Mind wandering in text comprehension under dual-task conditions.
Dixon, Peter; Li, Henry
2013-01-01
In two experiments, subjects responded to on-task probes while reading under dual-task conditions. The secondary task was to monitor the text for occurrences of the letter e. In Experiment 1, reading comprehension was assessed with a multiple-choice recognition test; in Experiment 2, subjects recalled the text. In both experiments, the secondary task replicated the well-known "missing-letter effect" in which detection of e's was less effective for function words and the word "the." Letter detection was also more effective when subjects were on task, but this effect did not interact with the missing-letter effect. Comprehension was assessed in both the dual-task conditions and in control single-task conditions. In the single-task conditions, both recognition (Experiment 1) and recall (Experiment 2) was better when subjects were on task, replicating previous research on mind wandering. Surprisingly, though, comprehension under dual-task conditions only showed an effect of being on task when measured with recall; there was no effect on recognition performance. Our interpretation of this pattern of results is that subjects generate responses to on-task probes on the basis of a retrospective assessment of the contents of working memory. Further, we argue that under dual-task conditions, the contents of working memory is not closely related to the reading processes required for accurate recognition performance. These conclusions have implications for models of text comprehension and for the interpretation of on-task probe responses.
Mind wandering in text comprehension under dual-task conditions
Dixon, Peter; Li, Henry
2013-01-01
In two experiments, subjects responded to on-task probes while reading under dual-task conditions. The secondary task was to monitor the text for occurrences of the letter e. In Experiment 1, reading comprehension was assessed with a multiple-choice recognition test; in Experiment 2, subjects recalled the text. In both experiments, the secondary task replicated the well-known “missing-letter effect” in which detection of e's was less effective for function words and the word “the.” Letter detection was also more effective when subjects were on task, but this effect did not interact with the missing-letter effect. Comprehension was assessed in both the dual-task conditions and in control single-task conditions. In the single-task conditions, both recognition (Experiment 1) and recall (Experiment 2) was better when subjects were on task, replicating previous research on mind wandering. Surprisingly, though, comprehension under dual-task conditions only showed an effect of being on task when measured with recall; there was no effect on recognition performance. Our interpretation of this pattern of results is that subjects generate responses to on-task probes on the basis of a retrospective assessment of the contents of working memory. Further, we argue that under dual-task conditions, the contents of working memory is not closely related to the reading processes required for accurate recognition performance. These conclusions have implications for models of text comprehension and for the interpretation of on-task probe responses. PMID:24101909
ERIC Educational Resources Information Center
Cowan, Nelson; Saults, J. Scott
2013-01-01
It is often proposed that individuals with high working memory span overcome proactive interference (PI) from previous trials, saving working memory for task-relevant items. We examined this hypothesis in word-list probe recognition. We found no difference in PI related to span. Instead, ex-Gaussian analysis of reaction time showed speed…
How to Say No: Single- and Dual-Process Theories of Short-Term Recognition Tested on Negative Probes
ERIC Educational Resources Information Center
Oberauer, Klaus
2008-01-01
Three experiments with short-term recognition tasks are reported. In Experiments 1 and 2, participants decided whether a probe matched a list item specified by its spatial location. Items presented at study in a different location (intrusion probes) had to be rejected. Serial position curves of positive, new, and intrusion probes over the probed…
Binding and Inhibition in Working Memory: Individual and Age Differences in Short-Term Recognition
ERIC Educational Resources Information Center
Oberauer, Klaus
2005-01-01
Two studies investigated the relationship between working memory capacity (WMC), adult age, and the resolution of conflict between familiarity and recollection in short-term recognition tasks. Experiment 1 showed a specific deficit of young adults with low WMC in rejecting intrusion probes (i.e., highly familiar probes) in a modified Sternberg…
Oberauer, Klaus
2008-05-01
Three experiments with short-term recognition tasks are reported. In Experiments 1 and 2, participants decided whether a probe matched a list item specified by its spatial location. Items presented at study in a different location (intrusion probes) had to be rejected. Serial position curves of positive, new, and intrusion probes over the probed location's position were mostly parallel. Serial position curves of intrusion probes over their position of origin were again parallel to those of positive probes. Experiment 3 showed largely parallel serial position effects for positive probes and for intrusion probes plotted over positions in a relevant and an irrelevant list, respectively. The results support a dual-process theory in which recognition is based on familiarity and recollection, and recollection uses 2 retrieval routes, from context to item and from item to context.
Zhang, John X; Wu, Renhua; Kong, Lingyue; Weng, Xuchu; Du, Yingchun
2010-06-01
Using event-related potentials (ERPs), the present study examined the temporal dynamics of proactive interference in working memory using a recent probes task. Participants memorized and retained a target set of four letters over a short retention interval. They then responded to a recognition probe by judging whether it was from the memory set. ERP waveforms elicited by positive probes compared to those from negative probes showed positive shifts in a fronto-central early N2 component and a parietal late positive component (LPC). The LPC was identified as the electrophysiological signature of proactive interference, as it differentiated between two types of negative probes defined based on whether they were recently encountered. These results indicate that the proactive interference we observed arises from a mismatch between familiarity and contextual information during recognition memory. When considered together with related studies in the literature, the results also suggest that there are different forms of proactive interference associated with different neural correlates. Copyright 2010 Elsevier Ltd. All rights reserved.
Explicit and spontaneous retrieval of emotional scenes: electrophysiological correlates.
Weymar, Mathias; Bradley, Margaret M; El-Hinnawi, Nasryn; Lang, Peter J
2013-10-01
When event-related potentials (ERP) are measured during a recognition task, items that have previously been presented typically elicit a larger late (400-800 ms) positive potential than new items. Recent data, however, suggest that emotional, but not neutral, pictures show ERP evidence of spontaneous retrieval when presented in a free-viewing task (Ferrari, Bradley, Codispoti, Karlsson, & Lang, 2012). In two experiments, we further investigated the brain dynamics of implicit and explicit retrieval. In Experiment 1, brain potentials were measured during a semantic categorization task, which did not explicitly probe episodic memory, but which, like a recognition task, required an active decision and a button press, and were compared to those elicited during recognition and free viewing. Explicit recognition prompted a late enhanced positivity for previously presented, compared with new, pictures regardless of hedonic content. In contrast, only emotional pictures showed an old-new difference when the task did not explicitly probe episodic memory, either when making an active categorization decision regarding picture content, or when simply viewing pictures. In Experiment 2, however, neutral pictures did prompt a significant old-new ERP difference during subsequent free viewing when emotionally arousing pictures were not included in the encoding set. These data suggest that spontaneous retrieval is heightened for salient cues, perhaps reflecting heightened attention and elaborative processing at encoding.
Explicit and spontaneous retrieval of emotional scenes: Electrophysiological correlates
Weymar, Mathias; Bradley, Margaret M.; El-Hinnawi, Nasryn; Lang, Peter J.
2014-01-01
When event-related potentials are measured during a recognition task, items that have previously been presented typically elicit a larger late (400–800 ms) positive potential than new items. Recent data, however, suggest that emotional, but not neutral, pictures show ERP evidence of spontaneous retrieval when presented in a free-viewing task (Ferrari, Bradley, Codispoti & Lang, 2012). In two experiments, we further investigated the brain dynamics of implicit and explicit retrieval. In Experiment 1, brain potentials were measured during a semantic categorization task, which did not explicitly probe episodic memory, but which, like a recognition task, required an active decision and a button press, and were compared to those elicited during recognition and free viewing. Explicit recognition prompted a late enhanced positivity for previously presented, compared to new, pictures regardless of hedonic content. In contrast, only emotional pictures showed an old-new difference when the task did not explicitly probe episodic memory, either when either making an active categorization decision regarding picture content, or when simply viewing pictures. In Experiment 2, however, neutral pictures did prompt a significant old-new ERP difference during subsequent free viewing when emotionally arousing pictures were not included in the encoding set. These data suggest that spontaneous retrieval is heightened for salient cues, perhaps reflecting heightened attention and elaborative processing at encoding. PMID:23795588
Calvo, Manuel G; Nummenmaa, Lauri
2009-12-01
Happy, surprised, disgusted, angry, sad, fearful, and neutral faces were presented extrafoveally, with fixations on faces allowed or not. The faces were preceded by a cue word that designated the face to be saccaded in a two-alternative forced-choice discrimination task (2AFC; Experiments 1 and 2), or were followed by a probe word for recognition (Experiment 3). Eye tracking was used to decompose the recognition process into stages. Relative to the other expressions, happy faces (1) were identified faster (as early as 160 msec from stimulus onset) in extrafoveal vision, as revealed by shorter saccade latencies in the 2AFC task; (2) required less encoding effort, as indexed by shorter first fixations and dwell times; and (3) required less decision-making effort, as indicated by fewer refixations on the face after the recognition probe was presented. This reveals a happy-face identification advantage both prior to and during overt attentional processing. The results are discussed in relation to prior neurophysiological findings on latencies in facial expression recognition.
Cowan, Nelson; Saults, J Scott
2013-02-01
It is often proposed that individuals with high working memory span overcome proactive interference (PI) from previous trials, saving working memory for task-relevant items. We examined this hypothesis in word-list probe recognition. We found no difference in PI related to span. Instead, ex-gaussian analysis of reaction time showed speed advantages for high spans specific to short lists (3 or 4 items) but absent from longer lists (6 or 8 items). We suggest that high-span advantages in reaction time are based on finesse during easy trials, not on overcoming PI. 2013 APA, all rights reserved
Poth, Christian H.; Schneider, Werner X.
2016-01-01
Human vision is organized in discrete processing episodes (e.g., eye fixations or task-steps). Object information must be transmitted across episodes to enable episodic short-term recognition: recognizing whether a current object has been seen in a previous episode. We ask whether episodic short-term recognition presupposes that objects have been encoded into capacity-limited visual working memory (VWM), which retains visual information for report. Alternatively, it could rely on the activation of visual features or categories that occurs before encoding into VWM. We assessed the dependence of episodic short-term recognition on VWM by a new paradigm combining letter report and probe recognition. Participants viewed displays of 10 letters and reported as many as possible after a retention interval (whole report). Next, participants viewed a probe letter and indicated whether it had been one of the 10 letters (probe recognition). In Experiment 1, probe recognition was more accurate for letters that had been encoded into VWM (reported letters) compared with non-encoded letters (non-reported letters). Interestingly, those letters that participants reported in their whole report had been near to one another within the letter displays. This suggests that the encoding into VWM proceeded in a spatially clustered manner. In Experiment 2, participants reported only one of 10 letters (partial report) and probes either referred to this letter, to letters that had been near to it, or far from it. Probe recognition was more accurate for near than for far letters, although none of these letters had to be reported. These findings indicate that episodic short-term recognition is constrained to a small number of simultaneously presented objects that have been encoded into VWM. PMID:27713722
Poth, Christian H; Schneider, Werner X
2016-01-01
Human vision is organized in discrete processing episodes (e.g., eye fixations or task-steps). Object information must be transmitted across episodes to enable episodic short-term recognition: recognizing whether a current object has been seen in a previous episode. We ask whether episodic short-term recognition presupposes that objects have been encoded into capacity-limited visual working memory (VWM), which retains visual information for report. Alternatively, it could rely on the activation of visual features or categories that occurs before encoding into VWM. We assessed the dependence of episodic short-term recognition on VWM by a new paradigm combining letter report and probe recognition. Participants viewed displays of 10 letters and reported as many as possible after a retention interval (whole report). Next, participants viewed a probe letter and indicated whether it had been one of the 10 letters (probe recognition). In Experiment 1, probe recognition was more accurate for letters that had been encoded into VWM (reported letters) compared with non-encoded letters (non-reported letters). Interestingly, those letters that participants reported in their whole report had been near to one another within the letter displays. This suggests that the encoding into VWM proceeded in a spatially clustered manner. In Experiment 2, participants reported only one of 10 letters (partial report) and probes either referred to this letter, to letters that had been near to it, or far from it. Probe recognition was more accurate for near than for far letters, although none of these letters had to be reported. These findings indicate that episodic short-term recognition is constrained to a small number of simultaneously presented objects that have been encoded into VWM.
Kowialiewski, Benjamin; Majerus, Steve
2016-01-01
Several models in the verbal domain of short-term memory (STM) consider a dissociation between item and order processing. This view is supported by data demonstrating that different types of time-based interference have a greater effect on memory for the order of to-be-remembered items than on memory for the items themselves. The present study investigated the domain-generality of the item versus serial order dissociation by comparing the differential effects of time-based interfering tasks, such as rhythmic interference and articulatory suppression, on item and order processing in verbal and musical STM domains. In Experiment 1, participants had to maintain sequences of verbal or musical information in STM, followed by a probe sequence, this under different conditions of interference (no-interference, rhythmic interference, articulatory suppression). They were required to decide whether all items of the probe list matched those of the memory list (item condition) or whether the order of the items in the probe sequence matched the order in the memory list (order condition). In Experiment 2, participants performed a serial order probe recognition task for verbal and musical sequences ensuring sequential maintenance processes, under no-interference or rhythmic interference conditions. For Experiment 1, serial order recognition was not significantly more impacted by interfering tasks than was item recognition, this for both verbal and musical domains. For Experiment 2, we observed selective interference of the rhythmic interference condition on both musical and verbal order STM tasks. Overall, the results suggest a similar and selective sensitivity to time-based interference for serial order STM in verbal and musical domains, but only when the STM tasks ensure sequential maintenance processes. PMID:27992565
Gorin, Simon; Kowialiewski, Benjamin; Majerus, Steve
2016-01-01
Several models in the verbal domain of short-term memory (STM) consider a dissociation between item and order processing. This view is supported by data demonstrating that different types of time-based interference have a greater effect on memory for the order of to-be-remembered items than on memory for the items themselves. The present study investigated the domain-generality of the item versus serial order dissociation by comparing the differential effects of time-based interfering tasks, such as rhythmic interference and articulatory suppression, on item and order processing in verbal and musical STM domains. In Experiment 1, participants had to maintain sequences of verbal or musical information in STM, followed by a probe sequence, this under different conditions of interference (no-interference, rhythmic interference, articulatory suppression). They were required to decide whether all items of the probe list matched those of the memory list (item condition) or whether the order of the items in the probe sequence matched the order in the memory list (order condition). In Experiment 2, participants performed a serial order probe recognition task for verbal and musical sequences ensuring sequential maintenance processes, under no-interference or rhythmic interference conditions. For Experiment 1, serial order recognition was not significantly more impacted by interfering tasks than was item recognition, this for both verbal and musical domains. For Experiment 2, we observed selective interference of the rhythmic interference condition on both musical and verbal order STM tasks. Overall, the results suggest a similar and selective sensitivity to time-based interference for serial order STM in verbal and musical domains, but only when the STM tasks ensure sequential maintenance processes.
The aftermath of memory retrieval for recycling visual working memory representations.
Park, Hyung-Bum; Zhang, Weiwei; Hyun, Joo-Seok
2017-07-01
We examined the aftermath of accessing and retrieving a subset of information stored in visual working memory (VWM)-namely, whether detection of a mismatch between memory and perception can impair the original memory of an item while triggering recognition-induced forgetting for the remaining, untested items. For this purpose, we devised a consecutive-change detection task wherein two successive testing probes were displayed after a single set of memory items. Across two experiments utilizing different memory-testing methods (whole vs. single probe), we observed a reliable pattern of poor performance in change detection for the second test when the first test had exhibited a color change. The impairment after a color change was evident even when the same memory item was repeatedly probed; this suggests that an attention-driven, salient visual change made it difficult to reinstate the previously remembered item. The second change detection, for memory items untested during the first change detection, was also found to be inaccurate, indicating that recognition-induced forgetting had occurred for the unprobed items in VWM. In a third experiment, we conducted a task that involved change detection plus continuous recall, wherein a memory recall task was presented after the change detection task. The analyses of the distributions of recall errors with a probabilistic mixture model revealed that the memory impairments from both visual changes and recognition-induced forgetting are explained better by the stochastic loss of memory items than by their degraded resolution. These results indicate that attention-driven visual change and recognition-induced forgetting jointly influence the "recycling" of VWM representations.
Information-Processing Correlates of Computer-Assisted Word Learning by Mentally Retarded Students.
ERIC Educational Resources Information Center
Conners, Frances A.; Detterman, Douglas K.
1987-01-01
Nineteen moderately/severely retarded students (ages 9-22) completed ten 15-minute computer-assisted instruction sessions and seven basic cognitive tasks measuring simple learning, choice reaction time, relearning, probed recall, stimulus discrimination, tachictoscopic threshold, and recognition memory. Stimulus discrimination, probed recall, and…
Child–Adult Differences in Using Dual-Task Paradigms to Measure Listening Effort
Charles, Lauren M.; Ricketts, Todd A.
2017-01-01
Purpose The purpose of the project was to investigate the effects modifying the secondary task in a dual-task paradigm to measure objective listening effort. To be specific, the complexity and depth of processing were increased relative to a simple secondary task. Method Three dual-task paradigms were developed for school-age children. The primary task was word recognition. The secondary task was a physical response to a visual probe (simple task), a physical response to a complex probe (increased complexity), or word categorization (increased depth of processing). Sixteen adults (22–32 years, M = 25.4) and 22 children (9–17 years, M = 13.2) were tested using the 3 paradigms in quiet and noise. Results For both groups, manipulations of the secondary task did not affect word recognition performance. For adults, increasing depth of processing increased the calculated effect of noise; however, for children, results with the deep secondary task were the least stable. Conclusions Manipulations of the secondary task differentially affected adults and children. Consistent with previous findings, increased depth of processing enhanced paradigm sensitivity for adults. However, younger participants were more likely to demonstrate the expected effects of noise on listening effort using a secondary task that did not require deep processing. PMID:28346816
The Effects of Probe Similarity on Retrieval and Comparison Processes in Associative Recognition.
Zhang, Qiong; Walsh, Matthew M; Anderson, John R
2017-02-01
In this study, we investigated the information processing stages underlying associative recognition. We recorded EEG data while participants performed a task that involved deciding whether a probe word triple matched any previously studied triple. We varied the similarity between probes and studied triples. According to a model of associative recognition developed in the Adaptive Control of Thought-Rational cognitive architecture, probe similarity affects the duration of the retrieval stage: Retrieval is fastest when the probe is similar to a studied triple. This effect may be obscured, however, by the duration of the comparison stage, which is fastest when the probe is not similar to the retrieved triple. Owing to the opposing effects of probe similarity on retrieval and comparison, overall RTs provide little information about each stage's duration. As such, we evaluated the model using a novel approach that decomposes the EEG signal into a sequence of latent states and provides information about the durations of the underlying information processing stages. The approach uses a hidden semi-Markov model to identify brief sinusoidal peaks (called bumps) that mark the onsets of distinct cognitive stages. The analysis confirmed that probe type has opposite effects on retrieval and comparison stages.
