Sample records for probe permits analysis

  1. Sampling probe for microarray read out using electrospray mass spectrometry

    DOEpatents

    Van Berkel, Gary J.

    2004-10-12

    An automated electrospray based sampling system and method for analysis obtains samples from surface array spots having analytes. The system includes at least one probe, the probe including an inlet for flowing at least one eluting solvent to respective ones of a plurality of spots and an outlet for directing the analyte away from the spots. An automatic positioning system is provided for translating the probe relative to the spots to permit sampling of any spot. An electrospray ion source having an input fluidicly connected to the probe receives the analyte and generates ions from the analyte. The ion source provides the generated ions to a structure for analysis to identify the analyte, preferably being a mass spectrometer. The probe can be a surface contact probe, where the probe forms an enclosing seal along the periphery of the array spot surface.

  2. Cone penetrometer fiber optic raman spectroscopy probe assembly

    DOEpatents

    Kyle, Kevin R.; Brown, Steven B.

    2000-01-01

    A chemically and mechanically robust optical Raman spectroscopy probe assembly that can be incorporated in a cone penetrometer (CPT) for subsurface deployment. This assembly consists of an optical Raman probe and a penetrometer compatible optical probe housing. The probe is intended for in-situ chemical analysis of chemical constituents in the surrounding environment. The probe is optically linked via fiber optics to the light source and the detection system at the surface. A built-in broadband light source provides a strobe method for direct measurement of sample optical density. A mechanically stable sapphire window is sealed directly into the side-wall of the housing using a metallic, chemically resistant, hermetic seal design. This window permits transmission of the interrogation light beam and the resultant signal. The spectroscopy probe assembly is capable of accepting Raman, Laser induced Fluorescence, reflectance, and other optical probes with collimated output for CPT deployment.

  3. Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Herz, P. R.; Chen, Y.; Aguirre, A. D.; Schneider, K.; Hsiung, P.; Fujimoto, J. G.; Madden, K.; Schmitt, J.; Goodnow, J.; Petersen, C.

    2004-10-01

    A distally actuated, rotational-scanning micromotor endoscope catheter probe is demonstrated for ultrahigh-resolution in vivo endoscopic optical coherence tomography (OCT) imaging. The probe permits focus adjustment for visualization of tissue morphology at varying depths with improved transverse resolution compared with standard OCT imaging probes. The distal actuation avoids nonuniform scanning motion artifacts that are present with other probe designs and can permit a wider range of imaging speeds. Ultrahigh-resolution endoscopic imaging is demonstrated in a rabbit with <4-µm axial resolution by use of a femtosecond Crforsterite laser light source. The micromotor endoscope catheter probe promises to improve OCT imaging performance in future endoscopic imaging applications.

  4. Sounding rocket flight report: MUMP 9 and MUMP 10

    NASA Technical Reports Server (NTRS)

    Grassl, H. J.

    1971-01-01

    The results of the launching of two Marshall-University of Michigan Probes (MUMP 9 and MUMP 10), Nike-Tomahawk sounding rocket payloads, are summarized. The MUMP 9 paylaod included an omegatron mass analyzer, a molecular fluorescence densitometer, a mini-tilty filter, and a lunar position sensor. This complement of instruments permitted the determination of the molecular nitrogen density and temperature in the altitude range from approximately 143 to 297 km over Wallops Island, Virginia, during January 1971. The MUMP 10 payload included an omegatron mass analyzer, an electron temperature probe (Spencer, Brace, and Carignan, 1962), a cryogenic densitometer, and a solar position sensor. This complement of instruments permitted the determination of the molecular nitrogen density and temperature and the charged particle density and temperature in the altitude range from approximately 145 to 290 km over Wallops Island, Virginia, during the afternoon preceding the MUMP 9 launch in January 1971. A general description of the payload kinematics, orientation analysis, and the technique for the reduction and analysis of the data is given.

  5. Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography.

    PubMed

    Herz, P R; Chen, Y; Aguirre, A D; Schneider, K; Hsiung, P; Fujimoto, J G; Madden, K; Schmitt, J; Goodnow, J; Petersen, C

    2004-10-01

    A distally actuated, rotational-scanning micromotor endoscope catheter probe is demonstrated for ultrahigh-resolution in vivo endoscopic optical coherence tomography (OCT) imaging. The probe permits focus adjustment for visualization of tissue morphology at varying depths with improved transverse resolution compared with standard OCT imaging probes. The distal actuation avoids nonuniform scanning motion artifacts that are present with other probe designs and can permit a wider range of imaging speeds. Ultrahigh-resolution endoscopic imaging is demonstrated in a rabbit with <4-microm axial resolution by use of a femtosecond Cr:forsterite laser light source. The micromotor endoscope catheter probe promises to improve OCT imaging performance in future endoscopic imaging applications.

  6. Application of long-term microdialysis in circadian rhythm research

    PubMed Central

    Borjigin, Jimo; Liu, Tiecheng

    2008-01-01

    Our laboratory has pioneered long-term microdialysis to monitor pineal melatonin secretion in living animals across multiple circadian cycles. There are numerous advantages of this approach for rhythm analysis: (1) we can precisely define melatonin onset and offset phases; (2) melatonin is a reliable and stable neuroendocrine output of the circadian clock (versus behavioral output which is sensitive to stress or other factors); (3) melatonin measurements can be performed extremely frequently, permitting high temporal resolution (10 min sampling intervals), which allows detection of slight changes in phase; (4) the measurements can be performed for more than four weeks, allowing perturbations of the circadian clock to be followed long-term in the same animals; (5) this is an automated process (microdialysis coupled with on-line HPLC analysis), which increases accuracy and bypasses the labor-intensive and error-prone manual handling of dialysis samples; and (6) our approach allows real-time investigation of circadian rhythm function and permits appropriate timely adjustments of experimental conditions. The longevity of microdialysis probes, the key to the success of this approach, depends at least in part on the methods of the construction and implantation of dialysis probes. In this article, we have detailed the procedures of construction and surgical implantation of microdialysis probes used currently in our laboratory, which are significantly improved from our previous methods. PMID:18045670

  7. GeneChip{sup {trademark}} screening assay for cystic fibrosis mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronn, M.T.; Miyada, C.G.; Fucini, R.V.

    1994-09-01

    GeneChip{sup {trademark}} assays are based on high density, carefully designed arrays of short oligonucleotide probes (13-16 bases) built directly on derivatized silica substrates. DNA target sequence analysis is achieved by hybridizing fluorescently labeled amplification products to these arrays. Fluorescent hybridization signals located within the probe array are translated into target sequence information using the known probe sequence at each array feature. The mutation screening assay for cystic fibrosis includes sets of oligonucleotide probes designed to detect numerous different mutations that have been described in 14 exons and one intron of the CFTR gene. Each mutation site is addressed by amore » sub-array of at least 40 probe sequences, half designed to detect the wild type gene sequence and half designed to detect the reported mutant sequence. Hybridization with homozygous mutant, homozygous wild type or heterozygous targets results in distinctive hybridization patterns within a sub-array, permitting specific discrimination of each mutation. The GeneChip probe arrays are very small (approximately 1 cm{sup 2}). There miniature size coupled with their high information content make GeneChip probe arrays a useful and practical means for providing CF mutation analysis in a clinical setting.« less

  8. High-speed femtosecond pump-probe spectroscopy with a smart pixel detector array.

    PubMed

    Bourquin, S; Prasankumar, R P; Kärtner, F X; Fujimoto, J G; Lasser, T; Salathé, R P

    2003-09-01

    A new femtosecond pump-probe spectroscopy technique is demonstrated that permits the high-speed, parallel acquisition of pump-probe measurements at multiple wavelengths. This is made possible by use of a novel, two-dimensional smart pixel detector array that performs amplitude demodulation in real time on each pixel. This detector array can not only achieve sensitivities comparable with lock-in amplification but also simultaneously performs demodulation of probe transmission signals at multiple wavelengths, thus permitting rapid time- and wavelength-resolved femtosecond pump-probe spectroscopy. Measurements on a thin sample of bulk GaAs are performed across 58 simultaneous wavelengths. Differential probe transmission changes as small as approximately 2 x 10(-4) can be measured over a 5-ps delay scan in only approximately 3 min. This technology can be applied to a wide range of pump-probe measurements in condensed matter, chemistry, and biology.

  9. A new algorithm for five-hole probe calibration, data reduction, and uncertainty analysis

    NASA Technical Reports Server (NTRS)

    Reichert, Bruce A.; Wendt, Bruce J.

    1994-01-01

    A new algorithm for five-hole probe calibration and data reduction using a non-nulling method is developed. The significant features of the algorithm are: (1) two components of the unit vector in the flow direction replace pitch and yaw angles as flow direction variables; and (2) symmetry rules are developed that greatly simplify Taylor's series representations of the calibration data. In data reduction, four pressure coefficients allow total pressure, static pressure, and flow direction to be calculated directly. The new algorithm's simplicity permits an analytical treatment of the propagation of uncertainty in five-hole probe measurement. The objectives of the uncertainty analysis are to quantify uncertainty of five-hole results (e.g., total pressure, static pressure, and flow direction) and determine the dependence of the result uncertainty on the uncertainty of all underlying experimental and calibration measurands. This study outlines a general procedure that other researchers may use to determine five-hole probe result uncertainty and provides guidance to improve measurement technique. The new algorithm is applied to calibrate and reduce data from a rake of five-hole probes. Here, ten individual probes are mounted on a single probe shaft and used simultaneously. Use of this probe is made practical by the simplicity afforded by this algorithm.

  10. Atmospheric Solid Analysis Probe Coupled to Ion Mobility Spectrometry-Mass Spectrometry, a Fast and Simple Method for Polyalphaolefin Characterization

    NASA Astrophysics Data System (ADS)

    Mendes Siqueira, Anna Luiza; Beaumesnil, Mathieu; Hubert-Roux, Marie; Loutelier-Bourhis, Corinne; Afonso, Carlos; Bai, Yang; Courtiade, Marion; Racaud, Amandine

    2018-05-01

    Polyalphaolefins (PAOs) are polymers produced from linear alpha olefins through catalytic oligomerization processes. The PAOs are known as synthetic high-performance base stock fluids used to improve the efficiency of many other synthetic products. In this study, we report the direct characterization of PAOs using atmospheric solid analysis probe (ASAP) coupled with ion mobility spectrometry-mass spectrometry (IMS-MS). We studied different PAOs grades exhibiting low- and high-viscosity index. Specific adjustments of the ASAP source parameters permitted the monitoring of ionization processes as three mechanisms could occur for these compounds: hydride abstraction, nitrogen addition, and/or the formation of [M-2H]+• ions. Several series of fragment ions were obtained, which allowed the identification of the alpha olefin used to synthesize the PAO. The use of the ion mobility separation dimension provides information on isomeric species. In addition, the drift time versus m/z plots permitted rapid comparison between PAO samples and to evidence their complexity. These 2D plots appear as fingerprints of PAO samples. To conclude, the resort to ASAP-IMS-MS provides a rapid characterization of the PAO samples in a direct analysis approach, without any sample preparation.

  11. Probe Heating Method for the Analysis of Solid Samples Using a Portable Mass Spectrometer

    PubMed Central

    Kumano, Shun; Sugiyama, Masuyuki; Yamada, Masuyoshi; Nishimura, Kazushige; Hasegawa, Hideki; Morokuma, Hidetoshi; Inoue, Hiroyuki; Hashimoto, Yuichiro

    2015-01-01

    We previously reported on the development of a portable mass spectrometer for the onsite screening of illicit drugs, but our previous sampling system could only be used for liquid samples. In this study, we report on an attempt to develop a probe heating method that also permits solid samples to be analyzed using a portable mass spectrometer. An aluminum rod is used as the sampling probe. The powdered sample is affixed to the sampling probe or a droplet of sample solution is placed on the tip of the probe and dried. The probe is then placed on a heater to vaporize the sample. The vapor is then introduced into the portable mass spectrometer and analyzed. With the heater temperature set to 130°C, the developed system detected 1 ng of methamphetamine, 1 ng of amphetamine, 3 ng of 3,4-methylenedioxymethamphetamine, 1 ng of 3,4-methylenedioxyamphetamine, and 0.3 ng of cocaine. Even from mixtures consisting of clove powder and methamphetamine powder, methamphetamine ions were detected by tandem mass spectrometry. The developed probe heating method provides a simple method for the analysis of solid samples. A portable mass spectrometer incorporating this method would thus be useful for the onsite screening of illicit drugs. PMID:26819909

  12. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... savers” or “protectors” with nonreactive diaphragms to reduce dead volumes is permitted. (b) Sample probe. (1) The sample probe must be a straight, closed end, stainless steel, multi-hole probe. The inside... probe may not be greater than 0.10 cm. The fitting that attaches the probe to the exhaust pipe must be...

  13. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... savers” or “protectors” with nonreactive diaphragms to reduce dead volumes is permitted. (b) Sample probe. (1) The sample probe must be a straight, closed end, stainless steel, multi-hole probe. The inside... probe may not be greater than 0.10 cm. The fitting that attaches the probe to the exhaust pipe must be...

  14. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... savers” or “protectors” with nonreactive diaphragms to reduce dead volumes is permitted. (b) Sample probe. (1) The sample probe must be a straight, closed end, stainless steel, multi-hole probe. The inside... probe may not be greater than 0.10 cm. The fitting that attaches the probe to the exhaust pipe must be...

  15. Secondary structure prediction and structure-specific sequence analysis of single-stranded DNA.

    PubMed

    Dong, F; Allawi, H T; Anderson, T; Neri, B P; Lyamichev, V I

    2001-08-01

    DNA sequence analysis by oligonucleotide binding is often affected by interference with the secondary structure of the target DNA. Here we describe an approach that improves DNA secondary structure prediction by combining enzymatic probing of DNA by structure-specific 5'-nucleases with an energy minimization algorithm that utilizes the 5'-nuclease cleavage sites as constraints. The method can identify structural differences between two DNA molecules caused by minor sequence variations such as a single nucleotide mutation. It also demonstrates the existence of long-range interactions between DNA regions separated by >300 nt and the formation of multiple alternative structures by a 244 nt DNA molecule. The differences in the secondary structure of DNA molecules revealed by 5'-nuclease probing were used to design structure-specific probes for mutation discrimination that target the regions of structural, rather than sequence, differences. We also demonstrate the performance of structure-specific 'bridge' probes complementary to non-contiguous regions of the target molecule. The structure-specific probes do not require the high stringency binding conditions necessary for methods based on mismatch formation and permit mutation detection at temperatures from 4 to 37 degrees C. Structure-specific sequence analysis is applied for mutation detection in the Mycobacterium tuberculosis katG gene and for genotyping of the hepatitis C virus.

  16. Biomedical ultrasonoscope

    NASA Technical Reports Server (NTRS)

    Lee, R. D. (Inventor)

    1976-01-01

    An instrument with a single ultrasonic transducer probe and a linear array of transducer probes permitting three operator modes is described. An 'A' and an 'M' mode scanner were combined with a 'C' mode scanner and a single receiver is used. The 'C' scanner mode enables two-dimensional cross sections of the viewed organ. Video-produced markers enable measurement of the dimensions of the heart. COS/MOS integrated logic circuit components are used to minimize power consumption and permit battery operation.

  17. In-situ investigation of protein and DNA structure using UVRRS

    NASA Astrophysics Data System (ADS)

    Greek, L. Shane; Schulze, H. Georg; Blades, Michael W.; Haynes, Charles A.; Turner, Robin F. B.

    1997-05-01

    Ultraviolet resonance Raman spectroscopy (UVRRS) has the potential to become a sensitive, specific, versatile bioanalytical and biophysical technique for routine investigations of proteins, DNA, and their monomeric components, as well as a variety smaller, physiologically important aromatic molecules. The transition of UVRRS from a complex, specialized spectroscopic method to a common laboratory assay depends upon several developments, including a robust sample introduction method permitting routine, in situ analysis in standard laboratory environments. To this end, we recently reported the first fiber-optic probes suitable for deep-UV pulsed laser UVRRS. In this paper, we extend this work by demonstrating the applicability of such probes to studies of biochemical relevance, including investigations of the resonance enhancement of phosphotyrosine, thermal denaturation of RNase T1, and specific and non-specific protein binding. The advantages and disadvantages of the probes are discussed with reference to sample conditions and probe design considerations.

  18. 40 CFR 91.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... “protectors” with nonreactive diaphragms to reduce dead volumes is permitted. (b) Sample probe. (1) The sample probe shall be a straight, closed end, stainless steel, multi-hole probe. The inside diameter shall not be greater than the inside diameter of the sample line + 0.03 cm. The wall thickness of the probe...

  19. 40 CFR 91.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... “protectors” with nonreactive diaphragms to reduce dead volumes is permitted. (b) Sample probe. (1) The sample probe shall be a straight, closed end, stainless steel, multi-hole probe. The inside diameter shall not be greater than the inside diameter of the sample line + 0.03 cm. The wall thickness of the probe...

  20. 40 CFR 91.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... “protectors” with nonreactive diaphragms to reduce dead volumes is permitted. (b) Sample probe. (1) The sample probe shall be a straight, closed end, stainless steel, multi-hole probe. The inside diameter shall not be greater than the inside diameter of the sample line + 0.03 cm. The wall thickness of the probe...

  1. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification

    PubMed Central

    Schouten, Jan P.; McElgunn, Cathal J.; Waaijer, Raymond; Zwijnenburg, Danny; Diepvens, Filip; Pals, Gerard

    2002-01-01

    We describe a new method for relative quantification of 40 different DNA sequences in an easy to perform reaction requiring only 20 ng of human DNA. Applications shown of this multiplex ligation-dependent probe amplification (MLPA) technique include the detection of exon deletions and duplications in the human BRCA1, MSH2 and MLH1 genes, detection of trisomies such as Down’s syndrome, characterisation of chromosomal aberrations in cell lines and tumour samples and SNP/mutation detection. Relative quantification of mRNAs by MLPA will be described elsewhere. In MLPA, not sample nucleic acids but probes added to the samples are amplified and quantified. Amplification of probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two oligonucleotides, one synthetic and one M13 derived, that hybridise to adjacent sites of the target sequence. Such hybridised probe oligonucleotides are ligated, permitting subsequent amplification. All ligated probes have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are small (50–70 nt). The prerequisite of a ligation reaction provides the opportunity to discriminate single nucleotide differences. PMID:12060695

  2. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification.

    PubMed

    Schouten, Jan P; McElgunn, Cathal J; Waaijer, Raymond; Zwijnenburg, Danny; Diepvens, Filip; Pals, Gerard

    2002-06-15

    We describe a new method for relative quantification of 40 different DNA sequences in an easy to perform reaction requiring only 20 ng of human DNA. Applications shown of this multiplex ligation-dependent probe amplification (MLPA) technique include the detection of exon deletions and duplications in the human BRCA1, MSH2 and MLH1 genes, detection of trisomies such as Down's syndrome, characterisation of chromosomal aberrations in cell lines and tumour samples and SNP/mutation detection. Relative quantification of mRNAs by MLPA will be described elsewhere. In MLPA, not sample nucleic acids but probes added to the samples are amplified and quantified. Amplification of probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two oligonucleotides, one synthetic and one M13 derived, that hybridise to adjacent sites of the target sequence. Such hybridised probe oligonucleotides are ligated, permitting subsequent amplification. All ligated probes have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are small (50-70 nt). The prerequisite of a ligation reaction provides the opportunity to discriminate single nucleotide differences.

  3. 75 FR 57541 - Self-Regulatory Organizations; New York Stock Exchange LLC and NYSE Amex LLC; Order Approving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... conducting a market probe in the normal course of business'' (``market probe'').\\8\\ Thus, for Floor brokers... are permitted to provide such information in response to a Floor broker's ``market probe.'' \\8\\ See... brokers would no longer need to request such information from DMMs as part of a Rule 115 ``market probe...

  4. Supercontinuum white light lasers for flow cytometry

    PubMed Central

    Telford, William G.; Subach, Fedor V.; Verkhusha, Vladislav V.

    2009-01-01

    Excitation of fluorescent probes for flow cytometry has traditionally been limited to a few discrete laser lines, an inherent limitation in our ability to excite the vast array of fluorescent probes available for cellular analysis. In this report, we have used a supercontinuum (SC) white light laser as an excitation source for flow cytometry. By selectively filtering the wavelength of interest, almost any laser wavelength in the visible spectrum can be separated and used for flow cytometric analysis. The white light lasers used in this study were integrated into a commercial flow cytometry platform, and a series of high-transmission bandpass filters used to select wavelength ranges from the blue (~480 nm) to the long red (>700 nm). Cells labeled with a variety of fluorescent probes or expressing fluorescent proteins were then analyzed, in comparison with traditional lasers emitting at wavelengths similar to the filtered SC source. Based on a standard sensitivity metric, the white light laser bandwidths produced similar excitation levels to traditional lasers for a wide variety of fluorescent probes and expressible proteins. Sensitivity assessment using fluorescent bead arrays confirmed that the SC laser and traditional sources resulted in similar levels of detection sensitivity. Supercontinuum white light laser sources therefore have the potential to remove a significant barrier in flow cytometric analysis, namely the limitation of excitation wavelengths. Almost any visible wavelength range can be made available for excitation, allowing access to virtually any fluorescent probe, and permitting “fine-tuning” of excitation wavelength to particular probes. PMID:19072836

  5. Genetic barcodes

    DOEpatents

    Weier, Heinz -Ulrich G

    2015-08-04

    Herein are described multicolor FISH probe sets termed "genetic barcodes" targeting several cancer or disease-related loci to assess gene rearrangements and copy number changes in tumor cells. Two, three or more different fluorophores are used to detect the genetic barcode sections thus permitting unique labeling and multilocus analysis in individual cell nuclei. Gene specific barcodes can be generated and combined to provide both numerical and structural genetic information for these and other pertinent disease associated genes.

  6. Optimal approaches for inline sampling of organisms in ballast water: L-shaped vs. Straight sample probes

    NASA Astrophysics Data System (ADS)

    Wier, Timothy P.; Moser, Cameron S.; Grant, Jonathan F.; Riley, Scott C.; Robbins-Wamsley, Stephanie H.; First, Matthew R.; Drake, Lisa A.

    2017-10-01

    Both L-shaped ("L") and straight ("Straight") sample probes have been used to collect water samples from a main ballast line in land-based or shipboard verification testing of ballast water management systems (BWMS). A series of experiments was conducted to quantify and compare the sampling efficiencies of L and Straight sample probes. The findings from this research-that both L and Straight probes sample organisms with similar efficiencies-permit increased flexibility for positioning sample probes aboard ships.

  7. TARGETED PRINCIPLE COMPONENT ANALYSIS: A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY

    PubMed Central

    YÜCEL, MERYEM A.; SELB, JULIETTE; COOPER, ROBERT J.; BOAS, DAVID A.

    2014-01-01

    As near-infrared spectroscopy (NIRS) broadens its application area to different age and disease groups, motion artifacts in the NIRS signal due to subject movement is becoming an important challenge. Motion artifacts generally produce signal fluctuations that are larger than physiological NIRS signals, thus it is crucial to correct for them before obtaining an estimate of stimulus evoked hemodynamic responses. There are various methods for correction such as principle component analysis (PCA), wavelet-based filtering and spline interpolation. Here, we introduce a new approach to motion artifact correction, targeted principle component analysis (tPCA), which incorporates a PCA filter only on the segments of data identified as motion artifacts. It is expected that this will overcome the issues of filtering desired signals that plagues standard PCA filtering of entire data sets. We compared the new approach with the most effective motion artifact correction algorithms on a set of data acquired simultaneously with a collodion-fixed probe (low motion artifact content) and a standard Velcro probe (high motion artifact content). Our results show that tPCA gives statistically better results in recovering hemodynamic response function (HRF) as compared to wavelet-based filtering and spline interpolation for the Velcro probe. It results in a significant reduction in mean-squared error (MSE) and significant enhancement in Pearson’s correlation coefficient to the true HRF. The collodion-fixed fiber probe with no motion correction performed better than the Velcro probe corrected for motion artifacts in terms of MSE and Pearson’s correlation coefficient. Thus, if the experimental study permits, the use of a collodion-fixed fiber probe may be desirable. If the use of a collodion-fixed probe is not feasible, then we suggest the use of tPCA in the processing of motion artifact contaminated data. PMID:25360181

  8. The endo-rectal probe prototype for the TOPEM project

    NASA Astrophysics Data System (ADS)

    Musico, Paolo; TOPEM Collaboration

    2016-07-01

    The TOPEM project was funded by INFN with the aim of studying the design of a TOF-PET system dedicated to prostate imaging. During last year a big effort was put into building the prototype of the endo-rectal probe from all point of view: mechanical, thermal, electrical. A dedicated integrated circuit was adopted to have the minimum dimensions: the TOFPET ASIC. The system is composed by a LYSO pixellated crystal which is seen by a 128 SiPM matrix on both surfaces: this permits Depth Of Interaction (DOI) measurement. The 4 needed ASICs are handled by a FPGA board which transmits the acquired data over an UDP connection. The external container was made using 3-D printing technology: internal channels on the external surface permit the flowing of controlled temperature (≈35 °C) water. Electronic components power is dissipated using an internal air flow kept at lower temperature (≈20 °C). The probe is MR compatible: a dedicated small antenna can be accommodated in the container. This will permit simultaneous imaging in MRI and PET systems.

  9. Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing.

    PubMed

    Castle, John; Garrett-Engele, Phil; Armour, Christopher D; Duenwald, Sven J; Loerch, Patrick M; Meyer, Michael R; Schadt, Eric E; Stoughton, Roland; Parrish, Mark L; Shoemaker, Daniel D; Johnson, Jason M

    2003-01-01

    Microarrays offer a high-resolution means for monitoring pre-mRNA splicing on a genomic scale. We have developed a novel, unbiased amplification protocol that permits labeling of entire transcripts. Also, hybridization conditions, probe characteristics, and analysis algorithms were optimized for detection of exons, exon-intron edges, and exon junctions. These optimized protocols can be used to detect small variations and isoform mixtures, map the tissue specificity of known human alternative isoforms, and provide a robust, scalable platform for high-throughput discovery of alternative splicing.

  10. Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing

    PubMed Central

    Castle, John; Garrett-Engele, Phil; Armour, Christopher D; Duenwald, Sven J; Loerch, Patrick M; Meyer, Michael R; Schadt, Eric E; Stoughton, Roland; Parrish, Mark L; Shoemaker, Daniel D; Johnson, Jason M

    2003-01-01

    Microarrays offer a high-resolution means for monitoring pre-mRNA splicing on a genomic scale. We have developed a novel, unbiased amplification protocol that permits labeling of entire transcripts. Also, hybridization conditions, probe characteristics, and analysis algorithms were optimized for detection of exons, exon-intron edges, and exon junctions. These optimized protocols can be used to detect small variations and isoform mixtures, map the tissue specificity of known human alternative isoforms, and provide a robust, scalable platform for high-throughput discovery of alternative splicing. PMID:14519201

  11. Fluorescence excitation-emission matrix (EEM) spectroscopy and cavity ring-down (CRD) absorption spectroscopy of oil-contaminated jet fuel using fiber-optic probes.

    PubMed

    Omrani, Hengameh; Barnes, Jack A; Dudelzak, Alexander E; Loock, Hans-Peter; Waechter, Helen

    2012-06-21

    Excitation emission matrix (EEM) and cavity ring-down (CRD) spectral signatures have been used to detect and quantitatively assess contamination of jet fuels with aero-turbine lubricating oil. The EEM spectrometer has been fiber-coupled to permit in situ measurements of jet turbine oil contamination of jet fuel. Parallel Factor (PARAFAC) analysis as well as Principal Component Analysis and Regression (PCA/PCR) were used to quantify oil contamination in a range from the limit of detection (10 ppm) to 1000 ppm. Fiber-loop cavity ring-down spectroscopy using a pulsed 355 nm laser was used to quantify the oil contamination in the range of 400 ppm to 100,000 ppm. Both methods in combination therefore permit the detection of oil contamination with a linear dynamic range of about 10,000.

  12. Automated microscopy system for detection and genetic characterization of fetal nucleated red blood cells on slides

    NASA Astrophysics Data System (ADS)

    Ravkin, Ilya; Temov, Vladimir

    1998-04-01

    The detection and genetic analysis of fetal cells in maternal blood will permit noninvasive prenatal screening for genetic defects. Applied Imaging has developed and is currently evaluating a system for semiautomatic detection of fetal nucleated red blood cells on slides and acquisition of their DNA probe FISH images. The specimens are blood smears from pregnant women (9 - 16 weeks gestation) enriched for nucleated red blood cells (NRBC). The cells are identified by using labeled monoclonal antibodies directed to different types of hemoglobin chains (gamma, epsilon); the nuclei are stained with DAPI. The Applied Imaging system has been implemented with both Olympus BX and Nikon Eclipse series microscopes which were equipped with transmission and fluorescence optics. The system includes the following motorized components: stage, focus, transmission, and fluorescence filter wheels. A video camera with light integration (COHU 4910) permits low light imaging. The software capabilities include scanning, relocation, autofocusing, feature extraction, facilities for operator review, and data analysis. Detection of fetal NRBCs is achieved by employing a combination of brightfield and fluorescence images of nuclear and cytoplasmic markers. The brightfield and fluorescence images are all obtained with a single multi-bandpass dichroic mirror. A Z-stack of DNA probe FISH images is acquired by moving focus and switching excitation filters. This stack is combined to produce an enhanced image for presentation and spot counting.

  13. Quantitative dual-probe microdialysis: mathematical model and analysis.

    PubMed

    Chen, Kevin C; Höistad, Malin; Kehr, Jan; Fuxe, Kjell; Nicholson, Charles

    2002-04-01

    Steady-state microdialysis is a widely used technique to monitor the concentration changes and distributions of substances in tissues. To obtain more information about brain tissue properties from microdialysis, a dual-probe approach was applied to infuse and sample the radiotracer, [3H]mannitol, simultaneously both in agar gel and in the rat striatum. Because the molecules released by one probe and collected by the other must diffuse through the interstitial space, the concentration profile exhibits dynamic behavior that permits the assessment of the diffusion characteristics in the brain extracellular space and the clearance characteristics. In this paper a mathematical model for dual-probe microdialysis was developed to study brain interstitial diffusion and clearance processes. Theoretical expressions for the spatial distribution of the infused tracer in the brain extracellular space and the temporal concentration at the probe outlet were derived. A fitting program was developed using the simplex algorithm, which finds local minima of the standard deviations between experiments and theory by adjusting the relevant parameters. The theoretical curves accurately fitted the experimental data and generated realistic diffusion parameters, implying that the mathematical model is capable of predicting the interstitial diffusion behavior of [3H]mannitol and that it will be a valuable quantitative tool in dual-probe microdialysis.

  14. Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase.

    PubMed

    Tsutsui, Hidekazu; Jinno, Yuka; Tomita, Akiko; Niino, Yusuke; Yamada, Yoshiyuki; Mikoshiba, Katsuhiko; Miyawaki, Atsushi; Okamura, Yasushi

    2013-09-15

      One of the most awaited techniques in modern physiology is the sensitive detection of spatiotemporal electrical activity in a complex network of excitable cells. The use of genetically encoded voltage probes has been expected to enable such analysis. However, in spite of recent progress, existing probes still suffer from low signal amplitude and/or kinetics too slow to detect fast electrical activity. Here, we have developed an improved voltage probe named Mermaid2, which is based on the voltage-sensor domain of the voltage-sensing phosphatase from Ciona intestinalis and Förster energy transfer between a pair of fluorescent proteins. In mammalian cells, Mermaid2 permits ratiometric readouts of fractional changes of more than 50% over a physiologically relevant voltage range with fast kinetics, and it was used to follow a train of action potentials at frequencies of up to 150 Hz. Mermaid2 was also able to detect single action potentials and subthreshold voltage responses in hippocampal neurons in vitro, in addition to cortical electrical activity evoked by sound stimuli in single trials in living mice.

  15. Rotary union for use with ultrasonic thickness measuring probe

    DOEpatents

    Nachbar, H.D.

    1992-09-15

    A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body. 5 figs.

  16. Rotary union for use with ultrasonic thickness measuring probe

    DOEpatents

    Nachbar, Henry D.

    1992-01-01

    A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body.

  17. Optical probe for determining the fat/lean interface in cuts of meat

    DOEpatents

    Weber, Thomas M.; Callow, Diane S.; Jones, James F.; Kuehl, Michael A.; Spletzer, Barry L.

    2005-02-22

    An apparatus and method for locating the boundary surface between a layer of fatty tissue and lean tissue in a cut of meat, such as beef, such as slabs of meat undergoing trimming and cutting in commercial meet processing facilitates. The invention exploits the fact that fatty tissue and lean tissue have significantly different responses to incident light energy. By gauging the degree to which a generated beam of light is scattered and reflected by the tissues under evaluation, the invention permits the character of the tissue to be ascertained. An incident beam of light, such as green light, is generated and transmitted to a probe tip, which tip is inserted into the cut of meat under investigation. The light beam is emitted into the meat tissues from the probe tip, and then is scattered and reflected by the tissues, whereupon some fraction of the emitted light returns to the probe tip. The returning light energy is transmitted to a detector; relative changes in the returning light transmitted to the detector permit the operator to determine when the probe tip is approaching or penetrating the fat/lean tissue interface.

  18. Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Virtual mode

    NASA Astrophysics Data System (ADS)

    Lapshin, Rostislav V.

    2016-08-01

    A method of distributed calibration of a probe microscope scanner is suggested. The main idea consists in a search for a net of local calibration coefficients (LCCs) in the process of automatic measurement of a standard surface, whereby each point of the movement space of the scanner can be characterized by a unique set of scale factors. Feature-oriented scanning (FOS) methodology is used as a basis for implementation of the distributed calibration permitting to exclude in situ the negative influence of thermal drift, creep and hysteresis on the obtained results. Possessing the calibration database enables correcting in one procedure all the spatial systematic distortions caused by nonlinearity, nonorthogonality and spurious crosstalk couplings of the microscope scanner piezomanipulators. To provide high precision of spatial measurements in nanometer range, the calibration is carried out using natural standards - constants of crystal lattice. One of the useful modes of the developed calibration method is a virtual mode. In the virtual mode, instead of measurement of a real surface of the standard, the calibration program makes a surface image ;measurement; of the standard, which was obtained earlier using conventional raster scanning. The application of the virtual mode permits simulation of the calibration process and detail analysis of raster distortions occurring in both conventional and counter surface scanning. Moreover, the mode allows to estimate the thermal drift and the creep velocities acting while surface scanning. Virtual calibration makes possible automatic characterization of a surface by the method of scanning probe microscopy (SPM).

  19. EXAFS: New tool for study of battery and fuel cell materials

    NASA Technical Reports Server (NTRS)

    Mcbreen, James; Ogrady, William E.; Pandya, Kaumudi I.

    1987-01-01

    Extended X ray absorption fine structure (EXAFS) is a powerful technique for probing the local atomic structure of battery and fuel cell materials. The major advantages of EXAFS are that both the probe and the signal are X rays and the technique is element selective and applicable to all states of matter. This permits in situ studies of electrodes and determination of the structure of single components in composite electrodes, or even complete cells. EXAFS specifically probes short range order and yields coordination numbers, bond distances, and chemical identity of nearest neighbors. Thus, it is ideal for structural studies of ions in solution and the poorly crystallized materials that are often the active materials or catalysts in batteries and fuel cells. Studies on typical battery and fuel cell components are used to describe the technique and the capability of EXAFS as a structural tool in these applications. Typical experimental and data analysis procedures are outlined. The advantages and limitations of the technique are also briefly discussed.

  20. Homogeneous real-time detection of single-nucleotide polymorphisms by strand displacement amplification on the BD ProbeTec ET system.

    PubMed

    Wang, Sha-Sha; Thornton, Keith; Kuhn, Andrew M; Nadeau, James G; Hellyer, Tobin J

    2003-10-01

    The BD ProbeTec ET System is based on isothermal strand displacement amplification (SDA) of target nucleic acid coupled with homogeneous real-time detection using fluorescent probes. We have developed a novel, rapid method using this platform that incorporates a universal detection format for identification of single-nucleotide polymorphisms (SNPs) and other genotypic variations. The system uses a common pair of fluorescent Detector Probes in conjunction with unlabeled allele-specific Adapter Primers and a universal buffer chemistry to permit analysis of multiple SNP loci under generic assay conditions. We used Detector Probes labeled with different dyes to facilitate differentiation of two alternative alleles in a single reaction with no postamplification manipulation. We analyzed six SNPs within the human beta(2)-adrenergic receptor (beta(2)AR) gene, using whole blood, buccal swabs, and urine samples, and compared results with those obtained by DNA sequencing. Unprocessed whole blood was successfully genotyped with as little as 0.1-1 micro L of sample per reaction. All six beta(2)AR assays were able to accommodate >/==" BORDER="0">20 micro L of unprocessed whole blood. For the 14 individuals tested, genotypes determined with the six beta(2)AR assays agreed with DNA sequencing results. SDA-based allelic differentiation on the BD ProbeTec ET System can detect SNPs rapidly, using whole blood, buccal swabs, or urine.

  1. Institute for Science and Engineering Simulation (ISES)

    DTIC Science & Technology

    2015-12-18

    performance and other functionalities such as electrical , magnetic, optical, thermal, biological, chemical, and so forth. Structural integrity...transmission electron microscopy (HRSTEM) and three-dimensional atom probe (3DAP) tomography , the true atomic scale structure and change in chemical...atom probe tomography (3DAP) techniques, has permitted characterizing and quantifying the multimodal size distribution of different generations of γ

  2. Sequencing Bands of Ribosomal Intergenic Spacer Analysis Fingerprints for Characterization and Microscale Distribution of Soil Bacterium Populations Responding to Mercury Spiking

    PubMed Central

    Ranjard, Lionel; Brothier, Elisabeth; Nazaret, Sylvie

    2000-01-01

    Two major emerging bands (a 350-bp band and a 650-bp band) within the RISA (ribosomal intergenic spacer analysis) profile of a soil bacterial community spiked with Hg(II) were selected for further identification of the populations involved in the response of the community to the added metal. The bands were cut out from polyacrylamide gels, cloned, characterized by restriction analysis, and sequenced for phylogenetic affiliation of dominant clones. The sequences were the intergenic spacer between the rrs and rrl genes and the first 130 nucleotides of the rrl gene. Comparison of sequences derived from the 350-bp band to The GenBank database permitted us to identify the bacteria as being mostly close relatives to low G+C firmicutes (Clostridium-like genera), while the 650-bp band permitted us to identify the bacteria as being mostly close relatives to β-proteobacteria (Ralstonia-like genera). Oligonucleotide probes specific for the identified dominant bacteria were designed and hybridized with the RISA profiles derived from the control and spiked communities. These studies confirmed the contribution of these populations to the community response to the metal. Hybridization of the RISA profiles from subcommunities (bacterial pools associated with different soil microenvironments) also permitted to characterize the distribution and the dynamics of these populations at a microscale level following mercury spiking. PMID:11097911

  3. Langmuir probe measurements of double-layers in a pulsed discharge

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Crawford, F. W.

    1980-01-01

    Langmuir probe measurements were carried out which confirm the occurrence of double-layers in an argon positive column. Pulsing the discharge current permitted probe measurements to be performed in the presence of the double-layer. Supplementary evidence, obtained from DC and pulsed discharges, indicated that the double-layers formed in the two modes of operation were similar. The double-layers observed were weak and stable; their relation to other classes of double-layers are discussed, and directions for future work are suggested.

  4. Multitip scanning bio-Kelvin probe

    NASA Astrophysics Data System (ADS)

    Baikie, I. D.; Smith, P. J. S.; Porterfield, D. M.; Estrup, P. J.

    1999-03-01

    We have developed a novel multitip scanning Kelvin probe which can measure changes in biological surface potential ΔVs to within 2 mV and, quasisimultaneously monitor displacement to <1 μm. The control and measurement subcomponents are PC based and incorporate a flexible user interface permitting software control of each individual tip, measurement, and scan parameters. We review the mode of operation and design features of the scanning bio-Kelvin probe including tip steering, signal processing, tip calibration, and novel tip tracking/dithering routines. This system uniquely offers both tip-to-sample spacing control (which is essential to avoid spurious changes in ΔVs due to variations in mean spacing) and a dithering routine to maintain tip orientation to the biological specimen, irrespective of the latter's movement. These features permit long term (>48 h) "active" tracking of the displacement and biopotentials developed along and around a plant shoot in response to an environmental stimulus, e.g., differential illumination (phototropism) or changes in orientation (gravitropism).

  5. Sounding rocket flight report, MUMP 9 and MUMP 10

    NASA Technical Reports Server (NTRS)

    Grassl, H. J.

    1971-01-01

    The results of the launching of two-Marshall-University of Michigan Probes (MUMP 9 and MUMP 10), Nike-Tomahawk sounding rocket payloads, are summarized. The MUMP is similar to the thermosphere probe, an ejectable instrument package for studying the variability of the earth's atmospheric parameters. The MUMP 9 payload included an omegatron mass analyzer, a molecular fluorescence densitometer, a mini-tilty filter, and a lunar position sensor. This complement of instruments permitted the determination of the molecular nitrogen density and temperature in the altitude range from approximately 143 to 297 km over Wallops Island, Virginia, during January 1971. The MUMP 10 payload included an omegatron mass analyzer, an electron temperature probe, a cryogenic densitometer, and a solar position sensor. These instruments permitted the determination of the molecular nitrogen density and temperature and the charged particle density and temperature in the altitude range from approximately 145 to 290 km over Wallops Island during the afternoon preceding the MUMP 9 launch.

  6. Near DC eddy current measurement of aluminum multilayers using MR sensors and commodity low-cost computer technology

    NASA Astrophysics Data System (ADS)

    Perry, Alexander R.

    2002-06-01

    Low Frequency Eddy Current (EC) probes are capable of measurement from 5 MHz down to DC through the use of Magnetoresistive (MR) sensors. Choosing components with appropriate electrical specifications allows them to be matched to the power and impedance characteristics of standard computer connectors. This permits direct attachment of the probe to inexpensive computers, thereby eliminating external power supplies, amplifiers and modulators that have heretofore precluded very low system purchase prices. Such price reduction is key to increased market penetration in General Aviation maintenance and consequent reduction in recurring costs. This paper examines our computer software CANDETECT, which implements this approach and permits effective probe operation. Results are presented to show the intrinsic sensitivity of the software and demonstrate its practical performance when seeking cracks in the underside of a thick aluminum multilayer structure. The majority of the General Aviation light aircraft fleet uses rivets and screws to attach sheet aluminum skin to the airframe, resulting in similar multilayer lap joints.

  7. Live-cell imaging of multiple endogenous mRNAs permits the direct observation of RNA granule dynamics.

    PubMed

    Yatsuzuka, Kenji; Sato, Shin-Ichi; Pe, Kathleen Beverly; Katsuda, Yousuke; Takashima, Ippei; Watanabe, Mizuki; Uesugi, Motonari

    2018-06-08

    Here, we developed two pairs of high-contrast chemical probes and their RNA aptamers with distinct readout channels that permitted simultaneous live-cell imaging of endogenous β-actin and cortactin mRNAs. Application of this technology allowed the direct observation of the formation process of stress granules, protein-RNA assemblies essential for cellular response to the environment.

  8. Numerical simulations for quantitative analysis of electrostatic interaction between atomic force microscopy probe and an embedded electrode within a thin dielectric: meshing optimization, sensitivity to potential distribution and impact of cantilever contribution

    NASA Astrophysics Data System (ADS)

    Azib, M.; Baudoin, F.; Binaud, N.; Villeneuve-Faure, C.; Bugarin, F.; Segonds, S.; Teyssedre, G.

    2018-04-01

    Recent experimental results demonstrated that an electrostatic force distance curve (EFDC) can be used for space charge probing in thin dielectric layers. A main advantage of the method is claimed to be its sensitivity to charge localization, which, however, needs to be substantiated by numerical simulations. In this paper, we have developed a model which permits us to compute an EFDC accurately by using the most sophisticated and accurate geometry for the atomic force microscopy probe. To avoid simplifications and in order to reproduce experimental conditions, the EFDC has been simulated for a system constituted of a polarized electrode embedded in a thin dielectric layer (SiN x ). The individual contributions of forces on the tip and on the cantilever have been analyzed separately to account for possible artefacts. The EFDC sensitivity to potential distribution is studied through the change in electrode shape, namely the width and the depth. Finally, the numerical results have been compared with experimental data.

  9. New concepts of fluorescent probes for specific detection of DNA sequences: bis-modified oligonucleotides in excimer and exciplex detection.

    PubMed

    Gbaj, A; Bichenkova, Ev; Walsh, L; Savage, He; Sardarian, Ar; Etchells, Ll; Gulati, A; Hawisa, S; Douglas, Kt

    2009-12-01

    The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5'-bispyrene and 3'-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5'-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5'-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing.

  10. Sequential detection of different antigens induced by Epstein-Barr virus and herpes simplex virus in the same Western blot by using dual antibody probes.

    PubMed

    Lin, J C; Pagano, J S

    1986-08-01

    A dual antibody probing technique that permitted a color-coded identification of polypeptides representing different classes of Epstein-Barr virus (EBV) antigens as well as differentiation of the polypeptides induced by different herpesviruses in the same Western blot was developed. When the nitrocellulose sheet was probed first with monoclonal antibody against EBV early antigen diffuse component (EA-D) and then stained with 4-chloro-1-naphthol, four polypeptides specific for EA-D were identified by purple bands. Subsequently, the same nitrocellulose sheet was reprobed with human serum containing antibodies against EBV early antigen, viral capsid antigen, and nuclear antigen and stained with 3,3'-diaminobenzidine. Several brown bands corresponding to early, viral capsid, and nuclear antigen polypeptides were detected. The dual antibody probing technique was used in an analysis to differentiate polypeptides resulting from either EBV or herpes simplex virus infection, either in cells infected by individual virus or in a cell line dually infected by both viruses. On the basis of different colored bands in different lanes of the same gel, 20 polypeptides with molecular weights ranging from 31,000 to 165,000 were identified as herpes simplex virus-specific proteins. These results suggested that the dual antibody probing technique may be applicable in clinical diagnosis for detecting antigens and antibodies derived from different pathogens.

  11. Probe systems for static pressure and cross-stream turbulence intensity

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon, J.

    1991-01-01

    A recent study of total-pressure probes for use in highly turbulent streams is extended herein by developing probe systems that measure time-averaged static or ambient pressure and turbulence intensity. Arrangements of tubular probes of circular and elliptical cross section are described that measure the pressure at orifices on the sides of the probes to obtain different responses to the cross-stream velocity fluctuations. When the measured data are combined to remove the effect of the presence of the probes on the local pressure, the time-averaged static pressure and the cross-stream components of turbulence intensity can be determined. If a system of total pressure tubes, as described in an accompanying paper, is added to the static pressure group to form a single cluster, redundant measurements are obtained that permit accuracy and consistency checks.

  12. A Miniature Forward-imaging B-scan Optical Coherence Tomography Probe to Guide Real-time Laser Ablation

    PubMed Central

    Li, Zhuoyan; Shen, Jin H.; Kozub, John A.; Prasad, Ratna; Lu, Pengcheng; Joos, Karen M.

    2014-01-01

    Background and Objective Investigations have shown that pulsed lasers tuned to 6.1 μm in wavelength are capable of ablating ocular and neural tissue with minimal collateral damage. This study investigated whether a miniature B-scan forward-imaging optical coherence tomography (OCT) probe can be combined with the laser to provide real-time visual feedback during laser incisions. Study Design/Methods and Materials A miniature 25-gauge B-scan forward-imaging OCT probe was developed and combined with a 250 μm hollow-glass waveguide to permit delivery of 6.1 μm laser energy. A gelatin mixture and both porcine corneal and retinal tissues were simultaneously imaged and lased (6.1 μm, 10 Hz, 0.4-0.7 mJ) through air. The ablation studies were observed and recorded in real time. The crater dimensions were measured using OCT imaging software (Bioptigen, Durham, NC). Histological analysis was performed on the ocular tissues. Results The combined miniature forward-imaging OCT and mid-infrared laser-delivery probe successfully imaged real-time tissue ablation in gelatin, corneal tissue, and retinal tissue. Application of a constant number of 60 pulses at 0.5 mJ/pulse to the gelatin resulted in a mean crater depth of 123 ± 15 μm. For the corneal tissue, there was a significant correlation between the number of pulses used and depth of the lased hole (Pearson correlation coefficient = 0.82; P = 0.0002). Histological analysis of the cornea and retina tissues showed discrete holes with minimal thermal damage. Conclusions A combined miniature OCT and laser -delivery probe can monitor real-time tissue laser ablation. With additional testing and improvements, this novel instrument has the future possibility of effectively guiding surgeries by simultaneously imaging and ablating tissue. PMID:24648326

  13. A hemispherical Langmuir probe array detector for angular resolved measurements on droplet-based laser-produced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambino, Nadia, E-mail: gambinon@ethz.ch; Brandstätter, Markus; Rollinger, Bob

    2014-09-15

    In this work, a new diagnostic tool for laser-produced plasmas (LPPs) is presented. The detector is based on a multiple array of six motorized Langmuir probes. It allows to measure the dynamics of a LPP in terms of charged particles detection with particular attention to droplet-based LPP sources for EUV lithography. The system design permits to temporally resolve the angular and radial plasma charge distribution and to obtain a hemispherical mapping of the ions and electrons around the droplet plasma. The understanding of these dynamics is fundamental to improve the debris mitigation techniques for droplet-based LPP sources. The device hasmore » been developed, built, and employed at the Laboratory for Energy Conversion, ETH Zürich. The experimental results have been obtained on the droplet-based LPP source ALPS II. For the first time, 2D mappings of the ion kinetic energy distribution around the droplet plasma have been obtained with an array of multiple Langmuir probes. These measurements show an anisotropic expansion of the ions in terms of kinetic energy and amount of ion charge around the droplet target. First estimations of the plasma density and electron temperature were also obtained from the analysis of the probe current signals.« less

  14. Retractable pin dual in-line package test clip

    DOEpatents

    Bandzuch, Gregory S.; Kosslow, William J.

    1996-01-01

    This invention is a Dual In-Line Package (DIP) test clip for use when troubleshooting circuits containing DIP integrated circuits. This test clip is a significant improvement over existing DIP test clips in that it has retractable pins which will permit troubleshooting without risk of accidentally shorting adjacent pins together when moving probes to different pins on energized circuits or when the probe is accidentally bumped while taking measurements.

  15. Selective interactions of trivalent cations Fe³⁺, Al³⁺ and Cr³⁺ turn on fluorescence in a naphthalimide based single molecular probe.

    PubMed

    Janakipriya, Subramaniyan; Chereddy, Narendra Reddy; Korrapati, Purnasai; Thennarasu, Sathiah; Mandal, Asit Baran

    2016-01-15

    Synthesis and fluorescence turn-on behavior of a naphthalimide based probe is described. Selective interactions of trivalent cations Fe(3+), Al(3+) or Cr(3+) with probe 1 inhibit the PET operating in the probe, and thereby, permit the detection of these trivalent cations present in aqueous samples and live cells. Failure of other trivalent cations (Eu(3+), Gd(3+) and Nb(3+)) to inhibit the PET process in 1 demonstrates the role of chelating ring size vis-à-vis ionic radius in the selective recognition of specific metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Innovative SPM Probes for Energy-Storage Science: MWCNT-Nanopipettes to Nanobattery Probes

    NASA Astrophysics Data System (ADS)

    Larson, Jonathan; Talin, Alec; Pearse, Alexander; Kozen, Alexander; Reutt-Robey, Janice

    As energy-storage materials and designs continue to advance, new tools are needed to direct and explore ion insertion/de-insertion at well-defined battery materials interfaces. Scanned probe tips, assembled from actual energy-storage materials, permit SPM measures of local cathode-anode (tip-sample) interactions, including ion transfer. We present examples of ``cathode'' MWCNT-terminated STM probe tips interacting with Li(s)/Si(111) anode substrates. The MWCNT tip functions as both SPM probe and Li-nanopipette,[1] for controlled transport and manipulation of Li. Local field conditions for lithium ionization and transfer are determined and compared to electrostatic models. Additional lithium metallic and oxide tips have been prepared by thin film deposition on conventional W tips, the latter of which effectively functions as a nanobattery. We demonstrate use of these novel probe materials in the local lithiation of low-index Si anode interfaces, probing local barriers for lithium insertion. Prospects and limitations of these novel SPM probes will be discussed. U.S. Department of Energy Award Number DESC0001160.

  17. Pump-probe differencing technique for cavity-enhanced, noise-canceling saturation laser spectroscopy.

    PubMed

    de Vine, Glenn; McClelland, David E; Gray, Malcolm B; Close, John D

    2005-05-15

    We present an experimental technique that permits mechanical-noise-free, cavity-enhanced frequency measurements of an atomic transition and its hyperfine structure. We employ the 532-nm frequency-doubled output from a Nd:YAG laser and an iodine vapor cell. The cell is placed in a folded ring cavity (FRC) with counterpropagating pump and probe beams. The FRC is locked with the Pound-Drever-Hall technique. Mechanical noise is rejected by differencing the pump and probe signals. In addition, this differenced error signal provides a sensitive measure of differential nonlinearity within the FRC.

  18. New Concepts of Fluorescent Probes for Specific Detection of DNA Sequences: Bis-Modified Oligonucleotides in Excimer and Exciplex Detection

    PubMed Central

    Gbaj, A; Bichenkova, EV; Walsh, L; Savage, HE; Sardarian, AR; Etchells, LL; Gulati, A; Hawisa, S; Douglas, KT

    2009-01-01

    The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5′-bispyrene and 3′-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5′-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5′-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing. PMID:21483539

  19. An ergonomic, instrumented ultrasound probe for 6-axis force/torque measurement.

    PubMed

    Gilbertson, Matthew W; Anthony, Brian W

    2013-01-01

    An ergonomic, instrumented ultrasound probe has been developed for medical imaging applications. The device, which fits compactly in the hand of sonographers and permits rapid attachment & removal of the ultrasound probe, measures ultrasound probe-to-patient contact forces and torques in all six axes. The device was used to measure contact forces and torques applied by ten professional sonographers on five patients during thirty-six abdominal exams. Of the three contact forces, those applied along the probe axis were found to be largest, averaging 7.0N. Measurement noise was quantified for each axis, and found to be small compared with the axial force. Understanding the range of forces applied during ultrasound imaging enables the design of more accurate robotic imaging systems and could also improve understanding of the correlation between contact force and sonographer fatigue and injury.

  20. A velocity probe-based method for continuous detonation and shock measurement in near-field underwater explosion.

    PubMed

    Li, Kebin; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong

    2017-12-01

    A new velocity probe which permits recording the time history of detonation and shock waves has been developed by improving the commercial on principle and structure. A method based on the probe is then designed to measure the detonation velocity and near-field shock parameters in a single underwater explosion, by which the oblique shock wave front of cylindrical charges and the peak pressure attenuation curve of spherical explosive are obtained. A further derivation of detonation pressure, adiabatic exponent, and other shock parameters is conducted. The present method offers a novel and reliable parameter determination for near-field underwater explosion.

  1. In-place recalibration technique applied to a capacitance-type system for measuring rotor blade tip clearance

    NASA Technical Reports Server (NTRS)

    Barranger, J. P.

    1978-01-01

    The rotor blade tip clearance measurement system consists of a capacitance sensing probe with self contained tuning elements, a connecting coaxial cable, and remotely located electronics. Tests show that the accuracy of the system suffers from a strong dependence on probe tip temperature and humidity. A novel inplace recalibration technique was presented which partly overcomes this problem through a simple modification of the electronics that permits a scale factor correction. This technique, when applied to a commercial system significantly reduced errors under varying conditions of humidity and temperature. Equations were also found that characterize the important cable and probe design quantities.

  2. A velocity probe-based method for continuous detonation and shock measurement in near-field underwater explosion

    NASA Astrophysics Data System (ADS)

    Li, Kebin; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong

    2017-12-01

    A new velocity probe which permits recording the time history of detonation and shock waves has been developed by improving the commercial on principle and structure. A method based on the probe is then designed to measure the detonation velocity and near-field shock parameters in a single underwater explosion, by which the oblique shock wave front of cylindrical charges and the peak pressure attenuation curve of spherical explosive are obtained. A further derivation of detonation pressure, adiabatic exponent, and other shock parameters is conducted. The present method offers a novel and reliable parameter determination for near-field underwater explosion.

  3. Back to Normal! Gaussianizing posterior distributions for cosmological probes

    NASA Astrophysics Data System (ADS)

    Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.

    2014-05-01

    We present a method to map multivariate non-Gaussian posterior probability densities into Gaussian ones via nonlinear Box-Cox transformations, and generalizations thereof. This is analogous to the search for normal parameters in the CMB, but can in principle be applied to any probability density that is continuous and unimodal. The search for the optimally Gaussianizing transformation amongst the Box-Cox family is performed via a maximum likelihood formalism. We can judge the quality of the found transformation a posteriori: qualitatively via statistical tests of Gaussianity, and more illustratively by how well it reproduces the credible regions. The method permits an analytical reconstruction of the posterior from a sample, e.g. a Markov chain, and simplifies the subsequent joint analysis with other experiments. Furthermore, it permits the characterization of a non-Gaussian posterior in a compact and efficient way. The expression for the non-Gaussian posterior can be employed to find analytic formulae for the Bayesian evidence, and consequently be used for model comparison.

  4. Problems and programming for analysis of IUE high resolution data for variability

    NASA Technical Reports Server (NTRS)

    Grady, C. A.

    1981-01-01

    Observations of variability in stellar winds provide an important probe of their dynamics. It is crucial however to know that any variability seen in a data set can be clearly attributed to the star and not to instrumental or data processing effects. In the course of analysis of IUE high resolution data of alpha Cam and other O, B and Wolf-Rayet stars several effects were found which cause spurious variability or spurious spectral features in our data. Programming was developed to partially compensate for these effects using the Interactive Data language (IDL) on the LASP PDP 11/34. Use of an interactive language such as IDL is particularly suited to analysis of variability data as it permits use of efficient programs coupled with the judgement of the scientist at each stage of processing.

  5. SigReannot-mart: a query environment for expression microarray probe re-annotations.

    PubMed

    Moreews, François; Rauffet, Gaelle; Dehais, Patrice; Klopp, Christophe

    2011-01-01

    Expression microarrays are commonly used to study transcriptomes. Most of the arrays are now based on oligo-nucleotide probes. Probe design being a tedious task, it often takes place once at the beginning of the project. The oligo set is then used for several years. During this time period, the knowledge gathered by the community on the genome and the transcriptome increases and gets more precise. Therefore re-annotating the set is essential to supply the biologists with up-to-date annotations. SigReannot-mart is a query environment populated with regularly updated annotations for different oligo sets. It stores the results of the SigReannot pipeline that has mainly been used on farm and aquaculture species. It permits easy extraction in different formats using filters. It is used to compare probe sets on different criteria, to choose the set for a given experiment to mix probe sets in order to create a new one.

  6. Laser spectroscopic visualization of hydrogen bond motions in liquid water

    NASA Astrophysics Data System (ADS)

    Bratos, S.; Leicknam, J.-Cl.; Pommeret, S.; Gallot, G.

    2004-12-01

    Ultrafast pump-probe experiments are described permitting a visualization of molecular motions in diluted HDO/D 2O solutions. The experiments were realized in the mid-infrared spectral region with a time resolution of 150 fs. They were interpreted by a careful theoretical analysis, based on the correlation function approach of statistical mechanics. Combining experiment and theory, stretching motions of the OH⋯O bonds as well as HDO rotations were 'filmed' in real time. It was found that molecular rotations are the principal agent of hydrogen bond breaking and making in water. Recent literatures covering the subject, including molecular dynamics simulations, are reviewed in detail.

