer spectroscopy in the studied doping range of 0.05 ≤ x ≤ 0.25 both at room temperature and in the low-temperature magnetic phase. Extended with current synchrotron-based x-ray spectroscopies, these data help to characterize the volume as well as the local electric and magnetic properties of the distinct phases. A simple model based on a random distribution of the doping Sr ions describes well both the evolution of the separated phases and the variation of the Co spin state. The experiments suggest that Sr doping initiates small droplets and a high degree of doping-driven cobalt spin-state transition, while the Sr-free second phase vanishes rapidly with increasing Sr content.
Surface interaction of polyimide with oxygen ECR plasma
NASA Astrophysics Data System (ADS)
Naddaf, M.; Balasubramanian, C.; Alegaonkar, P. S.; Bhoraskar, V. N.; Mandle, A. B.; Ganeshan, V.; Bhoraskar, S. V.
2004-07-01
Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis.
A facile approach to a silver conductive ink with high performance for macroelectronics
2013-01-01
An unusual kind of transparent and high-efficiency organic silver conductive ink (OSC ink) was synthesized with silver acetate as silver carrier, ethanolamine as additive, and different kinds of aldehyde-based materials as reduction agents and was characterized by using a thermogravimetric analyzer, X-ray diffraction, a scanning electron microscope, and a four-point probe. The results show that different reduction agents all have an important influence on the conductive properties of the ink through a series of complex chemical reactions, and especially when formic acid or dimethylformamide was used as the reduction agent and sintered at 120°C for 30 s, the resistivity can be lowered to 6 to 9 μΩ·cm. Furthermore, formula mechanism, conductive properties, temperature, and dynamic fatigue properties were investigated systematically, and the feasibility of the OSC ink was also verified through the preparation of an antenna pattern. PMID:23799897
Thermoelectric properties of Ge 1-xSn xTe crystals grown by vertical Bridgman method
NASA Astrophysics Data System (ADS)
Wu, C. C.; Ferng, N. J.; Gau, H. J.
2007-06-01
Single crystals of Ge 1-xSn xTe compounds with x=0, 0.8, 0.9 and 1.0 were grown by vertical Bridgman method. The crystalline phase and stochiometry for these crystals were investigated by X-ray diffraction, metallographic microscope as well as electron-probe microanalysis (EPMA). Electrical property of the as-grown samples was characterized using room temperature resistivity and Hall measurements. The thermoelectric behaviors for the Ge 1-xSn xTe crystals were studied by means of thermal and carrier transport measurements. Temperature dependences of resistivity, Seebeck coefficient and thermal conductivity for the various compositions of Ge 1-xSn xTe were analyzed. A two-valence band model was proposed to describe the temperature dependence of thermoelectric property of the Ge 1-xSn xTe crystals. The dimensionless thermoelectric figure of merit ZT for the alloys was evaluated and discussed.
Mutual information, neural networks and the renormalization group
NASA Astrophysics Data System (ADS)
Koch-Janusz, Maciej; Ringel, Zohar
2018-06-01
Physical systems differing in their microscopic details often display strikingly similar behaviour when probed at macroscopic scales. Those universal properties, largely determining their physical characteristics, are revealed by the powerful renormalization group (RG) procedure, which systematically retains `slow' degrees of freedom and integrates out the rest. However, the important degrees of freedom may be difficult to identify. Here we demonstrate a machine-learning algorithm capable of identifying the relevant degrees of freedom and executing RG steps iteratively without any prior knowledge about the system. We introduce an artificial neural network based on a model-independent, information-theoretic characterization of a real-space RG procedure, which performs this task. We apply the algorithm to classical statistical physics problems in one and two dimensions. We demonstrate RG flow and extract the Ising critical exponent. Our results demonstrate that machine-learning techniques can extract abstract physical concepts and consequently become an integral part of theory- and model-building.
A Scanning Quantum Cryogenic Atom Microscope
NASA Astrophysics Data System (ADS)
Lev, Benjamin
Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (2 um), or 6 nT / Hz1 / 2 per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly one-hundred points with an effective field sensitivity of 600 pT / Hz1 / 2 each point during the same time as a point-by-point scanner would measure these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly two orders of magnitude improvement in magnetic flux sensitivity (down to 10- 6 Phi0 / Hz1 / 2) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are for the first time carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns and done so using samples that may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge transport images at temperatures from room to \\x9D4K in unconventional superconductors and topologically nontrivial materials.
Scanning Quantum Cryogenic Atom Microscope
NASA Astrophysics Data System (ADS)
Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.
2017-03-01
Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.
NASA Astrophysics Data System (ADS)
Smieska, Louisa Marion
Organic semiconductors could have wide-ranging applications in lightweight, efficient electronic circuits. However, several fundamental questions regarding organic electronic device behavior have not yet been fully addressed, including the nature of chemical charge traps, and robust models for injection and transport. Many studies focus on engineering devices through bulk transport measurements, but it is not always possible to infer the microscopic behavior leading to the observed measurements. In this thesis, we present scanning-probe microscope studies of organic semiconductor devices in an effort to connect local properties with local device behavior. First, we study the chemistry of charge trapping in pentacene transistors. Working devices are doped with known pentacene impurities and the extent of charge trap formation is mapped across the transistor channel. Trap-clearing spectroscopy is employed to measure an excitation of the pentacene charge trap species, enabling identification of the degradationrelated chemical trap in pentacene. Second, we examine transport and trapping in peryelene diimide (PDI) transistors. Local mobilities are extracted from surface potential profiles across a transistor channel, and charge injection kinetics are found to be highly sensitive to electrode cleanliness. Trap-clearing spectra generally resemble PDI absorption spectra, but one derivative yields evidence indicating variation in trap-clearing mechanisms for different surface chemistries. Trap formation rates are measured and found to be independent of surface chemistry, contradicting a proposed silanol trapping mechanism. Finally, we develop a variation of scanning Kelvin probe microscopy that enables measurement of electric fields through a position modulation. This method avoids taking a numeric derivative of potential, which can introduce high-frequency noise into the electric field signal. Preliminary data is presented, and the theoretical basis for electric field noise in both methods is examined.
Scanning hall probe microscopy (SHPM) using quartz crystal AFM feedback.
Dede, M; Urkmen, K; Girişen, O; Atabak, M; Oral, A; Farrer, I; Ritchie, D
2008-02-01
Scanning Hall Probe Microscopy (SHPM) is a quantitative and non-invasive technique for imaging localized surface magnetic field fluctuations such as ferromagnetic domains with high spatial and magnetic field resolution of approximately 50 nm and 7 mG/Hz(1/2) at room temperature. In the SHPM technique, scanning tunneling microscope (STM) or atomic force microscope (AFM) feedback is used to keep the Hall sensor in close proximity of the sample surface. However, STM tracking SHPM requires conductive samples; therefore the insulating substrates have to be coated with a thin layer of gold. This constraint can be eliminated with the AFM feedback using sophisticated Hall probes that are integrated with AFM cantilevers. However it is very difficult to micro fabricate these sensors. In this work, we have eliminated the difficulty in the cantilever-Hall probe integration process, just by gluing a Hall Probe chip to a quartz crystal tuning fork force sensor. The Hall sensor chip is simply glued at the end of a 32.768 kHz or 100 kHz Quartz crystal, which is used as force sensor. An LT-SHPM system is used to scan the samples. The sensor assembly is dithered at the resonance frequency using a digital Phase Locked Loop circuit and frequency shifts are used for AFM tracking. SHPM electronics is modified to detect AFM topography and the frequency shift, along with the magnetic field image. Magnetic domains and topography of an Iron Garnet thin film crystal, NdFeB demagnetised magnet and hard disk samples are presented at room temperature. The performance is found to be comparable with the SHPM using STM feedback.
Goetz, Martin; Memadathil, Beena; Biesterfeld, Stefan; Schneider, Constantin; Gregor, Sebastian; Galle, Peter R; Neurath, Markus F; Kiesslich, Ralf
2007-01-01
AIM: To evaluate a newly developed hand-held confocal probe for in vivo microscopic imaging of the complete gastrointestinal tract in rodents. METHODS: A novel rigid confocal probe (diameter 7 mm) was designed with optical features similar to the flexible endomicroscopy system for use in humans using a 488 nm single line laser for fluorophore excitation. Light emission was detected at 505 to 750 nm. The field of view was 475 μm × 475 μm. Optical slice thickness was 7 μm with a lateral resolution of 0.7 μm. Subsurface serial images at different depths (surface to 250 μm) were generated in real time at 1024 × 1024 pixels (0.8 frames/s) by placing the probe onto the tissue in gentle, stable contact. Tissue specimens were sampled for histopathological correlation. RESULTS: The esophagus, stomach, small and large intestine and meso, liver, pancreas and gall bladder were visualised in vivo at high resolution in n = 48 mice. Real time microscopic imaging with the confocal mini-microscopy probe was easy to achieve. The different staining protocols (fluorescein, acriflavine, FITC-labelled dextran and L. esculentum lectin) each highlighted specific aspects of the tissue, and in vivo imaging correlated excellently with conventional histology. In vivo blood flow monitoring added a functional quality to morphologic imaging. CONCLUSION: Confocal microscopy is feasible in vivo allowing the visualisation of the complete GI tract at high resolution even of subsurface tissue structures. The new confocal probe design evaluated in this study is compatible with laparoscopy and significantly expands the field of possible applications to intra-abdominal organs. It allows immediate testing of new in vivo staining and application options and therefore permits rapid transfer from animal studies to clinical use in patients. PMID:17465494
Observation of molecular level behavior in molecular electronic junction device
NASA Astrophysics Data System (ADS)
Maitani, Masato
In this dissertation, I utilize AFM based scanning probe measurement and surface enhanced Raman scattering based vibrational spectroscopic analysis to directly characterize topographic, electronic, and chemical properties of molecules confined in the local area of M3 junction to elucidate the molecular level behavior of molecular junction electronic devices. In the introduction, the characterization of molecular electronic devices with different types of metal-molecule-metal (M3) structures based upon self-assembled monolayers (SAMs) is reviewed. A background of the characterization methods I use in this dissertation, conducting probe atomic force microscopy (cp-AFM) and surface enhanced Raman spectroscopy (SERS), is provided in chapter 1. Several attempts are performed to create the ideal top metal contacts on SAMs by metal vapor phase deposition in order to prevent the metal penetration inducing critical defects of the molecular electronic devices. The scanning probe microscopy (SPM), such as cp-AFM, contact mode (c-) AFM and non-contact mode (nc-) AFM, in ultra high vacuum conditions are utilized to study the process of the metal-SAM interface construction in terms of the correlation between the morphological and electrical properties including the metal nucleation and filament generation as a function of the functionalization of long-chain alkane thiolate SAMs on Au. In chapter 2, the nascent condensation process of vapor phase Al deposition on inert and reactive SAMs are studied by SPM. The results of top deposition, penetration, and filament generation of deposited Al are discussed and compared to the results previously observed by spectroscopic measurements. Cp-AFM was shown to provide new insights into Al filament formation which has not been observed by conventional spectroscopic analysis. Additionally, the electronic characteristics of individual Al filaments are measured. Chapter 3 reveals SPM characterization of Au deposition onto --COOH terminated SAMs utilized with strong surface dipole-dipole intermolecular interaction based on hydrogen bonding and ionic bonding potentially preventing the metal penetration. The observed results are discussed with kinetic paths of metal atoms on each SAM including temporal vacancies controlled by the intermolecular interactions in SAM upon the comparison with the spectroscopic results previously reported. The results in chapter 2 and 3 strongly suggests that AFM based characterization technique is powerful tool especially for detecting molecular-size local phenomena in vapor phase metal deposition process, especially, the electric short-circuit filaments growing through SAMs, which may induce critical misinterpretation of M3 junction device properties. In Chapter 4, an altered metal deposition process on inert SAM with using a buffer layer is performed to diminish the kinetic energy of impinging metal atoms. SPM characterization reveals an abrupt metal-SAM interface without any metal penetration. Examined electric characteristics also revealed typical non-resonant tunneling characteristics of long chain alkane thiolate SAMs. In chapter 5, the buffer layer assisted growth process is used to prepare a nano particles-SAM pristine interface on SAMs to control the metal-SAM interaction in order to study the fundamental issue of chemical enhancement mechanism of SERS. Identical Au nanoparticles-SAM-Au M3 structures with different Au-SAM interactions reveal a large discrepancy of enhancement factors of ˜100 attributed to the chemical interaction. In chapter 6, Raman spectroscopy of M3 junction is applied to the characterization of molecular electronics devices. A crossed nanowire junction (X-nWJ) device is employed for in-situ electronic-spectroscopic simultaneous characterization using Raman spectroscopy. A detailed study reveals the multi-probe capability of X-nWJ for in-situ Raman and in-elastic electron tunneling spectroscopy (IETS) as vibrational spectroscopies to diagnose molecular electronic devices. In chapter 7, aniline oligomer (OAn) based redox SAMs are characterized by spectroscopic and microscopic methods under different chemical redox states by reflection absorption infrared spectroscopy (RAIRS), Raman, x-ray photoelectron spectroscopy (XPS), and AFM in order to elucidate the mechanism of electric switching molecular junctions previously reported. Obtained results are discussed in terms of the chemical and geometrical conformations of molecules in closely packed SAM domains. In chapter 8, in-situ Raman spectroscopy and cp-AFM microscopic techniques are applied to study the electric switching characteristics of X-nWJ incorporating OAn based SAM. The results of tunneling current and in-situ Raman spectroscopy are discussed with the conformational change of OAn component. The conductance switching mechanism associated with domain conformation change of OAn SAM is proposed and evaluated based on the results.