Göthe, Katrin; Oberauer, Klaus
2008-05-01
Dual process models postulate familiarity and recollection as the basis of the recognition process. We investigated the time-course of integration of the two information sources to one recognition judgment in a working memory task. We tested 24 subjects with a response signal variant of the modified Sternberg recognition task (Oberauer, 2001) to isolate the time course of three different probe types indicating different combinations of familiarity and source information. We compared two mathematical models implementing different ways of integrating familiarity and recollection. Within each model, we tested three assumptions about the nature of the familiarity signal, with familiarity having (a) only positive values, indicating similarity of the probe with the memory list, (b) only negative values, indicating novelty, or (c) both positive and negative values. Both models provided good fits to the data. A model combining the outputs of both processes additively (Integration Model) gave an overall better fit to the data than a model based on a continuous familiarity signal and a probabilistic all-or-none recollection process (Dominance Model).
Attention and Encoding in Physics Learning and Problem Solving
ERIC Educational Resources Information Center
Feil, Adam John
2009-01-01
This dissertation presents several studies designed to probe the mental representations that physics experts and novices form when interacting with typical instructional materials, such as diagrams and problem statements. By using recognition tasks and a change detection task, the mental representations of experts and novices are studied in a more…
Schultebraucks, Katharina; Deuter, Christian E; Duesenberg, Moritz; Schulze, Lars; Hellmann-Regen, Julian; Domke, Antonia; Lockenvitz, Lisa; Kuehl, Linn K; Otte, Christian; Wingenfeld, Katja
2016-09-01
Selective attention toward emotional cues and emotion recognition of facial expressions are important aspects of social cognition. Stress modulates social cognition through cortisol, which acts on glucocorticoid (GR) and mineralocorticoid receptors (MR) in the brain. We examined the role of MR activation on attentional bias toward emotional cues and on emotion recognition. We included 40 healthy young women and 40 healthy young men (mean age 23.9 ± 3.3), who either received 0.4 mg of the MR agonist fludrocortisone or placebo. A dot-probe paradigm was used to test for attentional biases toward emotional cues (happy and sad faces). Moreover, we used a facial emotion recognition task to investigate the ability to recognize emotional valence (anger and sadness) from facial expression in four graded categories of emotional intensity (20, 30, 40, and 80 %). In the emotional dot-probe task, we found a main effect of treatment and a treatment × valence interaction. Post hoc analyses revealed an attentional bias away from sad faces after placebo intake and a shift in selective attention toward sad faces compared to placebo. We found no attentional bias toward happy faces after fludrocortisone or placebo intake. In the facial emotion recognition task, there was no main effect of treatment. MR stimulation seems to be important in modulating quick, automatic emotional processing, i.e., a shift in selective attention toward negative emotional cues. Our results confirm and extend previous findings of MR function. However, we did not find an effect of MR stimulation on emotion recognition.
ERIC Educational Resources Information Center
Jamieson, Randall K.; Holmes, Signy; Mewhort, D. J. K.
2010-01-01
Dissociation of classification and recognition in amnesia is widely taken to imply 2 functional systems: an implicit procedural-learning system that is spared in amnesia and an explicit episodic-learning system that is compromised. We argue that both tasks reflect the global similarity of probes to memory. In classification, subjects sort…
Stages of processing in associative recognition: evidence from behavior, EEG, and classification.
Borst, Jelmer P; Schneider, Darryl W; Walsh, Matthew M; Anderson, John R
2013-12-01
In this study, we investigated the stages of information processing in associative recognition. We recorded EEG data while participants performed an associative recognition task that involved manipulations of word length, associative fan, and probe type, which were hypothesized to affect the perceptual encoding, retrieval, and decision stages of the recognition task, respectively. Analyses of the behavioral and EEG data, supplemented with classification of the EEG data using machine-learning techniques, provided evidence that generally supported the sequence of stages assumed by a computational model developed in the Adaptive Control of Thought-Rational cognitive architecture. However, the results suggested a more complex relationship between memory retrieval and decision-making than assumed by the model. Implications of the results for modeling associative recognition are discussed. The study illustrates how a classifier approach, in combination with focused manipulations, can be used to investigate the timing of processing stages.
Holistic processing, contact, and the other-race effect in face recognition.
Zhao, Mintao; Hayward, William G; Bülthoff, Isabelle
2014-12-01
Face recognition, holistic processing, and processing of configural and featural facial information are known to be influenced by face race, with better performance for own- than other-race faces. However, whether these various other-race effects (OREs) arise from the same underlying mechanisms or from different processes remains unclear. The present study addressed this question by measuring the OREs in a set of face recognition tasks, and testing whether these OREs are correlated with each other. Participants performed different tasks probing (1) face recognition, (2) holistic processing, (3) processing of configural information, and (4) processing of featural information for both own- and other-race faces. Their contact with other-race people was also assessed with a questionnaire. The results show significant OREs in tasks testing face memory and processing of configural information, but not in tasks testing either holistic processing or processing of featural information. Importantly, there was no cross-task correlation between any of the measured OREs. Moreover, the level of other-race contact predicted only the OREs obtained in tasks testing face memory and processing of configural information. These results indicate that these various cross-race differences originate from different aspects of face processing, in contrary to the view that the ORE in face recognition is due to cross-race differences in terms of holistic processing. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
de la Rosa, Stephan; Ekramnia, Mina; Bülthoff, Heinrich H.
2016-01-01
The ability to discriminate between different actions is essential for action recognition and social interactions. Surprisingly previous research has often probed action recognition mechanisms with tasks that did not require participants to discriminate between actions, e.g., left-right direction discrimination tasks. It is not known to what degree visual processes in direction discrimination tasks are also involved in the discrimination of actions, e.g., when telling apart a handshake from a high-five. Here, we examined whether action discrimination is influenced by movement direction and whether direction discrimination depends on the type of action. We used an action adaptation paradigm to target action and direction discrimination specific visual processes. In separate conditions participants visually adapted to forward and backward moving handshake and high-five actions. Participants subsequently categorized either the action or the movement direction of an ambiguous action. The results showed that direction discrimination adaptation effects were modulated by the type of action but action discrimination adaptation effects were unaffected by movement direction. These results suggest that action discrimination and direction categorization rely on partly different visual information. We propose that action discrimination tasks should be considered for the exploration of visual action recognition mechanisms. PMID:26941633
Habeck, Christian; Rakitin, Brian; Steffener, Jason; Stern, Yaakov
2012-01-01
We performed a delayed-item-recognition task to investigate the neural substrates of non-verbal visual working memory with event-related fMRI (‘Shape task’). 25 young subjects (mean age: 24.0 years; STD=3.8 years) were instructed to study a list of either 1,2 or 3 unnamable nonsense line drawings for 3 seconds (‘stimulus phase’ or STIM). Subsequently, the screen went blank for 7 seconds (‘retention phase’ or RET), and then displayed a probe stimulus for 3 seconds in which subject indicated with a differential button press whether the probe was contained in the studied shape-array or not (‘probe phase’ or PROBE). Ordinal Trend Canonical Variates Analysis (Habeck et al., 2005a) was performed to identify spatial covariance patterns that showed a monotonic increase in expression with memory load during all task phases. Reliable load-related patterns were identified in the stimulus and retention phase (p<0.01), while no significant pattern could be discerned during the probe phase. Spatial covariance patterns that were obtained from an earlier version of this task (Habeck et al., 2005b) using 1, 3, or 6 letters (‘Letter task’) were also prospectively applied to their corresponding task phases in the current non-verbal task version. Interestingly, subject expression of covariance patterns from both verbal and non-verbal retention phases correlated positively in the non-verbal task for all memory loads (p<0.0001). Both patterns also involved similar frontoparietal brain regions that were increasing in activity with memory load, and mediofrontal and temporal regions that were decreasing. Mean subject expression of both patterns across memory load during retention also correlated positively with recognition accuracy (dL) in the Shape task (p<0.005). These findings point to similarities in the neural substrates of verbal and non-verbal rehearsal processes. Encoding processes, on the other hand, are critically dependent on the to-be-remembered material, and seem to necessitate material-specific neural substrates. PMID:22652306
NK1 receptor antagonism and emotional processing in healthy volunteers.
Chandra, P; Hafizi, S; Massey-Chase, R M; Goodwin, G M; Cowen, P J; Harmer, C J
2010-04-01
The neurokinin-1 (NK(1)) receptor antagonist, aprepitant, showed activity in several animal models of depression; however, its efficacy in clinical trials was disappointing. There is little knowledge of the role of NK(1) receptors in human emotional behaviour to help explain this discrepancy. The aim of the current study was to assess the effects of a single oral dose of aprepitant (125 mg) on models of emotional processing sensitive to conventional antidepressant drug administration in 38 healthy volunteers, randomly allocated to receive aprepitant or placebo in a between groups double blind design. Performance on measures of facial expression recognition, emotional categorisation, memory and attentional visual-probe were assessed following the drug absorption. Relative to placebo, aprepitant improved recognition of happy facial expressions and increased vigilance to emotional information in the unmasked condition of the visual probe task. In contrast, aprepitant impaired emotional memory and slowed responses in the facial expression recognition task suggesting possible deleterious effects on cognition. These results suggest that while antagonism of NK(1) receptors does affect emotional processing in humans, its effects are more restricted and less consistent across tasks than those of conventional antidepressants. Human models of emotional processing may provide a useful means of assessing the likely therapeutic potential of new treatments for depression.
Remember to blink: Reduced attentional blink following instructions to forget.
Taylor, Tracy L
2018-04-24
This study used rapid serial visual presentation (RSVP) to determine whether, in an item-method directed forgetting task, study word processing ends earlier for forget words than for remember words. The critical manipulation required participants to monitor an RSVP stream of black nonsense strings in which a single blue word was embedded. The next item to follow the word was a string of red fs that instructed the participant to forget the word or green rs that instructed the participant to remember the word. After the memory instruction, a probe string of black xs or os appeared at postinstruction positions 1-8. Accuracy in reporting the identity of the probe string revealed an attenuated attentional blink following instructions to forget. A yes-no recognition task that followed the study trials confirmed a directed forgetting effect, with better recognition of remember words than forget words. Considered in the context of control conditions that required participants to commit either all or none of the study words to memory, the pattern of probe identification accuracy following the directed forgetting task argues that an intention to forget releases limited-capacity attentional resources sooner than an instruction to remember-despite participants needing to maintain an ongoing rehearsal set in both cases.
Hamilton, A Cris; Martin, Randi C
2007-01-01
Previous research has indicated that patients with semantic short-term memory (STM) deficits demonstrate unusual intrusions of previously presented material during serial recall tasks (Martin and Lesch, 1996). These intrusions suggest excessive proactive interference (PI) from previous lists. Here, we explore one such patient's susceptibility to PI. Experiment 1 demonstrated patient M.L.'s extreme susceptibility to PI using a probe recognition task that manipulates the recency of negative probes (the recent negatives task). When stimuli consisted of letters, M.L. showed greatly exaggerated effects of PI, well outside of the range of healthy control participants. Experiment 2 used a variation of the recent negatives task to examine the relative contribution of semantic and phonological relatedness in PI. This task manipulated semantic and phonological relatedness of probes and recently presented list items. Relative to healthy control participants, patient M.L. showed exaggerated interference effects for both phonological and semantically related probes, both for probes related to the current list and for probes related to the previous list. These data have important implications for theories of semantic STM deficits. Specifically, these data suggest that it is not the rapid decay of semantic representations that is responsible for difficulties in short-term recall, but rather the abnormal persistence of previously presented material. We propose that this susceptibility to PI is the result of a deficit in control processes acting on STM.
Attention and memory bias to facial emotions underlying negative symptoms of schizophrenia.
Jang, Seon-Kyeong; Park, Seon-Cheol; Lee, Seung-Hwan; Cho, Yang Seok; Choi, Kee-Hong
2016-01-01
This study assessed bias in selective attention to facial emotions in negative symptoms of schizophrenia and its influence on subsequent memory for facial emotions. Thirty people with schizophrenia who had high and low levels of negative symptoms (n = 15, respectively) and 21 healthy controls completed a visual probe detection task investigating selective attention bias (happy, sad, and angry faces randomly presented for 50, 500, or 1000 ms). A yes/no incidental facial memory task was then completed. Attention bias scores and recognition errors were calculated. Those with high negative symptoms exhibited reduced attention to emotional faces relative to neutral faces; those with low negative symptoms showed the opposite pattern when faces were presented for 500 ms regardless of the valence. Compared to healthy controls, those with high negative symptoms made more errors for happy faces in the memory task. Reduced attention to emotional faces in the probe detection task was significantly associated with less pleasure and motivation and more recognition errors for happy faces in schizophrenia group only. Attention bias away from emotional information relatively early in the attentional process and associated diminished positive memory may relate to pathological mechanisms for negative symptoms.
Koda, Hiroki; Sato, Anna; Kato, Akemi
2013-09-01
Humans innately perceive infantile features as cute. The ethologist Konrad Lorenz proposed that the infantile features of mammals and birds, known as the baby schema (kindchenschema), motivate caretaking behaviour. As biologically relevant stimuli, newborns are likely to be processed specially in terms of visual attention, perception, and cognition. Recent demonstrations on human participants have shown visual attentional prioritisation to newborn faces (i.e., newborn faces capture visual attention). Although characteristics equivalent to those found in the faces of human infants are found in nonhuman primates, attentional capture by newborn faces has not been tested in nonhuman primates. We examined whether conspecific newborn faces captured the visual attention of two Japanese monkeys using a target-detection task based on dot-probe tasks commonly used in human visual attention studies. Although visual cues enhanced target detection in subject monkeys, our results, unlike those for humans, showed no evidence of an attentional prioritisation for newborn faces by monkeys. Our demonstrations showed the validity of dot-probe task for visual attention studies in monkeys and propose a novel approach to bridge the gap between human and nonhuman primate social cognition research. This suggests that attentional capture by newborn faces is not common to macaques, but it is unclear if nursing experiences influence their perception and recognition of infantile appraisal stimuli. We need additional comparative studies to reveal the evolutionary origins of baby-schema perception and recognition. Copyright © 2013 Elsevier B.V. All rights reserved.
The “parts and wholes” of face recognition: a review of the literature
Tanaka, James W.; Simonyi, Diana
2016-01-01
It has been claimed that faces are recognized as a “whole” rather than the recognition of individual parts. In a paper published in the Quarterly Journal of Experimental Psychology in 1993, Martha Farah and I attempted to operationalize the holistic claim using the part/whole task. In this task, participants studied a face and then their memory presented in isolation and in the whole face. Consistent with the holistic view, recognition of the part was superior when tested in the whole-face condition compared to when it was tested in isolation. The “whole face” or holistic advantage was not found for faces that were inverted, or scrambled, nor for non-face objects suggesting that holistic encoding was specific to normal, intact faces. In this paper, we reflect on the part/whole paradigm and how it has contributed to our understanding of what it means to recognize a face as a “whole” stimulus. We describe the value of part/whole task for developing theories of holistic and non-holistic recognition of faces and objects. We discuss the research that has probed the neural substrates of holistic processing in healthy adults and people with prosopagnosia and autism. Finally, we examine how experience shapes holistic face recognition in children and recognition of own- and other-race faces in adults. The goal of this article is to summarize the research on the part/whole task and speculate on how it has informed our understanding of holistic face processing. PMID:26886495
The "parts and wholes" of face recognition: A review of the literature.
Tanaka, James W; Simonyi, Diana
2016-10-01
It has been claimed that faces are recognized as a "whole" rather than by the recognition of individual parts. In a paper published in the Quarterly Journal of Experimental Psychology in 1993, Martha Farah and I attempted to operationalize the holistic claim using the part/whole task. In this task, participants studied a face and then their memory presented in isolation and in the whole face. Consistent with the holistic view, recognition of the part was superior when tested in the whole-face condition compared to when it was tested in isolation. The "whole face" or holistic advantage was not found for faces that were inverted, or scrambled, nor for non-face objects, suggesting that holistic encoding was specific to normal, intact faces. In this paper, we reflect on the part/whole paradigm and how it has contributed to our understanding of what it means to recognize a face as a "whole" stimulus. We describe the value of part/whole task for developing theories of holistic and non-holistic recognition of faces and objects. We discuss the research that has probed the neural substrates of holistic processing in healthy adults and people with prosopagnosia and autism. Finally, we examine how experience shapes holistic face recognition in children and recognition of own- and other-race faces in adults. The goal of this article is to summarize the research on the part/whole task and speculate on how it has informed our understanding of holistic face processing.
Nelson, James K; Reuter-Lorenz, Patricia A; Sylvester, Ching-Yune C; Jonides, John; Smith, Edward E
2003-09-16
Cognitive control requires the resolution of interference among competing and potentially conflicting representations. Such conflict can emerge at different points between stimulus input and response generation, with the net effect being that of compromising performance. The goal of this article was to dissociate the neural mechanisms underlying different sources of conflict to elucidate the architecture of the neural systems that implement cognitive control. By using functional magnetic resonance imaging and a verbal working memory task (item recognition), we examined brain activity related to two kinds of conflict with comparable behavioral consequences. In a trial of our item-recognition task, participants saw four letters, followed by a retention interval, and a probe letter that did or did not match one of the letters held in working memory (positive probe and negative probe, respectively). On some trials, conflict arose solely because of the current negative probe having a high familiarity, due to its membership in the immediately preceding trial's target set. On other trials, additional conflict arose because of the current negative probe having also been a positive probe on the immediately preceding trial, producing response-level conflict. Consistent with previous work, conflict due to high familiarity was associated with left prefrontal activation, but not with anterior cingulate activation. The response-conflict condition, when compared with high-familiarity conflict trials, was associated with anterior cingulate cortex activation, but with no additional left prefrontal activation. This double dissociation points to differing contributions of specific cortical areas to cognitive control, which are based on the source of conflict.
Type-specific proactive interference in patients with semantic and phonological STM deficits.
Harris, Lara; Olson, Andrew; Humphreys, Glyn
2014-01-01
Prior neuropsychological evidence suggests that semantic and phonological components of short-term memory (STM) are functionally and neurologically distinct. The current paper examines proactive interference (PI) from semantic and phonological information in two STM-impaired patients, DS (semantic STM deficit) and AK (phonological STM deficit). In Experiment 1 probe recognition tasks with open and closed sets of stimuli were used. Phonological PI was assessed using nonword items, and semantic and phonological PI was assessed using words. In Experiment 2 phonological and semantic PI was elicited by an item recognition probe test with stimuli that bore phonological and semantic relations to the probes. The data suggested heightened phonological PI for the semantic STM patient, and exaggerated effects of semantic PI in the phonological STM case. The findings are consistent with an account of extremely rapid decay of activated type-specific representations in cases of severely impaired phonological and semantic STM.