  7. Performance Evaluation of the Gravity Probe B Design

    NASA Technical Reports Server (NTRS)

    Francis, Ronnie; Wells, Eugene M.

    1996-01-01

    This report documents the simulation of the Lockheed Martin designed Gravity Probe B (GPB) spacecraft developed tool by bd Systems Inc using the TREETOPS simulation. This study quantifies the effects of flexibility and liquid helium slosh on GPB spacecraft control performance. The TREETOPS simulation tool permits the simulation of flexible structures given that a flexible body model of the structure is available. For purposes of this study, a flexible model of the GPB spacecraft was obtained from Lockheed Martin. To model the liquid helium slosh effects, computational fluid dynamics (CFD) results' were obtained, and used to develop a dynamic model of the slosh effects. The flexible body and slosh effects were incorporated separately into the TREETOPS simulation, which places the vehicle in a 650 km circular polar orbit and subjects the spacecraft to realistic environmental disturbances and sensor error quantities. In all of the analysis conducted in this study the spacecraft is pointed at an inertially fixed guide star (GS) and is rotating at a constant rate about this line of sight.

  8. Assessment of Telomere Length, Phenotype, and DNA Content

    PubMed Central

    Kelesidis, Theodoros; Schmid, Ingrid

    2017-01-01

    Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently-labeled probes (Flow-FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen-antibody complexes are covalently cross-linked onto cell membranes before FISH with a telomere-specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow-FISH. Telomere fluorescence of G0/1 cells of subpopulations and internal standards obtained from Flow-FISH are normalized for DNA ploidy, and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. PMID:28055113

  9. Assessment of Telomere Length, Phenotype, and DNA Content.

    PubMed

    Kelesidis, Theodoros; Schmid, Ingrid

    2017-01-05

    Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently-labeled probes (Flow-FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen-antibody complexes are covalently cross-linked onto cell membranes before FISH with a telomere-specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow-FISH. Telomere fluorescence of G 0/1 cells of subpopulations and internal standards obtained from Flow-FISH are normalized for DNA ploidy, and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  10. Modeling and design for a new ionospheric modification experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales, G.S.; Platt, I.G.; Haines, D.M.

    1990-10-01

    Plans are now underway to carry out new HF oblique ionospheric modification experiments with increased radiated power using a new high gain antenna system and a 1 MW transmitter. The output of this large transmitting system will approach 90 dBW. An important part of this program is to determine the existence of a threshold for non-linear effects by varying the transmitter output. For these experiments we are introducing a new ET probe system, a low power oblique sounder, to be used along the same propagation path as the high power disturbing transmitter. This concept was first used by soviet researchersmore » to insure that this diagnostic signal always passes through the modified region of the ionosphere. The HF probe system will use a low power (150 W) CW signal shifted by approximately 40 kHz from the frequency used by the high power system. The transmitter for the probe system will be at the same location as the high power transmitter while the probe receiver will be 2400 km down range. The probe receiving system uses multiple antennas to measure the the vertical and azimuthal angle of arrival as well the Doppler frequency shift of the arriving probe signal. The three antenna array will be in an L configuration to measure the phase differences between the antennas. At the midpath point a vertical sounder will provide the ionospheric information necessary for the frequency management of the experiment. Real-time signal processing will permit the site operators to evaluate the performance of the system and make adjustments during the experiment. A special ray tracing computer will be used to provide real-time frequencies and elevation beam steering during the experiment. A description of the system and the analysis used in the design of the experiment are presented.« less

  11. 3D "spectracoustic" system: a modular, tomographic, spectroscopic mapping imaging, non-invasive, diagnostic system for detection of small starting developing tumors like melanoma

    NASA Astrophysics Data System (ADS)

    Karagiannis, Georgios

    2017-03-01

    This work led to a new method named 3D spectracoustic tomographic mapping imaging. The current and the future work is related to the fabrication of a combined acoustic microscopy transducer and infrared illumination probe permitting the simultaneous acquisition of the spectroscopic and the tomographic information. This probe provides with the capability of high fidelity and precision registered information from the combined modalities named spectracoustic information.

  12. An adaptive technique for estimating the atmospheric density profile during the AE mission

    NASA Technical Reports Server (NTRS)

    Argentiero, P.

    1973-01-01

    A technique is presented for processing accelerometer data obtained during the AE missions in order to estimate the atmospheric density profile. A minimum variance, adaptive filter is utilized. The trajectory of the probe and probe parameters are in a consider mode where their estimates are unimproved but their associated uncertainties are permitted an impact on filter behavior. Simulations indicate that the technique is effective in estimating a density profile to within a few percentage points.

  13. Multi-Modal Nano-Probes for Radionuclide and 5-color Near Infrared Optical Lymphatic Imaging

    PubMed Central

    Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A. S.; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H.; Choyke, Peter L.; Urano, Yasuteru

    2008-01-01

    Current contrast agents generally have one function and can only be imaged in monochrome, therefore, the majority of imaging methods can only impart uniparametric information. A single nano-particle has the potential to be loaded with multiple payloads. Such multi-modality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multi-color in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near infrared emission. To this end, we synthesized nano-probes with multi-modal and multi-color potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and 5-color near infrared optical lymphatic imaging using a multiple excitation spectrally-resolved fluorescence imaging technique. PMID:19079788

  14. A new seismic probe for coal seam hazard detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, W.R.; Owen, T.E.; Thill, R.E.

    1985-01-01

    An experimental hole-to-hole seismic probe system has been developed for use in coal measure geology as a means of determining the structural conditions of coal seams. The source probe produces a 500-joule electric arc discharge whose seismic wavelet has a spectrum in the 200 to 2,000 Hz frequency range. Low compliance hydrophones contained in the source probe as well as in a separate seismic detector probe are matched to the frequency range of the source. Both probes are constructed with 5.72 cm diameter housings. The transducers in the probes are equipped with fluid-inflatable boots to permit operation in either wetmore » or dry boreholes. Preliminary tests in vertical boreholes drilled 213 m apart in sedimentary rock formations show reliable operation and useful seismic propagation measurements along horizontal and oblique paths up to 232 m in length. Because the seismic wavelet has an accurately repeatable waveshape, multiple shots and signal averaging techniques can be used to enhance the signal-to-noise ratio and extend the transmission distances.« less

  15. A planar near-field scanning technique for bistatic radar cross section measurements

    NASA Technical Reports Server (NTRS)

    Tuhela-Reuning, S.; Walton, E. K.

    1990-01-01

    A progress report on the development of a bistatic radar cross section (RCS) measurement range is presented. A technique using one parabolic reflector and a planar scanning probe antenna is analyzed. The field pattern in the test zone is computed using a spatial array of signal sources. It achieved an illumination pattern with 1 dB amplitude and 15 degree phase ripple over the target zone. The required scan plane size is found to be proportional to the size of the desired test target. Scan plane probe sample spacing can be increased beyond the Nyquist lambda/2 limit permitting constant probe sample spacing over a range of frequencies.

  16. Mass Spec Studio for Integrative Structural Biology

    PubMed Central

    Rey, Martial; Sarpe, Vladimir; Burns, Kyle; Buse, Joshua; Baker, Charles A.H.; van Dijk, Marc; Wordeman, Linda; Bonvin, Alexandre M.J.J.; Schriemer, David C.

    2015-01-01

    SUMMARY The integration of biophysical data from multiple sources is critical for developing accurate structural models of large multiprotein systems and their regulators. Mass spectrometry (MS) can be used to measure the insertion location for a wide range of topographically sensitive chemical probes, and such insertion data provide a rich, but disparate set of modeling restraints. We have developed a software platform that integrates the analysis of label-based MS data with protein modeling activities (Mass Spec Studio). Analysis packages can mine any labeling data from any mass spectrometer in a proteomics-grade manner, and link labeling methods with data-directed protein interaction modeling using HADDOCK. Support is provided for hydrogen/ deuterium exchange (HX) and covalent labeling chemistries, including novel acquisition strategies such as targeted HX-tandem MS (MS2) and data-independent HX-MS2. The latter permits the modeling of highly complex systems, which we demonstrate by the analysis of microtubule interactions. PMID:25242457

  17. Comparison of attraction capabilities associated with high-speed, dual-pneumatic vitrectomy probes.

    PubMed

    Dugel, Pravin U; Abulon, Dina J K; Dimalanta, Ramon

    2015-05-01

    To measure membrane attraction capabilities of enhanced 27-gauge, enhanced 25-gauge, and 23-gauge vitrectomy probes under various parameters. A membrane-on-cantilever apparatus was used to measure membrane attraction for enhanced 27-, enhanced 25-, and 23-gauge UltraVit probes (n = 6 for each). The following parameters were evaluated: effects of cut rates and duty cycles on membrane attraction distances, and flow rates and vacuum levels required to attract a membrane at a fixed distance. The enhanced 27-gauge probe had the shortest attraction distance across all cutting speeds and duty cycles. To attract a membrane at a fixed distance, increasing vacuum was necessary with higher cutting rates and smaller probe gauges but flow rate remained relatively constant. The biased open duty cycle was associated with a longer attraction distance than 50/50 or biased closed modes. The shorter membrane attraction distance of the enhanced 27-gauge probe versus 23-gauge and enhanced 25-gauge probes may permit greater membrane dissection precision while providing improved access to small tissue planes. Equivalent fluid flow capabilities of the 27-gauge probe compared with the 23-gauge and 25-gauge probes may provide efficient aspiration. Surgeon selection of duty cycle modes may improve intraoperative fluid control and expand the cutter utility as a multifunctional tool.

  18. Transonic applications of the Wake Imaging System

    NASA Astrophysics Data System (ADS)

    Crowder, J. P.

    1982-09-01

    The extension of a rapid flow field survey method (wake imaging system) originally developed for low speed wind tunnel operation, to transonic wind tunnel applications is discussed. The advantage of the system, beside the simplicity and low cost of the data acquisition system, is that the probe position data are recorded as an optical image of the actual sensor and thus are unaffected by the inevitable deflections of the probe support. This permits traversing systems which are deliberately flexible and have unusual motions. Two transverse drive systems are described and several typical data images are given.

  19. 10-fold detection range increase in quadrant-photodiode position sensing for photonic force microscope

    NASA Astrophysics Data System (ADS)

    Perrone, Sandro; Volpe, Giovanni; Petrov, Dmitri

    2008-10-01

    We propose a technique that permits one to increase by one order of magnitude the detection range of position sensing for the photonic force microscope with quadrant photodetectors (QPDs). This technique takes advantage of the unavoidable cross-talk between output signals of the QPD and does not assume that the output signals are linear in the probe displacement. We demonstrate the increase in the detection range from 150 to 1400 nm for a trapped polystyrene sphere with radius of 300 nm as probe.

  20. 10-fold detection range increase in quadrant-photodiode position sensing for photonic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perrone, Sandro; Volpe, Giovanni; Petrov, Dmitri

    2008-10-15

    We propose a technique that permits one to increase by one order of magnitude the detection range of position sensing for the photonic force microscope with quadrant photodetectors (QPDs). This technique takes advantage of the unavoidable cross-talk between output signals of the QPD and does not assume that the output signals are linear in the probe displacement. We demonstrate the increase in the detection range from 150 to 1400 nm for a trapped polystyrene sphere with radius of 300 nm as probe.

  1. 10-fold detection range increase in quadrant-photodiode position sensing for photonic force microscope.

    PubMed

    Perrone, Sandro; Volpe, Giovanni; Petrov, Dmitri

    2008-10-01

    We propose a technique that permits one to increase by one order of magnitude the detection range of position sensing for the photonic force microscope with quadrant photodetectors (QPDs). This technique takes advantage of the unavoidable cross-talk between output signals of the QPD and does not assume that the output signals are linear in the probe displacement. We demonstrate the increase in the detection range from 150 to 1400 nm for a trapped polystyrene sphere with radius of 300 nm as probe.

  2. A melting-point-of gallium apparatus for thermometer calibration.

    PubMed

    Sostman, H E; Manley, K A

    1978-08-01

    We have investigated the equilibrium melting point of gallium as a temperature fixed-point at which to calibrate small thermistor thermometers, such as those used to measure temperature in enzyme reaction analysis and other temperature-dependent biological assays. We have determined that the melting temperature of "6N" (99.999% pure) gallium is 29.770 +/- 0.002 degrees C, and that the constant-temperature plateau can be prolonged for several hours. We have designed a simple automated apparatus that exploits this phenomenon and that permits routine calibration verification of thermistor temperature probes throughout the laboratory day. We describe the physics of the gallium melt, and the design and use of the apparatus.

  3. Back-focal-plane position detection with extended linear range for photonic force microscopy.

    PubMed

    Martínez, Ignacio A; Petrov, Dmitri

    2012-09-01

    In photonic force microscopes, the position detection with high temporal and spatial resolution is usually implemented by a quadrant position detector placed in the back focal plane of a condenser. An objective with high numerical aperture (NA) for the optical trap has also been used to focus a detection beam. In that case the displacement of the probe at a fixed position of the detector produces a unique and linear response only in a restricted region of the probe displacement, usually several hundred nanometers. There are specific experiments where the absolute position of the probe is a relevant measure together with the probe position relative the optical trap focus. In our scheme we introduce the detection beam into the condenser with low NA through a pinhole with tunable size. This combination permits us to create a wide detection spot and to achieve the linear range of several micrometers by the probe position detection without reducing the trapping force.

  4. A monolithic microsphere-fiber probe for spatially resolved Raman spectroscopy: Application to head and neck squamous cell carcinomas

    NASA Astrophysics Data System (ADS)

    Holler, S.; Haig, B.; Donovan, M. J.; Sobrero, M.; Miles, B. A.

    2018-03-01

    The ability to identify precise cancer margins in vivo during a surgical excision is critical to the well-being of the patient. Decreased operative time has been linked to shorter patient recovery time, and there are risks associated with removing either too much or too little tissue from the surgical site. The more rapidly and accurately a surgeon can identify and excise diseased tissue, the better the prognosis for the patient. To this end, we investigate both malignant and healthy oral cavity tissue using the Raman spectroscopy, with a monolithic microsphere-fiber probe. Our results indicate that this probe has decreased the size of the analyzed area by more than an order of magnitude, as compared to a conventional fiber reflection probe. Scanning the probe across the tissues reveals variations in the Raman spectra that enable us to differentiate between malignant and healthy tissues. Consequently, we anticipate that the high spatial resolution afforded by the probe will permit us to identify tumor margins in detail, thereby optimizing tissue removal and improving patient outcomes.

  5. Carbon phenolic heat shields for Jupiter/Saturn/Uranus entry probes

    NASA Technical Reports Server (NTRS)

    Mezines, S.

    1974-01-01

    Carbon phenolic heat shield technology is reviewed. Heat shield results from the outer planetary probe mission studies are summarized along with results of plasma jet testing of carbon phenolic conducted in a ten megawatt facility. Missile flight data is applied to planetary entry conditions. A carbon phenolic heat shield material is utilized and tailored to accommodate each of the probe missions. An integral heat shield approach is selected over in order to eliminate a high temperature interface problem and permit direct bonding of the carbon phenolic to the structural honeycomb sandwich. The sandwich is filled with a very fine powder to minimize degradation of its insulation properties by the high conductive hydrogen/helium gases during the long atmospheric descent phase.

  6. An evanescent wave biosensor--Part I: Fluorescent signal acquisition from step-etched fiber optic probes.

    PubMed

    Anderson, G P; Golden, J P; Ligler, F S

    1994-06-01

    A fiber-optic biosensor capable of remote continuous monitoring has recently been designed. To permit sensing at locations separate from the optoelectronic instrumentation, long optical fibers are utilized. An evanescent wave immuno-probe is prepared by removing the cladding near the distal end of the fiber and covalently attaching antibodies to the core. Probes with a radius unaltered from that of the original core inefficiently returned the signal produced upon binding the fluorescent-labelled antigen. To elucidate the limiting factors in signal acquisition, a series of fibers with increasingly reduced probe core radius was examined. The results were consistent with the V-number mismatch, the difference in mode carrying capacity between the clad and unclad fiber, being a critical factor in limiting signal coupling from the fiber probe. However, it was also delineated that conditions which conserve excitation power, such that power in the evanescent wave is optimized, must also be met to obtain a maximal signal. The threshold sensitivity for the optimal step-etched fiber probe was improved by over 20-fold in an immunoassay, although, it was demonstrated that signal acquisition decreased along the probe length, suggesting that a sensor region of uniform radius is not ideal.

  7. Evaluation of a Dual ALK/ROS1 Fluorescent In Situ Hybridization Test in Non-Small-cell Lung Cancer.

    PubMed

    Ginestet, Florent; Lambros, Laetitia; Le Flahec, Glen; Marcorelles, Pascale; Uguen, Arnaud

    2018-05-05

    Several therapeutics targets have emerged to treat patients with non-small-cell lung carcinoma (NSCLC), with numerous biomarkers available to test for treatment choices. Minimum tumor wastage is necessary to permit the analysis of every potentially relevant target. Searching for targetable ALK and ROS1 rearrangements is now mandatory in NSCLC. In the present study, we evaluated the performance of a dual ALK/ROS1 fluorescent in situ hybridization (FISH) probe that concurrently analyzed the 2 oncogenes on a same FISH slide. We used the FlexISH ALK/ROS1 DistinguISH Probe (Zytovision, Bremerhaven, Germany) to analyze a set of 28 formalin-fixed paraffin-embedded NSCLC tumor samples enriched in tumors with ALK- and ROS1-rearranged status. The dual ALK/ROS1 FISH probe test results were fully concordant with the results of previous single ALK and ROS1 FISH tests (15 ALK and 3 ROS1 rearrangements) without any false-positive results. Dual- and single-probe FISH test results were also concordant regarding the unusual ALK FISH patterns. These included 1 sample that had negative FISH results with diffuse single 5'-ALK signals and positive ALK immunohistochemistry findings in a patient with a response to crizotinib, 2 paired samples with high percentages of ALK FISH-rearranged nuclei despite negative ALK immunohistochemistry findings, and ALK FISH-positive samples from 2 patients lacking a response to crizotinib therapy despite concordant ALK FISH and immunohistochemistry-positive results. The dual ALK/ROS1 FISH probe test is a valuable tool to search concurrently for both ALK and ROS1 rearrangements on a same FISH slide and could help to spare tumor tissue for other biomarkers tests. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Small is fast: astrocytic glucose and lactate metabolism at cellular resolution

    PubMed Central

    Barros, L. F.; San Martín, A.; Sotelo-Hitschfeld, T.; Lerchundi, R.; Fernández-Moncada, I.; Ruminot, I.; Gutiérrez, R.; Valdebenito, R.; Ceballo, S.; Alegría, K.; Baeza-Lehnert, F.; Espinoza, D.

    2013-01-01

    Brain tissue is highly dynamic in terms of electrical activity and energy demand. Relevant energy metabolites have turnover times ranging from milliseconds to seconds and are rapidly exchanged between cells and within cells. Until recently these fast metabolic events were inaccessible, because standard isotopic techniques require use of populations of cells and/or involve integration times of tens of minutes. Thanks to fluorescent probes and recently available genetically-encoded optical nanosensors, this Technology Report shows how it is now possible to monitor the concentration of metabolites in real-time and in single cells. In combination with ad hoc inhibitor-stop protocols, these probes have revealed a key role for K+ in the acute stimulation of astrocytic glycolysis by synaptic activity. They have also permitted detection of the Warburg effect in single cancer cells. Genetically-encoded nanosensors currently exist for glucose, lactate, NADH and ATP, and it is envisaged that other metabolite nanosensors will soon be available. These optical tools together with improved expression systems and in vivo imaging, herald an exciting era of single-cell metabolic analysis. PMID:23526722

  9. Detection of inflammatory cytokines using a fiber optic microsphere immunoassay array

    NASA Astrophysics Data System (ADS)

    Blicharz, Timothy M.; Walt, David R.

    2006-10-01

    A multiplexed fiber optic microsphere-based immunoassay array capable of simultaneously measuring five inflammatory cytokines has been developed. Five groups of amine-functionalized 3.1 micron microspheres were internally encoded with five distinct concentrations of a europium dye and converted to cytokine probes by covalently coupling monoclonal capture antibodies specific for human VEGF, IFN-gamma, RANTES, IP-10, and Eotaxin-3 to the microspheres via glutaraldehyde chemistry. The microspheres were pooled and loaded into a 1 mm diameter fiber optic bundle containing ~50,000 individual etched microwells, producing the multiplexed cytokine immunoassay array. Multiple arrays can be created from a single microsphere pool for high throughput sample analysis. Sandwich fluoroimmunoassays were performed by incubating the probe array in a sample, followed by incubation in a mixture of biotin-labeled detection antibodies that are complementary to the five cytokines. Finally, universal detection of each protein was performed using a fluorescence imaging system after briefly immersing the array in a solution of fluorophore-labeled streptavidin. The multiplexed cytokine array has been shown to respond selectively to VEGF, IFNgamma, RANTES, IP-10, and Eotaxin-3, permitting multiplexed quantitative analysis. Ultimately, the multiplexed cytokine array will be utilized to evaluate the potential of using saliva as a noninvasive diagnostic fluid for pulmonary inflammatory diseases such as asthma.

  10. Probing ultrafast proton induced dynamics in transparent dielectrics

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Coughlan, M.; Nersisyan, G.; Senje, L.; Jung, D.; Currell, F.; Riley, D.; Lewis, C. L. S.; Zepf, M.; Dromey, B.

    2018-05-01

    A scheme has been developed permitting the spatial and temporal characterisation of ultrafast dynamics induced by laser driven proton bursts in transparent dielectrics. Advantage is taken of the high degree of synchronicity between the proton bursts generated during laser-foil target interactions and the probing laser to provide the basis for streaking of the dynamics. Relaxation times of electrons (<10‑12 s) are measured following swift excitation across the optical band gap for various glass samples. A temporal resolution of <500 fs is achieved demonstrating that these ultrafast dynamics can be characterized on a single-shot basis.

  11. RTSPM: real-time Linux control software for scanning probe microscopy.

    PubMed

    Chandrasekhar, V; Mehta, M M

    2013-01-01

    Real time computer control is an essential feature of scanning probe microscopes, which have become important tools for the characterization and investigation of nanometer scale samples. Most commercial (and some open-source) scanning probe data acquisition software uses digital signal processors to handle the real time data processing and control, which adds to the expense and complexity of the control software. We describe here scan control software that uses a single computer and a data acquisition card to acquire scan data. The computer runs an open-source real time Linux kernel, which permits fast acquisition and control while maintaining a responsive graphical user interface. Images from a simulated tuning-fork based microscope as well as a standard topographical sample are also presented, showing some of the capabilities of the software.

  12. Fuel leak detection apparatus for gas cooled nuclear reactors

    DOEpatents

    Burnette, Richard D.

    1977-01-01

    Apparatus is disclosed for detecting nuclear fuel leaks within nuclear power system reactors, such as high temperature gas cooled reactors. The apparatus includes a probe assembly that is inserted into the high temperature reactor coolant gaseous stream. The probe has an aperture adapted to communicate gaseous fluid between its inside and outside surfaces and also contains an inner tube for sampling gaseous fluid present near the aperture. A high pressure supply of noncontaminated gas is provided to selectively balance the pressure of the stream being sampled to prevent gas from entering the probe through the aperture. The apparatus includes valves that are operable to cause various directional flows and pressures, which valves are located outside of the reactor walls to permit maintenance work and the like to be performed without shutting down the reactor.

  13. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores, J.; Sears, J.; Schael, I.P.

    1990-08-01

    We have synthesized {sup 32}P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated frommore » field studies.« less

  14. Autoradiographic labelling of P2 purinoceptors in the guinea-pig cochlea.

    PubMed

    Mockett, B G; Bo, X; Housley, G D; Thorne, P R; Burnstock, G

    1995-04-01

    Two different radioligands were used to identify extracellular ATP binding sites specific to P2 purinoceptors in guinea-pig cochlear tissue. Deoxyadenosine 5'-(alpha-[35S]thio)triphosphate ([35S]dATP alpha S; 10 nM) provided a high activity probe for the P2y purinoceptor subtype on the basis of selective block by 2-methylthio-ATP (2MeSATP; 100 microM). [3H]alpha, beta-methylene-ATP (10 nM), a high affinity probe for a P2x purinoceptor subtype was selectively blocked by inclusion of the related compound beta, gamma-methylene-ATP (100 microM). Both probes labelled the organ of Corti, stria vascularis and spiral prominence regions. The P2x purinoceptor probe also bound to lateral wall tissue below the spiral prominence and insertion point of the basilar membrane within the scala tympani compartment, a region which failed to show significant binding using [35S]dATP alpha S. Frozen sections of whole cochlea permitted analysis of radioligand binding to the cell body region (spiral ganglion in Rosenthal's canal) of the primary auditory afferents and the auditory nerve itself, which lies within the central region of the modiolus of the cochlea. Both these regions exhibited 2MeSATP blockable [35S]dATP alpha S binding whereas specific [3H]alpha, beta-methylene-ATP binding was absent from spiral ganglion and minimal in the auditory nerve region. These results demonstrate a mixed P2 purinoceptor distribution in cochlear tissues and suggest that complex purine-mediated neurohumoral mechanisms may influence cochlear function at a number of sites.

  15. Analytical cytology applied to detection of prognostically important cytogenetic aberrations: Current status and future directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J.W.; Pinkel, D.; Trask, B.

    1987-07-24

    This paper discusses the application of analytical cytology to the detection of clinically important chromosome abnormalities in human tumors. Flow cytometric measurements of DNA distributions have revealed that many human tumors have abnormal (usually elevated) DNA contents and that the occurrence of DNA abnormality may be diagnostically or prognostically important. However, DNA indices (ratio of tumor DNA content to normal DNA content) provide little information about the specific chromosome(s) involved in the DNA content abnormality. Fluorescence in situ hybridization with chromosome specific probes is suggested as a technique to facilitate detection of specific chromosome aneuploidy in interphase and metaphase humanmore » tumor cells. Fluorescence hybridization to nuclei on slides allows enumeration of brightly fluorescent nuclear domains as an estimate of the number of copies of the chromosome type for which the hybridization probe is specific. Fluorescence hybridization can also be made to nuclei in suspension. The fluorescence intensity can then be measured flow cytometrically as an indication of the number of chromosomes in each nucleus carrying the DNA sequence homologous to the probe. In addition, quantitative image analysis may be used to explore the position of chromosomes in interphase nuclei and to look for changes in the order that may eventually permit detection of clinicaly important conditions. 55 refs., 8 figs., 1 tab.« less

  16. Ultra-compact switchable SLO/OCT handheld probe design

    NASA Astrophysics Data System (ADS)

    LaRocca, Francesco; Nankivil, Derek; DuBose, Theodore; Farsiu, Sina; Izatt, Joseph A.

    2015-03-01

    Handheld scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) systems facilitate imaging of young children and subjects that have difficulty fixating. More compact and lightweight probes allow for better portability and increased comfort for the operator of the handheld probe. We describe a very compact, novel SLO and OCT handheld probe design. A single 2D microelectromechanical systems (MEMS) scanner and a custom optical design using a converging beam prior to the scanner permitted significant reduction in the system size. Our design utilized a combination of commercial and custom optics that were optimized in Zemax to achieve near diffraction-limited resolution of 8 μm over a 7° field of view. The handheld probe has a form factor of 7 x 6 x 2.5 cm and a weight of only 94 g, which is over an order of magnitude lighter than prior SLO-OCT handheld probes. Images were acquired from a normal subject with an incident power on the eye under the ANSI limit. With this device, which is the world's lightest and smallest SLO-OCT system, we were able to visualize parafoveal cone photoreceptors and nerve fiber bundles without the use of adaptive optics.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torroni, A.; Chen, Yu.S.; Lott, M.T.

    mtDNA sequence variation was examined in 60 Native Americans (Mixtecs from the Alta, Mixtecs from the Baja, Valley Zapotecs, and Highland Mixe) from southern Mexico by PCR amplification and high-resolution restriction endonuclease analysis. Four groups of mtDNA haplotypes (haplogroups A,B,C, and D) characterize Amerind populations. The comparison of their mtDNA variation with that observed in other populations from Mexico and Central America permits a clear distinction among the different Middle American tribes and raises questions about some of their linguistic affiliations. The males of these population samples were also analyzed for Y-chromosome RFLPs with the probes 49a, 49f, and 12f2.more » This analysis suggests that certain Y-chromosome haplotypes were brought from Asia during the colonization of the Americas, and a differential gene flow was introduced into Native American populations from European males and females. 31 refs., 4 figs., 5 tabs.« less

  18. Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging.

    PubMed

    Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A S; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H; Choyke, Peter L; Urano, Yasuteru

    2007-11-01

    Current contrast agents generally have one function and can only be imaged in monochrome; therefore, the majority of imaging methods can only impart uniparametric information. A single nanoparticle has the potential to be loaded with multiple payloads. Such multimodality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multicolor in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near-infrared emission. To this end, we synthesized nanoprobes with multimodal and multicolor potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and five-color near-infrared optical lymphatic imaging using a multiple-excitation spectrally resolved fluorescence imaging technique.

  19. An efficient probe for rapid detection of cyanide in water at parts per billion levels and naked-eye detection of endogenous cyanide.

    PubMed

    Kumari, Namita; Jha, Satadru; Bhattacharya, Santanu

    2014-03-01

    A new molecular probe based on an oxidized bis-indolyl skeleton has been developed for rapid and sensitive visual detection of cyanide ions in water and also for the detection of endogenously bound cyanide. The probe allows the "naked-eye" detection of cyanide ions in water with a visual color change from red to yellow (Δλmax =80 nm) with the immediate addition of the probe. It shows high selectivity towards the cyanide ion without any interference from other anions. The detection of cyanide by the probe is ratiometric, thus making the detection quantitative. A Michael-type addition reaction of the probe with the cyanide ion takes place during this chemodosimetric process. In water, the detection limit was found to be at the parts per million level, which improved drastically when a neutral micellar medium was employed, and it showed a parts-per-billion-level detection, which is even 25-fold lower than the permitted limits of cyanide in water. The probe could also efficiently detect the endogenously bound cyanide in cassava (a staple food) with a clear visual color change without requiring any sample pretreatment and/or any special reaction conditions such as pH or temperature. Thus the probe could serve as a practical naked-eye probe for "in-field" experiments without requiring any sophisticated instruments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Discerning the Location and Nature of Coke Deposition from Surface to Bulk of Spent Zeolite Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaraj, Arun; Vijayakumar, Murugesan; Bao, Jie

    The nanoscale compositional mapping of fresh HZSM-5 catalyst synthesized using hydrothermal process as well as after just steaming and after ethanol conversion reaction for 72 hours at realistic catalytic conditions was investigated using atom probe tomography. Atom probe tomography permitted direct atomic scale imaging of non-uniform distribution of Al within the HZSM-5 as well as for the first time image the hydrocarbon coking after ethanol reaction. Clear evidences for existence of multiple C-H molecular species which appear to aggregate as clusters within the pores of spent HZSM-5 catalyst materials is provided. These results provide evidence for the ability of atommore » probe tomography, a powerful 3D characterization tool in interrogating the atomic scale chemistry of zeolite catalyst materials at industrially relevant catalytic conditions.« less

  1. Individualization and estimation of relatedness in crocodilians by DNA fingerprinting with a Bkm-derived probe.

    PubMed

    Lang, J W; Aggarwal, R K; Majumdar, K C; Singh, L

    1993-04-01

    Individual-specific DNA fingerprints of crocodilians were obtained by the use of Bkm-2(8) probe. Pedigree analyses of Crocodylus palustris, C. porosus and Caiman crocodilus revealed that the multiple bands (22-23 bands with Aludigest) thus obtained were inherited stably in a Mendelian fashion. Unique fingerprints permitted us to identify individuals, assign parentage, and reconstruct the DNA profile of a missing parent. Average band sharing between unrelated crocodiles was found to be 0.37. Band sharing between animals of known pedigrees increased predictably with relatedness and provided a basis for distinguishing relatives from non-relatives. Similar results obtained in other species/genera, using the same probe, suggest that this approach may be applicable to all species of crocodilians, and could facilitate genetic studies of wild and captive populations.

  2. High-density fiber optic biosensor arrays

    NASA Astrophysics Data System (ADS)

    Epstein, Jason R.; Walt, David R.

    2002-02-01

    Novel approaches are required to coordinate the immense amounts of information derived from diverse genomes. This concept has influenced the expanded role of high-throughput DNA detection and analysis in the biological sciences. A high-density fiber optic DNA biosensor was developed consisting of oligonucleotide-functionalized, 3.1 mm diameter microspheres deposited into the etched wells on the distal face of a 500 micrometers imaging fiber bundle. Imaging fiber bundles containing thousands of optical fibers, each associated with a unique oligonucleotide probe sequence, were the foundation for an optically connected, individually addressable DNA detection platform. Different oligonucleotide-functionalized microspheres were combined in a stock solution, and randomly dispersed into the etched wells. Microsphere positions were registered from optical dyes incorporated onto the microspheres. The distribution process provided an inherent redundancy that increases the signal-to-noise ratio as the square root of the number of sensors examined. The representative amount of each probe-type in the array was dependent on their initial stock solution concentration, and as other sequences of interest arise, new microsphere elements can be added to arrays without altering the existing detection capabilities. The oligonucleotide probe sequences hybridize to fluorescently-labeled, complementary DNA target solutions. Fiber optic DNA microarray research has included DNA-protein interaction profiles, microbial strain differentiation, non-labeled target interrogation with molecular beacons, and single cell-based assays. This biosensor array is proficient in DNA detection linked to specific disease states, single nucleotide polymorphism (SNP's) discrimination, and gene expression analysis. This array platform permits multiple detection formats, provides smaller feature sizes, and enables sensor design flexibility. High-density fiber optic microarray biosensors provide a fast, reversible format with the detection limit of a few hundred molecules.

  3. Discharge cell for optogalvanic spectroscopy having orthogonal relationship between the probe laser and discharge axis

    NASA Technical Reports Server (NTRS)

    Webster, C. R. (Inventor)

    1986-01-01

    A method and apparatus for an optogalvanic spectroscopy system are disclosed. Orthogonal geometry exists between the axis of a laser probe beam and the axis of a discharge created by a pair of spaced apart and longituduinally aligned high voltage electrodes. The electrodes are movable to permit adjustment of the location of a point in the discharge which is to irradiated by a laser beam crossing the discharge region. The cell dimensions are selected so that the cross section of the discharge region is substantly comparable in size to the cross section of the laser beam passing orthogonally through the discharge region.

  4. Transverse vorticity measurements in the NASA Ames 80 x 120 wind tunnel boundary layer

    NASA Technical Reports Server (NTRS)

    Foss, John F.; Bhol, D. G.; Bramkamp, F. D.; Klewicki, J. G.

    1994-01-01

    The MSU compact four-wire transverse vorticity probe permits omega(sub z)(t) measurements in a nominally 1 sq mm domain. Note that a conventional coordinate system is used with x and y in the streamwise and normal directions respectively. The purpose of this investigation was to acquire time series data in the same access port at the ceiling of the 80 ft x 120 ft wind tunnel (NASA Ames Research Center) as earlier used by the Wallace group from the University of Maryland and to compare the present results with those of the three-component vorticity probe used in that earlier study.

  5. The natural abundance of 13C with different agricultural management by NIRS with fibre optic probe technology.

    PubMed

    Fuentes, Mariela; González-Martín, Inmaculada; Hernández-Hierro, Jose Miguel; Hidalgo, Claudia; Govaerts, Bram; Etchevers, Jorge; Sayre, Ken D; Dendooven, Luc

    2009-06-30

    In the present study the natural abundance of (13)C is quantified in agricultural soils in Mexico which have been submitted to different agronomic practices, zero and conventional tillage, retention of crop residues (with and without) and rotation of crops (wheat and maize) for 17 years, which have influenced the physical, chemical and biological characteristics of the soil. The natural abundance of C13 is quantified by near infrared spectra (NIRS) with a remote reflectance fibre optic probe, applying the probe directly to the soil samples. Discriminate partial least squares analysis of the near infrared spectra allowed to classify soils with and without residues, regardless of the type of tillage or rotation systems used with a prediction rate of 90% in the internal validation and 94% in the external validation. The NIRS calibration model using a modified partial least squares regression allowed to determine the delta(13)C in soils with or without residues, with multiple correlation coefficients 0.81 and standard error prediction 0.5 per thousand in soils with residues and 0.92 and 0.2 per thousand in soils without residues. The ratio performance deviation for the quantification of delta(13)C in soil was 2.5 in soil with residues and 3.8 without residues. This indicated that the model was adequate to determine the delta(13)C of unknown soils in the -16.2 per thousand to -20.4 per thousand range. The development of the NIR calibration permits analytic determinations of the values of delta(13)C in unknown agricultural soils in less time, employing a non-destructive method, by the application of the fibre optic probe of remote reflectance to the soil sample.

  6. Development of species-specific rDNA probes for Giardia by multiple fluorescent in situ hybridization combined with immunocytochemical identification of cyst wall antigens.

    PubMed

    Erlandsen, Stanley L; Jarroll, Edward; Wallis, Peter; van Keulen, Harry

    2005-08-01

    In this study, we describe the development of fluorescent oligonucleotide probes to variable regions in the small subunit of 16S rRNA in three distinct Giardia species. Sense and antisense probes (17-22 mer) to variable regions 1, 3, and 8 were labeled with digoxygenin or selected fluorochomes (FluorX, Cy3, or Cy5). Optimal results were obtained with fluorochome-labeled oligonucleotides for detection of rRNA in Giardia cysts. Specificity of fluorescent in situ hybridization (FISH) was shown using RNase digestion and high stringency to diminish the hybridization signal, and oligonucleotide probes for rRNA in Giardia lamblia, Giardia muris, and Giardia ardeae were shown to specifically stain rRNA only within cysts or trophozoites of those species. The fluorescent oligonucleotide specific for rRNA in human isolates of Giardia was positive for ten different strains. A method for simultaneous FISH detection of cysts using fluorescent antibody (genotype marker) and two oligonucleotide probes (species marker) permitted visualization of G. lamblia and G. muris cysts in the same preparation. Testing of an environmental water sample revealed the presence of FISH-positive G. lamblia cysts with a specific rDNA probe for rRNA, while negative cysts were presumed to be of animal or bird origin.

  7. Luminous Blue Compact Galaxies: Probes of galaxy assembly

    NASA Astrophysics Data System (ADS)

    Newton, Cassidy Louann

    The life cycles of galaxies over cosmic time is yet to be fully understood. How did galaxies evolve from their formative stages to the structures we observe today? This dissertation details the identification and analysis of a sample of Luminous Blue Compact Galaxies (LBCGs), a class of galaxy in the local (z < 0.05) universe exhibiting blue colors, high surface brightness, and high star formation rates. These systems appear to be very similar in their global properties to the early evolutionary phases of most galaxies, however their locality permits detailed investigation over a broad range of the electromagnetic spectrum in contrast to the smaller angular sizes and extreme faintness of distant galaxies. We use a combination of optical, ultraviolet, and infrared data to investigate a sample of LBCGs utilizing space and ground-based data.

  8. Magnetic susceptibility well-logging unit with single power supply thermoregulation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeley, R. L.

    1985-11-05

    The magnetic susceptibility well-logging unit with single power supply thermoregulation system provides power from a single surface power supply over a well-logging cable to an integrated circuit voltage regulator system downhole. This voltage regulator system supplies regulated voltages to a temperature control system and also to a Maxwell bridge sensing unit which includes the solenoid of a magnetic susceptibility probe. The temperature control system is provided with power from the voltage regulator system and operates to permit one of several predetermined temperatures to be chosen, and then operates to maintain the solenoid of a magnetic susceptibility probe at this chosenmore » temperature. The temperature control system responds to a temperature sensor mounted upon the probe solenoid to cause resistance heaters concentrically spaced from the probe solenoid to maintain the chosen temperature. A second temperature sensor on the probe solenoid provides a temperature signal to a temperature transmitting unit, which initially converts the sensed temperature to a representative voltage. This voltage is then converted to a representative current signal which is transmitted by current telemetry over the well logging cable to a surface electronic unit which then reconverts the current signal to a voltage signal.« less

  9. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  10. Probing electrokinetics in microchannels and nanochannels with electrochemical measurements

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Park, Sinwook; Yossifon, Gilad

    2013-11-01

    We present a brief review of recent experimental and theoretical results concerning the use of electrochemical impedance spectroscopy (EIS), in conjunction with other electrochemical measurements (chronoamperometry, linear sweep voltammetry), to characterize the response of micro- and nanofluidic systems. Using these techniques, the interplay between conduction, diffusion, and convection are probed across a range of time- and length scales. The resulting information permits characterization of the respective roles of processes in both micro- and nanchannel regions of a fluidic device. Such techniques provide a useful probe of transient behavior at the micro-nanochannel interface, have great potential in biomolecular sensing applications, and may be useful in the study of surface properties at the fluid-solid interface. We wish to acknowledge Israel Science Foundation, grant number 2015240, the Technion Russel-Berrie Nanotechnology Institute (RBNI) and a fellowship grant from the Techion Faculty of Mechanical Engineering.

  11. Measuring the mechanical properties of molecular conformers

    NASA Astrophysics Data System (ADS)

    Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.

    2015-09-01

    Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules.

  12. Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork

    PubMed Central

    Villafana, Tana Elizabeth; Brown, William P.; Delaney, John K.; Palmer, Michael; Warren, Warren S.; Fischer, Martin C.

    2014-01-01

    The layering structure of a painting contains a wealth of information about the artist's choice of materials and working methods, but currently, no 3D noninvasive method exists to replace the taking of small paint samples in the study of the stratigraphy. Here, we adapt femtosecond pump-probe imaging, previously shown in tissue, to the case of the color palette in paintings, where chromophores have much greater variety. We show that combining the contrasts of multispectral and multidelay pump-probe spectroscopy permits nondestructive 3D imaging of paintings with molecular and structural contrast, even for pigments with linear absorption spectra that are broad and relatively featureless. We show virtual cross-sectioning capabilities in mockup paintings, with pigment separation and nondestructive imaging on an intact 14th century painting (The Crucifixion by Puccio Capanna). Our approach makes it possible to extract microscopic information for a broad range of applications to cultural heritage. PMID:24449855

  13. Real-time registration of video with ultrasound using stereo disparity

    NASA Astrophysics Data System (ADS)

    Wang, Jihang; Horvath, Samantha; Stetten, George; Siegel, Mel; Galeotti, John

    2012-02-01

    Medical ultrasound typically deals with the interior of the patient, with the exterior left to the original medical imaging modality, direct human vision. For the human operator scanning the patient, the view of the external anatomy is essential for correctly locating the ultrasound probe on the body and making sense of the resulting ultrasound images in their proper anatomical context. The operator, after all, is not expected to perform the scan with his eyes shut. Over the past decade, our laboratory has developed a method of fusing these two information streams in the mind of the operator, the Sonic Flashlight, which uses a half silvered mirror and miniature display mounted on an ultrasound probe to produce a virtual image within the patient at its proper location. We are now interested in developing a similar data fusion approach within the ultrasound machine itself, by, in effect, giving vision to the transducer. Our embodiment of this concept consists of an ultrasound probe with two small video cameras mounted on it, with software capable of locating the surface of an ultrasound phantom using stereo disparity between the two video images. We report its first successful operation, demonstrating a 3D rendering of the phantom's surface with the ultrasound data superimposed at its correct relative location. Eventually, automated analysis of these registered data sets may permit the scanner and its associated computational apparatus to interpret the ultrasound data within its anatomical context, much as the human operator does today.

  14. Specific Detection of Clavibacter michiganensis subsp. sepedonicus by Amplification of Three Unique DNA Sequences Isolated by Subtraction Hybridization.

    PubMed

    Mills, D; Russell, B W; Hanus, J W

    1997-08-01

    ABSTRACT Three single-copy, unique DNA fragments, designated Cms50, Cms72, and Cms85, were isolated from strain CS3 of Clavibacter michiganensis subsp. sepedonicus by subtraction hybridization using driver DNA from C. michiganensis subsp. insidiosus, C. michiganensis subsp. michiganensis, and Rhodococcus facians. Radio-labeled probes made of these fragments and used in Southern blot analysis revealed each to be absolutely specific to all North American C. michiganensis subsp. sepedonicus strains tested, including plasmidless and nonmucoid strains. The probes have no homology with genomic DNA from related C. michiganensis subspecies insidiosus, michiganensis, and tessellarius, nor with DNA from 11 additional bacterial species and three unidentified strains, some of which have been previously reported to display cross-reactivity with C. michiganensis subsp. sepedonicus-specific antisera. The three fragments shared no homology, and they appeared to be separated from each other by at least 20 kbp in the CS3 genome. Internal primer sets permitted amplification of each fragment by the polymerase chain reaction (PCR) only from C. michiganensis subsp. sepedonicus DNA. In a PCR-based sensitivity assay using a primer set that amplifies Cms85, the lowest level of detection of C. michiganensis subsp. sepedonicus was 100 CFU per milliliter when cells were added to potato core fluid. Erroneous results that may arise from PCR artifacts and mutational events are, therefore, minimized by the redundancy of the primer sets, and the products should be verifiable with unique capture probes in sequence-based detection systems.

  15. Development of a femtosecond micromachining workstation by use of spectral interferometry.

    PubMed

    Bera, Sudipta; Sabbah, A J; Durfee, Charles G; Squier, Jeff A

    2005-02-15

    A workstation that permits real-time measurement of ablation depth while micromachining with femtosecond laser pulses is demonstrated. This method incorporates the unamplified pulse train that is available in a chirped-pulse amplification system as the probe in an arrangement that uses spectral interferometry to measure the ablation depth while cutting with the amplified pulse in thin metal films.

  16. Silencing and Languaging in the Assembling of the Indian Nation-State: British Public Citizens, the Epistolary Form, and Historiography

    ERIC Educational Resources Information Center

    Ramanathan, Vaidehi

    2009-01-01

    Taking the case of postcolonial India, this paper explores ways in which present temporal junctures permit a probing of historical boundaries to speak of voices largely silenced from Indian historiography, namely those of British (Indian) public citizens who were committed to the assembling of "an India." In particular, the paper…

  17. 77 FR 29449 - Toyota Motor Corporation, Inc., Grant of Petition for Decision of Inconsequential Noncompliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ... to consumers and would not impair a consumer's ability to locate the lower anchorages. (2) Paragraph... consumers' ability to find the LATCH anchorages. While anchor bars are permitted to be as short as 25 mm in... longitudinal vertical plane tangent to the side of the anchorage bar. If a person were to probe the seat bight...

  18. Transmit-receive eddy current probes for defect detection and sizing in steam generator tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obrutsky, L.S.; Cecco, V.S.; Sullivan, S.P.

    1997-02-01

    Inspection of steam generator tubes in aging Nuclear Generating Stations is increasingly important. Defect detection and sizing, especially in defect prone areas such as the tubesheet, support plates and U-bend regions, are required to assess the fitness-for-service of the steam generators. Information about defect morphology is required to address operational integrity issues, i.e., risk of tube rupture, number of tubes at risk, consequential leakage. A major challenge continues to be the detection and sizing of circumferential cracks. Utilities around the world have experienced this type of tube failure. Conventional in-service inspection, performed with eddy current bobbin probes, is ineffectual inmore » detecting circumferential cracks in tubing. It has been demonstrated in CANDU steam generators, with deformation, magnetite and copper deposits that multi-channel probes with transmit-receive eddy current coils are superior to those using surface impedance coils. Transmit-receive probes have strong directional properties, permitting probe optimization according to crack orientation. They are less sensitive to lift-off noise and magnetite deposits and possess good discrimination to internal defects. A single pass C3 array transmit-receive probe developed by AECL can detect and size circumferential stress corrosion cracks as shallow as 40% through-wall. Since its first trial in 1992, it has been used routinely for steam generator in-service inspection of four CANDU plants, preventing unscheduled shutdowns due to leaking steam generator tubes. More recently, a need has surfaced for simultaneous detection of both circumferential and axial cracks. The C5 probe was designed to address this concern. It combines transmit-receive array probe technology for equal sensitivity to axial and circumferential cracks with a bobbin probe for historical reference. This paper will discuss the operating principles of transmit-receive probes, along with inspection results.« less

  19. Radiation factors in space and a system for their monitoring.

    PubMed

    Kovtunenko, V M; Kremnev, R S; Pichkhadze, K M; Bogomolov, V B; Kontor, N N; Filippichev, S A; Petrov, V M; Pissarenko, N F

    1994-10-01

    The radiation environment is of special concern when the spaceship flies in deep space. The annual fluence of the galactic cosmic rays is approximately 10(8) cm-2 and the absorbed dose of the solar cosmic rays can reach 10 Gy per event behind the shielding thickness of 3-5 g cm-2 Al. For the radiation environment monitoring it is planned to place a measuring complex on the space probes "Mars" and "Spectr" flying outside the magnetosphere. This complex is to measure: cosmic rays composition, particle flux, dose equivalent, energy and LET spectra, solar X-rays spectrum. On line data transmission by the space probes permits to obtain the radiation environment data in space.

  20. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  1. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  2. Triaxial Probe Magnetic Data Analysis

    NASA Technical Reports Server (NTRS)

    Shultz, Kimberly; Whittlesey, Albert; Narvaez, Pablo

    2007-01-01

    The Triaxial Magnetic Moment Analysis software uses measured magnetic field test data to compute dipole and quadrupole moment information from a hardware element. It is used to support JPL projects needing magnetic control and an understanding of the spacecraft-generated magnetic fields. Evaluation of the magnetic moment of an object consists of three steps: acquisition, conditioning, and analysis. This version of existing software was extensively rewritten for easier data acquisition, data analysis, and report presentation, including immediate feedback to the test operator during data acquisition. While prior JPL computer codes provided the same data content, this program has a better graphic display including original data overlaid with reconstructed results to show goodness of fit accuracy and better appearance of the report graphic page. Data are acquired using three magnetometers and two rotations of the device under test. A clean acquisition user interface presents required numeric data and graphic summaries, and the analysis module yields the best fit (least squares) for the magnetic dipole and/or quadrupole moment of a device. The acquisition module allows the user to record multiple data sets, selecting the best data to analyze, and is repeated three times for each of the z-axial and y-axial rotations. In this update, the y-axial rotation starting position has been changed to an option, allowing either the x- or z-axis to point towards the magnetometer. The code has been rewritten to use three simultaneous axes of magnetic data (three probes), now using two "rotations" of the device under test rather than the previous three rotations, thus reducing handling activities on the device under test. The present version of the software gathers data in one-degree increments, which permits much better accuracy of the fit ted data than the coarser data acquisition of the prior software. The data-conditioning module provides a clean data set for the analysis module. For multiple measurements at a given degree, the first measurement is used. For omitted measurements, the missing field is estimated by linear interpolation between the two nearest measurements. The analysis module was rewritten for the dual rotation, triaxial probe measurement process and now has better moment estimation accuracy, based on the finer one degree of data acquisition resolution. The magnetic moments thus computed are used as an input to summarize the total spacecraft field.

  3. mtDNA and Y-chromosome polymorphisms in four Native American populations from southern Mexico.

    PubMed Central

    Torroni, A.; Chen, Y. S.; Semino, O.; Santachiara-Beneceretti, A. S.; Scott, C. R.; Lott, M. T.; Winter, M.; Wallace, D. C.

    1994-01-01

    mtDNA sequence variation was examined in 60 Native Americans (Mixtecs from the Alta, Mixtecs from the Baja, Valley Zapotecs, and Highland Mixe) from southern Mexico by PCR amplification and high-resolution restriction endonuclease analysis. Four groups of mtDNA haplotypes (haplogroups A, B, C, and D) characterize Amerind populations, but only three (haplogroups A, B, and C) were observed in these Mexican populations. The comparison of their mtDNA variation with that observed in other populations from Mexico and Central America permits a clear distinction among the different Middle American tribes and raises questions about some of their linguistic affiliations. The males of these population samples were also analyzed for Y-chromosome RFLPs with the probes 49a, 49f, and 12f2. This analysis suggests that certain Y-chromosome haplotypes were brought from Asia during the colonization of the Americas, and a differential gene flow was introduced into Native American populations from European males and females. Images Figure 4 PMID:8304347

  4. Development of a novel gamma probe for detecting radiation direction

    NASA Astrophysics Data System (ADS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Longo, M.; Donnarumma, R.; D'Alessio, A.; Borrazzo, C.; Pergola, A.; Ridolfi, S.; De Vincentis, G.

    2016-01-01

    Spatial localization of radioactive sources is currently a main issue interesting different fields, including nuclear industry, homeland security as well as medical imaging. It is currently achieved using different systems, but the development of technologies for detecting and characterizing radiation is becoming important especially in medical imaging. In this latter field, radiation detection probes have long been used to guide surgery, thanks to their ability to localize and quantify radiopharmaceutical uptake even deep in tissue. Radiolabelled colloid is injected into, or near to, the tumor and the surgeon uses a hand-held radiation detector, the gamma probe, to identify lymph nodes with radiopharmaceutical uptkake. The present work refers to a novel scintigraphic goniometric probe to identify gamma radiation and its direction. The probe incorporates several scintillation crystals joined together in a particular configuration to provide data related to the position of a gamma source. The main technical characteristics of the gamma locator prototype, i.e. sensitivity, spatial resolution and detection efficiency, are investigated. Moreover, the development of a specific procedure applied to the images permits to retrieve the source position with high precision with respect to the currently used gamma probes. The presented device shows a high sensitivity and efficiency to identify gamma radiation taking a short time (from 30 to 60 s). Even though it was designed for applications in radio-guided surgery, it could be used for other purposes, as for example homeland security.

  5. Towards High-Throughput, Simultaneous Characterization of Thermal and Thermoelectric Properties

    NASA Astrophysics Data System (ADS)

    Miers, Collier Stephen

    The extension of thermoelectric generators to more general markets requires that the devices be affordable and practical (low $/Watt) to implement. A key challenge in this pursuit is the quick and accurate characterization of thermoelectric materials, which will allow researchers to tune and modify the material properties quickly. The goal of this thesis is to design and fabricate a high-throughput characterization system for the simultaneous characterization of thermal, electrical, and thermoelectric properties for device scale material samples. The measurement methodology presented in this thesis combines a custom designed measurement system created specifically for high-throughput testing with a novel device structure that permits simultaneous characterization of the material properties. The measurement system is based upon the 3o method for thermal conductivity measurements, with the addition of electrodes and voltage probes to measure the electrical conductivity and Seebeck coefficient. A device designed and optimized to permit the rapid characterization of thermoelectric materials is also presented. This structure is optimized to ensure 1D heat transfer within the sample, thus permitting rapid data analysis and fitting using a MATLAB script. Verification of the thermal portion of the system is presented using fused silica and sapphire materials for benchmarking. The fused silica samples yielded a thermal conductivity of 1.21 W/(m K), while a thermal conductivity of 31.2 W/(m K) was measured for the sapphire samples. The device and measurement system designed and developed in this thesis provide insight and serve as a foundation for the development of high throughput, simultaneous measurement platforms.

  6. Probe compensation in cylindrical near-field scanning: A novel simulation methodology

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad A.; Rahmat-Samii, Yahya

    1993-01-01

    Probe pattern compensation is essential in near-field scanning geometry, where there is a great need to accurately know far-field patterns at wide angular range. This paper focuses on a novel formulation and computer simulation to determine the precise need for and effect of probe compensation in cylindrical near-field scanning. The methodology is applied to a linear test array antenna and the NASA scatterometer radar antenna. The formulation is based on representing the probe by its equivalent tangential magnetic currents. The interaction between the probe equivalent aperture currents and the test antenna fields is obtained with the application of a reciprocity theorem. This allows us to obtain the probe vector output pickup integral which is proportional to the amplitude and phase of the electric field induced in the probe aperture with respect to its position to the test antenna. The integral is evaluated for each probe position on the required sampling point on a cylindrical near-field surface enclosing the antenna. The use of a hypothetical circular-aperture probe with a different radius permits us to derive closed-form expressions for its far-field radiation patterns. These results, together with the probe vector output pickup, allow us to perform computer simulated synthetic measurements. The far-field patterns of the test antenna are formulated based on cylindrical wave expansions of both the probe and test antenna fields. In the limit as the probe radius becomes very small, the probe vector output is the direct response of the near-field at a point, and no probe compensation is needed. Useful results are generated to compare the far-field pattern of the test antenna constructed from the knowledge of the simulated near-field with and without probe pattern compensation and the exact results. These results are important since they clearly illustrate the angular range over which probe compensation is needed. It has been found that a probe with an aperture radius of 0.25(lambda), 0.5(lambda), and 1(lambda) needs a little probe compensation, if any, near the test antenna main beam. In addition, a probe with low directivity may provide a better signal-to-noise ratio than a highly directive one. This is evident in test antenna patterns without probe compensation at wide angles.

  7. Is Bohm's Criterion satisfied in a weakly ionized Kr discharge, in the vicinity of a biased grid that permits counter streaming ion flow?

    NASA Astrophysics Data System (ADS)

    Wackerbarth, Eugene; Kang, In-Je; Park, In-Sun; Chung, Kyu-Sun; Hershkowitz, Noah; Severn, Greg

    2017-10-01

    We consider the problem of the sheath near a negatively biased grid (-100V) that permits ion flow in both directions. We show the first laser-induced fluorescence (LIF) measurements of ion velocity distribution functions (IVDFs) in such a system. We worked with a hot filament discharge at the University of San Diego (length = 64 cm, diameter = 32 cm) in which a Kr discharge was operated with a neutral pressure of 0.1mTorr, ne 3 ×109cm-3 and Te 3.5 eV. Sheath potentials were measured with an emissive probe using the inflection point method in the limit of zero emission. The LIF collection optics were recently upgraded to a 4f system with a spatial resolution smaller than 1mm. IVDFs measured near the grid (80mm diam. 40 lines/cm) indicate ion flow from both sides of the grid. Preliminary analysis of the moments of the IVDFs indicate that Bohm's Criterion is satisfied at the sheath edge. Thanks to DOE Grant No. DE-SC00114226, NSF Grant Nos. 1464741, 1464838, and the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2015M1A7A1A01002784).

  8. Detection of cystic fibrosis mutations in a GeneChip{trademark} assay format

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyada, C.G.; Cronin, M.T.; Kim, S.M.

    1994-09-01

    We are developing assays for the detection of cystic fibrosis mutations based on DNA hybridization. A DNA sample is amplified by PCR, labeled by incorporating a fluorescein-tagged dNTP, enzymatically treated to produce smaller fragments and hybridized to a series of short (13-16 bases) oligonucleotides synthesized on a glass surface via photolithography. The hybrids are detected by eqifluorescence and mutations are identified by the specific pattern of hybridization. In a GeneChip assay, the chip surface is composed of a series of subarrays, each being specific for a particular mutation. Each subarray is further subdivided into a series of probes (40 total),more » half based on the mutant sequence and the remainder based on the wild-type sequence. For each of the subarrays, there is a redundancy in the number of probes that should hybridize to either a wild-type or a mutant target. The multiple probe strategy provides sequence information for a short five base region overlapping the mutation site. In addition, homozygous wild-type and mutant as well as heterozygous samples are each identified by a specific pattern of hybridization. The small size of each probe feature (250 x 250 {mu}m{sup 2}) permits the inclusion of additional probes required to generate sequence information by hybridization.« less

  9. Non-invasive estimation of middle-ear input impedance and efficiency.

    PubMed

    Lewis, James D; Neely, Stephen T

    2015-08-01

    A method to transform the impedance measured in the ear canal, ZEC, to the plane of the eardrum, ZED, is described. The portion of the canal between the probe and eardrum was modeled as a concatenated series of conical segments, allowing for spatial variations in its cross-sectional area. A model of the middle ear (ME) and cochlea terminated the ear-canal model, which permitted estimation of ME efficiency. Acoustic measurements of ZEC were made at two probe locations in 15 normal-hearing subjects. ZEC was sensitive to measurement location, especially near frequencies of canal resonances and anti-resonances. Transforming ZEC to ZED reduced the influence of the canal, decreasing insertion-depth sensitivity of ZED between 1 and 12 kHz compared to ZEC. Absorbance, A, was less sensitive to probe placement than ZEC, but more sensitive than ZED above 5 kHz. ZED and A were similarly insensitive to probe placement between 1 and 5 kHz. The probe-placement sensitivity of ZED below 1 kHz was not reduced from that of either A or ZEC. ME efficiency had a bandpass shape with greatest efficiency between 1 and 4 kHz. Estimates of ZED and ME efficiency could extend the diagnostic capability of wideband-acoustic immittance measurements.