LOCATION AND CHARACTERIZATION OF SUBSURFACE ANOMALIES USING A SOIL CONDUCTIVITY PROBE
An electrical conductivity probe, designed for use with "direct push" technology, has been successfully used to locate buried drums, contaminant plumes, and to precisely locate and characterize a previously installed permeable reactive iron wall. The conductivity probe was desig...
Calahorra, Yonatan; Smith, Michael; Datta, Anuja; Benisty, Hadas; Kar-Narayan, Sohini
2017-12-14
There has been tremendous interest in piezoelectricity at the nanoscale, for example in nanowires and nanofibers where piezoelectric properties may be enhanced or controllably tuned, thus necessitating robust characterization techniques of piezoelectric response in nanomaterials. Piezo-response force microscopy (PFM) is a well-established scanning probe technique routinely used to image piezoelectric/ferroelectric domains in thin films, however, its applicability to nanoscale objects is limited due to the requirement for physical contact with an atomic force microscope (AFM) tip that may cause dislocation or damage, particularly to soft materials, during scanning. Here we report a non-destructive PFM (ND-PFM) technique wherein the tip is oscillated into "discontinuous" contact during scanning, while applying an AC bias between tip and sample and extracting the piezoelectric response for each contact point by monitoring the resulting localized deformation at the AC frequency. ND-PFM is successfully applied to soft polymeric (poly-l-lactic acid) nanowires, as well as hard ceramic (barium zirconate titanate-barium calcium titanate) nanowires, both previously inaccessible by conventional PFM. Our ND-PFM technique is versatile and compatible with commercial AFMs, and can be used to correlate piezoelectric properties of nanomaterials with their microstructural features thus overcoming key characterisation challenges in the field.
Xu, Jianguo; Wu, Zai-Sheng; Wang, Zhenmeng; Le, Jingqing; Zheng, Tingting; Jia, Lee
2017-03-01
Facile assembly of intelligent DNA nanoobjects with the ability to exert in situ visualization of intracellular microRNAs (miRNAs) has long been concerned in the fields of DNA nanotechnology and basic medical study. Here, we present a driving primer (DP)-triggered polymerization-mediated metastable assembly (PMA) strategy to prepare a well-ordered metastable DNA nanoarchitecture composed of only two hairpin probes (HAPs), which has never been explored by assembly methods. Its structural features and functions are characterized by atomic force microscope (AFM) and gel electrophoresis. Even if with a metastable molecular structure, this nanoarchitecture is relatively stable at physiological temperature. The assembly strategy can be expanded to execute microRNA-21 (miRNA-21) in situ imaging inside cancer cells by labelling one of the HAPs with fluorophore and quencher. Compared with the conventional fluorescence probe-based in situ hybridization (FISH) technique, confocal images revealed that the proposed DNA nanoassembly can not only achieve greatly enhanced imaging effect within cancer cells, but also reflect the miRNA-21 expression level sensitively. We believe that the easily constructed DNA nanoarchitecture and in situ profiling strategy are significant progresses in DNA assembly and molecule imaging in cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
The effect of charge on the release kinetics from polysaccharide-nanoclay composites
NASA Astrophysics Data System (ADS)
Del Buffa, Stefano; Grifoni, Emanuele; Ridi, Francesca; Baglioni, Piero
2015-03-01
The objective of this study was to integrate inorganic halloysite nanotubes (HNT) with chitosan and hyaluronic acid to obtain hybrid nanocomposites with opposing charges and to investigate their potential in the controlled release of drug model probes. Two oppositely charged polysaccharides, chitosan and hyaluronic acid, were selected for their biocompatibility and their importance in biomedical applications. The high surface area and the hollow nanometric-sized lumen of HNT allowed for the efficient loading of rhodamine 110 and carboxyfluorescein, used as models for oppositely charged drugs. In the case of chitosan, the preparation of the nanocomposite was carried out exploiting the electrostatic interaction between the polymer and HNT in water, while with hyaluronic acid, a covalent functionalization strategy was employed to couple the polymer with the clay. Nanocomposites were characterized with thermal, microscopic, and spectroscopic techniques, and the release kinetics of the model compounds was assessed by fluorescence measurements. The release curves were fitted with a model able to account for the desorption process from the external and the internal halloysite surfaces. The results show that both polymeric coatings alter the release of the probes, indicating a key role of both charge and coating composition on the initial and final amount of released dye, as well as on the rate of the desorption process.
Polarization Control via He-Ion Beam Induced Nanofabrication in Layered Ferroelectric Semiconductors
Belianinov, Alex; Iberi, Vighter; Tselev, Alexander; ...
2016-02-23
Rapid advanced in nanoscience rely on continuous improvements of matter manipulation at near atomic scales. Currently, well characterized, robust, resist-based lithography carries the brunt of the nanofabrication process. However, use of local electron, ion and physical probe methods is also expanding, driven largely by their ability to fabricate without the multi-step preparation processes that can result in contamination from resists and solvents. Furthermore, probe based methods extend beyond nanofabrication to nanomanipulation and imaging, vital ingredients to rapid transition to prototyping and testing of layered 2D heterostructured devices. In this work we demonstrate that helium ion interaction, in a Helium Ionmore » Microscope (HIM), with the surface of bulk copper indium thiophosphate CuM IIIP 2X 6 (M = Cr, In; X= S, Se), (CITP) results in the control of ferroelectric domains, and growth of cylindrical nanostructures with enhanced conductivity; with material volumes scaling with the dosage of the beam. The nanostructures are oxygen rich, sulfur poor, and with the copper concentration virtually unchanged as confirmed by Energy Dispersive X-ray (EDX). Scanning Electron Microscopy (SEM) imaging contrast as well as Scanning Microwave Microscopy (SMM) measurements suggest enhanced conductivity in the formed particle, whereas Atomic Force Microscopy (AFM) measurements indicate that the produced structures have lower dissipation and a lower Young s modulus.« less
Passamani, Paulo Z; Carvalho, Carlos R; Soares, Fernanda A F
2018-01-01
Chromosome-specific probes have been widely used in molecular cytogenetics, being obtained with different methods. In this study, a reproducible protocol for construction of chromosome-specific probes is proposed which associates in situ amplification (PRINS), micromanipulation and degenerate oligonucleotide-primed PCR (DOP-PCR). Human lymphocyte cultures were used to obtain metaphases from male and female individuals. The chromosomes were amplified via PRINS, and subcentromeric fragments of the X chromosome were microdissected using microneedles coupled to a phase contrast microscope. The fragments were amplified by DOP-PCR and labeled with tetramethyl-rhodamine-5-dUTP. The probes were used in fluorescent in situ hybridization (FISH) procedure to highlight these specific regions in the metaphases. The results show one fluorescent red spot in male and two in female X chromosomes and interphase nuclei.
University of Maryland MRSEC - Education: Professional Development for
"stepped" (we call this type of surface a vicinal surface). Modern scanned-probe microscopes International Educational Education Pre-College Programs Homeschool Programs Undergraduate & Graduate Facilities Logos MRSEC Templates Opportunities Search Home » Education » Teacher Programs Professional
University of Maryland MRSEC - Research: Publications
; (we call this type of surface a vicinal surface). Modern scanned-probe microscopes, such as the STM Educational Education Pre-College Programs Homeschool Programs Undergraduate & Graduate Programs Teacher Publications Seed Publications Education Publications MRSEC III Publications (2005-Present) IRG 1 Publications
Compact ultra-fast vertical nanopositioner for improving scanning probe microscope scan speed
NASA Astrophysics Data System (ADS)
Kenton, Brian J.; Fleming, Andrew J.; Leang, Kam K.
2011-12-01
The mechanical design of a high-bandwidth, short-range vertical positioning stage is described for integration with a commercial scanning probe microscope (SPM) for dual-stage actuation to significantly improve scanning performance. The vertical motion of the sample platform is driven by a stiff and compact piezo-stack actuator and guided by a novel circular flexure to minimize undesirable mechanical resonances that can limit the performance of the vertical feedback control loop. Finite element analysis is performed to study the key issues that affect performance. To relax the need for properly securing the stage to a working surface, such as a laboratory workbench, an inertial cancellation scheme is utilized. The measured dominant unloaded mechanical resonance of a prototype stage is above 150 kHz and the travel range is approximately 1.56 μm. The high-bandwidth stage is experimentally evaluated with a basic commercial SPM, and results show over 25-times improvement in the scanning performance.
Superresolution Imaging with Standard Fluorescent Probes
Burnette, Dylan T.; Lippincott-Schwartz, Jennifer; Kachar, Bechara
2013-01-01
For more than 100 years, the ultimate resolution of a light microscope (~200 nm) has been constrained by the fundamental physical phenomenon of diffraction, as described by Ernst Abbe in 1873. While this limitation is just as applicable to today’s light microscopes, it is the combination of high-end optics, clever methods of sample illumination, and computational techniques that has enabled researchers to access high-resolution information an order of magnitude greater than once thought possible. This combination, broadly termed superresolution microscopy, has been increasingly practical for many labs to implement from both a hardware and software standpoint, but as with many cutting-edge techniques, it also comes with limitations. One of the current drawbacks to superresolution microscopy is the limited number of probes and conditions that have been suitable for imaging. Here, a technique termed bleaching/blinking assisted localization microscopy (BaLM) makes use of almost all fluorophore’s inherent blinking and bleaching properties as a means to generate superresolution images. PMID:24510788
In situ TEM Raman spectroscopy and laser-based materials modification.
Allen, F I; Kim, E; Andresen, N C; Grigoropoulos, C P; Minor, A M
2017-07-01
We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS 2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.
Photothermal camera port accessory for microscopic thermal diffusivity imaging
NASA Astrophysics Data System (ADS)
Escola, Facundo Zaldívar; Kunik, Darío; Mingolo, Nelly; Martínez, Oscar Eduardo
2016-06-01
The design of a scanning photothermal accessory is presented, which can be attached to the camera port of commercial microscopes to measure thermal diffusivity maps with micrometer resolution. The device is based on the thermal expansion recovery technique, which measures the defocusing of a probe beam due to the curvature induced by the local heat delivered by a focused pump beam. The beam delivery and collecting optics are built using optical fiber technology, resulting in a robust optical system that provides collinear pump and probe beams without any alignment adjustment necessary. The quasiconfocal configuration for the signal collection using the same optical fiber sets very restrictive conditions on the positioning and alignment of the optical components of the scanning unit, and a detailed discussion of the design equations is presented. The alignment procedure is carefully described, resulting in a system so robust and stable that no further alignment is necessary for the day-to-day use, becoming a tool that can be used for routine quality control, operated by a trained technician.
Optical and Probe Diagnostics Applied to Reacting Flows
NASA Technical Reports Server (NTRS)
Ticich, Thomas M.