Recognition of oral spelling is diagnostic of the central reading processes.
Schubert, Teresa; McCloskey, Michael
2015-01-01
The task of recognition of oral spelling (stimulus: "C-A-T", response: "cat") is often administered to individuals with acquired written language disorders, yet there is no consensus about the underlying cognitive processes. We adjudicate between two existing hypotheses: Recognition of oral spelling uses central reading processes, or recognition of oral spelling uses central spelling processes in reverse. We tested the recognition of oral spelling and spelling to dictation abilities of a single individual with acquired dyslexia and dysgraphia. She was impaired relative to matched controls in spelling to dictation but unimpaired in recognition of oral spelling. Recognition of oral spelling for exception words (e.g., colonel) and pronounceable nonwords (e.g., larth) was intact. Our results were predicted by the hypothesis that recognition of oral spelling involves the central reading processes. We conclude that recognition of oral spelling is a useful tool for probing the integrity of the central reading processes.
Cognitive Processing in Oral and Silent Reading Comprehension.
ERIC Educational Resources Information Center
Salasoo, Aita
1986-01-01
Reading rates and comprehension measures that probed recognition of various levels of text structure were collected for passages read orally and silently by 16 college students. Results showed that memory traces of text microstructure created in oral reading were accessed faster during memory-based comprehension tasks than traces established by…
Raj, Vidya; Liang, Han-Chun; Woodward, Neil D.; Bauernfeind, Amy L.; Lee, Junghee; Dietrich, Mary; Park, Sohee; Cowan, Ronald L.
2011-01-01
Objectives MDMA users have impaired verbal memory, and voxel-based morphometry has demonstrated decreased gray matter in Brodmann area (BA) 18, 21 and 45. Because these regions play a role in verbal memory, we hypothesized that MDMA users would show altered brain activation in these areas during performance of an fMRI task that probed semantic verbal memory. Methods Polysubstance users enriched for MDMA exposure participated in a semantic memory encoding and recognition fMRI task that activated left BA 9, 18, 21/22 and 45. Primary outcomes were percent BOLD signal change in left BA 9, 18, 21/22 and 45, accuracy and response time. Results During semantic recognition, lifetime MDMA use was associated with decreased activation in left BA 9, 18 and 21/22 but not 45. This was partly influenced by contributions from cannabis and cocaine use. MDMA exposure was not associated with accuracy or response time during the semantic recognition task. Conclusions During semantic recognition, MDMA exposure is associated with reduced regional brain activation in regions mediating verbal memory. These findings partially overlap with prior structural evidence for reduced gray matter in MDMA users and may, in part, explain the consistent verbal memory impairments observed in other studies of MDMA users. PMID:19304866
Task difficulty moderates the revelation effect.
Aßfalg, André; Currie, Devon; Bernstein, Daniel M
2017-05-01
Tasks that precede a recognition probe induce a more liberal response criterion than do probes without tasks-the "revelation effect." For example, participants are more likely to claim that a stimulus is familiar directly after solving an anagram, relative to a condition without an anagram. Revelation effect hypotheses disagree whether hard preceding tasks should produce a larger revelation effect than easy preceding tasks. Although some studies have shown that hard tasks increase the revelation effect as compared to easy tasks, these studies suffered from a confound of task difficulty and task presence. Conversely, other studies have shown that the revelation effect is independent of task difficulty. In the present study, we used new task difficulty manipulations to test whether hard tasks produce larger revelation effects than easy tasks. Participants (N = 464) completed hard or easy preceding tasks, including anagrams (Exps. 1 and 2) and the typing of specific arrow key sequences (Exps. 3-6). With sample sizes typical of revelation effect experiments, the effect sizes of task difficulty on the revelation effect varied considerably across experiments. Despite this variability, a consistent data pattern emerged: Hard tasks produced larger revelation effects than easy tasks. Although the present study falsifies certain revelation effect hypotheses, the general vagueness of revelation effect hypotheses remains.
The effect of changing the secondary task in dual-task paradigms for measuring listening effort.
Picou, Erin M; Ricketts, Todd A
2014-01-01
The purpose of this study was to evaluate the effect of changing the secondary task in dual-task paradigms that measure listening effort. Specifically, the effects of increasing the secondary task complexity or the depth of processing on a paradigm's sensitivity to changes in listening effort were quantified in a series of two experiments. Specific factors investigated within each experiment were background noise and visual cues. Participants in Experiment 1 were adults with normal hearing (mean age 23 years) and participants in Experiment 2 were adults with mild sloping to moderately severe sensorineural hearing loss (mean age 60.1 years). In both experiments, participants were tested using three dual-task paradigms. These paradigms had identical primary tasks, which were always monosyllable word recognition. The secondary tasks were all physical reaction time measures. The stimulus for the secondary task varied by paradigm and was a (1) simple visual probe, (2) a complex visual probe, or (3) the category of word presented. In this way, the secondary tasks mainly varied from the simple paradigm by either complexity or depth of speech processing. Using all three paradigms, participants were tested in four conditions, (1) auditory-only stimuli in quiet, (2) auditory-only stimuli in noise, (3) auditory-visual stimuli in quiet, and (4) auditory-visual stimuli in noise. During auditory-visual conditions, the talker's face was visible. Signal-to-noise ratios used during conditions with background noise were set individually so word recognition performance was matched in auditory-only and auditory-visual conditions. In noise, word recognition performance was approximately 80% and 65% for Experiments 1 and 2, respectively. For both experiments, word recognition performance was stable across the three paradigms, confirming that none of the secondary tasks interfered with the primary task. In Experiment 1 (listeners with normal hearing), analysis of median reaction times revealed a significant main effect of background noise on listening effort only with the paradigm that required deep processing. Visual cues did not change listening effort as measured with any of the three dual-task paradigms. In Experiment 2 (listeners with hearing loss), analysis of median reaction times revealed expected significant effects of background noise using all three paradigms, but no significant effects of visual cues. None of the dual-task paradigms were sensitive to the effects of visual cues. Furthermore, changing the complexity of the secondary task did not change dual-task paradigm sensitivity to the effects of background noise on listening effort for either group of listeners. However, the paradigm whose secondary task involved deeper processing was more sensitive to the effects of background noise for both groups of listeners. While this paradigm differed from the others in several respects, depth of processing may be partially responsible for the increased sensitivity. Therefore, this paradigm may be a valuable tool for evaluating other factors that affect listening effort.
Interference resolution in major depression.
Joormann, Jutta; Nee, Derek Evan; Berman, Marc G; Jonides, John; Gotlib, Ian H
2010-03-01
In two experiments, we investigated individual differences in the ability to resolve interference in participants diagnosed with major depressive disorder (MDD). Participants were administered the "Ignore/Suppress" task, a short-term memory task composed of two steps. In Step 1 ("ignore"), participants were instructed to memorize a set of stimuli while ignoring simultaneously presented irrelevant material. In Step 2 ("suppress"), participants were instructed to forget a subset of the previously memorized material. The ability to resolve interference was indexed by response latencies on two recognition tasks in which participants decided whether a probe was a member of the target set. In Step 1, we compared response latencies to probes from the to-be-ignored list with response latencies to nonrecently presented items. In Step 2, we compared response latencies to probes from the to-be-suppressed list with response latencies to nonrecently presented items. The results indicate that, compared with control participants, depressed participants exhibited increased interference in the "suppress" but not in the "ignore" step of the task, when the stimuli were negative words. No group differences were obtained when we presented letters instead of emotional words. These findings indicate that depression is associated with difficulty in removing irrelevant negative material from short-term memory.
Sentence and Discourse Processes in Skilled Comprehension. Resource Publication Series 4 No. 3.
ERIC Educational Resources Information Center
Townsend, David J.
This research disproves the hypothesis that less-skilled comprehenders are less able to take advantage of constraints at all levels of structure. Five studies used self-paced reading, meaning probe judgment, recall, and sentence and word recognition tasks to examine the effect of supportive discourse contexts on sentence processing in skilled and…
Memory monitoring by animals and humans
NASA Technical Reports Server (NTRS)
Smith, J. D.; Shields, W. E.; Allendoerfer, K. R.; Washburn, D. A.; Rumbaugh, D. M. (Principal Investigator)
1998-01-01
The authors asked whether animals and humans would use similarly an uncertain response to escape indeterminate memories. Monkeys and humans performed serial probe recognition tasks that produced differential memory difficulty across serial positions (e.g., primacy and recency effects). Participants were given an escape option that let them avoid any trials they wished and receive a hint to the trial's answer. Across species, across tasks, and even across conspecifics with sharper or duller memories, monkeys and humans used the escape option selectively when more indeterminate memory traces were probed. Their pattern of escaping always mirrored the pattern of their primary memory performance across serial positions. Signal-detection analyses confirm the similarity of the animals' and humans' performances. Optimality analyses assess their efficiency. Several aspects of monkeys' performance suggest the cognitive sophistication of their decisions to escape.
An electrophysiological signature for proactive interference resolution in working memory.
Du, Yingchun; Xiao, Zhuangwei; Song, Yan; Fan, Silu; Wu, Renhua; Zhang, John X
2008-08-01
We used event-related potentials (ERPs) to study the temporal dynamics of proactive interference in working memory. Participants performed a Sternberg item-recognition task to determine whether a probe was in a target memory set. Familiar negative probes were found to be more difficult to reject than less familiar ones. A fronto-central N2 component peaking around 300 ms post-probe-onset differentiated among target probes, familiar and less familiar non-target probes. The study identifies N2 as the ERP signature for proactive interference resolution. It also indicates that the resolution process occurs in the same time window as target/non-target discrimination and provides the first piece of electrophysiological evidence supporting a recent interference resolution model based on localization data [Jonides, J., Nee, D.E., 2006. Brain mechanisms of proactive interference in working memory. Neuroscience 139, 181-193].
The special role of item-context associations in the direct-access region of working memory.
Campoy, Guillermo
2017-09-01
The three-embedded-component model of working memory (WM) distinguishes three representational states corresponding to three WM regions: activated long-term memory, direct-access region (DAR), and focus of attention. Recent neuroimaging research has revealed that access to the DAR is associated with enhanced hippocampal activity. Because the hippocampus mediates the encoding and retrieval of item-context associations, it has been suggested that this hippocampal activation is a consequence of the fact that item-context associations are particularly strong and accessible in the DAR. This study provides behavioral evidence for this view using an item-recognition task to assess the effect of non-intentional encoding and maintenance of item-location associations across WM regions. Five pictures of human faces were sequentially presented in different screen locations followed by a recognition probe. Visual cues immediately preceding the probe indicated the location thereof. When probe stimuli appeared in the same location that they had been presented within the memory set, the presentation of the cue was expected to elicit the activation of the corresponding WM representation through the just-established item-location association, resulting in faster recognition. Results showed this same-location effect, but only for items that, according to their serial position within the memory set, were held in the DAR.
Trial-to-trial carry-over of item- and relational-information in auditory short-term memory
Visscher, Kristina M.; Kahana, Michael J.; Sekuler, Robert
2009-01-01
Using a short-term recognition memory task we evaluated the carry-over across trials of two types of auditory information: the characteristics of individual study sounds (item information), and the relationships between the study sounds (relational information). On each trial, subjects heard two successive broadband study sounds and then decided whether a subsequently presented probe sound had been in the study set. On some trials, the probe item's similarity to stimuli presented on the preceding trial was manipulated. This item information interfered with recognition, increasing false alarms from 0.4% to 4.4%. Moreover, the interference was tuned so that only stimuli very similar to each other interfered. On other trials, the relationship among stimuli was manipulated in order to alter the criterion subjects used in making recognition judgments. The effect of this manipulation was confined to the very trial on which the criterion change was generated, and did not affect the subsequent trial. These results demonstrate the existence of a sharply-tuned carry-over of auditory item information, but no carry-over of relational information. PMID:19210080
Action Recognition in a Crowded Environment
Nieuwenhuis, Judith; Bülthoff, Isabelle; Barraclough, Nick; de la Rosa, Stephan
2017-01-01
So far, action recognition has been mainly examined with small point-light human stimuli presented alone within a narrow central area of the observer’s visual field. Yet, we need to recognize the actions of life-size humans viewed alone or surrounded by bystanders, whether they are seen in central or peripheral vision. Here, we examined the mechanisms in central vision and far periphery (40° eccentricity) involved in the recognition of the actions of a life-size actor (target) and their sensitivity to the presence of a crowd surrounding the target. In Experiment 1, we used an action adaptation paradigm to probe whether static or idly moving crowds might interfere with the recognition of a target’s action (hug or clap). We found that this type of crowds whose movements were dissimilar to the target action hardly affected action recognition in central and peripheral vision. In Experiment 2, we examined whether crowd actions that were more similar to the target actions affected action recognition. Indeed, the presence of that crowd diminished adaptation aftereffects in central vision as wells as in the periphery. We replicated Experiment 2 using a recognition task instead of an adaptation paradigm. With this task, we found evidence of decreased action recognition accuracy, but this was significant in peripheral vision only. Our results suggest that the presence of a crowd carrying out actions similar to that of the target affects its recognition. We outline how these results can be understood in terms of high-level crowding effects that operate on action-sensitive perceptual channels. PMID:29308177
Orthographic neighborhood effects in recognition and recall tasks in a transparent orthography.
Justi, Francis R R; Jaeger, Antonio
2017-04-01
The number of orthographic neighbors of a word influences its probability of being retrieved in recognition and free recall memory tests. Even though this phenomenon is well demonstrated for English words, it has yet to be demonstrated for languages with more predictable grapheme-phoneme mappings than English. To address this issue, 4 experiments were conducted to investigate effects of number of orthographic neighbors (N) and effects of frequency of occurrence of orthographic neighbors (NF) on memory retrieval of Brazilian Portuguese words. One hundred twenty-four Brazilian Portuguese speakers performed first a lexical-decision task (LDT) on words that were factorially manipulated according to N and NF, and intermixed with either nonpronounceable nonwords without orthographic neighbors (Experiments 1A and 2A), or with pronounceable nonwords with a large number of orthographic neighbors (Experiments 1B and 2B). The words were later used as probes on either recognition (Experiments 1A and 1B) or recall tests (Experiments 2A and 2B). Words with 1 orthographic neighbor were consistently better remembered than words with several orthographic neighbors in all recognition and recall tests. Notably, whereas in Experiment 1A higher false alarm rates were yielded for words with several rather than 1 orthographic neighbor, in Experiment 1B higher false alarm rates were yielded for words with 1 rather than several orthographic neighbors. Effects of NF, on the other hand, were not consistent among memory tasks. The effects of N on the recognition and recall tests conducted here are interpreted in light of dual process models of recognition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Hu, Xiaoqing; Pornpattananangkul, Narun; Rosenfeld, J Peter
2013-05-01
In an event-related potential (ERP)-based concealed information test (CIT), we investigated the effect of manipulated awareness of concealed information on the ERPs. Participants either committed a mock crime or not (guilty vs. innocent) before the CIT, and received feedback regarding either specific (high awareness) or general (low awareness) task performance during the CIT. We found that awareness and recognition of the crime-relevant information differentially influenced the frontal-central N200 and parietal P300: Probe elicited a larger N200 than irrelevant only when guilty participants were in the high awareness condition, whereas the P300 was mainly responsive to information recognition. No N200-P300 correlation was found, allowing for a combined measure of both yielding the highest detection efficiency in the high awareness group (AUC = .91). Finally, a color-naming Stroop task following the CIT revealed that guilty participants showed larger interference effects than innocent participants, suggesting that the former expended more attentional resources during the CIT. Copyright © 2013 Society for Psychophysiological Research.
Dual representation of item positions in verbal short-term memory: Evidence for two access modes.
Lange, Elke B; Verhaeghen, Paul; Cerella, John
Memory sets of N = 1~5 digits were exposed sequentially from left-to-right across the screen, followed by N recognition probes. Probes had to be compared to memory list items on identity only (Sternberg task) or conditional on list position. Positions were probed randomly or in left-to-right order. Search functions related probe response times to set size. Random probing led to ramped, "Sternbergian" functions whose intercepts were elevated by the location requirement. Sequential probing led to flat search functions-fast responses unaffected by set size. These results suggested that items in STM could be accessed either by a slow search-on-identity followed by recovery of an associated location tag, or in a single step by following item-to-item links in study order. It is argued that this dual coding of location information occurs spontaneously at study, and that either code can be utilised at retrieval depending on test demands.
Free recall test experience potentiates strategy-driven effects of value on memory.
Cohen, Michael S; Rissman, Jesse; Hovhannisyan, Mariam; Castel, Alan D; Knowlton, Barbara J
2017-10-01
People tend to show better memory for information that is deemed valuable or important. By one mechanism, individuals selectively engage deeper, semantic encoding strategies for high value items (Cohen, Rissman, Suthana, Castel, & Knowlton, 2014). By another mechanism, information paired with value or reward is automatically strengthened in memory via dopaminergic projections from midbrain to hippocampus (Shohamy & Adcock, 2010). We hypothesized that the latter mechanism would primarily enhance recollection-based memory, while the former mechanism would strengthen both recollection and familiarity. We also hypothesized that providing interspersed tests during study is a key to encouraging selective engagement of strategies. To test these hypotheses, we presented participants with sets of words, and each word was associated with a high or low point value. In some experiments, free recall tests were given after each list. In all experiments, a recognition test was administered 5 minutes after the final word list. Process dissociation was accomplished via remember/know judgments at recognition, a recall test probing both item memory and memory for a contextual detail (word plurality), and a task dissociation combining a recognition test for plurality (intended to probe recollection) with a speeded item recognition test (to probe familiarity). When recall tests were administered after study lists, high value strengthened both recollection and familiarity. When memory was not tested after each study list, but rather only at the end, value increased recollection but not familiarity. These dual process dissociations suggest that interspersed recall tests guide learners' use of metacognitive control to selectively apply effective encoding strategies. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Working memory load and the retro-cue effect: A diffusion model account.