  10. Electromagnetic probe technique for fluid flow measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Carl, J. R.

    1994-01-01

    The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constant of the fluid is possible, several or even many fluids can be measured in the same flow stream. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans to solve this problem will be discussed herein.

  11. A Solid-State Deuterium NMR and SFG Study of the Side Chain Dynamics of Peptides Adsorbed onto Surfaces

    PubMed Central

    Breen, Nicholas F.; Weidner, Tobias; Li, Kun; Castner, David G.; Drobny, Gary P.

    2011-01-01

    The artificial amphiphilic peptide LKα14 adopts a helical structure at interfaces, with opposite orientation of its leucine (L, hydrophobic) and lysine (K, hydrophilic) side chains. When adsorbed onto surfaces, different residue side chains necessarily have different proximities to the surface, depending on both their position in the helix and the composition of the surface itself. Deuterating the individual leucine residues (isopropyl-d7) permits the use of solid-state deuterium NMR as a site-specific probe of side chain dynamics. In conjunction with SFG as a probe of the peptide binding face, we demonstrate that the mobility of specific leucine side chains at the interface is quantifiable in terms of their surface proximity. PMID:19764755

  12. Organic molecule fluorescence as an experimental test-bed for quantum jumps in thermodynamics

    NASA Astrophysics Data System (ADS)

    Browne, Cormac; Farrow, Tristan; Dahlsten, Oscar C. O.; Taylor, Robert A.; Vlatko, Vedral

    2017-08-01

    We demonstrate with an experiment how molecules are a natural test bed for probing fundamental quantum thermodynamics. Single-molecule spectroscopy has undergone transformative change in the past decade with the advent of techniques permitting individual molecules to be distinguished and probed. We demonstrate that the quantum Jarzynski equality for heat is satisfied in this set-up by considering the time-resolved emission spectrum of organic molecules as arising from quantum jumps between states. This relates the heat dissipated into the environment to the free energy difference between the initial and final state. We demonstrate also how utilizing the quantum Jarzynski equality allows for the detection of energy shifts within a molecule, beyond the relative shift.

  13. Organic molecule fluorescence as an experimental test-bed for quantum jumps in thermodynamics.

    PubMed

    Browne, Cormac; Farrow, Tristan; Dahlsten, Oscar C O; Taylor, Robert A; Vlatko, Vedral

    2017-08-01

    We demonstrate with an experiment how molecules are a natural test bed for probing fundamental quantum thermodynamics. Single-molecule spectroscopy has undergone transformative change in the past decade with the advent of techniques permitting individual molecules to be distinguished and probed. We demonstrate that the quantum Jarzynski equality for heat is satisfied in this set-up by considering the time-resolved emission spectrum of organic molecules as arising from quantum jumps between states. This relates the heat dissipated into the environment to the free energy difference between the initial and final state. We demonstrate also how utilizing the quantum Jarzynski equality allows for the detection of energy shifts within a molecule, beyond the relative shift.

  14. Future exploration of Venus (post-Pioneer Venus 1978)

    NASA Technical Reports Server (NTRS)

    Colin, L.; Evans, L. C.; Greeley, R.; Quaide, W. L.; Schaupp, R. W.; Seiff, A.; Young, R. E.

    1976-01-01

    A comprehensive study was performed to determine the major scientific unknowns about the planet Venus to be expected in the post-Pioneer Venus 1978 time frame. Based on those results the desirability of future orbiters, atmospheric entry probes, balloons, and landers as vehicles to address the remaining scientific questions were studied. The recommended mission scenario includes a high resolution surface mapping radar orbiter mission for the 1981 launch opportunity, a multiple-lander mission for 1985 and either an atmospheric entry probe or balloon mission in 1988. All the proposed missions can be performed using proposed space shuttle upper stage boosters. Significant amounts of long-lead time supporting research and technology developments are required to be initiated in the near future to permit the recommended launch dates.

  15. Imaging Spatial Variations in the Dissipation and Transport of Thermal Energy within Individual Silicon Nanowires Using Ultrafast Microscopy.

    PubMed

    Cating, Emma E M; Pinion, Christopher W; Van Goethem, Erika M; Gabriel, Michelle M; Cahoon, James F; Papanikolas, John M

    2016-01-13

    Thermal management is an important consideration for most nanoelectronic devices, and an understanding of the thermal conductivity of individual device components is critical for the design of thermally efficient systems. However, it can be difficult to directly probe local changes in thermal conductivity within a nanoscale system. Here, we utilize the time-resolved and diffraction-limited imaging capabilities of ultrafast pump-probe microscopy to determine, in a contact-free configuration, the local thermal conductivity in individual Si nanowires (NWs). By suspending single NWs across microfabricated trenches in a quartz substrate, the properties of the same NW both on and off the substrate are directly compared. We find the substrate has no effect on the recombination lifetime or diffusion length of photogenerated charge carriers; however, it significantly impacts the thermal relaxation properties of the NW. In substrate-supported regions, thermal energy deposited into the lattice by the ultrafast laser pulse dissipates within ∼10 ns through thermal diffusion and coupling to the substrate. In suspended regions, the thermal energy persists for over 100 ns, and we directly image the time-resolved spatial motion of the thermal signal. Quantitative analysis of the transient images permits direct determination of the NW's local thermal conductivity, which we find to be a factor of ∼4 smaller than in bulk Si. Our results point to the strong potential of pump-probe microscopy to be used as an all-optical method to quantify the effects of localized environment and morphology on the thermal transport characteristics of individual nanostructured components.

  16. A microfluidic brain slice perfusion chamber for multisite recording using penetrating electrodes.

    PubMed

    Blake, Alexander J; Rodgers, Frank C; Bassuener, Anna; Hippensteel, Joseph A; Pearce, Thomas M; Pearce, Timothy R; Zarnowska, Ewa D; Pearce, Robert A; Williams, Justin C

    2010-05-30

    To analyze the spatiotemporal dynamics of network activity in a brain tissue slice, it is useful to record simultaneously from multiple locations. When obtained from laminar structures such as the hippocampus or neocortex, multisite recordings also yield information about subcellular current distributions via current source density analysis. Multisite probes developed for in vivo recordings could serve these purposes in vitro, allowing recordings to be obtained from brain slices at sites deeper within the tissue than currently available surface recording methods permit. However, existing recording chambers do not allow for the insertion of lamina-spanning probes that enter through the edges of brain slices. Here, we present a novel brain slice recording chamber design that accomplishes this goal. The device provides a stable microfluidic perfusion environment in which tissue health is optimized by superfusing both surfaces of the slice. Multichannel electrodes can be inserted parallel to the surface of the slice, at any depth relative to the surface. Access is also provided from above for the insertion of additional recording or stimulating electrodes. We illustrate the utility of this recording configuration by measuring current sources and sinks during theta burst stimuli that lead to the induction of long-term potentiation in hippocampal slices. (c) 2010 Elsevier B.V. All rights reserved.

  17. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output.

    PubMed

    Loening, Andreas Markus; Fenn, Timothy David; Wu, Anna M; Gambhir, Sanjiv Sam

    2006-09-01

    Luciferases, which have seen expansive employment as reporter genes in biological research, could also be used in applications where the protein itself is conjugated to ligands to create probes that are appropriate for use in small animal imaging. As the bioluminescence activity of commonly used luciferases is too labile in serum to permit this application, specific mutations of Renilla luciferase, selected using a consensus sequence driven strategy, were screened for their ability to confer stability of activity in serum as well as their light output. Using this information, a total of eight favorable mutations were combined to generate a mutant Renilla luciferase (RLuc8) that, compared with the parental enzyme, is 200-fold more resistant to inactivation in murine serum and exhibits a 4-fold improvement in light output. Results of the mutational analysis were also used to generate a double mutant optimized for use as a reporter gene. The double mutant had half the resistance to inactivation in serum of the native enzyme while yielding a 5-fold improvement in light output. These variants of Renilla luciferase, which exhibit significantly improved properties compared with the native enzyme, will allow enhanced sensitivity in existing luciferase-based assays as well as enable the development of novel probes labeled with the luciferase protein.

  18. Coupling of a nanomechanical oscillator and an atomic three-level medium

    NASA Astrophysics Data System (ADS)

    Sanz-Mora, A.; Eisfeld, A.; Wüster, S.; Rost, J.-M.

    2016-02-01

    We theoretically investigate the coupling of an ultracold three-level atomic gas and a nanomechanical mirror via classical electromagnetic radiation. The radiation pressure on the mirror is modulated by absorption of a probe light field, caused by the atoms which are electromagnetically rendered nearly transparent, allowing the gas to affect the mirror. In turn, the mirror can affect the gas as its vibrations generate optomechanical sidebands in the control field. We show that the sidebands cause modulations of the probe intensity at the mirror frequency, which can be enhanced near atomic resonances. Through the radiation pressure from the probe beam onto the mirror, this results in resonant driving of the mirror. Controllable by the two-photon detuning, the phase relation of the driving to the mirror motion decides upon amplification or damping of mirror vibrations. This permits direct phase locking of laser amplitude modulations to the motion of a nanomechanical element opening a perspective for cavity-free cooling through coupling to an atomic gas.

  19. Passive OCT probe head for 3D duct inspection

    NASA Astrophysics Data System (ADS)

    Ford, Helen D.; Tatam, Ralph P.

    2013-09-01

    A passive, endoscopic optical coherence tomography (OCT) probe has been demonstrated, incorporating an imaging fibre bundle and 45° conical mirror, and with no electromechanical components at the probe tip. Circular scanning, of the beam projected onto the proximal face of the imaging bundle, produces a corresponding circular scan at the distal end of the bundle. The beam is turned through 90° by the conical mirror and converted into a radially-scanned sample beam, permitting circumferential OCT scanning in quasi-cylindrical ducts. OCT images, displayed as polar plots and as 3D reconstructions, are presented, showing the internal profile of a metallic test sample containing a 660 µm step in the internal wall. Results have been acquired using two methods: one that makes use of multiple beam-circle diameters, and a mechanical ‘pull-back’ technique. The effects of the convex surface of the conical mirror on spatial resolution are discussed, with suggested working distances given for different application regimes.

  20. Infrared Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  1. Characteristics of an axisymmetric sudden expansion flow

    NASA Technical Reports Server (NTRS)

    Stevenson, W. H.; Thompson, H. D.

    1985-01-01

    A two-color, two component Laser Doppler Velocimeter (LDV) system operating in forward scatter has been developed in order to make simultaneous measurements of the axial and radial velocity components in an axisymmetric sudden expansion flow with and without combustion. The LDV system includes Bragg cell modulators in the four beam paths to allow a net frequency shift of 5MHz in both the green and blue beams. This permits an unambiguous measurement of negative velocities and also eliminates incomplete signal bias. The green beam probe volume has a waist diameter of 0.200 mm and is approximately 2mm long. The blue beam has a probe volume waist of 0.250 mm and is approximately 1 mm long. The scattered light from the probe volume is separated so that approximately 80% of each color passes to its respective photomultiplier tube by using a dichroic filter. Narrow bandpass filters are used to further filter unwanted signals before they are detected. A schematic diagram of the LDV system is shown.

  2. Activatable Optical Imaging with a Silica-Rhodamine Based Near Infrared (SiR700) Fluorophore: A comparison with cyanine based dyes

    PubMed Central

    McCann, Thomas E.; Kosaka, Nobuyuki; Koide, Yuichiro; Mitsunaga, Makoto; Choyke, Peter L.; Nagano, Tetsuo; Urano, Yasuteru; Kobayashi, Hisataka

    2011-01-01

    Optical imaging is emerging as an important tool to visualize tumors. However, there are many potential choices among the available fluorophores. Optical imaging probes that emit in the visible range can image superficial tumors with high quantum yields, however, if deeper imaging is needed then near infrared (NIR) fluorophores are necessary. Most commercially available NIR fluorophores are cyanine based and are prone to non-specific binding and relatively limited photostability. Silica-containing rhodamine (SiR) fluorophores represent a new class of NIR fluorophores, which permit photoactivation via H-dimer formation as well as demonstrate improved photostability. This permits higher tumor-to-background ratios (TBRs) to be achieved over longer periods of time. Here, we compared an avidin conjugated with SiR700 (Av-SiR700) to similar compounds based on cyanine dyes (Av-Cy5.5 and Av-Alexa Fluor 680) in a mouse tumor model of ovarian cancer metastasis. We found that the Av-SiR700 probe demonstrated superior quenching enabling activation after binding-internalization to the target cell. As a result, Av-SiR700 had higher TBRs compared to Av-Cy5.5, and better biostability compared to Av-Alexa Fluor 680. PMID:22034863

  3. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D)

    PubMed Central

    Li, Weizhe; Germain, Ronald N.

    2017-01-01

    Organ homeostasis, cellular differentiation, signal relay, and in situ function all depend on the spatial organization of cells in complex tissues. For this reason, comprehensive, high-resolution mapping of cell positioning, phenotypic identity, and functional state in the context of macroscale tissue structure is critical to a deeper understanding of diverse biological processes. Here we report an easy to use method, clearing-enhanced 3D (Ce3D), which generates excellent tissue transparency for most organs, preserves cellular morphology and protein fluorescence, and is robustly compatible with antibody-based immunolabeling. This enhanced signal quality and capacity for extensive probe multiplexing permits quantitative analysis of distinct, highly intermixed cell populations in intact Ce3D-treated tissues via 3D histo-cytometry. We use this technology to demonstrate large-volume, high-resolution microscopy of diverse cell types in lymphoid and nonlymphoid organs, as well as to perform quantitative analysis of the composition and tissue distribution of multiple cell populations in lymphoid tissues. Combined with histo-cytometry, Ce3D provides a comprehensive strategy for volumetric quantitative imaging and analysis that bridges the gap between conventional section imaging and disassociation-based techniques. PMID:28808033

  4. New insights on the Dronino iron meteorite by double-pulse micro-Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tempesta, Gioacchino; Senesi, Giorgio S.; Manzari, Paola; Agrosì, Giovanna

    2018-06-01

    Two fragments of an iron meteorite shower named Dronino were characterized by a novel technique, i.e. Double-Pulse micro-Laser Induced Breakdown Spectroscopy (DP-μLIBS) combined with optical microscope. This technique allowed to perform a fast and detailed analysis of the chemical composition of the fragments and permitted to determine their composition, the alteration state differences and the cooling rate of the meteorite. Qualitative analysis indicated the presence of Fe, Ni and Co in both fragments, whereas the elements Al, Ca, Mg, Si and, for the first time Li, were detected only in one fragment and were related to its post-falling alteration and contamination by weathering processes. Quantitative analysis data obtained using the calibration-free (CF) - LIBS method showed a good agreement with those obtained by traditional methods generally applied to meteorite analysis, i.e. Electron Dispersion Spectroscopy - Scanning Electron Microscopy (EDS-SEM), also performed in this study, and Electron Probe Microanalysis (EMPA) (literature data). The local and coupled variability of Ni and Co (increase of Ni and decrease of Co) determined for the unaltered portions exhibiting plessite texture, suggested the occurrence of solid state diffusion processes under a slow cooling rate for the Dronino meteorite.

  5. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    PubMed Central

    Joshi, Bishnu P.; Wang, Thomas D.

    2010-01-01

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research. PMID:22180839

  6. Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.

  7. From Mars to the Multiverse

    NASA Astrophysics Data System (ADS)

    Martin Rees, Lord

    2017-01-01

    Lord Martin Rees will discuss questions including: What does the long-range future hold? Should we be surprised that the physical laws permitted the emergence of complexity? Is physical reality even more extensive than the domain that our telescopes can probe? Are there many `big bangs'? Powerful instruments have led to astonishing progress in tracing the emergence of atoms, galaxies, stars and planets from a mysterious `beginning' nearly 14 billion years ago. Unmanned spacecraft have visited the other planets of our Solar System (and some of their moons), beaming back pictures of varied and distinctive worlds. An exciting development in the last two decades has been the realization that many other stars are orbited by retinues of planets - some resembling our Earth (and capable of harboring life). Looking further afield, observers can probe galaxies and the massive back holes at their centers and can check models of their evolution by detecting objects all the way back to an epoch only a billion years after the Big Bang. Indeed we can trace pre-galactic history with some confidence back to a nanosecond after the Big Bang. But the key parameters of our expanding universe - the expansion rate, the geometry and the content - were established far earlier still, when the physics is still conjectural but is being constrained, especially by precision measurements of the cosmic microwave background. These advances pose new questions: What does the long-range future hold? Should we be surprised that the physical laws permitted the emergence of complexity? Is physical reality even more extensive than the domain that our telescopes can probe? Are there many `big bangs'? This illustrated lecture will attempt to address such issues.

  8. Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples.

    PubMed

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G; Simpson, Myrna J; Maas, Werner E; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Hume, Alan; Simpson, André J

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate (1)H and (13)C spectra for the different phases. In addition, (19)F performance is also addressed. To illustrate the capability of (19)F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Precise detection of pH inside large unilamellar vesicles using membrane-impermeable dendritic porphyrin-based nanoprobes.

    PubMed

    Leiding, Thom; Górecki, Kamil; Kjellman, Tomas; Vinogradov, Sergei A; Hägerhäll, Cecilia; Arsköld, Sindra Peterson

    2009-05-15

    Accurate real-time measurements of proton concentration gradients are pivotal to mechanistic studies of proton translocation by membrane-bound enzymes. Here we report a detailed characterization of the pH-sensitive fluorescent nanoprobe Glu(3), which is well suited for pH measurements in microcompartmentalized biological systems. The probe is a polyglutamic porphyrin dendrimer in which multiple carboxylate termini ensure its high water solubility and prevent its diffusion across phospholipid membranes. The probe's pK is in the physiological pH range, and its protonation can be followed ratiometrically by absorbance or fluorescence in the ultraviolet-visible spectral region. The usefulness of the probe was enhanced by using a semiautomatic titration system coupled to a charge-coupled device (CCD) spectrometer, enabling fast and accurate titrations and full spectral coverage of the system at millisecond time resolution. The probe's pK was measured in bulk solutions as well as inside large unilamellar vesicles in the presence of physiologically relevant ions. Glu(3) was found to be completely membrane impermeable, and its distinct spectroscopic features permit pH measurements inside closed membrane vesicles, enabling quantitative mechanistic studies of membrane-spanning proteins. Performance of the probe was demonstrated by monitoring the rate of proton leakage through the phospholipid bilayer in large vesicles with and without the uncoupler gramicidin present. Overall, as a probe for biological proton translocation measurements, Glu(3) was found to be superior to the commercially available pH indicators.

  10. Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe

    PubMed Central

    Fiáth, Richárd; Beregszászi, Patrícia; Horváth, Domonkos; Wittner, Lucia; Aarts, Arno A. A.; Ruther, Patrick; Neves, Hercules P.; Bokor, Hajnalka; Acsády, László

    2016-01-01

    Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study. PMID:27535370

  11. Resonant inelastic x-ray scattering probes the electron-phonon coupling in the spin liquid κ -(BEDT-TTF)2Cu2(CN) 3

    NASA Astrophysics Data System (ADS)

    Ilakovac, V.; Carniato, S.; Foury-Leylekian, P.; Tomić, S.; Pouget, J.-P.; Lazić, P.; Joly, Y.; Miyagawa, K.; Kanoda, K.; Nicolaou, A.

    2017-11-01

    Resonant inelastic x-ray scattering at the N K edge reveals clearly resolved harmonics of the anion plane vibrations in the κ -(BEDT-TTF) 2Cu2 (CN) 3 spin-liquid insulator. Tuning the incoming light energy at the K edge of two distinct N sites permits us to excite different sets of phonon modes. The cyanide (CN) stretching mode is selected at the edge of the ordered N sites which are more strongly connected to the bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) molecules, while positionally disordered N sites show multimode excitation. Combining measurements with calculations on an anion plane cluster permits us to estimate the site-dependent electron-phonon coupling of the modes related to nitrogen excitation.

  12. Vibrational spectroscopy of water in hydrated lipid multi-bilayers. I. Infrared spectra and ultrafast pump-probe observables.

    PubMed

    Gruenbaum, S M; Skinner, J L

    2011-08-21

    The vibrational spectroscopy of hydration water in dilauroylphosphatidylcholine lipid multi-bilayers is investigated using molecular dynamics simulations and a mixed quantum/classical model for the OD stretch spectroscopy of dilute HDO in H(2)O. FTIR absorption spectra, and isotropic and anisotropic pump-probe decay curves have been measured experimentally as a function of the hydration level of the lipid multi-bilayer, and our goal is to make connection with these experiments. To this end, we use third-order response functions, which allow us to include non-Gaussian frequency fluctuations, non-Condon effects, molecular rotations, and a fluctuating vibrational lifetime, all of which we believe are important for this system. We calculate the response functions using existing transition frequency and dipole maps. From the experiments it appears that there are two distinct vibrational lifetimes corresponding to HDO molecules in different molecular environments. In order to obtain these lifetimes, we consider a simple two-population model for hydration water hydrogen bonds. Assuming a different lifetime for each population, we then calculate the isotropic pump-probe decay, fitting to experiment to obtain the two lifetimes for each hydration level. With these lifetimes in hand, we then calculate FTIR spectra and pump-probe anisotropy decay as a function of hydration. This approach, therefore, permits a consistent calculation of all observables within a unified computational scheme. Our theoretical results are all in qualitative agreement with experiment. The vibrational lifetime of lipid-associated OD groups is found to be systematically shorter than that of the water-associated population, and the lifetimes of each population increase with decreasing hydration, in agreement with previous analysis. Our theoretical FTIR absorption spectra successfully reproduce the experimentally observed red-shift with decreasing lipid hydration, and we confirm a previous interpretation that this shift results from the hydrogen bonding of water to the lipid phosphate group. From the pump-probe anisotropy decay, we confirm that the reorientational motions of water molecules slow significantly as hydration decreases, with water bound in the lipid carbonyl region undergoing the slowest rotations. © 2011 American Institute of Physics

  13. Vibrational spectroscopy of water in hydrated lipid multi-bilayers. I. Infrared spectra and ultrafast pump-probe observables

    PubMed Central

    Gruenbaum, S. M.; Skinner, J. L.

    2011-01-01

    The vibrational spectroscopy of hydration water in dilauroylphosphatidylcholine lipid multi-bilayers is investigated using molecular dynamics simulations and a mixed quantum∕classical model for the OD stretch spectroscopy of dilute HDO in H2O. FTIR absorption spectra, and isotropic and anisotropic pump-probe decay curves have been measured experimentally as a function of the hydration level of the lipid multi-bilayer, and our goal is to make connection with these experiments. To this end, we use third-order response functions, which allow us to include non-Gaussian frequency fluctuations, non-Condon effects, molecular rotations, and a fluctuating vibrational lifetime, all of which we believe are important for this system. We calculate the response functions using existing transition frequency and dipole maps. From the experiments it appears that there are two distinct vibrational lifetimes corresponding to HDO molecules in different molecular environments. In order to obtain these lifetimes, we consider a simple two-population model for hydration water hydrogen bonds. Assuming a different lifetime for each population, we then calculate the isotropic pump-probe decay, fitting to experiment to obtain the two lifetimes for each hydration level. With these lifetimes in hand, we then calculate FTIR spectra and pump-probe anisotropy decay as a function of hydration. This approach, therefore, permits a consistent calculation of all observables within a unified computational scheme. Our theoretical results are all in qualitative agreement with experiment. The vibrational lifetime of lipid-associated OD groups is found to be systematically shorter than that of the water-associated population, and the lifetimes of each population increase with decreasing hydration, in agreement with previous analysis. Our theoretical FTIR absorption spectra successfully reproduce the experimentally observed red-shift with decreasing lipid hydration, and we confirm a previous interpretation that this shift results from the hydrogen bonding of water to the lipid phosphate group. From the pump-probe anisotropy decay, we confirm that the reorientational motions of water molecules slow significantly as hydration decreases, with water bound in the lipid carbonyl region undergoing the slowest rotations. PMID:21861584

  14. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Fazio, G. G.

    1985-01-01

    Presented are scientific objectives, engineering analysis and design, and results of technology development for a Three-Meter Balloon-Borne Far-Infrared and Submillimeter Telescope. The scientific rationale is based on two crucial instrumental capabilities: high angular resolution which approaches eight arcseconds at one hundred micron wavelength, and high resolving power spectroscopy with good sensitivity throughout the telescope's 30-micron to 1-mm wavelength range. The high angular resolution will allow us to resolve and study in detail such objects as collapsing protostellar condensations in our own galaxy, clusters of protostars in the Magellanic clouds, giant molecular clouds in nearby galaxies, and spiral arms in distant galaxies. The large aperture of the telescope will permit sensitive spectral line measurements of molecules, atoms, and ions, which can be used to probe the physical, chemical, and dynamical conditions in a wide variety of objects.

  15. Fuel spray data with LDV. [solar laser morphokinetomer capabilities in combustion research

    NASA Technical Reports Server (NTRS)

    Rohy, D. A.; Meier, J. G.

    1979-01-01

    Droplet size and two component velocities in the severe environment of an operating gas turbine combustor system can be measured simultaneously using the solar laser morphokinetomer (SLM) which incorporates the following capabilities: (1) measurement of a true two-dimensional velocity vector with a range of + or - (0.01-200 m/sec); (2) measurement of particle size (range 5 to 300 micron m) simultaneously with the measurement of velocity; (3) specification of probe volume position coordinates with a high degree of accuracy (+ or - 0.5 mm); (4) immediate on-line data checks; and (5) rapid computer storage of acquired data. The optical system of the SLM incorporates an ultrasonic beam splitter to allow the measurement of a two-dimensional velocity vector simultaneously with particle size. A microprocessor with a limited storage capability permits immediate analysis of test data in the test cell.

  16. Surface studies of solids using integral X-ray-induced photoemission yield

    PubMed Central

    Stoupin, Stanislav; Zhernenkov, Mikhail; Shi, Bing

    2016-01-01

    X-ray induced photoemission yield contains structural information complementary to that provided by X-ray Fresnel reflectivity, which presents an advantage to a wide variety of surface studies if this information is made easily accessible. Photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure and carries structural information that extends well beyond the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permit extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence. PMID:27874041

  17. 10 micron Spectroscopy with OSCIR: Silicate Minerology and The Origins of Disks & Protoplanetesimals

    NASA Astrophysics Data System (ADS)

    Woodward, Chick; Wooden, Diane; Harker, David; Rodgers, Bernadette; Butner, Harold

    1999-02-01

    The analysis of the silicate mineralogy of pre-main sequence Herbig Ae/Be (HeAeBe) stars to main sequence (beta)-Pic systems, probes the chemical and physical conditions in these potentially planet-forming environments, the condensation of dust from the gas-disk, and the aggregation and accretion of these solids into planetesimals and comets. We propose to obtain 10 micron OSCIR spectra of a selected list of HeAeBe and (beta)-Pic like systems. Use of our ground-based data, combined with the ISO SWS database, and our extensive analytical modeling efforts will permit us to develop a fundamental understanding of connections between silicate mineralogy and the origins and evolution of disks and protoplanetesimals. This program will provide a framework to extend our understanding of planetary formation processes and the mineralogy of dust in differing circumstellar environs and comets to be studied with the NASA STARDUST and SIRTF missions.

  18. Study of a water-soluble fluorescent sensor based on the Eu(III) pefloxacin complex.

    PubMed

    Wen, Chaohao; Yang, Jinglian; Zeng, Zhi; Gao, Jinwei; Zheng, Yuhui

    2017-05-01

    The antibiotic type organic structure pefloxacin binds well with europium (III) ions as a useful scaffold for assembling optical probes and allows energy transfer from ligand to metal ions through coordination linkages. This water-soluble chemosensor demonstrated significant 'off-on (red)' changes from an alkaline to a neutral environment (pH 14-8). The emission changed from red to blue under acidic conditions (pH 7-2). The whole process was completely reversible and effective within the pH range 2 to 14. Moreover, this probe system exhibited distinct luminescence quenching upon the addition of Cu 2+ or Fe 3 + . This general modular route will permit easy detection and the concept can be extended to a variety of quinolones for sensing purposes. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Inspection of aircraft fastener holes using a conically shaped multi-element phased array probe

    NASA Astrophysics Data System (ADS)

    Selman, J. J.; Miller, J. T.; Moles, M. D. C.; Dupuis, O.; Herzog, P. G.

    2002-05-01

    A novel inspection technique is described using phased ultrasonic arrays to detect faying surface cracks in the first layer around the base of a fastener hole with fasteners installed. A unique phased array probe incorporates a matrix of ultrasonic elements arranged in a conical configuration encircling the fastener head. This arrangement permits deflection of the ultrasonic beam in three dimensions, and adapts to different hole diameters and skin thickness. Full circumferential scans are performed using a pre-programmed sequence of phased array focal laws. The inspection method uses pulse-echo at a variety of angles incident on the crack to thoroughly cover the fastener hole and surrounding area, and is designed to detect cracks as small as 0.030″ in length.

  20. Outer planet entry probe system study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    General mission considerations and science prospectus, which are of a general nature that applies to several or all planetary applications, are presented. Five probe systems are defined: nominal Jupiter probe system, and Jupiter probe-dedicated alternative probe system, Jupiter spacecraft radiation-compatible alternative probe system, Saturn probe system, and Saturn probe applicability for Uranus. Parametric analysis is summarized for mission analysis of a general nature, and then for specific missions to Jupiter, Saturn, Uranus, and Neptune. The program is also discussed from the hardware availability viewpoint and the aspect of commonality.

  1. System design of the Pioneer Venus spacecraft. Volume 3: Systems analysis

    NASA Technical Reports Server (NTRS)

    Fisher, J. N.

    1973-01-01

    The mission, systems, operations, ground systems, and reliability analysis of the Thor/Delta baseline design used for the Pioneer Space Probe are discussed. Tradeoff decisions concerning spin axis orientation, bus antenna design, communication system design, probe descent, and reduced science payload are analyzed. The reliability analysis is made for the probe bus mission, large probe mission, and small probe mission. Detailed mission sequences were established to identify critical areas and provide phasing of critical operation.

  2. An item response curves analysis of the Force Concept Inventory

    NASA Astrophysics Data System (ADS)

    Morris, Gary A.; Harshman, Nathan; Branum-Martin, Lee; Mazur, Eric; Mzoughi, Taha; Baker, Stephen D.

    2012-09-01

    Several years ago, we introduced the idea of item response curves (IRC), a simplistic form of item response theory (IRT), to the physics education research community as a way to examine item performance on diagnostic instruments such as the Force Concept Inventory (FCI). We noted that a full-blown analysis using IRT would be a next logical step, which several authors have since taken. In this paper, we show that our simple approach not only yields similar conclusions in the analysis of the performance of items on the FCI to the more sophisticated and complex IRT analyses but also permits additional insights by characterizing both the correct and incorrect answer choices. Our IRC approach can be applied to a variety of multiple-choice assessments but, as applied to a carefully designed instrument such as the FCI, allows us to probe student understanding as a function of ability level through an examination of each answer choice. We imagine that physics teachers could use IRC analysis to identify prominent misconceptions and tailor their instruction to combat those misconceptions, fulfilling the FCI authors' original intentions for its use. Furthermore, the IRC analysis can assist test designers to improve their assessments by identifying nonfunctioning distractors that can be replaced with distractors attractive to students at various ability levels.

  3. 7 CFR 1767.15 - General instructions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... by such detailed information as will permit ready identification, analysis, and verification of all... utility's records shall be so kept as to permit ready analysis by prescribed accounts (by direct reference to sources of original entry to the extent practicable) and to permit preparation of financial and...

  4. 7 CFR 1767.15 - General instructions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... by such detailed information as will permit ready identification, analysis, and verification of all... utility's records shall be so kept as to permit ready analysis by prescribed accounts (by direct reference to sources of original entry to the extent practicable) and to permit preparation of financial and...

  5. 7 CFR 1767.15 - General instructions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... by such detailed information as will permit ready identification, analysis, and verification of all... utility's records shall be so kept as to permit ready analysis by prescribed accounts (by direct reference to sources of original entry to the extent practicable) and to permit preparation of financial and...

  6. Chemical probes for analysis of carbonylated proteins: a review

    PubMed Central

    Yan, Liang-Jun; Forster, Michael J.

    2010-01-01

    Protein carbonylation is a major form of protein oxidation and is widely used as an indicator of oxidative stress. Carbonyl groups do not have distinguishing UV or visible, spectrophotometric absorbance/fluorescence characteristics and thus their detection and quantification can only be achieved using specific chemical probes. In this paper, we review the advantages and disadvantages of several chemical probes that have been and are still being used for protein carbonyl analysis. These probes include 2, 4-dinitrophenylhydazine (DNPH), tritiated sodium borohydride ([3H]NaBH4), biotin-containing probes, and fluorescence probes. As our discussions lean toward gel-based approaches, utilizations of these probes in 2D gel-based proteomic analysis of carbonylated proteins are illustrated where applicable. Analysis of carbonylated proteins by ELISA, immunofluorescent imaging, near infrared fluorescence detection, and gel-free proteomic approaches are also discussed where appropriate. Additionally, potential applications of blue native gel electrophoresis as a tool for first dimensional separation in 2D gel-based analysis of carbonylated proteins are discussed as well. PMID:20732835

  7. In vivo bacterial imaging without engineering; A novel probe-based strategy facilitated by endogenous nitroreductase enzymes.

    PubMed

    Stanton, Michael; Cronin, Michelle; Lehouritis, Panos; Tangney, Mark

    2015-01-01

    The feasibility of utilising bacteria as vectors for gene therapy is becoming increasingly recognised. This is primarily due to a number of intrinsic properties of bacteria such as their tumour targeting capabilities, their ability to carry large genetic or protein loads and the availability of well-established genetic engineering tools for a range of common lab strains. However, a number of issues relating to the use of bacteria as vectors for gene therapy need to be addressed in order for the field to progress. Amongst these is the need for the development of non-invasive detection/imaging systems for bacteria within a living host. In vivo optical imaging has advanced preclinical research greatly, and typically involves engineering of bacteria with genetic expression constructs for luminescence (e.g. the lux operon) or fluorescent proteins (GFP etc.). This requirement for genetic modification can be restrictive, where engineering is not experimentally appropriate or technologically feasible (e.g. due to lack of suitable engineering tools). We describe a novel strategy exploiting endogenous bacterial enzymatic activity to specifically activate an exogenously administered fluorescent imaging probe. The red shifted, quenched fluorophore CytoCy5S is reduced to a fluorescent form by bacterial-specific nitroreductase (NTR) enzymes. NTR enzymes are present in a wide range of bacterial genera and absent in mammalian systems, permitting highly specific detection of Gram-negative and Gram-positive bacteria in vivo. In this study, dose-responsive bacterial-specific signals were observed in vitro from all genera examined - E. coli, Salmonella, Listeria, Bifidobacterium and Clostridium difficile. Examination of an NTR-knockout strain validated the enzyme specificity of the probe. In vivo whole-body imaging permitted specific, dose-responsive monitoring of bacteria over time in various infection models, and no toxicity to bacteria or host was observed. This study demonstrates the concept of exploiting innate NTR activity as a reporting strategy for wild-type bacteria using optical imaging, while the concept may also be extended to NTR-specific probes for use with other imaging modalities.

  8. Nitrogen Isotopic Ratio in Jupiter's Atmosphere from Observations by Composite Infrared Spectrometer (CIRS) on the Cassini Spacecraft

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Owen, T.; Conrath, B. J.; Flasar, F. M.; Kunde, V. G.; Nixon, C. A..; Achterberg, R. K.; Bjoraker, G.; Jennings, D. J.

    2003-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft made infrared observations of Jupiter's atmosphere during the flyby in December 2000 to January 2001. The unique database in the 600-1400/cm region with 0.53 and 2.8/cm spectral resolutions obtained from the observations permits retrieval of global maps of the thermal structure and composition of Jupiter's atmosphere including the distributions of (14)NH3 and (15)NH3. Analysis of Jupiter's ammonia distributions from three isolated (15)NH3 spectral lines in eight latitudes is presented for evaluation of the nitrogen isotopic ratio. The nitrogen isotopic ratio (14)N/(15)N (or (15)N/(14)N) in Jupiter's atmosphere in this analysis is calculated to be: 448 +/- 62 ((2.23 +/- 0.31) x 10(exp -3)). This value of the ratio determined from CIRS data is found to be in very close agreement with the value previously obtained from the measurements by the Galileo Probe Mass Spectrometer. Some possible mechanisms to account for the variation of Jupiter's observed isotopic ratio relative to various astrophysical environments are discussed.

  9. Folding cooperativity in a three-stranded beta-sheet model.

    PubMed

    Roe, Daniel R; Hornak, Viktor; Simmerling, Carlos

    2005-09-16

    The thermodynamic behavior of a previously designed three-stranded beta-sheet was studied via several microseconds of standard and replica exchange molecular dynamics simulations. The system is shown to populate at least four thermodynamic minima, including two partially folded states in which only a single hairpin is formed. Simulated melting curves show different profiles for the C and N-terminal hairpins, consistent with differences in secondary structure content in published NMR and CD/FTIR measurements, which probed different regions of the chain. Individual beta-hairpins that comprise the three-stranded beta-sheet are observed to form cooperatively. Partial folding cooperativity between the component hairpins is observed, and good agreement between calculated and experimental values quantifying this cooperativity is obtained when similar analysis techniques are used. However, the structural detail in the ensemble of conformations sampled in the simulations permits a more direct analysis of this cooperativity than has been performed on the basis of experimental data. The results indicate the actual folding cooperativity perpendicular to strand direction is significantly larger than the lower bound obtained previously.

  10. Folding cooperativity in a 3-stranded β-sheet model

    PubMed Central

    Roe, Daniel R.; Hornak, Viktor

    2015-01-01

    Summary The thermodynamic behavior of a previously designed three-stranded β-sheet was studied via several µs of standard and replica exchange molecular dynamics simulations. The system is shown to populate at least four thermodynamic minima, including 2 partially folded states in which only a single hairpin is formed. Simulated melting curves show different profiles for the C and N-terminal hairpins, consistent with differences in secondary structure content in published NMR and CD/FTIR measurements, which probed different regions of the chain. Individual β-hairpins that comprise the 3-stranded β-sheet are observed to form cooperatively. Partial folding cooperativity between the component hairpins is observed, and good agreement between calculated and experimental values quantifying this cooperativity is obtained when similar analysis techniques are used. However, the structural detail in the ensemble of conformations sampled in the simulations permits a more direct analysis of this cooperatively than has been performed based on experimental data. The results indicate the actual folding cooperativity perpendicular to strand direction is significantly larger than the lower bound obtained previously. PMID:16095612

  11. High pressure optical combustion probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod inmore » a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.« less

  12. RNA-oligonucleotide quantification technique (ROQT) for the enumeration of uncultivated bacterial species in subgingival biofilms

    PubMed Central

    Teles, F.R.F.; Teles, R.P.; Siegelin, Y.; Paster, B.; Haffajee, A.D.; Socransky, S.S.

    2010-01-01

    SUMMARY Approximately 35% of the species present in subgingival biofilms are as yet uncultivated, so their role in periodontal pathogenesis is unknown. The aim of the present study was to develop a high throughput method to quantify a wide range of cultivated and uncultivated taxa in subgingival biofilm samples associated with periodontal disease or health. Oligonucleotides targeting the 16S ribosomal DNA gene were designed, synthesized and labeled with digoxigenin. These probes were hybridized with the total nucleic acids of pure cultures or subgingival biofilm samples. Target species included cultivated taxa associated with periodontal health and disease, as well as uncultivated species, such as TM7 sp OT 346, Mitsuokella sp. OT 131 and Desulfobulbus sp. OT 041. Sensitivity and specificity of the probes were determined. A Universal probe was used to assess total bacterial load. Sequences complementary to the probes were used as standards for quantification. Chemiluminescent signals were visualized after film exposure or using a CCD camera. In a pilot clinical study, 266 subgingival plaque samples from eight periodontally healthy people and 11 patients with periodontitis were examined. Probes were specific and sensitivity reached 104 cells. Fusobacterium nucleatum ss polymorphum and Actinomyces gerencseriae were the most abundant cultivated taxa in clinical samples. Among uncultivated/unrecognized species, Mitsuokella sp. OT 131 and Prevotella sp. OT 306 were the most numerous. Porphyromonas gingivalis and Desulfobulbus sp. OT 041 were only detected in patients with periodontitis. Direct hybridization of total nucleic acids using oligonucleotide probes permitted the quantification of multiple cultivated and uncultivated taxa in mixed species biofilm samples. PMID:21375703

  13. Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe.

    PubMed

    Fiáth, Richárd; Beregszászi, Patrícia; Horváth, Domonkos; Wittner, Lucia; Aarts, Arno A A; Ruther, Patrick; Neves, Hercules P; Bokor, Hajnalka; Acsády, László; Ulbert, István

    2016-11-01

    Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study. Copyright © 2016 the American Physiological Society.

  14. Application Specific Electronic Module Program (ASEM), Final Technical Report.

    DTIC Science & Technology

    1994-12-14

    relatively high temperatures , may induce a metal break or other continuity problems. Secondly, the improved electrical environment at the module level vs...wafer probe can permit higher speed tests to be applied, isolating marginal die. Thirdly, high reliability screens, such as temperature cycling, bum-in...The high temperature aging is done at 150’ C for 500 hours. The thermal cycle treatments are from 0- 100 0 C and 3 cycles per hour are done. The

  15. Far Western: probing membranes.

    PubMed

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONThe far-Western technique described in this protocol is fundamentally similar to Western blotting. In Western blots, an antibody is used to detect a query protein on a membrane. In contrast, in a far-Western blot (also known as an overlay assay) the antibody is replaced by a recombinant GST fusion protein (produced and purified from bacteria), and the assay detects the interaction of this protein with target proteins on a membrane. The membranes are washed and blocked, incubated with probe protein, washed again, and subjected to autoradiography. The GST fusion (probe) proteins are often labeled with (32)P; alternatively, the membrane can be probed with unlabeled GST fusion protein, followed by detection using commercially available GST antibodies. The nonradioactive approach is substantially more expensive (due to the purchase of antibody and detection reagents) than using radioactively labeled proteins. In addition, care must be taken to control for nonspecific interactions with GST alone and a signal resulting from antibody cross-reactivity. In some instances, proteins on the membrane are not able to interact after transfer. This may be due to improper folding, particularly in the case of proteins expressed from a phage expression library. This protocol describes a way to overcome this by washing the membrane in denaturation buffer, which is then serially diluted to permit slow renaturation of the proteins.

  16. Two- and Three-Dimensional Probes of Parity in Primordial Gravity Waves.

    PubMed

    Masui, Kiyoshi Wesley; Pen, Ue-Li; Turok, Neil

    2017-06-02

    We show that three-dimensional information is critical to discerning the effects of parity violation in the primordial gravity-wave background. If present, helical gravity waves induce parity-violating correlations in the cosmic microwave background (CMB) between parity-odd polarization B modes and parity-even temperature anisotropies (T) or polarization E modes. Unfortunately, EB correlations are much weaker than would be naively expected, which we show is due to an approximate symmetry resulting from the two-dimensional nature of the CMB. The detectability of parity-violating correlations is exacerbated by the fact that the handedness of individual modes cannot be discerned in the two-dimensional CMB, leading to a noise contribution from scalar matter perturbations. In contrast, the tidal imprints of primordial gravity waves fossilized into the large-scale structure of the Universe are a three-dimensional probe of parity violation. Using such fossils the handedness of gravity waves may be determined on a mode-by-mode basis, permitting future surveys to probe helicity at the percent level if the amplitude of primordial gravity waves is near current observational upper limits.

  17. A measurement and modeling study of temperature in living and fixed tissue during and after radiofrequency exposure.

    PubMed

    Bermingham, Jacqueline F; Chen, Yuen Y; McIntosh, Robert L; Wood, Andrew W

    2014-04-01

    Fluorescent intensity of the dye Rhodamine-B (Rho-B) decreases with increasing temperature. We show that in fresh rat brain tissue samples in a custom-made radiofrequency (RF) tissue exposure device, temperature rise due to RF radiation as measured by absorbed dye correlates well with temperature measured nearby by fiber optic probes. Estimates of rate of initial temperature rise (using both probe measurement and the dye method) accord well with estimates of local specific energy absorption rate (SAR). We also modeled the temperature characteristics of the exposure device using combined electromagnetic and finite-difference thermal modeling. Although there are some differences in the rate of cooling following cessation of RF exposure, there is reasonable agreement between modeling and both probe measurement and dye estimation of temperature. The dye method also permits measurement of regional temperature rise (due to RF). There is no clear evidence of local differential RF absorption, but further refinement of the method may be needed to fully clarify this issue. © 2014 Wiley Periodicals, Inc.

  18. Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial

    PubMed Central

    Aasted, Christopher M.; Yücel, Meryem A.; Cooper, Robert J.; Dubb, Jay; Tsuzuki, Daisuke; Becerra, Lino; Petkov, Mike P.; Borsook, David; Dan, Ippeita; Boas, David A.

    2015-01-01

    Abstract. Functional near-infrared spectroscopy (fNIRS) is an optical imaging method that is used to noninvasively measure cerebral hemoglobin concentration changes induced by brain activation. Using structural guidance in fNIRS research enhances interpretation of results and facilitates making comparisons between studies. AtlasViewer is an open-source software package we have developed that incorporates multiple spatial registration tools to enable structural guidance in the interpretation of fNIRS studies. We introduce the reader to the layout of the AtlasViewer graphical user interface, the folder structure, and user files required in the creation of fNIRS probes containing sources and detectors registered to desired locations on the head, evaluating probe fabrication error and intersubject probe placement variability, and different procedures for estimating measurement sensitivity to different brain regions as well as image reconstruction performance. Further, we detail how AtlasViewer provides a generic head atlas for guiding interpretation of fNIRS results, but also permits users to provide subject-specific head anatomies to interpret their results. We anticipate that AtlasViewer will be a valuable tool in improving the anatomical interpretation of fNIRS studies. PMID:26157991

  19. Quantitative measurements of magnetic vortices using position resolved diffraction in Lorentz STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaluzec, N. J.

    2002-03-05

    A number of electron column techniques have been developed over the last forty years to permit visualization of magnetic fields in specimens. These include: Fresnel imaging, Differential Phase Contrast, Electron Holography and Lorentz STEM. In this work we have extended the LSTEM methodology using Position Resolved Diffraction (PRD) to quantitatively measure the in-plane electromagnetic fields of thin film materials. The experimental work reported herein has been carried out using the ANL AAEM HB603Z 300 kV FEG instrument 5. In this instrument, the electron optical column was operated in a zero field mode, at the specimen, where the objective lens ismore » turned off and the probe forming lens functions were reallocated to the C1, C2, and C3 lenses. Post specimen lenses (P1, P2, P3, P4) were used to magnify the transmitted electrons to a YAG screen, which was then optically transferred to a Hamamatsu ORCA ER CCD array. This CCD was interfaced to an EmiSpec Data Acquisition System and the data was subsequently transferred to an external computer system for detailed quantitative analysis. In Position Resolved Diffraction mode, we digitally step a focused electron probe across the region of interest of the specimen while at the same time recording the complete diffraction pattern at each point in the scan.« less

  20. Evaluating a hybrid three-dimensional metrology system: merging data from optical and touch probe devices

    NASA Astrophysics Data System (ADS)

    Gerde, Janice R.; Christens-Barry, William A.

    2011-08-01

    In a project to meet requirements for CBP Laboratory analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS), a hybrid metrology system comprising both optical and touch probe devices has been assembled. A unique requirement must be met: To identify the interface-typically obscured in samples of concern-of the "external surface area upper" (ESAU) and the sole without physically destroying the sample. The sample outer surface is determined by discrete point cloud coordinates obtained using laser scanner optical measurements. Measurements from the optically inaccessible insole region are obtained using a coordinate measuring machine (CMM). That surface similarly is defined by point cloud data. Mathematically, the individual CMM and scanner data sets are transformed into a single, common reference frame. Custom software then fits a polynomial surface to the insole data and extends it to intersect the mesh fitted to the outer surface point cloud. This line of intersection defines the required ESAU boundary, thus permitting further fractional area calculations to determine the percentage of materials present. With a draft method in place, and first-level method validation underway, we examine the transformation of the two dissimilar data sets into the single, common reference frame. We also will consider the six previously-identified potential error factors versus the method process. This paper reports our on-going work and discusses our findings to date.

  1. EPR oximetry in three spatial dimensions using sparse spin distribution

    NASA Astrophysics Data System (ADS)

    Som, Subhojit; Potter, Lee C.; Ahmad, Rizwan; Vikram, Deepti S.; Kuppusamy, Periannan

    2008-08-01

    A method is presented to use continuous wave electron paramagnetic resonance imaging for rapid measurement of oxygen partial pressure in three spatial dimensions. A particulate paramagnetic probe is employed to create a sparse distribution of spins in a volume of interest. Information encoding location and spectral linewidth is collected by varying the spatial orientation and strength of an applied magnetic gradient field. Data processing exploits the spatial sparseness of spins to detect voxels with nonzero spin and to estimate the spectral linewidth for those voxels. The parsimonious representation of spin locations and linewidths permits an order of magnitude reduction in data acquisition time, compared to four-dimensional tomographic reconstruction using traditional spectral-spatial imaging. The proposed oximetry method is experimentally demonstrated for a lithium octa- n-butoxy naphthalocyanine (LiNc-BuO) probe using an L-band EPR spectrometer.

  2. Contingency Planning for the Microwave Anisotropy Probe Mission

    NASA Technical Reports Server (NTRS)

    Mesarch, Michael A.; Rohrbaugh, David; Schiff, Conrad; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) utilized a phasing loop/lunar encounter strategy to achieve a small amplitude Lissajous orbit about the Sun-Earth/Moon L2 libration point. The use of phasing loops was key in minimizing MAP's overall deltaV needs while also providing ample opportunities for contingency resolution. This paper will discuss the different contingencies and responses studied for MAP. These contingencies included accommodating excessive launch vehicle errors (beyond 3 sigma), splitting perigee maneuvers to achieve ground station coverage through the Deep Space Network (DSN), delaying the start of a perigee maneuver, aborting a perigee maneuver in the middle of execution, missing a perigee maneuver altogether, and missing the lunar encounter (crucial to achieving the final Lissajous orbit). It is determined that using a phasing loop approach permits many opportunities to correct for a majority of these contingencies.

  3. Touring the saturnian system: the atmospheres of titan and saturn

    NASA Astrophysics Data System (ADS)

    Owen, Tobias; Gautier, Daniel

    2002-07-01

    This report follows the presentation originally given in the ESA Phase A Study for the Cassini Huygens Mission. The combination of the Huygens atmospheric probe into Titan's atmosphere with the Cassini orbiter allows for both in-situ and remote-sensing observations of Titan. This not only provides a rich harvest of data about Saturn's famous satellite but will permit a useful calibration of the remote-sensing instruments which will also be used on Saturn itself. Composition, thermal structure, dynamics, aeronomy, magnetosphere interactions and origins will all be investigated for the two atmospheres, and the spacecraft will also deliver information on the interiors of both Titan and Saturn. As the surface of Titan is intimately linked with the atmosphere, we also discuss some of the surface studies that will be carried out by both probe and orbiter.

  4. Interferometric scanning optical microscope for surface characterization.

    PubMed

    Offside, M J; Somekh, M G

    1992-11-01

    A phase-sensitive scanning optical microscope is described that can measure surface height changes down to 0.1 nm. This is achieved by using two heterodyne Michelson interferometers in parallel. One interferometer probes the sample with a tightly focused beam, and the second has a collimated beam that illuminates a large area of the surface, providing a large area on sample reference. This is facilitated by using a specially constructed objective lens that permits the relative areas illuminated by the two probe beams to be varied both arbitrarily and independently, thus ensuring an accurate absolute phase measurement. We subtracted the phase outputs from each interferometer to provide the sample phase information, canceling the phase noise resulting from microphonics in the process. Results from a prototype version of the microscope are presented that demonstrate the advantages of the system over existing techniques.

  5. Local collective motion analysis for multi-probe dynamic imaging and microrheology

    NASA Astrophysics Data System (ADS)

    Khan, Manas; Mason, Thomas G.

    2016-08-01

    Dynamical artifacts, such as mechanical drift, advection, and hydrodynamic flow, can adversely affect multi-probe dynamic imaging and passive particle-tracking microrheology experiments. Alternatively, active driving by molecular motors can cause interesting non-Brownian motion of probes in local regions. Existing drift-correction techniques, which require large ensembles of probes or fast temporal sampling, are inadequate for handling complex spatio-temporal drifts and non-Brownian motion of localized domains containing relatively few probes. Here, we report an analytical method based on local collective motion (LCM) analysis of as few as two probes for detecting the presence of non-Brownian motion and for accurately eliminating it to reveal the underlying Brownian motion. By calculating an ensemble-average, time-dependent, LCM mean square displacement (MSD) of two or more localized probes and comparing this MSD to constituent single-probe MSDs, we can identify temporal regimes during which either thermal or athermal motion dominates. Single-probe motion, when referenced relative to the moving frame attached to the multi-probe LCM trajectory, provides a true Brownian MSD after scaling by an appropriate correction factor that depends on the number of probes used in LCM analysis. We show that LCM analysis can be used to correct many different dynamical artifacts, including spatially varying drifts, gradient flows, cell motion, time-dependent drift, and temporally varying oscillatory advection, thereby offering a significant improvement over existing approaches.

  6. The baric probe: a novel long-term implantable intracranial pressure monitor with ultrasound-based interrogation.

    PubMed

    Limbrick, David D; Lake, Stephen; Talcott, Michael; Alexander, Benjamin; Wight, Samuel; Willie, Jon T; Richard, William D; Genin, Guy M; Leuthardt, Eric C

    2012-12-01

    Prompt diagnosis of shunt malfunction is critical in preventing neurological morbidity and death in individuals with hydrocephalus; however, diagnostic methods for this condition remain limited. For several decades, investigators have sought a long-term, implantable intracranial pressure (ICP) monitor to assist in the diagnosis of shunt malfunction, but efforts have been impeded by device complexity, marked measurement drift, and limited instrumentation lifespan. In the current report, the authors introduce an entirely novel, simple, compressible gas design that addresses each of these problems. The device described herein, termed the "baric probe," consists of a subdural fluid bladder and multichannel indicator that monitors the position of an air-fluid interface (AFI). A handheld ultrasound probe is used to interrogate the baric probe in vivo, permitting noninvasive ICP determination. To assess the function of device prototypes, ex vivo experiments were conducted using a water column, and short- and long-term in vivo experiments were performed using a porcine model with concurrent measurements of ICP via a fiberoptic monitor. Following a toe region of approximately 2 cm H(2)O, the baric probe's AFI demonstrated a predictable linear relationship to ICP in both ex vivo and in vivo models. After a 2-week implantation of the device, this linear relationship remained robust and reproducible. Further, changes in ICP were observed with the baric probe, on average, 3 seconds in advance of the fiberoptic ICP monitor reading. The authors demonstrate "proof-of-concept" and feasibility for the baric probe, a long-term implantable ICP monitor designed to facilitate the prompt and accurate diagnosis of shunt malfunction. The baric probe showed a consistent linear relationship between ICP and the device's AFI in ex vivo and short- and long-term in vivo models. With a low per-unit cost, a reduced need for radiography or CT, and an indicator that can be read with a handheld ultrasound probe that interfaces with any smart phone, the baric probe promises to simplify the care of patients with shunt-treated hydrocephalus throughout both the developed and the developing world.

  7. Simultaneous analysis of nuclear and mitochondrial DNA, mRNA and miRNA from backspatter from inside parts of firearms generated by shots at "triple contrast" doped ballistic models.

    PubMed

    Grabmüller, Melanie; Schyma, Christian; Euteneuer, Jan; Madea, Burkhard; Courts, Cornelius

    2015-09-01

    When a firearm projectile hits a biological target a spray of biological material (e.g., blood and tissue fragments) can be propelled from the entrance wound back towards the firearm. This phenomenon has become known as "backspatter" and if caused by contact shots or shots from short distances traces of backspatter may reach, consolidate on, and be recovered from, the inside surfaces of the firearm. Thus, a comprehensive investigation of firearm-related crimes must not only comprise of wound ballistic assessment but also backspatter analysis, and may even take into account potential correlations between these emergences. The aim of the present study was to evaluate and expand the applicability of the "triple contrast" method by probing its compatibility with forensic analysis of nuclear and mitochondrial DNA and the simultaneous investigation of co-extracted mRNA and miRNA from backspatter collected from internal components of different types of firearms after experimental shootings. We demonstrate that "triple contrast" stained biological samples collected from the inside surfaces of firearms are amenable to forensic co-analysis of DNA and RNA and permit sequence analysis of the entire mtDNA displacement-loop, even for "low template" DNA amounts that preclude standard short tandem repeat DNA analysis. Our findings underscore the "triple contrast" method's usefulness as a research tool in experimental forensic ballistics.

  8. Optical control of the coherent acoustic vibration of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Arbouet, A.; Del Fatti, N.; Vallee, F.

    2006-04-01

    Optical control of the coherent breathing vibrations of silver nanospheres is demonstrated using a high-sensitivity femtosecond pump-probe technique in a double-pump pulse configuration. Oscillation of the fundamental mode that usually dominates the time-domain vibrational response can thus be stopped, permitting observation of the first order radial mode and determination of its properties. These are found to be in agreement with the predictions of the model of an elastic sphere embedded in an elastic matrix.

  9. Biological research on a Space Station

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.; Johnson, Catherine C.

    1990-01-01

    A Space Station can provide reliable, long duration access to ug environments for basic and applied biological research. The uniqueness of access to near-weightless environments to probe fundamental questions of significance to gravitational and Space biologists can be exploited from many vantage points. Access to centrifuge facilities that can provide 1 g and hypo-g controls will permit identification of gravity-dependent or primary effects. Understanding secondary effects of the ug environment as well will allow a fuller exploitation of the Space environment.

  10. Large Advanced Space Systems (LASS) computer-aided design program additions

    NASA Technical Reports Server (NTRS)

    Farrell, C. E.

    1982-01-01

    The LSS preliminary and conceptual design requires extensive iteractive analysis because of the effects of structural, thermal, and control intercoupling. A computer aided design program that will permit integrating and interfacing of required large space system (LSS) analyses is discussed. The primary objective of this program is the implementation of modeling techniques and analysis algorithms that permit interactive design and tradeoff studies of LSS concepts. Eight software modules were added to the program. The existing rigid body controls module was modified to include solar pressure effects. The new model generator modules and appendage synthesizer module are integrated (interfaced) to permit interactive definition and generation of LSS concepts. The mass properties module permits interactive specification of discrete masses and their locations. The other modules permit interactive analysis of orbital transfer requirements, antenna primary beam n, and attitude control requirements.