2003-01-01
The general theme of the research my NASA colleague and I have planned is "Optical and probe diagnostics applied to reacting flows". We plan to explore three major threads during the fellowship period. The first interrogates the flame synthesis of carbon nanotubes using aerosol catalysts. Having demonstrated the viability of the technique for nanotube synthesis, we seek to understand the details of this reacting system which are important to its practical application. Laser light scattering will reveal changes in particle size at various heights above the burner. Analysis of the flame gas by mass spectroscopy will reveal the chemical composition of the mixture. Finally, absorption measurements will map the nanotube concentration within the flow. The second thread explores soot oxidation kinetics. Despite the impact of soot on engine performance, fire safety and pollution, models for its oxidation are inhibited by uncertainty in the values of the oxidation rate. We plan to employ both optical and microscopic measurements to refine this rate. Cavity ring-down absorption measurements of the carbonaceous aerosol can provide a measure of the mass concentration with time and, hence, an oxidation rate. Spectroscopic and direct probe measurements will provide the temperature of the system needed for subsequent modeling. These data will be benchmarked against changes in soot nanostructures as revealed by transmission electron microscopic images from directly sampled material.
Plana-Ruiz, S; Portillo, J; Estradé, S; Peiró, F; Kolb, Ute; Nicolopoulos, S
2018-06-06
A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on the sharpness of the precessed STEM image. The complete alignment method for parallel condition and precession, Quasi-Parallel PED-STEM, is presented in block diagram scheme, as it has been tested on a variety of instruments. The immediate application of this methodology is that it renders the TEM column ready for the acquisition of Precessed Electron Diffraction Tomographies (EDT) as well as for the acquisition of slow Precessed Scanning Nanometer Electron Diffraction (SNED). Examples of the quality of the Precessed Electron Diffraction (PED) patterns and PED-STEM alignment images are presented with corresponding probe sizes and convergence angles. Copyright © 2018. Published by Elsevier B.V.
Imaging single atoms using secondary electrons with an aberration-corrected electron microscope.
Zhu, Y; Inada, H; Nakamura, K; Wall, J
2009-10-01
Aberration correction has embarked on a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes. However, improvement of spatial resolution using aberration correction so far has been limited to the use of transmitted electrons both in scanning and stationary mode, with an improvement of 20-40% (refs 3-8). In contrast, advances in the spatial resolution of scanning electron microscopes (SEMs), which are by far the most widely used instrument for surface imaging at the micrometre-nanometre scale, have been stagnant, despite several recent efforts. Here, we report a new SEM, with aberration correction, able to image single atoms by detecting electrons emerging from its surface as a result of interaction with the small probe. The spatial resolution achieved represents a fourfold improvement over the best-reported resolution in any SEM (refs 10-12). Furthermore, we can simultaneously probe the sample through its entire thickness with transmitted electrons. This ability is significant because it permits the selective visualization of bulk atoms and surface ones, beyond a traditional two-dimensional projection in transmission electron microscopy. It has the potential to revolutionize the field of microscopy and imaging, thereby opening the door to a wide range of applications, especially when combined with simultaneous nanoprobe spectroscopy.
Live imaging of dense-core vesicles in primary cultured hippocampal neurons.
Kwinter, David M; Silverman, Michael A; Kwinter, David; Michael, Silverman
2009-05-29
Observing and characterizing dynamic cellular processes can yield important information about cellular activity that cannot be gained from static images. Vital fluorescent probes, particularly green fluorescent protein (GFP) have revolutionized cell biology stemming from the ability to label specific intracellular compartments and cellular structures. For example, the live imaging of GFP (and its spectral variants) chimeras have allowed for a dynamic analysis of the cytoskeleton, organelle transport, and membrane dynamics in a multitude of organisms and cell types [1-3]. Although live imaging has become prevalent, this approach still poses many technical challenges, particularly in primary cultured neurons. One challenge is the expression of GFP-tagged proteins in post-mitotic neurons; the other is the ability to capture fluorescent images while minimizing phototoxicity, photobleaching, and maintaining general cell health. Here we provide a protocol that describes a lipid-based transfection method that yields a relatively low transfection rate (~0.5%), however is ideal for the imaging of fully polarized neurons. A low transfection rate is essential so that single axons and dendrites can be characterized as to their orientation to the cell body to confirm directionality of transport, i.e., anterograde v. retrograde. Our approach to imaging GFP expressing neurons relies on a standard wide-field fluorescent microscope outfitted with a CCD camera, image capture software, and a heated imaging chamber. We have imaged a wide variety of organelles or structures, for example, dense-core vesicles, mitochondria, growth cones, and actin without any special optics or excitation requirements other than a fluorescent light source. Additionally, spectrally-distinct, fluorescently labeled proteins, e.g., GFP and dsRed-tagged proteins, can be visualized near simultaneously to characterize co-transport or other coordinated cellular events. The imaging approach described here is flexible for a variety of imaging applications and can be adopted by a laboratory for relatively little cost provided a microscope is available.
2010-07-01
W81XWH-09-1-0420 TITLE: High Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment Monitoring of Prostate Cancer...4. TITLE AND SUBTITLE High-Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment of Prostate Cancer... molecular imaging for diagnosis as well as treatment planning and monitoring in prostate cancer. This investigation hypothesizes that a dedicated
Single-Shot Optical Sectioning Using Two-Color Probes in HiLo Fluorescence Microscopy
Muro, Eleonora; Vermeulen, Pierre; Ioannou, Andriani; Skourides, Paris; Dubertret, Benoit; Fragola, Alexandra; Loriette, Vincent
2011-01-01
We describe a wide-field fluorescence microscope setup which combines HiLo microscopy technique with the use of a two-color fluorescent probe. It allows one-shot fluorescence optical sectioning of thick biological moving sample which is illuminated simultaneously with a flat and a structured pattern at two different wavelengths. Both homogenous and structured fluorescence images are spectrally separated at detection and combined similarly with the HiLo microscopy technique. We present optically sectioned full-field images of Xenopus laevis embryos acquired at 25 images/s frame rate. PMID:21641327
O'Brien, Jeremy T.; Williams, Evan R.; Holman, Hoi-Ying N.
2017-10-31
A new experimental setup for spatially resolved ambient infrared laser ablation mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is .about.50%. This transfer efficiency is significantly higher than values reported for similar techniques.
Yashchuk, V. V.; Fischer, P. J.; Chan, E. R.; ...
2015-12-09
We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate themore » MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope's MTF, tests with the BPRML sample can be used to fine tune the instrument's focal distance. Finally, our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
Sub-micron materials characterization using near-field optics
NASA Astrophysics Data System (ADS)
Blodgett, David Wesley
1998-12-01
High-resolution sub-surface materials characterization and inspection are critical in the microelectronics and thin films industries. To this end, a technique is described that couples the bulk property measurement capabilities of high-frequency ultrasound with the high-resolution surface imaging capabilities of the near-field optical microscope. Sensing bulk microstructure variations in the material, such as grain boundaries, requires a detection footprint smaller than the variation itself. The near-field optical microscope, with the ability to exceed the diffraction limit in optical resolution, meets this requirement. Two apertureless near-field optical microscopes, on-axis and off-axis illumination, have been designed and built. Near-field and far-field approach curves for both microscopes are presented. The sensitivity of the near-field approach curve was 8.3 muV/nm. Resolution studies for the near-field microscope indicate optical resolutions on the order of 50 nm, which exceeds the diffraction limit. The near-field microscope has been adapted to detect both contact-transducer-generated and laser-generated ultrasound. The successful detection of high-frequency ultrasound with the near-field optical microscope demonstrates the potential of this technique.
Maximizing the stability of pyrolysis oil/diesel fuel emulsions
USDA-ARS?s Scientific Manuscript database
Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...
University of Maryland MRSEC - Education: Community
; (we call this type of surface a vicinal surface). Modern scanned-probe microscopes, such as the STM Educational Education Pre-College Programs Homeschool Programs Undergraduate & Graduate Programs Teacher MRSEC Templates Opportunities Search Home » Education » Community Outreach Community Outreach
University of Maryland MRSEC - About Us: Committees
; (we call this type of surface a vicinal surface). Modern scanned-probe microscopes, such as the STM Educational Education Pre-College Programs Homeschool Programs Undergraduate & Graduate Programs Teacher -2014 IRG 1 Donna Hammer Hammer, Donna MRSEC Associate Director & Director of Education Outreach
University of Maryland MRSEC - Education: College
; (we call this type of surface a vicinal surface). Modern scanned-probe microscopes, such as the STM Educational Education Pre-College Programs Homeschool Programs Undergraduate & Graduate Programs Teacher MRSEC Templates Opportunities Search Home » Education » Undergraduate/Graduate Programs Undergraduate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lev, Benjamin
The SQCRAMscope, Scanning Quantum Cryogenic Atom Microscope, is a novel scanning probe microscope we developed during this DOE fund period. It is now capable of imaging transport in cryogenically cooled solid-state samples, as we have recently demonstrated with iron-based pnictide superconductors. As such, it opens a new frontier in the quantum-based metrology of materials and is the first example of the direct marriage of ultracold AMO physics with condensed matter physics. We predict the SQCRAMscope will become an important element in the toolbox for exploring strongly correlated and topologically nontrivial materials.
Manipulating, Reacting, and Constructing Single Molecules with a Scanning Tunneling Microscope Tip
NASA Astrophysics Data System (ADS)
Hla, S.-W.
The fascinating advances in atom and molecule manipulation with the scanning tunneling microscope (STM) tip allow scientists to fabricate artificial atomic scale structures, to study local quantum phenomena, or to probe physical and chemical properties of single atoms and molecules on surfaces. Recent achievements in individual synthesis of single molecules with the STM tip further open up an entirely new opportunities in nanoscience and technology. The STM manipulation techniques usef ul in the molecular construction are reviewed and prospects for future opportunities of single molecule chemical engineering and their possible implications to nano-scale science and technology are discussed.
Electron beam assisted field evaporation of insulating nanowires/tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, N. P., E-mail: nicholas.blanchard@univ-lyon1.fr; Niguès, A.; Choueib, M.
2015-05-11
We demonstrate field evaporation of insulating materials, specifically BN nanotubes and undoped Si nanowires, assisted by a convergent electron beam. Electron irradiation leads to positive charging at the nano-object's apex and to an important increase of the local electric field thus inducing field evaporation. Experiments performed both in a transmission electron microscope and in a scanning electron microscope are presented. This technique permits the selective evaporation of individual nanowires in complex materials. Electron assisted field evaporation could be an interesting alternative or complementary to laser induced field desorption used in atom probe tomography of insulating materials.
DNA attachment to support structures
Balhorn, Rodney L.; Barry, Christopher H.
2002-01-01
Microscopic beads or other structures are attached to nucleic acids (DNA) using a terminal transferase. The transferase adds labeled dideoxy nucleotide bases to the ends of linear strands of DNA. The labels, such as the antigens digoxigenin and biotin, bind to the antibody compounds or other appropriate complementary ligands, which are bound to the microscopic beads or other support structures. The method does not require the synthesis of a synthetic oligonucleotide probe. The method can be used to tag or label DNA even when the DNA has an unknown sequence, has blunt ends, or is a very large fragment (e.g., >500 kilobase pairs).
Note: Automated electrochemical etching and polishing of silver scanning tunneling microscope tips.
Sasaki, Stephen S; Perdue, Shawn M; Rodriguez Perez, Alejandro; Tallarida, Nicholas; Majors, Julia H; Apkarian, V Ara; Lee, Joonhee
2013-09-01
Fabrication of sharp and smooth Ag tips is crucial in optical scanning probe microscope experiments. To ensure reproducible tip profiles, the polishing process is fully automated using a closed-loop laminar flow system to deliver the electrolytic solution to moving electrodes mounted on a motorized translational stage. The repetitive translational motion is controlled precisely on the μm scale with a stepper motor and screw-thread mechanism. The automated setup allows reproducible control over the tip profile and improves smoothness and sharpness of tips (radius 27 ± 18 nm), as measured by ultrafast field emission.
Making Mn substitutional impurities in InAs using a scanning tunneling microscope.
Song, Young Jae; Erwin, Steven C; Rutter, Gregory M; First, Phillip N; Zhitenev, Nikolai B; Stroscio, Joseph A
2009-12-01
We describe in detail an atom-by-atom exchange manipulation technique using a scanning tunneling microscope probe. As-deposited Mn adatoms (Mn(ad)) are exchanged one-by-one with surface In atoms (In(su)) to create a Mn surface-substitutional (Mn(In)) and an exchanged In adatom (In(ad)) by an electron tunneling induced reaction Mn(ad) + In(su) --> Mn(In) + In(ad) on the InAs(110) surface. In combination with density-functional theory and high resolution scanning tunneling microscopy imaging, we have identified the reaction pathway for the Mn and In atom exchange.
Nanoscale Subsurface Imaging via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy
NASA Technical Reports Server (NTRS)
Cantrell, Sean A.; Cantrell, John H.; Lilehei, Peter T.