Shepherdson, Peter; Oberauer, Klaus; Souza, Alessandra S
2018-02-01
Retro-cues (i.e., cues presented between the offset of a memory array and the onset of a probe) have consistently been found to enhance performance in working memory tasks, sometimes ameliorating the deleterious effects of increased memory load. However, the mechanism by which retro-cues exert their influence remains a matter of debate. To inform this debate, we applied a hierarchical diffusion model to data from 4 change detection experiments using single item, location-specific probes (i.e., a local recognition task) with either visual or verbal memory stimuli. Results showed that retro-cues enhanced the quality of information entering the decision process-especially for visual stimuli-and decreased the time spent on nondecisional processes. Further, cues interacted with memory load primarily on nondecision time, decreasing or abolishing load effects. To explain these findings, we propose an account whereby retro-cues act primarily to reduce the time taken to access the relevant representation in memory upon probe presentation, and in addition protect cued representations from visual interference. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Attentional biases and memory for emotional stimuli in men and male rhesus monkeys.
Lacreuse, Agnès; Schatz, Kelly; Strazzullo, Sarah; King, Hanna M; Ready, Rebecca
2013-11-01
We examined attentional biases for social and non-social emotional stimuli in young adult men and compared the results to those of male rhesus monkeys (Macaca mulatta) previously tested in a similar dot-probe task (King et al. in Psychoneuroendocrinology 37(3):396-409, 2012). Recognition memory for these stimuli was also analyzed in each species, using a recognition memory task in humans and a delayed non-matching-to-sample task in monkeys. We found that both humans and monkeys displayed a similar pattern of attentional biases toward threatening facial expressions of conspecifics. The bias was significant in monkeys and of marginal significance in humans. In addition, humans, but not monkeys, exhibited an attentional bias away from negative non-social images. Attentional biases for social and non-social threat differed significantly, with both species showing a pattern of vigilance toward negative social images and avoidance of negative non-social images. Positive stimuli did not elicit significant attentional biases for either species. In humans, emotional content facilitated the recognition of non-social images, but no effect of emotion was found for the recognition of social images. Recognition accuracy was not affected by emotion in monkeys, but response times were faster for negative relative to positive images. Altogether, these results suggest shared mechanisms of social attention in humans and monkeys, with both species showing a pattern of selective attention toward threatening faces of conspecifics. These data are consistent with the view that selective vigilance to social threat is the result of evolutionary constraints. Yet, selective attention to threat was weaker in humans than in monkeys, suggesting that regulatory mechanisms enable non-anxious humans to reduce sensitivity to social threat in this paradigm, likely through enhanced prefrontal control and reduced amygdala activation. In addition, the findings emphasize important differences in attentional biases to social versus non-social threat in both species. Differences in the impact of emotional stimuli on recognition memory between monkeys and humans will require further study, as methodological differences in the recognition tasks may have affected the results.
A task-irrelevant stimulus attribute affects perception and short-term memory
Huang, Jie; Kahana, Michael J.; Sekuler, Robert
2010-01-01
Selective attention protects cognition against intrusions of task-irrelevant stimulus attributes. This protective function was tested in coordinated psychophysical and memory experiments. Stimuli were superimposed, horizontally and vertically oriented gratings of varying spatial frequency; only one orientation was task relevant. Experiment 1 demonstrated that a task-irrelevant spatial frequency interfered with visual discrimination of the task-relevant spatial frequency. Experiment 2 adopted a two-item Sternberg task, using stimuli that had been scaled to neutralize interference at the level of vision. Despite being visually neutralized, the task-irrelevant attribute strongly influenced recognition accuracy and associated reaction times (RTs). This effect was sharply tuned, with the task-irrelevant spatial frequency having an impact only when the task-relevant spatial frequencies of the probe and study items were highly similar to one another. Model-based analyses of judgment accuracy and RT distributional properties converged on the point that the irrelevant orientation operates at an early stage in memory processing, not at a later one that supports decision making. PMID:19933454
Variability sensitivity of dynamic texture based recognition in clinical CT data
NASA Astrophysics Data System (ADS)
Kwitt, Roland; Razzaque, Sharif; Lowell, Jeffrey; Aylward, Stephen
2014-03-01
Dynamic texture recognition using a database of template models has recently shown promising results for the task of localizing anatomical structures in Ultrasound video. In order to understand its clinical value, it is imperative to study the sensitivity with respect to inter-patient variability as well as sensitivity to acquisition parameters such as Ultrasound probe angle. Fully addressing patient and acquisition variability issues, however, would require a large database of clinical Ultrasound from many patients, acquired in a multitude of controlled conditions, e.g., using a tracked transducer. Since such data is not readily attainable, we advocate an alternative evaluation strategy using abdominal CT data as a surrogate. In this paper, we describe how to replicate Ultrasound variabilities by extracting subvolumes from CT and interpreting the image material as an ordered sequence of video frames. Utilizing this technique, and based on a database of abdominal CT from 45 patients, we report recognition results on an organ (kidney) recognition task, where we try to discriminate kidney subvolumes/videos from a collection of randomly sampled negative instances. We demonstrate that (1) dynamic texture recognition is relatively insensitive to inter-patient variation while (2) viewing angle variability needs to be accounted for in the template database. Since naively extending the template database to counteract variability issues can lead to impractical database sizes, we propose an alternative strategy based on automated identification of a small set of representative models.
Scanning probe recognition microscopy investigation of tissue scaffold properties
Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva
2007-01-01
Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis. PMID:18203431
Scanning probe recognition microscopy investigation of tissue scaffold properties.
Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva
2007-01-01
Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis.
The role of long-term familiarity and attentional maintenance in short-term memory for timbre.
Siedenburg, Kai; McAdams, Stephen
2017-04-01
We study short-term recognition of timbre using familiar recorded tones from acoustic instruments and unfamiliar transformed tones that do not readily evoke sound-source categories. Participants indicated whether the timbre of a probe sound matched with one of three previously presented sounds (item recognition). In Exp. 1, musicians better recognised familiar acoustic compared to unfamiliar synthetic sounds, and this advantage was particularly large in the medial serial position. There was a strong correlation between correct rejection rate and the mean perceptual dissimilarity of the probe to the tones from the sequence. Exp. 2 compared musicians' and non-musicians' performance with concurrent articulatory suppression, visual interference, and with a silent control condition. Both suppression tasks disrupted performance by a similar margin, regardless of musical training of participants or type of sounds. Our results suggest that familiarity with sound source categories and attention play important roles in short-term memory for timbre, which rules out accounts solely based on sensory persistence.
Similarity-based distortion of visual short-term memory is due to perceptual averaging.
Dubé, Chad; Zhou, Feng; Kahana, Michael J; Sekuler, Robert
2014-03-01
A task-irrelevant stimulus can distort recall from visual short-term memory (VSTM). Specifically, reproduction of a task-relevant memory item is biased in the direction of the irrelevant memory item (Huang & Sekuler, 2010a). The present study addresses the hypothesis that such effects reflect the influence of neural averaging under conditions of uncertainty about the contents of VSTM (Alvarez, 2011; Ball & Sekuler, 1980). We manipulated subjects' attention to relevant and irrelevant study items whose similarity relationships were held constant, while varying how similar the study items were to a subsequent recognition probe. On each trial, subjects were shown one or two Gabor patches, followed by the probe; their task was to indicate whether the probe matched one of the study items. A brief cue told subjects which Gabor, first or second, would serve as that trial's target item. Critically, this cue appeared either before, between, or after the study items. A distributional analysis of the resulting mnemometric functions showed an inflation in probability density in the region spanning the spatial frequency of the average of the two memory items. This effect, due to an elevation in false alarms to probes matching the perceptual average, was diminished when cues were presented before both study items. These results suggest that (a) perceptual averages are computed obligatorily and (b) perceptual averages are relied upon to a greater extent when item representations are weakened. Implications of these results for theories of VSTM are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jamieson, Randall K; Holmes, Signy; Mewhort, D J K
2010-11-01
Dissociation of classification and recognition in amnesia is widely taken to imply 2 functional systems: an implicit procedural-learning system that is spared in amnesia and an explicit episodic-learning system that is compromised. We argue that both tasks reflect the global similarity of probes to memory. In classification, subjects sort unstudied grammatical exemplars from lures, whereas in recognition, they sort studied grammatical exemplars from lures. Hence, global similarity is necessarily greater in recognition than in classification. Moreover, a grammatical exemplar's similarity to studied exemplars is a nonlinear function of the integrity of the data in memory. Assuming that data integrity is better for control subjects than for subjects with amnesia, the nonlinear relation combined with the advantage for recognition over classification predicts the dissociation of recognition and classification. To illustrate the dissociation of recognition and classification in healthy undergraduates, we manipulated study time to vary the integrity of the data in memory and brought the dissociation under experimental control. We argue that the dissociation reflects a general cost in memory rather than a selective impairment of separate procedural and episodic systems. (c) 2010 APA, all rights reserved
Lobb, M L; Stern, J A
1986-08-01
Sequential patterns of eye and eyelid motion were identified in seven subjects performing a modified serial probe recognition task under drowsy conditions. Using simultaneous EOG and video recordings, eyelid motion was divided into components above, within, and below the pupil and the durations in sequence were recorded. A serial probe recognition task was modified to allow for distinguishing decision errors from attention errors. Decision errors were found to be more frequent following a downward shift in the gaze angle which the eyelid closing sequence was reduced from a five element to a three element sequence. The velocity of the eyelid moving over the pupil during decision errors was slow in the closing and fast in the reopening phase, while on decision correct trials it was fast in closing and slower in reopening. Due to the high variability of eyelid motion under drowsy conditions these findings were only marginally significant. When a five element blink occurred, the velocity of the lid over pupil motion component of these endogenous eye blinks was significantly faster on decision correct than on decision error trials. Furthermore, the highly variable, long duration closings associated with the decision response produced slow eye movements in the horizontal plane (SEM) which were more frequent and significantly longer in duration on decision error versus decision correct responses.
On the asymmetric effects of mind-wandering on levels of processing at encoding and retrieval.
Thomson, David R; Smilek, Daniel; Besner, Derek
2014-06-01
The behavioral consequences of off-task thought (mind-wandering) on primary-task performance are now well documented across an increasing range of tasks. In the present study, we investigated the consequences of mind-wandering on the encoding of information into memory in the context of a levels-of-processing framework (Craik & Lockhart, 1972). Mind-wandering was assessed via subjective self-reports in response to thought probes that were presented under both semantic (size judgment) and perceptual (case judgment) encoding instructions. Mind-wandering rates during semantic encoding negatively predicted subsequent recognition memory performance, whereas no such relation was observed during perceptual encoding. We discuss the asymmetric effects of mind-wandering on levels of processing in the context of attentional-resource accounts of mind-wandering.
Strength-based criterion shifts in recognition memory.
Singer, Murray
2009-10-01
In manipulations of stimulus strength between lists, a more lenient signal detection criterion is more frequently applied to a weak than to a strong stimulus class. However, with randomly intermixed weak and strong test probes, such a criterion shift often does not result. A procedure that has yielded delay-based within-list criterion shifts was applied to strength manipulations in recognition memory for categorized word lists. When participants made semantic ratings about each stimulus word, strength-based criterion shifts emerged regardless of whether words from pairs of categories were studied in separate blocks (Experiment 1) or in intermixed blocks (Experiment 2). In Experiment 3, the criterion shift persisted under the semantic-rating study task, but not under rote memorization. These findings suggest that continually adjusting the recognition decision criterion is cognitively feasible. They provide a technique for manipulating the criterion shift, and they identify competing theoretical accounts of these effects.
A dynamic model of reasoning and memory.
Hawkins, Guy E; Hayes, Brett K; Heit, Evan
2016-02-01
Previous models of category-based induction have neglected how the process of induction unfolds over time. We conceive of induction as a dynamic process and provide the first fine-grained examination of the distribution of response times observed in inductive reasoning. We used these data to develop and empirically test the first major quantitative modeling scheme that simultaneously accounts for inductive decisions and their time course. The model assumes that knowledge of similarity relations among novel test probes and items stored in memory drive an accumulation-to-bound sequential sampling process: Test probes with high similarity to studied exemplars are more likely to trigger a generalization response, and more rapidly, than items with low exemplar similarity. We contrast data and model predictions for inductive decisions with a recognition memory task using a common stimulus set. Hierarchical Bayesian analyses across 2 experiments demonstrated that inductive reasoning and recognition memory primarily differ in the threshold to trigger a decision: Observers required less evidence to make a property generalization judgment (induction) than an identity statement about a previously studied item (recognition). Experiment 1 and a condition emphasizing decision speed in Experiment 2 also found evidence that inductive decisions use lower quality similarity-based information than recognition. The findings suggest that induction might represent a less cautious form of recognition. We conclude that sequential sampling models grounded in exemplar-based similarity, combined with hierarchical Bayesian analysis, provide a more fine-grained and informative analysis of the processes involved in inductive reasoning than is possible solely through examination of choice data. PsycINFO Database Record (c) 2016 APA, all rights reserved.
Covert face recognition in congenital prosopagnosia: a group study.
Rivolta, Davide; Palermo, Romina; Schmalzl, Laura; Coltheart, Max
2012-03-01
Even though people with congenital prosopagnosia (CP) never develop a normal ability to "overtly" recognize faces, some individuals show indices of "covert" (or implicit) face recognition. The aim of this study was to demonstrate covert face recognition in CP when participants could not overtly recognize the faces. Eleven people with CP completed three tasks assessing their overt face recognition ability, and three tasks assessing their "covert" face recognition: a Forced choice familiarity task, a Forced choice cued task, and a Priming task. Evidence of covert recognition was observed with the Forced choice familiarity task, but not the Priming task. In addition, we propose that the Forced choice cued task does not measure covert processing as such, but instead "provoked-overt" recognition. Our study clearly shows that people with CP demonstrate covert recognition for faces that they cannot overtly recognize, and that behavioural tasks vary in their sensitivity to detect covert recognition in CP. Copyright © 2011 Elsevier Srl. All rights reserved.
Fiacconi, Chris M.; Barkley, Victoria; Finger, Elizabeth C.; Carson, Nicole; Duke, Devin; Rosenbaum, R. Shayna; Gilboa, Asaf; Köhler, Stefan
2014-01-01
Patients with Capgras syndrome (CS) adopt the delusional belief that persons well-known to them have been replaced by an imposter. Several current theoretical models of CS attribute such misidentification problems to deficits in covert recognition processes related to the generation of appropriate affective autonomic signals. These models assume intact overt recognition processes for the imposter and, more broadly, for other individuals. As such, it has been suggested that CS could reflect the “mirror-image” of prosopagnosia. The purpose of the current study was to determine whether overt person recognition abilities are indeed always spared in CS. Furthermore, we examined whether CS might be associated with any impairments in overt affective judgments of facial expressions. We pursued these goals by studying a patient with Dementia with Lewy bodies (DLB) who showed clear signs of CS, and by comparing him to another patient with DLB who did not experience CS, as well as to a group of healthy control participants. Clinical magnetic resonance imaging scans revealed medial prefrontal cortex (mPFC) atrophy that appeared to be uniquely associated with the presence CS. We assessed overt person recognition with three fame recognition tasks, using faces, voices, and names as cues. We also included measures of confidence and probed pertinent semantic knowledge. In addition, participants rated the intensity of fearful facial expressions. We found that CS was associated with overt person recognition deficits when probed with faces and voices, but not with names. Critically, these deficits were not present in the DLB patient without CS. In addition, CS was associated with impairments in overt judgments of affect intensity. Taken together, our findings cast doubt on the traditional view that CS is the mirror-image of prosopagnosia and that it spares overt recognition abilities. These findings can still be accommodated by models of CS that emphasize deficits in autonomic responding, to the extent that the potential role of interoceptive awareness in overt judgments is taken into account. PMID:25309399
ERIC Educational Resources Information Center
Nosofsky, Robert M.; Cox, Gregory E.; Cao, Rui; Shiffrin, Richard M.
2014-01-01
Experiments were conducted to test a modern exemplar-familiarity model on its ability to account for both short-term and long-term probe recognition within the same memory-search paradigm. Also, making connections to the literature on attention and visual search, the model was used to interpret differences in probe-recognition performance across…
Test Sequence Priming in Recognition Memory
ERIC Educational Resources Information Center
Johns, Elizabeth E.; Mewhort, D. J. K.
2009-01-01
The authors examined priming within the test sequence in 3 recognition memory experiments. A probe primed its successor whenever both probes shared a feature with the same studied item ("interjacent priming"), indicating that the study item like the probe is central to the decision. Interjacent priming occurred even when the 2 probes did…
Spatial transposition gradients in visual working memory.
Rerko, Laura; Oberauer, Klaus; Lin, Hsuan-Yu
2014-01-01
In list memory, access to individual items reflects limits of temporal distinctiveness. This is reflected in the finding that neighbouring list items tend to be confused most often. This article investigates the analogous effect of spatial proximity in a visual working-memory task. Items were presented in different locations varying in spatial distance. A retro-cue indicated the location of the item relevant for the subsequent memory test. In two recognition experiments, probes matching spatially close neighbours of the relevant item led to more false alarms than probes matching distant neighbours or non-neighbouring memory items. In two probed-recall experiments, one with simultaneous, the other with sequential memory item presentation, items closer to the cued location were more frequently chosen for recall than more distant items. These results reflect a spatial transposition gradient analogous to the temporal transposition gradient in serial recall and challenge fixed-capacity models of visual working memory (WM).
Early handling effect on female rat spatial and non-spatial learning and memory.
Plescia, Fulvio; Marino, Rosa A M; Navarra, Michele; Gambino, Giuditta; Brancato, Anna; Sardo, Pierangelo; Cannizzaro, Carla
2014-03-01
This study aims at providing an insight into early handling procedures on learning and memory performance in adult female rats. Early handling procedures were started on post-natal day 2 until 21, and consisted in 15 min, daily separations of the dams from their litters. Assessment of declarative memory was carried out in the novel-object recognition task; spatial learning, reference- and working memory were evaluated in the Morris water maze (MWM). Our results indicate that early handling induced an enhancement in: (1) declarative memory, in the object recognition task, both at 1h and 24h intervals; (2) reference memory in the probe test and working memory and behavioral flexibility in the "single-trial and four-trial place learning paradigm" of the MWM. Short-term separation by increasing maternal care causes a dampening in HPA axis response in the pups. A modulated activation of the stress response may help to protect brain structures, involved in cognitive function. In conclusion, this study shows the long-term effects of a brief maternal separation in enhancing object recognition-, spatial reference- and working memory in female rats, remarking the impact of early environmental experiences and the consequent maternal care on the behavioral adaptive mechanisms in adulthood. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broomfield, C.A.; Maxwell, D.M.; Solana, R.P.