  11. Development progress of the Materials Analysis and Particle Probe

    NASA Astrophysics Data System (ADS)

    Lucia, M.; Kaita, R.; Majeski, R.; Bedoya, F.; Allain, J. P.; Boyle, D. P.; Schmitt, J. C.; Onge, D. A. St.

    2014-11-01

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

  12. Development progress of the Materials Analysis and Particle Probe.

    PubMed

    Lucia, M; Kaita, R; Majeski, R; Bedoya, F; Allain, J P; Boyle, D P; Schmitt, J C; Onge, D A St

    2014-11-01

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

  13. Structure design and characteristic analysis of micro-nano probe based on six dimensional micro-force measuring principle

    NASA Astrophysics Data System (ADS)

    Yang, Hong-tao; Cai, Chun-mei; Fang, Chuan-zhi; Wu, Tian-feng

    2013-10-01

    In order to develop micro-nano probe having error self-correcting function and good rigidity structure, a new micro-nano probe system was developed based on six-dimensional micro-force measuring principle. The structure and working principle of the probe was introduced in detail. The static nonlinear decoupling method was established with BP neural network to do the static decoupling for the dimension coupling existing in each direction force measurements. The optimal parameters of BP neural network were selected and the decoupling simulation experiments were done. The maximum probe coupling rate after decoupling is 0.039% in X direction, 0.025% in Y direction and 0.027% in Z direction. The static measurement sensitivity of the probe can reach 10.76μɛ / mN in Z direction and 14.55μɛ / mN in X and Y direction. The modal analysis and harmonic response analysis under three dimensional harmonic load of the probe were done by using finite element method. The natural frequencies under different vibration modes were obtained and the working frequency of the probe was determined, which is higher than 10000 Hz . The transient response analysis of the probe was done, which indicates that the response time of the probe can reach 0.4 ms. From the above results, it is shown that the developed micro-nano probe meets triggering requirements of micro-nano probe. Three dimension measuring force can be measured precisely by the developed probe, which can be used to predict and correct the force deformation error and the touch error of the measuring ball and the measuring rod.

  14. Diurnal variation in the turbulent structure of the cloudy marine boundary layer during FIRE 1987

    NASA Technical Reports Server (NTRS)

    Hignett, Phillip

    1990-01-01

    During the 1987 FIRE marine stratocumulus experiment the U.K. Meteorological Office operated a set of turbulence probes attached to the tether cable of a balloon based on San Nicolas Island. Typically six probes were used; each probe is fitted with Gill propeller anemometers, a platinum resistance thermometer and wet and dry thermistors, to permit measurements of the fluxes of momentum, heat, and humidity. The orientation of each probe is determined from a pair of inclinometers and a three-axis magnetometer. Sufficient information is available to allow the measured wind velocities to be corrected for the motion of the balloon. On the 14 to 15 July measurements were made over the period 1530 to 1200 UTC and again, after a short break for battery recharging and topping-up the balloon, between 0400 to 0900 UTC. Data were therefore recorded from morning to early evening, and again for a period overnight. Six probes were available for the daytime measurements, five for the night. Data were recorded at 4 Hz for individual periods of a little over an hour. The intention was to keep a minimum of one probe at or just above cloud top; small changes in balloon height were necessary to accommodate changes in inversion height. The ability of the balloon system to make simultaneous measurements at several levels allows the vertical structure of the boundary layer to be displayed without resort to composites. Turbulent statistics were calculated from 2 hour periods, one straddling local noon and one at night. These were subdivided into half-hour averaging intervals for the evaluation of variances and fluxes.

  15. The Impact of Probe Variability on Brief Experimental Analysis of Reading Skills

    ERIC Educational Resources Information Center

    Mercer, Sterett H.; Harpole, Lauren Lestremau; Mitchell, Rachel R.; McLemore, Chandler; Hardy, Christina

    2012-01-01

    The purpose of this study was to examine the impact of probe variability on the ability to replicate results in brief experimental analysis (BEA) of reading. In the first phase of the study, 41 first- and second- grade students completed 16 oral reading fluency probes. Calculations of probe difficulty were used to identify Low and High Variability…

  16. 14 CFR 437.55 - Hazard analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Hazard analysis. 437.55 Section 437.55... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.55 Hazard analysis. (a) A permittee must... safety of property resulting from each permitted flight. This hazard analysis must— (1) Identify and...

  17. 14 CFR 437.55 - Hazard analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Hazard analysis. 437.55 Section 437.55... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.55 Hazard analysis. (a) A permittee must... safety of property resulting from each permitted flight. This hazard analysis must— (1) Identify and...

  18. Method and apparatus for chemical and topographical microanalysis

    NASA Technical Reports Server (NTRS)

    Kossakovski, Dmitri A. (Inventor); Baldeschwieler, John D. (Inventor); Beauchamp, Jesse L. (Inventor)

    2002-01-01

    A scanning probe microscope is combined with a laser induced breakdown spectrometer to provide spatially resolved chemical analysis of the surface correlated with the surface topography. Topographical analysis is achieved by scanning a sharp probe across the sample at constant distance from the surface. Chemical analysis is achieved by the means of laser induced breakdown spectroscopy by delivering pulsed laser radiation to the sample surface through the same sharp probe, and consequent collection and analysis of emission spectra from plasma generated on the sample by the laser radiation. The method comprises performing microtopographical analysis of the sample with a scanning probe, selecting a scanned topological site on the sample, generating a plasma plume at the selected scanned topological site, and measuring a spectrum of optical emission from the plasma at the selected scanned topological site. The apparatus comprises a scanning probe, a pulsed laser optically coupled to the probe, an optical spectrometer, and a controller coupled to the scanner, laser and spectrometer for controlling the operation of the scanner, laser and spectrometer. The probe and scanner are used for topographical profiling the sample. The probe is also used for laser radiation delivery to the sample for generating a plasma plume from the sample. Optical emission from the plasma plume is collected and delivered to the optical spectrometer so that analysis of emission spectrum by the optical spectrometer allows for identification of chemical composition of the sample at user selected sites.

  19. WASTE ANALYSIS PLAN REVIEW ADVISOR - AN INTELLIGENT DATABASE TO ASSIST RCRA PERMIT REVIEWERS

    EPA Science Inventory

    The Waste Analysis Plan Review Advisor (WAPRA) system assists in the review of the Waste Analysis Plan Section of RCRA Part B facility permit applications. Specifically, this program automates two functions of the waste analysis plan review. First, the system checks all wastes wh...

  20. Write-Read 3D Patterning with a Dual-Channel Nanopipette.

    PubMed

    Momotenko, Dmitry; Page, Ashley; Adobes-Vidal, Maria; Unwin, Patrick R

    2016-09-27

    Nanopipettes are becoming extremely versatile and powerful tools in nanoscience for a wide variety of applications from imaging to nanoscale sensing. Herein, the capabilities of nanopipettes to build complex free-standing three-dimensional (3D) nanostructures are demonstrated using a simple double-barrel nanopipette device. Electrochemical control of ionic fluxes enables highly localized delivery of precursor species from one channel and simultaneous (dynamic and responsive) ion conductance probe-to-substrate distance feedback with the other for reliable high-quality patterning. Nanopipettes with 30-50 nm tip opening dimensions of each channel allowed confinement of ionic fluxes for the fabrication of high aspect ratio copper pillar, zigzag, and Γ-like structures, as well as permitted the subsequent topographical mapping of the patterned features with the same nanopipette probe as used for nanostructure engineering. This approach offers versatility and robustness for high-resolution 3D "printing" (writing) and read-out at the nanoscale.

  1. Advanced Nanoindentation Testing for Studying Strain-Rate Sensitivity and Activation Volume

    NASA Astrophysics Data System (ADS)

    Maier-Kiener, Verena; Durst, Karsten

    2017-11-01

    Nanoindentation became a versatile tool for testing local mechanical properties beyond hardness and modulus. By adapting standard nanoindentation test methods, simple protocols capable of probing thermally activated deformation processes can be accomplished. Abrupt strain-rate changes within one indentation allow determining the strain-rate dependency of hardness at various indentation depths. For probing lower strain-rates and excluding thermal drift influences, long-term creep experiments can be performed by using the dynamic contact stiffness for determining the true contact area. From both procedures hardness and strain-rate, and consequently strain-rate sensitivity and activation volume can be reliably deducted within one indentation, permitting information on the locally acting thermally activated deformation mechanism. This review will first discuss various testing protocols including possible challenges and improvements. Second, it will focus on different examples showing the direct influence of crystal structure and/or microstructure on the underlying deformation behavior in pure and highly alloyed material systems.

  2. Probing the photon polarization in B → K*γ with conversion

    DOE PAGES

    Bishara, Fady; Robinson, Dean J.

    2015-09-02

    We re-examine the possibility to measure the photon polarization in B → K*γ decays, via decays in which the photon subsequently undergoes nuclear conversion to a lepton pair. We obtain compact expressions for the full decay-plus-conversion amplitude. With these results we show that interference between the B → (K* → Kπ)γ decay and the γN → ℓ + ℓ – N conversion permits both the ratio and relative weak phase between the left- and right-handed photon amplitudes to be probed by an angular observable, constructed from the final state dilepton, kaon and pion kinematic configuration. Exploiting this technique will bemore » experimentally challenging. However, we present special kinematic cuts that enhance the statistical power of this technique by an O(1) factor. Furthermore, we verify this effect and extract pertinent angular kinematic distributions with dedicated numerical simulations.« less

  3. Standardized reference ideogram for physical mapping in the saltwater crocodile (Crocodylus porosus).

    PubMed

    Dalzell, P; Miles, L G; Isberg, S R; Glenn, T C; King, C; Murtagh, V; Moran, C

    2009-01-01

    Basic cytogenetic data, such as diploid number and general chromosome morphology, are available for many reptilian species. Here we present a detailed cytogenetic examination of the saltwater crocodile (Crocodylus porosus) karyotype, including the creation of the first fully annotated G-band standard ideogram for any crocodilian species. The C. porosus karyotype contains macrochromosomes and has a diploid number of 34. This study presents a detailed description of each chromosome, permitting unambiguous chromosome identification. The fully annotated standardized C. porosus ideogram provides the backbone to a standard nomenclature system which can be used to accurately identify specific band locations. Seven microsatellite containing fosmid clones were fluorescently labeled and used as fluorescent in situ hybridization (FISH) probes for physical localization. Chromosome locations for each of these FISH probes were successfully assigned, demonstrating the utility of the fully annotated ideogram for genome mapping. Copyright 2010 S. Karger AG, Basel.

  4. Space engineering

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1991-01-01

    Human productivity was studied for extravehicular tasks performed in microgravity, particularly including in-space assembly of truss structures and other large objects. Human factors research probed the anthropometric constraints imposed on microgravity task performance and the associated workstation design requirements. Anthropometric experiments included reach envelope tests conducted using the 3-D Acoustic Positioning System (3DAPS), which permitted measuring the range of reach possible for persons using foot restraints in neutral buoyancy, both with and without space suits. Much neutral buoyancy research was conducted using the support of water to simulate the weightlessness environment of space. It became clear over time that the anticipated EVA requirement associated with the Space Station and with in-space construction of interplanetary probes would heavily burden astronauts, and remotely operated robots (teleoperators) were increasingly considered to absorb the workload. Experience in human EVA productivity led naturally to teleoperation research into the remote performance of tasks through human controlled robots.

  5. Rapid and inexpensive body fluid identification by RNA profiling-based multiplex High Resolution Melt (HRM) analysis

    PubMed Central

    Hanson, Erin K.; Ballantyne, Jack

    2014-01-01

    Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA) profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE) or quantitative RT-PCR (qRT-PCR) platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM) assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions), IL1F7 (skin), ALAS2 (blood), MMP10 (menstrual blood), HTN3 (saliva) and TGM4 (semen).  The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green). Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively inexpensive, screening of biological evidence. PMID:24715968

  6. Rapid and inexpensive body fluid identification by RNA profiling-based multiplex High Resolution Melt (HRM) analysis.

    PubMed

    Hanson, Erin K; Ballantyne, Jack

    2013-01-01

    Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA) profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE) or quantitative RT-PCR (qRT-PCR) platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM) assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions), IL1F7 (skin), ALAS2 (blood), MMP10 (menstrual blood), HTN3 (saliva) and TGM4 (semen).  The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green). Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively inexpensive, screening of biological evidence.

  7. Structural evolution of nanoscale metallic glasses during high-pressure torsion: A molecular dynamics analysis

    NASA Astrophysics Data System (ADS)

    Feng, S. D.; Jiao, W.; Jing, Q.; Qi, L.; Pan, S. P.; Li, G.; Ma, M. Z.; Wang, W. H.; Liu, R. P.

    2016-11-01

    Structural evolution in nanoscale Cu50Zr50 metallic glasses during high-pressure torsion is investigated using molecular dynamics simulations. Results show that the strong cooperation of shear transformations can be realized by high-pressure torsion in nanoscale Cu50Zr50 metallic glasses at room temperature. It is further shown that high-pressure torsion could prompt atoms to possess lower five-fold symmetries and higher potential energies, making them more likely to participate in shear transformations. Meanwhile, a higher torsion period leads to a greater degree of forced cooperative flow. And the pronounced forced cooperative flow at room temperature under high-pressure torsion permits the study of the shear transformation, its activation and characteristics, and its relationship to the deformations behaviors. This research not only provides an important platform for probing the atomic-level understanding of the fundamental mechanisms of high-pressure torsion in metallic glasses, but also leads to higher stresses and homogeneous flow near lower temperatures which is impossible previously.

  8. A method for the measurement and the statistical analysis of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Tieleman, H. W.; Tavoularis, S. C.

    1974-01-01

    The instantaneous values of output voltages representing the wind velocity vector and the temperature at different elevations of the 250-foot meteorological tower located at NASA Wallops Flight Center are provided with the three dimensional split-film TSI Model 1080 anemometer system. The output voltages are sampled at a rate of one every 5 milliseconds, digitized and stored on digital magnetic tapes for a time period of approximately 40 minutes, with the use of a specially designed data acqusition system. A new calibration procedure permits the conversion of the digital voltages to the respective values of the temperature and the velocity components in a Cartesian coordinate system connected with the TSI probe with considerable accuracy. Power, cross, coincidence and quadrature spectra of the wind components and the temperature are obtained with the use of the fast Fourier transform. The cosine taper data window and ensemble and frequency smoothing techniques are used to provide smooth estimates of the spectral functions.

  9. Molecular fMRI of Serotonin Transport.

    PubMed

    Hai, Aviad; Cai, Lili X; Lee, Taekwan; Lelyveld, Victor S; Jasanoff, Alan

    2016-11-23

    Reuptake of neurotransmitters from the brain interstitium shapes chemical signaling processes and is disrupted in several pathologies. Serotonin reuptake in particular is important for mood regulation and is inhibited by first-line drugs for treatment of depression. Here we introduce a molecular-level fMRI technique for micron-scale mapping of serotonin transport in live animals. Intracranial injection of an MRI-detectable serotonin sensor complexed with serotonin, together with serial imaging and compartmental analysis, permits neurotransmitter transport to be quantified as serotonin dissociates from the probe. Application of this strategy to much of the striatum and surrounding areas reveals widespread nonsaturating serotonin removal with maximal rates in the lateral septum. The serotonin reuptake inhibitor fluoxetine selectively suppresses serotonin removal in septal subregions, whereas both fluoxetine and a dopamine transporter blocker depress reuptake in striatum. These results highlight promiscuous pharmacological influences on the serotonergic system and demonstrate the utility of molecular fMRI for characterization of neurochemical dynamics. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration

    2018-02-01

    We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ˜5 GeV . That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L /Eν as long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δ m322=2.31-0.13+0.11×10-3 eV2 and sin2θ23=0.5 1-0.09+0.07, assuming normal neutrino mass ordering. These results are consistent with, and of similar precision to, those from accelerator- and reactor-based experiments.

  11. Spectroscopic analysis and in vitro imaging applications of a pH responsive AIE sensor with a two-input inhibit function.

    PubMed

    Zhou, Zhan; Gu, Fenglong; Peng, Liang; Hu, Ying; Wang, Qianming

    2015-08-04

    A novel terpyridine derivative formed stable aggregates in aqueous media (DMSO/H2O = 1/99) with dramatically enhanced fluorescence compared to its organic solution. Moreover, the ultra-violet absorption spectra also demonstrated specific responses to the incorporation of water. The yellow emission at 557 nm changed to a solution with intense greenish luminescence only in the presence of protons and it conformed to a molecular logic gate with a two-input INHIBIT function. This molecular-based material could permeate into live cells and remain undissociated in the cytoplasm. The new aggregation induced emission (AIE) pH type bio-probe permitted easy collection of yellow luminescence images on a fluorescent microscope. As designed, it displayed striking green emission in organelles at low internal pH. This feature enabled the self-assembled structure to have a whole new function for the pH detection within the field of cell imaging.

  12. Prospects for the application of radiometric methods in the measurement of two-phase flows

    NASA Astrophysics Data System (ADS)

    Zych, Marcin

    2018-06-01

    The article constitutes an overview of the application of radiometric methods in the research of two-phase flows: liquid-solid particles and liquid-gas flows. The methods which were used were described on the basis of the experiments which were conducted in the Water Laboratory of the Wrocław University of Environmental and Life Sciences and in the Sedimentological Laboratory of the Faculty of Geology, Geophysics and Environmental Protection, AGH-UST in Kraków. The advanced mathematical methods for the analysis of signals from scintillation probes that were applied enable the acquisition of a number of parameters associated with the flowing two-phase mixture, such as: average velocities of the particular phases, concentration of the solid phase, and void fraction for a liquid-gas mixture. Despite the fact that the application of radioactive sources requires considerable carefulness and a number of state permits, in many cases these sources become useful in the experiments which are presented.

  13. EXPERIMENTS - APOLLO 17

    NASA Image and Video Library

    1972-11-17

    S72-53472 (November 1972) --- An artist's concept illustrating how radar beams of the Apollo 17 lunar sounder experiment will probe three-quarters of a mile below the moon's surface from the orbiting spacecraft. The Lunar Sounder will be mounted in the SIM bay of the Apollo 17 Service Module. Electronic data recorded on film will be retrieved by the crew during trans-Earth EVA. Geologic information on the lunar interior obtained by the sounder will permit scientific investigation of underground rock layers, lava flow patterns, rille (canyon) structures, mascon properties, and any areas containing water. A prototype lunar sounder has been flight tested in aircraft over selected Earth sites to confirm the equipment design and develop scientific analysis techniques. The Lunar Sounder Experiment (S-209) was developed by North American Rockwell's (NR) Space Division for NASA's Manned Spacecraft Center to provide data for a scientific investigation team with representatives from the Jet Propulsion Laboratory, University of Utah, University of Michigan, U.S. Geological Survey, and NASA Ames Research Center.

  14. Results and lessons from the GMOS survey of transiting exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Todorov, Kamen; Desert, Jean-Michel; Huitson, Catherine; Bean, Jacob; Fortney, Jonathan; Bergmann, Marcel; Stevenson, Kevin

    2018-01-01

    We present results from the first comprehensive survey program dedicated to probing transiting exoplanet atmospheres using transmission spectroscopy with a multi-object spectrograph (MOS). Our four-years survey focussed on ten close-in giant planets for which the wavelength dependent transit depths in the visible were measured with Gemini/GMOS. We present the complete analysis of all the targets observed (50 transits, 300 hours), and the challenges to overcome to achieve the best spectrophotometric precision (200-500 ppm / 10 nm). We also present the main results and conclusions from this survey. We show that the precision achieved by this survey permits to distinguish hazy atmospheres from cloud-free ones. We discuss the challenges faced by such an experiment, and the lessons learnt for future MOS survey. We lay out the challenges facing future ground based MOS transit surveys aiming for the atmospheric characterization of habitable worlds, and utilizing the next generation of multi-object spectrographs mounted on extremely large ground based telescopes (ELT, TMT).

  15. The Use of Langmuir Probes in Non-Maxwellian Space Plasmas

    NASA Technical Reports Server (NTRS)

    Hoegy, Walter R.; Brace, Larry H.

    1998-01-01

    Disturbance of the Maxwellian plasma may occur in the vicinity of a spacecraft due to photoemission, interactions between the spacecraft and thermospheric gases, or electron emissions from other devices on the spacecraft. Significant non-maxwellian plasma distributions may also occur in nature as a mixture of ionospheric and magnetospheric plasmas or secondaries produced by photoionization in the thermosphere or auroral precipitation. The general formulas for current collection (volt-ampere curves) by planar, cylindrical, and spherical Langmuir probes in isotropic and anisotropic non-maxwellian plasmas are examined. Examples are given of how one may identify and remove the non-maxwellian components in the Langmuir probe current to permit the ionospheric parameters to be determined. Theoretical volt-ampere curves presented for typical examples of non-maxwellian distributions include: two-temperature plasmas and a thermal plasma with an energetic electron beam. If the non-ionospheric electrons are Maxwellian at a temperature distinct from that of the ionosphere electrons, the volt-ampere curves can be fitted directly to obtain the temperatures and densities of both electron components without resorting to differenting the current. For an arbitrary isotropic distribution, the current for retarded particles is shown to be identical for the three geometries. For anisotropic distributions, the three probe geometries are not equally suited for measuring the ionospheric electron temperature and density or for determining the distribution function in the presence of non-maxwellian back-round electrons.

  16. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  17. Efficient On-Off Ratiometric Fluorescence Probe for Cyanide Ion Based on Perturbation of the Interaction between Gold Nanoclusters and a Copper(II)-Phthalocyanine Complex.

    PubMed

    Shojaeifard, Zahra; Hemmateenejad, Bahram; Shamsipur, Mojtaba

    2016-06-22

    A new ratiometric fluorescent sensor was developed for the sensitive and selective detection of cyanide ion (CN(-)) in aqueous media. The ratiometric sensing system is based on CN(-) modulated recovery of copper(II) phthalocyanine (Cu(PcTs)) fluorescence signal at the expense of diminished fluorescence intensity of gold nanoclusters (AuNCs). Preliminary experiments revealed that the AuNCs and Cu(PcTs) possess a turn-off effect on each other, the interaction of which being verified through studying their interactions by principle component analysis (PCA) and multivariate cure resolution-alternating least-squares (MCR-ALS) methods. In the presence of CN(-) anion, the AuNCs and Cu(PcTs) interaction was perturbed, so that the fluorescence of Cu (PcTs), already quenched by AuNCs, was found to be efficiently recovered, while the fluorescence intensity of AuNCs was quenched via the formation of a stable [Au(CN)2](-) species. The ratiometric variation of AuNCs and Cu(PcTs) fluorescence intensities leads to designing a highly sensitive probe for CN(-) ion detection. Under the optimal conditions, CN(-) anion was detected without needing any etching time, over the concentration range of 100 nM-220 μM, with a detection limit of 75 nM, which is much lower than the allowable level of CN(-) in water permitted by the World Health Organization (WHO). Moreover, the detection of CN(-) was developed based on the CN(-) effects on the blue and red florescent colors of Cu(PcTs) and AuNCs, respectively. The designed probe displays a continuous color change from red to blue by addition of CN(-), which can be clearly observed by the naked eye in the range of 7-350 μM, under UV lamp. The prepared AuNCs/Cu(PcTs) probe was successfully utilized for the selective and sensitive determination of CN(-) anion in two different types of natural water (Rodbal dam and rainwater) and also in blood serum as a biological sample.

  18. Direct Surface and Droplet Microsampling for Electrospray Ionization Mass Spectrometry Analysis with an Integrated Dual-Probe Microfluidic Chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Cong-Min; Zhu, Ying; Jin, Di-Qiong

    Ambient mass spectrometry (MS) has revolutionized the way of MS analysis and broadened its application in various fields. This paper describes the use of microfluidic techniques to simplify the setup and improve the functions of ambient MS by integrating the sampling probe, electrospray emitter probe, and online mixer on a single glass microchip. Two types of sampling probes, including a parallel-channel probe and a U-shaped channel probe, were designed for dryspot and liquid-phase droplet samples, respectively. We demonstrated that the microfabrication techniques not only enhanced the capability of ambient MS methods in analysis of dry-spot samples on various surfaces, butmore » also enabled new applications in the analysis of nanoliter-scale chemical reactions in an array of droplets. The versatility of the microchip-based ambient MS method was demonstrated in multiple different applications including evaluation of residual pesticide on fruit surfaces, sensitive analysis of low-ionizable analytes using postsampling derivatization, and high-throughput screening of Ugi-type multicomponent reactions.« less

  19. Open Probe fast GC-MS - combining ambient sampling ultra-fast separation and in-vacuum ionization for real-time analysis.

    PubMed

    Keshet, U; Alon, T; Fialkov, A B; Amirav, A

    2017-07-01

    An Open Probe inlet was combined with a low thermal mass ultra-fast gas chromatograph (GC), in-vacuum electron ionization ion source and a mass spectrometer (MS) of GC-MS for obtaining real-time analysis with separation. The Open Probe enables ambient sampling via sample vaporization in an oven that is open to room air, and the ultra-fast GC provides ~30-s separation, while if no separation is required, it can act as a transfer line with 2 to 3-s sample transfer time. Sample analysis is as simple as touching the sample, pushing the sample holder into the Open Probe oven and obtaining the results in 30 s. The Open Probe fast GC was mounted on a standard Agilent 7890 GC that was coupled with an Agilent 5977A MS. Open Probe fast GC-MS provides real-time analysis combined with GC separation and library identification, and it uses the low-cost MS of GC-MS. The operation of Open Probe fast GC-MS is demonstrated in the 30-s separation and 50-s full analysis cycle time of tetrahydrocannabinol and cannabinol in Cannabis flower, sub 1-min analysis of trace trinitrotoluene transferred from a finger onto a glass surface, vitamin E in canola oil, sterols in olive oil, polybrominated flame retardants in plastics, alprazolam in Xanax drug pill and free fatty acids and cholesterol in human blood. The extrapolated limit of detection for pyrene is <1 fg, but the concentration is too high and the software noise calculation is untrustworthy. The broad range of compounds amenable for analysis is demonstrated in the analysis of reserpine. The possible use with alternate standard GC-MS and Open Probe fast GC-MS is demonstrated in the analysis of heroin in its street drug powder. The use of Open Probe with the fast GC acting as a transfer line is demonstrated in <10-s analysis without separation of ibuprofen and estradiol. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. A Single Molecular Beacon Probe Is Sufficient for the Analysis of Multiple Nucleic Acid Sequences

    PubMed Central

    Gerasimova, Yulia V.; Hayson, Aaron; Ballantyne, Jack; Kolpashchikov, Dmitry M.

    2010-01-01

    Molecular beacon (MB) probes are dual-labeled hairpin-shaped oligodeoxyribonucleotides that are extensively used for real-time detection of specific RNA/DNA analytes. In the MB probe, the loop fragment is complementary to the analyte: therefore, a unique probe is required for the analysis of each new analyte sequence. The conjugation of an oligonucleotide with two dyes and subsequent purification procedures add to the cost of MB probes, thus reducing their application in multiplex formats. Here we demonstrate how one MB probe can be used for the analysis of an arbitrary nucleic acid. The approach takes advantage of two oligonucleotide adaptor strands, each of which contains a fragment complementary to the analyte and a fragment complementary to an MB probe. The presence of the analyte leads to association of MB probe and the two DNA strands in quadripartite complex. The MB probe fluorescently reports the formation of this complex. In this design, the MB does not bind the analyte directly; therefore, the MB sequence is independent of the analyte. In this study one universal MB probe was used to genotype three human polymorphic sites. This approach promises to reduce the cost of multiplex real-time assays and improve the accuracy of single-nucleotide polymorphism genotyping. PMID:20665615

  1. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids.

    PubMed

    Yang, Litao; Liang, Wanqi; Jiang, Lingxi; Li, Wenquan; Cao, Wei; Wilson, Zoe A; Zhang, Dabing

    2008-06-04

    Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. We describe a real-time PCR technique employing attached universal duplex probes (AUDP), which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP) and a complementary quenching probe (QP) lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT) and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO) quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost.

  2. A wireless beta-microprobe based on pixelated silicon for in vivo brain studies in freely moving rats

    NASA Astrophysics Data System (ADS)

    Märk, J.; Benoit, D.; Balasse, L.; Benoit, M.; Clémens, J. C.; Fieux, S.; Fougeron, D.; Graber-Bolis, J.; Janvier, B.; Jevaud, M.; Genoux, A.; Gisquet-Verrier, P.; Menouni, M.; Pain, F.; Pinot, L.; Tourvielle, C.; Zimmer, L.; Morel, C.; Laniece, P.

    2013-07-01

    The investigation of neurophysiological mechanisms underlying the functional specificity of brain regions requires the development of technologies that are well adjusted to in vivo studies in small animals. An exciting challenge remains the combination of brain imaging and behavioural studies, which associates molecular processes of neuronal communications to their related actions. A pixelated intracerebral probe (PIXSIC) presents a novel strategy using a submillimetric probe for beta+ radiotracer detection based on a pixelated silicon diode that can be stereotaxically implanted in the brain region of interest. This fully autonomous detection system permits time-resolved high sensitivity measurements of radiotracers with additional imaging features in freely moving rats. An application-specific integrated circuit (ASIC) allows for parallel signal processing of each pixel and enables the wireless operation. All components of the detector were tested and characterized. The beta+ sensitivity of the system was determined with the probe dipped into radiotracer solutions. Monte Carlo simulations served to validate the experimental values and assess the contribution of gamma noise. Preliminary implantation tests on anaesthetized rats proved PIXSIC's functionality in brain tissue. High spatial resolution allows for the visualization of radiotracer concentration in different brain regions with high temporal resolution.

  3. Semi-automatic 10/20 Identification Method for MRI-Free Probe Placement in Transcranial Brain Mapping Techniques.

    PubMed

    Xiao, Xiang; Zhu, Hao; Liu, Wei-Jie; Yu, Xiao-Ting; Duan, Lian; Li, Zheng; Zhu, Chao-Zhe

    2017-01-01

    The International 10/20 system is an important head-surface-based positioning system for transcranial brain mapping techniques, e.g., fNIRS and TMS. As guidance for probe placement, the 10/20 system permits both proper ROI coverage and spatial consistency among multiple subjects and experiments in a MRI-free context. However, the traditional manual approach to the identification of 10/20 landmarks faces problems in reliability and time cost. In this study, we propose a semi-automatic method to address these problems. First, a novel head surface reconstruction algorithm reconstructs head geometry from a set of points uniformly and sparsely sampled on the subject's head. Second, virtual 10/20 landmarks are determined on the reconstructed head surface in computational space. Finally, a visually-guided real-time navigation system guides the experimenter to each of the identified 10/20 landmarks on the physical head of the subject. Compared with the traditional manual approach, our proposed method provides a significant improvement both in reliability and time cost and thus could contribute to improving both the effectiveness and efficiency of 10/20-guided MRI-free probe placement.

  4. Clinical use of organic near-infrared fluorescent contrast agents in image-guided oncologic procedures and its potential in veterinary oncology.

    PubMed

    Favril, Sophie; Abma, Eline; Blasi, Francesco; Stock, Emmelie; Devriendt, Nausikaa; Vanderperren, Katrien; de Rooster, Hilde

    2018-04-28

    One of the major challenges in surgical oncology is the intraoperative discrimination of tumoural versus healthy tissue. Until today, surgeons rely on visual inspection and palpation to define the tumoural margins during surgery and, unfortunately, for various cancer types, the local recurrence rate thus remains unacceptably high. Near-infrared (NIR) fluorescence imaging is an optical imaging technique that can provide real-time preoperative and intraoperative information after administration of a fluorescent probe that emits NIR light once exposed to a NIR light source. This technique is safe, cost-effective and technically easy. Several NIR fluorescent probes are currently studied for their ability to highlight neoplastic cells. In addition, NIR fluorescence imaging holds great promise for sentinel lymph node mapping. The aim of this manuscript is to provide a literature review of the current organic NIR fluorescent probes tested in the light of human oncology and to introduce fluorescence imaging as a valuable asset in veterinary oncology. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Imaging Cellular Dynamics with Spectral Relaxation Imaging Microscopy: Distinct Spectral Dynamics in Golgi Membranes of Living Cells.

    PubMed

    Lajevardipour, Alireza; Chon, James W M; Chattopadhyay, Amitabha; Clayton, Andrew H A

    2016-11-22

    Spectral relaxation from fluorescent probes is a useful technique for determining the dynamics of condensed phases. To this end, we have developed a method based on wide-field spectral fluorescence lifetime imaging microscopy to extract spectral relaxation correlation times of fluorescent probes in living cells. We show that measurement of the phase and modulation of fluorescence from two wavelengths permit the identification and determination of excited state lifetimes and spectral relaxation correlation times at a single modulation frequency. For NBD fluorescence in glycerol/water mixtures, the spectral relaxation correlation time determined by our approach exhibited good agreement with published dielectric relaxation measurements. We applied this method to determine the spectral relaxation dynamics in membranes of living cells. Measurements of the Golgi-specific C 6 -NBD-ceramide probe in living HeLa cells revealed sub-nanosecond spectral dynamics in the intracellular Golgi membrane and slower nanosecond spectral dynamics in the extracellular plasma membrane. We interpret the distinct spectral dynamics as a result of structural plasticity of the Golgi membrane relative to more rigid plasma membranes. To the best of our knowledge, these results constitute one of the first measurements of Golgi rotational dynamics.

  6. 42 CFR 421.501 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... licensed medical professional, for a billed item or service identified by data analysis techniques or probe... rate based on the results of a probe review prior to the initiation of complex medical review. Medical... licensed medical professional, for a billed item or service identified by data analysis techniques or probe...

  7. 42 CFR 421.501 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... licensed medical professional, for a billed item or service identified by data analysis techniques or probe... rate based on the results of a probe review prior to the initiation of complex medical review. Medical... licensed medical professional, for a billed item or service identified by data analysis techniques or probe...

  8. 42 CFR 421.501 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... licensed medical professional, for a billed item or service identified by data analysis techniques or probe... rate based on the results of a probe review prior to the initiation of complex medical review. Medical... licensed medical professional, for a billed item or service identified by data analysis techniques or probe...

  9. Comparative Evaluation of Pain Scores during Periodontal Probing with or without Anesthetic Gels.

    PubMed

    Mishra, Ashank; Priyanka, Mandapathi; Pradeep, Koppolu; Reddy Pathakota, Krishnajaneya

    2016-01-01

    Context. The initial periodontal examination which includes full-mouth periodontal probing is one of the discomforting procedures for a patient. Aim. To evaluate the efficacy of two local anesthetic gels in the reduction of pain during periodontal probing using Florida probe in CGP patients in comparison with manual probing. Materials and Methods. Ninety systemically healthy patients with moderate to severe CGP patients were recruited. In each patient, the quadrants were randomly assigned to manual probing with UNC-15 probe, probing with Florida probe, and Florida probing with lidocaine 10% gel and with benzocaine 20% gel. In the quadrants undergoing probing with anesthetic gels, the sites were isolated and the gel was injected using syringe and a blunt-end cannula. Pain was measured using 10 mm horizontal VAS. Statistical Analysis. The analysis was carried out using SPSS version 18. The comparison of mean VAS scores was done using repeated measures ANOVA with post hoc Bonferroni test. Results. Mean VAS for manual probing was significantly more than Florida probing. Further, the mean VAS score for Florida probing was higher than the two gels. Conclusion. It is suggested that the gels might be useful in reducing pain experienced during full-mouth periodontal probing in patients with CGP.

  10. Theoretical and experimental studies of reentry plasmas

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.; Kang, S.

    1973-01-01

    A viscous shock-layer analysis was developed and used to calculate nonequilibrium-flow species distributions in the plasma layer of the RAM vehicle. The theoretical electron-density results obtained are in good agreement with those measured in flight. A circular-aperture flush-mounted antenna was used to obtain a comparison between theoretical and experimental antenna admittance in the presence of ionized boundary layers of low collision frequency. The electron-temperature and electron-density distributions in the boundary layer were independently measured. The antenna admittance was measured using a four-probe microwave reflectometer and these measured values were found to be in good agreement with those predicted. Measurements were also performed with another type of circular-aperture antenna and good agreement was obtained between the calculations and the experimental results. A theoretical analysis has been completed which permits calculation of the nonequilibrium, viscous shock-layer flow field for a sphere-cone body. Results are presented for two different bodies at several different altitudes illustrating the influences of bluntness and chemical nonequilibrium on several gas dynamic parameters of interest. Plane-wave transmission coefficients were calculated for an approximate space-shuttle body using a typical trajectory.

  11. Gravity field error analysis: Applications of GPS receivers and gradiometers on low orbiting platforms

    NASA Technical Reports Server (NTRS)

    Schrama, E.

    1990-01-01

    The concept of a Global Positioning System (GPS) receiver as a tracking facility and a gradiometer as a separate instrument on a low orbiting platform offers a unique tool to map the Earth's gravitational field with unprecedented accuracies. The former technique allows determination of the spacecraft's ephemeris at any epoch to within 3 to 10 cm, the latter permits the measurement of the tensor of second order derivatives of the gravity field to within 0.01 to 0.0001 Eotvos units depending on the type of gradiometer. First, a variety of error sources in gradiometry where emphasis is placed on the rotational problem pursuing as well a static as a dynamic approach is described. Next, an analytical technique is described and applied for an error analysis of gravity field parameters from gradiometer and GPS observation types. Results are discussed for various configurations proposed on Topex/Poseidon, Gravity Probe-B, and Aristoteles, indicating that GPS only solutions may be computed up to degree and order 35, 55, and 85 respectively, whereas a combined GPS/gradiometer experiment on Aristoteles may result in an acceptable solution up to degree and order 240.

  12. What Can Be Learned from Nuclear Resonance Vibrational Spectroscopy: Vibrational Dynamics and Hemes

    PubMed Central

    2017-01-01

    Nuclear resonance vibrational spectroscopy (NRVS; also known as nuclear inelastic scattering, NIS) is a synchrotron-based method that reveals the full spectrum of vibrational dynamics for Mössbauer nuclei. Another major advantage, in addition to its completeness (no arbitrary optical selection rules), is the unique selectivity of NRVS. The basics of this recently developed technique are first introduced with descriptions of the experimental requirements and data analysis including the details of mode assignments. We discuss the use of NRVS to probe 57Fe at the center of heme and heme protein derivatives yielding the vibrational density of states for the iron. The application to derivatives with diatomic ligands (O2, NO, CO, CN–) shows the strong capabilities of identifying mode character. The availability of the complete vibrational spectrum of iron allows the identification of modes not available by other techniques. This permits the correlation of frequency with other physical properties. A significant example is the correlation we find between the Fe–Im stretch in six-coordinate Fe(XO) hemes and the trans Fe–N(Im) bond distance, not possible previously. NRVS also provides uniquely quantitative insight into the dynamics of the iron. For example, it provides a model-independent means of characterizing the strength of iron coordination. Prediction of the temperature-dependent mean-squared displacement from NRVS measurements yields a vibrational “baseline” for Fe dynamics that can be compared with results from techniques that probe longer time scales to yield quantitative insights into additional dynamical processes. PMID:28921972

  13. Bioinformatic Analyses of Unique (Orphan) Core Genes of the Genus Acidithiobacillus: Functional Inferences and Use As Molecular Probes for Genomic and Metagenomic/Transcriptomic Interrogation

    PubMed Central

    González, Carolina; Lazcano, Marcelo; Valdés, Jorge; Holmes, David S.

    2016-01-01

    Using phylogenomic and gene compositional analyses, five highly conserved gene families have been detected in the core genome of the phylogenetically coherent genus Acidithiobacillus of the class Acidithiobacillia. These core gene families are absent in the closest extant genus Thermithiobacillus tepidarius that subtends the Acidithiobacillus genus and roots the deepest in this class. The predicted proteins encoded by these core gene families are not detected by a BLAST search in the NCBI non-redundant database of more than 90 million proteins using a relaxed cut-off of 1.0e−5. None of the five families has a clear functional prediction. However, bioinformatic scrutiny, using pI prediction, motif/domain searches, cellular location predictions, genomic context analyses, and chromosome topology studies together with previously published transcriptomic and proteomic data, suggests that some may have functions associated with membrane remodeling during cell division perhaps in response to pH stress. Despite the high level of amino acid sequence conservation within each family, there is sufficient nucleotide variation of the respective genes to permit the use of the DNA sequences to distinguish different species of Acidithiobacillus, making them useful additions to the armamentarium of tools for phylogenetic analysis. Since the protein families are unique to the Acidithiobacillus genus, they can also be leveraged as probes to detect the genus in environmental metagenomes and metatranscriptomes, including industrial biomining operations, and acid mine drainage (AMD). PMID:28082953

  14. Bioinformatic Analyses of Unique (Orphan) Core Genes of the Genus Acidithiobacillus: Functional Inferences and Use As Molecular Probes for Genomic and Metagenomic/Transcriptomic Interrogation.

    PubMed

    González, Carolina; Lazcano, Marcelo; Valdés, Jorge; Holmes, David S

    2016-01-01

    Using phylogenomic and gene compositional analyses, five highly conserved gene families have been detected in the core genome of the phylogenetically coherent genus Acidithiobacillus of the class Acidithiobacillia . These core gene families are absent in the closest extant genus Thermithiobacillus tepidarius that subtends the Acidithiobacillus genus and roots the deepest in this class. The predicted proteins encoded by these core gene families are not detected by a BLAST search in the NCBI non-redundant database of more than 90 million proteins using a relaxed cut-off of 1.0e -5 . None of the five families has a clear functional prediction. However, bioinformatic scrutiny, using pI prediction, motif/domain searches, cellular location predictions, genomic context analyses, and chromosome topology studies together with previously published transcriptomic and proteomic data, suggests that some may have functions associated with membrane remodeling during cell division perhaps in response to pH stress. Despite the high level of amino acid sequence conservation within each family, there is sufficient nucleotide variation of the respective genes to permit the use of the DNA sequences to distinguish different species of Acidithiobacillus , making them useful additions to the armamentarium of tools for phylogenetic analysis. Since the protein families are unique to the Acidithiobacillus genus, they can also be leveraged as probes to detect the genus in environmental metagenomes and metatranscriptomes, including industrial biomining operations, and acid mine drainage (AMD).

  15. Coliform Bacteria and Nitrogen Fixation in Pulp and Paper Mill Effluent Treatment Systems

    PubMed Central

    Gauthier, Francis; Neufeld, Josh D.; Driscoll, Brian T.; Archibald, Frederick S.

    2000-01-01

    The majority of pulp and paper mills now biotreat their combined effluents using activated sludge. On the assumption that their wood-based effluents have negligible fixed N, and that activated-sludge microorganisms will not fix significant N, these mills routinely spend large amounts adding ammonia or urea to their aeration tanks (bioreactors) to permit normal biomass growth. N2 fixation in seven Eastern Canadian pulp and paper mill effluent treatment systems was analyzed using acetylene reduction assays, quantitative nitrogenase (nifH) gene probing, and bacterial isolations. In situ N2 fixation was undetectable in all seven bioreactors but was present in six associated primary clarifiers. One primary clarifier was studied in greater detail. Approximately 50% of all culturable cells in the clarifier contained nifH, of which >90% were Klebsiella strains. All primary-clarifier coliform bacteria growing on MacConkey agar were identified as klebsiellas, and all those probed contained nifH. In contrast, analysis of 48 random coliform isolates from other mill water system locations showed that only 24 (50%) possessed the nifH gene, and only 13 (27%) showed inducible N2-fixing activity. Thus, all the pulp and paper mill primary clarifiers tested appeared to be sites of active N2 fixation (0.87 to 4.90 mg of N liter−1 day−1) and a microbial community strongly biased toward this activity. This may also explain why coliform bacteria, especially klebsiellas, are indigenous in pulp and paper mill water systems. PMID:11097883

  16. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

  17. A Probabilistic Framework for the Validation and Certification of Computer Simulations

    NASA Technical Reports Server (NTRS)

    Ghanem, Roger; Knio, Omar

    2000-01-01

    The paper presents a methodology for quantifying, propagating, and managing the uncertainty in the data required to initialize computer simulations of complex phenomena. The purpose of the methodology is to permit the quantitative assessment of a certification level to be associated with the predictions from the simulations, as well as the design of a data acquisition strategy to achieve a target level of certification. The value of a methodology that can address the above issues is obvious, specially in light of the trend in the availability of computational resources, as well as the trend in sensor technology. These two trends make it possible to probe physical phenomena both with physical sensors, as well as with complex models, at previously inconceivable levels. With these new abilities arises the need to develop the knowledge to integrate the information from sensors and computer simulations. This is achieved in the present work by tracing both activities back to a level of abstraction that highlights their commonalities, thus allowing them to be manipulated in a mathematically consistent fashion. In particular, the mathematical theory underlying computer simulations has long been associated with partial differential equations and functional analysis concepts such as Hilbert spares and orthogonal projections. By relying on a probabilistic framework for the modeling of data, a Hilbert space framework emerges that permits the modeling of coefficients in the governing equations as random variables, or equivalently, as elements in a Hilbert space. This permits the development of an approximation theory for probabilistic problems that parallels that of deterministic approximation theory. According to this formalism, the solution of the problem is identified by its projection on a basis in the Hilbert space of random variables, as opposed to more traditional techniques where the solution is approximated by its first or second-order statistics. The present representation, in addition to capturing significantly more information than the traditional approach, facilitates the linkage between different interacting stochastic systems as is typically observed in real-life situations.

  18. Dynamics of fractional condensation of a substance on a probe for spectral analysis

    NASA Astrophysics Data System (ADS)

    Zakharov, Yu. A.; Kokorina, O. B.; Lysogorskiĭ, Yu. V.; Sevastianov, A. A.

    2008-11-01

    The fractional separation of trace metals on a cold tungsten probe from salt matrix vapor, which interferes with the spectral analysis, is studied. The spatial structure of the vapor flows of sodium chloride, potassium sulfate, and indium atoms is visualized at characteristic wavelengths as they interact with the probe. The vapor flow rate and the probe orientation were varied. It is found that the smoke of the matrix does not prevent the deposition of the metal on the probe because of spatial separation of these fractions and that the detrimental effect of thermal gas expansion and other factors is eliminated. The sensitivity of the atomic absorption analysis of indium impurities in these salts is increased by an order of magnitude.

  19. What does the dot-probe task measure? A reverse correlation analysis of electrocortical activity.

    PubMed

    Thigpen, Nina N; Gruss, L Forest; Garcia, Steven; Herring, David R; Keil, Andreas

    2018-06-01

    The dot-probe task is considered a gold standard for assessing the intrinsic attentive selection of one of two lateralized visual cues, measured by the response time to a subsequent, lateralized response probe. However, this task has recently been associated with poor reliability and conflicting results. To resolve these discrepancies, we tested the underlying assumption of the dot-probe task-that fast probe responses index heightened cue selection-using an electrophysiological measure of selective attention. Specifically, we used a reverse correlation approach in combination with frequency-tagged steady-state visual potentials (ssVEPs). Twenty-one participants completed a modified dot-probe task in which each member of a pair of lateralized face cues, varying in emotional expression (angry-angry, neutral-angry, neutral-neutral), flickered at one of two frequencies (15 or 20 Hz), to evoke ssVEPs. One cue was then replaced by a response probe, and participants indicated the probe orientation (0° or 90°). We analyzed the ssVEP evoked by the cues as a function of response speed to the subsequent probe (i.e., a reverse correlation analysis). Electrophysiological measures of cue processing varied with probe hemifield location: Faster responses to left probes were associated with weak amplification of the preceding left cue, apparent only in a median split analysis. By contrast, faster responses to right probes were systematically and parametrically predicted by diminished visuocortical selection of the preceding right cue. Together, these findings highlight the poor validity of the dot-probe task, in terms of quantifying intrinsic, nondirected attentive selection irrespective of probe/cue location. © 2018 Society for Psychophysiological Research.

  20. Bifunctional Catalysts for CO2 Reduction

    DTIC Science & Technology

    2014-09-30

    hexane soluble material was crystallized at –35 ºC permitting characterization by X-ray diffraction to identify [(tbsL) Co3 (µ 3- N)]NBu4 as the product...of the trinuclear core and make atom and group-transfer processes even more facile. To probe this we investigated the reactivity of (tbsL) Co3 (py...Reaction of (tbsL) Co3 (py) with with Bu4N[N3] yields the azide adduct Bu4N[( tbsL) Co3 (µ 3-N3)] which features a C3-symmetric, paramagnetically shifted

  1. Density imaging of volcanos with atmospheric muons

    NASA Astrophysics Data System (ADS)

    Fehr, Felix; Tomuvol Collaboration

    2012-07-01

    Their long range in matter renders high-energy atmospheric muons a unique probe for geophysical explorations, permitting the cartography of density distributions which can reveal spatial and possibly also temporal variations in extended geological structures. A Collaboration between volcanologists and (astro-)particle physicists, TOMUVOL, was formed in 2009 to study tomographic muon imaging of volcanos with high-resolution tracking detectors. Here we discuss preparatory work towards muon tomography as well as the first flux measurements taken at the Puy de Dôme, an inactive lava dome volcano in the Massif Central.

  2. Understanding electron magnetic circular dichroism in a transition potential approach

    NASA Astrophysics Data System (ADS)

    Barthel, J.; Mayer, J.; Rusz, J.; Ho, P.-L.; Zhong, X. Y.; Lentzen, M.; Dunin-Borkowski, R. E.; Urban, K. W.; Brown, H. G.; Findlay, S. D.; Allen, L. J.

    2018-04-01

    This paper introduces an approach based on transition potentials for inelastic scattering to understand the underlying physics of electron magnetic circular dichroism (EMCD). The transition potentials are sufficiently localized to permit atomic-scale EMCD. Two-beam and three-beam systematic row cases are discussed in detail in terms of transition potentials for conventional transmission electron microscopy, and the basic symmetries which arise in the three-beam case are confirmed experimentally. Atomic-scale EMCD in scanning transmission electron microscopy (STEM), using both a standard STEM probe and vortex beams, is discussed.

  3. Nitrate Waste Treatment Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil-Holterman, Luciana R.; Martinez, Patrick Thomas; Garcia, Terrence Kerwin

    2017-07-05

    This plan is designed to outline the collection and analysis of nitrate salt-bearing waste samples required by the New Mexico Environment Department- Hazardous Waste Bureau in the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (Permit).

  4. Quantum probe of Hořava-Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Gurtug, O.; Mangut, M.

    2018-04-01

    Particle probe analysis of the Kehagias-Sfetsos black hole spacetime of Hořava-Lifshitz gravity is extended to wave probe analysis within the framework of quantum mechanics. The time-like naked singularity that develops when ωM2 < 1/2 is probed with quantum fields obeying Klein-Gordon and Chandrasekhar-Dirac equations. The quantum field probe of the naked singularity has revealed that both the spatial part of the wave and the Hamiltonian operators of Klein-Gordon and Chandrasekhar-Dirac equations are essentially self-adjoint, and thus, the naked singularity in the Kehagias-Sfetsos spacetime becomes quantum mechanically non-singular.

  5. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids

    PubMed Central

    Yang, Litao; Liang, Wanqi; Jiang, Lingxi; Li, Wenquan; Cao, Wei; Wilson, Zoe A; Zhang, Dabing

    2008-01-01

    Background Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. Results We describe a real-time PCR technique employing attached universal duplex probes (AUDP), which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP) and a complementary quenching probe (QP) lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT) and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO) quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. Conclusion The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost. PMID:18522756

  6. Army Response Letter & Analysis - signed January 19, 2001

    EPA Pesticide Factsheets

    A response to the letter, which requested a review of the proposed decision by the Army Corps of Engineers Baltimore District to issue four Department of the Army permits to Baltimore County (3 permits) and Anne Arundel County (1 permit), MD.

  7. Screening for specific chromosome involvement in hematological malignancies using a set of seven chromosome painting probes. An alternative approach for chromosome analysis using standard FISH instrumentation.

    PubMed

    Nacheva, E P; Gribble, S; Andrews, K; Wienberg, J; Grace, C D

    2000-10-15

    We report the application of multi-color fluorescence in situ hydribidization (FISH) for bone marrow metaphase cell analysis of hematological malignancies using a sub-set of the human karyotype for chromosome painting. A combination of chromosome probes labeled with three haptens enabled the construction of a "painting probe" which detects seven different chromosomes. The probe was used to screen three chronic myeloid leukemia (CML) derived cell lines and ten CML patient bone marrow samples for aberrations, additional to the Ph rearrangement, that are associated with the onset of blast crisis of CML. This approach was shown to identify karyotype changes commonly seen by conventional karyotyping, and in addition revealed chromosome changes unresolved or undetected by conventional cytogenetic analysis. The seven-color painting probe provides a useful, fast, and reliable complementary tool for chromosome analysis, especially in cases with poor chromosome morphology. This is a simple approach, since the probes can be displayed in a standard red/green/blue format accessible to standard fluorescence microscopes and image-processing software. The proposed approach using panels of locus-specific probes as well as chromosome paints will be useful in all diagnostic routine environments where analysis is directed towards screening for genetic rearrangements and/or specific patterns of chromosome involvement with diagnostic/prognostic value.

  8. Probability of detection for bolt hole eddy current in extracted from service aircraft wing structures

    NASA Astrophysics Data System (ADS)

    Underhill, P. R.; Uemura, C.; Krause, T. W.

    2018-04-01

    Fatigue cracks are prone to develop around fasteners found in multi-layer aluminum structures on aging aircraft. Bolt hole eddy current (BHEC) is used for detection of cracks from within bolt holes after fastener removal. In support of qualification towards a target a90/95 (detect 90% of cracks of depth a, 95% of the time) of 0.76 mm (0.030"), a preliminary probability of detection (POD) study was performed to identify those parameters whose variation may keep a bolt hole inspection from attaining its goal. Parameters that were examined included variability in lift-off due to probe type, out-of-round holes, holes with diameters too large to permit surface-contact of the probe and mechanical damage to the holes, including burrs. The study examined the POD for BHEC of corner cracks in unfinished fastener holes extracted from service material. 68 EDM notches were introduced into two specimens of a horizontal stabilizer from a CC-130 Hercules aircraft. The fastener holes were inspected in the unfinished state, simulating potential inspection conditions, by 7 certified inspectors using a manual BHEC setup with an impedance plane display and also with one inspection conducted utilizing a BHEC automated C-Scan apparatus. While the standard detection limit of 1.27 mm (0.050") was achieved, given the a90/95 of 0.97 mm (0.039"), the target 0.76 mm (0.030") was not achieved. The work highlighted a number of areas where there was insufficient information to complete the qualification. Consequently, a number of recommendations were made. These included; development of a specification for minimum probe requirements; criteria for condition of the hole to be inspected, including out-of-roundness and presence of corrosion pits; statement of range of hole sizes; inspection frequency and data display for analysis.

  9. Failure analysis on false call probe pins of microprocessor test equipment

    NASA Astrophysics Data System (ADS)

    Tang, L. W.; Ong, N. R.; Mohamad, I. S. B.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    A study has been conducted to investigate failure analysis on probe pins of test modules for microprocessor. The `health condition' of the probe pin is determined by the resistance value. A test module of 5V power supplied from Arduino UNO with "Four-wire Ohm measurement" method is implemented in this study to measure the resistance of the probe pins of a microprocessor. The probe pins from a scrapped computer motherboard is used as the test sample in this study. The functionality of the test module was validated with the pre-measurement experiment via VEE Pro software. Lastly, the experimental work have demonstrated that the implemented test module have the capability to identify the probe pin's `health condition' based on the measured resistance value.

  10. Mobile, Multi-modal, Label-Free Imaging Probe Analysis of Choroidal Oximetry and Retinal Hypoxia

    DTIC Science & Technology

    2015-10-01

    eyes and image choroidal vessels/capillaries using CARS intravital microscopy Subtask 3: Measure oxy-hemoglobin levels in PBI test and control eyes...AWARD NUMBER: W81XWH-14-1-0537 TITLE: Mobile, Multi-modal, Label-Free Imaging Probe Analysis of Choroidal Oximetry and Retinal Hypoxia...4. TITLE AND SUBTITLE Mobile, Multimodal, Label-Free Imaging Probe Analysis of Choroidal Oximetry and Retinal Hypoxia 5a. CONTRACT NUMBER W81XWH

  11. Waveguide analysis of heat-drawn and chemically etched probe tips for scanning near-field optical microscopy.

    PubMed

    Moar, Peter N; Love, John D; Ladouceur, François; Cahill, Laurence W

    2006-09-01

    We analyze two basic aspects of a scanning near-field optical microscope (SNOM) probe's operation: (i) spot-size evolution of the electric field along the probe with and without a metal layer, and (ii) a modal analysis of the SNOM probe, particularly in close proximity to the aperture. A slab waveguide model is utilized to minimize the analytical complexity, yet provides useful quantitative results--including losses associated with the metal coating--which can then be used as design rules.

  12. Disruption of the APC gene by t(5;7) translocation in a Turcot family.

    PubMed

    Sahnane, Nora; Bernasconi, Barbara; Carnevali, Ileana; Furlan, Daniela; Viel, Alessandra; Sessa, Fausto; Tibiletti, Maria Grazia

    2016-03-01

    Turcot syndrome (TS) refers to the combination of colorectal polyps and primary tumours of the central nervous system. TS is a heterogeneous genetic condition due to APC and/or mismatch repair germline mutations. When APC is involved the vast majority of mutations are truncating, but in approximately 20%-30% of patients with familial polyposis no germline mutation can be found. A 30-year-old Caucasian woman with a positive pedigree for TS was referred to our Genetic Counselling Service. She was negative for APC and MUTYH but showed a reciprocal balanced translocation t(5;7)(q22;p15) at chromosome analysis. FISH analysis using specific BAC probes demonstrated that 5q22 breakpoint disrupted the APC gene. Transcript analysis by MLPA and digital PCR revealed that the cytogenetic rearrangement involving the 3' end of the APC gene caused a defective expression of a truncated transcript. This result allowed cytogenetic analysis to be offered to all the other family members and segregation analysis clearly demonstrated that all the carriers were affected, whereas non-carriers did not have the polyposis. A cytogenetic approach permitted the identification of the mutation-causing disease in this family, and the segregation analysis together with the transcript study supported the pathogenetic role of this mutation. Karyotype analysis was used as a predictive test in all members of this family. This family suggests that clinically positive TS and FAP cases, which test negative with standard molecular analysis, could be easily and cost-effectively resolved by a classical and molecular cytogenetic approach. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. An analog RF gap voltage regulation system for the Advanced Photon Source storage ring.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horan, D.

    1999-04-13

    An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control andmore » permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands.« less

  14. Report: Substantial Changes Needed in Implementation and Oversight of Title V Permits If Program Goals Are To Be Fully Realized

    EPA Pesticide Factsheets

    Report #2005-P-00010, March 9, 2005. Our analysis identified concerns with five key aspects of Title V permits, including permit clarity, statements of basis, monitoring provisions, annual compliance certifications, and practical enforceability.

  15. A magnetic nanobead-based bioassay provides sensitive detection of single- and biplex bacterial DNA using a portable AC susceptometer.