2007-01-01
A novel scanning probe microscope methodology has been developed that employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by the fundamental resonance frequency of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever fundamental resonance. The resonance-enhanced difference-frequency signals are used to create images of embedded nanoscale features.
Resonant antenna probes for tip-enhanced infrared near-field microscopy.
Huth, Florian; Chuvilin, Andrey; Schnell, Martin; Amenabar, Iban; Krutokhvostov, Roman; Lopatin, Sergei; Hillenbrand, Rainer
2013-03-13
We report the development of infrared-resonant antenna probes for tip-enhanced optical microscopy. We employ focused-ion-beam machining to fabricate high-aspect ratio gold cones, which replace the standard tip of a commercial Si-based atomic force microscopy cantilever. Calculations show large field enhancements at the tip apex due to geometrical antenna resonances in the cones, which can be precisely tuned throughout a broad spectral range from visible to terahertz frequencies by adjusting the cone length. Spectroscopic analysis of these probes by electron energy loss spectroscopy, Fourier transform infrared spectroscopy, and Fourier transform infrared near-field spectroscopy corroborates their functionality as resonant antennas and verifies the broad tunability. By employing the novel probes in a scattering-type near-field microscope and imaging a single tobacco mosaic virus (TMV), we experimentally demonstrate high-performance mid-infrared nanoimaging of molecular absorption. Our probes offer excellent perspectives for optical nanoimaging and nanospectroscopy, pushing the detection and resolution limits in many applications, including nanoscale infrared mapping of organic, molecular, and biological materials, nanocomposites, or nanodevices.
Page, Michael J.; Lourenço, André L.; David, Tovo; LeBeau, Aaron M.; Cattaruzza, Fiore; Castro, Helena C.; VanBrocklin, Henry F.; Coughlin, Shaun R.; Craik, Charles S.
2015-01-01
Functional imaging of proteolytic activity is an emerging strategy to quantify disease and response to therapy at the molecular level. We present a new peptide-based imaging probe technology that advances these goals by exploiting enzymatic activity to deposit probes labelled with near-infrared (NIR) fluorophores or radioisotopes in cell membranes of disease-associated proteolysis. This strategy allows for non-invasive detection of protease activity in vivo and ex vivo by tracking deposited probes in tissues. We demonstrate non-invasive detection of thrombin generation in a murine model of pulmonary embolism using our protease-activated peptide probes in microscopic clots within the lungs with NIR fluorescence optical imaging and positron-emission tomography. Thrombin activity is imaged deep in tissue and tracked predominantly to platelets within the lumen of blood vessels. The modular design of our probes allows for facile investigation of other proteases, and their contributions to disease by tailoring the protease activation and cell-binding elements. PMID:26423607
Back-focal-plane position detection with extended linear range for photonic force microscopy.
Martínez, Ignacio A; Petrov, Dmitri
2012-09-01
In photonic force microscopes, the position detection with high temporal and spatial resolution is usually implemented by a quadrant position detector placed in the back focal plane of a condenser. An objective with high numerical aperture (NA) for the optical trap has also been used to focus a detection beam. In that case the displacement of the probe at a fixed position of the detector produces a unique and linear response only in a restricted region of the probe displacement, usually several hundred nanometers. There are specific experiments where the absolute position of the probe is a relevant measure together with the probe position relative the optical trap focus. In our scheme we introduce the detection beam into the condenser with low NA through a pinhole with tunable size. This combination permits us to create a wide detection spot and to achieve the linear range of several micrometers by the probe position detection without reducing the trapping force.
Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui
2017-01-01
Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649
Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath
2014-09-30
The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strongmore » as those obtained by nanodiffraction methods.« less
Restoration of high-resolution AFM images captured with broken probes
NASA Astrophysics Data System (ADS)
Wang, Y. F.; Corrigan, D.; Forman, C.; Jarvis, S.; Kokaram, A.
2012-03-01
A type of artefact is induced by damage of the scanning probe when the Atomic Force Microscope (AFM) captures a material surface structure with nanoscale resolution. This artefact has a dramatic form of distortion rather than the traditional blurring artefacts. Practically, it is not easy to prevent the damage of the scanning probe. However, by using natural image deblurring techniques in image processing domain, a comparatively reliable estimation of the real sample surface structure can be generated. This paper introduces a novel Hough Transform technique as well as a Bayesian deblurring algorithm to remove this type of artefact. The deblurring result is successful at removing blur artefacts in the AFM artefact images. And the details of the fibril surface topography are well preserved.
Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology
Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy
2016-05-10
A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.
Ren, Juan; Yu, Shiyan; Gao, Nan; Zou, Qingze
2013-11-01
In this paper, a control-based approach to replace the conventional method to achieve accurate indentation quantification is proposed for nanomechanical measurement of live cells using atomic force microscope. Accurate indentation quantification is central to probe-based nanomechanical property measurement. The conventional method for in-liquid nanomechanical measurement of live cells, however, fails to accurately quantify the indentation as effects of the relative probe acceleration and the hydrodynamic force are not addressed. As a result, significant errors and uncertainties are induced in the nanomechanical properties measured. In this paper, a control-based approach is proposed to account for these adverse effects by tracking the same excitation force profile on both a live cell and a hard reference sample through the use of an advanced control technique, and by quantifying the indentation from the difference of the cantilever base displacement in these two measurements. The proposed control-based approach not only eliminates the relative probe acceleration effect with no need to calibrate the parameters involved, but it also reduces the hydrodynamic force effect significantly when the force load rate becomes high. We further hypothesize that, by using the proposed control-based approach, the rate-dependent elastic modulus of live human epithelial cells under different stress conditions can be reliably quantified to predict the elasticity evolution of cell membranes, and hence can be used to predict cellular behaviors. By implementing the proposed approach, the elastic modulus of HeLa cells before and after the stress process were quantified as the force load rate was changed over three orders of magnitude from 0.1 to 100 Hz, where the amplitude of the applied force and the indentation were at 0.4-2 nN and 250-450 nm, respectively. The measured elastic modulus of HeLa cells showed a clear power-law dependence on the load rate, both before and after the stress process. Moreover, the elastic modulus of HeLa cells was substantially reduced by two to five times due to the stress process. Thus, our measurements demonstrate that the control-based protocol is effective in quantifying and characterizing the evolution of nanomechanical properties during the stress process of live cells.
Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample
NASA Technical Reports Server (NTRS)
Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)
2001-01-01
Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.
Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Chen, Rong
2014-04-15
A new simple fiber-optic evanescent wave sensor was created to accurately monitor the growth and hydrogen production performance of biofilms. The proposed sensor consists of two probes (i.e., a sensor and reference probe), using the etched fibers with an appropriate surface roughness to improve its sensitivity. The sensor probe measures the biofilm growth and change of liquid-phase concentration inside the biofilm. The reference probe is coated with a hydrophilic polytetrafluoroethylene membrane to separate the liquids from photosynthetic bacteria Rhodopseudomonas palustris CQK 01 and to measure the liquid concentration. We also developed a model to demonstrate the accuracy of the measurement. The biofilm measurement was calibrated using an Olympus microscope. A linear relationship was obtained for the biofilm thickness range from 0 to 120 μm with a synthetic medium under continuous supply to the bioreactor. The highest level of hydrogen production rate occurred at a thickness of 115 μm.
NASA Astrophysics Data System (ADS)
Chen, Q.; Rice, A. F.
2005-03-01
Scanning Probe Recognition Microscopy is a new scanning probe capability under development within our group to reliably return to and directly interact with a specific nanobiological feature of interest. In previous work, we have successfully recognized and classified tubular versus globular biological objects from experimental atomic force microscope images using a method based on normalized central moments [ref. 1]. In this paper we extend this work to include recognition schemes appropriate for cellular and sub-cellular structures. Globular cells containing tubular actin filaments are under investigation. Thus there are differences in external/internal shapes and scales. Continuous Wavelet Transform with a differential Gaussian mother wavelet is employed for multi- scale analysis. [ref. 1] Q. Chen, V. Ayres and L. Udpa, ``Biological Investigation Using Scanning Probe Recognition Microscopy,'' Proceedings 3rd IEEE Conference on Nanotechnology, vol. 2, p 863-865 (2003).
High Resolution Tissue Imaging Using the Single-probe Mass Spectrometry under Ambient Conditions
NASA Astrophysics Data System (ADS)
Rao, Wei; Pan, Ning; Yang, Zhibo
2015-06-01
Ambient mass spectrometry imaging (MSI) is an emerging field with great potential for the detailed spatial analysis of biological samples with minimal pretreatment. We have developed a miniaturized sampling and ionization device, the Single-probe, which uses in-situ surface micro-extraction to achieve high detection sensitivity and spatial resolution during MSI experiments. The Single-probe was coupled to a Thermo LTQ Orbitrap XL mass spectrometer and was able to create high spatial and high mass resolution MS images at 8 ± 2 and 8.5 μm on flat polycarbonate microscope slides and mouse kidney sections, respectively, which are among the highest resolutions available for ambient MSI techniques. Our proof-of-principle experiments indicate that the Single-probe MSI technique has the potential to obtain ambient MS images with very high spatial resolutions with minimal sample preparation, which opens the possibility for subcellular ambient tissue MSI to be performed in the future.
NASA Astrophysics Data System (ADS)
Clark, L.; Brown, H. G.; Paganin, D. M.; Morgan, M. J.; Matsumoto, T.; Shibata, N.; Petersen, T. C.; Findlay, S. D.
2018-04-01
The rigid-intensity-shift model of differential-phase-contrast imaging assumes that the phase gradient imposed on the transmitted probe by the sample causes the diffraction pattern intensity to shift rigidly by an amount proportional to that phase gradient. This behavior is seldom realized exactly in practice. Through a combination of experimental results, analytical modeling and numerical calculations, using as case studies electron microscope imaging of the built-in electric field in a p-n junction and nanoscale domains in a magnetic alloy, we explore the breakdown of rigid-intensity-shift behavior and how this depends on the magnitude of the phase gradient and the relative scale of features in the phase profile and the probe size. We present guidelines as to when the rigid-intensity-shift model can be applied for quantitative phase reconstruction using segmented detectors, and propose probe-shaping strategies to further improve the accuracy.
Kondrashina, Alina V; Papkovsky, Dmitri B; Dmitriev, Ruslan I
2013-09-07
Measurement of cell oxygenation and oxygen consumption is useful for studies of cell bioenergetics, metabolism, mitochondrial function, drug toxicity and common pathophysiological conditions. Here we present a new platform for such applications which uses commercial multichannel biochips (μ-slides, Ibidi) and phosphorescent O2 sensitive probes. This platform was evaluated with both extracellular and intracellular O2 probes, several different cell types and treatments including mitochondrial uncoupling and inhibition, depletion of extracellular Ca(2+) and inhibition of V-ATPase and histone deacetylases. The results show that compared to the standard microwell plates currently used, the μ-slide platform provides facile O2 measurements with both suspension and adherent cells, higher sensitivity and reproducibility, and faster measurement time. It also allows re-perfusion and multiple treatments of cells and multi-parametric analyses in conjunction with other probes. Optical measurements are conducted on standard fluorescence readers and microscopes.
Multifunctional hydrogel nano-probes for atomic force microscopy
Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul
2016-01-01
Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe—the key actuating element—has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices. PMID:27199165
A quantum spin-probe molecular microscope
NASA Astrophysics Data System (ADS)
Perunicic, V. S.; Hill, C. D.; Hall, L. T.; Hollenberg, L. C. L.
2016-10-01
Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy.
career at NREL in 1995 by conducting scanning tunneling microscope (STM) studies of the atomic structure revealed a new strain-induced step structure and contributed to the development of world-record-efficiency NREL's Computational Materials Science team, probing the atomic structure of dislocations in III-V
The occurence of Stachybotrys chartarum in indoor environments has been associated with a number of human health concerns, including fatal pulmonary haemosiderosis in infants. Currently used culture-based and microscopic methods of fungal species identification are poorly suited ...
Scanning Probe Platform | Materials Science | NREL
level; this image obtained using a scanning tunneling microscope shows gray and white clusters of produce high-resolution color images or maps like this one obtained using scanning tunneling luminescence gray clusters. Gold substrate: (Left) STM image reveals the terraces of the H2 flamed substrate. (Right
Low vibration high numerical aperture automated variable temperature Raman microscope
Tian, Y.; Reijnders, A. A.; Osterhoudt, G. B.; ...