1991-12-31
Butyrylcholinesterase (BuChE) was examined as an in vivo exogenous scavenger for highly toxic organophosphorus (OP) poisons. Protection studies with equine BuChE were carried out in rhesus monkeys trained to perform a Serial Probe Recognition task. The pharmacokinetics of equine BuChE administered i.v. in rhesus monkeys revealed an elimination T1/2 of -620 hr. Animals given 503 nmol of BuChE i.v. and then challenged with 220 to 260 nmol of soman (two LD50; a lethal dose in untreated animals) all survived with no clinical signs of OP poisoning. Serial Probe Recognition performance was depressed after enzyme administration and at 1 hr postsoman.more » However, all monkeys performed the task at base-line levels at 8 hr after soman and throughout the remainder of the experimental period. Two different monkeys each were given two doses of sarin, 183 nmol/ dose (one LD50) after 460 nmol of BuChE. No signs were observed. A third group of monkeys given 253 or 340 nmol (three and four LD50, respectively) of soman after 460 nmol of BuChE required 1 mg/kg of atropine i.v. 1 0 min postsoman, but recovered completely within 24 hr. Our results indicate that BuChE has the required properties to function as a biological scavenger to protect against the pharmacological and behavioral toxicity of OP poisons. Exogenous scavenger, butyrylcholinesterase, nerve agent.« less
Zhang, Yuanchao; Liu, Jingquan; Li, Da; Dai, Xing; Yan, Fuhua; Conlan, Xavier A; Zhou, Ruhong; Barrow, Colin J; He, Jin; Wang, Xin; Yang, Wenrong
2016-05-24
Chirality sensing is a very challenging task. Here, we report a method for ultrasensitive detection of chiral molecule l/d-carnitine based on changes in the recognition tunneling current across self-assembled core-satellite gold nanoparticle (GNP) networks. The recognition tunneling technique has been demonstrated to work at the single molecule level where the binding between the reader molecules and the analytes in a nanojunction. This process was observed to generate a unique and sensitive change in tunneling current, which can be used to identify the analytes of interest. The molecular recognition mechanism between amino acid l-cysteine and l/d-carnitine has been studied with the aid of SERS. The different binding strength between homo- or heterochiral pairs can be effectively probed by the copper ion replacement fracture. The device resistance was measured before and after the sequential exposures to l/d-carnitine and copper ions. The normalized resistance change was found to be extremely sensitive to the chirality of carnitine molecule. The results suggested that a GNP networks device optimized for recognition tunneling was successfully built and that such a device can be used for ultrasensitive detection of chiral molecules.
Negative ion treatment increases positive emotional processing in seasonal affective disorder.
Harmer, C J; Charles, M; McTavish, S; Favaron, E; Cowen, P J
2012-08-01
Antidepressant drug treatments increase the processing of positive compared to negative affective information early in treatment. Such effects have been hypothesized to play a key role in the development of later therapeutic responses to treatment. However, it is unknown whether these effects are a common mechanism of action for different treatment modalities. High-density negative ion (HDNI) treatment is an environmental manipulation that has efficacy in randomized clinical trials in seasonal affective disorder (SAD). The current study investigated whether a single session of HDNI treatment could reverse negative affective biases seen in seasonal depression using a battery of emotional processing tasks in a double-blind, placebo-controlled randomized study. Under placebo conditions, participants with seasonal mood disturbance showed reduced recognition of happy facial expressions, increased recognition memory for negative personality characteristics and increased vigilance to masked presentation of negative words in a dot-probe task compared to matched healthy controls. Negative ion treatment increased the recognition of positive compared to negative facial expression and improved vigilance to unmasked stimuli across participants with seasonal depression and healthy controls. Negative ion treatment also improved recognition memory for positive information in the SAD group alone. These effects were seen in the absence of changes in subjective state or mood. These results are consistent with the hypothesis that early change in emotional processing may be an important mechanism for treatment action in depression and suggest that these effects are also apparent with negative ion treatment in seasonal depression.
Facial recognition of happiness among older adults with active and remitted major depression.
Shiroma, Paulo R; Thuras, Paul; Johns, Brian; Lim, Kelvin O
2016-09-30
Biased emotion processing in depression might be a trait characteristic independent of mood improvement and a vulnerable factor to develop further depressive episodes. This phenomenon of among older adults with depression has not been adequately examined. In a 2-year cross-sectional study, 59 older patients with either active or remitted major depression, or never-depressed, completed a facial emotion recognition task (FERT) to probe perceptual bias of happiness. The results showed that depressed patients, compared with never depressed subjects, had a significant lower sensitivity to identify happiness particularly at moderate intensity of facial stimuli. Patients in remission from a previous major depressive episode but with none or minimal symptoms had similar sensitivity rate to identify happy facial expressions as compared to patients with an active depressive episode. Further studies would be necessary to confirm whether recognition of happy expression reflects a persistent perceptual bias of major depression in older adults. Published by Elsevier Ireland Ltd.
Multitasking During Degraded Speech Recognition in School-Age Children
Ward, Kristina M.; Brehm, Laurel
2017-01-01
Multitasking requires individuals to allocate their cognitive resources across different tasks. The purpose of the current study was to assess school-age children’s multitasking abilities during degraded speech recognition. Children (8 to 12 years old) completed a dual-task paradigm including a sentence recognition (primary) task containing speech that was either unprocessed or noise-band vocoded with 8, 6, or 4 spectral channels and a visual monitoring (secondary) task. Children’s accuracy and reaction time on the visual monitoring task was quantified during the dual-task paradigm in each condition of the primary task and compared with single-task performance. Children experienced dual-task costs in the 6- and 4-channel conditions of the primary speech recognition task with decreased accuracy on the visual monitoring task relative to baseline performance. In all conditions, children’s dual-task performance on the visual monitoring task was strongly predicted by their single-task (baseline) performance on the task. Results suggest that children’s proficiency with the secondary task contributes to the magnitude of dual-task costs while multitasking during degraded speech recognition. PMID:28105890
Multitasking During Degraded Speech Recognition in School-Age Children.
Grieco-Calub, Tina M; Ward, Kristina M; Brehm, Laurel
2017-01-01
Multitasking requires individuals to allocate their cognitive resources across different tasks. The purpose of the current study was to assess school-age children's multitasking abilities during degraded speech recognition. Children (8 to 12 years old) completed a dual-task paradigm including a sentence recognition (primary) task containing speech that was either unprocessed or noise-band vocoded with 8, 6, or 4 spectral channels and a visual monitoring (secondary) task. Children's accuracy and reaction time on the visual monitoring task was quantified during the dual-task paradigm in each condition of the primary task and compared with single-task performance. Children experienced dual-task costs in the 6- and 4-channel conditions of the primary speech recognition task with decreased accuracy on the visual monitoring task relative to baseline performance. In all conditions, children's dual-task performance on the visual monitoring task was strongly predicted by their single-task (baseline) performance on the task. Results suggest that children's proficiency with the secondary task contributes to the magnitude of dual-task costs while multitasking during degraded speech recognition.
[Representation of letter position in visual word recognition process].
Makioka, S
1994-08-01
Two experiments investigated the representation of letter position in visual word recognition process. In Experiment 1, subjects (12 undergraduates and graduates) were asked to detect a target word in a briefly-presented probe. Probes consisted of two kanji words. The latters which formed targets (critical letters) were always contained in probes. (e.g. target: [symbol: see text] probe: [symbol: see text]) High false alarm rate was observed when critical letters occupied the same within-word relative position (left or right within the word) in the probe words as in the target word. In Experiment 2 (subject were ten undergraduates and graduates), spaces adjacent to probe words were replaced by randomly chosen hiragana letters (e.g. [symbol: see text]), because spaces are not used to separate words in regular Japanese sentences. In addition to the effect of within-word relative position as in Experiment 1, the effect of between-word relative position (left or right across the probe words) was observed. These results suggest that information about within-word relative position of a letter is used in word recognition process. The effect of within-word relative position was explained by a connectionist model of word recognition.
Monkeys show recognition without priming in a classification task
Basile, Benjamin M.; Hampton, Robert R.
2012-01-01
Humans show visual perceptual priming by identifying degraded images faster and more accurately if they have seen the original images, while simultaneously failing to recognize the same images. Such priming is commonly thought, with little evidence, to be widely distributed phylogenetically. Following Brodbeck (1997), we trained rhesus monkeys (Macaca mulatta) to categorize photographs according to content (e.g., birds, fish, flowers, people). In probe trials, we tested whether monkeys were faster or more accurate at categorizing degraded versions of previously seen images (primed) than degraded versions of novel images (unprimed). Monkeys categorized reliably, but showed no benefit from having previously seen the images. This finding was robust across manipulations of image quality (color, grayscale, line drawings), type of image degradation (occlusion, blurring), levels of processing, and number of repetitions of the prime. By contrast, in probe matching-to-sample trials, monkeys recognized the primes, demonstrating that they remembered the primes and could discriminate them from other images in the same category under the conditions used to test for priming. Two experiments that replicated Brodbeck’s (1997) procedures also produced no evidence of priming. This inability to find priming in monkeys under perceptual conditions sufficient for recognition presents a puzzle. PMID:22975587
Effects of testosterone on attention and memory for emotional stimuli in male rhesus monkeys.
King, Hanna M; Kurdziel, Laura B; Meyer, Jerrold S; Lacreuse, Agnès
2012-03-01
Increasing evidence in humans and other animals suggests that testosterone (T) plays an important role in modulating emotion. We previously reported that T treatment in rhesus monkeys undergoing chemically induced hypogonadism results in increased watching time of videos depicting fights between unfamiliar conspecifics (Lacreuse et al., 2010). In the current study, we aimed to further investigate the effect of T manipulations on attention and memory for emotional stimuli in male rhesus monkeys. Six males (7 years old) were administered Depot Lupron to suppress endogenous T levels and treated with either testosterone enanthate (TE, 5 mg/kg) or oil, before crossing over to the alternate treatment. Animals were tested for 16 weeks on two computerized touchscreen tasks with both social and nonsocial emotional and neutral stimuli. The Dot-Probe task was used to measure attention, and the Delayed-Non-Matching-to-Sample task with a 1s delay (DNMS) was used to measure recognition memory for these stimuli. Performance on the two tasks was examined during each of four month-long phases: Baseline, Lupron alone, Lupron+TE and Lupron+oil. It was predicted that T administration would lead to increased attention to negative social stimuli (i.e., negative facial expressions of unfamiliar conspecifics) and would improve memory for such stimuli. We found no evidence to support these predictions. In the Dot-Probe task, an attentional bias towards negative social stimuli was observed at baseline, but T treatment did not enhance this bias. Instead, monkeys had faster response times when treated with T compared to oil, independently of the emotional valence or social relevance of stimuli, perhaps reflecting an enhancing effect of T on reward sensitivity or general arousal. In the DNMS, animals had better memory for nonsocial compared to social stimuli and showed the poorest performance in the recognition of positive facial expressions. However, T did not affect performance on the task. Thus, even though monkeys were sensitive to the social relevance and emotional valence of the stimuli in the two tasks, T manipulations had no effect on attention or memory for these stimuli. Because habituation to the stimuli may have mitigated the effect of treatment in the attentional task, we suggest that T may increase attentional biases to negative social stimuli only during early exposure to the stimuli with acute treatment or when stimuli are highly arousing (i.e., dynamically presented) with chronic treatment. In addition, the data suggest that T does not enhance working memory for emotional stimuli in young male macaques. Copyright © 2011 Elsevier Ltd. All rights reserved.
Assessment of Self-Recognition in Young Children with Handicaps.
ERIC Educational Resources Information Center
Kelley, Michael F.; And Others
1988-01-01
Thirty young children with handicaps were assessed on five self-recognition mirror tasks. The set of tasks formed a reproducible scale, indicating that these tasks are an appropriate measure of self-recognition in this population. Data analysis suggested that stage of self-recognition is positively and significantly related to cognitive…
Neural architecture underlying classification of face perception paradigms.
Laird, Angela R; Riedel, Michael C; Sutherland, Matthew T; Eickhoff, Simon B; Ray, Kimberly L; Uecker, Angela M; Fox, P Mickle; Turner, Jessica A; Fox, Peter T
2015-10-01
We present a novel strategy for deriving a classification system of functional neuroimaging paradigms that relies on hierarchical clustering of experiments archived in the BrainMap database. The goal of our proof-of-concept application was to examine the underlying neural architecture of the face perception literature from a meta-analytic perspective, as these studies include a wide range of tasks. Task-based results exhibiting similar activation patterns were grouped as similar, while tasks activating different brain networks were classified as functionally distinct. We identified four sub-classes of face tasks: (1) Visuospatial Attention and Visuomotor Coordination to Faces, (2) Perception and Recognition of Faces, (3) Social Processing and Episodic Recall of Faces, and (4) Face Naming and Lexical Retrieval. Interpretation of these sub-classes supports an extension of a well-known model of face perception to include a core system for visual analysis and extended systems for personal information, emotion, and salience processing. Overall, these results demonstrate that a large-scale data mining approach can inform the evolution of theoretical cognitive models by probing the range of behavioral manipulations across experimental tasks. Copyright © 2015 Elsevier Inc. All rights reserved.
Neural correlates of impaired cognitive control over working memory in schizophrenia.
Eich, Teal S; Nee, Derek Evan; Insel, Catherine; Malapani, Chara; Smith, Edward E
2014-07-15
One of the most common deficits in patients with schizophrenia (SZ) is in working memory (WM), which has wide-reaching impacts across cognition. However, previous approaches to studying WM in SZ have used tasks that require multiple cognitive-control processes, making it difficult to determine which specific cognitive and neural processes underlie the WM impairment. We used functional magnetic resonance imaging to investigate component processes of WM in SZ. Eighteen healthy controls (HCs) and 18 patients with SZ performed an item-recognition task that permitted separate neural assessments of 1) WM maintenance, 2) inhibition, and 3) interference control in response to recognition probes. Before inhibitory demands, posterior ventrolateral prefrontal cortex (VLPFC), an area involved in WM maintenance, was activated to a similar degree in both HCs and patients, indicating preserved maintenance operations in SZ. When cued to inhibit items from WM, HCs showed reduced activation in posterior VLPFC, commensurate with appropriately inhibiting items from WM. However, these inhibition-related reductions were absent in patients. When later probed with items that should have been inhibited, patients showed reduced behavioral performance and increased activation in mid-VLPFC, an area implicated in interference control. A mediation analysis indicated that impaired inhibition led to increased reliance on interference control and reduced behavioral performance. In SZ, impaired control over memory, manifested through proactive inhibitory deficits, leads to increased reliance on reactive interference-control processes. The strain on interference-control processes results in reduced behavioral performance. Thus, inhibitory deficits in SZ may underlie widespread impairments in WM and cognition. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.
Cultural differences in self-recognition: the early development of autonomous and related selves?
Ross, Josephine; Yilmaz, Mandy; Dale, Rachel; Cassidy, Rose; Yildirim, Iraz; Suzanne Zeedyk, M
2017-05-01
Fifteen- to 18-month-old infants from three nationalities were observed interacting with their mothers and during two self-recognition tasks. Scottish interactions were characterized by distal contact, Zambian interactions by proximal contact, and Turkish interactions by a mixture of contact strategies. These culturally distinct experiences may scaffold different perspectives on self. In support, Scottish infants performed best in a task requiring recognition of the self in an individualistic context (mirror self-recognition), whereas Zambian infants performed best in a task requiring recognition of the self in a less individualistic context (body-as-obstacle task). Turkish infants performed similarly to Zambian infants on the body-as-obstacle task, but outperformed Zambians on the mirror self-recognition task. Verbal contact (a distal strategy) was positively related to mirror self-recognition and negatively related to passing the body-as-obstacle task. Directive action and speech (proximal strategies) were negatively related to mirror self-recognition. Self-awareness performance was best predicted by cultural context; autonomous settings predicted success in mirror self-recognition, and related settings predicted success in the body-as-obstacle task. These novel data substantiate the idea that cultural factors may play a role in the early expression of self-awareness. More broadly, the results highlight the importance of moving beyond the mark test, and designing culturally sensitive tests of self-awareness. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Chen, Q.; Rice, A. F.
2005-03-01
Scanning Probe Recognition Microscopy is a new scanning probe capability under development within our group to reliably return to and directly interact with a specific nanobiological feature of interest. In previous work, we have successfully recognized and classified tubular versus globular biological objects from experimental atomic force microscope images using a method based on normalized central moments [ref. 1]. In this paper we extend this work to include recognition schemes appropriate for cellular and sub-cellular structures. Globular cells containing tubular actin filaments are under investigation. Thus there are differences in external/internal shapes and scales. Continuous Wavelet Transform with a differential Gaussian mother wavelet is employed for multi- scale analysis. [ref. 1] Q. Chen, V. Ayres and L. Udpa, ``Biological Investigation Using Scanning Probe Recognition Microscopy,'' Proceedings 3rd IEEE Conference on Nanotechnology, vol. 2, p 863-865 (2003).
Parks, Colleen M
2013-07-01
Research examining the importance of surface-level information to familiarity in recognition memory tasks is mixed: Sometimes it affects recognition and sometimes it does not. One potential explanation of the inconsistent findings comes from the ideas of dual process theory of recognition and the transfer-appropriate processing framework, which suggest that the extent to which perceptual fluency matters on a recognition test depends in large part on the task demands. A test that recruits perceptual processing for discrimination should show greater perceptual effects and smaller conceptual effects than standard recognition, similar to the pattern of effects found in perceptual implicit memory tasks. This idea was tested in the current experiment by crossing a levels of processing manipulation with a modality manipulation on a series of recognition tests that ranged from conceptual (standard recognition) to very perceptually demanding (a speeded recognition test with degraded stimuli). Results showed that the levels of processing effect decreased and the effect of modality increased when tests were made perceptually demanding. These results support the idea that surface-level features influence performance on recognition tests when they are made salient by the task demands. PsycINFO Database Record (c) 2013 APA, all rights reserved.
The Costs and Benefits of Testing and Guessing on Recognition Memory
Huff, Mark J.; Balota, David A.; Hutchison, Keith A.