    PubMed

    Strömberg, Mattias; Zardán Gómez de la Torre, Teresa; Nilsson, Mats; Svedlindh, Peter; Strømme, Maria

    2014-01-01

    Bioassays relying on magnetic read-out using probe-tagged magnetic nanobeads are potential platforms for low-cost biodiagnostic devices for pathogen detection. For optimal assay performance it is crucial to apply an easy, efficient and robust bead-probe conjugation protocol. In this paper, sensitive (1.5 pM) singleplex detection of bacterial DNA sequences is demonstrated in a portable AC susceptometer by a magnetic nanobead-based bioassay principle; the volume-amplified magnetic nanobead detection assay (VAM-NDA). Two bead sizes, 100 and 250 nm, are investigated along with a highly efficient, rapid, robust, and stable conjugation chemistry relying on the avidin-biotin interaction for bead-probe attachment. Avidin-biotin conjugation gives easy control of the number of detection probes per bead; thus allowing for systematic investigation of the impact of varying the detection probe surface coverage upon bead immobilization in rolling circle amplified DNA-coils. The existence of an optimal surface coverage is discussed. Biplex VAM-NDA detection is for the first time demonstrated in the susceptometer: Semi-quantitative results are obtained and it is concluded that the concentration of DNA-coils in the incubation volume is of crucial importance for target quantification. The present findings bring the development of commercial biodiagnostic devices relying on the VAM-NDA further towards implementation in point-of-care and outpatient settings. © 2013 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-License, which permits use and distribution in any medium, provided the original work is properly cited.

  16. SU-E-I-81: Targeting of HER2-Expressing Tumors with Dual PET-MR Imaging Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, P; Peng, Y; Sun, M

    2015-06-15

    Purpose: The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Trastuzumab, effective in about 15 % of women with breast cancer, downregulates signalling through the Akt/PI3K and MAPK pathways.These pathways modulate metabolism which can be monitored by positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: The relationship between response of HER2 overexpressing tumours and changes in imaging PET or SPECT and MRI willmore » be examined by a integrated bimodal imaging probe.Small (7 kDa) high-affinity anti-HER2 Affibody molecules and KCCYSL targeting peptide may be suitable tracers for visualization of HER2-expressing tumors. Peptide-conjugated iron oxide nanoparticles (Fe3O4 NPs) as MRI imaging and CB-TE2A as PET imaging are integrated into a single synthetic molecule in the HER2 positive cancer. Results: One of targeted contrast bimodal imaging probe agents was synthesized and evaluated to target HER2-expressing tumors in a HER2 positive rat model. We will report the newest results regarding the development of bimodal imaging probes. Conclusion: The preliminary results of the bimodal imaging probe presents high correlation of MRI signal and PET imaging intensity in vivo. This unique feature can hardly be obtained by single model contrast agents. It is envisioned that this bimodal agents can hold great potential for accurate detection of HER2-expressing tumors which are critical for clinical management of the disease.« less

  17. Characterization of dopamine release in the substantia nigra by in vivo microdialysis in freely moving rats.

    PubMed

    Robertson, G S; Damsma, G; Fibiger, H C

    1991-07-01

    Dopamine (DA) is released not only from the terminals of the nigrostriatal projection, but also from the dendrites of these neurons, which arborize in the substantia nigra pars reticulata (SNR). Although striatal DA release has been extensively studied by in vivo microdialysis, dendritic DA release in the SNR has not been characterized by this technique. Extracellular DA was monitored simultaneously in the ipsilateral striatum and SNR. The nigral probe was implanted at a 50 degree angle, permitting 2.5 mm of SNR to be dialyzed. Delivery of the tracer Fluoro-Gold into the striatal probe retrogradely labeled tyrosine hydroxylase-positive cell bodies and dendrites in the vicinity of the nigral probe. Hence, it could be demonstrated that dopaminergic neurons near the nigral probe projected to the vicinity of the striatal probe. Addition of 50 mM KCl to the SNR perfusion solution produced a 3.5-fold increase in DA and a 50% reduction in dihydroxyphenylacetic acid (DOPAC) in the SNR; in contrast, this manipulation in the SNR caused DA release in the striatum to be decreased by 20%, while striatal DOPAC was increased by 50%. Local administration of nomifensine (10 microM) in the SNR produced a sevenfold increase in SNR DA but had no effect on striatal DA. Systemic injection of d-amphetamine (2 mg/kg, s.c.) elevated DA in the SNR and striatum five- to sevenfold, while DOPAC was decreased in both structures by at least 40%. To determine the effect of tetrodotoxin (TTX), basal concentrations of DA in the SNR were first elevated threefold by including nomifensine (1 microM) in the nigral perfusion solution.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. In vivo subsurface morphological and functional cellular and subcellular imaging of the gastrointestinal tract with confocal mini-microscopy

    PubMed Central

    Goetz, Martin; Memadathil, Beena; Biesterfeld, Stefan; Schneider, Constantin; Gregor, Sebastian; Galle, Peter R; Neurath, Markus F; Kiesslich, Ralf

    2007-01-01

    AIM: To evaluate a newly developed hand-held confocal probe for in vivo microscopic imaging of the complete gastrointestinal tract in rodents. METHODS: A novel rigid confocal probe (diameter 7 mm) was designed with optical features similar to the flexible endomicroscopy system for use in humans using a 488 nm single line laser for fluorophore excitation. Light emission was detected at 505 to 750 nm. The field of view was 475 μm × 475 μm. Optical slice thickness was 7 μm with a lateral resolution of 0.7 μm. Subsurface serial images at different depths (surface to 250 μm) were generated in real time at 1024 × 1024 pixels (0.8 frames/s) by placing the probe onto the tissue in gentle, stable contact. Tissue specimens were sampled for histopathological correlation. RESULTS: The esophagus, stomach, small and large intestine and meso, liver, pancreas and gall bladder were visualised in vivo at high resolution in n = 48 mice. Real time microscopic imaging with the confocal mini-microscopy probe was easy to achieve. The different staining protocols (fluorescein, acriflavine, FITC-labelled dextran and L. esculentum lectin) each highlighted specific aspects of the tissue, and in vivo imaging correlated excellently with conventional histology. In vivo blood flow monitoring added a functional quality to morphologic imaging. CONCLUSION: Confocal microscopy is feasible in vivo allowing the visualisation of the complete GI tract at high resolution even of subsurface tissue structures. The new confocal probe design evaluated in this study is compatible with laparoscopy and significantly expands the field of possible applications to intra-abdominal organs. It allows immediate testing of new in vivo staining and application options and therefore permits rapid transfer from animal studies to clinical use in patients. PMID:17465494

  19. Genetic Relatedness Among Human Rotaviruses as Determined by RNA Hybridization

    PubMed Central

    Flores, Jorge; Perez, Irene; White, Laura; Perez, Mireya; Kalica, Anthony R.; Marquina, Ruben; Wyatt, Richard G.; Kapikian, Albert Z.; Chanock, Robert M.

    1982-01-01

    Viral RNAs from human rotaviruses were compared by gel electrophoresis and by hybridization to probes prepared by in vitro transcription of two well-characterized laboratory strains (Wa and DS-1). Also, the viral RNAs were compared by hybridization to probes prepared from three of the test viruses. Thirteen specimens (diarrheal stools) were obtained from infants and children 5 to 21 months old on a single day at the emergency ward of the Caracas Children's Hospital, and an additional specimen was obtained from the same hospital 6 months before. When the electrophoresed viral RNAs were stained with ethidium bromide and examined by UV light, five different migration patterns (electropherotypes) were distinguished on the basis of differences in mobility of the RNA segments. The hybridization technique that was employed permitted only qualitative comparisons of corresponding genes of different human rotaviruses. Ten of the specimens contained enough virus to yield sufficient RNA for hybridization studies. Eight of the viruses studied by hybridization contained 4 to 11 genes that reacted specifically with the Wa probe to yield double-stranded RNA segments with a mobility similar to that of Wa viral RNA or test virus RNA. The other two viruses contained 11 genes that reacted specifically with the DS-1 hybridization probe to yield double-stranded RNA segments with a mobility similar to DS-1 viral RNA or test virus RNA. A more complex picture emerged when hybridization probes were prepared from three of the test viruses and used to compare the different electropherotypes. Corresponding genes that exhibited similar migration did not necessarily exhibit homology when studied by hybridization. Also, some corresponding genes that exhibited homology did not have the same mobility by gel electrophoresis. Images PMID:6288569

  20. [Interest of ultrasonographic guidance in paediatric regional anaesthesia].

    PubMed

    Dadure, C; Raux, O; Rochette, A; Capdevila, X

    2009-10-01

    The use of ultrasonographic guidance for regional anaesthesia has known recently a big interest in children in recent years. The linear ultrasound probes with a 25 mm active surface area (or probes with 38 mm active surface area in older children), with high sound frequencies in the range 8-14 MHz, allow a good compromise between excellent resolution for superficial structure and good penetration depths. In children, the easiest ultrasound guided blocks are axillar blocks, femoral blocks, fascia iliaca compartment blocks, ilio-inguinal blocks and para-umbilical blocks, caudal blocks. They permit a safe and easy learning curve of these techniques. The main advantage of ultrasound guided regional anaesthesia is the visualization of different anatomical structures and the approximate localization of the tip of needle. The other advantages for ultrasound guided peripheral nerve blocks in children are: faster onset time of sensory and motor block, longer duration of sensory blockade, increase of blockade quality and reduction of local anesthetic injection. The use of ultrasonographic guidance for central block allows to visualize different structures as well as spine and his content. Spinous process, ligament flavum, dura mater, conus medullaris and cerebrospinal fluid are identifiable, and give some information on spine, epidural space and the depth between epidural space and skin. At last, in caudal block, ultrasounds permit to evaluate the anatomy of caudal epidural space, especially the relation of the sacral hiatus to the dural sac and the search of occult spinal dysraphism. Benefit of this technique is the visualization of targeted nerves or spaces and the spread of injected local anaesthetic.

  1. Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp

    NASA Astrophysics Data System (ADS)

    Billaud, Pierre; Marhaba, Salem; Grillet, Nadia; Cottancin, Emmanuel; Bonnet, Christophe; Lermé, Jean; Vialle, Jean-Louis; Broyer, Michel; Pellarin, Michel

    2010-04-01

    This article describes a high sensitivity spectrophotometer designed to detect the overall extinction of light by a single nanoparticle (NP) in the 10-4-10-5 relative range, using a transmission measurement configuration. We focus here on the simple and low cost scheme where a white lamp is used as a light source, permitting easy and broadband extinction measurements (300-900 nm). Using a microscope, in a confocal geometry, an increased sensitivity is reached thanks to a modulation of the NP position under the light spot combined with lock-in detection. Moreover, it is shown that this technique gives access to the absolute extinction cross-sections of the single NP provided that the incident electromagnetic field distribution experienced by the NP is accurately characterized. In this respect, an experimental procedure to characterize the light spot profile in the focal plane, using a reference NP as a probe, is also laid out. The validity of this approach is discussed and confirmed by comparing experimental intensity distributions to theoretical calculations taking into account the vector character of the tightly focused beam. The calibration procedure permitting to obtain the absolute extinction cross-section of the probed NP is then fully described. Finally, the force of the present technique is illustrated through selected examples concerning spherical and slightly elongated gold and silver NPs. Absolute extinction measurements are found to be in good consistency with the NP size and shape independently obtained from transmission electron microscopy, showing that spatial modulation spectroscopy is a powerful tool to get an optical fingerprint of the NP.

  2. Investigation of the low-level modulated light action

    NASA Astrophysics Data System (ADS)

    Antonov, Sergei N.; Sotnikov, V. N.; Koreneva, L. G.

    1994-07-01

    Now there exists no clear complete knowledge about mechanisms and pathways by which low level laser bioactivation works. Modulated laser light action has been investigated two new ways: dynamical infrared thermography and computing image of living brain. These ways permit observation in real time laser action on peripheral blood flow, reflex reactions to functional probes, thermoregulation mechanisms as well as brain electrical activity changes of humans. We have designed a universal apparatus which produced all regimes of the output laser light. It has a built-in He-Ne laser with an acousto-optic modulator and an infrared GaAs laser. The device provided spatial combination of both the light beams and permitted us to irradiate an object both separately and simultaneously. This research shows that the most effective frequencies range from several to dozens of hertz. The duty factor and frequency scanning are also important. On the basis of these results in Russian clinics new treatment methods using modulated light are applied in practical neurology, gynecology, etc.

  3. "Analysis of Van Allen Probes lapping data using Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)"

    NASA Astrophysics Data System (ADS)

    Gallton, D. A.; Manweiler, J. W.; Gerrard, A. J.; Cravens, T.; Lanzerotti, L. J.; Patterson, J. D.

    2017-12-01

    The increased frequency of the Van Allen Probes (VAP) lapping events provides a unique opportunity to examine the scaling length and structure of the magnetospheric plasma at microscales. Onboard the probes is the RBSPICE instrument, which is an energetic particle detector capable of observing ions (H+, Hen+, On+) from approximately 7 KeV upwards to values of 1 MeV. Here we provide a correlation analysis of the probes during quiet time lapping events which examines the behavior of the particle populations when the probes are within 1,000 km of separation distance, at a distance greater than 15,000 km from Earth, and where the Kp and AE magnetic indices show minimal geomagnetic activity. The correlation values of the energetic particle distributions are examined and the falloff distances associated with the tail end of the plasma distribution are calculated. We provide an overview of the initial analysis results for H during the quiet time lapping events and a discussion of the causal relationship.

  4. Space Flight Plasma Data Analysis

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H.; Minow, Joseph I.

    2009-01-01

    This slide presentation reviews a method to analyze the plasma data that is reported on board the International Space station (ISS). The Floating Potential Measurement Unit (FPMU), the role of which is to obtain floating potential and ionosphere plasma measurements for validation of the ISS charging model, assess photo voltaic array variability and interpreting IRI predictions, is composed of four probes: Floating Potential Probe (FPP), Wide-sweep Langmuir Probe (WLP), Narrow-sweep Langmuir Probe (NLP) and the Plasma Impedance Probe (PIP). This gives redundant measurements of each parameter. There are also many 'boxes' that the data must pass through before being captured by the ground station, which leads to telemetry noise. Methods of analysis for the various signals from the different sets are reviewed. There is also a brief discussion of LP analysis of Low Earth Orbit plasma simulation source.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucia, M., E-mail: mlucia@pppl.gov; Kaita, R.; Majeski, R.

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

  6. Full information acquisition in scanning probe microscopy and spectroscopy

    DOEpatents

    Jesse, Stephen; Belianinov, Alex; Kalinin, Sergei V.; Somnath, Suhas

    2017-04-04

    Apparatus and methods are described for scanning probe microscopy and spectroscopy based on acquisition of full probe response. The full probe response contains valuable information about the probe-sample interaction that is lost in traditional scanning probe microscopy and spectroscopy methods. The full probe response is analyzed post data acquisition using fast Fourier transform and adaptive filtering, as well as multivariate analysis. The full response data is further compressed to retain only statistically significant components before being permanently stored.

  7. Application of porous metal enrichment probe sampling to single cell analysis using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS).

    PubMed

    Fu, Qiang; Tang, Jun; Cui, Meng; Xing, Junpeng; Liu, Zhiqiang; Liu, Shuying

    2016-01-01

    There is an increasing need for analyzing metabolism in a single cell, which is important to understand the nature of cellular heterogeneity, disease, growth and specialization, etc. However, single cell analysis is often challenging for the traces of samples. In the present study, porous metal enrichment probe sampling combined with matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) has been applied for in situ analysis of live onion epidemic cell. Porous probe, treated by corroding copper wire with HCl, was directly inserted into a single cell to get cell solution. A self-made linear actuator was enough to control the penetration of probe into the target cell accurately. Then samples on the tip of probe were eluted and detected by a commercial MALDI-TOF-MS directly. The formation of porous microstructure on the probe surface increased the adsorptive capacity of cell solution. The sensitivity of porous probe sampling was 6 times higher than uncorroded probes generally. This method provides a sensitive and convenient way for the sampling and detection of single cell solution. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Bhatt, Arpit; Zhang, Yimin

    Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain majormore » source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called 'major' or 'minor') has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Finally, our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.« less

  9. Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States

    DOE PAGES

    Eberle, Annika; Bhatt, Arpit; Zhang, Yimin; ...

    2017-04-26

    Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain majormore » source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called 'major' or 'minor') has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Finally, our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.« less

  10. Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States.

    PubMed

    Eberle, Annika; Bhatt, Arpit; Zhang, Yimin; Heath, Garvin

    2017-06-06

    Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain major source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called "major" or "minor") has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.

  11. Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.

    PubMed

    Haley, Daniel; Bagot, Paul A J; Moody, Michael P

    2017-04-01

    In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.

  12. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    DOEpatents

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  13. Hereditary tyrosinemia type I: strong association with haplotype 6 in French Canadians permits simple carrier detection and prenatal diagnosis.

    PubMed Central

    Demers, S. I.; Phaneuf, D.; Tanguay, R. M.

    1994-01-01

    Hereditary tyrosinemia type 1 (HT1), a severe inborn error of tyrosine catabolism, is caused by deficiency of the terminal enzyme, fumarylacetoacetate hydrolase (FAH). The highest reported frequency of HT1 is in the French Canadian population, especially in the Saguenay-Lac-St-Jean region. Using human FAH cDNA probes, we have identified 10 haplotypes with TaqI, KpnI, RsaI, BglII, and MspI RFLPs in 118 normal chromosomes from the French Canadian population. Interestingly, in 29 HT1 children, a prevalent haplotype, haplotype 6, was found to be strongly associated with the disease, at a frequency of 90% of alleles, as compared with approximately 18% in 35 control individuals. This increased to 96% in the 24 patients originating from Saguenay-Lac-St-Jean. These results suggest that one or only a few prevailing mutations are responsible for most of the HT1 cases in Saguenay-Lac-St-Jean. Since most patients were found to be homozygous for a specific haplotype in this population, FAH RFLPs have permitted simple carrier detection in nine different informative HT1 families, with a confidence level of 99.9%. Heterozygosity rate values obtained from 52 carriers indicated that approximately 88% of families at risk from Saguenay-Lac-St-Jean are fully or partially informative. Prenatal diagnosis was also achieved in an American family. Analysis of 24 HT1 patients from nine countries gave a frequency of approximately 52% for haplotype 6, suggesting a relatively high association, worldwide, of HT1 with this haplotype. Images Figure 1 PMID:7913582

  14. Parallel gene analysis with allele-specific padlock probes and tag microarrays

    PubMed Central

    Banér, Johan; Isaksson, Anders; Waldenström, Erik; Jarvius, Jonas; Landegren, Ulf; Nilsson, Mats

    2003-01-01

    Parallel, highly specific analysis methods are required to take advantage of the extensive information about DNA sequence variation and of expressed sequences. We present a scalable laboratory technique suitable to analyze numerous target sequences in multiplexed assays. Sets of padlock probes were applied to analyze single nucleotide variation directly in total genomic DNA or cDNA for parallel genotyping or gene expression analysis. All reacted probes were then co-amplified and identified by hybridization to a standard tag oligonucleotide array. The technique was illustrated by analyzing normal and pathogenic variation within the Wilson disease-related ATP7B gene, both at the level of DNA and RNA, using allele-specific padlock probes. PMID:12930977

  15. Optothermal response of a single silicon nanotip

    NASA Astrophysics Data System (ADS)

    Vella, A.; Shinde, D.; Houard, J.; Silaeva, E.; Arnoldi, L.; Blum, I.; Rigutti, L.; Pertreux, E.; Maioli, P.; Crut, A.; Del Fatti, N.

    2018-02-01

    The optical properties and thermal dynamics of conical single silicon nanotips are experimentally and theoretically investigated. The spectral and spatial dependencies of their optical extinction are quantitatively measured by spatial modulation spectroscopy (SMS). A nonuniform optical extinction along the tip axis and an enhanced near-infrared absorption, as compared to bulk crystalline silicon, are evidenced. This information is a key input for computing the thermal response of single silicon nanotips under ultrafast laser illumination, which is investigated by laser assisted atom probe tomography (La-APT) used as a highly sensitive temperature probe. A combination of these two experimental techniques and comparison with modeling also permits us to elucidate the impact of thermal effects on the laser assisted field evaporation process. Extension of this coupled approach opens up future perspectives for the quantitative study of the optical and thermal properties of a wide class of individual nano-objects, in particular elongated ones such as nanotubes, nanowires, and nanocones, which constitute promising nanosources for electron and/or ion emission.

  16. Final Technical Report: Vibrational Spectroscopy of Transient Combustion Intermediates Trapped in Helium Nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douberly, Gary Elliott

    The objective of our experimental research program is to isolate and stabilize transient intermediates and products of prototype combustion reactions. This will be accomplished by Helium Nanodroplet Isolation, a novel technique where liquid helium droplets freeze out high energy metastable configurations of a reacting system, permitting infrared spectroscopic characterizations of products and intermediates that result from hydrocarbon radical reactions with molecular oxygen and other small molecules relevant to combustion environments. The low temperature (0.4 K) and rapid cooling associated with He droplets provides a perfectly suited medium to isolate and probe a broad range of molecular radical and carbene systemsmore » important to combustion chemistry. The sequential addition of molecular species to He droplets often leads to the stabilization of high-energy, metastable cluster configurations that represent regions of the potential energy surface far from the global minimum. Single and double resonance IR laser spectroscopy techniques, along with Stark and Zeeman capabilities, are being used to probe the structural and dynamical properties of these systems.« less

  17. Magnetic brightening and control of dark excitons in monolayer WSe2.

    PubMed

    Zhang, Xiao-Xiao; Cao, Ting; Lu, Zhengguang; Lin, Yu-Chuan; Zhang, Fan; Wang, Ying; Li, Zhiqiang; Hone, James C; Robinson, Joshua A; Smirnov, Dmitry; Louie, Steven G; Heinz, Tony F

    2017-09-01

    Monolayer transition metal dichalcogenide crystals, as direct-gap materials with strong light-matter interactions, have attracted much recent attention. Because of their spin-polarized valence bands and a predicted spin splitting at the conduction band edges, the lowest-lying excitons in WX 2 (X = S, Se) are expected to be spin-forbidden and optically dark. To date, however, there has been no direct experimental probe of these dark excitons. Here, we show how an in-plane magnetic field can brighten the dark excitons in monolayer WSe 2 and permit their properties to be observed experimentally. Precise energy levels for both the neutral and charged dark excitons are obtained and compared with ab initio calculations using the GW-BSE approach. As a result of their spin configuration, the brightened dark excitons exhibit much-increased emission and valley lifetimes. These studies directly probe the excitonic spin manifold and reveal the fine spin-splitting at the conduction band edges.

  18. Magnetic brightening and control of dark excitons in monolayer WSe 2

    DOE PAGES

    Zhang, Xiao -Xiao; Cao, Ting; Lu, Zhengguang; ...

    2017-06-26

    Monolayer transition metal dichalcogenide crystals, as direct-gap materials with strong light–matter interactions, have attracted much recent attention. Because of their spin-polarized valence bands and a predicted spin splitting at the conduction band edges, the lowest-lying excitons in WX 2 (X = S, Se) are expected to be spin-forbidden and optically dark. To date, however, there has been no direct experimental probe of these dark excitons. Here, we show how an in-plane magnetic field can brighten the dark excitons in monolayer WSe2 and permit their properties to be observed experimentally. Precise energy levels for both the neutral and charged dark excitonsmore » are obtained and compared with ab initio calculations using the GW-BSE approach. As a result of their spin configuration, the brightened dark excitons exhibit much-increased emission and valley lifetimes. Furthermore, these studies directly probe the excitonic spin manifold and reveal the fine spin-splitting at the conduction band edges.« less

  19. Long duration ash probe

    DOEpatents

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  20. Influence of long-term thermal aging on the microstructural evolution of nuclear reactor pressure vessel materials: An atom probe study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareige, P.; Russell, K.F.; Stoller, R.E.

    1998-03-01

    Atom probe field ion microscopy (APFIM) investigations of the microstructure of unaged (as-fabricated) and long-term thermally aged ({approximately} 100,000 h at 280 C) surveillance materials from commercial reactor pressure vessel steels were performed. This combination of materials and conditions permitted the investigation of potential thermal-aging effects. This microstructural study focused on the quantification of the compositions of the matrix and carbides. The APFIM results indicate that there was no significant microstructural evolution after a long-term thermal exposure in weld, plate, or forging materials. The matrix depletion of copper that was observed in weld materials was consistent with the copper concentrationmore » in the matrix after the stress-relief heat treatment. The compositions of cementite carbides aged for 100,000 h were compared with the Thermocalc{trademark} prediction. The APFIM comparisons of materials under these conditions are consistent with the measured change in mechanical properties such as the Charpy transition temperature.« less

  1. Reverse line blot hybridisation screening of Pseudallescheria/Scedosporium species in patients with cystic fibrosis.

    PubMed

    Lu, Q; van den Ende, A H G Gerrits; de Hoog, G S; Li, R; Accoceberry, I; Durand-Joly, I; Bouchara, J-P; Hernandez, F; Delhaes, L

    2011-10-01

    The PCR-RLB (reverse line blot hybridisation) was applied as a molecular technique for the detection of members of Pseudallescheria and Scedosporium from sputum of patients with cystic fibrosis (CF). Fifty-nine sputum samples were collected from 52 CF patients, which were analysed by culture and PCR-RLB. Conventional and semi-selective culture yielded five positive samples, but the PCR-RLB hybridisation assay permitted the detection of members of Pseudallescheria/Scedosporium in 32 out of 52 patients (61.5%). In total, PCR-RLB yielded 47 positives. Pseudallescheria apiosperma was detected in 20 samples, while Pseudallescheria boydii and Pseudallescheria aurantiacum were detected in 17 and eight samples, respectively. Six samples gave a positive reaction with two distinct species-specific probes and one sample with three probes. In conclusion, the PCR-RLB assay described in this study allows the detection of Scedosporium spp. in CF sputum samples and the identification of Pseudallescheria apiosperma, P. boydii, S. aurantiacum, Scedosporium prolificans and Pseudallescheria minutispora. © 2011 Blackwell Verlag GmbH.

  2. Long duration ash probe

    DOEpatents

    Hurley, John P.; McCollor, Don P.; Selle, Stanley J.

    1994-01-01

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

  3. Individual specific DNA fingerprints from a hypervariable region probe: alpha-globin 3'HVR.

    PubMed

    Fowler, S J; Gill, P; Werrett, D J; Higgs, D R

    1988-06-01

    A probe detecting a hypervariable region (HVR) 3' to the alpha globin locus on chromosome 16 has been used to produce DNA fingerprints. Segregation analysis has revealed multiple, randomly dispersed DNA fragments inherited in a Mendelian fashion with minimal allelism and linkage. The fingerprints are highly polymorphic (probability of chance association between random individuals much less than 10(-14]. The probe is, therefore, a powerful discriminating tool: it is envisaged that this probe will have forensic applications, including paternity cases, and will be informative in linkage analysis.

  4. Measurement of gastric emptying by intragastric gamma scintigraphy.

    PubMed

    Malbert, C H; Mathis, C; Bobillier, E; Laplace, J P; Horowitz, M

    1997-09-01

    Gastric emptying is usually measured in animals and humans by dilution/sampling or external scintigraphy. These methods are either time consuming or require expensive equipment. The capacity of a miniature gamma counter positioned in the stomach to measure emptying of liquid and solid meals was evaluated. In eight conscious pigs fitted with gastric and duodenal cannulae, gastric emptying of saline (500 mL), dextrose (20%, 500 mL), porridge (300 g) and scrambled eggs (300 g), all labelled with 3.5 MBq 99mTC, was evaluated. When positioned in the antrum the probe was unable to quantify gastric emptying. In contrast, measurements of the fractional emptying of saline over 4-min periods by the probe positioned in the corpus and quantification of radioactivity in the duodenal effluent correlated closely (r = 0.88, P < 0.05). Gastric emptying (50% emptying time) of saline and both solid meals measured by the probe was not significantly different from quantification of the duodenal effluent volume. No difference was observed also for the dextrose meal but only while gastric acid secretion was suppressed by omeprazole. We conclude that an intragastric gamma counter permits measurement of gastric emptying of homogeneous meals provided meal stimulation of gastric secretion was not extensive. This was possible probably by monitoring emptying from the proximal stomach.

  5. Imaging single atoms using secondary electrons with an aberration-corrected electron microscope.

    PubMed

    Zhu, Y; Inada, H; Nakamura, K; Wall, J

    2009-10-01

    Aberration correction has embarked on a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes. However, improvement of spatial resolution using aberration correction so far has been limited to the use of transmitted electrons both in scanning and stationary mode, with an improvement of 20-40% (refs 3-8). In contrast, advances in the spatial resolution of scanning electron microscopes (SEMs), which are by far the most widely used instrument for surface imaging at the micrometre-nanometre scale, have been stagnant, despite several recent efforts. Here, we report a new SEM, with aberration correction, able to image single atoms by detecting electrons emerging from its surface as a result of interaction with the small probe. The spatial resolution achieved represents a fourfold improvement over the best-reported resolution in any SEM (refs 10-12). Furthermore, we can simultaneously probe the sample through its entire thickness with transmitted electrons. This ability is significant because it permits the selective visualization of bulk atoms and surface ones, beyond a traditional two-dimensional projection in transmission electron microscopy. It has the potential to revolutionize the field of microscopy and imaging, thereby opening the door to a wide range of applications, especially when combined with simultaneous nanoprobe spectroscopy.

  6. Expanding the utility of 4-cyano-L-phenylalanine as a vibrational reporter of protein environments.

    PubMed

    Bazewicz, Christopher G; Lipkin, Jacob S; Smith, Emily E; Liskov, Melanie T; Brewer, Scott H

    2012-09-06

    The ability to genetically incorporate amino acids modified with spectroscopic reporters site-specifically into proteins with high efficiency and fidelity has greatly enhanced the ability to probe local protein structure and dynamics. Here, we have synthesized the unnatural amino acid (UAA), 4-cyano-L-phenylalanine (pCNPhe), containing the nitrile vibrational reporter and three isotopomers ((15)N, (13)C, (13)C(15)N) of this UAA to enhance the ability of pCNPhe to study local protein environments. Each pCNPhe isotopic variant was genetically incorporated in an efficient, site-specific manner into superfolder green fluorescent protein (sfGFP) in response to an amber codon with high fidelity utilizing an engineered, orthogonal aminoacyl-tRNA synthetase. The isotopomers of 4-cyano-L-phenylalanine permitted the nitrile symmetric stretch vibration of these UAAs to be unambiguously assigned utilizing the magnitude and direction of the isotopic shift of this vibration. The sensitivity of the nitrile symmetric stretching frequency of each isotopic variant to the local environment was measured by individually incorporating the probes into two distinct local environments of sfGFP. The UAAs were also utilized in concert to probe multiple local environments in sfGFP simultaneously to increase the utility of 4-cyano-L-phenylalanine.

  7. A novel method of multiple nucleic acid detection: Real-time RT-PCR coupled with probe-melting curve analysis.

    PubMed

    Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan

    2017-11-15

    A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. An environmental transfer hub for multimodal atom probe tomography.

    PubMed

    Perea, Daniel E; Gerstl, Stephan S A; Chin, Jackson; Hirschi, Blake; Evans, James E

    2017-01-01

    Environmental control during transfer between instruments is required for samples sensitive to air or thermal exposure to prevent morphological or chemical changes prior to analysis. Atom probe tomography is a rapidly expanding technique for three-dimensional structural and chemical analysis, but commercial instruments remain limited to loading specimens under ambient conditions. In this study, we describe a multifunctional environmental transfer hub allowing controlled cryogenic or room-temperature transfer of specimens under atmospheric or vacuum pressure conditions between an atom probe and other instruments or reaction chambers. The utility of the environmental transfer hub is demonstrated through the acquisition of previously unavailable mass spectral analysis of an intact organic molecule made possible via controlled cryogenic transfer into the atom probe using the hub. The ability to prepare and transfer specimens in precise environments promises a means to access new science across many disciplines from untainted samples and allow downstream time-resolved in situ atom probe studies.

  9. Electron beam assisted field evaporation of insulating nanowires/tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, N. P., E-mail: nicholas.blanchard@univ-lyon1.fr; Niguès, A.; Choueib, M.

    2015-05-11

    We demonstrate field evaporation of insulating materials, specifically BN nanotubes and undoped Si nanowires, assisted by a convergent electron beam. Electron irradiation leads to positive charging at the nano-object's apex and to an important increase of the local electric field thus inducing field evaporation. Experiments performed both in a transmission electron microscope and in a scanning electron microscope are presented. This technique permits the selective evaporation of individual nanowires in complex materials. Electron assisted field evaporation could be an interesting alternative or complementary to laser induced field desorption used in atom probe tomography of insulating materials.

  10. Identification of atmospheric structure by coherent microwave sounding

    NASA Technical Reports Server (NTRS)

    Birkemeier, W. P.

    1969-01-01

    Two atmospheric probing experiments involving beyond-the-horizon propagation of microwave signals are reported. In the first experiment, Doppler-shift caused by the cross path wind is measured by a phase lock receiver with the common volume displaced in azimuth from the great circle. Variations in the measured Doppler shift values are explained in terms of variations in atmospheric structure. The second experiment makes use of the pseudorandom sounding signal used in a RAKE communication system. Both multipath delay and Doppler shift are provided by the receiver, permitting the cross section of the atmospheric layer structure to be deduced.

  11. Resonance Production in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Knospe, Anders G.

    2018-02-01

    Hadronic resonances are unique probes that allow the properties of heavyion collisions to be studied. Topics that can be studied include modification of spectral shapes, in-medium energy loss of parsons, vector-meson spin alignment, hydrodynamic flow, recombination, strangeness production, and the properties of the hadronic phase. Measurements of resonances in p+p, p+A, and d+A collisions serve as baselines for heavy-ion studies and also permit searches for possible collective effects in these smaller systems. These proceedings present a selection of results related to these topics from experiments at RHIC, LHC, and other facilities, as well as comparisons to theoretical models.

  12. Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering.

    PubMed

    Masoudi, Ali; Belal, Mohammad; Newson, Trevor P

    2013-09-01

    A Brillouin-based distributed optical fiber dynamic strain sensor is described which converts strain-induced Brillouin frequency shift into optical intensity variations by using an imbalanced Mach-Zhender interferometer. A 3×3 coupler is used at the output of this interferometer to permit differentiate and cross multiply demodulation. The demonstrated sensor is capable of probing dynamic strain disturbances over 2 km of sensing length every 0.5 s up to a strain of 10 mε with an accuracy of ±50 με and spatial resolution of 1.3 m.

  13. Recent advances in multidimensional ultrafast spectroscopy

    NASA Astrophysics Data System (ADS)

    Oliver, Thomas A. A.

    2018-01-01

    Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes.

  14. Recent advances in multidimensional ultrafast spectroscopy

    PubMed Central

    2018-01-01

    Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes. PMID:29410844

  15. Protective shield for an instrument probe

    DOEpatents

    Johnsen, Howard A.; Ross, James R.; Birtola, Sal R.

    2004-10-26

    A shield is disclosed that is particularly useful for protecting exposed optical elements at the end of optical probes used in the analysis of hazardous emissions in and around an industrial environment from the contaminating effects of those emissions. The instant invention provides a hood or cowl in the shape of a right circular cylinder that can be fitted over the end of such optical probes. The hood provides a clear aperture through which the probe can perform unobstructed analysis. The probe optical elements are protected from the external environment by passing a dry gas through the interior of the hood and out through the hood aperture in sufficient quantity and velocity to prevent any significant mixing between the internal and external environments. Additionally, the hood is provided with a cooling jacket to lessen the potential for damaging the probe due to temperature excursions.

  16. Work on Planetary Atmospheres and Planetary Atmosphere Probes

    NASA Technical Reports Server (NTRS)

    Lester, Peter

    1999-01-01

    A summary final report of work accomplished is presented. Work was performed in the following areas: (1) Galileo Probe science analysis, (2) Galileo probe Atmosphere Structure Instrument, (3) Mars Pathfinder Atmosphere Structure/Meteorology instrument, (4) Mars Pathfinder data analysis, (5) Science Definition for future Mars missions, (6) Viking Lander data analysis, (7) winds in Mars atmosphere Venus atmospheric dynamics, (8) Pioneer Venus Probe data analysis, (9) Pioneer Venus anomaly analysis, (10) Discovery Venus Probe Titan probe instrument design, and (11) laboratory studies of Titan probe impact phenomena. The work has resulted in more than 10 articles published in archive journals, 2 encyclopedia articles, and many working papers. This final report is organized around the four planets on which there was activity, Jupiter, Mars, Venus, and Titan, with a closing section on Miscellaneous Activities. A major objective was to complete the fabrication, test, and evaluation of the atmosphere structure experiment on the Galileo probe, and to receive, analyze and interpret data received from the spacecraft. The instrument was launched on April 14, 1989. Calibration data were taken for all experiment sensors. The data were analyzed, fitted with algorithms, and summarized in a calibration report for use in analyzing and interpreting data returned from Jupiter's atmosphere. The sensors included were the primary science pressure, temperature and acceleration sensors, and the supporting engineering temperature sensors. Computer programs were written to decode the Experiment Data Record and convert the digital numbers to physical quantities, i.e., temperatures, pressures, and accelerations. The project office agreed to obtain telemetry of checkout data from the probe. Work to extend programs written for use on the Pioneer Venus project included: (1) massive heat shield ablation leading to important mass loss during entry; and (2) rapid planet rotation, which introduced terms of motion not needed on Venus. When the Galileo Probe encountered Jupiter, analysis and interpretation of data commenced. The early contributions of the experiment were to define (1) the basic structure of the deep atmosphere, (2) the stability of the atmosphere, (3) the upper atmospheric profiles of density, pressure, and temperature. The next major task in the Galileo Probe project was to refine, verify and extend the analysis of the data. It was the verified, and corrected data, which indicated a dry abiabatic atmosphere within measurement accuracy. Temperature in the thermosphere was measured at 900 K. Participation in the Mars atmospheric research included: (1) work as a team member of the Mars Atmosphere Working Group, (2) contribution to the Mars Exobiology Instrument workshop, (3) asssistance in planning the Mars global network and (4) assitance in planning the Soviet-French Mars mission in 1994. This included a return to the Viking Lander parachute data to refine and improve the definition of winds between 1.5 and 4 kilometer altitude at the two entry sites. The variability of the structure of Mars atmosphere was addressed, which is known to vary with season, latitude, hemisphere and dust loading of the atmosphere. This led to work on the Pathfinder project. The probe had a deployable meteorology mast that had three temperature sensors, and a wind sensor at the tip of the mast. Work on the Titan atmospheric probe was also accomplished. This included developing an experiment proposal to the European Space Agency (ESA), which was not selected. However, as an advisor in the design and preparation of the selected experiment the researcher interacted with scientist on the Huygens Probe Atmosphere Structure Experiment. The researcher also participated in the planning for the Venus Chemical Probe. The science objectives of the probe were to resolve unanswered questions concerning the minor species chemistry of Venus' atmosphere that control cloud formation, greenhouse effectiveness, and the thermal structure. The researcher also reviewed problems with the Pioneer Venus Probe, that caused anomalies which occurred on the Probes at and below 12.5 km level of the Venus' atmosphere. He convened and participated in a workshop that concluded the most likely hardware cause was insulation failure in the electrical harness outside the Probes' pressure vessels. It was discovered that the shrink tubing material failed at 600K. This failure could explain the anomalies experienced by the probes. The descent data of the Pioneer probes, and the Soviet Vega Lander was analyzed to evaluate the presence of small scale gravity waves in and below the Venus cloud layer.

  17. Neural correlates of impaired cognitive control over working memory in schizophrenia.

    PubMed

    Eich, Teal S; Nee, Derek Evan; Insel, Catherine; Malapani, Chara; Smith, Edward E

    2014-07-15

    One of the most common deficits in patients with schizophrenia (SZ) is in working memory (WM), which has wide-reaching impacts across cognition. However, previous approaches to studying WM in SZ have used tasks that require multiple cognitive-control processes, making it difficult to determine which specific cognitive and neural processes underlie the WM impairment. We used functional magnetic resonance imaging to investigate component processes of WM in SZ. Eighteen healthy controls (HCs) and 18 patients with SZ performed an item-recognition task that permitted separate neural assessments of 1) WM maintenance, 2) inhibition, and 3) interference control in response to recognition probes. Before inhibitory demands, posterior ventrolateral prefrontal cortex (VLPFC), an area involved in WM maintenance, was activated to a similar degree in both HCs and patients, indicating preserved maintenance operations in SZ. When cued to inhibit items from WM, HCs showed reduced activation in posterior VLPFC, commensurate with appropriately inhibiting items from WM. However, these inhibition-related reductions were absent in patients. When later probed with items that should have been inhibited, patients showed reduced behavioral performance and increased activation in mid-VLPFC, an area implicated in interference control. A mediation analysis indicated that impaired inhibition led to increased reliance on interference control and reduced behavioral performance. In SZ, impaired control over memory, manifested through proactive inhibitory deficits, leads to increased reliance on reactive interference-control processes. The strain on interference-control processes results in reduced behavioral performance. Thus, inhibitory deficits in SZ may underlie widespread impairments in WM and cognition. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivieri, Giorgia; Brown, Matthew A., E-mail: matthew.brown@mat.ethz.ch; Parry, Krista M.

    Over the past decade, energy-dependent ambient pressure X-ray photoelectron spectroscopy (XPS) has emerged as a powerful analytical probe of the ion spatial distributions at the vapor (vacuum)-aqueous electrolyte interface. These experiments are often paired with complementary molecular dynamics (MD) simulations in an attempt to provide a complete description of the liquid interface. There is, however, no systematic protocol that permits a straightforward comparison of the two sets of results. XPS is an integrated technique that averages signals from multiple layers in a solution even at the lowest photoelectron kinetic energies routinely employed, whereas MD simulations provide a microscopic layer-by-layer descriptionmore » of the solution composition near the interface. Here, we use the National Institute of Standards and Technology database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to quantitatively interpret atom-density profiles from MD simulations for XPS signal intensities using sodium and potassium iodide solutions as examples. We show that electron inelastic mean free paths calculated from a semi-empirical formula depend strongly on solution composition, varying by up to 30% between pure water and concentrated NaI. The XPS signal thus arises from different information depths in different solutions for a fixed photoelectron kinetic energy. XPS signal intensities are calculated using SESSA as a function of photoelectron kinetic energy (probe depth) and compared with a widely employed ad hoc method. SESSA simulations illustrate the importance of accounting for elastic-scattering events at low photoelectron kinetic energies (<300 eV) where the ad hoc method systematically underestimates the preferential enhancement of anions over cations. Finally, some technical aspects of applying SESSA to liquid interfaces are discussed.« less

  19. Error reduction in three-dimensional metrology combining optical and touch probe data

    NASA Astrophysics Data System (ADS)

    Gerde, Janice R.; Christens-Barry, William A.

    2010-08-01

    Analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS) is partly based on identifying the boundary ("parting line") between the "external surface area upper" (ESAU) and the sample's sole. Often, that boundary is obscured. We establish the parting line as the curved intersection between the sample outer surface and its insole surface. The outer surface is determined by discrete point cloud coordinates obtained using a laser scanner. The insole surface is defined by point cloud data, obtained using a touch probe device-a coordinate measuring machine (CMM). Because these point cloud data sets do not overlap spatially, a polynomial surface is fitted to the insole data and extended to intersect a mesh fitted to the outer surface point cloud. This line of intersection defines the ESAU boundary, permitting further fractional area calculations to proceed. The defined parting line location is sensitive to the polynomial used to fit experimental data. Extrapolation to the intersection with the ESAU can heighten this sensitivity. We discuss a methodology for transforming these data into a common reference frame. Three scenarios are considered: measurement error in point cloud coordinates, from fitting a polynomial surface to a point cloud then extrapolating beyond the data set, and error from reference frame transformation. These error sources can influence calculated surface areas. We describe experiments to assess error magnitude, the sensitivity of calculated results on these errors, and minimizing error impact on calculated quantities. Ultimately, we must ensure that statistical error from these procedures is minimized and within acceptance criteria.

  20. 77 FR 75429 - Notice of Availability of Proposed National Pollutant Discharge Elimination System (NPDES...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... produced water. These changes are discussed in more detail below, and in the fact sheet accompanying the... part, the proposed permit is very similar to the 2004 permit. The major changes from the 2004 permit... limits and monitoring requirements for produced water based on an updated reasonable potential analysis...

  1. 78 FR 70075 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Public Law...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... establishment of a permit system for various activities in Antarctica and designation of certain animals and certain geographic areas a requiring special protection. The regulations establish such a permit system to..., stable isotope analysis, and DNA extraction. Data would be used to reconstruct seal population dynamics...

  2. A model of binding on DNA microarrays: understanding the combined effect of probe synthesis failure, cross-hybridization, DNA fragmentation and other experimental details of affymetrix arrays

    PubMed Central

    2012-01-01

    Background DNA microarrays are used both for research and for diagnostics. In research, Affymetrix arrays are commonly used for genome wide association studies, resequencing, and for gene expression analysis. These arrays provide large amounts of data. This data is analyzed using statistical methods that quite often discard a large portion of the information. Most of the information that is lost comes from probes that systematically fail across chips and from batch effects. The aim of this study was to develop a comprehensive model for hybridization that predicts probe intensities for Affymetrix arrays and that could provide a basis for improved microarray analysis and probe development. The first part of the model calculates probe binding affinities to all the possible targets in the hybridization solution using the Langmuir isotherm. In the second part of the model we integrate details that are specific to each experiment and contribute to the differences between hybridization in solution and on the microarray. These details include fragmentation, wash stringency, temperature, salt concentration, and scanner settings. Furthermore, the model fits probe synthesis efficiency and target concentration parameters directly to the data. All the parameters used in the model have a well-established physical origin. Results For the 302 chips that were analyzed the mean correlation between expected and observed probe intensities was 0.701 with a range of 0.88 to 0.55. All available chips were included in the analysis regardless of the data quality. Our results show that batch effects arise from differences in probe synthesis, scanner settings, wash strength, and target fragmentation. We also show that probe synthesis efficiencies for different nucleotides are not uniform. Conclusions To date this is the most complete model for binding on microarrays. This is the first model that includes both probe synthesis efficiency and hybridization kinetics/cross-hybridization. These two factors are sequence dependent and have a large impact on probe intensity. The results presented here provide novel insight into the effect of probe synthesis errors on Affymetrix microarrays; furthermore, the algorithms developed in this work provide useful tools for the analysis of cross-hybridization, probe synthesis efficiency, fragmentation, wash stringency, temperature, and salt concentration on microarray intensities. PMID:23270536

  3. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Li, Zhongyu; Yu, Yue; Sizdahkhani, Saman; Ho, Winson S.; Yin, Fangchao; Wang, Li; Zhu, Guoli; Zhang, Min; Jiang, Lei; Zhuang, Zhengping; Qin, Jianhua

    2016-11-01

    The blood-brain barrier (BBB) restricts the uptake of many neuro-therapeutic molecules, presenting a formidable hurdle to drug development in brain diseases. We proposed a new and dynamic in vivo-like three-dimensional microfluidic system that replicates the key structural, functional and mechanical properties of the blood-brain barrier in vivo. Multiple factors in this system work synergistically to accentuate BBB-specific attributes-permitting the analysis of complex organ-level responses in both normal and pathological microenvironments in brain tumors. The complex BBB microenvironment is reproduced in this system via physical cell-cell interaction, vascular mechanical cues and cell migration. This model possesses the unique capability to examine brain metastasis of human lung, breast and melanoma cells and their therapeutic responses to chemotherapy. The results suggest that the interactions between cancer cells and astrocytes in BBB microenvironment might affect the ability of malignant brain tumors to traverse between brain and vascular compartments. Furthermore, quantification of spatially resolved barrier functions exists within a single assay, providing a versatile and valuable platform for pharmaceutical development, drug testing and neuroscientific research.

  4. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  5. Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry.

    PubMed

    Zhang, Zheshen; Mower, Jacob; Englund, Dirk; Wong, Franco N C; Shapiro, Jeffrey H

    2014-03-28

    High-dimensional quantum key distribution (HDQKD) offers the possibility of high secure-key rate with high photon-information efficiency. We consider HDQKD based on the time-energy entanglement produced by spontaneous parametric down-conversion and show that it is secure against collective attacks. Its security rests upon visibility data-obtained from Franson and conjugate-Franson interferometers-that probe photon-pair frequency correlations and arrival-time correlations. From these measurements, an upper bound can be established on the eavesdropper's Holevo information by translating the Gaussian-state security analysis for continuous-variable quantum key distribution so that it applies to our protocol. We show that visibility data from just the Franson interferometer provides a weaker, but nonetheless useful, secure-key rate lower bound. To handle multiple-pair emissions, we incorporate the decoy-state approach into our protocol. Our results show that over a 200-km transmission distance in optical fiber, time-energy entanglement HDQKD could permit a 700-bit/sec secure-key rate and a photon information efficiency of 2 secure-key bits per photon coincidence in the key-generation phase using receivers with a 15% system efficiency.

  6. Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore

    DOE PAGES

    Aartsen, M. G.; Ackermann, M.; Adams, J.; ...

    2018-02-13

    We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ~5 GeV. That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L/Eν as long-baseline experiments but with substantially higher-energy neutrinos. Here, this analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δmmore » $$2\\atop{32}$$=2.31$$+0.11\\atop{-0.13}$$×10 -3 eV 2 and sin 2θ 23=0.51$$+0.07\\atop{-0.09}$$, assuming normal neutrino mass ordering. These results are consistent with, and of similar precision to, those from accelerator- and reactor-based experiments.« less

  7. Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M. G.; Ackermann, M.; Adams, J.

    We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ~5 GeV. That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L/Eν as long-baseline experiments but with substantially higher-energy neutrinos. Here, this analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δmmore » $$2\\atop{32}$$=2.31$$+0.11\\atop{-0.13}$$×10 -3 eV 2 and sin 2θ 23=0.51$$+0.07\\atop{-0.09}$$, assuming normal neutrino mass ordering. These results are consistent with, and of similar precision to, those from accelerator- and reactor-based experiments.« less

  8. Novel four-sided neural probe fabricated by a thermal lamination process of polymer films.

    PubMed

    Shin, Soowon; Kim, Jae-Hyun; Jeong, Joonsoo; Gwon, Tae Mok; Lee, Seung-Hee; Kim, Sung June

    2017-02-15

    Ideally, neural probes should have channels with a three-dimensional (3-D) configuration to record the activities of 3-D neural circuits. Many types of 3-D neural probes have been developed; however, most of them were designed as an array of multiple shanks with electrodes located along one side of the shanks. We developed a novel liquid crystal polymer (LCP)-based neural probe with four-sided electrodes. This probe has electrodes on four sides of the shank, i.e., the front, back and two sidewalls. To generate the proposed configuration of the electrodes, we used a thermal lamination process involving LCP films and laser micromachining. The proposed novel four-sided neural probe, was used to successfully perform in vivo multichannel neural recording in the mouse primary somatosensory cortex. The multichannel neural recording showed that the proposed four-sided neural probe can record spiking activities from a more diverse neuronal population than single-sided probes. This was confirmed by a pairwise Pearson correlation coefficient (Pearson's r) analysis and a cross-correlation analysis. The developed four-sided neural probe can be used to record various signals from a complex neural network. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide.

    PubMed

    Pfeiffer, Björn; Maier, Johannes; Arlt, Jonas; Nowak, Carsten

    2017-04-01

    Atom probe tomography is routinely used for the characterization of materials microstructures, usually assuming that the microstructure is unaltered by the analysis. When analyzing ionic conductors, however, gradients in the chemical potential and the electric field penetrating dielectric atom probe specimens can cause significant ionic mobility. Although ionic mobility is undesirable when aiming for materials characterization, it offers a strategy to manipulate materials directly in situ in the atom probe. Here, we present experimental results on the analysis of the ionic conductor lithium-manganese-oxide with different atom probe techniques. We demonstrate that, at a temperature of 30 K, characterization of the materials microstructure is possible without measurable Li mobility. Also, we show that at 298 K the material can be deintercalated, in situ in the atom probe, without changing the manganese-oxide host structure. Combining in situ atom probe deintercalation and subsequent conventional characterization, we demonstrate a new methodological approach to study ionic conductors even in early stages of deintercalation.

  10. Clinical tests of an ultrasonic periodontal probe

    NASA Astrophysics Data System (ADS)

    Hinders, Mark K.; Lynch, John E.; McCombs, Gayle B.

    2002-05-01

    A new ultrasonic periodontal probe has been developed that offers the potential for earlier detection of periodontal disease activity, non-invasive diagnosis, and greater reliability of measurement. A comparison study of the ultrasonic probe to both a manual probe, and a controlled-force probe was conducted to evaluate its clinical effectiveness. Twelve patients enrolled into this study. Two half-month examinations were conducted on each patient, scheduled one hour apart. A one-way analysis of variance was performed to compare the results for the three sets of probing depth measurements, followed by a repeated measures analysis to assess the reproducibility of the different probing techniques. These preliminary findings indicate that manual and ultrasonic probing measure different features of the pocket. Therefore, it is not obvious how the two depth measurements correspond to each other. However, both methods exhibited a similar tendency toward increasing pocket depths as Gingival Index scores increased. Based on the small sample size, further studies need to be conducted using a larger population of patients exhibiting a wider range of disease activity. In addition, studies that allow histological examination of the pocket after probing will help further evaluate the clinical effectiveness the ultrasonic probe. Future studies will also aid in the development of more effective automated feature recognition algorithms that convert the ultrasonic echoes into pocket depth readings.

  11. D-region blunt probe data analysis using hybrid computer techniques

    NASA Technical Reports Server (NTRS)

    Burkhard, W. J.

    1973-01-01

    The feasibility of performing data reduction techniques with a hybrid computer was studied. The data was obtained from the flight of a parachute born probe through the D-region of the ionosphere. A presentation of the theory of blunt probe operation is included with emphasis on the equations necessary to perform the analysis. This is followed by a discussion of computer program development. Included in this discussion is a comparison of computer and hand reduction results for the blunt probe launched on 31 January 1972. The comparison showed that it was both feasible and desirable to use the computer for data reduction. The results of computer data reduction performed on flight data acquired from five blunt probes are also presented.

  12. Turbidity as a probe of tubulin polymerization kinetics: a theoretical and experimental re-examination.

    PubMed

    Hall, Damien; Minton, Allen P

    2005-10-15

    We report here an examination of the validity of the experimental practice of using solution turbidity to study the polymerization kinetics of microtubule formation. The investigative approach proceeds via numerical solution of model rate equations to yield the time dependence of each microtubule species, followed by the calculation of the time- and wavelength-dependent turbidity generated by the calculated distribution of rod lengths. The wavelength dependence of the turbidity along the time course is analyzed to search for generalized kinetic regimes that satisfy a constant proportionality relationship between the observed turbidity and the weight concentration of polymerized tubulin. An empirical analysis, which permits valid interpretation of turbidity data for distributions of microtubules that are not long relative to the wavelength of incident light, is proposed. The basic correctness of the simulation work is shown by the analysis of the experimental time dependence of the turbidity wavelength exponent for microtubule formation in taxol-supplemented 0.1 M Pipes buffer (1 mM GTP, 1 mM EGTA, 1 mM MgSO4, pH 6.4). We believe that the general findings and principles outlined here are applicable to studies of other fibril-forming systems that use turbidity as a marker of polymerization progress.

  13. Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer

    DTIC Science & Technology

    2015-09-01

    EPICOPY to obtain reliable copy number variation ( CNV ) data from the methylome array data, thereby decreasing the DNA requirements in half...in the R statistical environment. Samples were assessed for good performance on the array using detection p-values, a metric implemented by...Illumina to identify probes detected with confidence. Samples less than 90% of probes detected were removed from the analysis and probes undetected in any

  14. Database architecture and query structures for probe data processing.

    DOT National Transportation Integrated Search

    2012-03-01

    This report summarizes findings and implementations of probe vehicle data collection based on Bluetooth MAC address matching technology. Probe vehicle travel time data are studied in the following field deployment case studies: analysis of traffic ch...

  15. Outer planet entry probe system study. Volume 2: Supporting technical studies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The environment, science investigations, and general mission analysis considerations are given first. These data are followed by discussions of the studies pertaining to the planets Jupiter, Saturn, Uranus, and Neptune. Except for Neptune, each planet discussion is divided into two parts: (1) parametric activities and (2) probe definition for that planet, or the application of a given probe for that planet. The Neptune discussion is limited to parametrics in the area of science and mission analysis. Each of the probe system definitions consists of system and subsystem details including telecommunications, data handling, power pyrotechnics, attitude control, structures, propulsion, thermal control, and probe to spacecraft integration. The first configuration is discussed in detail and the subsequent configuration discussions are limited to the differences. Finally, the hardware availability to support a probe system and commonality of science, missions, and subsystems for use at the various planets are considered.

  16. Polynomial Conjoint Analysis of Similarities: A Model for Constructing Polynomial Conjoint Measurement Algorithms.

    ERIC Educational Resources Information Center

    Young, Forrest W.

    A model permitting construction of algorithms for the polynomial conjoint analysis of similarities is presented. This model, which is based on concepts used in nonmetric scaling, permits one to obtain the best approximate solution. The concepts used to construct nonmetric scaling algorithms are reviewed. Finally, examples of algorithmic models for…

  17. Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles.

    PubMed

    Fercher, Andreas; Borisov, Sergey M; Zhdanov, Alexander V; Klimant, Ingo; Papkovsky, Dmitri B

    2011-07-26

    A new intracellular O(2) (icO(2)) sensing probe is presented, which comprises a nanoparticle (NP) formulation of a cationic polymer Eudragit RL-100 and a hydrophobic phosphorescent dye Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP). Using the time-resolved fluorescence (TR-F) plate reader set-up, cell loading was investigated in detail, particularly the effects of probe concentration, loading time, serum content in the medium, cell type, density, etc. The use of a fluorescent analogue of the probe in conjunction with confocal microscopy and flow cytometry analysis, revealed that cellular uptake of the NPs is driven by nonspecific energy-dependent endocytosis and that the probe localizes inside the cell close to the nucleus. Probe calibration in biological environment was performed, which allowed conversion of measured phosphorescence lifetime signals into icO(2) concentration (μM). Its analytical performance in icO(2) sensing experiments was demonstrated by monitoring metabolic responses of mouse embryonic fibroblast cells under ambient and hypoxic macroenvironment. The NP probe was seen to generate stable and reproducible signals in different types of mammalian cells and robust responses to their metabolic stimulation, thus allowing accurate quantitative analysis. High brightness and photostability allow its use in screening experiments with cell populations on a commercial TR-F reader, and for single cell analysis on a fluorescent microscope.

  18. Immobilized OBOC combinatorial bead array to facilitate multiplicative screening.

    PubMed

    Xiao, Wenwu; Bononi, Fernanda C; Townsend, Jared; Li, Yuanpei; Liu, Ruiwu; Lam, Kit S

    2013-07-01

    One-bead-one-compound (OBOC) combinatorial library screening has been broadly utilized for the last two decades to identify small molecules, peptides or peptidomimetics targeting variable screening probes such as cell surface receptors, bacteria, protein kinases, phosphatases, proteases etc. In previous screening methods, library beads were suspended in solution and screened against one single probe. Only the positive beads were tracked and isolated for additional screens and finally selected for chemical decoding. During this process, the remaining negative beads were not tracked and discarded. Here we report a novel bead immobilization method such that a bead library array can be conveniently prepared and screened in its entirety, sequentially many times with a series of distinct probes. This method not only allows us to increase the screening efficiency but also permits us to determine the binding profile of each and every library bead against a large number of target receptors. As proof of concept, we serially screened a random OBOC disulfide containing cyclic heptapeptide library with three water soluble dyes as model probes: malachite green, bromocresol purple and indigo carmine. This multiplicative screening approach resulted in a rapid determination of the binding profile of each and every bead respective to each of the three dyes. Beads that interacted with malachite green only, bromocresol purple only, or both indigo carmine and bromocresol purple were isolated, and their peptide sequences were determined with microsequencer. Ultimately, the novel OBOC multiplicative screening approach could play a key role in the enhancement of existing on-bead assays such as whole cell binding, bacteria binding, protein binding, posttranslational modifications etc. with increased efficiency, capacity, and specificity.