2016-04-05
Raman micro-spectroscopy is well suited for studying a variety of properties and has been applied to wide- ranging areas. Combined with tuneable temperature, Raman spectra can offer even more insights into the properties of materials. However, previous designs of variable temperature Raman microscopes have made it extremely challenging to measure samples with low signal levels due to thermal and positional instability as well as low collection efficiencies. Thus, contemporary Raman microscope has found limited applicability to probing the subtle physics involved in phase transitions and hysteresis. This paper describes a new design of a closed-cycle, Raman microscope with full polarizationmore » rotation. High collection efficiency, thermal and mechanical stability are ensured by both deliberate optical, cryogenic, and mechanical design. Measurements on two samples, Bi 2Se 3 and V 2O 3, which are known as challenging due to low thermal conductivities, low signal levels and/or hysteretic effects, are measured with previously undemonstrated temperature resolution.« less
Low vibration high numerical aperture automated variable temperature Raman microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Y.; Reijnders, A. A.; Osterhoudt, G. B.
Raman micro-spectroscopy is well suited for studying a variety of properties and has been applied to wide- ranging areas. Combined with tuneable temperature, Raman spectra can offer even more insights into the properties of materials. However, previous designs of variable temperature Raman microscopes have made it extremely challenging to measure samples with low signal levels due to thermal and positional instability as well as low collection efficiencies. Thus, contemporary Raman microscope has found limited applicability to probing the subtle physics involved in phase transitions and hysteresis. This paper describes a new design of a closed-cycle, Raman microscope with full polarizationmore » rotation. High collection efficiency, thermal and mechanical stability are ensured by both deliberate optical, cryogenic, and mechanical design. Measurements on two samples, Bi 2Se 3 and V 2O 3, which are known as challenging due to low thermal conductivities, low signal levels and/or hysteretic effects, are measured with previously undemonstrated temperature resolution.« less
Wen, Xuanyuan; Wang, Baoju; Wu, Ruitao; Li, Nana; He, Sailing; Zhan, Qiuqiang
2016-06-01
Simultaneous deep macroscopic imaging and microscopic imaging is in urgent demand, but is challenging to achieve experimentally due to the lack of proper fluorescent probes. Herein, we have designed and successfully synthesized simplex Er(3+)-doped upconversion nanoparticles (UCNPs) with double excitation bands for simultaneous deep macroscopic and microscopic imaging. The material structure and the excitation wavelength of Er(3+)-singly doped UCNPs were further optimized to enhance the upconversion emission efficiency. After optimization, we found that NaYF4:30%Er(3+)@NaYF4:2%Er(3+) could simultaneously achieve efficient two-photon excitation (2PE) macroscopic tissue imaging and three-photon excitation (3PE) deep microscopic when excited by 808 nm continuous wave (CW) and 1480 nm CW lasers, respectively. In vitro cell imaging and in vivo imaging have also been implemented to demonstrate the feasibility and potential of the proposed simplex Er(3+)-doped UCNPs as bioprobe.
Ultra-Compact Multitip Scanning Probe Microscope with an Outer Diameter of 50 mm
NASA Astrophysics Data System (ADS)
Cherepanov, Vasily; Zubkov, Evgeny; Junker, Hubertus; Korte, Stefan; Blab, Marcus; Coenen, Peter; Voigtländer, Bert
We present a multitip scanning tunneling microscope (STM) where four independent STM units are integrated on a diameter of 50 mm. The coarse positioning of the tips is done under the control of an optical microscope or an SEM in vacuum. The heart of this STM is a new type of piezoelectric coarse approach called Koala Drive which can have a diameter greater than 2.5 mm and a length smaller than 10 mm. Alternating movements of springs move a central tube which holds the STM tip or AFM sensor. This new operating principle provides a smooth travel sequence and avoids shaking which is intrinsically present for nanopositioners based on inertial motion with saw tooth driving signals. Inserting the Koala Drive in a piezo tube for xyz-scanning integrates a complete STM inside a 4 mm outer diameter piezo tube of <10 mm length. The use of the Koala Drive makes the scanning probe microscopy design ultra-compact and accordingly leads to a high mechanical stability. The drive is UHV, low temperature, and magnetic field compatible. The compactness of the Koala Drive allows building a four-tip STM as small as a single-tip STM with a drift of <0.2 nm/min and lowest resonance frequencies of 2.5 (xy) and 5.5 kHz (z). We present examples of the performance of the multitip STM designed using the Koala Drive.
Two-probe STM experiments at the atomic level.
Kolmer, Marek; Olszowski, Piotr; Zuzak, Rafal; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek
2017-11-08
Direct characterization of planar atomic or molecular scale devices and circuits on a supporting surface by multi-probe measurements requires unprecedented stability of single atom contacts and manipulation of scanning probes over large, nanometer scale area with atomic precision. In this work, we describe the full methodology behind atomically defined two-probe scanning tunneling microscopy (STM) experiments performed on a model system: dangling bond dimer wire supported on a hydrogenated germanium (0 0 1) surface. We show that 70 nm long atomic wire can be simultaneously approached by two independent STM scanners with exact probe to probe distance reaching down to 30 nm. This allows direct wire characterization by two-probe I-V characteristics at distances below 50 nm. Our technical results presented in this work open a new area for multi-probe research, which can be now performed with precision so far accessible only by single-probe scanning probe microscopy (SPM) experiments.
Zamyadi, Arash; Dorner, Sarah; Ndong, Mouhamed; Ellis, Donald; Bolduc, Anouka; Bastien, Christian; Prévost, Michèle
2014-02-01
The increasing presence of potentially toxic cyanobacterial blooms in drinking water sources and within drinking water treatment plants (DWTPs) has been reported worldwide. The objectives of this study are to validate the application of in vivo probes for the detection and management of cyanobacteria breakthrough inside DWTPs, and to verify the possibility of treatment adjustment based on intensive real-time monitoring. In vivo phycocyanin YSI probes were used to monitor the fate of cyanobacteria in raw water, clarified water, filtered water, and chlorinated water in a full scale DWTP. Simultaneous samples were also taken for microscopic enumeration. The in vivo probe was successfully used to detect the incoming densities of high cyanobacterial cell number into the clarification process and their breakthrough into the filtered water. In vivo probes were used to trace the increase in floating cells over the clarifier, a robust sign of malfunction of the coagulation-sedimentation process. Pre-emptive treatment adjustments, based on in vivo probe monitoring, resulted in successful removal of cyanobacterial cells. The field results on validation of the probes with cyanobacterial bloom samples showed that the probe responses are highly linear and can be used to trigger alerts to take action.
Detection of biological threats. A challenge for directed molecular evolution.
Petrenko, Valery A; Sorokulova, Iryna B
2004-08-01
The probe technique originated from early attempts of Anton van Leeuwenhoek to contrast microorganisms under the microscope using plant juices, successful staining of tubercle bacilli with synthetic dyes by Paul Ehrlich and discovery of a stain for differentiation of gram-positive and gram-negative bacteria by Hans Christian Gram. The technique relies on the principle that pathogens have unique structural features, which can be recognized by specifically labeled organic molecules. A hundred years of extensive screening efforts led to discovery of a limited assortment of organic probes that are used for identification and differentiation of bacteria. A new challenge--continuous monitoring of biological threats--requires long lasting molecular probes capable of tight specific binding of pathogens in unfavorable conditions. To respond to the challenge, probe technology is being revolutionized by utilizing methods of combinatorial chemistry, phage display and directed molecular evolution. This review describes how molecular evolution methods are applied for development of peptide, antibody and phage probes, and summarizes the author's own data on development of landscape phage probes against Salmonella typhimurium. The performance of the probes in detection of Salmonella is illustrated by a precipitation test, enzyme-linked immunosorbent assay (ELISA), fluorescence-activated cell sorting (FACS) and fluorescent, optical and electron microscopy.
Quantifying enzymatic lysis: estimating the combined effects of chemistry, physiology and physics.
Mitchell, Gabriel J; Nelson, Daniel C; Weitz, Joshua S
2010-10-04
The number of microbial pathogens resistant to antibiotics continues to increase even as the rate of discovery and approval of new antibiotic therapeutics steadily decreases. Many researchers have begun to investigate the therapeutic potential of naturally occurring lytic enzymes as an alternative to traditional antibiotics. However, direct characterization of lytic enzymes using techniques based on synthetic substrates is often difficult because lytic enzymes bind to the complex superstructure of intact cell walls. Here we present a new standard for the analysis of lytic enzymes based on turbidity assays which allow us to probe the dynamics of lysis without preparing a synthetic substrate. The challenge in the analysis of these assays is to infer the microscopic details of lysis from macroscopic turbidity data. We propose a model of enzymatic lysis that integrates the chemistry responsible for bond cleavage with the physical mechanisms leading to cell wall failure. We then present a solution to an inverse problem in which we estimate reaction rate constants and the heterogeneous susceptibility to lysis among target cells. We validate our model given simulated and experimental turbidity assays. The ability to estimate reaction rate constants for lytic enzymes will facilitate their biochemical characterization and development as antimicrobial therapeutics.
Cho, Saeyoull
2014-01-01
Hemocytes are key players in the immune response against pathogens in insects. However, the hemocyte types and their functions in the white-spotted flower chafers, Protaetia brevitarsis seulensis (Kolbe), are not known. In this study, we used various microscopes, molecular probes, and flow cytometric analyses to characterize the hemocytes in P. brevitarsis seulensis. The circulating hemocytes were classified based on their size, morphology, and dye-staining properties into six types, including granulocytes, plasmatocytes, oenocytoids, spherulocytes, prohemocytes, and adipohemocytes. The percentages of circulating hemocyte types were as follows: 13% granulocytes, 20% plasmatocytes, 1% oenocytoids, 5% spherulocytes, 17% prohemocytes, and 44% adipohemocytes. Next, we identified the professional phagocytes, granulocytes, which mediate encapsulation and phagocytosis of pathogens. The granulocytes were immunologically or morphologically activated and phagocytosed potentially hazardous substances in vivo. In addition, we showed that the phagocytosis by granulocytes is associated with autophagy, and that the activation of autophagy could be an efficient way to eliminate pathogens in this system. We also observed a high accumulation of autophagic vacuoles in activated granulocytes, which altered their shape and led to autophagic cell death. Finally, the granulocytes underwent mitotic division thus maintaining their number in vivo. PMID:25083702
Teaching at the edge of knowledge: Non-equilibrium statistical physics
NASA Astrophysics Data System (ADS)
Schmittmann, Beate
2007-03-01
As physicists become increasingly interested in biological problems, we frequently find ourselves confronted with complex open systems, involving many interacting constituents and characterized by non-vanishing fluxes of mass or energy. Faced with the task of predicting macroscopic behaviors from microscopic information for these non-equilibrium systems, the familiar Gibbs-Boltzmann framework fails. The development of a comprehensive theoretical characterization of non-equilibrium behavior is one of the key challenges of modern condensed matter physics. In its absence, several approaches have been developed, from master equations to thermostatted molecular dynamics, which provide key insights into the rich and often surprising phenomenology of systems far from equilibrium. In my talk, I will address some of these methods, selecting those that are most relevant for a broad range of interdisciplinary problems from biology to traffic, finance, and sociology. The ``portability'' of these methods makes them valuable for graduate students from a variety of disciplines. To illustrate how different methods can complement each other when probing a problem from, e.g., the life sciences, I will discuss some recent attempts at modeling translation, i.e., the process by which the genetic information encoded on an mRNA is translated into the corresponding protein.
Regulation of muscle contraction by Drebrin-like protein 1 probed by atomic force microscopy
NASA Astrophysics Data System (ADS)
Garces, Renata; Butkevich, Eugenia; Platen, Mitja; Schmidt, Christoph F.; Biophysics Team
Sarcomeres are the fundamental contractile units of striated muscle cells. They are composed of a variety of structural and regulatory proteins functioning in a precisely orchestrated fashion to enable coordinated force generation in striated muscles. Recently, we have identified a C. elegans drebrin-like protein 1 (DBN-1) as a novel sarcomere component, which stabilizes actin filaments during muscle contraction. To further characterize the function of DBN-1 in muscle cells, we generated a new dbn-1 loss-of-function allele. Absence of DBN-1 resulted in a unique worm movement phenotype, characterized by hyper-bending. It is not clear yet if DBN-1 acts to enhance or reduce the capacity for contraction. We present here an experimental mechanical study on C. elegans muscle mechanics. We measured the stiffness of the worm by indenting living C. eleganswith a micron-sized sphere adhered to the cantilever of an atomic force microscope (AFM). Modeling the worm as a pressurized elastic shell allows us to monitor the axial tension in the muscle through the measured stiffness. We compared responses of wild-type and mutant C. elegans in which DBN-1 is not expressed..