2016-01-01
We examined whether two types of interpolated tasks (i.e., retrieval-practice via free recall or guessing a missing critical item) improved final recognition for related and unrelated word lists relative to restudying or completing a filler task. Both retrieval-practice and guessing tasks improved correct recognition relative to restudy and filler tasks, particularly when study lists were semantically related. However, both retrieval practice and guessing also generally inflated false recognition for the non-presented critical words. These patterns were found when final recognition was completed during a short delay within the same experimental session (Experiment 1) and following a 24-hr delay (Experiment 2). In Experiment 3, task instructions were presented randomly after each list to determine whether retrieval-practice and guessing effects were influenced by task-expectancy processes. In contrast to Experiments 1 and 2, final recognition following retrieval practice and guessing was equivalent to restudy, suggesting that the observed retrieval-practice and guessing advantages were in part due to preparatory task-based processing during study. PMID:26950490
Nosofsky, Robert M; Cox, Gregory E; Cao, Rui; Shiffrin, Richard M
2014-11-01
Experiments were conducted to test a modern exemplar-familiarity model on its ability to account for both short-term and long-term probe recognition within the same memory-search paradigm. Also, making connections to the literature on attention and visual search, the model was used to interpret differences in probe-recognition performance across diverse conditions that manipulated relations between targets and foils across trials. Subjects saw lists of from 1 to 16 items followed by a single item recognition probe. In a varied-mapping condition, targets and foils could switch roles across trials; in a consistent-mapping condition, targets and foils never switched roles; and in an all-new condition, on each trial a completely new set of items formed the memory set. In the varied-mapping and all-new conditions, mean correct response times (RTs) and error proportions were curvilinear increasing functions of memory set size, with the RT results closely resembling ones from hybrid visual-memory search experiments reported by Wolfe (2012). In the consistent-mapping condition, new-probe RTs were invariant with set size, whereas old-probe RTs increased slightly with increasing study-test lag. With appropriate choice of psychologically interpretable free parameters, the model accounted well for the complete set of results. The work provides support for the hypothesis that a common set of processes involving exemplar-based familiarity may govern long-term and short-term probe recognition across wide varieties of memory- search conditions. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Emotion recognition in Parkinson's disease: Static and dynamic factors.
Wasser, Cory I; Evans, Felicity; Kempnich, Clare; Glikmann-Johnston, Yifat; Andrews, Sophie C; Thyagarajan, Dominic; Stout, Julie C
2018-02-01
The authors tested the hypothesis that Parkinson's disease (PD) participants would perform better in an emotion recognition task with dynamic (video) stimuli compared to a task using only static (photograph) stimuli and compared performances on both tasks to healthy control participants. In a within-subjects study, 21 PD participants and 20 age-matched healthy controls performed both static and dynamic emotion recognition tasks. The authors used a 2-way analysis of variance (controlling for individual participant variance) to determine the effect of group (PD, control) on emotion recognition performance in static and dynamic facial recognition tasks. Groups did not significantly differ in their performances on the static and dynamic tasks; however, the trend was suggestive that PD participants performed worse than controls. PD participants may have subtle emotion recognition deficits that are not ameliorated by the addition of contextual cues, similar to those found in everyday scenarios. Consistent with previous literature, the results suggest that PD participants may have underlying emotion recognition deficits, which may impact their social functioning. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Multiple-scanning-probe tunneling microscope with nanoscale positional recognition function.
Higuchi, Seiji; Kuramochi, Hiromi; Laurent, Olivier; Komatsubara, Takashi; Machida, Shinichi; Aono, Masakazu; Obori, Kenichi; Nakayama, Tomonobu
2010-07-01
Over the past decade, multiple-scanning-probe microscope systems with independently controlled probes have been developed for nanoscale electrical measurements. We developed a quadruple-scanning-probe tunneling microscope (QSPTM) that can determine and control the probe position through scanning-probe imaging. The difficulty of operating multiple probes with submicrometer precision drastically increases with the number of probes. To solve problems such as determining the relative positions of the probes and avoiding of contact between the probes, we adopted sample-scanning methods to obtain four images simultaneously and developed an original control system for QSPTM operation with a function of automatic positional recognition. These improvements make the QSPTM a more practical and useful instrument since four images can now be reliably produced, and consequently the positioning of the four probes becomes easier owing to the reduced chance of accidental contact between the probes.
Family environment influences emotion recognition following paediatric traumatic brain injury.
Schmidt, Adam T; Orsten, Kimberley D; Hanten, Gerri R; Li, Xiaoqi; Levin, Harvey S
2010-01-01
This study investigated the relationship between family functioning and performance on two tasks of emotion recognition (emotional prosody and face emotion recognition) and a cognitive control procedure (the Flanker task) following paediatric traumatic brain injury (TBI) or orthopaedic injury (OI). A total of 142 children (75 TBI, 67 OI) were assessed on three occasions: baseline, 3 months and 1 year post-injury on the two emotion recognition tasks and the Flanker task. Caregivers also completed the Life Stressors and Resources Scale (LISRES) on each occasion. Growth curve analysis was used to analyse the data. Results indicated that family functioning influenced performance on the emotional prosody and Flanker tasks but not on the face emotion recognition task. Findings on both the emotional prosody and Flanker tasks were generally similar across groups. However, financial resources emerged as significantly related to emotional prosody performance in the TBI group only (p = 0.0123). Findings suggest family functioning variables--especially financial resources--can influence performance on an emotional processing task following TBI in children.
Bouvet, Lucie; Mottron, Laurent; Valdois, Sylviane; Donnadieu, Sophie
2016-05-01
Auditory stream segregation allows us to organize our sound environment, by focusing on specific information and ignoring what is unimportant. One previous study reported difficulty in stream segregation ability in children with Asperger syndrome. In order to investigate this question further, we used an interleaved melody recognition task with children in the autism spectrum disorder (ASD). In this task, a probe melody is followed by a mixed sequence, made up of a target melody interleaved with a distractor melody. These two melodies have either the same [0 semitone (ST)] or a different mean frequency (6, 12 or 24 ST separation conditions). Children have to identify if the probe melody is present in the mixed sequence. Children with ASD performed better than typical children when melodies were completely embedded. Conversely, they were impaired in the ST separation conditions. Our results confirm the difficulty of children with ASD in using a frequency cue to organize auditory perceptual information. However, superior performance in the completely embedded condition may result from superior perceptual processes in autism. We propose that this atypical pattern of results might reflect the expression of a single cognitive feature in autism.
Flegal, Kristin E; Reuter-Lorenz, Patricia A
2014-07-01
Gist-based processing has been proposed to account for robust false memories in the converging-associates task. The deep-encoding processes known to enhance verbatim memory also strengthen gist memory and increase distortions of long-term memory (LTM). Recent research has demonstrated that compelling false memory illusions are relatively delay-invariant, also occurring under canonical short-term memory (STM) conditions. To investigate the contributions of gist to false memory at short and long delays, processing depth was manipulated as participants encoded lists of four semantically related words and were probed immediately, following a filled 3- to 4-s retention interval, or approximately 20 min later, in a surprise recognition test. In two experiments, the encoding manipulation dissociated STM and LTM on the frequency, but not the phenomenology, of false memory. Deep encoding at STM increases false recognition rates at LTM, but confidence ratings and remember/know judgments are similar across delays and do not differ as a function of processing depth. These results suggest that some shared and some unique processes underlie false memory illusions at short and long delays.
Is visual image segmentation a bottom-up or an interactive process?
Vecera, S P; Farah, M J
1997-11-01
Visual image segmentation is the process by which the visual system groups features that are part of a single shape. Is image segmentation a bottom-up or an interactive process? In Experiments 1 and 2, we presented subjects with two overlapping shapes and asked them to determine whether two probed locations were on the same shape or on different shapes. The availability of top-down support was manipulated by presenting either upright or rotated letters. Subjects were fastest to respond when the shapes corresponded to familiar shapes--the upright letters. In Experiment 3, we used a variant of this segmentation task to rule out the possibility that subjects performed same/different judgments after segmentation and recognition of both letters. Finally, in Experiment 4, we ruled out the possibility that the advantage for upright letters was merely due to faster recognition of upright letters relative to rotated letters. The results suggested that the previous effects were not due to faster recognition of upright letters; stimulus familiarity influenced segmentation per se. The results are discussed in terms of an interactive model of visual image segmentation.
NASA Technical Reports Server (NTRS)
Simpson, C. A.
1985-01-01
In the present study of the responses of pairs of pilots to aircraft warning classification tasks using an isolated word, speaker-dependent speech recognition system, the induced stress was manipulated by means of different scoring procedures for the classification task and by the inclusion of a competitive manual control task. Both speech patterns and recognition accuracy were analyzed, and recognition errors were recorded by type for an isolated word speaker-dependent system and by an offline technique for a connected word speaker-dependent system. While errors increased with task loading for the isolated word system, there was no such effect for task loading in the case of the connected word system.
Jaspar, Mathieu; Dideberg, Vinciane; Bours, Vincent; Maquet, Pierre; Collette, Fabienne
2015-04-01
Genetic variability related to the catechol-O-methyltransferase (COMT) gene has received increasing attention in the last 15years, in particular as a potential modulator of the neural substrates underlying inhibitory processes and updating in working memory (WM). In an event-related functional magnetic resonance imaging (fMRI) study, we administered a modified version of the Sternberg probe recency task (Sternberg, 1966) to 43 young healthy volunteers, varying the level of interference across successive items. The task was divided into two parts (high vs. low interference) to induce either proactive or reactive control processes. The participants were separated into three groups according to their COMT Val(158)Met genotype [Val/Val (VV); Val/Met (VM); Met/Met (MM)]. The general aim of the study was to determine whether COMT polymorphism has a modulating effect on the neural substrates of interference resolution during WM processing. Results indicate that interfering trials were associated with greater involvement of frontal cortices (bilateral medial frontal gyrus, left precentral and superior frontal gyri, right inferior frontal gyrus) in VV homozygous subjects (by comparison to Met allele carriers) only in the proactive condition of the task. In addition, analysis of peristimulus haemodynamic responses (PSTH) revealed that the genotype-related difference observed in the left SFG was specifically driven by a larger increase in activity from the storage to the recognition phase of the interfering trials in VV homozygous subjects. These results confirm the impact of COMT genotype on inhibitory processes during a WM task, with an advantage for Met allele carriers. Interestingly, this impact on frontal areas is present only when the level of interference is high, and especially during the transition from storage to recognition in the left superior frontal gyrus. Copyright © 2015 Elsevier Inc. All rights reserved.
Charroud, Céline; Steffener, Jason; Le Bars, Emmanuelle; Deverdun, Jérémy; Bonafe, Alain; Abdennour, Meriem; Portet, Florence; Molino, François; Stern, Yaakov; Ritchie, Karen; Menjot de Champfleur, Nicolas; Akbaraly, Tasnime N
2015-11-01
Changes in working memory are sensitive indicators of both normal and pathological brain aging and associated disability. The present study aims to further understanding of working memory in normal aging using a large cohort of healthy elderly in order to examine three separate phases of information processing in relation to changes in task load activation. Using covariance analysis, increasing and decreasing neural activation was observed on fMRI in response to a delayed item recognition task in 337 cognitively healthy elderly persons as part of the CRESCENDO (Cognitive REServe and Clinical ENDOphenotypes) study. During three phases of the task (stimulation, retention, probe), increased activation was observed with increasing task load in bilateral regions of the prefrontal cortex, parietal lobule, cingulate gyrus, insula and in deep gray matter nuclei, suggesting an involvement of central executive and salience networks. Decreased activation associated with increasing task load was observed during the stimulation phase, in bilateral temporal cortex, parietal lobule, cingulate gyrus and prefrontal cortex. This spatial distribution of decreased activation is suggestive of the default mode network. These findings support the hypothesis of an increased activation in salience and central executive networks and a decreased activation in default mode network concomitant to increasing task load. Copyright © 2015 Elsevier Inc. All rights reserved.
Monkeys show recognition without priming in a classification task.
Basile, Benjamin M; Hampton, Robert R
2013-02-01
Humans show visual perceptual priming by identifying degraded images faster and more accurately if they have seen the original images, while simultaneously failing to recognize the same images. Such priming is commonly thought, with little evidence, to be widely distributed phylogenetically. Following Brodbeck (1997), we trained rhesus monkeys (Macaca mulatta) to categorize photographs according to content (e.g., birds, fish, flowers, people). In probe trials, we tested whether monkeys were faster or more accurate at categorizing degraded versions of previously seen images (primed) than degraded versions of novel images (unprimed). Monkeys categorized reliably, but showed no benefit from having previously seen the images. This finding was robust across manipulations of image quality (color, grayscale, line drawings), type of image degradation (occlusion, blurring), levels of processing, and number of repetitions of the prime. By contrast, in probe matching-to-sample trials, monkeys recognized the primes, demonstrating that they remembered the primes and could discriminate them from other images in the same category under the conditions used to test for priming. Two experiments that replicated Brodbeck's (1997) procedures also produced no evidence of priming. This inability to find priming in monkeys under perceptual conditions sufficient for recognition presents a puzzle. Copyright © 2012 Elsevier B.V. All rights reserved.
Buratto, Luciano G.; Pottage, Claire L.; Brown, Charity; Morrison, Catriona M.; Schaefer, Alexandre
2014-01-01
Memory performance is usually impaired when participants have to encode information while performing a concurrent task. Recent studies using recall tasks have found that emotional items are more resistant to such cognitive depletion effects than non-emotional items. However, when recognition tasks are used, the same effect is more elusive as recent recognition studies have obtained contradictory results. In two experiments, we provide evidence that negative emotional content can reliably reduce the effects of cognitive depletion on recognition memory only if stimuli with high levels of emotional intensity are used. In particular, we found that recognition performance for realistic pictures was impaired by a secondary 3-back working memory task during encoding if stimuli were emotionally neutral or had moderate levels of negative emotionality. In contrast, when negative pictures with high levels of emotional intensity were used, the detrimental effects of the secondary task were significantly attenuated. PMID:25330251
Buratto, Luciano G; Pottage, Claire L; Brown, Charity; Morrison, Catriona M; Schaefer, Alexandre
2014-01-01
Memory performance is usually impaired when participants have to encode information while performing a concurrent task. Recent studies using recall tasks have found that emotional items are more resistant to such cognitive depletion effects than non-emotional items. However, when recognition tasks are used, the same effect is more elusive as recent recognition studies have obtained contradictory results. In two experiments, we provide evidence that negative emotional content can reliably reduce the effects of cognitive depletion on recognition memory only if stimuli with high levels of emotional intensity are used. In particular, we found that recognition performance for realistic pictures was impaired by a secondary 3-back working memory task during encoding if stimuli were emotionally neutral or had moderate levels of negative emotionality. In contrast, when negative pictures with high levels of emotional intensity were used, the detrimental effects of the secondary task were significantly attenuated.
Object Recognition Memory and the Rodent Hippocampus
ERIC Educational Resources Information Center
Broadbent, Nicola J.; Gaskin, Stephane; Squire, Larry R.; Clark, Robert E.
2010-01-01
In rodents, the novel object recognition task (NOR) has become a benchmark task for assessing recognition memory. Yet, despite its widespread use, a consensus has not developed about which brain structures are important for task performance. We assessed both the anterograde and retrograde effects of hippocampal lesions on performance in the NOR…
A New Semantic List Learning Task to Probe Functioning of the Papez Circuit
Schallmo, Michael-Paul; Kassel, Michelle T.; Weisenbach, Sara L.; Walker, Sara J.; Guidotti-Breting, Leslie M.; Rao, Julia A.; Hazlett, Kathleen E.; Considine, Ciaran M.; Sethi, Gurpriya; Vats, Naalti; Pecina, Marta; Welsh, Robert C.; Starkman, Monica N.; Giordani, Bruno; Langenecker, Scott A.
2016-01-01
Introduction List learning tasks are powerful clinical tools for studying memory, yet have been relatively underutilized within the functional imaging literature. This limits understanding of regions such as the Papez circuit which support memory performance in healthy, non-demented adults. Method The current study characterized list learning performance in 40 adults who completed a Semantic List Learning Task (SLLT) with a Brown-Peterson manipulation during functional MRI (fMRI). Cued recall with semantic cues, and recognition memory were assessed after imaging. Internal reliability and convergent and discriminant validity were evaluated. Results Subjects averaged 38% accuracy in recall (62% for recognition), with primacy but no recency effects observed. Validity and reliability were demonstrated by showing that the SLLT was correlated with the California Verbal Learning test (CVLT), but not with executive functioning tests, and high intraclass correlation coefficient across lists for recall (.91). fMRI measurements during Encoding (vs. Silent Rehearsal) revealed significant activation in bilateral hippocampus, parahippocampus, and bilateral anterior and posterior cingulate cortex. Post-hoc analyses showed increased activation in anterior and middle hippocampus, subgenual cingulate, and mammillary bodies specific to Encoding. In addition, increasing age was positively associated with increased activation in a diffuse network, particularly frontal cortex and specific Papez regions for correctly recalled words. Gender differences were specific to left inferior and superior frontal cortex. Conclusions This is a clinically relevant list learning task that can be used in studies of groups for which the Papez circuit is damaged or disrupted, in mixed or crossover studies at imaging and clinical sites. PMID:26313512
Evans, Simon; Dowell, Nicholas G; Tabet, Naji; King, Sarah L; Hutton, Samuel B; Rusted, Jennifer M
2017-02-01
The APOE e4 allele has been linked to poorer cognitive aging and enhanced dementia risk. Previous imaging studies have used subsequent memory paradigms to probe hippocampal function in e4 carriers across the age range, and evidence suggests a pattern of hippocampal overactivation in young adult e4 carriers. In this study, we employed a word-based subsequent memory task under fMRI; pupillometry data were also acquired as an index of cognitive effort. Participants (26 non-e4 carriers and 28 e4 carriers) performed an incidental encoding task (presented as word categorization), followed by a surprise old/new recognition task after a 40 minute delay. In e4 carriers only, subsequently remembered words were linked to increased hippocampal activity. Across all participants, increased pupil diameter differentiated subsequently remembered from forgotten words, and neural activity covaried with pupil diameter in cuneus and precuneus. These effects were weaker in e4 carriers, and e4 carriers did not show greater pupil diameter to remembered words. In the recognition phase, genotype status also modulated hippocampal activity: here, however, e4 carriers failed to show the conventional pattern of greater hippocampal activity to novel words. Overall, neural activity changes were unstable in e4 carriers, failed to respond to novelty, and did not link strongly to cognitive effort, as indexed by pupil diameter. This provides further evidence of abnormal hippocampal recruitment in young adult e4 carriers, manifesting as both up and downregulation of neural activity, in the absence of behavioral performance differences.
Duke, Devin; Fiacconi, Chris M; Köhler, Stefan
2014-01-01
According to attribution models of familiarity assessment, people can use a heuristic in recognition-memory decisions, in which they attribute the subjective ease of processing of a memory probe to a prior encounter with the stimulus in question. Research in social cognition suggests that experienced positive affect may be the proximal cue that signals fluency in various experimental contexts. In the present study, we compared the effects of positive affect and fluency on recognition-memory judgments for faces with neutral emotional expression. We predicted that if positive affect is indeed the critical cue that signals processing fluency at retrieval, then its manipulation should produce effects that closely mirror those produced by manipulations of processing fluency. In two experiments, we employed a masked-priming procedure in combination with a Remember-Know (RK) paradigm that aimed to separate familiarity- from recollection-based memory decisions. In addition, participants performed a prime-discrimination task that allowed us to take inter-individual differences in prime awareness into account. We found highly similar effects of our priming manipulations of processing fluency and of positive affect. In both cases, the critical effect was specific to familiarity-based recognition responses. Moreover, in both experiments it was reflected in a shift toward a more liberal response bias, rather than in changed discrimination. Finally, in both experiments, the effect was found to be related to prime awareness; it was present only in participants who reported a lack of such awareness on the prime-discrimination task. These findings add to a growing body of evidence that points not only to a role of fluency, but also of positive affect in familiarity assessment. As such they are consistent with the idea that fluency itself may be hedonically marked.