  19. Electrophysiological evidence for attenuated auditory recovery cycles in children with specific language impairment

    PubMed Central

    Stevens, Courtney; Paulsen, David; Yasen, Alia; Mitsunaga, Leila; Neville, Helen

    2012-01-01

    Previous research indicates that at least some children with specific language impairment (SLI) show a reduced neural response when non-linguistic tones were presented at rapid rates. However, this past research has examined older children, and it is unclear whether such deficits emerge earlier in development. It is also unclear whether atypical refractory effects differ for linguistic versus non-linguistic stimuli or can be explained by deficits in selective auditory attention reported among children with SLI. In the present study, auditory refractory periods were compared in a group of 24 young children with SLI (age 3–8 years) and 24 matched control children. Event-related brain potentials (ERPs) were recorded and compared to 100 ms linguistic and non-linguistic probe stimuli presented at inter-stimulus intervals (ISIs) of 200, 500, or 1000 ms. These probes were superimposed on story narratives when attended and ignored, permitting an experimental manipulation of selective attention within the same paradigm. Across participants, clear refractory effects were observed with this paradigm, evidenced as a reduced amplitude response from 100 to 200 ms at shorter ISIs. Children with SLI showed reduced amplitude ERPs relative to the typically-developing group at only the shortest, 200 ms, ISI and this difference was over the left-hemisphere for linguistic probes and over the right-hemisphere for non-linguistic probes. None of these effects was influenced by the direction of selective attention. Taken together, these findings suggest that deficits in the neural representation of rapidly presented auditory stimuli may be one risk factor for atypical language development. PMID:22265331

  20. A novel, multiplex, real-time PCR-based approach for the detection of the commonly occurring pathogenic fungi and bacteria.

    PubMed

    Horváth, Ádám; Pető, Zoltán; Urbán, Edit; Vágvölgyi, Csaba; Somogyvári, Ferenc

    2013-12-23

    Polymerase chain reaction (PCR)-based techniques are widely used to identify fungal and bacterial infections. There have been numerous reports of different, new, real-time PCR-based pathogen identification methods although the clinical practicability of such techniques is not yet fully clarified.The present study focuses on a novel, multiplex, real-time PCR-based pathogen identification system developed for rapid differentiation of the commonly occurring bacterial and fungal causative pathogens of bloodstream infections. A multiplex, real-time PCR approach is introduced for the detection and differentiation of fungi, Gram-positive (G+) and Gram-negative (G-) bacteria. The Gram classification is performed with the specific fluorescence resonance energy transfer (FRET) probes recommended for LightCycler capillary real-time PCR. The novelty of our system is the use of a non-specific SYBR Green dye instead of labelled anchor probes or primers, to excite the acceptor dyes on the FRET probes. In conjunction with this, the use of an intercalating dye allows the detection of fungal amplicons.With the novel pathogen detection system, fungi, G + and G- bacteria in the same reaction tube can be differentiated within an hour after the DNA preparation via the melting temperatures of the amplicons and probes in the same tube. This modified FRET technique is specific and more rapid than the gold-standard culture-based methods. The fact that fungi, G + and G- bacteria were successfully identified in the same tube within an hour after the DNA preparation permits rapid and early evidence-based management of bloodstream infections in clinical practice.

  1. MPAI (mass probes aided ionization) method for total analysis of biomolecules by mass spectrometry.

    PubMed

    Honda, Aki; Hayashi, Shinichiro; Hifumi, Hiroki; Honma, Yuya; Tanji, Noriyuki; Iwasawa, Naoko; Suzuki, Yoshio; Suzuki, Koji

    2007-01-01

    We have designed and synthesized various mass probes, which enable us to effectively ionize various molecules to be detected with mass spectrometry. We call the ionization method using mass probes the "MPAI (mass probes aided ionization)" method. We aim at the sensitive detection of various biological molecules, and also the detection of bio-molecules by a single mass spectrometry serially without changing the mechanical settings. Here, we review mass probes for small molecules with various functional groups and mass probes for proteins. Further, we introduce newly developed mass probes for proteins for highly sensitive detection.

  2. 40 CFR 85.2224 - Exhaust analysis system-EPA 81.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... probe, moisture separator and analyzers for HC and CO. (2) Dual sample probe requirements. If used, a dual sample probe must provide equal flow in each leg. The equal flow criterion is considered to be met if the flow rate in each leg of the probe (or an identical model) has been measured under two sample...

  3. 40 CFR 85.2224 - Exhaust analysis system-EPA 81.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... probe, moisture separator and analyzers for HC and CO. (2) Dual sample probe requirements. If used, a dual sample probe must provide equal flow in each leg. The equal flow criterion is considered to be met if the flow rate in each leg of the probe (or an identical model) has been measured under two sample...

  4. 40 CFR 85.2224 - Exhaust analysis system-EPA 81.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... probe, moisture separator and analyzers for HC and CO. (2) Dual sample probe requirements. If used, a dual sample probe must provide equal flow in each leg. The equal flow criterion is considered to be met if the flow rate in each leg of the probe (or an identical model) has been measured under two sample...

  5. Development and inter-laboratory validation of unlabeled probe melting curve analysis for detection of JAK2 V617F mutation in polycythemia vera.

    PubMed

    Wu, Zhiyuan; Yuan, Hong; Zhang, Xinju; Liu, Weiwei; Xu, Jinhua; Zhang, Wei; Guan, Ming

    2011-01-01

    JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex) in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type) covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.

  6. Probing of multiple magnetic responses in magnetic inductors using atomic force microscopy.

    PubMed

    Park, Seongjae; Seo, Hosung; Seol, Daehee; Yoon, Young-Hwan; Kim, Mi Yang; Kim, Yunseok

    2016-02-08

    Even though nanoscale analysis of magnetic properties is of significant interest, probing methods are relatively less developed compared to the significance of the technique, which has multiple potential applications. Here, we demonstrate an approach for probing various magnetic properties associated with eddy current, coil current and magnetic domains in magnetic inductors using multidimensional magnetic force microscopy (MMFM). The MMFM images provide combined magnetic responses from the three different origins, however, each contribution to the MMFM response can be differentiated through analysis based on the bias dependence of the response. In particular, the bias dependent MMFM images show locally different eddy current behavior with values dependent on the type of materials that comprise the MI. This approach for probing magnetic responses can be further extended to the analysis of local physical features.

  7. Electron paramagnetic resonance studies of slowly tumbling vanadyl spin probes in nematic liquid crystals

    NASA Technical Reports Server (NTRS)

    Bruno, G. V.; Harrington, J. K.; Eastman, M. P.

    1978-01-01

    An analysis of EPR line shapes by the method of Polnaszek, Bruno, and Freed is made for slowly tumbling vanadyl spin probes in viscous nematic liquid crystals. The use of typical vanadyl complexes as spin probes for nematic liquid crystals is shown to simplify the theoretical analysis and the subsequent interpretation. Rotational correlation times tau and orientational ordering parameters S sub Z where slow tumbling effects are expected to be observed in vanadyl EPR spectra are indicated in a plot. Analysis of the inertial effects on the probe reorientation, which are induced by slowly fluctuating torque components of the local solvent structure, yield quantitative values for tau and S sub Z. The weakly ordered probe VOAA is in the slow tumbling region and displays these inertial effects throughout the nematic range of BEPC and Phase V. VOAA exhibits different reorientation behavior near the isotropic-nematic transition temperature than that displayed far below this transition temperature.

  8. Prediction of Particle Number Density and Particle Properties in the Flow Field Observed by the Nephelometer Experiment on the Galileo Probe

    NASA Technical Reports Server (NTRS)

    Naughton, Jonathan W.

    1998-01-01

    This report summarizes the work performed to assist in the analysis of data returned from the Galileo Probe's Nephelometer instrument. A computation of the flow field around the Galileo Probe during its descent through the Jovian atmosphere was simulated. The behavior of cloud particles that passed around the Galileo probe was then computed and the number density in the vicinity of the Nephelometer instrument was predicted. The results of our analysis support the finding that the number density of cloud particles was not the same in each of the four sampling volumes of the Nephelometer instrument. The number densities calculated in this study are currently being used to assist in the reanalysis of the data returned from the Galileo Probe.

  9. The Analysis of Turbulent Flow by Hot Wire Signals. Ph.D. Thesis - Physikalische Ingenieurvissenschaft der Technischen Univ., 1981

    NASA Technical Reports Server (NTRS)

    Bartenwerfer, M.

    1982-01-01

    When measuring velocities in turbulent gas flow, approximation signal analysis with hot wire anemometers having one and two wire probes are used. A numeric test of standard analyses shows the resulting systemmatic error increases quickly with increasing turbulent intensity. Since it also depends on the turbulence structure, it cannot be corrected. The use of such probes is thus restricted to low turbulence. By means of three wire probes (in two dimensional flows with X wire probes) in principle, instantaneous values of velocity can be determined, and an asymmetric arrangement of wires has a theoretical advantage.

  10. Minimum-variance Brownian motion control of an optically trapped probe.

    PubMed

    Huang, Yanan; Zhang, Zhipeng; Menq, Chia-Hsiang

    2009-10-20

    This paper presents a theoretical and experimental investigation of the Brownian motion control of an optically trapped probe. The Langevin equation is employed to describe the motion of the probe experiencing random thermal force and optical trapping force. Since active feedback control is applied to suppress the probe's Brownian motion, actuator dynamics and measurement delay are included in the equation. The equation of motion is simplified to a first-order linear differential equation and transformed to a discrete model for the purpose of controller design and data analysis. The derived model is experimentally verified by comparing the model prediction to the measured response of a 1.87 microm trapped probe subject to proportional control. It is then employed to design the optimal controller that minimizes the variance of the probe's Brownian motion. Theoretical analysis is derived to evaluate the control performance of a specific optical trap. Both experiment and simulation are used to validate the design as well as theoretical analysis, and to illustrate the performance envelope of the active control. Moreover, adaptive minimum variance control is implemented to maintain the optimal performance in the case in which the system is time varying when operating the actively controlled optical trap in a complex environment.

  11. Liquid Microjunction Surface Sampling Probe Fluid Dynamics: Computational and Experimental Analysis of Coaxial Intercapillary Positioning Effects on Sample Manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ElNaggar, Mariam S; Barbier, Charlotte N; Van Berkel, Gary J

    A coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation. A transparent LMJ-SSP was constructed to provide the means formore » visual observation of the dynamics of the surface sampling process. Visual observation, computational fluid dynamics (CFD) analysis, and experimental results revealed that inner capillary axial retraction from the flush position relative to the outer capillary transitioned the probe from a continuous sampling and injection mode through an intermediate regime to sample plug formationmode caused by eddy currents at the sampling end of the probe. The potential for analytical implementation of these newly discovered probe operational modes is discussed.« less

  12. Dynamic analysis of apoptosis using cyanine SYTO probes: From classical to microfluidic cytometry

    PubMed Central

    Wlodkowic, Donald; Skommer, Joanna; Faley, Shannon; Darzynkiewicz, Zbigniew; Cooper, Jonathan M.

    2013-01-01

    Cell death is a stochastic process, often initiated and/or executed in a multi-pathway/multi-organelle fashion. Therefore, high-throughput single-cell analysis platforms are required to provide detailed characterization of kinetics and mechanisms of cell death in heterogeneous cell populations. However, there is still a largely unmet need for inert fluorescent probes, suitable for prolonged kinetic studies. Here, we compare the use of innovative adaptation of unsymmetrical SYTO dyes for dynamic real-time analysis of apoptosis in conventional as well as microfluidic chip-based systems. We show that cyanine SYTO probes allow non-invasive tracking of intracellular events over extended time. Easy handling and “stain–no wash” protocols open up new opportunities for high-throughput analysis and live-cell sorting. Furthermore, SYTO probes are easily adaptable for detection of cell death using automated microfluidic chip-based cytometry. Overall, the combined use of SYTO probes and state-of-the-art Lab-on-a-Chip platform emerges as a cost effective solution for automated drug screening compared to conventional Annexin V or TUNEL assays. In particular, it should allow for dynamic analysis of samples where low cell number has so far been an obstacle, e.g. primary cancer stems cells or circulating minimal residual tumors. PMID:19298813

  13. Array of nucleic acid probes on biological chips for diagnosis of HIV and methods of using the same

    DOEpatents

    Chee, Mark; Gingeras, Thomas R.; Fodor, Stephen P. A.; Hubble, Earl A.; Morris, MacDonald S.

    1999-01-19

    The invention provides an array of oligonucleotide probes immobilized on a solid support for analysis of a target sequence from a human immunodeficiency virus. The array comprises at least four sets of oligonucleotide probes 9 to 21 nucleotides in length. A first probe set has a probe corresponding to each nucleotide in a reference sequence from a human immunodeficiency virus. A probe is related to its corresponding nucleotide by being exactly complementary to a subsequence of the reference sequence that includes the corresponding nucleotide. Thus, each probe has a position, designated an interrogation position, that is occupied by a complementary nucleotide to the corresponding nucleotide. The three additional probe sets each have a corresponding probe for each probe in the first probe set. Thus, for each nucleotide in the reference sequence, there are four corresponding probes, one from each of the probe sets. The three corresponding probes in the three additional probe sets are identical to the corresponding probe from the first probe or a subsequence thereof that includes the interrogation position, except that the interrogation position is occupied by a different nucleotide in each of the four corresponding probes.

  14. Biotechnological and Pharmacological Applications of Biotoxins and Other Bioactive Molecules from Dinoflagellates

    PubMed Central

    Guedes, A. Catarina; Malcata, F. Xavier

    2017-01-01

    The long-lasting interest in bioactive molecules (namely toxins) produced by (microalga) dinoflagellates has risen in recent years. Exhibiting wide diversity and complexity, said compounds are well-recognized for their biological features, with great potential for use as pharmaceutical therapies and biological research probes. Unfortunately, provision of those compounds is still far from sufficient, especially in view of an increasing demand for preclinical testing. Despite the difficulties to establish dinoflagellate cultures and obtain reasonable productivities of such compounds, intensive research has permitted a number of advances in the field. This paper accordingly reviews the characteristics of some of the most important biotoxins (and other bioactive substances) produced by dinoflagellates. It also presents and discusses (to some length) the main advances pertaining to dinoflagellate production, from bench to large scale—with an emphasis on material published since the latest review available on the subject. Such advances encompass improvements in nutrient formulation and light supply as major operational conditions; they have permitted adaptation of classical designs, and aided the development of novel configurations for dinoflagellate growth—even though shearing-related issues remain a major challenge. PMID:29261163

  15. The future of solar physics

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1985-01-01

    Outstanding problems for the future of solar physics and stellar physics are examined. The physics of stellar interiors has been called into serious question by the very low measured neutrino flux from the sun. The Ga-71 neutrino detection experiment is the next step in unravelling this mystery. The new methods of helioseismology, for probing the interior of the sun, have already found the primordial rapid rotation of the central core. The forthcoming worldwide helioseismology observing network will permit fuller exploitation of the method, promising to provide the first direct sounding of the interior of a star, hitherto known to us only through theoretical inference and the discrepant neutrino emission. An essential step in developing the physics of stellar activity will be the Solar Optical Telescope (presently planned by NASA to be launched early in the next decade) to permit a 'microscopic' examination of the surface of the sun to study the source of the action. The activity and X-ray emission of other stars depend on much the same effects, so that the study of the sun is essential to determining the significance of the X-ray emission from other stars.

  16. Probe interface design consideration. [for interplanetary spacecraft missions

    NASA Technical Reports Server (NTRS)

    Casani, E. K.

    1974-01-01

    Interface design between a probe and a spacecraft requires not only technical considerations but also management planning and mission analysis interactions. Two further aspects of importance are the flyby versus the probe trade-off, and the relay link design and data handling optimization.

  17. Non-toxic fluorescent phosphonium probes to detect mitochondrial potential.

    PubMed

    Šarić, Ana; Crnolatac, Ivo; Bouillaud, Frédéric; Sobočanec, Sandra; Mikecin, Ana-Matea; Mačak Šafranko, Željka; Delgeorgiev, Todor; Piantanida, Ivo; Balog, Tihomir; Petit, Patrice X

    2017-03-22

    We evaluated our phosphonium-based fluorescent probes for selective staining of mitochondria. Currently used probes for monitoring mitochondrial membrane potential show varying degrees of interference with cell metabolism, photo-induced damage and probe binding. Here presented probes are characterised by highly efficient cellular uptake and specific accumulation in mitochondria. Fluorescent detection of the probes was accomplished using flow cytometry and confocal microscopy imaging of yeast and mammalian cells. Toxicity analysis (impedimetry-xCELLigence for the cellular proliferation and Seahorse technology for respiratory properties) confirms that these dyes exhibit no-toxicity on mitochondrial or cellular functioning even for long time incubation. The excellent chemical and photophysical stability of the dyes makes them promising leads toward improved fluorescent probes. Therefore, the probes described here offer to circumvent the problems associated with existing-probe's limitations.

  18. Atomic-scale phase composition through multivariate statistical analysis of atom probe tomography data.

    PubMed

    Keenan, Michael R; Smentkowski, Vincent S; Ulfig, Robert M; Oltman, Edward; Larson, David J; Kelly, Thomas F

    2011-06-01

    We demonstrate for the first time that multivariate statistical analysis techniques can be applied to atom probe tomography data to estimate the chemical composition of a sample at the full spatial resolution of the atom probe in three dimensions. Whereas the raw atom probe data provide the specific identity of an atom at a precise location, the multivariate results can be interpreted in terms of the probabilities that an atom representing a particular chemical phase is situated there. When aggregated to the size scale of a single atom (∼0.2 nm), atom probe spectral-image datasets are huge and extremely sparse. In fact, the average spectrum will have somewhat less than one total count per spectrum due to imperfect detection efficiency. These conditions, under which the variance in the data is completely dominated by counting noise, test the limits of multivariate analysis, and an extensive discussion of how to extract the chemical information is presented. Efficient numerical approaches to performing principal component analysis (PCA) on these datasets, which may number hundreds of millions of individual spectra, are put forward, and it is shown that PCA can be computed in a few seconds on a typical laptop computer.

  19. Mitochondrial Glutathione: Regulation and Functions.

    PubMed

    Calabrese, Gaetano; Morgan, Bruce; Riemer, Jan

    2017-11-20

    Mitochondrial glutathione fulfills crucial roles in a number of processes, including iron-sulfur cluster biosynthesis and peroxide detoxification. Recent Advances: Genetically encoded fluorescent probes for the glutathione redox potential (E GSH ) have permitted extensive new insights into the regulation of mitochondrial glutathione redox homeostasis. These probes have revealed that the glutathione pools of the mitochondrial matrix and intermembrane space (IMS) are highly reduced, similar to the cytosolic glutathione pool. The glutathione pool of the IMS is in equilibrium with the cytosolic glutathione pool due to the presence of porins that allow free passage of reduced glutathione (GSH) and oxidized glutathione (GSSG) across the outer mitochondrial membrane. In contrast, limited transport of glutathione across the inner mitochondrial membrane ensures that the matrix glutathione pool is kinetically isolated from the cytosol and IMS. In contrast to the situation in the cytosol, there appears to be extensive crosstalk between the mitochondrial glutathione and thioredoxin systems. Further, both systems appear to be intimately involved in the removal of reactive oxygen species, particularly hydrogen peroxide (H 2 O 2 ), produced in mitochondria. However, a detailed understanding of these interactions remains elusive. We postulate that the application of genetically encoded sensors for glutathione in combination with novel H 2 O 2 probes and conventional biochemical redox state assays will lead to fundamental new insights into mitochondrial redox regulation and reinvigorate research into the physiological relevance of mitochondrial redox changes. Antioxid. Redox Signal. 27, 1162-1177.

  20. Mg2+-dependent conformational changes and product release during DNA-catalyzed RNA ligation monitored by Bimane fluorescence

    PubMed Central

    Turriani, Elisa; Höbartner, Claudia; Jovin, Thomas M.

    2015-01-01

    Among the deoxyribozymes catalyzing the ligation of two RNA substrates, 7S11 generates a branched RNA containing a 2′,5′-linkage. We have attached the small fluorogenic probe Bimane to the triphosphate terminated RNA substrate and utilized emission intensity and anisotropy to follow structural rearrangements leading to a catalytically active complex upon addition of Mg2+. Bimane coupled to synthetic oligonucleotides is quenched by nearby guanines via photoinduced electron transfer. The degree of quenching is sensitive to changes in the base pairing of the residues involved and in their distances to the probe. These phenomena permit the characterization of various sequential processes in the assembly and function of 7S11: binding of Mg2+ to the triphosphate moiety, release of quenching of the probe by the 5′-terminal G residues of R-RNA as they engage in secondary base-pair interactions, local rearrangement into a distinct active conformation, and continuous release of the Bimane-labeled pyrophosphate during the course of reaction at 37°C. It was possible to assign equilibrium and rate constants and structural interpretations to the sequence of conformational transitions and catalysis, information useful for optimizing the design of next generation deoxyribozymes. The fluorescent signatures, thermodynamic equilibria and catalytic function of numerous mutated (base/substituted) molecules were examined. PMID:25505142

  1. Analysis of acoustic and entropy disturbances in a hypersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Schilden, Thomas; Schröder, Wolfgang; Ali, Syed Raza Christopher; Schreyer, Anne-Marie; Wu, Jie; Radespiel, Rolf

    2016-05-01

    The tunnel noise in a Mach 5.9 Ludwieg tube is determined by two methods, a newly developed cone-probe-DNS method and a reliable hot-wire-Pitot-probe method. The new method combines pressure and heat flux measurements using a cone probe and direct numerical simulation (DNS). The modal analysis is based on transfer functions obtained by the DNS to link the measured quantities to the tunnel noise. The measurements are performed for several unit-Reynolds numbers in the range of 5 ṡ 106 ≤ Re/m ≤ 16 ṡ 106 and probe positions to identify the sensitivities of tunnel noise. The DNS solutions show similar response mechanisms of the cone probe to incident acoustic and entropy waves which leads to high condition numbers of the transfer matrix such that a unique relationship between response and source mechanism can be only determined by neglecting the contribution of the non-acoustic modes to the pressure and heat flux fluctuations. The results of the cone-probe-DNS method are compared to a modal analysis based on the hot-wire-Pitot-probe method which provides reliable results in the frequency range less than 50 kHz. In this low frequency range the findings of the two different mode analyses agree well. At higher frequencies, the newly developed cone-probe-DNS method is still valid. The tunnel noise is dominated by the acoustic mode, since the entropy mode is lower by one order of magnitude and the vorticity mode can be neglected. The acoustic mode is approximately 0.5% at 30 kHz and the cone-probe-DNS data illustrate the acoustic mode to decrease and to asymptotically approach 0.2%.

  2. Quantitative analysis of doped/undoped ZnO nanomaterials using laser assisted atom probe tomography: Influence of the analysis parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amirifar, Nooshin; Lardé, Rodrigue, E-mail: rodrigue.larde@univ-rouen.fr; Talbot, Etienne

    2015-12-07

    In the last decade, atom probe tomography has become a powerful tool to investigate semiconductor and insulator nanomaterials in microelectronics, spintronics, and optoelectronics. In this paper, we report an investigation of zinc oxide nanostructures using atom probe tomography. We observed that the chemical composition of zinc oxide is strongly dependent on the analysis parameters used for atom probe experiments. It was observed that at high laser pulse energies, the electric field at the specimen surface is strongly dependent on the crystallographic directions. This dependence leads to an inhomogeneous field evaporation of the surface atoms, resulting in unreliable measurements. We showmore » that the laser pulse energy has to be well tuned to obtain reliable quantitative chemical composition measurements of undoped and doped ZnO nanomaterials.« less

  3. Characterization of dilute species within CVD-grown silicon nanowires doped using trimethylboron: protected lift-out specimen preparation for atom probe tomography.

    PubMed

    Prosa, T J; Alvis, R; Tsakalakos, L; Smentkowski, V S

    2010-08-01

    Three-dimensional quantitative compositional analysis of nanowires is a challenge for standard techniques such as secondary ion mass spectrometry because of specimen size and geometry considerations; however, it is precisely the size and geometry of nanowires that makes them attractive candidates for analysis via atom probe tomography. The resulting boron composition of various trimethylboron vapour-liquid-solid grown silicon nanowires were measured both with time-of-flight secondary ion mass spectrometry and pulsed-laser atom probe tomography. Both characterization techniques yielded similar results for relative composition. Specialized specimen preparation for pulsed-laser atom probe tomography was utilized and is described in detail whereby individual silicon nanowires are first protected, then lifted out, trimmed, and finally wet etched to remove the protective layer for subsequent three-dimensional analysis.

  4. Same-Day Imaging Using Small Proteins: Clinical Experience and Translational Prospects in Oncology.

    PubMed

    Krasniqi, Ahmet; D'Huyvetter, Matthias; Devoogdt, Nick; Frejd, Fredrik Y; Sörensen, Jens; Orlova, Anna; Keyaerts, Marleen; Tolmachev, Vladimir

    2018-06-01

    Imaging of expression of therapeutic targets may enable stratification of patients for targeted treatments. The use of small radiolabeled probes based on the heavy-chain variable region of heavy-chain-only immunoglobulins or nonimmunoglobulin scaffolds permits rapid localization of radiotracers in tumors and rapid clearance from normal tissues. This makes high-contrast imaging possible on the day of injection. This mini review focuses on small proteins for radionuclide-based imaging that would allow same-day imaging, with the emphasis on clinical applications and promising preclinical developments within the field of oncology. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  5. Proactive interference and item similarity in working memory.

    PubMed

    Bunting, Michael

    2006-03-01

    Proactive interference (PI) may influence the predictive utility of working memory span tasks. Participants in one experiment (N=70) completed Ravens Advanced Progressive Matrices (RAPM) and multiple versions of operation span and probed recall, modified for the type of memoranda (digits or words). Changing memoranda within- or across-trials released PI, but not doing so permitted PI buildup. Scores from PI-build trials, but not PI-release trials, correlated with RAPM and accounted for as much variance in RAPM as unmodified tasks. These results are consistent with controlled attention and inhibition accounts of working memory, and they elucidate a fundamental component of working memory span tasks.

  6. Detection of surface impurity phases in high T.sub.C superconductors using thermally stimulated luminescence

    DOEpatents

    Cooke, D. Wayne; Jahan, Muhammad S.

    1989-01-01

    Detection of surface impurity phases in high-temperature superconducting materials. Thermally stimulated luminescence has been found to occur in insulating impurity phases which commonly exist in high-temperature superconducting materials. The present invention is sensitive to impurity phases occurring at a level of less than 1% with a probe depth of about 1 .mu.m which is the region of interest for many superconductivity applications. Spectroscopic and spatial resolution of the emitted light from a sample permits identification and location of the impurity species. Absence of luminescence, and thus of insulating phases, can be correlated with low values of rf surface resistance.

  7. A thermosphere composition measurement using a quadrupole mass spectrometer with a side energy focussing quasi-open ion source

    NASA Technical Reports Server (NTRS)

    Niemann, H. B.; Spencer, N. W.; Schmitt, G. A.

    1971-01-01

    The atomic oxygen concentration in the altitude range 130 to 240 km was determined through the use of a quadrupole spectrometer with a strongly focussing ion source. The instrument is used in the Thermosphere Probe in a manner that greatly increases the proportion of measured oxygen ions that have not experienced a surface collision and permits quantitative evaluation of surface recombination and thermalization effects which inevitably enter all spectrometer determinations. The data obtained strengthen the concept that consideration of surface effects is significant in quantifying spectrometer measurements of reactive gases, and tend to be in agreement with von Zahn's recent results.

  8. The effect orientation of features in reconstructed atom probe data on the resolution and measured composition of T1 plates in an A2198 aluminium alloy.

    PubMed

    Mullin, Maria A; Araullo-Peters, Vicente J; Gault, Baptiste; Cairney, Julie M

    2015-12-01

    Artefacts in atom probe tomography can impact the compositional analysis of microstructure in atom probe studies. To determine the integrity of information obtained, it is essential to understand how the positioning of features influences compositional analysis. By investigating the influence of feature orientation within atom probe data on measured composition in microstructural features within an AA2198 Al alloy, this study shows differences in the composition of T1 (Al2CuLi) plates that indicates imperfections in atom probe reconstructions. The data fits a model of an exponentially-modified Gaussian that scales with the difference in evaporation field between solutes and matrix. This information provides a guide for obtaining the most accurate information possible. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits

    DTIC Science & Technology

    2017-03-01

    real-time an IC device. This non-invasive solution is cost effective, with a small form factor. Keywords: Electromagnetic radiation; Near-Field...solicitation was to design, develop and fabricate a low cost electromagnetic probe array for ICs counterfeit. The probe array should operate in the near...Our overall effort was focus on modeling, designing, fabricating, and utilizing novel electromagnetic probes for the analysis, characterization

  10. Plasma density perturbation caused by probes at low gas pressure

    NASA Astrophysics Data System (ADS)

    Sternberg, Natalia; Godyak, Valery

    2017-09-01

    An analysis of plasma parameter perturbations caused by a spherical probe immersed into a spherical plasma is presented for arbitrary collisionality and arbitrary ratios of probe to plasma dimensions. The plasma was modeled by the fluid plasma equations with ion inertia and nonlinear ion friction force that dominate plasma transport at low gas pressures. Significant depletion of the plasma density around the probe surface has been found. The area of plasma depletion coincides with the sensing area of different kinds of magnetic and microwave probes and will therefore lead to errors in data inferred from measurements with such probes.

  11. Investigation of eddy current examination on OD fatigue crack for steam generator tubes

    NASA Astrophysics Data System (ADS)

    Kong, Yuying; Ding, Boyuan; Li, Ming; Liu, Jinhong; Chen, Huaidong; Meyendorf, Norbert G.

    2015-03-01

    The opening width of fatigue crack was very small, and conventional Bobbin probe was very difficult to detect it in steam generator tubes. Different sizes of 8 fatigue cracks were inspected using bobbin probe rotating probe. The analysis results showed that, bobbin probe was not sensitive for fatigue crack even for small through wall crack mixed with denting signal. On the other hand, the rotating probe was easily to detect all cracks. Finally, the OD phase to depth curve for fatigue crack using rotating probe was established and the results agreed very well with the true crack size.

  12. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.

    PubMed

    Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan

    2012-07-01

    In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30  s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.

  13. Three-dimensional Analysis of Nanomaterials by Scanning Probe Nanotomography

    NASA Astrophysics Data System (ADS)

    Efimov, Anton E.; Agapova, Olga I.; Mochalov, Konstantin E.; Agapov, Igor I.

    Micro and nanostructure of scaffolds made from fibroin of Bombyx mori silkworm by salt leaching technique was studied by scanning probe nanotomography. Nanopores with dimensions in range from 30 to 180 nm are observed in the scaffold volume. Three - dimensional analysis of obtained data shows that degree of scaffold nanoporosity is 0.5% and nanopores are not interconnected with each other. Usage of scanning probe nanotomography technique enables to obtain unique nanoscale information of 3D structure of biopolymer nanomaterials.

  14. WIPP Hazardous Waste Facility Permit Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehrman, B.; Most, W.

    2006-07-01

    The Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) was issued on October 27, 1999 [1]. Since that time, the WIPP has sought modifications to clarify the permit language, provide alternative methods for meeting permit requirements and to update permit conditions. Significant advancements have been made in transuranic (TRU) waste management as the result of modifications to the HWFP. Among these advancements is a modification to obtain a drum age criteria (DAC) value to perform headspace gas sampling on drums to be super-compacted and placed in a 100-gallon overpack drum. In addition, the Section 311 permit modification requestmore » that would allow for more efficient waste characterization, and the modification to authorize the shipment and disposal of Remote-Handled (RH) TRU waste were merged together and submitted to the regulator as the Consolidated Permit Modification Request (PMR). The submittal of the Consolidated PMR came at the request of the regulator as part of responses to Notices of Deficiency (NODs) for the separate PMRs which had been submitted in previous years. Section 311 of the fiscal year 2004 Energy and Water Developments Appropriations Act (Public Law 108-137) [2] directs the Department of Energy to submit a permit modification that limits waste confirmation to radiography or visual examination of a statistical subpopulation of containers. Section 311 also specifically directs that disposal room performance standards be to be met by monitoring for volatile organic compounds in the underground disposal rooms. This statute translates into the elimination of other waste confirmation methods such as headspace gas sampling and analysis and solids sampling and analysis. These methods, as appropriate, will continue to be used by the generator sites during hazardous waste determinations or characterization activities. This modification is expected to reduce the overall cost of waste analysis by hundreds of millions of dollars [3]. Combining both the chap. 311 and RH TRU waste permit modification requests allows for both the regulator and DOE to expedite action on the modification requests. The Combined PMR reduces costs by having only one administrative process for both modification requests. (authors)« less

  15. Evaluation of a CdTe semiconductor based compact γ camera for sentinel lymph node imaging.

    PubMed

    Russo, Paolo; Curion, Assunta S; Mettivier, Giovanni; Esposito, Michela; Aurilio, Michela; Caracò, Corradina; Aloj, Luigi; Lastoria, Secondo

    2011-03-01

    The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. The room-temperature CdTe pixel detector (1 mm thick) has 256 x 256 square pixels arranged with a 55 microm pitch (sensitive area 14.08 x 14.08 mm2), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diameter at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. For 99 mTc, at 50 mm distance, a background-subtracted sensitivity of 6.5 x 10(-3) cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3 x 10(-2) cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq 99 mTc and prior localization with standard gamma camera lymphoscintigraphy. The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at shorter distances from the patient skin.

  16. Using Computation Curriculum-Based Measurement Probes for Error Pattern Analysis

    ERIC Educational Resources Information Center

    Dennis, Minyi Shih; Calhoon, Mary Beth; Olson, Christopher L.; Williams, Cara

    2014-01-01

    This article describes how "curriculum-based measurement--computation" (CBM-C) mathematics probes can be used in combination with "error pattern analysis" (EPA) to pinpoint difficulties in basic computation skills for students who struggle with learning mathematics. Both assessment procedures provide ongoing assessment data…

  17. Detailed Uncertainty Analysis of the ZEM-3 Measurement System

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    The measurement of Seebeck coefficient and electrical resistivity are critical to the investigation of all thermoelectric systems. Therefore, it stands that the measurement uncertainty must be well understood to report ZT values which are accurate and trustworthy. A detailed uncertainty analysis of the ZEM-3 measurement system has been performed. The uncertainty analysis calculates error in the electrical resistivity measurement as a result of sample geometry tolerance, probe geometry tolerance, statistical error, and multi-meter uncertainty. The uncertainty on Seebeck coefficient includes probe wire correction factors, statistical error, multi-meter uncertainty, and most importantly the cold-finger effect. The cold-finger effect plagues all potentiometric (four-probe) Seebeck measurement systems, as heat parasitically transfers through thermocouple probes. The effect leads to an asymmetric over-estimation of the Seebeck coefficient. A thermal finite element analysis allows for quantification of the phenomenon, and provides an estimate on the uncertainty of the Seebeck coefficient. The thermoelectric power factor has been found to have an uncertainty of +9-14 at high temperature and 9 near room temperature.

  18. Use of a fiber optic probe for organic species determination

    DOEpatents

    Ekechukwu, A.A.

    1996-12-10

    A fiber optic probe is described for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe`s distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device. 5 figs.

  19. Eddy current probe response to open and closed surface flaws

    NASA Technical Reports Server (NTRS)

    Auld, B. A.; Muennemann, F.; Winslow, D. K.

    1981-01-01

    A general analysis of eddy current response to certain types of open and closed surface flaws is presented for both standard low-frequency and ferromagnetic-resonance (FMR) probes. It is shown analytically that for two-dimensional and three-dimensional surface flaws interrogated by a uniform probe field, the crack opening sensitivity increases with the operating frequency of the probe, this behavior being due to the Faraday induction effect. Experiments with low-frequency probes operating at or below 1 MHz and with the FMR probe operating at approximately 1000 MHz confirm this increase of the crack mouth opening displacement for practical situations where the probe field is not uniform in the vicinity of the flaw.

  20. Fundamental Physics with Electroweak Probes of Nuclei

    NASA Astrophysics Data System (ADS)

    Pastore, Saori

    2018-02-01

    The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between lowlying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for A > 12 nuclei.

  1. Advances in transient (pulsed) eddy current for inspection of multi-layer aluminum structures in the presence of ferrous fasteners

    NASA Astrophysics Data System (ADS)

    Desjardins, D. R.; Vallières, G.; Whalen, P. P.; Krause, T. W.

    2012-05-01

    An experimental investigation of the electromagnetic processes underlying transient (pulsed) eddy current inspection of aircraft wing structures in the vicinity of ferrous fasteners is performed. The separate effects of transient excitation of ferrous fastener and eddy currents induced in the surrounding aluminum structure are explored using a transmit-receive configuration with transient excitation of a steel rod, an aluminum plate with a bore hole and a steel rod through the bore hole. Observations are used to interpret results from a coupled driving and differential coil sensing unit applied to detect fatigue cracks emanating from bolt holes in aluminum structures with ferrous fasteners present. In particular, it is noted that abrupt magnetization of the fastener, by the probe's central driving unit, can transfer flux and consequently, induce strong eddy current responses deep within the aluminum structure in the vicinity of the bore hole. Rotation of the probe, centered over the fastener, permits detection of subsurface discontinuities, such as cracks, by the pair of differentially connected pickup coils.

  2. The Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal plasma (ECT) Suite: Upcoming Opportunties for Testing Radiation Belt Acceleration Mechanisms

    NASA Astrophysics Data System (ADS)

    Spence, Harlan; Reeves, Geoffrey

    2012-07-01

    The Radiation Belt Storm Probes (RBSP) mission will launch in late summer 2012 and begin its exploration of acceleration and dynamics of energetic particles in the inner magnetosphere. In this presentation, we discuss opportunities afforded by the RBSP Energetic Particle, Composition, and Thermal plasma (ECT) instrument suite to advance our understanding of acceleration processes in the radiation belts. The RBSP-ECT instrument suite comprehensively measures the electron and major ion populations of the inner magnetosphere, from the lowest thermal plasmas of the plasmasphere, to the hot plasma of the ring current, to the relativistic populations of the radiation belts. Collectively, the ECT measurements will reveal the complex cross-energy coupling of these colocated particle populations, which along with concurrent RBSP wave measurements, will permit various wave-particle acceleration mechanisms to be tested. We review the measurement capabilities of the RBSP-ECT instrument suite, and demonstrate several examples of how these measurements will be used to explore candidate acceleration mechanisms and dynamics of radiation belt particles.

  3. Sideband pump-probe technique resolves nonlinear modulation response of PbS/CdS quantum dots on a silicon nitride waveguide

    NASA Astrophysics Data System (ADS)

    Kolarczik, Mirco; Ulbrich, Christian; Geiregat, Pieter; Zhu, Yunpeng; Sagar, Laxmi Kishore; Singh, Akshay; Herzog, Bastian; Achtstein, Alexander W.; Li, Xiaoqin; van Thourhout, Dries; Hens, Zeger; Owschimikow, Nina; Woggon, Ulrike

    2018-01-01

    For possible applications of colloidal nanocrystals in optoelectronics and nanophotonics, it is of high interest to study their response at low excitation intensity with high repetition rates, as switching energies in the pJ/bit to sub-pJ/bit range are targeted. We develop a sensitive pump-probe method to study the carrier dynamics in colloidal PbS/CdS quantum dots deposited on a silicon nitride waveguide after excitation by laser pulses with an average energy of few pJ/pulse. We combine an amplitude modulation of the pump pulse with phase-sensitive heterodyne detection. This approach permits to use co-linearly propagating co-polarized pulses. The method allows resolving transmission changes of the order of 10-5 and phase changes of arcseconds. We find a modulation on a sub-nanosecond time scale caused by Auger processes and biexciton decay in the quantum dots. With ground state lifetimes exceeding 1 μs, these processes become important for possible realizations of opto-electronic switching and modulation based on colloidal quantum dots emitting in the telecommunication wavelength regime.

  4. Disruption of gel phase lipid packing efficiency by sucralose studied with merocyanine 540.

    PubMed

    Barker, Morgan; Kennedy, Anthony

    2017-04-01

    Sucralose, an artificial sweetener, displays very different behavior towards membranes than its synthetic precursor sucrose. The impact of both sugars on model dipalmitoylphosphatidylcholine model membranes was investigated using absorbance and flourescence spectroscopy and the membrane probe merocyanine 540. This probe molecule is highly sensitive to changes in membrane packing, microviscosity and polarity. This work focuses on the impact of sugars on the outer leaflet of unilamellar dipalmitoyl phosphatidylcholine model membranes. The choice of lipid permits access to the gel phase at room temperature and incorporation of the dye after liposome formation allows us to examine the direct impact of the sugar on the outer leaflet while maximizing the response of the dye to changes in the bilayer. The results demonstrate that sucrose has no impact on the packing efficiency of lipids in unilamellar DPPC vesicles in the gel phase. Conversely sucralose decreases the packing efficiency of lipids in the gel phase and results in decreased microviscosity and increased membrane fluidity, which may be as a result of water disruption at the membrane water interface. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Specific and straightforward molecular investigation of β-thalassemia mutations in the Malaysian Malays and Chinese using direct TaqMan genotyping assays.

    PubMed

    Kho, S L; Chua, K H; George, E; Tan, J A M A

    2013-07-15

    Beta-thalassemia is a life-threatening inherited blood disorder. Rapid characterization of β-globin gene mutations is necessary because of the high frequency of Malaysian β-thalassemia carriers. A combination real-time polymerase chain reaction genotyping assay using TaqMan probes was developed to confirm β-globin gene mutations. In this study, primers and probes were designed to specifically identify 8 common β-thalassemia mutations in the Malaysian Malay and Chinese ethnic groups using the Primer Express software. "Blind tests" using DNA samples from healthy individuals and β-thalassemia patients with different genotypes were performed to determine the specificity and sensitivity of this newly designed assay. Our results showed 100% sensitivity and specificity for this novel assay. In conclusion, the TaqMan genotyping assay is a straightforward assay that allows detection of β-globin gene mutations in less than 40 min. The simplicity and reproducibility of the TaqMan genotyping assay permit its use in laboratories as a rapid and cost-effective diagnostic tool for confirmation of common β-thalassemia mutations in Malaysia.

  6. A microwave-assisted solution combustion synthesis to produce europium-doped calcium phosphate nanowhiskers for bioimaging applications.

    PubMed

    Wagner, Darcy E; Eisenmann, Kathryn M; Nestor-Kalinoski, Andrea L; Bhaduri, Sarit B

    2013-09-01

    Biocompatible nanoparticles possessing fluorescent properties offer attractive possibilities for multifunctional bioimaging and/or drug and gene delivery applications. Many of the limitations with current imaging systems center on the properties of the optical probes in relation to equipment technical capabilities. Here we introduce a novel high aspect ratio and highly crystalline europium-doped calcium phosphate nanowhisker produced using a simple microwave-assisted solution combustion synthesis method for use as a multifunctional bioimaging probe. X-ray diffraction confirmed the material phase as europium-doped hydroxyapatite. Fluorescence emission and excitation spectra and their corresponding peaks were identified using spectrofluorimetry and validated with fluorescence, confocal and multiphoton microscopy. The nanowhiskers were found to exhibit red and far red wavelength fluorescence under ultraviolet excitation with an optimal peak emission of 696 nm achieved with a 350 nm excitation. Relatively narrow emission bands were observed, which may permit their use in multicolor imaging applications. Confocal and multiphoton microscopy confirmed that the nanoparticles provide sufficient intensity to be utilized in imaging applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis

    DOEpatents

    Noble, Donald T.; Braymen, Steven D.; Anderson, Marvin S.

    1996-10-01

    A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point mad a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained.

  8. Discrepancy between culture and DNA probe analysis for the detection of periodontal bacteria.

    PubMed

    van Steenbergen, T J; Timmerman, M F; Mikx, F H; de Quincey, G; van der Weijden, G A; van der Velden, U; de Graaff, J

    1996-10-01

    The purpose of this study was to compare a commercially available DNA probe technique with conventional cultural techniques for the detection of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia in subgingival plaque samples. Samples from 20 patients with moderate to severe periodontitis were evaluated at baseline and during a 15 months period of periodontal treatment. Paperpoints from 4 periodontal pockets per patient were forwarded to Omnigene for DNA probe analysis, and simultaneously inserted paperpoints from the same pockets were analyzed by standard culture techniques. In addition, mixed bacterial samples were constructed harbouring known proportions of 25 strains of A. actinomycetemcomitans, P. gingivalis and P. intermedia each. A relatively low concordance was found between both methods. At baseline a higher detection frequency was found for A. actinomycetemcomitans and P. gingivalis for the DNA probe technique; for P. intermedia the detection frequency by culture was higher. For A. actinomycetemcomitans, 21% of the culture positive samples was positive with the DNA probe. Testing the constructed bacterial samples with the DNA probe method resulted in about 16% false positive results for the 3 species tested. Furthermore, 40% of P. gingivalis strains were not detected by the DNA probe. The present data suggest that at least part of the discrepancies found between the DNA probe technique used and cultural methods are caused by false positive and false negative DNA probe results. Therefore, the value of this DNA probe method for the detection of periodontal pathogens is questionable.

  9. Uprobe: a genome-wide universal probe resource for comparative physical mapping in vertebrates.

    PubMed

    Kellner, Wendy A; Sullivan, Robert T; Carlson, Brian H; Thomas, James W

    2005-01-01

    Interspecies comparisons are important for deciphering the functional content and evolution of genomes. The expansive array of >70 public vertebrate genomic bacterial artificial chromosome (BAC) libraries can provide a means of comparative mapping, sequencing, and functional analysis of targeted chromosomal segments that is independent and complementary to whole-genome sequencing. However, at the present time, no complementary resource exists for the efficient targeted physical mapping of the majority of these BAC libraries. Universal overgo-hybridization probes, designed from regions of sequenced genomes that are highly conserved between species, have been demonstrated to be an effective resource for the isolation of orthologous regions from multiple BAC libraries in parallel. Here we report the application of the universal probe design principal across entire genomes, and the subsequent creation of a complementary probe resource, Uprobe, for screening vertebrate BAC libraries. Uprobe currently consists of whole-genome sets of universal overgo-hybridization probes designed for screening mammalian or avian/reptilian libraries. Retrospective analysis, experimental validation of the probe design process on a panel of representative BAC libraries, and estimates of probe coverage across the genome indicate that the majority of all eutherian and avian/reptilian genes or regions of interest can be isolated using Uprobe. Future implementation of the universal probe design strategy will be used to create an expanded number of whole-genome probe sets that will encompass all vertebrate genomes.

  10. A Thiazole Coumarin (TC) Turn-On Fluorescence Probe for AT-Base Pair Detection and Multipurpose Applications in Different Biological Systems

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.

    2014-09-01

    Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology.

  11. A Thiazole Coumarin (TC) Turn-On Fluorescence Probe for AT-Base Pair Detection and Multipurpose Applications in Different Biological Systems

    PubMed Central

    Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.

    2014-01-01

    Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology. PMID:25252596

  12. A study of data analysis techniques for the multi-needle Langmuir probe

    NASA Astrophysics Data System (ADS)

    Hoang, H.; Røed, K.; Bekkeng, T. A.; Moen, J. I.; Spicher, A.; Clausen, L. B. N.; Miloch, W. J.; Trondsen, E.; Pedersen, A.

    2018-06-01

    In this paper we evaluate two data analysis techniques for the multi-needle Langmuir probe (m-NLP). The instrument uses several cylindrical Langmuir probes, which are positively biased with respect to the plasma potential in order to operate in the electron saturation region. Since the currents collected by these probes can be sampled at kilohertz rates, the instrument is capable of resolving the ionospheric plasma structure down to the meter scale. The two data analysis techniques, a linear fit and a non-linear least squares fit, are discussed in detail using data from the Investigation of Cusp Irregularities 2 sounding rocket. It is shown that each technique has pros and cons with respect to the m-NLP implementation. Even though the linear fitting technique seems to be better than measurements from incoherent scatter radar and in situ instruments, m-NLPs can be longer and can be cleaned during operation to improve instrument performance. The non-linear least squares fitting technique would be more reliable provided that a higher number of probes are deployed.

  13. Prospective evaluation of a high multiplexing real-time polymerase chain reaction array for the rapid identification and characterization of bacteria causative of nosocomial pneumonia from clinical specimens: a proof-of-concept study.

    PubMed

    Roisin, S; Huang, T-D; de Mendonça, R; Nonhoff, C; Bogaerts, P; Hites, M; Delaere, B; Hamels, S; de Longueville, F; Glupczynski, Y; Denis, O

    2018-01-01

    The purpose of this study was evaluation of the VAPChip assay based on the "Rapid-Array-PCR-technology" which targets 13 respiratory pathogens and 24 β-lactam resistance genes directly on respiratory clinical specimens. The first step included analysis of 45 respiratory specimens in order to calibrate and determine the threshold for target genes. The second prospective step involved 85 respiratory samples from patients suspected of nosocomial pneumonia collected in two academic hospitals over an 8-month period. Results of the VAPChip assay were compared to routine methods. The first step showed a large proportion of positive signals for H. influenzae and/or S. pneumoniae. For identification, discrepancies were observed in seven samples. Thresholds were adapted and two probes were re-designed to create a new version of the cartridge. In the second phase, sensitivity and specificity of the VAPchip for bacterial identification were 72.9% and 99.1%, respectively. Seventy (82%) pathogens were correctly identified by both methods. Nine pathogens detected by the VAPChip were culture negative and 26 pathogens identified by culture were VAPChip negative. For resistance mechanisms, 11 probes were positive without identification of pathogens with an antimicrobial-susceptibility testing compatible by culture. However, the patient's recent microbiological history was able to explain most of these positive signals. The VAPChip assay simultaneously detects different pathogens and resistance mechanisms directly from clinical samples. This system seems very promising but the extraction process needs to be automated for routine implementation. This kind of rapid point-of-care automated platform permitting a syndromic approach will be the future challenge in the management of infectious diseases.

  14. Density Waves in Saturn's Rings from Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    French, R. G.; Rappaport, N. J.; Marouf, E. A.; McGhee, C. A.

    2005-12-01

    The Cassini Radio Science Team conducted a set of optimized diametric occultations by Saturn and its rings from May to September 2005, providing 11 separate probes of Saturn's ionosphere and atmosphere, and 12 optical depth profiles of the complete ring system. Each event was observed by the stations of the Deep Space Net (DSN) at three radio frequencies (S, X, Ka bands, with corresponding wavelengths of ? = 13, 3.6, and 0.9 cm). Very accurate pointing by the spacecraft and ground antennas resulted in stable baseline signal levels, and the relatively large ring opening angle (B=19-25°) permitted us to probe even quite dense ring regions with excellent SNR. The RSS occultation technique enables us to recover very fine detailed radial structure by correcting for diffraction effects. Multiple occultation chords, covering a variety of ring longitudes and ring opening angles, reveal the structure of the rings in remarkable detail, including density and bending waves, satellite wakes, and subtle variations at the 100-m radius scale. Janus and Epimetheus are responsible for a particularly rich set of density waves, and their coorbital interactions result in a complex interplay of time-variable ring structure over the 8-year libration period of the two satellites. We compare the first-order 2:1, 4:3, 5:4, and 6:5 coorbital density waves from multiple occultation chords to linear density wave models based on a dynamical model of the orbital exchange between the moons. From the observed dispersion relation of the wave crests, we infer the surface mass density and eccentricity gradient of particle streamlines, and match the detailed shapes of the wave crests using a non-linear analysis. Second-order coorbital features are also evident, and there are even hints of third-order density waves in the high SNR radio occultation data.

  15. Temperature and abundances in the Jovian auroral stratosphere. 1: Ethane as a probe of the millibar region

    NASA Technical Reports Server (NTRS)

    Livengood, Timothy A.; Kostiuk, Theodor; Espenak, Fred

    1993-01-01

    We report infrared heterodyne spectroscopy (lambda/delta lambda is approximately 10(exp 6)) of C2H6 emission at 11.9 microns from the northern Jovian auroral region, in observations conducted over December 2-7, 1989. Accurately measured line shapes provide information on C2H6 abundance as well as temperature and permit retrieval of the source pressure region. Enhanced emission was observed in the longitude range approximately 150-180 deg at approximately 60 deg north latitude, approximately corresponding to the CH4 7.8 micron hot spot and the region of brightest UV aurora. Significant brightness variations were observed in the hot spot emissions on a time scale of approximately 20 hours. Analysis of the brightest hot spot spectra indicates C2H6 mole fractions of approximately (6.3-6.8) x 10(exp -6) at temperatures of approximately 182-184 K at 1 mbar, compared to mole fractions of (3.8 +/- 1.4) x 10(exp -6) averaged over spectra outside the hot spot at a temperature of approximately 172 K at the same pressure. Fixing the mole fraction to the lower limit retrieved in the quiescent (non-hot spot) region allows the temperature at 1 mbar to be as high as approximately 200 K within the hot spot. These results provide upper limits to the temperature increase near the source of the C2H6 thermal infrared emission. Combined with results from similar measurements of ethylene emission probing the approximately 10-microbar region (Kostiuk et al., this issue), altitude information on the thermal structure of the Jovian auroral stratosphere can be obtained for the first time.

  16. High Quality Genomic Copy Number Data from Archival Formalin-Fixed Paraffin-Embedded Leiomyosarcoma: Optimisation of Universal Linkage System Labelling

    PubMed Central

    Salawu, Abdulazeez; Ul-Hassan, Aliya; Hammond, David; Fernando, Malee; Reed, Malcolm; Sisley, Karen

    2012-01-01

    Most soft tissue sarcomas are characterized by genetic instability and frequent genomic copy number aberrations that are not subtype-specific. Oligonucleotide microarray-based Comparative Genomic Hybridisation (array CGH) is an important technique used to map genome-wide copy number aberrations, but the traditional requirement for high-quality DNA typically obtained from fresh tissue has limited its use in sarcomas. Although large archives of Formalin-fixed Paraffin-embedded (FFPE) tumour samples are available for research, the degradative effects of formalin on DNA from these tissues has made labelling and analysis by array CGH technically challenging. The Universal Linkage System (ULS) may be used for a one-step chemical labelling of such degraded DNA. We have optimised the ULS labelling protocol to perform aCGH on archived FFPE leiomyosarcoma tissues using the 180k Agilent platform. Preservation age of samples ranged from a few months to seventeen years and the DNA showed a wide range of degradation (when visualised on agarose gels). Consistently high DNA labelling efficiency and low microarray probe-to-probe variation (as measured by the derivative log ratio spread) was seen. Comparison of paired fresh and FFPE samples from identical tumours showed good correlation of CNAs detected. Furthermore, the ability to macro-dissect FFPE samples permitted the detection of CNAs that were masked in fresh tissue. Aberrations were visually confirmed using Fluorescence in situ Hybridisation. These results suggest that archival FFPE tissue, with its relative abundance and attendant clinical data may be used for effective mapping for genomic copy number aberrations in such rare tumours as leiomyosarcoma and potentially unravel clues to tumour origins, progression and ultimately, targeted treatment. PMID:23209738

  17. Quantitative interpretation of molecular dynamics simulations for X-ray photoelectron spectroscopy of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Olivieri, Giorgia; Parry, Krista M.; Powell, Cedric J.; Tobias, Douglas J.; Brown, Matthew A.

    2016-04-01

    Over the past decade, energy-dependent ambient pressure X-ray photoelectron spectroscopy (XPS) has emerged as a powerful analytical probe of the ion spatial distributions at the vapor (vacuum)-aqueous electrolyte interface. These experiments are often paired with complementary molecular dynamics (MD) simulations in an attempt to provide a complete description of the liquid interface. There is, however, no systematic protocol that permits a straightforward comparison of the two sets of results. XPS is an integrated technique that averages signals from multiple layers in a solution even at the lowest photoelectron kinetic energies routinely employed, whereas MD simulations provide a microscopic layer-by-layer description of the solution composition near the interface. Here, we use the National Institute of Standards and Technology database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to quantitatively interpret atom-density profiles from MD simulations for XPS signal intensities using sodium and potassium iodide solutions as examples. We show that electron inelastic mean free paths calculated from a semi-empirical formula depend strongly on solution composition, varying by up to 30% between pure water and concentrated NaI. The XPS signal thus arises from different information depths in different solutions for a fixed photoelectron kinetic energy. XPS signal intensities are calculated using SESSA as a function of photoelectron kinetic energy (probe depth) and compared with a widely employed ad hoc method. SESSA simulations illustrate the importance of accounting for elastic-scattering events at low photoelectron kinetic energies (<300 eV) where the ad hoc method systematically underestimates the preferential enhancement of anions over cations. Finally, some technical aspects of applying SESSA to liquid interfaces are discussed.

  18. Thermal Design, Analysis, and Testing of the Quench Module Insert Bread Board

    NASA Technical Reports Server (NTRS)

    Breeding, Shawn; Khodabandeh, Julia

    2002-01-01

    Contents include the following: Quench Module Insert (QMI) science requirements. QMI interfaces. QMI design layout. QMI thermal analysis and design methodology. QMI bread board testing and instrumentation approach. QMI thermal probe design parameters. Design features for gradient measurement. Design features for heated zone measurements. Thermal gradient analysis results. Heated zone analysis results. Bread board thermal probe layout. QMI bread board correlation and performance. Summary and conclusions.

  19. Periodontal Probe Improves Exams, Alleviates Pain

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Dentists, comedian Bill Cosby memorably mused, tell you not to pick your teeth with any sharp metal object. Then you sit in their chair, and the first thing they grab is an iron hook!" Conventional periodontal probing is indeed invasive, uncomfortable for the patient, and the results can vary greatly between dentists and even for repeated measurements by the same dentist. It is a necessary procedure, though, as periodontal disease is the most common dental disease, involving the loss of teeth by the gradual destruction of ligaments that hold teeth in their sockets in the jawbone. The disease usually results from an increased concentration of bacteria in the pocket, or sulcus, between the gums and teeth. These bacteria produce acids and other byproducts, which enlarge the sulcus by eroding the gums and the periodontal ligaments. The sulcus normally has a depth of 1 to 2 millimeters, but in patients with early stages of periodontal disease, it has a depth of 3 to 5 millimeters. By measuring the depth of the sulcus, periodontists can have a good assessment of the disease s progress. Presently, there are no reliable clinical indicators of periodontal disease activity, and the best available diagnostic aid, periodontal probing, can only measure what has already been lost. A method for detecting small increments of periodontal ligament breakdown would permit earlier diagnosis and intervention with less costly and time-consuming therapy, while overcoming the problems associated with conventional probing. The painful, conventional method for probing may be destined for the archives of dental history, thanks to the development of ultrasound probing technologies. The roots of ultrasound probes are in an ultrasound-based time-of-flight technique routinely used to measure material thickness and length in the Nondestructive Evaluation Sciences Laboratory at Langley Research Center. The primary applications of that technology have been for corrosion detection and bolt tension measurements (Spinoff 2005). This ultrasound measurement system was adapted to the Periodontal Structures Mapping System, invented at Langley by John A. Companion, under the supervision of Dr. Joseph S. Heyman. Support of the research and development that led to this invention was provided by NASA s Technology Applications Engineering Program and by the Naval Institute for Dental and Biomedical Research, in Great Lakes, Illinois.

  20. Carbon-11 and fluorine-18 chemistry devoted to molecular probes for imaging the brain with positron emission tomography.