NASA Astrophysics Data System (ADS)
Wang, Wen; Ma, Chao; Li, Yi; Liu, Baihui; Tan, Liang
2018-03-01
A one-pot protocol based on cyclic voltammetric scan was employed to prepare new conducting composite that was abundant in amino groups. The scanning electron microscope, atomic force microscope, X-ray photoelectron spectroscopy and infrared spectrum characterization demonstrate that poly(azure A), gold nanoparticles, chitosan and cysteine were immobilized simultaneously on glassy carbon electrode surface. Von Willebrand factor (vWF) antibody (Ab) was subsequently assembled by using glutaraldehyde to construct the Ab/composite-modified electrode. The capture of vWF could inhibit the charge transfer between the ferri-/ferrocyanide probe and the electrode and exert the negative effect on the electrochemical response of the dye polymer in the conducting composite due to the strong steric hindrance effect. The DPV peak current change before and after the immunoreaction was found to be proportional to the logarithm of the vWF concentration from 0.001 to 100 μg mL-1 with a detection limit of 0.4 ng mL-1. The proposed label-free electrochemical method was employed in the investigation on the release of vWF by oxidation-injured vascular endothelial cells. The experimental results exhibit that the vWF content in growth medium was increased when the oxidation injury of the cells was intensified in the presence of H2O2.
Tugba Camic, B; Oytun, Faruk; Hasan Aslan, M; Jeong Shin, Hee; Choi, Hyosung; Basarir, Fevzihan
2017-11-01
A solution-processed transparent conducting electrode was fabricated via layer-by-layer (LBL) deposition of graphene oxide (GO) and silver nanowires (Ag NWs). First, graphite was oxidized with a modified Hummer's method to obtain negatively-charged GO sheets, and Ag NWs were functionalized with cysteamine hydrochloride to acquire positively-charged silver nanowires. Oppositely-charged GO and Ag NWs were then sequentially coated on a 3-aminopropyltriethoxysilane modified glass substrate via LBL deposition, which provided highly controllable thin films in terms of optical transmittance and sheet resistance. Next, the reduction of GO sheets was performed to improve the electrical conductivity of the multilayer films. The resulting GO/Ag NWs multilayer was characterized by a UV-Vis spectrometer, field emission scanning electron microscope (FE-SEM), optical microscope (OM) and sheet resistance using a four-point probe method. The best result was achieved with a 2-bilayer film, resulting in a sheet resistance of 6.5Ω sq -1 with an optical transmittance of 78.2% at 550nm, which values are comparable to those of commercial ITO electrodes. The device based on a 2-bilayer hybrid film exhibited the highest device efficiency of 1.30% among the devices with different number of graphene/Ag NW LBL depositions. Copyright © 2017 Elsevier Inc. All rights reserved.
Characterizing the performance of eddy current probes using photoinductive field-mapping
NASA Astrophysics Data System (ADS)
Moulder, John C.; Nakagawa, Norio
1992-12-01
We present a new method for characterizing the performance of eddy current probes by mapping their electromagnetic fields. The technique is based on the photoinductive effect, the change in the impedance of an eddy current probe induced by laser heating of the material under the probe. The instrument we developed maps a probe's electric field distribution by scanning an infrared laser beam over a thin film of gold lying underneath the probe. Measurements of both photoinductive signals and flaw signals for a series of similar probes demonstrates that the impedance change caused by an electrical-discharge-machined notch or a fatigue crack is proportional to the strength of the photoinductive signal. Thus, photoinductive measurements can supplant the use of artifact standards to calibrate eddy current probes.
Yoshioka, Takashi; Araki, Motoo; Ariyoshi, Yuichi; Wada, Koichiro; Tanaka, Noriyuki; Nasu, Yasutomo
2017-07-01
Segmental arterial mediolysis (SAM) is an uncommon, nonarteriosclerotic vascular disease. SAM is characterized by lysis of arterial media and can lead to aneurysm formation. The renal arteries are the third most common arteries associated with SAM. We report the case of a 32-year-old man with left renal artery aneurysm associated with SAM. We successfully performed left renal autotransplantation using microscopic vascular reconstruction. SAM is characterized by vascular fragility; therefore, microscopic surgery is favorable for treating aneurysms associated with SAM. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Electrochemistry at One Nanoparticle.
Mirkin, Michael V; Sun, Tong; Yu, Yun; Zhou, Min
2016-10-18
Electrochemistry at metal nanoparticles (NPs) is of significant current interest because of its applications in catalysis, energy conversion and storage, and sensors. The electrocatalytic activity of NPs depends strongly on their size, shape, and surface attachment. The use of a large number of particles in most reported kinetic experiments obscured the effects of these factors because of polydispersity and different NP orientations. Recent efforts to probe electrochemistry at single NPs included recording of the catalytically amplified current produced by random collisions of particles with the electrode surface, immobilizing an NP on the surface of a small electrode, and delivering individual NPs to electrode surfaces. Although the signals recorded in such experiments were produced by single NPs, the characterization issues and problems with separating an individual particle from other NPs present in the system made it difficult to obtain spatially and/or temporally resolved information about heterogeneous processes occurring at a specific NP. To carry out electrochemical experiments involving only one NP and characterize such an NP in situ, one needs nanoelectrochemical tools with the characteristic dimension smaller than or comparable to those of the particle of interest. This Account presents fundamentals of two complementary approaches to studying NP electrochemistry, i.e., probing single immobilized NPs with the tip of a scanning electrochemical microscope (SECM) and monitoring the collisions between one catalytic NP and a carbon nanopipette. The former technique can provide spatially resolved information about NP geometry and measure its electron transfer properties and catalytic activity under steady-state conditions. The emphasis here is on the extraction of quantitative physicochemical information from nanoelectrochemical data. By employing a polished disk-type nanoelectrode as an SECM tip, one can characterize a specific nanoparticle in situ and then use the same NP for kinetic experiments. A new mode of SECM operation based on tunneling between the tip and nanoparticle can be used to image the NP topography with a lateral resolution of ∼1 nm. An alternative approach employs carbon nanoprobes produced by chemical vapor deposition of carbon into quartz nanopipettes. One metal NP is captured inside the carbon nanocavity to probe the dynamics of its interactions with the electrode surface on the microsecond time scale. The use of high-resolution transmission electron microscopy is essential for interpreting the results of single-NP collision experiments. A brief discussion of the nanoelectrochemical methodology, recent advances, and future directions is included.
NASA Astrophysics Data System (ADS)
Rogala, Eric W.; Bankman, Isaac N.
2008-04-01
The three-dimensional shapes of microscopic objects are becoming increasingly important for battlespace CBRNE sensing. Potential applications of microscopic 3D shape observations include characterization of biological weapon particles and manufacturing of micromechanical components. Aerosol signatures of stand-off lidar systems, using elastic backscatter or polarization, are dictated by the aerosol particle shapes and sizes that must be well characterized in the lab. A low-cost, fast instrument for 3D surface shape microscopy will be a valuable point sensor for biological particle sensing applications. Both the cost and imaging durations of traditional techniques such as confocal microscopes, atomic force microscopes, and electron scanning microscopes are too high. We investigated the feasibility of a low-cost, fast interferometric technique for imaging the 3D surface shape of microscopic objects at frame rates limited only by the camera in the system. The system operates at two laser wavelengths producing two fringe images collected simultaneously by a digital camera, and a specialized algorithm we developed reconstructs the surface map of the microscopic object. The current implementation assembled to test the concept and develop the new 3D reconstruction algorithm has 0.25 micron resolution in the x and y directions, and about 0.1 micron accuracy in the z direction, as tested on a microscopic glass test object manufactured with etching techniques. We describe the interferometric instrument, present the reconstruction algorithm, and discuss further development.
Kennard, Raymond; DeSisto, William J; Giririjan, Thanu Praba; Mason, Michael D
2008-04-07
Mesoporous silica membranes fabricated by the surfactant-templated sol-gel process have received attention because of the potential to prepare membranes with a narrow pore size distribution and ordering of the interconnected pores. Potential applications include ultrafiltration, biological separations and drug delivery, and separators in lithium-ion batteries. Despite advancements in synthesis and characterization of these membranes, a quantitative description of the membrane microstructure remains a challenge. Currently the membrane microstructure is characterized by the combination of results from several techniques, i.e., gas permeance testing, x-ray diffraction scanning electron microscopy, transmission electron microscopy, and permporometry. The results from these ensemble methods are then compiled and the data fitted to a particular flow model. Although these methods are very effective in determining membrane performance, general pore size distribution, and defect concentration, they are unable to monitor molecular paths through the membrane and quantitatively measure molecular interactions between the molecular specie and pore network. Single-molecule imaging techniques enable optical measurements that probe materials on nanometer length scales through observation of individual molecules without the influence of averaging. Using single-molecule imaging spectroscopy, we can quantitatively characterize the interaction between the probe molecule and the interior of the pore within mesoporous silica membranes. This approach is radically different from typical membrane characterization methods in that it has the potential to spatially sample the underlying pore structure distribution, the surface energy, and the transport properties. Our hope is that this new fundamental knowledge can be quantitatively linked to both the preparation and the performance of membranes, leading to the advancement of membrane science and technology. Fluorescent molecules, 1,1-dioctadecyl-3,3,3,3-tetramethylindo-carbocyanine perchlorate, used to interrogate the available free volume in their vicinity, were loaded into the mesoporous silica membranes at subnanomolar concentrations. The mesoporous silica films were prepared using a nonionic ethylene oxide-propylene oxide-ethylene oxide triblock copolymer surfactant, Pluronic P123, on single crystal silicon substrates using dip coating of a silica sol. Membranes were prepared resulting in an average pore diameter of approximately 5 nm as measured by helium, nitrogen permeance, and porosimetry. Fluorescent images and time transient experiments were recorded using a custom built single-molecule scanning confocal microscope at differing temperatures (10, 20, 30, 40, and 50 degrees C). Time-dependent polarization anisotropy was used to obtain the enthalpy of adsorption and Henry's law constant of the probe molecule.
NASA Astrophysics Data System (ADS)
Kennard, Raymond; DeSisto, William J.; Giririjan, Thanu Praba; Mason, Michael D.
2008-04-01
Mesoporous silica membranes fabricated by the surfactant-templated sol-gel process have received attention because of the potential to prepare membranes with a narrow pore size distribution and ordering of the interconnected pores. Potential applications include ultrafiltration, biological separations and drug delivery, and separators in lithium-ion batteries. Despite advancements in synthesis and characterization of these membranes, a quantitative description of the membrane microstructure remains a challenge. Currently the membrane microstructure is characterized by the combination of results from several techniques, i.e., gas permeance testing, x-ray diffraction scanning electron microscopy, transmission electron microscopy, and permporometry. The results from these ensemble methods are then compiled and the data fitted to a particular flow model. Although these methods are very effective in determining membrane performance, general pore size distribution, and defect concentration, they are unable to monitor molecular paths through the membrane and quantitatively measure molecular interactions between the molecular specie and pore network. Single-molecule imaging techniques enable optical measurements that probe materials on nanometer length scales through observation of individual molecules without the influence of averaging. Using single-molecule imaging spectroscopy, we can quantitatively characterize the interaction between the probe molecule and the interior of the pore within mesoporous silica membranes. This approach is radically different from typical membrane characterization methods in that it has the potential to spatially sample the underlying pore structure distribution, the surface energy, and the transport properties. Our hope is that this new fundamental knowledge can be quantitatively linked to both the preparation and the performance of membranes, leading to the advancement of membrane science and technology. Fluorescent molecules, 1,1-dioctadecyl-3,3,3,3-tetramethylindo-carbocyanine perchlorate, used to interrogate the available free volume in their vicinity, were loaded into the mesoporous silica membranes at subnanomolar concentrations. The mesoporous silica films were prepared using a nonionic ethylene oxide-propylene oxide-ethylene oxide triblock copolymer surfactant, Pluronic P123, on single crystal silicon substrates using dip coating of a silica sol. Membranes were prepared resulting in an average pore diameter of approximately 5nm as measured by helium, nitrogen permeance, and porosimetry. Fluorescent images and time transient experiments were recorded using a custom built single-molecule scanning confocal microscope at differing temperatures (10, 20, 30, 40, and 50°C). Time-dependent polarization anisotropy was used to obtain the enthalpy of adsorption and Henry's law constant of the probe molecule.