Neural activation and memory for natural scenes: Explicit and spontaneous retrieval.
Weymar, Mathias; Bradley, Margaret M; Sege, Christopher T; Lang, Peter J
2018-05-06
Stimulus repetition elicits either enhancement or suppression in neural activity, and a recent fMRI meta-analysis of repetition effects for visual stimuli (Kim, 2017) reported cross-stimulus repetition enhancement in medial and lateral parietal cortex, as well as regions of prefrontal, temporal, and posterior cingulate cortex. Repetition enhancement was assessed here for repeated and novel scenes presented in the context of either an explicit episodic recognition task or an implicit judgment task, in order to study the role of spontaneous retrieval of episodic memories. Regardless of whether episodic memory was explicitly probed or not, repetition enhancement was found in medial posterior parietal (precuneus/cuneus), lateral parietal cortex (angular gyrus), as well as in medial prefrontal cortex (frontopolar), which did not differ by task. Enhancement effects in the posterior cingulate cortex were significantly larger during explicit compared to implicit task, primarily due to a lack of functional activity for new scenes. Taken together, the data are consistent with an interpretation that medial and (ventral) lateral parietal cortex are associated with spontaneous episodic retrieval, whereas posterior cingulate cortical regions may reflect task or decision processes. © 2018 Society for Psychophysiological Research.
Family environment influences emotion recognition following paediatric traumatic brain injury
SCHMIDT, ADAM T.; ORSTEN, KIMBERLEY D.; HANTEN, GERRI R.; LI, XIAOQI; LEVIN, HARVEY S.
2011-01-01
Objective This study investigated the relationship between family functioning and performance on two tasks of emotion recognition (emotional prosody and face emotion recognition) and a cognitive control procedure (the Flanker task) following paediatric traumatic brain injury (TBI) or orthopaedic injury (OI). Methods A total of 142 children (75 TBI, 67 OI) were assessed on three occasions: baseline, 3 months and 1 year post-injury on the two emotion recognition tasks and the Flanker task. Caregivers also completed the Life Stressors and Resources Scale (LISRES) on each occasion. Growth curve analysis was used to analyse the data. Results Results indicated that family functioning influenced performance on the emotional prosody and Flanker tasks but not on the face emotion recognition task. Findings on both the emotional prosody and Flanker tasks were generally similar across groups. However, financial resources emerged as significantly related to emotional prosody performance in the TBI group only (p = 0.0123). Conclusions Findings suggest family functioning variables—especially financial resources—can influence performance on an emotional processing task following TBI in children. PMID:21058900
Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition
NASA Astrophysics Data System (ADS)
Yin, Xi; Liu, Xiaoming
2018-02-01
This paper explores multi-task learning (MTL) for face recognition. We answer the questions of how and why MTL can improve the face recognition performance. First, we propose a multi-task Convolutional Neural Network (CNN) for face recognition where identity classification is the main task and pose, illumination, and expression estimations are the side tasks. Second, we develop a dynamic-weighting scheme to automatically assign the loss weight to each side task, which is a crucial problem in MTL. Third, we propose a pose-directed multi-task CNN by grouping different poses to learn pose-specific identity features, simultaneously across all poses. Last but not least, we propose an energy-based weight analysis method to explore how CNN-based MTL works. We observe that the side tasks serve as regularizations to disentangle the variations from the learnt identity features. Extensive experiments on the entire Multi-PIE dataset demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using all data in Multi-PIE for face recognition. Our approach is also applicable to in-the-wild datasets for pose-invariant face recognition and achieves comparable or better performance than state of the art on LFW, CFP, and IJB-A datasets.
The Costs and Benefits of Testing and Guessing on Recognition Memory
ERIC Educational Resources Information Center
Huff, Mark J.; Balota, David A.; Hutchison, Keith A.
2016-01-01
We examined whether 2 types of interpolated tasks (i.e., retrieval-practice via free recall or guessing a missing critical item) improved final recognition for related and unrelated word lists relative to restudying or completing a filler task. Both retrieval-practice and guessing tasks improved correct recognition relative to restudy and filler…
Rapid Naming Speed and Chinese Character Recognition
ERIC Educational Resources Information Center
Liao, Chen-Huei; Georgiou, George K.; Parrila, Rauno
2008-01-01
We examined the relationship between rapid naming speed (RAN) and Chinese character recognition accuracy and fluency. Sixty-three grade 2 and 54 grade 4 Taiwanese children were administered four RAN tasks (colors, digits, Zhu-Yin-Fu-Hao, characters), and two character recognition tasks. RAN tasks accounted for more reading variance in grade 4 than…
How Fast is Famous Face Recognition?
Barragan-Jason, Gladys; Lachat, Fanny; Barbeau, Emmanuel J.
2012-01-01
The rapid recognition of familiar faces is crucial for social interactions. However the actual speed with which recognition can be achieved remains largely unknown as most studies have been carried out without any speed constraints. Different paradigms have been used, leading to conflicting results, and although many authors suggest that face recognition is fast, the speed of face recognition has not been directly compared to “fast” visual tasks. In this study, we sought to overcome these limitations. Subjects performed three tasks, a familiarity categorization task (famous faces among unknown faces), a superordinate categorization task (human faces among animal ones), and a gender categorization task. All tasks were performed under speed constraints. The results show that, despite the use of speed constraints, subjects were slow when they had to categorize famous faces: minimum reaction time was 467 ms, which is 180 ms more than during superordinate categorization and 160 ms more than in the gender condition. Our results are compatible with a hierarchy of face processing from the superordinate level to the familiarity level. The processes taking place between detection and recognition need to be investigated in detail. PMID:23162503
ERIC Educational Resources Information Center
Parks, Colleen M.
2013-01-01
Research examining the importance of surface-level information to familiarity in recognition memory tasks is mixed: Sometimes it affects recognition and sometimes it does not. One potential explanation of the inconsistent findings comes from the ideas of dual process theory of recognition and the transfer-appropriate processing framework, which…
Chemical Entity Recognition and Resolution to ChEBI
Grego, Tiago; Pesquita, Catia; Bastos, Hugo P.; Couto, Francisco M.
2012-01-01
Chemical entities are ubiquitous through the biomedical literature and the development of text-mining systems that can efficiently identify those entities are required. Due to the lack of available corpora and data resources, the community has focused its efforts in the development of gene and protein named entity recognition systems, but with the release of ChEBI and the availability of an annotated corpus, this task can be addressed. We developed a machine-learning-based method for chemical entity recognition and a lexical-similarity-based method for chemical entity resolution and compared them with Whatizit, a popular-dictionary-based method. Our methods outperformed the dictionary-based method in all tasks, yielding an improvement in F-measure of 20% for the entity recognition task, 2–5% for the entity-resolution task, and 15% for combined entity recognition and resolution tasks. PMID:25937941
Recognition and reading aloud of kana and kanji word: an fMRI study.
Ino, Tadashi; Nakai, Ryusuke; Azuma, Takashi; Kimura, Toru; Fukuyama, Hidenao
2009-03-16
It has been proposed that different brain regions are recruited for processing two Japanese writing systems, namely, kanji (morphograms) and kana (syllabograms). However, this difference may depend upon what type of word was used and also on what type of task was performed. Using fMRI, we investigated brain activation for processing kanji and kana words with similar high familiarity in two tasks: word recognition and reading aloud. During both tasks, words and non-words were presented side by side, and the subjects were required to press a button corresponding to the real word in the word recognition task and were required to read aloud the real word in the reading aloud task. Brain activations were similar between kanji and kana during reading aloud task, whereas during word recognition task in which accurate identification and selection were required, kanji relative to kana activated regions of bilateral frontal, parietal and occipitotemporal cortices, all of which were related mainly to visual word-form analysis and visuospatial attention. Concerning the difference of brain activity between two tasks, differential activation was found only in the regions associated with task-specific sensorimotor processing for kana, whereas visuospatial attention network also showed greater activation during word recognition task than during reading aloud task for kanji. We conclude that the differences in brain activation between kanji and kana depend on the interaction between the script characteristics and the task demands.
Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica
2016-01-01
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high–low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. PMID:25146374
Eye-Gaze Analysis of Facial Emotion Recognition and Expression in Adolescents with ASD.
Wieckowski, Andrea Trubanova; White, Susan W
2017-01-01
Impaired emotion recognition and expression in individuals with autism spectrum disorder (ASD) may contribute to observed social impairment. The aim of this study was to examine the role of visual attention directed toward nonsocial aspects of a scene as a possible mechanism underlying recognition and expressive ability deficiency in ASD. One recognition and two expression tasks were administered. Recognition was assessed in force-choice paradigm, and expression was assessed during scripted and free-choice response (in response to emotional stimuli) tasks in youth with ASD (n = 20) and an age-matched sample of typically developing youth (n = 20). During stimulus presentation prior to response in each task, participants' eye gaze was tracked. Youth with ASD were less accurate at identifying disgust and sadness in the recognition task. They fixated less to the eye region of stimuli showing surprise. A group difference was found during the free-choice response task, such that those with ASD expressed emotion less clearly but not during the scripted task. Results suggest altered eye gaze to the mouth region but not the eye region as a candidate mechanism for decreased ability to recognize or express emotion. Findings inform our understanding of the association between social attention and emotion recognition and expression deficits.
The Effects of Aging and IQ on Item and Associative Memory
Ratcliff, Roger; Thapar, Anjali; McKoon, Gail
2011-01-01
The effects of aging and IQ on performance were examined in four memory tasks: item recognition, associative recognition, cued recall, and free recall. For item and associative recognition, accuracy and the response time distributions for correct and error responses were explained by Ratcliff’s (1978) diffusion model, at the level of individual participants. The values of the components of processing identified by the model for the recognition tasks, as well as accuracy for cued and free recall, were compared across levels of IQ ranging from 85 to 140 and age (college-age, 60-74 year olds, and 75-90 year olds). IQ had large effects on the quality of the evidence from memory on which decisions were based in the recognition tasks and accuracy in the recall tasks, except for the oldest participants for whom some of the measures were near floor values. Drift rates in the recognition tasks, accuracy in the recall tasks, and IQ all correlated strongly with each other. However, there was a small decline in drift rates for item recognition and a large decline for associative recognition and accuracy in cued recall (about 70 percent). In contrast, there were large age effects on boundary separation and nondecision time (which correlated across tasks), but little effect of IQ. The implications of these results for single- and dual- process models of item recognition are discussed and it is concluded that models that deal with both RTs and accuracy are subject to many more constraints than models that deal with only one of these measures. Overall, the results of the study show a complicated but interpretable pattern of interactions that present important targets for response time and memory models. PMID:21707207
Stenbäck, Victoria; Hällgren, Mathias; Lyxell, Björn; Larsby, Birgitta
2015-06-01
Cognitive functions and speech-recognition-in-noise were evaluated with a cognitive test battery, assessing response inhibition using the Hayling task, working memory capacity (WMC) and verbal information processing, and an auditory test of speech recognition. The cognitive tests were performed in silence whereas the speech recognition task was presented in noise. Thirty young normally-hearing individuals participated in the study. The aim of the study was to investigate one executive function, response inhibition, and whether it is related to individual working memory capacity (WMC), and how speech-recognition-in-noise relates to WMC and inhibitory control. The results showed a significant difference between initiation and response inhibition, suggesting that the Hayling task taps cognitive activity responsible for executive control. Our findings also suggest that high verbal ability was associated with better performance in the Hayling task. We also present findings suggesting that individuals who perform well on tasks involving response inhibition, and WMC, also perform well on a speech-in-noise task. Our findings indicate that capacity to resist semantic interference can be used to predict performance on speech-in-noise tasks. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Cognitive Factors Affecting Free Recall, Cued Recall, and Recognition Tasks in Alzheimer's Disease
Yamagishi, Takashi; Sato, Takuya; Sato, Atsushi; Imamura, Toru
2012-01-01
Background/Aims Our aim was to identify cognitive factors affecting free recall, cued recall, and recognition tasks in patients with Alzheimer's disease (AD). Subjects: We recruited 349 consecutive AD patients who attended a memory clinic. Methods Each patient was assessed using the Alzheimer's Disease Assessment Scale (ADAS) and the extended 3-word recall test. In this task, each patient was asked to freely recall 3 previously presented words. If patients could not recall 1 or more of the target words, the examiner cued their recall by providing the category of the target word and then provided a forced-choice recognition of the target word with 2 distracters. The patients were divided into groups according to the results of the free recall, cued recall, and recognition tasks. Multivariate logistic regression analysis for repeated measures was carried out to evaluate the net effects of cognitive factors on the free recall, cued recall, and recognition tasks after controlling for the effects of age and recent memory deficit. Results Performance on the ADAS Orientation task was found to be related to performance on the free and cued recall tasks, performance on the ADAS Following Commands task was found to be related to performance on the cued recall task, and performance on the ADAS Ideational Praxis task was found to be related to performance on the free recall, cued recall, and recognition tasks. Conclusion The extended 3-word recall test reflects deficits in a wider range of memory and other cognitive processes, including memory retention after interference, divided attention, and executive functions, compared with word-list recall tasks. The characteristics of the extended 3-word recall test may be advantageous for evaluating patients’ memory impairments in daily living. PMID:22962551
Cognitive factors affecting free recall, cued recall, and recognition tasks in Alzheimer's disease.
Yamagishi, Takashi; Sato, Takuya; Sato, Atsushi; Imamura, Toru
2012-01-01
Our aim was to identify cognitive factors affecting free recall, cued recall, and recognition tasks in patients with Alzheimer's disease (AD). We recruited 349 consecutive AD patients who attended a memory clinic. Each patient was assessed using the Alzheimer's Disease Assessment Scale (ADAS) and the extended 3-word recall test. In this task, each patient was asked to freely recall 3 previously presented words. If patients could not recall 1 or more of the target words, the examiner cued their recall by providing the category of the target word and then provided a forced-choice recognition of the target word with 2 distracters. The patients were divided into groups according to the results of the free recall, cued recall, and recognition tasks. Multivariate logistic regression analysis for repeated measures was carried out to evaluate the net effects of cognitive factors on the free recall, cued recall, and recognition tasks after controlling for the effects of age and recent memory deficit. Performance on the ADAS Orientation task was found to be related to performance on the free and cued recall tasks, performance on the ADAS Following Commands task was found to be related to performance on the cued recall task, and performance on the ADAS Ideational Praxis task was found to be related to performance on the free recall, cued recall, and recognition tasks. The extended 3-word recall test reflects deficits in a wider range of memory and other cognitive processes, including memory retention after interference, divided attention, and executive functions, compared with word-list recall tasks. The characteristics of the extended 3-word recall test may be advantageous for evaluating patients' memory impairments in daily living.
ERIC Educational Resources Information Center
Treese, Anne-Cecile; Johansson, Mikael; Lindgren, Magnus
2010-01-01
The emotional salience of faces has previously been shown to induce memory distortions in recognition memory tasks. This event-related potential (ERP) study used repeated runs of a continuous recognition task with emotional and neutral faces to investigate emotion-induced memory distortions. In the second and third runs, participants made more…
Deletion of the GluA1 AMPA receptor subunit impairs recency-dependent object recognition memory
Sanderson, David J.; Hindley, Emma; Smeaton, Emily; Denny, Nick; Taylor, Amy; Barkus, Chris; Sprengel, Rolf; Seeburg, Peter H.; Bannerman, David M.
2011-01-01
Deletion of the GluA1 AMPA receptor subunit impairs short-term spatial recognition memory. It has been suggested that short-term recognition depends upon memory caused by the recent presentation of a stimulus that is independent of contextual–retrieval processes. The aim of the present set of experiments was to test whether the role of GluA1 extends to nonspatial recognition memory. Wild-type and GluA1 knockout mice were tested on the standard object recognition task and a context-independent recognition task that required recency-dependent memory. In a first set of experiments it was found that GluA1 deletion failed to impair performance on either of the object recognition or recency-dependent tasks. However, GluA1 knockout mice displayed increased levels of exploration of the objects in both the sample and test phases compared to controls. In contrast, when the time that GluA1 knockout mice spent exploring the objects was yoked to control mice during the sample phase, it was found that GluA1 deletion now impaired performance on both the object recognition and the recency-dependent tasks. GluA1 deletion failed to impair performance on a context-dependent recognition task regardless of whether object exposure in knockout mice was yoked to controls or not. These results demonstrate that GluA1 is necessary for nonspatial as well as spatial recognition memory and plays an important role in recency-dependent memory processes. PMID:21378100
Fine-grained recognition of plants from images.
Šulc, Milan; Matas, Jiří
2017-01-01
Fine-grained recognition of plants from images is a challenging computer vision task, due to the diverse appearance and complex structure of plants, high intra-class variability and small inter-class differences. We review the state-of-the-art and discuss plant recognition tasks, from identification of plants from specific plant organs to general plant recognition "in the wild". We propose texture analysis and deep learning methods for different plant recognition tasks. The methods are evaluated and compared them to the state-of-the-art. Texture analysis is only applied to images with unambiguous segmentation (bark and leaf recognition), whereas CNNs are only applied when sufficiently large datasets are available. The results provide an insight in the complexity of different plant recognition tasks. The proposed methods outperform the state-of-the-art in leaf and bark classification and achieve very competitive results in plant recognition "in the wild". The results suggest that recognition of segmented leaves is practically a solved problem, when high volumes of training data are available. The generality and higher capacity of state-of-the-art CNNs makes them suitable for plant recognition "in the wild" where the views on plant organs or plants vary significantly and the difficulty is increased by occlusions and background clutter.