    PubMed

    Dollé, Frédéric

    2013-01-01

    Exploration of the living human brain in real-time and in a noninvasive way was for centuries only a dream, made, however, possible today with the remarkable development during the four last decades of powerful molecular imaging techniques, and especially positron emission tomography (PET). Molecular PET imaging relies, from a chemical point of view, on the use and preparation of a positron-emitting radiolabelled probe or radiotracer, notably compounds incorporating one of two short-lived radionuclides fluorine-18 (T1/2 : 109.8 min) and carbon-11 (T1/2 : 20.38 min). The growing availability and interest for the radiohalogen fluorine-18 in radiopharmaceutical chemistry undoubtedly results from its convenient half-life and the successful use in clinical oncology of 2-[(18) F]fluoro-2-deoxy-d-glucose ([(18) F]FDG). The special interest of carbon-11 is not only that carbon is present in virtually all biomolecules and drugs allowing therefore for isotopic labelling of their chemical structures but also that a given molecule could be radiolabelled at different functions or sites, permitting to explore (or to take advantage of) in vivo metabolic pathways. PET chemistry includes production of these short-lived radioactive isotopes via nuclear transmutation reactions using a cyclotron, and is directed towards the development of rapid synthetic methods, at the trace level, for the introduction of these nuclides into a molecule, as well as the use of fast purification, analysis and formulation techniques. PET chemistry is the driving force in molecular PET imaging, and this special issue of the Journal of Labelled Compounds and Radiopharmaceuticals, which is strongly chemistry and radiochemistry-oriented, aims at illustrating, be it in part only, the state-of-the-art arsenal of reactions currently available and its potential for the research and development of specific molecular probes labelled with the positron emitters carbon-11 and fluorine-18, with optimal imaging properties for PET exploration of the brain. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Phthalic acid chemical probes synthesized for protein-protein interaction analysis.

    PubMed

    Liang, Shih-Shin; Liao, Wei-Ting; Kuo, Chao-Jen; Chou, Chi-Hsien; Wu, Chin-Jen; Wang, Hui-Min

    2013-06-24

    Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid) is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP). According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES) was deposited on silicon dioxides (SiO2) particles and phthalate chemical probes were manufactured from phthalic acid and APTES-SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells) to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA) software showed that these chemical probes were a practical technique for protein-protein interaction analysis.

  2. A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.

  3. A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes, the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.

  4. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.

    PubMed

    Ache, Peter; Bauer, Hubert; Kollist, Hannes; Al-Rasheid, Khaled A S; Lautner, Silke; Hartung, Wolfram; Hedrich, Rainer

    2010-06-01

    Uptake of CO(2) by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard-cell anion release channel SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard-cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non-invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long-term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild-type plants responded to CO(2), light, humidity, ozone and abscisic acid (ABA) in a guard cell-specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild-type plants, leaves from well-watered ost1 plants exposed to a dry atmosphere wilted after light-induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root-shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.

  5. A universal fluorogenic switch for Fe(ii) ion based on N-oxide chemistry permits the visualization of intracellular redox equilibrium shift towards labile iron in hypoxic tumor cells.

    PubMed

    Hirayama, Tasuku; Tsuboi, Hitomi; Niwa, Masato; Miki, Ayaji; Kadota, Satoki; Ikeshita, Yukie; Okuda, Kensuke; Nagasawa, Hideko

    2017-07-01

    Iron (Fe) species play a number of biologically and pathologically important roles. In particular, iron is a key element in oxygen sensing in living tissue where its metabolism is intimately linked with oxygen metabolism. Regulation of redox balance of labile iron species to prevent the generation of iron-catalyzed reactive oxygen species (ROS) is critical to survival. However, studies on the redox homeostasis of iron species are challenging because of a lack of a redox-state-specific detection method for iron, in particular, labile Fe 2+ . In this study, a universal fluorogenic switching system is established, which is responsive to Fe 2+ ion based on a unique N-oxide chemistry in which dialkylarylamine N-oxide is selectively deoxygenized by Fe 2+ to generate various fluorescent probes of Fe 2+ -CoNox-1 (blue), FluNox-1 (green), and SiRhoNox-1 (red). All the probes exhibited fluorescence enhancement against Fe 2+ with high selectivity both in cuvette and in living cells. Among the probes, SiRhoNox-1 showed an excellent fluorescence response with respect to both reaction rate and off/on signal contrast. Imaging studies were performed showing the intracellular redox equilibrium shift towards labile iron in response to reduced oxygen tension in living cells and 3D tumor spheroids using SiRhoNox-1, and it was found that the hypoxia induction of labile Fe 2+ is independent of iron uptake, hypoxia-induced signaling, and hypoxia-activated enzymes. The present studies demonstrate the feasibility of developing sensitive and specific fluorescent probes for Fe 2+ with refined photophysical characteristics that enable their broad application in the study of iron in various physiological and pathological conditions.

  6. Analysis of permit vehicle loads in Wisconsin.

    DOT National Transportation Integrated Search

    2009-09-30

    This study evaluated the impact of the 250-kip Wisconsin Standard Permit Vehicle against the overloaded vehicles operating on Wisconsin roads in recent years. The evaluation was conducted using three sets of data: 1) overloaded vehicle records within...

  7. Non-toxic fluorescent phosphonium probes to detect mitochondrial potential

    NASA Astrophysics Data System (ADS)

    Šarić, Ana; Crnolatac, Ivo; Bouillaud, Frédéric; Sobočanec, Sandra; Mikecin, Ana-Matea; Mačak Šafranko, Željka; Delgeorgiev, Todor; Piantanida, Ivo; Balog, Tihomir; Petit, Patrice X.

    2017-03-01

    We evaluated our phosphonium-based fluorescent probes for selective staining of mitochondria. Currently used probes for monitoring mitochondrial membrane potential show varying degrees of interference with cell metabolism, photo-induced damage and probe binding. Here presented probes are characterised by highly efficient cellular uptake and specific accumulation in mitochondria. Fluorescent detection of the probes was accomplished using flow cytometry and confocal microscopy imaging of yeast and mammalian cells. Toxicity analysis (impedimetry—xCELLigence for the cellular proliferation and Seahorse technology for respiratory properties) confirms that these dyes exhibit no-toxicity on mitochondrial or cellular functioning even for long time incubation. The excellent chemical and photophysical stability of the dyes makes them promising leads toward improved fluorescent probes. Therefore, the probes described here offer to circumvent the problems associated with existing-probe’s limitations.

  8. Correction analysis for a supersonic water cooled total temperature probe tested to 1370 K

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T.; Seiner, John M.

    1991-01-01

    The authors address the thermal analysis of a water cooled supersonic total temperature probe tested in a Mach 2 flow, up to 1366 K total temperature. The goal of this experiment was the determination of high-temperature supersonic jet mean flow temperatures. An 8.99 cm exit diameter water cooled nozzle was used in the tests. It was designed for exit Mach 2 at 1366 K exit total temperature. Data along the jet centerline were obtained for total temperatures of 755 K, 1089 K, and 1366 K. The data from the total temperature probe were affected by the water coolant. The probe was tested through a range of temperatures between 755 K and 1366 K with and without the cooling system turned on. The results were used to develop a relationship between the indicated thermocouple bead temperature and the freestream total temperature. The analysis and calculated temperatures are presented.

  9. A practical model for pressure probe system response estimation (with review of existing models)

    NASA Astrophysics Data System (ADS)

    Hall, B. F.; Povey, T.

    2018-04-01

    The accurate estimation of the unsteady response (bandwidth) of pneumatic pressure probe systems (probe, line and transducer volume) is a common practical problem encountered in the design of aerodynamic experiments. Understanding the bandwidth of the probe system is necessary to capture unsteady flow features accurately. Where traversing probes are used, the desired traverse speed and spatial gradients in the flow dictate the minimum probe system bandwidth required to resolve the flow. Existing approaches for bandwidth estimation are either complex or inaccurate in implementation, so probes are often designed based on experience. Where probe system bandwidth is characterized, it is often done experimentally, requiring careful experimental set-up and analysis. There is a need for a relatively simple but accurate model for estimation of probe system bandwidth. A new model is presented for the accurate estimation of pressure probe bandwidth for simple probes commonly used in wind tunnel environments; experimental validation is provided. An additional, simple graphical method for air is included for convenience.

  10. Formation of relief on Europa's surface and analysis of a melting probe movement through the ice

    NASA Astrophysics Data System (ADS)

    Erokhina, O. S.; Chumachenko, E. N.; Dunham, D. W.; Aksenov, S. A.; Logashina, I. V.

    2013-12-01

    These days, studies of planetary bodies' are of great interest. And of special interest are the icy moons of the giant planets like Jupiter and Saturn. Analysis of 'Voyager 1', 'Voyager 2', 'Galileo' and 'Cassini' spacecraft data showed that icy covers were observed on Jupiter's moons Ganymede, Europa and Calisto, and Saturn's moons Titan and Enceladus. Of particular interest is the relatively smooth surface of Europa. The entire surface is covered by a system of bands, valleys, and ridges. These structures are explained by the mobility of surface ice, and the impact of stress and large-scale tectonic processes. Also conditions on these moons allow speculation about possible life, considering these moons from an astrobiological point of view. To study the planetary icy body in future space missions, one of the problems to solve is the problem of design of a special device capable of penetrating through the ice, as well as the choice of the landing site of this probe. To select a possible landing site, analysis of Europa's surface relief formation is studied. This analysis showed that compression, extention, shearing, and bending can influence some arbitrarily separated section of Europe's icy surface. The computer simulation with the finite element method (FEM) was performed to see what types of defects could arise from such effects. The analysis showed that fractures and cracks could have various forms depending on the stress-strained state arising in their vicinity. Also the problem of a melting probe's movement through the ice is considered: How the probe will move in low gravity and low atmospheric pressure; whether the hole formed in the ice will be closed when the probe penetrates far enough or not; what is the influence of the probe's characteristics on the melting process; what would be the order of magnitude of the penetration velocity. This study explores the technique based on elasto-plastic theory and so-called 'solid water' theory to estimate the melting velocity and to study the melting process. Based on this technique, several cases of melting probe motion are considered, the velocity of the melting probe is estimated, the influence of different factors are studied and discussed, and an easy way to optimize the parameters of the probe is proposed.

  11. Synthesis of novel taspine diphenyl derivatives as fluorescence probes and inhibitors of breast cancer cell proliferation.

    PubMed

    He, Huaizhen; Zhan, Yingzhuan; Zhang, Yanmin; Zhang, Jie; He, Langchong

    2012-01-01

    Two novel taspine diphenyl derivatives (Ta-dD) were designed and synthesized by introducing different coumarin fluorescent groups into the basic structure of Ta-dD. The main advantage of these two compounds is that they can be used as fluorescence probes and inhibitors simultaneously. In the present study, the fluorescent properties of the probes were measured and their inhibition of four breast cancer cell lines was tested. Different concentrations of the fluorescence probe were added to MCF-7 breast cancer cells for fluorescence imaging analysis under normal conditions. The results suggested that both of the new compounds have not only fluorescence but also the ability to inhibit effects on different breast cancer cell lines, which indicates their possible further use as dual functional fluorescence probes in tracer analysis. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Unmanned Multiple Exploratory Probe System (MEPS) for Mars observation. Volume 1: Trade analysis and design

    NASA Technical Reports Server (NTRS)

    Adams, Daniel E.; Crumbly, Christopher M.; Delp, Steve E.; Guidry, Michelle A.; Lisano, Michael E.; Packard, James D.; Striepe, Scott A.

    1988-01-01

    This report presents the unmanned Multiple Exploratory Probe Systems (MEPS), a space vehicle designed to observe the planet Mars in preparation for manned missions. The options considered for each major element are presented as a trade analysis, and the final vehicle design is defined.

  13. Analysis conditions of an industrial Al-Mg-Si alloy by conventional and 3D atom probes.

    PubMed

    Danoix, F; Miller, M K; Bigot, A

    2001-10-01

    Industrial 6016 Al-Mg-Si(Cu) alloys are presently regarded as attractive candidates for heat treatable sheet materials. Their mechanical properties can be adjusted for a given application by age hardening of the alloys. The resulting microstructural evolution takes place at the nanometer scale, making the atom probe a well suited instrument to study it. Accuracy of atom probe analysis of these aluminium alloys is a key point for the understanding of the fine scale microstructural evolution. It is known to be strongly dependent on the analysis conditions (such as specimen temperature and pulse fraction) which have been widely studied for ID atom probes. The development of the 3D instruments, as well as the increase of the evaporation pulse repetition rate have led to different analysis conditions, in particular evaporation and detection rates. The influence of various experimental parameters on the accuracy of atom probe data, in particular with regard to hydride formation sensitivity, has been reinvestigated. It is shown that hydrogen contamination is strongly dependent on the electric field at the specimen surface, and that high evaporation rates are beneficial. Conversely, detection rate must be limited to smaller than 0.02 atoms/pulse in order to prevent drastic pile-up effect.

  14. Crossing the Barriers: An Analysis of Permitting Barriers to Geothermal Development and Potential Improvement Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Aaron L; Young, Katherine R

    Developers have identified many non-technical barriers to geothermal power development, including permitting. Activities required for permitting, such as the associated environmental reviews, can take a considerable amount of time and delay project development. This paper discusses the impacts to geothermal development timelines due to the permitting challenges, including the regulatory framework, environmental review process, and ancillary permits. We identified barriers that have the potential to prevent geothermal development or delay timelines and defined improvement scenarios that could assist in expediting geothermal development and permitting timelines and lead to the deployment of additional geothermal resources by 2030 and 2050: (1) themore » creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices as well as (2) an expansion of existing categorical exclusions applicable to geothermal development on Bureau of Land Management public lands to include the oil and gas categorical exclusions passed as part of the Energy Policy Act of 2005. We utilized the Regional Energy Deployment System (ReEDS) and the Geothermal Electricity Technology Evaluation Model (GETEM) to forecast baseline geothermal deployment based on previous analysis of geothermal project development and permitting timelines. The model results forecast that reductions in geothermal project timelines can have a significant impact on geothermal deployment. For example, using the ReEDS model, we estimated that reducing timelines by two years, perhaps due to the creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices, could result in deployment of an additional 204 MW by 2030 and 768 MW by 2050 - a 13% improvement when compared to the business as usual scenario. The model results forecast that a timeline improvement of four years - for example with an expansion of existing categorical exclusions coupled with the creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices - could result in deployment of an additional 2,529 MW of geothermal capacity by 2030 and 6,917 MW of geothermal capacity by 2050 - an improvement of 116% when compared to the business as usual scenario. These results suggest that reducing development timelines could be a large driver in the deployment of geothermal resources.« less

  15. A survey of gas-side fouling measuring devices

    NASA Technical Reports Server (NTRS)

    Marner, W. J.; Henslee, S. P.

    1984-01-01

    A survey of measuring devices or probes, which were used to investigate gas side fouling, was carried out. Five different types of measuring devices are identified and discussed including: heat flux meters, mass accumulation probes, optical devices, deposition probes, and acid condensation probes. A total of 32 different probes are described in detail and summarized in matrix or tabular form. The important considerations of combustion gas characterization and deposit analysis are also given a significant amount of attention. The results show that considerable work was done in the development of gas side fouling probes. However, it is clear that the design, construction, and testing of a durable, versatile probe - capable of monitoring on-line fouling resistances - remains a formidable task.

  16. Stage 2 tool user’s manual.

    DOT National Transportation Integrated Search

    2017-08-01

    The purpose of the Permitted Overweight Truck Corridor Analysis Tool (referred to in this document as the Stage 2 Tool) is to evaluate existing or to create new proposed overweight (OW) truck corridors to estimate the permitted OW truck, pavement, br...

  17. Oversize/overweight permitting practices review : phase II.

    DOT National Transportation Integrated Search

    2013-02-01

    This study explores a more detailed analysis of the permitting process in the Mid-Atlantic Region and : delves into operational practice, and theory and history of the practice among states. The states : practices examined in greater detail include C...

  18. Analyzing Planck and low redshift data sets with advanced statistical methods

    NASA Astrophysics Data System (ADS)

    Eifler, Tim

    The recent ESA/NASA Planck mission has provided a key data set to constrain cosmology that is most sensitive to physics of the early Universe, such as inflation and primordial NonGaussianity (Planck 2015 results XIII). In combination with cosmological probes of the LargeScale Structure (LSS), the Planck data set is a powerful source of information to investigate late time phenomena (Planck 2015 results XIV), e.g. the accelerated expansion of the Universe, the impact of baryonic physics on the growth of structure, and the alignment of galaxies in their dark matter halos. It is the main objective of this proposal to re-analyze the archival Planck data, 1) with different, more recently developed statistical methods for cosmological parameter inference, and 2) to combine Planck and ground-based observations in an innovative way. We will make the corresponding analysis framework publicly available and believe that it will set a new standard for future CMB-LSS analyses. Advanced statistical methods, such as the Gibbs sampler (Jewell et al 2004, Wandelt et al 2004) have been critical in the analysis of Planck data. More recently, Approximate Bayesian Computation (ABC, see Weyant et al 2012, Akeret et al 2015, Ishida et al 2015, for cosmological applications) has matured to an interesting tool in cosmological likelihood analyses. It circumvents several assumptions that enter the standard Planck (and most LSS) likelihood analyses, most importantly, the assumption that the functional form of the likelihood of the CMB observables is a multivariate Gaussian. Beyond applying new statistical methods to Planck data in order to cross-check and validate existing constraints, we plan to combine Planck and DES data in a new and innovative way and run multi-probe likelihood analyses of CMB and LSS observables. The complexity of multiprobe likelihood analyses scale (non-linearly) with the level of correlations amongst the individual probes that are included. For the multi-probe analysis proposed here we will use the existing CosmoLike software, a computationally efficient analysis framework that is unique in its integrated ansatz of jointly analyzing probes of large-scale structure (LSS) of the Universe. We plan to combine CosmoLike with publicly available CMB analysis software (Camb, CLASS) to include modeling capabilities of CMB temperature, polarization, and lensing measurements. The resulting analysis framework will be capable to independently and jointly analyze data from the CMB and from various probes of the LSS of the Universe. After completion we will utilize this framework to check for consistency amongst the individual probes and subsequently run a joint likelihood analysis of probes that are not in tension. The inclusion of Planck information in a joint likelihood analysis substantially reduces DES uncertainties in cosmological parameters, and allows for unprecedented constraints on parameters that describe astrophysics. In their recent review Observational Probes of Cosmic Acceleration (Weinberg et al 2013) the authors emphasize the value of a balanced program that employs several of the most powerful methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary information. The work we propose follows exactly this idea: 1) cross-checking existing Planck results with alternative methods in the data analysis, 2) checking for consistency of Planck and DES data, and 3) running a joint analysis to constrain cosmology and astrophysics. It is now expedient to develop and refine multi-probe analysis strategies that allow the comparison and inclusion of information from disparate probes to optimally obtain cosmology and astrophysics. Analyzing Planck and DES data poses an ideal opportunity for this purpose and corresponding lessons will be of great value for the science preparation of Euclid and WFIRST.

  19. Study of new systems concepts for a Titan atmospheric probe

    NASA Technical Reports Server (NTRS)

    Bernard, Doug; Citron, Todd; Drean, Robert; Lewis, Scott; Lo, Martin; Mccarthy, John; Soderblom, Robert; Steffy, Dave; Vargas, Tina; Wolff, Marty

    1986-01-01

    Results of a systems concepts study for a Titan Probe were examined. The key tradeoffs performed are described in detail. Mass breakdown of each Probe subsystem or major element were given. The mission analysis performed to determine compliance with the high altitude sampling and descent time requirements are described. The baseline Descent Module design was derived. The element of the Probe System left on the Carrier after separation were described.

  20. Temporal Comparisons of Internet Topology

    DTIC Science & Technology

    2014-06-01

    Number CAIDA Cooperative Association of Internet Data Analysis CDN Content Delivery Network CI Confidence Interval DoS denial of service GMT Greenwich...the CAIDA data. Our methods include analysis of graph theoretical measures as well as complex network and statistical measures that will quantify the...tool that probes the Internet for topology analysis and performance [26]. Scamper uses network diagnostic tools, such as traceroute and ping, to probe

  1. Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis

    DOEpatents

    Noble, D.T.; Braymen, S.D.; Anderson, M.S.

    1996-10-01

    A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point and a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained. 9 figs.

  2. Outer planet entry probe system study. Volume 4: Common Saturn/Uranus probe studies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results are summarized of a common scientific probe study to explore the atmospheres of Saturn and Uranus. This was a three-month follow-on effort to the Outer Planet Entry Probe System study. The report presents: (1) a summary, conclusions and recommendations of this study, (2) parametric analysis conducted to support the two system definitions, (3) common Saturn/Uranus probe system definition using the Science Advisory Group's exploratory payload and, (4) common Saturn/Uranus probe system definition using an expanded science complement. Each of the probe system definitions consists of detailed discussions of the mission, science, system and subsystems including telecommunications, data handling, power, pyrotechnics, attitude control, structures, propulsion, thermal control and probe-to-spacecraft integration. References are made to the contents of the first three volumes where it is feasible to do so.

  3. Cells and biofluids analyzed in aqueous environment by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Naumann, D.; Lasch, P.; Fabian, H.

    2006-02-01

    Infrared transmission/absorption measurements of cells and biofluids in water are restricted to very short optical pathlengths. When the amide I and amide II bands of protein constituents have to be analysed, path-lengths of less than 8 μm are necessary. Infrared spectra of cancer cells were collected from physiological buffer solutions utilizing custom-made mid-infrared compatible IR-cuvettes. The technology permitted to obtain cell-type specific spectral signatures and probe biochemical changes induced by varying temperatures or cell-drug interaction. Optical path-lengths of 8-30 μm were used on a set of microbial test strains to evaluate, whether the methodology can also be used to discriminate and identify micro-organisms. A semi-automatic methodology was developed for the analysis of liquid serum samples, which combines simple sample handling with high sample throughput and extreme measurement reproducibility. The applicability of this infrared technology to the analysis of liquid serum samples from cattle and human beings suffering from various acute viral or bacterial infections was explored testing the interrelationship between α-helical and β-sheet specific spectral signatures in the amide I band contour and total albumin and globulin content in serum. The technical details, advantages, and limitations of the new technology are described in the context of developing a routine, IR-based biodiagnostic technique for biofluids and biological cells.

  4. In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes.

    PubMed

    Schuppler, M; Wagner, M; Schön, G; Göbel, U B

    1998-01-01

    Hitherto, few environmental samples have been investigated by a 'full cycle rRNA analysis'. Here the results of in situ hybridization experiments with specific rRNA-targeted oligonucleotide probes developed on the basis of new sequences derived from a previously described comparative 16S rRNA analysis of nocardioform actinomycetes in activated sludge are reported. Application of the specific probes enabled identification and discrimination of the distinct populations of nocardioform actinomycetes in activated sludge. One of the specific probes (DLP) detected rod-shaped bacteria which were found in 13 of the 16 investigated sludge samples from various wastewater treatment plants, suggesting their importance in the wastewater treatment process. Another probe (GLP2) hybridized with typically branched filaments of nocardioforms mainly found in samples from enhanced biological phosphorus removal plants, suggesting that these bacteria are involved in sludge foaming. The combination of in situ hybridization with fluorescently labelled rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy improved the detection of nocardioform actinomycetes, which often showed only weak signals inside the activated-sludge flocs.

  5. Superiorities of time-correlated single-photon counting against standard fluorimetry in exploiting the potential of fluorochromized oligonucleotide probes for biomedical investigation

    NASA Astrophysics Data System (ADS)

    Lamperti, Marco; Nardo, Luca; Bondani, Maria

    2015-05-01

    Site-specific fluorescence-resonance-energy-transfer donor-acceptor dual-labelled oligonucleotide probes are widely used in state-of-art biotechnological applications. Such applications include their usage as primers in polymerase chain reaction. However, the steady-state fluorescence intensity signal emitted by these molecular tools strongly depends from the specificities of the probe conformation. For this reason, the information which can be reliably inferred by steady-state fluorimetry performed on such samples is forcedly confined to a semi-qualitative level. Namely, fluorescent emission is frequently used as ON/OFF indicator of the probe hybridization state, i.e. detection of fluorescence signals indicates either hybridization to or detachment from the template DNA of the probe. Nonetheless, a fully quantitative analysis of their fluorescence emission properties would disclose other exciting applications of dual-labelled probes in biosensing. Here we show how time-correlated single-photon counting can be applied to get rid of the technical limitations and interpretational ambiguities plaguing the intensity analysis, and to derive information on the template DNA reaching single-base.

  6. Probing 6D operators at future e - e + colliders

    NASA Astrophysics Data System (ADS)

    Chiu, Wen Han; Leung, Sze Ching; Liu, Tao; Lyu, Kun-Feng; Wang, Lian-Tao

    2018-05-01

    We explore the sensitivities at future e - e + colliders to probe a set of six-dimensional operators which can modify the SM predictions on Higgs physics and electroweak precision measurements. We consider the case in which the operators are turned on simultaneously. Such an analysis yields a "conservative" interpretation on the collider sensitivities, complementary to the "optimistic" scenario where the operators are individually probed. After a detail analysis at CEPC in both "conservative" and "optimistic" scenarios, we also considered the sensitivities for FCC-ee and ILC. As an illustration of the potential of constraining new physics models, we applied sensitivity analysis to two benchmarks: holographic composite Higgs model and littlest Higgs model.

  7. Aligning oversize/overweight permit fees with agency costs : critical issues.

    DOT National Transportation Integrated Search

    2013-08-01

    This project provides an elementary analysis of issues and a proposed framework for the state to evaluate cost recovery options : due to OSOW operations. The authors provide a review of current permitting practices, provide a sampling of fee structur...

  8. Passive haptics in a knee arthroscopy simulator: is it valid for core skills training?

    PubMed

    McCarthy, Avril D; Moody, Louise; Waterworth, Alan R; Bickerstaff, Derek R

    2006-01-01

    Previous investigation of a cost-effective virtual reality arthroscopic training system, the Sheffield Knee Arthroscopy Training System (SKATS), indicated the desirability of including haptic feedback. A formal task analysis confirmed the importance of knee positioning as a core skill for trainees learning to navigate the knee arthroscopically. The system cost and existing limb interface, which permits knee positioning, would be compromised by the addition of commercial active haptic devices available currently. The validation results obtained when passive haptic feedback (resistance provided by physical structures) is provided indicate that SKATS has construct, predictive and face validity for navigation and triangulation training. When tested using SKATS, experienced surgeons (n = 11) performed significantly faster, located significantly more pathologies, and showed significantly shorter arthroscope path lengths than a less experienced surgeon cohort (n = 12). After SKATS training sessions, novices (n = 3) showed significant improvements in: task completion time, shorter arthroscope path lengths, shorter probe path lengths, and fewer arthroscope tip contacts. Main improvements occurred after the first two practice sessions, indicating rapid familiarization and a training effect. Feedback from questionnaires completed by orthopaedic surgeons indicates that the system has face validity for its remit of basic arthroscopic training.

  9. Forsterite and Enstatite Shock Temperatures: Implications for Planetary Impact Melting

    NASA Astrophysics Data System (ADS)

    Davies, Erik; Root, Seth; Kraus, Rick; Spaulding, Dylan; Stewart, Sarah; Jacobsen, Stein; Mattsson, Thomas; Lemke, Ray

    2017-06-01

    We present experimental results on enstatite and forsterite to probe extreme conditions in the laboratory in order to examine melting and vaporization of rocky planet mantles upon shock and release. Flyer plate impact experiments are carried out on the Z-Machine at Sandia National Laboratory. Planar, supported shock waves are generated in single crystal samples, permitting observation of both compressed and released states. Shock velocity of the sample is measured using laser interferometry, and the pressure and particle velocity are derived through impedance matching to the aluminum flyer. Temperature of the shocked state is measured with a streaked visible spectrum and calibrated with a quartz standard, mounted downrange from the sample. Preliminary analysis shows that current equation of state models underestimate the entropy gain, which suggests that for shock pressures above 250 GPa, a higher degree of impact vaporization will be reached. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation for the U.S. DOE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Direct observation of isolated Damon-Eshbach and backward volume spin-wave packets in ferromagnetic microstripes

    PubMed Central

    Wessels, Philipp; Vogel, Andreas; Tödt, Jan-Niklas; Wieland, Marek; Meier, Guido; Drescher, Markus

    2016-01-01

    The analysis of isolated spin-wave packets is crucial for the understanding of magnetic transport phenomena and is particularly interesting for applications in spintronic and magnonic devices, where isolated spin-wave packets implement an information processing scheme with negligible residual heat loss. We have captured microscale magnetization dynamics of single spin-wave packets in metallic ferromagnets in space and time. Using an optically driven high-current picosecond pulse source in combination with time-resolved scanning Kerr microscopy probed by femtosecond laser pulses, we demonstrate phase-sensitive real-space observation of spin-wave packets in confined permalloy (Ni80Fe20) microstripes. Impulsive excitation permits extraction of the dynamical parameters, i.e. phase- and group velocities, frequencies and wave vectors. In addition to well-established Damon-Eshbach modes our study reveals waves with counterpropagating group- and phase-velocities. Such unusual spin-wave motion is expected for backward volume modes where the phase fronts approach the excitation volume rather than emerging out of it due to the negative slope of the dispersion relation. These modes are difficult to excite and observe directly but feature analogies to negative refractive index materials, thus enabling model studies of wave propagation inside metamaterials. PMID:26906113

  11. Optical Recorder of the Lunar Sounder Experiment

    NASA Image and Video Library

    1972-11-22

    S72-49482 (November 1972) --- The Optical Recorder of the Lunar Sounder Experiment (S-209) which will be mounted in the SIM bay of the Apollo 17 Service Module. The three functional parts of the Lunar Sounder are the optical recorder, the coherent synthetic aperture radar, and the antennas, a retractable dipole for HF and a yagi for VHF. The Lunar Sounder will probe three-quarters of a mile below the moon's surface from the orbiting Apollo 17 spacecraft. Electronic data recorded on film will be retrieved by the crew during trans-Earth EVA. Geologic information on the lunar interior obtained by the sounder will permit scientific investigation of underground rock layers, lava flow patterns, rille (canyon) structures, mascon properties, and any areas containing water. A prototype lunar sounder has been flight tested in aircraft over selected Earth sites to confirm the equipment design and develop scientific analysis techniques. The Lunar Sounder Experiment was developed by North American Rockwell's (NR) Space Division for NASA's Manned Spacecraft Center to provide data for a scientific investigation team with representatives from the Jet Propulsion Laboratory, University of Utah, University of Michigan, U.S. Geological Survey, and NASA Ames Research Center.

  12. Quantitative interaction analysis permits molecular insights into functional NOX4 NADPH oxidase heterodimer assembly.

    PubMed

    O'Neill, Sharon; Mathis, Magalie; Kovačič, Lidija; Zhang, Suisheng; Reinhardt, Jürgen; Scholz, Dimitri; Schopfer, Ulrich; Bouhelal, Rochdi; Knaus, Ulla G

    2018-06-08

    Protein-protein interactions critically regulate many biological systems, but quantifying functional assembly of multipass membrane complexes in their native context is still challenging. Here, we combined modeling-assisted protein modification and information from human disease variants with a minimal-size fusion tag, split-luciferase-based approach to probe assembly of the NADPH oxidase 4 (NOX4)-p22 phox enzyme, an integral membrane complex with unresolved structure, which is required for electron transfer and generation of reactive oxygen species (ROS). Integrated analyses of heterodimerization, trafficking, and catalytic activity identified determinants for the NOX4-p22 phox interaction, such as heme incorporation into NOX4 and hot spot residues in transmembrane domains 1 and 4 in p22 phox Moreover, their effect on NOX4 maturation and ROS generation was analyzed. We propose that this reversible and quantitative protein-protein interaction technique with its small split-fragment approach will provide a protein engineering and discovery tool not only for NOX research, but also for other intricate membrane protein complexes, and may thereby facilitate new drug discovery strategies for managing NOX-associated diseases. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Synthesis and Characterization of a deuterium labeled Stercobilin: A Potential Biomarker for Autism.

    PubMed

    Coffey, J M; Vadas, A; Puleo, Y; Lewis, K; Pirone, G; Rudolph, H L; Helms, E; Wood, T D; Flynn-Charlebois, A

    2018-05-14

    Stercobilin is an end-stage metabolite of hemoglobin, a component of red blood cells. It has been found that there is a significantly lower concentration of stercobilin in the urine of people diagnosed with Autism Spectrum Disorders (ASD), suggesting potential utility as a biomarker. In vitro, we have synthesized stercobilin from its precursor bilirubin through a reduction reaction proceeded by an oxidation reaction. In addition, we have isotopically labeled the stercobilin product with deuterium using this protocol. Nuclear Magnetic Resonance (NMR) investigations show the products of the unlabeled stercobilin (Rxn 1) and the deuterated stercobilin (Rxn 2) both had a loss of signals in the 5.0-7.0 ppm range indicating proper conversion to stercobilin. Changes in the multiplicity of the sp3 region of the proton NMR suggest proper deuterium incorporation. Mass Spectrometry (MS) studies of Rxn 1 show a difference in fragmentation patterns than that of Rxn 2 proposing potential locations for deuterium incorporation. This isotopologue of stercobilin is stable (> 6 months), and further analysis permits investigation for its use as a biomarker and potential quantitative diagnostic probe for ASD. This article is protected by copyright. All rights reserved.

  14. Framework for reanalysis of publicly available Affymetrix® GeneChip® data sets based on functional regions of interest.

    PubMed

    Saka, Ernur; Harrison, Benjamin J; West, Kirk; Petruska, Jeffrey C; Rouchka, Eric C

    2017-12-06

    Since the introduction of microarrays in 1995, researchers world-wide have used both commercial and custom-designed microarrays for understanding differential expression of transcribed genes. Public databases such as ArrayExpress and the Gene Expression Omnibus (GEO) have made millions of samples readily available. One main drawback to microarray data analysis involves the selection of probes to represent a specific transcript of interest, particularly in light of the fact that transcript-specific knowledge (notably alternative splicing) is dynamic in nature. We therefore developed a framework for reannotating and reassigning probe groups for Affymetrix® GeneChip® technology based on functional regions of interest. This framework addresses three issues of Affymetrix® GeneChip® data analyses: removing nonspecific probes, updating probe target mapping based on the latest genome knowledge and grouping probes into gene, transcript and region-based (UTR, individual exon, CDS) probe sets. Updated gene and transcript probe sets provide more specific analysis results based on current genomic and transcriptomic knowledge. The framework selects unique probes, aligns them to gene annotations and generates a custom Chip Description File (CDF). The analysis reveals only 87% of the Affymetrix® GeneChip® HG-U133 Plus 2 probes uniquely align to the current hg38 human assembly without mismatches. We also tested new mappings on the publicly available data series using rat and human data from GSE48611 and GSE72551 obtained from GEO, and illustrate that functional grouping allows for the subtle detection of regions of interest likely to have phenotypical consequences. Through reanalysis of the publicly available data series GSE48611 and GSE72551, we profiled the contribution of UTR and CDS regions to the gene expression levels globally. The comparison between region and gene based results indicated that the detected expressed genes by gene-based and region-based CDFs show high consistency and regions based results allows us to detection of changes in transcript formation.

  15. Asymmetry of perceived key movement in chorale sequences: converging evidence from a probe-tone analysis.

    PubMed

    Cuddy, L L; Thompson, W F

    1992-01-01

    In a probe-tone experiment, two groups of listeners--one trained, the other untrained, in traditional music theory--rated the goodness of fit of each of the 12 notes of the chromatic scale to four-voice harmonic sequences. Sequences were 12 simplified excerpts from Bach chorales, 4 nonmodulating, and 8 modulating. Modulations occurred either one or two steps in either the clockwise or the counterclockwise direction on the cycle of fifths. A consistent pattern of probe-tone ratings was obtained for each sequence, with no significant differences between listener groups. Two methods of analysis (Fourier analysis and regression analysis) revealed a directional asymmetry in the perceived key movement conveyed by modulating sequences. For a given modulation distance, modulations in the counterclockwise direction effected a clearer shift in tonal organization toward the final key than did clockwise modulations. The nature of the directional asymmetry was consistent with results reported for identification and rating of key change in the sequences (Thompson & Cuddy, 1989a). Further, according to the multiple-regression analysis, probe-tone ratings did not merely reflect the distribution of tones in the sequence. Rather, ratings were sensitive to the temporal structure of the tonal organization in the sequence.

  16. Improvements to direct quantitative analysis of multiple microRNAs facilitating faster analysis.

    PubMed

    Ghasemi, Farhad; Wegman, David W; Kanoatov, Mirzo; Yang, Burton B; Liu, Stanley K; Yousef, George M; Krylov, Sergey N

    2013-11-05

    Studies suggest that patterns of deregulation in sets of microRNA (miRNA) can be used as cancer diagnostic and prognostic biomarkers. Establishing a "miRNA fingerprint"-based diagnostic technique requires a suitable miRNA quantitation method. The appropriate method must be direct, sensitive, capable of simultaneous analysis of multiple miRNAs, rapid, and robust. Direct quantitative analysis of multiple microRNAs (DQAMmiR) is a recently introduced capillary electrophoresis-based hybridization assay that satisfies most of these criteria. Previous implementations of the method suffered, however, from slow analysis time and required lengthy and stringent purification of hybridization probes. Here, we introduce a set of critical improvements to DQAMmiR that address these technical limitations. First, we have devised an efficient purification procedure that achieves the required purity of the hybridization probe in a fast and simple fashion. Second, we have optimized the concentrations of the DNA probe to decrease the hybridization time to 10 min. Lastly, we have demonstrated that the increased probe concentrations and decreased incubation time removed the need for masking DNA, further simplifying the method and increasing its robustness. The presented improvements bring DQAMmiR closer to use in a clinical setting.

  17. Teaching Special Education Teachers How to Conduct Functional Analysis in Natural Settings

    ERIC Educational Resources Information Center

    Erbas, Dilek; Tekin-Iftar, Elif; Yucesoy, Serife

    2006-01-01

    Effects of a training program utilized to teach how to conduct functional analysis process to teachers of children with developmental disabilities was examined. Furthermore, teachers' opinions regarding this process were investigated. A multiple probe design across subjects with probe conditions was used. Teacher training was in two phases. In the…

  18. Analysis of pollutant chemistry in combustion by in situ pulsed photoacoustic laser diagnostics

    NASA Astrophysics Data System (ADS)

    Stenberg, Jari; Hernberg, Rolf; Vattulainen, Juha

    1995-12-01

    A technique for gas analysis based on pulsed-laser-induced photoacoustic spectroscopy in the UV and the visible is presented. The laser-based technique and the associated analysis probe have been developed for the analysis of pollutant chemistry in fluidized beds and other combustion environments with limited or no optical access. The photoacoustic-absorption spectrum of the analyzed gas is measured in a test cell located at the end of a tubular probe. This test cell is subject to the prevailing temperature and pressure in the combustion process. The instrument response has been calibrated for N2O, NO, NO2, NH3, SO2, and H2 S at atmospheric pressure between 20 and 910 deg C. The response of the probe was found to increase with pressure for N2O, NO, NH 3, and NO2 up to 1.2 MPa pressure. The method and the probe have been used for detection and ranging of gas concentrations in a premixed methane flame. Some preliminary tests in a large 12-MW circulating bed boiler have also been done.

  19. Use of a fiber optic probe for organic species determination

    DOEpatents

    Ekechukwu, Amy A.

    1996-01-01

    A fiber optic probe for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe's distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device.

  20. Outsourced probe data effectiveness on signalized arterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharifi, Elham; Young, Stanley Ernest; Eshragh, Sepideh

    This paper presents results of an I-95 Corridor Coalition sponsored project to assess the ability of outsourced vehicle probe data to provide accurate travel time on signalized roadways for the purposes of real-time operations as well as performance measures. The quality of outsourced probe data on freeways has led many departments of transportation to consider such data for arterial performance monitoring. From April 2013 through June of 2014, the University of Maryland Center for Advanced Transportation Technology gathered travel times from several arterial corridors within the mid-Atlantic region using Bluetooth traffic monitoring (BTM) equipment, and compared these travel times withmore » the data reported to the I95 Vehicle Probe Project (VPP) from an outsourced probe data vendor. The analysis consisted of several methodologies: (1) a traditional analysis that used precision and bias speed metrics; (2) a slowdown analysis that quantified the percentage of significant traffic disruptions accurately captured in the VPP data; (3) a sampled distribution method that uses overlay methods to enhance and analyze recurring congestion patterns. (4) Last, the BTM and VPP data from each 24-hour period of data collection were reviewed by the research team to assess the extent to which VPP captured the nature of the traffic flow. Based on the analysis, probe data is recommended only on arterial roadways with signal densities (measured in signals per mile) up to one, and it should be tested and used with caution for signal densities between one and two, and is not recommended when signal density exceeds two.« less

  1. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

    PubMed Central

    Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry

    2013-01-01

    The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063

  2. Scanning probe recognition microscopy investigation of tissue scaffold properties

    PubMed Central

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis. PMID:18203431

  3. Scanning probe recognition microscopy investigation of tissue scaffold properties.

    PubMed

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis.

  4. Long-Term Implanted cOFM Probe Causes Minimal Tissue Reaction in the Brain

    PubMed Central

    Hochmeister, Sonja; Asslaber, Martin; Kroath, Thomas; Pieber, Thomas R.; Sinner, Frank

    2014-01-01

    This study investigated the histological tissue reaction to long-term implanted cerebral open flow microperfusion (cOFM) probes in the frontal lobe of the rat brain. Most probe-based cerebral fluid sampling techniques are limited in application time due to the formation of a glial scar that hinders substance exchange between brain tissue and the probe. A glial scar not only functions as a diffusion barrier but also alters metabolism and signaling in extracellular brain fluid. cOFM is a recently developed probe-based technique to continuously sample extracellular brain fluid with an intact blood-brain barrier. After probe implantation, a 2 week healing period is needed for blood-brain barrier reestablishment. Therefore, cOFM probes need to stay in place and functional for at least 15 days after implantation to ensure functionality. Probe design and probe materials are optimized to evoke minimal tissue reaction even after a long implantation period. Qualitative and quantitative histological tissue analysis revealed no continuous glial scar formation around the cOFM probe 30 days after implantation and only a minor tissue reaction regardless of perfusion of the probe. PMID:24621608

  5. Design Mechanism and Property of the Novel Fluorescent Probes for the Identification of Microthrix parvicella In Situ

    PubMed Central

    Jiao, Xiumei; Fei, Xuening; Li, Songya; Lin, Dayong; Ma, Huaji; Zhang, Baolian

    2017-01-01

    In this study, two novel fluorescent probes, probe A and probe B were designed, synthesized and characterized, based on Microthrix parvicella (M. parvicella) preferring to utilize long-chain fatty acid (LCFA), for the labeling of M. parvicella in activated sludge. The molecular structure of probe A and probe B include long-chain alkane and LCFA, respectively. The results indicated that probe A and probe B had a large stokes shift of 118 nm and 120 nm and high quantum yield of 0.1043 and 0.1058, respectively, which were significantly helpful for the fluorescent labeling. As probe A was more stable than probe B in activated sludge, and the fluorescence intensity keep stable during 24 h, probe A was more suitable for labeling M. parvicella in situ. In addition, through the Image Pro Plus 6 (IPP 6) analysis, a quantitative relationship was established between sludge volume index (SVI) and integral optical density (IOD) of the labeled M. parvicella in activated sludge samples. The relationship between IOD and SVI conforms to Logistic curve (R2 = 0.94). PMID:28773166

  6. Feasibility, strategy, methodology, and analysis of probe measurements in plasma under high gas pressure

    NASA Astrophysics Data System (ADS)

    Demidov, V. I.; Koepke, M. E.; Kurlyandskaya, I. P.; Malkov, M. A.

    2018-02-01

    This paper reviews existing theories for interpreting probe measurements of electron distribution functions (EDF) at high gas pressure when collisions of electrons with atoms and/or molecules near the probe are pervasive. An explanation of whether or not the measurements are realizable and reliable, an enumeration of the most common sources of measurement error, and an outline of proper probe-experiment design elements that inherently limit or avoid error is presented. Additionally, we describe recent expanded plasma-condition compatibility for EDF measurement, including in applications of large wall probe plasma diagnostics. This summary of the authors’ experiences gained over decades of practicing and developing probe diagnostics is intended to inform, guide, suggest, and detail the advantages and disadvantages of probe application in plasma research.

  7. Probing amyloid protein aggregation with optical superresolution methods: from the test tube to models of disease

    PubMed Central

    Kaminski, Clemens F.; Kaminski Schierle, Gabriele S.

    2016-01-01

    Abstract. The misfolding and self-assembly of intrinsically disordered proteins into insoluble amyloid structures are central to many neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Optical imaging of this self-assembly process in vitro and in cells is revolutionizing our understanding of the molecular mechanisms behind these devastating conditions. In contrast to conventional biophysical methods, optical imaging and, in particular, optical superresolution imaging, permits the dynamic investigation of the molecular self-assembly process in vitro and in cells, at molecular-level resolution. In this article, current state-of-the-art imaging methods are reviewed and discussed in the context of research into neurodegeneration. PMID:27413767

  8. Electron-emission characteristics of tungsten alloys: Mee 492. [No data; plasma anode tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, H.M.

    A plasma-anode tube was constructed to investigate the electron-emission characteristics for rhenium, 1% thorium tungsten, and 2% thorium tungsten. The tube consists of cathode, anode, cesium reservoir, and three probes. Inside of tube is a rough vacuum by using a Varian liquid-nitrogen-cooled cryovalve and further vacuum by using a Varian absorption pumpt to 4 X IO/sup -5/ pa. The tube was sealed off from the vacuum pump after the cesium ampoule was broken. The entire plasma-anode tube except the cesiunm reservoir was placed in a Blue M Electric Company furnace whose door had been modified to permit viewing of themore » tube.« less

  9. Simulating condensation on microstructured surfaces using Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Alexeev, Alexander; Vasyliv, Yaroslav

    2017-11-01

    We simulate a single component fluid condensing on 2D structured surfaces with different wettability. To simulate the two phase fluid, we use the athermal Lattice Boltzmann Method (LBM) driven by a pseudopotential force. The pseudopotential force results in a non-ideal equation of state (EOS) which permits liquid-vapor phase change. To account for thermal effects, the athermal LBM is coupled to a finite volume discretization of the temperature evolution equation obtained using a thermal energy rate balance for the specific internal energy. We use the developed model to probe the effect of surface structure and surface wettability on the condensation rate in order to identify microstructure topographies promoting condensation. Financial support is acknowledged from Kimberly-Clark.

  10. Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy.

    PubMed

    Huang, Zhiwei; Teh, Seng Khoon; Zheng, Wei; Mo, Jianhua; Lin, Kan; Shao, Xiaozhuo; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan

    2009-03-15

    We report an integrated Raman spectroscopy and trimodal (white-light reflectance, autofluorescence, and narrow-band) imaging techniques for real-time in vivo tissue Raman measurements at endoscopy. A special 1.8 mm endoscopic Raman probe with filtering modules is developed, permitting effective elimination of interference of fluorescence background and silica Raman in fibers while maximizing tissue Raman collections. We demonstrate that high-quality in vivo Raman spectra of upper gastrointestinal tract can be acquired within 1 s or subseconds under the guidance of wide-field endoscopic imaging modalities, greatly facilitating the adoption of Raman spectroscopy into clinical research and practice during routine endoscopic inspections.

  11. Detection of single base mismatches of thymine and cytosine residues by potassium permanganate and hydroxylamine in the presence of tetralkylammonium salts.

    PubMed Central

    Gogos, J A; Karayiorgou, M; Aburatani, H; Kafatos, F C

    1990-01-01

    In the presence of tetramethylammonium chloride, potassium permanganate specifically modifies mismatched thymines. Similarly, the modification of mismatched cytosines by hydroxylamine was enhanced by tetraethylammonium chloride. Modification followed by piperidine cleavage permits specific identification of the T and C mismatches and by extension, when the opposite DNA strand is analyzed, of A and G mismatches as well. These reactions can be performed conveniently with DNA immobilized on Hybond M-G paper. We describe conditions that exploit these reactions to detect mismatches, e.g. point mutations or genetic polymorphisms, using either synthetic oligonucleotide probes or PCR amplification of specific genomic DNA sequences. Images PMID:2263445

  12. Plasma layers near the electrodes of a cesium diode - Anode layer

    NASA Astrophysics Data System (ADS)

    Oganezov, Z. A.; Timoshenko, L. S.; Tskhakaya, V. K.

    1982-08-01

    A planar electron beam probe is used to study the plasma layer in contact with a nonemitting electrode. It is found that the field distribution in the space-charge region of the layer adjacent to a nonemitting electrode is linear and obeys a specific empirical relation over a large range of variation in the plasma parameters, while the potential distribution has a corresponding parabolic form. In order for these values to be consistent, it is necessary to assume that the potential at the boundary between the quasi-neutral plasma and the space-charge is equal to a value which is substantially larger than the theoretically permitted potential drop in a quasi-neutral plasma.

  13. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    DOEpatents

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  14. Paramaterization of a coarse-grained model for linear alkylbenzene sulfonate surfactants and molecular dynamics studies of their self-assembly in aqueous solution

    NASA Astrophysics Data System (ADS)

    He, Xibing; Shinoda, Wataru; DeVane, Russell; Anderson, Kelly L.; Klein, Michael L.

    2010-02-01

    A coarse-grained (CG) forcefield for linear alkylbenzene sulfonates (LAS) was systematically parameterized. Thermodynamic data from experiments and structural data obtained from all-atom molecular dynamics were used as targets to parameterize CG potentials for the bonded and non-bonded interactions. The added computational efficiency permits one to employ computer simulation to probe the self-assembly of LAS aqueous solutions into different morphologies starting from a random configuration. The present CG model is shown to accurately reproduce the phase behavior of solutions of pure isomers of sodium dodecylbenzene sulfonate, despite the fact that phase behavior was not directly taken into account in the forcefield parameterization.

  15. Electron Probe MicroAnalysis (EPMA) Standards. Issues Related to Measurement and Accuracy Evaluation in EPMA

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul

    2003-01-01

    Electron-probe microanalysis standards and issues related to measurement and accuracy of microanalysis will be discussed. Critical evaluation of standards based on homogeneity and comparison with wet-chemical analysis will be made. Measurement problems such as spectrometer dead-time will be discussed. Analytical accuracy issues will be evaluated for systems by alpha-factor analysis and comparison with experimental k-ratio databases.

  16. Quantitative Metaproteomics and Activity-Based Probe Enrichment Reveals Significant Alterations in Protein Expression from a Mouse Model of Inflammatory Bowel Disease.

    PubMed

    Mayers, Michael D; Moon, Clara; Stupp, Gregory S; Su, Andrew I; Wolan, Dennis W

    2017-02-03

    Tandem mass spectrometry based shotgun proteomics of distal gut microbiomes is exceedingly difficult due to the inherent complexity and taxonomic diversity of the samples. We introduce two new methodologies to improve metaproteomic studies of microbiome samples. These methods include the stable isotope labeling in mammals to permit protein quantitation across two mouse cohorts as well as the application of activity-based probes to enrich and analyze both host and microbial proteins with specific functionalities. We used these technologies to study the microbiota from the adoptive T cell transfer mouse model of inflammatory bowel disease (IBD) and compare these samples to an isogenic control, thereby limiting genetic and environmental variables that influence microbiome composition. The data generated highlight quantitative alterations in both host and microbial proteins due to intestinal inflammation and corroborates the observed phylogenetic changes in bacteria that accompany IBD in humans and mouse models. The combination of isotope labeling with shotgun proteomics resulted in the total identification of 4434 protein clusters expressed in the microbial proteomic environment, 276 of which demonstrated differential abundance between control and IBD mice. Notably, application of a novel cysteine-reactive probe uncovered several microbial proteases and hydrolases overrepresented in the IBD mice. Implementation of these methods demonstrated that substantial insights into the identity and dysregulation of host and microbial proteins altered in IBD can be accomplished and can be used in the interrogation of other microbiome-related diseases.

  17. Laser Cooling and Trapping of Neutral Strontium for Spectroscopic Measurements of Casimir-Polder Potentials

    NASA Astrophysics Data System (ADS)

    Cook, Eryn C.

    Casimir and Casimir-Polder effects are forces between electrically neutral bodies and particles in vacuum, arising entirely from quantum fluctuations. The modification to the vacuum electromagnetic-field modes imposed by the presence of any particle or surface can result in these mechanical forces, which are often the dominant interaction at small separations. These effects play an increasingly critical role in the operation of micro- and nano-mechanical systems as well as miniaturized atomic traps for precision sensors and quantum-information devices. Despite their fundamental importance, calculations present theoretical and numeric challenges, and precise atom-surface potential measurements are lacking in many geometric and distance regimes. The spectroscopic measurement of Casimir-Polder-induced energy level shifts in optical-lattice trapped atoms offers a new experimental method to probe atom-surface interactions. Strontium, the current front-runner among optical frequency metrology systems, has demonstrated characteristics ideal for such precision measurements. An alkaline earth atom possessing ultra-narrow intercombination transitions, strontium can be loaded into an optical lattice at the "magic" wavelength where the probe transition is unperturbed by the trap light. Translation of the lattice will permit controlled transport of tightly-confined atomic samples to well-calibrated atom-surface separations, while optical transition shifts serve as a direct probe of the Casimir-Polder potential. We have constructed a strontium magneto-optical trap (MOT) for future Casimir-Polder experiments. This thesis will describe the strontium apparatus, initial trap performance, and some details of the proposed measurement procedure.

  18. Using phylogenetic probes for quantification of stable isotope labeling and microbial community analysis

    DOEpatents

    Brodie, Eoin L; DeSantis, Todd Z; Karaoz, Ulas; Andersen, Gary L

    2014-12-09

    Herein is described methods for a high-sensitivity means to measure the incorporation of stable isotope labeled substrates into RNA following stable isotope probing experiments (SIP). RNA is hybridized to a set of probes such as phylogenetic microarrays and isotope incorporation is quantified such as by secondary ion mass spectrometer imaging (NanoSIMS).

  19. Research on the Sensing Performance of the Tuning Fork-Probe as a Micro Interaction Sensor

    PubMed Central

    Gao, Fengli; Li, Xide

    2015-01-01

    The shear force position system has been widely used in scanning near-field optical microscopy (SNOM) and recently extended into the force sensing area. The dynamic properties of a tuning fork (TF), the core component of this system, directly determine the sensing performance of the shear positioning system. Here, we combine experimental results and finite element method (FEM) analysis to investigate the dynamic behavior of the TF probe assembled structure (TF-probe). Results from experiments under varying atmospheric pressures illustrate that the oscillation amplitude of the TF-probe is linearly related to the quality factor, suggesting that decreasing the pressure will dramatically increase the quality factor. The results from FEM analysis reveal the influences of various parameters on the resonant performance of the TF-probe. We compared numerical results of the frequency spectrum with the experimental data collected by our recently developed laser Doppler vibrometer system. Then, we investigated the parameters affecting spatial resolution of the SNOM and the dynamic response of the TF-probe under longitudinal and transverse interactions. It is found that the interactions in transverse direction is much more sensitive than that in the longitudinal direction. Finally, the TF-probe was used to measure the friction coefficient of a silica–silica interface. PMID:26404310

  20. Dual-wavelength pump-probe microscopy analysis of melanin composition

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew; Robles, Francisco E.; Wilson, Jesse W.; Deb, Sanghamitra; Calderbank, Robert; Warren, Warren S.

    2016-11-01

    Pump-probe microscopy is an emerging technique that provides detailed chemical information of absorbers with sub-micrometer spatial resolution. Recent work has shown that the pump-probe signals from melanin in human skin cancers correlate well with clinical concern, but it has been difficult to infer the molecular origins of these differences. Here we develop a mathematical framework to describe the pump-probe dynamics of melanin in human pigmented tissue samples, which treats the ensemble of individual chromophores that make up melanin as Gaussian absorbers with bandwidth related via Frenkel excitons. Thus, observed signals result from an interplay between the spectral bandwidths of the individual underlying chromophores and spectral proximity of the pump and probe wavelengths. The model is tested using a dual-wavelength pump-probe approach and a novel signal processing method based on gnomonic projections. Results show signals can be described by a single linear transition path with different rates of progress for different individual pump-probe wavelength pairs. Moreover, the combined dual-wavelength data shows a nonlinear transition that supports our mathematical framework and the excitonic model to describe the optical properties of melanin. The novel gnomonic projection analysis can also be an attractive generic tool for analyzing mixing paths in biomolecular and analytical chemistry.

  1. Dual-wavelength pump-probe microscopy analysis of melanin composition

    PubMed Central

    Thompson, Andrew; Robles, Francisco E.; Wilson, Jesse W.; Deb, Sanghamitra; Calderbank, Robert; Warren, Warren S.

    2016-01-01

    Pump-probe microscopy is an emerging technique that provides detailed chemical information of absorbers with sub-micrometer spatial resolution. Recent work has shown that the pump-probe signals from melanin in human skin cancers correlate well with clinical concern, but it has been difficult to infer the molecular origins of these differences. Here we develop a mathematical framework to describe the pump-probe dynamics of melanin in human pigmented tissue samples, which treats the ensemble of individual chromophores that make up melanin as Gaussian absorbers with bandwidth related via Frenkel excitons. Thus, observed signals result from an interplay between the spectral bandwidths of the individual underlying chromophores and spectral proximity of the pump and probe wavelengths. The model is tested using a dual-wavelength pump-probe approach and a novel signal processing method based on gnomonic projections. Results show signals can be described by a single linear transition path with different rates of progress for different individual pump-probe wavelength pairs. Moreover, the combined dual-wavelength data shows a nonlinear transition that supports our mathematical framework and the excitonic model to describe the optical properties of melanin. The novel gnomonic projection analysis can also be an attractive generic tool for analyzing mixing paths in biomolecular and analytical chemistry. PMID:27833147

  2. Spectrometer gun

    DOEpatents

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  3. An Optimized Set of Fluorescence In Situ Hybridization Probes for Detection of Pancreatobiliary Tract Cancer in Cytology Brush Samples.

    PubMed

    Barr Fritcher, Emily G; Voss, Jesse S; Brankley, Shannon M; Campion, Michael B; Jenkins, Sarah M; Keeney, Matthew E; Henry, Michael R; Kerr, Sarah M; Chaiteerakij, Roongruedee; Pestova, Ekaterina V; Clayton, Amy C; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C; Kipp, Benjamin R

    2015-12-01

    Pancreatobiliary cancer is detected by fluorescence in situ hybridization (FISH) of pancreatobiliary brush samples with UroVysion probes, originally designed to detect bladder cancer. We designed a set of new probes to detect pancreatobiliary cancer and compared its performance with that of UroVysion and routine cytology analysis. We tested a set of FISH probes on tumor tissues (cholangiocarcinoma or pancreatic carcinoma) and non-tumor tissues from 29 patients. We identified 4 probes that had high specificity for tumor vs non-tumor tissues; we called this set of probes pancreatobiliary FISH. We performed a retrospective analysis of brush samples from 272 patients who underwent endoscopic retrograde cholangiopancreatography for evaluation of malignancy at the Mayo Clinic; results were available from routine cytology and FISH with UroVysion probes. Archived residual specimens were retrieved and used to evaluate the pancreatobiliary FISH probes. Cutoff values for FISH with the pancreatobiliary probes were determined using 89 samples and validated in the remaining 183 samples. Clinical and pathologic evidence of malignancy in the pancreatobiliary tract within 2 years of brush sample collection was used as the standard; samples from patients without malignancies were used as negative controls. The validation cohort included 85 patients with malignancies (46.4%) and 114 patients with primary sclerosing cholangitis (62.3%). Samples containing cells above the cutoff for polysomy (copy number gain of ≥2 probes) were classified as positive in FISH with the UroVysion and pancreatobiliary probes. Multivariable logistic regression was used to estimate associations between clinical and pathology findings and results from FISH. The combination of FISH probes 1q21, 7p12, 8q24, and 9p21 identified cancer cells with 93% sensitivity and 100% specificity in pancreatobiliary tissue samples and were therefore included in the pancreatobiliary probe set. In the validation cohort of brush samples, pancreatobiliary FISH identified samples from patients with malignancy with a significantly higher level of sensitivity (64.7%) than the UroVysion probes (45.9%) (P < .001) or routine cytology analysis (18.8%) (P < .001), but similar specificity (92.9%, 90.8%, and 100.0% respectively). Factors significantly associated with detection of carcinoma, in adjusted analyses, included detection of polysomy by pancreatobiliary FISH (P < .001), a mass by cross-sectional imaging (P < .001), cancer cells by routine cytology (overall P = .003), as well as absence of primary sclerosing cholangitis (P = .011). We identified a set of FISH probes that detects cancer cells in pancreatobiliary brush samples from patients with and without primary sclerosing cholangitis with higher levels of sensitivity than UroVysion probes. Cytologic brushing test results and clinical features were independently associated with detection of cancer and might be used to identify patients with pancreatobiliary cancers. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Spatially Resolved Analysis of Amines Using a Fluorescence Molecular Probe: Molecular Analysis of IDPs

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Messenger, S.; Thomas-Keprta, K. L.; Wentworth, S. J.; Robinson, G. A.; McKay, D. S.