Design and fabrication of nanoelectrodes for applications with scanning electrochemical microscopy
NASA Astrophysics Data System (ADS)
Thakar, Rahul
Scanning electrochemical microscope (SECM) was introduced two decades ago and has since emerged as a powerful research tool to investigate localized electrochemical reactions at the surface of material and biological samples. The ability to obtain chemical information at a surface differentiates SECM from competing scanning probe microscopy (SPM) techniques. Although, chemical specificity is a unique advantage offered by SECM, inherent limitations due to a slow feedback response, and challenges associated with production of smaller electrodes have remained major drawbacks. Initially in this research, SECM was utilized as a characterization and investigative tool. Later, advances in SECM imaging were achieved with design and production of multifunctional nanoelectrodes. At first, platinum based nanoelectrodes were fabricated for use as electrochemical probes to investigate local electron transfer at chemically-modified surfaces. Further, micron and sub-micron platinum electrodes with chemically modified shrouds were prepared and characterized with voltammetric measurements. Studies reveal experimental evidence for the presence of edge-effects that are typically associated with submicron electrodes. Interestingly, we observed selectivity of these electrodes based on hydrophobic/ hydrophilic character. Through vapor deposition of parylene over microstructured material, single-pore membranes and porous membrane arrays were produced. Pore size characterization within porous membranes was performed with templated growth of micro/nanostructures. Characterization of transport properties of ions and redox-active molecules through hydrophobic parylene membranes was investigated with ion conductance microscopy and SECM, individually. Parylene is an insulative material that is chemically resistant, deposits conformally over high-aspect ratio objects and also converts into conductive carbon at high-temperature pyrolysis. Motivated by these results we identified a unique strategy to fabricate parylene based carbon electrodes Here, we have developed a unique strategy to obtain carbon based nanoelectrodes from vapor deposition of parylene over pulled glass nanopipettes. With this approach, multiple electrode geometries were constructed and the application of individual geomtery with SECM is demonstrated. In particular, enhanced spatial resolution and electrochemical information were obtained with the use of carbon ring/nanopore electrodes. Practical implications of edge-effects observed with carbon ring/nanopore electrodes is discussed with substrate generation tip collection (SG/TC) SECM Carbon ring/nanopore electrodes have also enabled the use of SECM in conjunction with ion conductance microscopy to alleviate the issue of poor feedback response. This has further helped in deconvolution of electrochemcial and topographical signals. Although, use of carbon nanoelectrodes is discussed with specific applications to electrochemcial microscopy, these probes have wide utility in electroanalytical applications. Initial proof-of-concept experiments along with future directions for this work are presented.
A microscopic study investigating the structure of SnSe surfaces
NASA Astrophysics Data System (ADS)
Kim, Sang-ui; Duong, Anh-Tuan; Cho, Sunglae; Rhim, S. H.; Kim, Jungdae
2016-09-01
SnSe has been widely studied due to its many potential applications that take advantage of its excellent thermoelectric, photovoltaic, and optoelectronic properties. However, experimental investigations into the microscopic structure of SnSe remain largely unexplored. Herein, for the first time, the atomic and electronic structures of SnSe surfaces are studied by a home-built low temperature scanning tunneling microscope (STM) and density functional theory (DFT) calculations. The cleaved surface of SnSe is comprised of covalently bonded Se and Sn atoms in zigzag patterns. However, rectangular periodicity was observed in the atomic images of SnSe surfaces for filled and empty state probing. Detailed atomic structures are analyzed by DFT calculations, indicating that the bright extrusions of both filled and empty state images are mostly located at the positions of Sn atoms.
Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope
Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki
2015-01-01
Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field. PMID:26459874
Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope
NASA Astrophysics Data System (ADS)
Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki
2015-10-01
Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.
NASA Astrophysics Data System (ADS)
Burgess, Jacob A. J.; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian
2015-09-01
Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface.
Near-field photothermal microspectroscopy for adult stem-cell identification and characterization.
Grude, Olaug; Hammiche, Azzedine; Pollock, Hubert; Bentley, Adam J; Walsh, Michael J; Martin, Francis L; Fullwood, Nigel J
2007-12-01
The identification of stem cells in adult tissue is a challenging problem in biomedicine. Currently, stem cells are identified by individual epitopes, which are generally tissue specific. The discovery of a stem-cell marker common to other adult tissue types could open avenues in the development of therapeutic stem-cell strategies. We report the use of the novel technique of Fourier transform infrared near-field photothermal microspectroscopy (FTIR-PTMS) for the characterization of stem cells, transit amplifying (TA) cells and terminally differentiated (TD) cells in the corneal epithelium. Principal component analysis (PCA) data demonstrate excellent discrimination of cell type by spectra. PCA in combination with linear discriminant analysis (PCA-LDA) shows that FTIR-PTMS very effectively discriminates between the three cell populations. Statistically significant differences above the 99% confidence level between IR spectra from stem cells and TA cells suggest that nucleic acid conformational changes are an important component of the differences between spectral data from the two cell types. FTIR-PTMS is a new addition to existing spectroscopy methods based on the concept of interfacing a conventional FTIR spectrometer with an atomic force microscope equipped with a near-field thermal sensing probe. FTIR-PTMS spectroscopy currently has spatial resolution that is similar to that of diffraction-limited optical detection FTIR spectroscopy techniques, but as a near-field probing technique has considerable potential for further improvement. Our work also suggests that FTIR-PTMS is potentially more sensitive than synchrotron radiation FTIR spectroscopy for some applications. Microspectroscopy techniques like FTIR-PTMS provide information about the entire molecular composition of cells, in contrast to epitope recognition that only considers the presence or absence of individual molecules. Our results with FTIR-PTMS on corneal stem cells are promising for the potential development of an IR spectral fingerprint for stem cells.
Attachment of micro- and nano-particles on tipless cantilevers for colloidal probe microscopy.
D'Sa, Dexter J; Chan, Hak-Kim; Chrzanowski, Wojciech
2014-07-15
Current colloidal probe preparation techniques face several challenges in the production of functional probes using particles ⩽5 μm. Challenges include: glue encapsulated particles, glue altered particle properties, improper particle or agglomerate attachment, and lengthy procedures. We present a method to rapidly and reproducibly produce functional micro and nano-colloidal probes. Using a six-step procedure, cantilevers mounted on a custom designed 45° holder were used to approach and obtain a minimal amount of epoxy resin (viscosity of ∼14,000 cP) followed by a single micron/nano particle on the apex of a tipless cantilever. The epoxy and particles were prepared on individual glass slides and subsequently affixed to a 10× or 40× optical microscope lens using another custom designed holder. Scanning electron microscopy and comparative glue-colloidal probe measurements were used to confirm colloidal probe functionality. The method presented allowed rapid and reproducible production of functional colloidal probes (80% success). Single nano-particles were prominently affixed to the apex of the cantilever, unaffected by the epoxy. Nano-colloidal probes were used to conduct topographical, instantaneous force, and adhesive force mapping measurements in dry and liquid media conveying their versatility and functionality in studying nano-colloidal systems. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Raschke, Markus
2015-03-01
To understand and ultimately control the properties of most functional materials, from molecular soft-matter to quantum materials, requires access to the structure, coupling, and dynamics on the elementary time and length scales that define the microscopic interactions in these materials. To gain the desired nanometer spatial resolution with simultaneous spectroscopic specificity we combine scanning probe microscopy with different optical, including coherent, nonlinear, and ultrafast spectroscopies. The underlying near-field interaction mediated by the atomic-force or scanning tunneling microscope tip provides the desired deep-sub wavelength nano-focusing enabling few-nm spatial resolution. I will introduce our generalization of the approach in terms of the near-field impedance matching to a quantum system based on special optical antenna-tip designs. The resulting enhanced and qualitatively new forms of light-matter interaction enable measurements of quantum dynamics in an interacting environment or to image the electromagnetic local density of states of thermal radiation. Other applications include the inter-molecular coupling and dynamics in soft-matter hetero-structures, surface plasmon interferometry as a probe of electronic structure and dynamics in graphene, and quantum phase transitions in correlated electron materials. These examples highlight the general applicability of the new near-field microscopy approach, complementing emergent X-ray and electron imaging tools, aiming towards the ultimate goal of probing matter on its most elementary spatio-temporal level.
Highly sensitive mode mapping of whispering-gallery modes by scanning thermocouple-probe microscopy.
Klein, Angela E; Schmidt, Carsten; Liebsch, Mattes; Janunts, Norik; Dobynde, Mikhail; Tünnermann, Andreas; Pertsch, Thomas
2014-03-01
We propose a method for mapping optical near-fields with the help of a thermocouple scanning-probe microscope tip. As the tip scans the sample surface, its apex is heated by light absorption, generating a thermovoltage. The thermovoltage map represents the intensity distribution of light at the sample surface. The measurement technique has been employed to map optical whispering-gallery modes in fused silica microdisk resonators operating at near-infrared wavelengths. The method could potentially be employed for near-field imaging of a variety of systems in the near-infrared and visible spectral range.
Brownian motion probe for water-ethanol inhomogeneous mixtures
NASA Astrophysics Data System (ADS)
Furukawa, Kazuki; Judai, Ken
2017-12-01
Brownian motion provides information regarding the microscopic geometry and motion of molecules, insofar as it occurs as a result of molecular collisions with a colloid particle. We found that the mobility of polystyrene beads from the Brownian motion in a water-ethanol mixture is larger than that predicted from the liquid shear viscosity. This indicates that mixing water and ethanol is inhomogeneous in micron-sized probe beads. The discrepancy between the mobility of Brownian motion and liquid mobility can be explained by the way the rotation of the beads in an inhomogeneous viscous solvent converts the translational movement.
Brownian motion probe for water-ethanol inhomogeneous mixtures.
Furukawa, Kazuki; Judai, Ken
2017-12-28
Brownian motion provides information regarding the microscopic geometry and motion of molecules, insofar as it occurs as a result of molecular collisions with a colloid particle. We found that the mobility of polystyrene beads from the Brownian motion in a water-ethanol mixture is larger than that predicted from the liquid shear viscosity. This indicates that mixing water and ethanol is inhomogeneous in micron-sized probe beads. The discrepancy between the mobility of Brownian motion and liquid mobility can be explained by the way the rotation of the beads in an inhomogeneous viscous solvent converts the translational movement.
Probing semiconductor gap states with resonant tunneling.
Loth, S; Wenderoth, M; Winking, L; Ulbrich, R G; Malzer, S; Döhler, G H
2006-02-17
Tunneling transport through the depletion layer under a GaAs {110} surface is studied with a low temperature scanning tunneling microscope (STM). The observed negative differential conductivity is due to a resonant enhancement of the tunneling probability through the depletion layer mediated by individual shallow acceptors. The STM experiment probes, for appropriate bias voltages, evanescent states in the GaAs band gap. Energetically and spatially resolved spectra show that the pronounced anisotropic contrast pattern of shallow acceptors occurs exclusively for this specific transport channel. Our findings suggest that the complex band structure causes the observed anisotropies connected with the zinc blende symmetry.
The Atomic Force Microscopic (AFM) Characterization of Nanomaterials
2009-06-01
Several Types of Microscopes ..................................................................................................7 8 OM on Mica Surface...12 9 AFM on Mica Surface...12 10 OM Images SWNTs on Mica After 1) 30 Minutes, b) 60
Synthesis and characterization of the fluorescent probes for the labeling of Microthrix parvicella.
Li, Songya; Fei, Xuening; Jiao, Xiumei; Lin, Dayong; Zhang, Baolian; Cao, Lingyun
2016-03-01
Although the fluorescent in situ hybridization (FISH) has been widely used to identify the Microthrix parvicella (M. parvicella), there are a few disadvantages and difficulties, such as complicated process, time consuming, etc. In this work, a series of fluorescent probes, which were modified by long-chain alkane with hydrophobic property and based on the property of M. parvicella utilizing long-chain fatty acids (LCFA), for the labeling of M. parvicella in bulking sludge were designed, synthesized, and characterized. The probes were characterized by ultraviolet-visible (UV-Vis) absorption spectra, fluorescence spectra, (1)H NMR spectra, and mass spectra, and the photostability and hydrophobic property of probes were investigated. All the results showed that the probes were quite stable and suitable for the fluorescent labeling. The probes had a large stoke shift of 98-137 nm, which was benefit for the fluorescent labeling. In the fluorescent labeling of M. parvicella by the synthesized probes, the probes had excellent labeling effects. By comparison of the images and the Image Pro Plus 6.0 analysis, the optimal concentration of the probes in the activated sludge sample for labeling was 0.010 mmol/L and the probe 3d had the best labeling. In addition, the effect of the duration time of probes was also investigated, and the results showed that the fluorescent intensity of probes hardly changed in a long period of time and it was suitable for labeling.