    2002-01-01

    Some Interplanetary Dust Particles (IDPs) have large isotope anomalies in H and N. To address the nature of the carrier phase, we are developing a procedure to spatially resolve the distribution of organic species on IDP thin sections utilizing fluorescent molecular probes. Additional information is contained in the original extended abstract.

  5. Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography.

    PubMed

    Marceau, R K W; Choi, P; Raabe, D

    2013-09-01

    A high-Mn TWIP steel having composition Fe-22Mn-0.6C (wt%) is considered in this study, where the need for accurate and quantitative analysis of clustering and short-range ordering by atom probe analysis requires a better understanding of the detection of carbon in this system. Experimental measurements reveal that a high percentage of carbon atoms are detected as molecular ion species and on multiple hit events, which is discussed with respect to issues such as optimal experimental parameters, correlated field evaporation and directional walk/migration of carbon atoms at the surface of the specimen tip during analysis. These phenomena impact the compositional and spatial accuracy of the atom probe measurement and thus require careful consideration for further cluster-finding analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. HIDRA-MAT: A Material Analysis Tool for Fusion Devices

    NASA Astrophysics Data System (ADS)

    Andruczyk, Daniel; Rizkallah, Rabel; Bedoya, Felipe; Kapat, Aveek; Schamis, Hanna; Allain, Jean Paul

    2017-10-01

    The former WEGA stellarator which is now operating as HIDRA at the University of Illinois will be almost exclusively used to study the intimate relationship between the plasma interacting with surfaces of different materials. A Material Analysis Tool (HIDRA-MAT) is being designed and will be built based on the successful Material Analysis and Particle Probe (MAPP) which is currently used on NSTX-U at PPPL. This will be an in-situ material diagnostic probe, meaning that all analysis can be done without breaking vacuum. This allows surface changes to be studied in real-time. HIDRA-MAT will consist of several in-situ diagnostics including Langmuir probes (LP), Thermal Desorption Spectroscopy (TDS), X-ray Photo Spectroscopy (XPS) and Ion Scattering Spectroscopy (ISS). This presentation will outline the HIDRA-MAT diagnostic and initial design, as well as its integration into the HIDRA system.

  7. Feasibility Study of Interstellar Missions Using Laser Sail Probes Ranging in Size from the Nano to the Macro

    NASA Technical Reports Server (NTRS)

    Malroy, Eric T.

    2010-01-01

    This paper presents the analysis examining the feasibility of interstellar travel using laser sail probes ranging in size from the nano to the macro. The relativistic differential equations of motion for a laser sail are set up and solved using the Pasic Method. The limitations of the analysis are presented and discussed. The requirements for the laser system are examined, including the thermal analysis of the laser sails. Black holes, plasma fields, atmospheric collisions and sun light are several methods discussed to enable the deceleration of the interstellar probe. A number of novel mission scenarios are presented including the embryonic transport of plant life as a precursor to the arrival of space colonies

  8. Visualizing photosynthesis through processing of chlorophyll fluorescence images

    NASA Astrophysics Data System (ADS)

    Daley, Paul F.; Ball, J. Timothy; Berry, Joseph A.; Patzke, Juergen; Raschke, Klaus E.

    1990-05-01

    Measurements of terrestrial plant photosynthesis frequently exploit sensing of gas exchange from leaves enclosed in gas-tight, climate controlled chambers. These methods are typically slow, and do not resolve variation in photosynthesis below the whole leaf level. A photosynthesis visualization technique is presented that uses images of leaves employing light from chlorophyll (Chl) fluorescence. Images of Chl fluorescence from whole leaves undergoing steady-state photosynthesis, photosynthesis induction, or response to stress agents were digitized during light flashes that saturated photochemical reactions. Use of saturating flashes permitted deconvolution of photochemical energy use from biochemical quenching mechanisms (qN) that dissipate excess excitation energy, otherwise damaging to the light harvesting apparatus. Combination of the digital image frames of variable fluorescence with reference frames obtained from the same leaves when dark-adapted permitted derivation of frames in which grey scale represented the magnitude of qN. Simultaneous measurements with gas-exchange apparatus provided data for non-linear calibration filters for subsequent rendering of grey-scale "images" of photosynthesis. In several experiments significant non-homogeneity of photosynthetic activity was observed following treatment with growth hormones, or shifts in light or humidity, and following infection by virus. The technique provides a rapid, non-invasive probe for stress physiology and plant disease detection.

  9. Potential of an emissive cylindrical probe in plasma.

    PubMed

    Fruchtman, A; Zoler, D; Makrinich, G

    2011-08-01

    The floating potential of an emissive cylindrical probe in a plasma is calculated for an arbitrary ratio of Debye length to probe radius and for an arbitrary ion composition. In their motion to the probe the ions are assumed to be collisionless. For a small Debye length, a two-scale analysis for the quasineutral plasma and for the sheath provides analytical expressions for the emitted and collected currents and for the potential as functions of a generalized mass ratio. For a Debye length that is not small, it is demonstrated that, as the Debye length becomes larger, the probe potential approaches the plasma potential and that the ion density near the probe is not smaller but rather is larger than it is in the plasma bulk.

  10. Optical probing of high intensity laser interaction with micron-sized cryogenic hydrogen jets

    NASA Astrophysics Data System (ADS)

    Ziegler, Tim; Rehwald, Martin; Obst, Lieselotte; Bernert, Constantin; Brack, Florian-Emanuel; Curry, Chandra B.; Gauthier, Maxence; Glenzer, Siegfried H.; Göde, Sebastian; Kazak, Lev; Kraft, Stephan D.; Kuntzsch, Michael; Loeser, Markus; Metzkes-Ng, Josefine; Rödel, Christian; Schlenvoigt, Hans-Peter; Schramm, Ulrich; Siebold, Mathias; Tiggesbäumker, Josef; Wolter, Steffen; Zeil, Karl

    2018-07-01

    Probing the rapid dynamics of plasma evolution in laser-driven plasma interactions provides deeper understanding of experiments in the context of laser-driven ion acceleration and facilitates the interplay with complementing numerical investigations. Besides the microscopic scales involved, strong plasma (self-)emission, predominantly around the harmonics of the driver laser, often complicates the data analysis. We present the concept and the implementation of a stand-alone probe laser system that is temporally synchronized to the driver laser, providing probing wavelengths beyond the harmonics of the driver laser. The capability of this system is shown during a full-scale laser proton acceleration experiment using renewable cryogenic hydrogen jet targets. For further improvements, we studied the influence of probe color, observation angle of the probe and temporal contrast of the driver laser on the probe image quality.

  11. The electrical performance of Ag Zn batteries for the Venus multi-probe mission

    NASA Technical Reports Server (NTRS)

    Palandati, C.

    1975-01-01

    An evaluation of 5 Ah and 21 Ah Silver-Zinc batteries was made to determine their suitability to meet the energy storage requirements of the bus vehicle, 3 small probes and large probe for the Venus multi-probe mission. The evaluation included a 4 Ah battery for the small probe, a 21 Ah battery for the large probe, one battery of each size for the bus vehicle power, a periodic cycling test on each size battery and a wet stand test of charged and discharged cells of both cell designs. The study on the probe batteries and bus vehicle batteries included both electrical and thermal simulation for the entire mission. The effects on silver migration and zinc penetration of the cellophane separators caused by the various test parameters were determined by visual and X-ray fluorescence analysis. The 5 Ah batteries supported the power requirements for the bus vehicle and small probe. The 21 Ah large probe battery supplied the required mission power. Both probe batteries delivered in excess of 132 percent of rated capacity at the completion of the mission simulation.

  12. Vibration sensitivity of the scanning near-field optical microscope with a tapered optical fiber probe.

    PubMed

    Chang, Win-Jin; Fang, Te-Hua; Lee, Haw-Long; Yang, Yu-Ching

    2005-01-01

    In this paper the Rayleigh-Ritz method was used to study the scanning near-field optical microscope (SNOM) with a tapered optical fiber probe's flexural and axial sensitivity to vibration. Not only the contact stiffness but also the geometric parameters of the probe can influence the flexural and axial sensitivity to vibration. According to the analysis, the lateral and axial contact stiffness had a significant effect on the sensitivity of vibration of the SNOM's probe, each mode had a different level of sensitivity and in the first mode the tapered optical fiber probe was the most acceptive to higher levels of flexural and axial vibration. Generally, when the contact stiffness was lower, the tapered probe was more sensitive to higher levels of both axial and flexural vibration than the uniform probe. However, the situation was reversed when the contact stiffness was larger. Furthermore, the effect that the probe's length and its tapered angle had on the SNOM's probe axial and flexural vibration were significant and these two conditions should be incorporated into the design of new SNOM probes.

  13. Clinical effect of azithromycin as an adjunct to non-surgical treatment of chronic periodontitis: a meta-analysis of randomized controlled clinical trials.

    PubMed

    Zhang, Z; Zheng, Y; Bian, X

    2016-06-01

    The results of recent published studies focusing on the effect of azithromycin as an adjunct to scaling and root planing (SRP) in the treatment of chronic periodontitis are inconsistent. We conducted a meta-analysis of randomized controlled clinical trials to examine the effect of azithromycin combined with SRP on periodontal clinical parameters as compared to SRP alone. An electronic search was carried out on Pubmed, Embase and the Cochrane Central Register of Controlled Trials from their earliest records through December 28, 2014 to identify studies that met pre-stated inclusion criteria. Reference lists of retrieved articles were also reviewed. Data were extracted independently by two authors. Either a fixed- or random-effects model was used to calculate the overall effect sizes of azithromycin on probing depth, attachment level (AL) and bleeding on probing (BOP). Heterogeneity was evaluated using the Q test and I(2) statistic. Publication bias was evaluated by Begg's test and Egger's test. A total of 14 trials were included in the meta-analysis. Compared with SRP alone, locally delivered azithromycin plus SRP statistically significantly reduced probing depth by 0.99 mm (95% CI 0.42-1.57) and increased AL by 1.12 mm (95% CI 0.31-1.92). In addition, systemically administered azithromycin plus SRP statistically significantly reduced probing depth by 0.21 mm (95% CI 0.12-0.29), BOP by 4.50% (95% CI 1.45-7.56) and increased AL by 0.23 mm (95% CI 0.07-0.39). Sensitivity analysis yielded similar results. No evidence of publication bias was observed. The additional benefit of systemic azithromycin was shown at the initially deep probing depth sites, but not at shallow or moderate sites. The overall effect sizes of systemic azithromycin showed a tendency to decrease with time, and meta-regression analysis suggested a negative relation between the length of follow-up and net change in probing depth (r = -0.05, p = 0.02). This meta-analysis provides further evidence that azithromycin used as an adjunct to SRP significantly improves the efficacy of non-surgical periodontal therapy on reducing probing depth, BOP and improving AL, particularly at the initially deep probing depth sites. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Pulsed Eddy Current Probe Design Based on Transient Circuit Analysis

    NASA Astrophysics Data System (ADS)

    Cadeau, Trevor J.; Krause, Thomas W.

    2009-03-01

    Probe design parameters affecting depth of penetration of pulsed eddy currents in multi-layer aluminum 2024-T3 were examined. Several probe designs were evaluated for their ability to detect a discontinuity at the bottom of a stack of aluminum plates. The reflection type probes, consisting of pick-up coil and encircling drive coil, were characterized based on their transient response to a square pulse excitation. Probes with longer fundamental time constants, equivalent to a lower driving frequency, generated greater depth of penetration. However, additional factors such as inductive and resistive load, and excessive coil heating were also factors that limited signal-to-noise response with increasing layer thickness.

  15. A high-temperature superconducting Helmholtz probe for microscopy at 9.4 T.

    PubMed

    Hurlston, S E; Brey, W W; Suddarth, S A; Johnson, G A

    1999-05-01

    The design and operation of a high-temperature superconducting (HTS) probe for magnetic resonance microscopy (MRM) at 400 MHz are presented. The design of the probe includes a Helmholtz coil configuration and a stable open-cycle cooling mechanism. Characterization of coil operating parameters is presented to demonstrate the suitability of cryo-cooled coils for MRM. Specifically, the performance of the probe is evaluated by comparison of signal-to-noise (SNR) performance with that of a copper Helmholtz pair, analysis of B1 field homogeneity, and quantification of thermal stability. Images are presented to demonstrate the SNR advantage of the probe for typical MRM applications.

  16. Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing.

    PubMed

    Dobryakov, A L; Kovalenko, S A; Weigel, A; Pérez-Lustres, J L; Lange, J; Müller, A; Ernsting, N P

    2010-11-01

    A setup for pump/supercontinuum-probe spectroscopy is described which (i) is optimized to cancel fluctuations of the probe light by single-shot referencing, and (ii) extends the probe range into the near-uv (1000-270 nm). Reflective optics allow 50 μm spot size in the sample and upon entry into two separate spectrographs. The correlation γ(same) between sample and reference readings of probe light level at every pixel exceeds 0.99, compared to γ(consec)<0.92 reported for consecutive referencing. Statistical analysis provides the confidence interval of the induced optical density, ΔOD. For demonstration we first examine a dye (Hoechst 33258) bound in the minor groove of double-stranded DNA. A weak 1.1 ps spectral oscillation in the fluorescence region, assigned to DNA breathing, is shown to be significant. A second example concerns the weak vibrational structure around t=0 which reflects stimulated Raman processes. With 1% fluctuations of probe power, baseline noise for a transient absorption spectrum becomes 25 μOD rms in 1 s at 1 kHz, allowing to record resonance Raman spectra of flavine adenine dinucleotide in the S(0) and S(1) state.

  17. 15 CFR 971.204 - Environmental and use conflict analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... If the permit area lies within the area of NOAA's Deep Ocean Mining Environmental Study (DOMES), the... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS... Administrator to prepare an environmental impact statement (EIS) on the proposed mining activities, and to...

  18. 15 CFR 971.204 - Environmental and use conflict analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... If the permit area lies within the area of NOAA's Deep Ocean Mining Environmental Study (DOMES), the... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS... Administrator to prepare an environmental impact statement (EIS) on the proposed mining activities, and to...

  19. 15 CFR 971.204 - Environmental and use conflict analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... If the permit area lies within the area of NOAA's Deep Ocean Mining Environmental Study (DOMES), the... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS... Administrator to prepare an environmental impact statement (EIS) on the proposed mining activities, and to...

  20. 15 CFR 971.204 - Environmental and use conflict analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... If the permit area lies within the area of NOAA's Deep Ocean Mining Environmental Study (DOMES), the... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS... Administrator to prepare an environmental impact statement (EIS) on the proposed mining activities, and to...

  1. Spectrometer gun

    DOEpatents

    Waechter, D.A.; Wolf, M.A.; Umbarger, C.J.

    1981-11-03

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun is described that includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  2. Probing collagen-enzyme mechanochemistry in native tissue with dynamic, enzyme-induced creep

    PubMed Central

    Zareian, Ramin; Church, Kelli P.; Saeidi, Nima; Flynn, Brendan P.; Beale, John W.; Ruberti, Jeffrey W.

    2012-01-01

    Mechanical strain or stretch of collagen has been shown to be protective of fibrils against both thermal and enzymatic degradation. The details of this mechanochemical relationship could change our understanding of load-bearing tissue formation, growth, maintenance and disease in vertebrate animals. However, extracting a quantitative relationship between strain and the rate of enzymatic degradation is extremely difficult in bulk tissue due to confounding diffusion effects. In this investigation, we develop a dynamic, enzyme-induced creep assay and diffusion/reaction rate scaling arguments to extract a lower bound on the relationship between strain and the cutting rate of bacterial collagenase (BC) at low strains. The assay method permits continuous, forced probing of enzyme-induced strain which is very sensitive to degradation rate differences between specimens at low initial strain. The results, obtained on uniaxially-loaded strips of bovine corneal tissue (0.1, 0.25 or 0.5 N), demonstrate that small differences in strain alter the enzymatic cutting rate of the BC substantially. It was estimated that a change in tissue elongation of only 1.5% (at ~5% strain) reduces the maximum cutting-rate of the enzyme by more than half. Estimation of the average load per monomer in the tissue strips indicates that this protective “cutoff” occurs when the collagen monomers are transitioning from an entropic to an energetic mechanical regime. The continuous tracking of the enzymatic cleavage rate as a function of strain during the initial creep response indicates that the decrease in the cleavage rate of the BC is non-linear (initially-steep between 4.5 and 6.5% then flattens out from 6.5–9.5%). The high sensitivity to strain at low strain implies that even lightly-loaded collagenous tissue may exhibit significant strain-protection. The dynamic, enzyme-induced creep assay described herein has the potential to permit the rapid characterization of collagen/enzyme mechanochemistry in many different tissue types. PMID:20429513

  3. Probing dynamics in colloidal crystals with pump-probe experiments at LCLS: Methodology and analysis

    DOE PAGES

    Mukharamova, Nastasia; Lazarev, Sergey; Meijer, Janne -Mieke; ...

    2017-05-19

    We present results of the studies of dynamics in colloidal crystals performed by pump-probe experiments using an X-ray free-electron laser (XFEL). Colloidal crystals were pumped with an infrared laser at a wavelength of 800 nm with varying power and probed by XFEL pulses at an energy of 8 keV with a time delay up to 1000 ps. The positions of the Bragg peaks, and their radial and azimuthal widths were analyzed as a function of the time delay. The spectral analysis of the data did not reveal significant enhancement of frequencies expected in this experiment. As a result, this allowedmore » us to conclude that the amplitude of vibrational modes excited in colloidal crystals was less than the systematic error caused by the noise level.« less

  4. Evaluation of a CdTe semiconductor based compact gamma camera for sentinel lymph node imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Paolo; Curion, Assunta S.; Mettivier, Giovanni

    2011-03-15

    Purpose: The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. Methods: The room-temperature CdTe pixel detector (1 mm thick) has 256x256 square pixels arranged with a 55 {mu}m pitch (sensitive area 14.08x14.08 mm{sup 2}), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diametermore » at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. Results: For {sup 99m}Tc, at 50 mm distance, a background-subtracted sensitivity of 6.5x10{sup -3} cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3x10{sup -2} cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq {sup 99m}Tc and prior localization with standard gamma camera lymphoscintigraphy. Conclusions: The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at shorter distances from the patient skin.« less

  5. Preparation of magnetic resonance probes using one-pot method for detection of hepatocellular carcinoma.

    PubMed

    Li, You-Wei; Chen, Zheng-Guang; Zhao, Zhou-She; Li, Hong-Li; Wang, Ji-Chen; Zhang, Zong-Ming

    2015-04-14

    To prepare the specific magnetic resonance (MR) probes for detection of hepatocellular carcinoma (HCC) using one-pot method. The carboxylated dextran-coated nanoparticles were conjugated with anti-α-fetoprotein (anti-AFP) or anti-glypican 3 (anti-GPC3) antibodies through 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS)-mediated reaction to synthesize the probes. The physical and chemical properties of the probes were determined by transmission electron microscopy (TEM) and dynamic light scattering, and the relaxivity was compared to uncombined ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) using a 1.5T clinical MR scanner. The binding efficiency of the antibodies to nanoparticles was measured with an ultraviolet-visible spectrophotometer. In addition, the probes were incubated with targetable cells in vitro. The superparamagnetic MR probes (anti-GPC3-USPION probe and anti-AFP-USPION probe) were synthesized using one-pot method. Their mean hydrodynamic diameter was 47 nm with a broader slight size distribution. The coupling efficiency of carboxylated dextran-coated ultrasmall superparamagnetic iron oxide (USPIO) with anti-GPC3 or anti-AFP antibody was 15.9% and 88.8%, respectively. Each of the USPIO nanoparticles may bind 3 GPC3 antibodies or 12 AFP antibodies. The statistical analysis showed no significance (P > 0.05) in shortening the T1 and T2 values when comparing the USPIO-AFP or USPIO-GPC3 to USPIO. Analysis of TEM images revealed that anti-GPC3-USPION probes and anti-AFP-USPION probes could specifically enter into the HepG2 cell by combining with the GPC3 receptors or AFP receptors, whereas the HepG2 cell sample incubated with USPIONs showed no or few nanoparticles in the cytoplasm. The synthesized probes using one-pot method can be used for in vitro experimental study and have potential clinical application in MR imaging for detection of hepatocellular carcinomas.

  6. Image mosaicing for automated pipe scanning

    NASA Astrophysics Data System (ADS)

    Summan, Rahul; Dobie, Gordon; Guarato, Francesco; MacLeod, Charles; Marshall, Stephen; Forrester, Cailean; Pierce, Gareth; Bolton, Gary

    2015-03-01

    Remote visual inspection (RVI) is critical for the inspection of the interior condition of pipelines particularly in the nuclear and oil and gas industries. Conventional RVI equipment produces a video which is analysed online by a trained inspector employing expert knowledge. Due to the potentially disorientating nature of the footage, this is a time intensive and difficult activity. In this paper a new probe for such visual inspections is presented. The device employs a catadioptric lens coupled with feature based structure from motion to create a 3D model of the interior surface of a pipeline. Reliance upon the availability of image features is mitigated through orientation and distance estimates from an inertial measurement unit and encoder respectively. Such a model affords a global view of the data thus permitting a greater appreciation of the nature and extent of defects. Furthermore, the technique estimates the 3D position and orientation of the probe thus providing information to direct remedial action. Results are presented for both synthetic and real pipe sections. The former enables the accuracy of the generated model to be assessed while the latter demonstrates the efficacy of the technique in a practice.

  7. Magnetically-Driven Radiative Shock Experiments for Laboratory Astrophysics

    NASA Astrophysics Data System (ADS)

    Clayson, Thomas; Lebedev, Sergey; Suzuki-Vidal, Francisco; Burdiak, Guy; Halliday, Jonathon; Hare, Jack; Suttle, Lee; Tubman, Ellie

    2017-10-01

    We present results from new experiments, aimed at producing radiative shocks, using an ``inverse liner'' configuration on the MAGPIE pulsed power facility (1.4 MA in 240 ns) at Imperial College London in the UK. In these experiments current passes through a thin walled metal tube and is returned through a central rod on the axis, generating a strong (40 Tesla) toroidal magnetic field. This drives a shock through the tube which launches a cylindrically symmetric, radially expanding radiative shock in to gas surrounding the tube. Unlike previous converging shock experiments, where the shock is located within the imploding liner and thus only permits end on probing, this experimental setup is much more open for diagnostic access and allows shocks to propagate further instead of colliding of axis. Multi-frame self-emission imaging, laser interferometry, emission spectrometry and magnetic probes were used to provide a better understanding of the shock dynamics. Results are shown from experiments performed in a variety of gases (Ne, Ar, Kr, Xe 1-50 mbar). In addition, methods for seeding perturbations are discussed which may allow for the study of several shock instabilities such as the Vishniac instability.

  8. Three axis velocity probe system

    DOEpatents

    Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.

    1992-01-01

    A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.

  9. Image mosaicing for automated pipe scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summan, Rahul, E-mail: rahul.summan@strath.ac.uk; Dobie, Gordon, E-mail: rahul.summan@strath.ac.uk; Guarato, Francesco, E-mail: rahul.summan@strath.ac.uk

    Remote visual inspection (RVI) is critical for the inspection of the interior condition of pipelines particularly in the nuclear and oil and gas industries. Conventional RVI equipment produces a video which is analysed online by a trained inspector employing expert knowledge. Due to the potentially disorientating nature of the footage, this is a time intensive and difficult activity. In this paper a new probe for such visual inspections is presented. The device employs a catadioptric lens coupled with feature based structure from motion to create a 3D model of the interior surface of a pipeline. Reliance upon the availability ofmore » image features is mitigated through orientation and distance estimates from an inertial measurement unit and encoder respectively. Such a model affords a global view of the data thus permitting a greater appreciation of the nature and extent of defects. Furthermore, the technique estimates the 3D position and orientation of the probe thus providing information to direct remedial action. Results are presented for both synthetic and real pipe sections. The former enables the accuracy of the generated model to be assessed while the latter demonstrates the efficacy of the technique in a practice.« less

  10. Histo-FISH protocol to detect bacterial compositions and biofilms formation in vivo.

    PubMed

    Madar, M; Slizova, M; Czerwinski, J; Hrckova, G; Mudronova, D; Gancarcikova, S; Popper, M; Pistl, J; Soltys, J; Nemcova, R

    2015-01-01

    The study of biofilm function in vivo in various niches of the gastrointestinal tract (GIT) is rather limited. It is more frequently used in in vitro approaches, as an alternative to the studies focused on formation mechanisms and function of biofilms, which do not represent the actual in vivo complexity of microbial structures. Additionally, in vitro tests can sometimes lead to unreliable results. The goal of this study was to develop a simple approach to detect bacterial populations, particularly Lactobacillus and Bifidobacterium in biofilms, in vivo by the fluorescent in situ hybridisation (FISH) method. We standardised a new Histo-FISH method based on specific fluorochrome labelling probes which are able to detect Lactobacillus spp. and Bifidobacterium spp. within biofilms on the mucosal surface of the GIT embedded in paraffin in histological slices. This method is also suitable for visualisation of bacterial populations in the GIT internal content. Depending on the labelling probes, the Histo-FISH method has the potential to detect other probiotic strains or pathogenic bacteria. This original approach permits us to analyse bacterial colonisation processes as well as biofilm formation in stomach and caecum of BALB/c and germ-free mice.

  11. Probing the tides in interacting galaxy pairs

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.

    1990-01-01

    Detailed spectroscopic and imaging observations of colliding elliptical galaxies revealed unmistakable diagnostic signatures of the tidal interactions. It is possible to compare both the distorted luminosity distributions and the disturbed internal rotation profiles with numerical simulations in order to model the strength of the tidal gravitational field acting within a given pair of galaxies. Using the best-fit numerical model, one can then measure directly the mass of a specific interacting binary system. This technique applies to individual pairs and therefore complements the classical methods of measuring the masses of galaxy pairs in well-defined statistical samples. The 'personalized' modeling of galaxy pairs also permits the derivation of each binary's orbit, spatial orientation, and interaction timescale. Similarly, one can probe the tides in less-detailed observations of disturbed galaxies in order to estimate some of the physical parameters for larger samples of interacting galaxy pairs. These parameters are useful inputs to the more universal problems of (1) the galaxy merger rate, (2) the strength and duration of the driving forces behind tidally stimulated phenomena (e.g., starbursts and maybe quasi steller objects), and (3) the identification of long-lived signatures of interaction/merger events.

  12. Typing of artiodactyl MHC-DRB genes with the help of intronic simple repeated DNA sequences.

    PubMed

    Schwaiger, F W; Buitkamp, J; Weyers, E; Epplen, J T

    1993-02-01

    An efficient oligonucleotide typing method for the highly polymorphic MHC-DRB genes is described for artiodactyls like cattle, sheep and goat. By means of the polymerase chain reaction, the second exon of MHC-DRB is amplified as well as part of the adjacent intron containing a mixed simple repeat sequence. Using this primer combination we were able to amplify the MHC-DRB exons 2 and adjacent introns from all of the investigated 10 species of the family of Bovidae and giraffes. Therefore, the DRB genes of novel artiodactyl species can also be readily studied. Oligonucleotide probes specific for the polymorphisms of ungulate DRB genes are used with which sequences differing in at least one single base can be distinguished. Exonic polymorphism was found to be correlated with the allele lengths and the patterns of the repeat structures. Hence oligonucleotide probes specific for different simple repeats and polymorphic positions serve also for typing across species barriers. The strict correlation of sequence length and exonic polymorphism permits a preselection of specific oligonucleotides for hybridization. Thus more than 20 alleles can already be differentiated from each of the three species.

  13. Temperatures Achieved in Human and Canine Neocortex During Intraoperative Passive or Active Focal Cooling

    PubMed Central

    Han, Rowland H.; Yarbrough, Chester K.; Patterson, Edward E.; Yang, Xiao-Feng; Miller, John W.; Rothman, Steven M.; D'Ambrosio, Raimondo

    2015-01-01

    Focal cortical cooling inhibits seizures and prevents acquired epileptogenesis in rodents. To investigate the potential clinical utility of this treatment modality, we examined the thermal characteristics of canine and human brain undergoing active and passive surface cooling in intraoperative settings. Four patients with intractable epilepsy were treated in a standard manner. Before the resection of a neocortical epileptogenic focus, multiple intraoperative studies of active (custom-made cooled irrigation-perfused grid) and passive (stainless steel probe) cooling were performed. We also actively cooled the neocortices of two dogs with perfused grids implanted for 2 hours. Focal surface cooling of the human brain causes predictable depth-dependent cooling of the underlying brain tissue. Cooling of 0.6–2°C was achieved both actively and passively to a depth of 10–15 mm from the cortical surface. The perfused grid permitted comparable and persistent cooling of canine neocortex when the craniotomy was closed. Thus, the human cortex can easily be cooled with the use of simple devices such as a cooling grid or a small passive probe. These techniques provide pilot data for the design of a permanently implantable device to control intractable epilepsy. PMID:25902001

  14. Full-angle tomographic phase microscopy of flowing quasi-spherical cells.

    PubMed

    Villone, Massimiliano M; Memmolo, Pasquale; Merola, Francesco; Mugnano, Martina; Miccio, Lisa; Maffettone, Pier Luca; Ferraro, Pietro

    2017-12-19

    We report a reliable full-angle tomographic phase microscopy (FA-TPM) method for flowing quasi-spherical cells along microfluidic channels. This method lies in a completely passive optical system, i.e. mechanical scanning or multi-direction probing of the sample is avoided. It exploits the engineered rolling of cells while they are flowing along a microfluidic channel. Here we demonstrate significant progress with respect to the state of the art of in-flow TPM by showing a general extension to cells having almost spherical shapes while they are flowing in suspension. In fact, the adopted strategy allows the accurate retrieval of rotation angles through a theoretical model of the cells' rotation in a dynamic microfluidic flow by matching it with phase-contrast images resulting from holographic reconstructions. So far, the proposed method is the first and the only one that permits to get in-flow TPM by probing the cells with full-angle, achieving accurate 3D refractive index mapping and the simplest optical setup, simultaneously. Proof of concept experiments were performed successfully on human breast adenocarcinoma MCF-7 cells, opening the way for the full characterization of circulating tumor cells (CTCs) in the new paradigm of liquid biopsy.

  15. Right-handed neutrinos as the dark radiation: Status and forecasts for the LHC

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Goldberg, Haim; Steigman, Gary

    2013-01-01

    Precision data from cosmology (probing the CMB decoupling epoch) and light-element abundances (probing the BBN epoch) have hinted at the presence of extra relativistic degrees of freedom, the so-called "dark radiation." We present a model independent study to account for the dark radiation by means of the right-handed partners of the three, left-handed, standard model neutrinos. We show that milli-weak interactions of these Dirac states (through their coupling to a TeV-scale Z‧ gauge boson) may allow the νR's to decouple much earlier, at a higher temperature, than their left-handed counterparts. If the νR's decouple during the quark-hadron crossover transition, they are considerably cooler than the νL's and contribute less than 3 extra "equivalent neutrinos" to the early Universe energy density. For decoupling in this transition region, the 3νR generate ΔNν=3(<3, extra relativistic degrees of freedom at BBN and at the CMB epochs. Consistency with present constraints on dark radiation permits us to identify the allowed region in the parameter space of Z‧ masses and couplings. Remarkably, the allowed region is within the range of discovery of LHC14.

  16. A Single Electrochemical Probe Used for Analysis of Multiple Nucleic Acid Sequences

    PubMed Central

    Mills, Dawn M.; Calvo-Marzal, Percy; Pinzon, Jeffer M.; Armas, Stephanie; Kolpashchikov, Dmitry M.; Chumbimuni-Torres, Karin Y.

    2017-01-01

    Electrochemical hybridization sensors have been explored extensively for analysis of specific nucleic acids. However, commercialization of the platform is hindered by the need for attachment of separate oligonucleotide probes complementary to a RNA or DNA target to an electrode’s surface. Here we demonstrate that a single probe can be used to analyze several nucleic acid targets with high selectivity and low cost. The universal electrochemical four-way junction (4J)-forming (UE4J) sensor consists of a universal DNA stem-loop (USL) probe attached to the electrode’s surface and two adaptor strands (m and f) which hybridize to the USL probe and the analyte to form a 4J associate. The m adaptor strand was conjugated with a methylene blue redox marker for signal ON sensing and monitored using square wave voltammetry. We demonstrated that a single sensor can be used for detection of several different DNA/RNA sequences and can be regenerated in 30 seconds by a simple water rinse. The UE4J sensor enables a high selectivity by recognition of a single base substitution, even at room temperature. The UE4J sensor opens a venue for a re-useable universal platform that can be adopted at low cost for the analysis of DNA or RNA targets. PMID:29371782

  17. Study of plasma-facing components in the Lithium Tokamak Experiment with the Materials Analysis and Particle Probe

    NASA Astrophysics Data System (ADS)

    Lucia, M.; Kaita, R.; Majeski, R.; Boyle, D. P.; Granstedt, E. M.; Jacobson, C. M.; Schmitt, J. C.; Allain, J. P.; Bedoya, F.; Gonderman, S.

    2013-10-01

    The Lithium Tokamak Experiment (LTX) is a spherical torus designed to accommodate solid or liquid lithium as the primary plasma-facing component (PFC). We present initial results from the implementation on LTX of the Materials Analysis and Particle Probe (MAPP) diagnostic, a collaboration among PPPL, Purdue University, and the University of Illinois. MAPP is a compact in vacuo surface science diagnostic, and its operation on LTX will provide the first ever in situ surface measurements of a tokamak first wall environment. With MAPP's analysis techniques, we will study the evolution of the surface chemistry of LTX's first wall as a function of varied temperature and lithium coating. During its 2013 run campaign, LTX will use an electron beam to evaporate lithium onto the first wall from an in-vessel reservoir. We will use two quartz crystal microbalances to estimate thickness of lithium coatings thus applied to the MAPP probe. We have recently installed a set of triple Langmuir probes on LTX, and they will be used to relate LTX edge plasma parameters to MAPP results. We will combine data from MAPP and the triple probes to estimate the local edge recycling coefficient based on desorption of retained hydrogen. This work was supported by U.S. DOE contract DE-AC02-09CH11466.

  18. 7 CFR 301.80-4 - Issuance and cancellation of certificates and permits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... this subpart. (d) Scientific permits to allow the interstate movement of regulated articles, and... may be issued for any regulated articles (except soil samples for processing, testing, or analysis) by... destination under all Federal domestic plant quarantines applicable to such articles and: (1) Have originated...

  19. 7 CFR 301.80-4 - Issuance and cancellation of certificates and permits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... this subpart. (d) Scientific permits to allow the interstate movement of regulated articles, and... may be issued for any regulated articles (except soil samples for processing, testing, or analysis) by... destination under all Federal domestic plant quarantines applicable to such articles and: (1) Have originated...

  20. Analysis of Radiation Damage in Light Water Reactors: Comparison of Cluster Analysis Methods for the Analysis of Atom Probe Data.

    PubMed

    Hyde, Jonathan M; DaCosta, Gérald; Hatzoglou, Constantinos; Weekes, Hannah; Radiguet, Bertrand; Styman, Paul D; Vurpillot, Francois; Pareige, Cristelle; Etienne, Auriane; Bonny, Giovanni; Castin, Nicolas; Malerba, Lorenzo; Pareige, Philippe

    2017-04-01

    Irradiation of reactor pressure vessel (RPV) steels causes the formation of nanoscale microstructural features (termed radiation damage), which affect the mechanical properties of the vessel. A key tool for characterizing these nanoscale features is atom probe tomography (APT), due to its high spatial resolution and the ability to identify different chemical species in three dimensions. Microstructural observations using APT can underpin development of a mechanistic understanding of defect formation. However, with atom probe analyses there are currently multiple methods for analyzing the data. This can result in inconsistencies between results obtained from different researchers and unnecessary scatter when combining data from multiple sources. This makes interpretation of results more complex and calibration of radiation damage models challenging. In this work simulations of a range of different microstructures are used to directly compare different cluster analysis algorithms and identify their strengths and weaknesses.

  1. Quantitative Multispectral Analysis Of Discrete Subcellular Particles By Digital Imaging Fluorescence Microscopy (DIFM)

    NASA Astrophysics Data System (ADS)

    Dorey, C. K.; Ebenstein, David B.

    1988-10-01

    Subcellular localization of multiple biochemical markers is readily achieved through their characteristic autofluorescence or through use of appropriately labelled antibodies. Recent development of specific probes has permitted elegant studies in calcium and pH in living cells. However, each of these methods measured fluorescence at one wavelength; precise quantitation of multiple fluorophores at individual sites within a cell has not been possible. Using DIFM, we have achieved spectral analysis of discrete subcellular particles 1-2 gm in diameter. The fluorescence emission is broken into narrow bands by an interference monochromator and visualized through the combined use of a silicon intensified target (SIT) camera, a microcomputer based framegrabber with 8 bit resolution, and a color video monitor. Image acquisition, processing, analysis and display are under software control. The digitized image can be corrected for the spectral distortions induced by the wavelength dependent sensitivity of the camera, and the displayed image can be enhanced or presented in pseudocolor to facilitate discrimination of variation in pixel intensity of individual particles. For rapid comparison of the fluorophore composition of granules, a ratio image is produced by dividing the image captured at one wavelength by that captured at another. In the resultant ratio image, a granule which has a fluorophore composition different from the majority is selectively colored. This powerful system has been utilized to obtain spectra of endogenous autofluorescent compounds in discrete cellular organelles of human retinal pigment epithelium, and to measure immunohistochemically labelled components of the extracellular matrix associated with the human optic nerve.

  2. Analysis of Eddy Current Capabilities for the Detection of Outer Diameter Stress Corrosion Cracking in Small Bore Metallic Structures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Williams, Phillip; Simpson, John

    2007-01-01

    The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in Space Shuttle Primary Reaction Control System (PRCS) Thrusters. In this case, the detection of deeply buried stress corrosion cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite and boundary element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of stress corrosion cracking in Space Shuttle Primary Reaction Control System (PRCS) Thrusters.

  3. Use of molecular techniques to evaluate the survival of a microorganism injected into an aquifer

    USGS Publications Warehouse

    Thiem, S.M.; Krumme, M.L.; Smith, R.L.; Tiedje, J.M.

    1994-01-01

    A PCR primer set and an internal probe that are specific for Pseudomonas sp. strain B13, a 3-chlorobenzoate-metabolizing strain, were developed. Using this primer set and probe, we were able to detect Pseudomonas sp. strain B13 DNA sequences in DNA extracted from aquifer samples 14.5 months after Pseudomonas sp. strain B13 had been injected into a sand and gravel aquifer. This primer set and probe were also used to analyze isolates from 3-chlorobenzoate enrichments of the aquifer samples by Southern blot analysis. Hybridization of Southern blots with the Pseudomonas sp. strain B13-specific probe and a catabolic probe in conjunction with restriction fragment length polymorphism (RFLP) analysis of ribosome genes was used to determine that viable Pseudomonas sp. strain B13 persisted in this environment. We isolated a new 3-chlorobenzoate-degrading strain from one of these enrichment cultures. The B13-specific probe does not hybridize to DNA from this isolate. The new strain could be the result of gene exchange between Pseudomonas sp. strain B13 and an indigenous bacterium. This speculation is based on an RFLP pattern of ribosome genes that differs from that of Pseudomonas sp. strain B13, the fact that identically sized restriction fragments hybridized to the catabolic gene probe, and the absence of any enrichable 3-chlorobenzoate-degrading strains in the aquifer prior to inoculation.

  4. Resolution of common dietary sugars from probe sugars for test of intestinal permeability using capillary column gas chromatography.

    PubMed

    Farhadi, Ashkan; Keshavarzian, Ali; Fields, Jeremy Z; Sheikh, Maliha; Banan, Ali

    2006-05-19

    The most widely accepted method for the evaluation of intestinal barrier integrity is the measurement of the permeation of sugar probes following an oral test dose of sugars. The most-widely used sugar probes are sucrose, lactulose, mannitol and sucralose. Measuring these sugars using a sensitive gas chromatographic (GC) method, we noticed interference on the area of the lactulose and mannitol peaks. We tested different sugars to detect the possible makeup of these interferences and finally detected that the lactose interferes with lactulose peak and fructose interferes with mannitol peak. On further developing of our method, we were able to reasonably separate these peaks using different columns and condition for our assay. Sample preparation was rapid and simple and included adding internal standard sugars, derivitization and silylation. We used two chromatographic methods. In the first method we used Megabore column and had a run time of 34 min. This resulted in partial separation of the peaks. In the second method we used thin capillary column and was able to reasonably separate the lactose and lactulose peaks and the mannitol and fructose peaks with run time of 22 min. The sugar probes including mannitol, sucrose, lactulose, sucralose, fructose and lactose were detected precisely, without interference. The assay was linear between lactulose concentrations of 0.5 and 40 g/L (r(2)=1.000, P<0.0001) and mannitol concentrations of 0.01 and 40 g/L (r(2)=1.000). The sensitivity of this method remained high using new column and assay condition. The minimum detectable concentration calculated for both methods was 0.5 mg/L for lactulose and 1 mg/L for mannitol. This is the first report of interference of commonly used sugars with test of intestinal permeability. These sugars are found in most of fruits and dairy products and could easily interfere with the result of permeability tests. Our new GC assay of urine sugar probes permits the simultaneous quantitation of sucralose, sucrose, mannitol and lactulose, without interference with lactose and fructose. This assay is a rapid, simple, sensitive and reproducible method to accurately measure intestinal permeability.

  5. A new general model for predicting melting thermodynamics of complementary and mismatched B-form duplexes containing locked nucleic acids: application to probe design for digital PCR detection of somatic mutations.

    PubMed

    Hughesman, Curtis; Fakhfakh, Kareem; Bidshahri, Roza; Lund, H Louise; Haynes, Charles

    2015-02-17

    Advances in real-time polymerase chain reaction (PCR), as well as the emergence of digital PCR (dPCR) and useful modified nucleotide chemistries, including locked nucleic acids (LNAs), have created the potential to improve and expand clinical applications of PCR through their ability to better quantify and differentiate amplification products, but fully realizing this potential will require robust methods for designing dual-labeled hydrolysis probes and predicting their hybridization thermodynamics as a function of their sequence, chemistry, and template complementarity. We present here a nearest-neighbor thermodynamic model that accurately predicts the melting thermodynamics of a short oligonucleotide duplexed either to its perfect complement or to a template containing mismatched base pairs. The model may be applied to pure-DNA duplexes or to duplexes for which one strand contains any number and pattern of LNA substitutions. Perturbations to duplex stability arising from mismatched DNA:DNA or LNA:DNA base pairs are treated at the Gibbs energy level to maintain statistical significance in the regressed model parameters. This approach, when combined with the model's accounting of the temperature dependencies of the melting enthalpy and entropy, permits accurate prediction of T(m) values for pure-DNA homoduplexes or LNA-substituted heteroduplexes containing one or two independent mismatched base pairs. Terms accounting for changes in solution conditions and terminal addition of fluorescent dyes and quenchers are then introduced so that the model may be used to accurately predict and thereby tailor the T(m) of a pure-DNA or LNA-substituted hydrolysis probe when duplexed either to its perfect-match template or to a template harboring a noncomplementary base. The model, which builds on classic nearest-neighbor thermodynamics, should therefore be of use to clinicians and biologists who require probes that distinguish and quantify two closely related alleles in either a quantitative PCR or dPCR assay. This potential is demonstrated by using the model to design allele-specific probes that completely discriminate and quantify clinically relevant mutant alleles (BRAF V600E and KIT D816V) in a dPCR assay.

  6. Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kasper, Justin C.; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart D.; Belcher, John W.; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony W.; Chandran, Benjamin D. G.; Cheimets, Peter; Cirtain, Jonathan W.; Cranmer, Steven R.; Curtis, David W.; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, S. Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy A.; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven P.; Korreck, Kelly E.; Larson, Davin; Lazarus, Alan J.; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James P.; Marchant, William; Maruca, Bennet A.; McComas, David J.; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew M.; Pogorelov, Nikolai; Reinhart, Matthew J.; Richardson, John D.; Robinson, Miles; Rosen, Irene; Skoug, Ruth M.; Slagle, Amanda; Steinberg, John T.; Stevens, Michael L.; Szabo, Adam; Taylor, Ellen R.; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S. T.; Zank, Gary

    2016-12-01

    The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are rotated relative to one another so their broad fields of view combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield and covered by SPC. Observations by SPC and SPAN produce the combined field of view and measurement capabilities required to fulfill the science objectives of SWEAP and Solar Probe Plus. SWEAP measurements, in concert with magnetic and electric fields, energetic particles, and white light contextual imaging will enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, and particle acceleration in the inner heliosphere of the solar system. SPC and SPAN are managed by the SWEAP Electronics Module (SWEM), which distributes power, formats onboard data products, and serves as a single electrical interface to the spacecraft. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution. Full resolution data are stored within the SWEM, enabling high resolution observations of structures such as shocks, reconnection events, and other transient structures to be selected for download after the fact. This paper describes the implementation of the SWEAP Investigation, the driving requirements for the suite, expected performance of the instruments, and planned data products, as of mission preliminary design review.

  7. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  8. Rugged fiber optic probe for raman measurement

    DOEpatents

    O'Rourke, Patrick E.; Toole, Jr., William R.; Nave, Stanley E.

    1998-01-01

    An optical probe for conducting light scattering analysis is disclosed. The probe comprises a hollow housing and a probe tip. A fiber assembly made up of a transmitting fiber and a receiving bundle is inserted in the tip. A filter assembly is inserted in the housing and connected to the fiber assembly. A signal line from the light source and to the spectrometer also is connected to the filter assembly and communicates with the fiber assembly. By using a spring-loaded assembly to hold the fiber connectors together with the in-line filters, complex and sensitive alignment procedures are avoided. The close proximity of the filter assembly to the probe tip eliminates or minimizes self-scattering generated by the optical fiber. Also, because the probe can contact the sample directly, sensitive optics can be eliminated.

  9. Single nucleotide polymorphism analysis using different colored dye dimer probes

    NASA Astrophysics Data System (ADS)

    Marmé, Nicole; Friedrich, Achim; Denapaite, Dalia; Hakenbeck, Regine; Knemeyer, Jens-Peter

    2006-09-01

    Fluorescence quenching by dye dimer formation has been utilized to develop hairpin-structured DNA probes for the detection of a single nucleotide polymorphism (SNP) in the penicillin target gene pbp2x, which is implicated in the penicillin resistance of Streptococcus pneumoniae. We designed two specific DNA probes for the identification of the pbp2x genes from a penicillin susceptible strain R6 and a resistant strain Streptococcus mitis 661 using green-fluorescent tetramethylrhodamine (TMR) and red-fluorescent DY-636, respectively. Hybridization of each of the probes to its respective target DNA sequence opened the DNA hairpin probes, consequently breaking the nonfluorescent dye dimers into fluorescent species. This hybridization of the target with the hairpin probe achieved single nucleotide specific detection at nanomolar concentrations via increased fluorescence.

  10. Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, K. H.; Seo, B. H.; Kim, J. H.

    2016-03-15

    As collisions between electrons and neutral particles constitute one of the most representative physical phenomena in weakly ionized plasma, the electron-neutral (e-n) collision frequency is a very important plasma parameter as regards understanding the physics of this material. In this paper, we measured the e-n collision frequency in the plasma using a calibrated cutoff-probe. A highly accurate reactance spectrum of the plasma/cutoff-probe system, which is expected based on previous cutoff-probe circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], is obtained using the calibrated cutoff-probe method, and the e-n collision frequency is calculated based on the cutoff-probe circuitmore » model together with the high-frequency conductance model. The measured e-n collision frequency (by the calibrated cutoff-probe method) is compared and analyzed with that obtained using a Langmuir probe, with the latter being calculated from the measured electron-energy distribution functions, in wide range of gas pressure.« less

  11. Implementation of probe data performance measures.

    DOT National Transportation Integrated Search

    2017-04-03

    This report presents results from a 12-month project where three arterial analysis tools based on probe vehicle segment speed data were developed for District 6. A case study of 5 arterials and two incidents was performed.

  12. Application of travel time information for traffic management.

    DOT National Transportation Integrated Search

    2012-03-01

    This report summarizes findings and implementations of probe vehicle data collection based on Bluetooth MAC address matching : technology. Probe vehicle travel time data are studied in the following field deployment case studies: analysis of traffic ...

  13. Analysis of multicrystal pump–probe data sets. I. Expressions for the RATIO model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, Bertrand; Coppens, Philip

    2014-08-30

    The RATIO method in time-resolved crystallography [Coppenset al.(2009).J. Synchrotron Rad.16, 226–230] was developed for use with Laue pump–probe diffraction data to avoid complex corrections due to wavelength dependence of the intensities. The application of the RATIO method in processing/analysis prior to structure refinement requires an appropriate ratio model for modeling the light response. The assessment of the accuracy of pump–probe time-resolved structure refinements based on the observed ratios was discussed in a previous paper. In the current paper, a detailed ratio model is discussed, taking into account both geometric and thermal light-induced changes.

  14. A Meta-Analysis and Systematic Review of the Literature to Evaluate Potential Threats to Internal Validity in Probe Procedures for Chained Tasks

    ERIC Educational Resources Information Center

    Alexander, Jennifer L.; Smith, Katie A.; Mataras, Theologia; Shepley, Sally B.; Ayres, Kevin M.

    2015-01-01

    The two most frequently used methods for assessing performance on chained tasks are single opportunity probes (SOPs) and multiple opportunity probes (MOPs). Of the two, SOPs may be easier and less time-consuming but can suppress actual performance. In comparison, MOPs can provide more information but present the risk of participants acquiring…

  15. Simultaneous measurement of cerebral blood flow and mRNA signals: pixel-based inter-modality correlational analysis.

    PubMed

    Zhao, W; Busto, R; Truettner, J; Ginsberg, M D

    2001-07-30

    The analysis of pixel-based relationships between local cerebral blood flow (LCBF) and mRNA expression can reveal important insights into brain function. Traditionally, LCBF and in situ hybridization studies for genes of interest have been analyzed in separate series. To overcome this limitation and to increase the power of statistical analysis, this study focused on developing a double-label method to measure local cerebral blood flow (LCBF) and gene expressions simultaneously by means of a dual-autoradiography procedure. A 14C-iodoantipyrine autoradiographic LCBF study was first performed. Serial brain sections (12 in this study) were obtained at multiple coronal levels and were processed in the conventional manner to yield quantitative LCBF images. Two replicate sections at each bregma level were then used for in situ hybridization. To eliminate the 14C-iodoantipyrine from these sections, a chloroform-washout procedure was first performed. The sections were then processed for in situ hybridization autoradiography for the probes of interest. This method was tested in Wistar rats subjected to 12 min of global forebrain ischemia by two-vessel occlusion plus hypotension, followed by 2 or 6 h of reperfusion (n=4-6 per group). LCBF and in situ hybridization images for heat shock protein 70 (HSP70) were generated for each rat, aligned by disparity analysis, and analyzed on a pixel-by-pixel basis. This method yielded detailed inter-modality correlation between LCBF and HSP70 mRNA expressions. The advantages of this method include reducing the number of experimental animals by one-half; and providing accurate pixel-based correlations between different modalities in the same animals, thus enabling paired statistical analyses. This method can be extended to permit correlation of LCBF with the expression of multiple genes of interest.

  16. High-throughput, 384-well, LC-MS/MS CYP inhibition assay using automation, cassette-analysis technique, and streamlined data analysis.

    PubMed

    Halladay, Jason S; Delarosa, Erlie Marie; Tran, Daniel; Wang, Leslie; Wong, Susan; Khojasteh, S Cyrus

    2011-08-01

    Here we describe a high capacity and high-throughput, automated, 384-well CYP inhibition assay using well-known HLM-based MS probes. We provide consistently robust IC(50) values at the lead optimization stage of the drug discovery process. Our method uses the Agilent Technologies/Velocity11 BioCel 1200 system, timesaving techniques for sample analysis, and streamlined data processing steps. For each experiment, we generate IC(50) values for up to 344 compounds and positive controls for five major CYP isoforms (probe substrate): CYP1A2 (phenacetin), CYP2C9 ((S)-warfarin), CYP2C19 ((S)-mephenytoin), CYP2D6 (dextromethorphan), and CYP3A4/5 (testosterone and midazolam). Each compound is incubated separately at four concentrations with each CYP probe substrate under the optimized incubation condition. Each incubation is quenched with acetonitrile containing the deuterated internal standard of the respective metabolite for each probe substrate. To minimize the number of samples to be analyzed by LC-MS/MS and reduce the amount of valuable MS runtime, we utilize timesaving techniques of cassette analysis (pooling the incubation samples at the end of each CYP probe incubation into one) and column switching (reducing the amount of MS runtime). Here we also report on the comparison of IC(50) results for five major CYP isoforms using our method compared to values reported in the literature.

  17. Analysis of wall-embedded Langmuir probe signals in different conditions on the Tokamak à Configuration Variable

    NASA Astrophysics Data System (ADS)

    Février, O.; Theiler, C.; De Oliveira, H.; Labit, B.; Fedorczak, N.; Baillod, A.

    2018-05-01

    This paper presents the current wall-embedded Langmuir probe system installed on the Tokamak à Configuration Variable (TCV), as well as the analysis tool chain used to interpret the current-voltage characteristic obtained when the probes are operated in swept-bias conditions. The analysis is based on a four-parameter fit combined with a minimum temperature approach. In order to reduce the effect of plasma fluctuations and measurement noise, several current-voltage characteristics are usually averaged before proceeding to the fitting. The impact of this procedure on the results is investigated, as well as the possible role of finite resistances in the circuitry, which could lead to an overestimation of the temperature. We study the application of the procedure in a specific regime, the plasma detachment, where results from other diagnostics indicate that the electron temperature derived from the Langmuir probes might be overestimated. To address this issue, we explore other fitting models and, in particular, an extension of the asymmetric double probe fit, which features effects of sheath expansion. We show that these models yield lower temperatures (up to approximately 60%) than the standard analysis in detached conditions, particularly for a temperature peak observed near the plasma strike point, but a discrepancy with other measurements remains. We explore a possible explanation for this observation, the presence of a fast electron population, and assess how robust the different methods are in such conditions.

  18. Air Permitting Implications of a Biorefinery Producing Raw Bio-Oil in Comparison with Producing Gasoline and Diesel Blendstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Arpit H; Zhang, Yi Min

    A biorefinery, considered a chemical process plant under the Clean Air Act permitting program, could be classified as a major or minor source based on the size of the facility and magnitude of regulated pollutants emitted. Our previous analysis indicates that a biorefinery using fast pyrolysis conversion process to produce finished gasoline and diesel blendstocks with a capacity of processing 2,000 dry metric tons of biomass per day would likely be classified as a major source because several regulated pollutants (such as particulate matter, sulfur dioxide, nitrogen oxide) are estimated to exceed the 100 tons per year (tpy) major sourcemore » threshold, applicable to chemical process plants. Being subject to a major source classification could pose additional challenges associated with obtaining an air permit in a timely manner before the biorefinery can start its construction. Recent developments propose an alternative approach to utilize bio-oil produced via the fast pyrolysis conversion process by shipping it to an existing petroleum refinery, where the raw bio-oil can be blended with petroleum-based feedstocks (e.g., vacuum gas oil) to produce gasoline and diesel blendstocks with renewable content. Without having to hydro-treat raw bio-oil, a biorefinery is likely to reduce its potential-to-emit to below the 100 tpy major source threshold, and therefore expedite its permitting process. We compare the PTE estimates for the two biorefinery designs with and without hydrotreating of bio-oils and examine the air permitting implications on potential air permit classification and discuss the best available control technology requirements for the major source biorefinery utilizing hydrotreating operation. Our analysis is expected to provide useful information to new biofuel project developers to identify opportunities to overcome challenges associated with air permitting.« less

  19. A novel ferrocenyl-naphthalimide as a multichannel probe for the detection of Cu(ii) and Hg(ii) in aqueous media and living cells.

    PubMed

    Dong, Junyang; Hu, Jianfeng; Baigude, Huricha; Zhang, Hao

    2018-01-02

    A novel ferrocenyl-naphthalimide multichannel probe 1 was designed and synthesized using a facile method. The color of the solution containing probe 1 changed from yellow to colorless upon the addition of Cu 2+ or Hg 2+ . Interestingly, probe 1 exhibited highly selective fluorescent turn-on for Cu 2+ and turn-off for Hg 2+ in aqueous solution. Probe 1 was an electrochemical Cu 2+ and Hg 2+ ion sensor, in which the Fc/Fc + redox couple was significantly shifted (ΔE 1/2 = 178 mV and ΔE 1/2 = 53 mV, respectively) upon complexation. Therefore, probe 1 can act as a naked-eye chemosensor, as well as an electrochemical and a fluorescent probe for Cu 2+ and Hg 2+ . Furthermore, this is the first reported probe that can be used for the bifunctional fluorescent detection of intracellular Cu 2+ and Hg 2+ by fluorescent imaging studies. These characteristics give this probe considerable potential in the study and analysis of Cu 2+ and Hg 2+ in complex biosystems.

  20. Unlabeled probes for the detection and typing of herpes simplex virus.

    PubMed

    Dames, Shale; Pattison, David C; Bromley, L Kathryn; Wittwer, Carl T; Voelkerding, Karl V

    2007-10-01

    Unlabeled probe detection with a double-stranded DNA (dsDNA) binding dye is one method to detect and confirm target amplification after PCR. Unlabeled probes and amplicon melting have been used to detect small deletions and single-nucleotide polymorphisms in assays where template is in abundance. Unlabeled probes have not been applied to low-level target detection, however. Herpes simplex virus (HSV) was chosen as a model to compare the unlabeled probe method to an in-house reference assay using dual-labeled, minor groove binding probes. A saturating dsDNA dye (LCGreen Plus) was used for real-time PCR. HSV-1, HSV-2, and an internal control were differentiated by PCR amplicon and unlabeled probe melting analysis after PCR. The unlabeled probe technique displayed 98% concordance with the reference assay for the detection of HSV from a variety of archived clinical samples (n = 182). HSV typing using unlabeled probes was 99% concordant (n = 104) to sequenced clinical samples and allowed for the detection of sequence polymorphisms in the amplicon and under the probe. Unlabeled probes and amplicon melting can be used to detect and genotype as few as 10 copies of target per reaction, restricted only by stochastic limitations. The use of unlabeled probes provides an attractive alternative to conventional fluorescence-labeled, probe-based assays for genotyping and detection of HSV and might be useful for other low-copy targets where typing is informative.

Top