Probing the brain with molecular fMRI.
Ghosh, Souparno; Harvey, Peter; Simon, Jacob C; Jasanoff, Alan
2018-06-01
One of the greatest challenges of modern neuroscience is to incorporate our growing knowledge of molecular and cellular-scale physiology into integrated, organismic-scale models of brain function in behavior and cognition. Molecular-level functional magnetic resonance imaging (molecular fMRI) is a new technology that can help bridge these scales by mapping defined microscopic phenomena over large, optically inaccessible regions of the living brain. In this review, we explain how MRI-detectable imaging probes can be used to sensitize noninvasive imaging to mechanistically significant components of neural processing. We discuss how a combination of innovative probe design, advanced imaging methods, and strategies for brain delivery can make molecular fMRI an increasingly successful approach for spatiotemporally resolved studies of diverse neural phenomena, perhaps eventually in people. Copyright © 2018 Elsevier Ltd. All rights reserved.
Doll, Joseph C.; Peng, Anthony W.; Ricci, Anthony J.; Pruitt, Beth L.
2012-01-01
Understanding the mechanisms responsible for our sense of hearing requires new tools for unprecedented stimulation and monitoring of sensory cell mechanotransduction at frequencies yet to be explored. We describe nanomechanical force probes designed to evoke mechanotransduction currents at up to 100kHz in living cells. High-speed force and displacement metrology is enabled by integrating piezoresistive sensors and piezoelectric actuators onto nanoscale cantilevers. The design, fabrication process, actuator performance and actuator-sensor crosstalk compensation results are presented. We demonstrate the measurement of mammalian cochlear hair cell mechanotransduction with simultaneous patch clamp recordings at unprecedented speeds. The probes can deliver mechanical stimuli with sub-10 μs rise times in water and are compatible with standard upright and inverted microscopes. PMID:23181721
Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Saikat; Wang, Bo; Cao, Ye
Oxygen vacancies, especially their distribution, are directly coupled to the electromagnetic properties of oxides and related emergent functionalities that have implications for device applications. Here using a homoepitaxial strontium titanate thin film, we demonstrate a controlled manipulation of the oxygen vacancy distribution using the mechanical force from a scanning probe microscope tip. By combining Kelvin probe force microscopy imaging and phase-field simulations, we show that oxygen vacancies can move under a stress-gradient-induced depolarisation field. When tailored, this nanoscale flexoelectric effect enables a controlled spatial modulation. In motion, the scanning probe tip thereby deterministically reconfigures the spatial distribution of vacancies. Finally,more » the ability to locally manipulate oxygen vacancies on-demand provides a tool for the exploration of mesoscale quantum phenomena and engineering multifunctional oxide devices.« less
Fully microscopic analysis of laser-driven finite plasmas using the example of clusters
NASA Astrophysics Data System (ADS)
Peltz, Christian; Varin, Charles; Brabec, Thomas; Fennel, Thomas
2012-06-01
We discuss a microscopic particle-in-cell (MicPIC) approach that allows bridging of the microscopic and macroscopic realms of laser-driven plasma physics. The simultaneous resolution of collisions and electromagnetic field propagation in MicPIC enables the investigation of processes that have been inaccessible to rigorous numerical scrutiny so far. This is illustrated by the two main findings of our analysis of pre-ionized, resonantly laser-driven clusters, which can be realized experimentally in pump-probe experiments. In the linear response regime, MicPIC data are used to extract the individual microscopic contributions to the dielectric cluster response function, such as surface and bulk collision frequencies. We demonstrate that the competition between surface collisions and radiation damping is responsible for the maximum in the size-dependent lifetime of the Mie surface plasmon. The capacity to determine the microscopic underpinning of optical material parameters opens new avenues for modeling nano-plasmonics and nano-photonics systems. In the non-perturbative regime, we analyze the formation and evolution of recollision-induced plasma waves in laser-driven clusters. The resulting dynamics of the electron density and local field hot spots opens a new research direction for the field of attosecond science.
NASA Astrophysics Data System (ADS)
Perea, D. E.; Evans, J. E.
2017-12-01
The ability to image biointerfaces over nanometer to micrometer length scales is fundamental to correlating biological composition and structure to physiological function, and is aided by a multimodal approach using advanced complementary microscopic and spectroscopic characterization techniques. Atom Probe Tomography (APT) is a rapidly expanding technique for atomic-scale three-dimensional structural and chemical analysis. However, the regular application of APT to soft biological materials is lacking in large part due to difficulties in specimen preparation and inabilities to yield meaningful tomographic reconstructions that produce atomic scale compositional distributions as no other technique currently can. Here we describe the atomic-scale tomographic analysis of biological materials using APT that is facilitated by an advanced focused ion beam based approach. A novel specimen preparation strategy is used in the analysis of horse spleen ferritin protein embedded in an organic polymer resin which provides chemical contrast to distinguish the inorganic-organic interface of the ferrihydrite mineral core and protein shell of the ferritin protein. One-dimensional composition profiles directly reveal an enhanced concentration of P and Na at the surface of the ferrihydrite mineral core. We will also describe the development of a unique multifunctional environmental transfer hub allowing controlled cryogenic transfer of specimens under vacuum pressure conditions between an Atom Probe and cryo-FIB/SEM. The utility of the environmental transfer hub is demonstrated through the acquisition of previously unavailable mass spectral analysis of an intact organometallic molecule made possible via controlled cryogenic transfer. The results demonstrate a viable application of APT analysis to study complex biological organic/inorganic interfaces relevant to energy and the environment. References D.E. Perea et al. An environmental transfer hub for multimodal atom probe tomography, Adv. Struct. Chem. Imag, 2017, 3:12 The research was performed at the Environmental Molecular Sciences Laboratory; a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory.
A miniaturized laser-Doppler-system in the ear canal
NASA Astrophysics Data System (ADS)
Schmidt, T.; Gerhardt, U.; Kupper, C.; Manske, E.; Witte, H.
2013-03-01
Gathering vibrational data from the human middle ear is quite difficult. To this date the well-known acoustic probe is used to estimate audiometric parameters, e.g. otoacoustic emissions, wideband reflectance and the measurement of the stapedius reflex. An acoustic probe contains at least one microphone and one loudspeaker. The acoustic parameter determination of the ear canal is essential for the comparability of test-retest measurement situations. Compared to acoustic tubes, the ear canal wall cannot be described as a sound hard boundary. Sound energy is partly absorbed by the ear canal wall. In addition the ear canal features a complex geometric shape (Stinson and Lawton1). Those conditions are one reason for the inter individual variability in input impedance measurement data of the tympanic membrane. The method of Laser-Doppler-Vibrometry is well described in literature. Using this method, the surface velocity of vibrating bodies can be determined contact-free. Conventional Laser-Doppler-Systems (LDS) for auditory research are mounted on a surgical microscope. Assuming a free line of view to the ear drum, the handling of those laser-systems is complicated. We introduce the concept of a miniaturized vibrometer which is supposed to be applied directly in the ear canal for contact-free measurement of the tympanic membrane surface vibration. The proposed interferometer is based on a Fabry-Perot etalon with a DFB laser diode as light source. The fiber-based Fabry-Perot-interferometer is characterized by a reduced size, compared to e.g. Michelson-, or Mach-Zehnder-Systems. For the determination of the phase difference in the interferometer, a phase generated carrier was used. To fit the sensor head in the ear canal, the required shape of the probe was generated by means of the geometrical data of 70 ear molds. The suggested prototype is built up by a singlemode optical fiber with a GRIN-lens, acting as a fiber collimator. The probe has a diameter of 1.8 mm and a length of 5 mm.
Hyperspectral microscopic imaging by multiplex coherent anti-Stokes Raman scattering (CARS)
NASA Astrophysics Data System (ADS)
Khmaladze, Alexander; Jasensky, Joshua; Zhang, Chi; Han, Xiaofeng; Ding, Jun; Seeley, Emily; Liu, Xinran; Smith, Gary D.; Chen, Zhan
2011-10-01
Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful technique to image the chemical composition of complex samples in biophysics, biology and materials science. CARS is a four-wave mixing process. The application of a spectrally narrow pump beam and a spectrally wide Stokes beam excites multiple Raman transitions, which are probed by a probe beam. This generates a coherent directional CARS signal with several orders of magnitude higher intensity relative to spontaneous Raman scattering. Recent advances in the development of ultrafast lasers, as well as photonic crystal fibers (PCF), enable multiplex CARS. In this study, we employed two scanning imaging methods. In one, the detection is performed by a photo-multiplier tube (PMT) attached to the spectrometer. The acquisition of a series of images, while tuning the wavelengths between images, allows for subsequent reconstruction of spectra at each image point. The second method detects CARS spectrum in each point by a cooled coupled charged detector (CCD) camera. Coupled with point-by-point scanning, it allows for a hyperspectral microscopic imaging. We applied this CARS imaging system to study biological samples such as oocytes.
Aberration corrected STEM by means of diffraction gratings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linck, Martin; Ercius, Peter A.; Pierce, Jordan S.
In the past 15 years, the advent of aberration correction technology in electron microscopy has enabled materials analysis on the atomic scale. This is made possible by precise arrangements of multipole electrodes and magnetic solenoids to compensate the aberrations inherent to any focusing element of an electron microscope. In this paper, we describe an alternative method to correct for the spherical aberration of the objective lens in scanning transmission electron microscopy (STEM) using a passive, nanofabricated diffractive optical element. This holographic device is installed in the probe forming aperture of a conventional electron microscope and can be designed to removemore » arbitrarily complex aberrations from the electron's wave front. In this work, we show a proof-of-principle experiment that demonstrates successful correction of the spherical aberration in STEM by means of such a grating corrector (GCOR). Our GCOR enables us to record aberration-corrected high-resolution high-angle annular dark field (HAADF-) STEM images, although yet without advancement in probe current and resolution. Finally, improvements in this technology could provide an economical solution for aberration-corrected high-resolution STEM in certain use scenarios.« less
Fundamental Physics with Electroweak Probes of Nuclei
NASA Astrophysics Data System (ADS)
Pastore, Saori
2018-02-01
The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between lowlying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for A > 12 nuclei.
NASA Astrophysics Data System (ADS)
Shen, Weidian
2005-03-01
Plastic film packaging is widely used these days, especially in the convenience food industry due to its flexibility, boilability, and microwavability. Almost every package is printed with ink. The adhesion of ink on plastic films merits increasing attention to ensure quality packaging. However, inks and plastic films are polymeric materials with complicated molecular structures. The thickness of the jelly-like ink is only 500nm or less, and the thickness of the soft and flexible film is no more than 50μm, which make the quantitative measurement of their adhesion very challenging. Up to now, no scientific quantitative measurement method for the adhesion of ink on plastic films has been documented. We have tried a technique, in which a Nano-Indenter and a Scanning Probe Microscope were used to evaluate the adhesion strength of ink deposited on plastic films, quantitatively, as well as examine the configurations of adhesion failure. It was helpful in better understanding the adhesion mechanism, thus giving direction as to how to improve the adhesion.
Aberration corrected STEM by means of diffraction gratings
Linck, Martin; Ercius, Peter A.; Pierce, Jordan S.; ...
2017-06-12
In the past 15 years, the advent of aberration correction technology in electron microscopy has enabled materials analysis on the atomic scale. This is made possible by precise arrangements of multipole electrodes and magnetic solenoids to compensate the aberrations inherent to any focusing element of an electron microscope. In this paper, we describe an alternative method to correct for the spherical aberration of the objective lens in scanning transmission electron microscopy (STEM) using a passive, nanofabricated diffractive optical element. This holographic device is installed in the probe forming aperture of a conventional electron microscope and can be designed to removemore » arbitrarily complex aberrations from the electron's wave front. In this work, we show a proof-of-principle experiment that demonstrates successful correction of the spherical aberration in STEM by means of such a grating corrector (GCOR). Our GCOR enables us to record aberration-corrected high-resolution high-angle annular dark field (HAADF-) STEM images, although yet without advancement in probe current and resolution. Finally, improvements in this technology could provide an economical solution for aberration-corrected high-resolution STEM in certain use scenarios.« less