Lewandowska, Koryna; Wachowicz, Barbara; Marek, Tadeusz; Oginska, Halszka; Fafrowicz, Magdalena
2018-01-01
Across a wide range of tasks, cognitive functioning is affected by circadian fluctuations. In this study, we investigated diurnal variations of working memory performance, taking into account not only hits and errors rates, but also sensitivity (d') and response bias (c) indexes (established by signal detection theory). Fifty-two healthy volunteers performed four experimental tasks twice - in the morning and in the evening (approximately 1 and 10 h after awakening). All tasks were based on Deese-Roediger-McDermott paradigm version dedicated to study working/short-term memory distortions. Participants were to memorize sets of stimuli characterized by either conceptual or perceptual similarity, and to answer if they recognized subsequent stimulus (probe) as an "old" one (i.e. presented in the preceding memory set). The probe was of three types: positive, negative or related lure. In two verbal tasks, memory sets were characterized by semantic or phonological similarity. In two visual tasks, abstract objects were characterized by a number of overlapping similarities or differed in only one detail. The type of experimental material and the participants' diurnal preference were taken into account. The analysis showed significant effect of time of day on false alarms rate (F (1,50) = 5.29, p = 0.03, η p 2 = 0.1) and response bias (F (1,50) = 11.16, p = 0.002, η p 2 = 0.18). In other words, in the evening participants responded in more liberal way than in the morning (answering "yes" more often). As the link between variations in false alarms rate, response bias and locus coeruleus activity was indicated in literature before, we believe that our data may be interpreted as supporting the hypothesis that diurnal fluctuations in norepinephrine release have effect on cognitive functioning in terms of decision threshold.
ERIC Educational Resources Information Center
Brooks, Brian E.; Cooper, Eric E.
2006-01-01
Three divided visual field experiments tested current hypotheses about the types of visual shape representation tasks that recruit the cognitive and neural mechanisms underlying face recognition. Experiment 1 found a right hemisphere advantage for subordinate but not basic-level face recognition. Experiment 2 found a right hemisphere advantage for…
Development of detection and recognition of orientation of geometric and real figures.
Stein, N L; Mandler, J M
1975-06-01
Black and white kindergarten and second-grade children were tested for accuracy of detection and recognition of orientation and location changes in pictures of real-world and geometric figures. No differences were found in accuracy of recognition between the 2 kinds of pictures, but patterns of verbalization differed on specific transformations. Although differences in accuracy were found between kindergarten and second grade on an initial recognition task, practice on a matching-to-sample task eliminated differences on a second recognition task. Few ethnic differences were found on accuracy of recognition, but significant differences were found in amount of verbal output on specific transformations. For both groups, mention of orientation changes was markedly reduced when location changes were present.
What does the dot-probe task measure? A reverse correlation analysis of electrocortical activity.
Thigpen, Nina N; Gruss, L Forest; Garcia, Steven; Herring, David R; Keil, Andreas
2018-06-01
The dot-probe task is considered a gold standard for assessing the intrinsic attentive selection of one of two lateralized visual cues, measured by the response time to a subsequent, lateralized response probe. However, this task has recently been associated with poor reliability and conflicting results. To resolve these discrepancies, we tested the underlying assumption of the dot-probe task-that fast probe responses index heightened cue selection-using an electrophysiological measure of selective attention. Specifically, we used a reverse correlation approach in combination with frequency-tagged steady-state visual potentials (ssVEPs). Twenty-one participants completed a modified dot-probe task in which each member of a pair of lateralized face cues, varying in emotional expression (angry-angry, neutral-angry, neutral-neutral), flickered at one of two frequencies (15 or 20 Hz), to evoke ssVEPs. One cue was then replaced by a response probe, and participants indicated the probe orientation (0° or 90°). We analyzed the ssVEP evoked by the cues as a function of response speed to the subsequent probe (i.e., a reverse correlation analysis). Electrophysiological measures of cue processing varied with probe hemifield location: Faster responses to left probes were associated with weak amplification of the preceding left cue, apparent only in a median split analysis. By contrast, faster responses to right probes were systematically and parametrically predicted by diminished visuocortical selection of the preceding right cue. Together, these findings highlight the poor validity of the dot-probe task, in terms of quantifying intrinsic, nondirected attentive selection irrespective of probe/cue location. © 2018 Society for Psychophysiological Research.
Famous face recognition, face matching, and extraversion.
Lander, Karen; Poyarekar, Siddhi
2015-01-01
It has been previously established that extraverts who are skilled at interpersonal interaction perform significantly better than introverts on a face-specific recognition memory task. In our experiment we further investigate the relationship between extraversion and face recognition, focusing on famous face recognition and face matching. Results indicate that more extraverted individuals perform significantly better on an upright famous face recognition task and show significantly larger face inversion effects. However, our results did not find an effect of extraversion on face matching or inverted famous face recognition.
Mind wandering while reading easy and difficult texts.
Feng, Shi; D'Mello, Sidney; Graesser, Arthur C
2013-06-01
Mind wandering is a phenomenon in which attention drifts away from the primary task to task-unrelated thoughts. Previous studies have used self-report methods to measure the frequency of mind wandering and its effects on task performance. Many of these studies have investigated mind wandering in simple perceptual and memory tasks, such as recognition memory, sustained attention, and choice reaction time tasks. Manipulations of task difficulty have revealed that mind wandering occurs more frequently in easy than in difficult conditions, but that it has a greater negative impact on performance in the difficult conditions. The goal of this study was to examine the relation between mind wandering and task difficulty in a high-level cognitive task, namely reading comprehension of standardized texts. We hypothesized that reading comprehension may yield a different relation between mind wandering and task difficulty than has been observed previously. Participants read easy or difficult versions of eight passages and then answered comprehension questions after reading each of the passages. Mind wandering was reported using the probe-caught method from several previous studies. In contrast to the previous results, but consistent with our hypothesis, mind wandering occurred more frequently when participants read difficult rather than easy texts. However, mind wandering had a more negative influence on comprehension for the difficult texts, which is consistent with the previous data. The results are interpreted from the perspectives of the executive-resources and control-failure theories of mind wandering, as well as with regard to situation models of text comprehension.
Glucose enhancement of a facial recognition task in young adults.
Metzger, M M
2000-02-01
Numerous studies have reported that glucose administration enhances memory processes in both elderly and young adult subjects. Although these studies have utilized a variety of procedures and paradigms, investigations of both young and elderly subjects have typically used verbal tasks (word list recall, paragraph recall, etc.). In the present study, the effect of glucose consumption on a nonverbal, facial recognition task in young adults was examined. Lemonade sweetened with either glucose (50 g) or saccharin (23.7 mg) was consumed by college students (mean age of 21.1 years) 15 min prior to a facial recognition task. The task consisted of a familiarization phase in which subjects were presented with "target" faces, followed immediately by a recognition phase in which subjects had to identify the targets among a random array of familiar target and novel "distractor" faces. Statistical analysis indicated that there were no differences on hit rate (target identification) for subjects who consumed either saccharin or glucose prior to the test. However, further analyses revealed that subjects who consumed glucose committed significantly fewer false alarms and had (marginally) higher d-prime scores (a signal detection measure) compared to subjects who consumed saccharin prior to the test. These results parallel a previous report demonstrating glucose enhancement of a facial recognition task in probable Alzheimer's patients; however, this is believed to be the first demonstration of glucose enhancement for a facial recognition task in healthy, young adults.
[Explicit memory for type font of words in source monitoring and recognition tasks].
Hatanaka, Yoshiko; Fujita, Tetsuya
2004-02-01
We investigated whether people can consciously remember type fonts of words by methods of examining explicit memory; source-monitoring and old/new-recognition. We set matched, non-matched, and non-studied conditions between the study and the test words using two kinds of type fonts; Gothic and MARU. After studying words in one way of encoding, semantic or physical, subjects in a source-monitoring task made a three way discrimination between new words, Gothic words, and MARU words (Exp. 1). Subjects in an old/new-recognition task indicated whether test words were previously presented or not (Exp. 2). We compared the source judgments with old/new recognition data. As a result, these data showed conscious recollection for type font of words on the source monitoring task and dissociation between source monitoring and old/new recognition performance.
Golan, Ofer; Baron-Cohen, Simon; Golan, Yael
2008-09-01
Children with autism spectrum conditions (ASC) have difficulties recognizing others' emotions. Research has mostly focused on basic emotion recognition, devoid of context. This study reports the results of a new task, assessing recognition of complex emotions and mental states in social contexts. An ASC group (n = 23) was compared to a general population control group (n = 24). Children with ASC performed lower than controls on the task. Using task scores, more than 87% of the participants were allocated to their group. This new test quantifies complex emotion and mental state recognition in life-like situations. Our findings reveal that children with ASC have residual difficulties in this aspect of empathy. The use of language-based compensatory strategies for emotion recognition is discussed.
Alterations in Resting-State Activity Relate to Performance in a Verbal Recognition Task
López Zunini, Rocío A.; Thivierge, Jean-Philippe; Kousaie, Shanna; Sheppard, Christine; Taler, Vanessa
2013-01-01
In the brain, resting-state activity refers to non-random patterns of intrinsic activity occurring when participants are not actively engaged in a task. We monitored resting-state activity using electroencephalogram (EEG) both before and after a verbal recognition task. We show a strong positive correlation between accuracy in verbal recognition and pre-task resting-state alpha power at posterior sites. We further characterized this effect by examining resting-state post-task activity. We found marked alterations in resting-state alpha power when comparing pre- and post-task periods, with more pronounced alterations in participants that attained higher task accuracy. These findings support a dynamical view of cognitive processes where patterns of ongoing brain activity can facilitate –or interfere– with optimal task performance. PMID:23785436
Age-Related Differences in Listening Effort During Degraded Speech Recognition.
Ward, Kristina M; Shen, Jing; Souza, Pamela E; Grieco-Calub, Tina M
The purpose of the present study was to quantify age-related differences in executive control as it relates to dual-task performance, which is thought to represent listening effort, during degraded speech recognition. Twenty-five younger adults (YA; 18-24 years) and 21 older adults (OA; 56-82 years) completed a dual-task paradigm that consisted of a primary speech recognition task and a secondary visual monitoring task. Sentence material in the primary task was either unprocessed or spectrally degraded into 8, 6, or 4 spectral channels using noise-band vocoding. Performance on the visual monitoring task was assessed by the accuracy and reaction time of participants' responses. Performance on the primary and secondary task was quantified in isolation (i.e., single task) and during the dual-task paradigm. Participants also completed a standardized psychometric measure of executive control, including attention and inhibition. Statistical analyses were implemented to evaluate changes in listeners' performance on the primary and secondary tasks (1) per condition (unprocessed vs. vocoded conditions); (2) per task (single task vs. dual task); and (3) per group (YA vs. OA). Speech recognition declined with increasing spectral degradation for both YA and OA when they performed the task in isolation or concurrently with the visual monitoring task. OA were slower and less accurate than YA on the visual monitoring task when performed in isolation, which paralleled age-related differences in standardized scores of executive control. When compared with single-task performance, OA experienced greater declines in secondary-task accuracy, but not reaction time, than YA. Furthermore, results revealed that age-related differences in executive control significantly contributed to age-related differences on the visual monitoring task during the dual-task paradigm. OA experienced significantly greater declines in secondary-task accuracy during degraded speech recognition than YA. These findings are interpreted as suggesting that OA expended greater listening effort than YA, which may be partially attributed to age-related differences in executive control.
Oberauer, Klaus; Lange, Elke B
2009-02-01
The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 411-421]. Familiarity arises from activated representations in long-term memory, ignoring their relations; recollection retrieves bindings in the capacity-limited component of working memory. In three experiments participants encoded two short lists of nonwords for immediate recognition, one of which was then cued as irrelevant. Probes from the irrelevant list were rejected more slowly than new probes; this was also found with probes recombining letters of irrelevant nonwords, suggesting that familiarity arises from individual letters independent of their relations. When asked to accept probes whose letters were all in the relevant list, regardless of their conjunction, participants accepted probes preserving the original conjunctions faster than recombinations, showing that recollection accessed feature bindings automatically. The model fit the data best when familiarity depended only on matching letters, whereas recollection used binding information.
2016-01-01
We investigated whether intentional forgetting impacts only the likelihood of later retrieval from long-term memory or whether it also impacts the fidelity of those representations that are successfully retrieved. We accomplished this by combining an item-method directed forgetting task with a testing procedure and modeling approach inspired by the delayed-estimation paradigm used in the study of visual short-term memory (STM). Abstract or concrete colored images were each followed by a remember (R) or forget (F) instruction and sometimes by a visual probe requiring a speeded detection response (E1–E3). Memory was tested using an old–new (E1–E2) or remember-know-no (E3) recognition task followed by a continuous color judgment task (E2–E3); a final experiment included only the color judgment task (E4). Replicating the existing literature, more “old” or “remember” responses were made to R than F items and RTs to postinstruction visual probes were longer following F than R instructions. Color judgments were more accurate for successfully recognized or recollected R than F items (E2–E3); a mixture model confirmed a decrease to both the probability of retrieving the F items as well as the fidelity of the representation of those F items that were retrieved (E4). We conclude that intentional forgetting is an effortful process that not only reduces the likelihood of successfully encoding an item for later retrieval, but also produces an impoverished memory trace even when those items are retrieved; these findings draw a parallel between the control of memory representations within working and long-term memory. PMID:26709589
Fawcett, Jonathan M; Lawrence, Michael A; Taylor, Tracy L
2016-01-01
We investigated whether intentional forgetting impacts only the likelihood of later retrieval from long-term memory or whether it also impacts the fidelity of those representations that are successfully retrieved. We accomplished this by combining an item-method directed forgetting task with a testing procedure and modeling approach inspired by the delayed-estimation paradigm used in the study of visual short-term memory (STM). Abstract or concrete colored images were each followed by a remember (R) or forget (F) instruction and sometimes by a visual probe requiring a speeded detection response (E1-E3). Memory was tested using an old-new (E1-E2) or remember-know-no (E3) recognition task followed by a continuous color judgment task (E2-E3); a final experiment included only the color judgment task (E4). Replicating the existing literature, more "old" or "remember" responses were made to R than F items and RTs to postinstruction visual probes were longer following F than R instructions. Color judgments were more accurate for successfully recognized or recollected R than F items (E2-E3); a mixture model confirmed a decrease to both the probability of retrieving the F items as well as the fidelity of the representation of those F items that were retrieved (E4). We conclude that intentional forgetting is an effortful process that not only reduces the likelihood of successfully encoding an item for later retrieval, but also produces an impoverished memory trace even when those items are retrieved; these findings draw a parallel between the control of memory representations within working and long-term memory. (c) 2015 APA, all rights reserved).
Measuring listening effort: driving simulator vs. simple dual-task paradigm
Wu, Yu-Hsiang; Aksan, Nazan; Rizzo, Matthew; Stangl, Elizabeth; Zhang, Xuyang; Bentler, Ruth
2014-01-01
Objectives The dual-task paradigm has been widely used to measure listening effort. The primary objectives of the study were to (1) investigate the effect of hearing aid amplification and a hearing aid directional technology on listening effort measured by a complicated, more real world dual-task paradigm, and (2) compare the results obtained with this paradigm to a simpler laboratory-style dual-task paradigm. Design The listening effort of adults with hearing impairment was measured using two dual-task paradigms, wherein participants performed a speech recognition task simultaneously with either a driving task in a simulator or a visual reaction-time task in a sound-treated booth. The speech materials and road noises for the speech recognition task were recorded in a van traveling on the highway in three hearing aid conditions: unaided, aided with omni directional processing (OMNI), and aided with directional processing (DIR). The change in the driving task or the visual reaction-time task performance across the conditions quantified the change in listening effort. Results Compared to the driving-only condition, driving performance declined significantly with the addition of the speech recognition task. Although the speech recognition score was higher in the OMNI and DIR conditions than in the unaided condition, driving performance was similar across these three conditions, suggesting that listening effort was not affected by amplification and directional processing. Results from the simple dual-task paradigm showed a similar trend: hearing aid technologies improved speech recognition performance, but did not affect performance in the visual reaction-time task (i.e., reduce listening effort). The correlation between listening effort measured using the driving paradigm and the visual reaction-time task paradigm was significant. The finding showing that our older (56 to 85 years old) participants’ better speech recognition performance did not result in reduced listening effort was not consistent with literature that evaluated younger (approximately 20 years old), normal hearing adults. Because of this, a follow-up study was conducted. In the follow-up study, the visual reaction-time dual-task experiment using the same speech materials and road noises was repeated on younger adults with normal hearing. Contrary to findings with older participants, the results indicated that the directional technology significantly improved performance in both speech recognition and visual reaction-time tasks. Conclusions Adding a speech listening task to driving undermined driving performance. Hearing aid technologies significantly improved speech recognition while driving, but did not significantly reduce listening effort. Listening effort measured by dual-task experiments using a simulated real-world driving task and a conventional laboratory-style task was generally consistent. For a given listening environment, the benefit of hearing aid technologies on listening effort measured from younger adults with normal hearing may not be fully translated to older listeners with hearing impairment. PMID:25083599
ERIC Educational Resources Information Center
Mulligan, Neil W.; Besken, Miri; Peterson, Daniel
2010-01-01
Remember-Know (RK) and source memory tasks were designed to elucidate processes underlying memory retrieval. As part of more complex judgments, both tests produce a measure of old-new recognition, which is typically treated as equivalent to that derived from a standard recognition task. The present study demonstrates, however, that recognition…
The Role of Active Exploration of 3D Face Stimuli on Recognition Memory of Facial Information
ERIC Educational Resources Information Center
Liu, Chang Hong; Ward, James; Markall, Helena
2007-01-01
Research on face recognition has mainly relied on methods in which observers are relatively passive viewers of face stimuli. This study investigated whether active exploration of three-dimensional (3D) face stimuli could facilitate recognition memory. A standard recognition task and a sequential matching task were employed in a yoked design.…
Memory Asymmetry of Forward and Backward Associations in Recognition Tasks
Yang, Jiongjiong; Zhu, Zijian; Mecklinger, Axel; Fang, Zhiyong; Li, Han
2013-01-01
There is an intensive debate on whether memory for serial order is symmetric. The objective of this study was to explore whether associative asymmetry is modulated by memory task (recognition vs. cued recall). Participants were asked to memorize word triples (Experiment 1–2) or pairs (Experiment 3–6) during the study phase. They then recalled the word by a cue during a cued recall task (Experiment 1–4), and judged whether the presented two words were in the same or in a different order compared to the study phase during a recognition task (Experiment 1–6). To control for perceptual matching between the study and test phase, participants were presented with vertical test pairs when they made directional judgment in Experiment 5. In Experiment 6, participants also made associative recognition judgments for word pairs presented at the same or the reversed position. The results showed that forward associations were recalled at similar levels as backward associations, and that the correlations between forward and backward associations were high in the cued recall tasks. On the other hand, the direction of forward associations was recognized more accurately (and more quickly) than backward associations, and their correlations were comparable to the control condition in the recognition tasks. This forward advantage was also obtained for the associative recognition task. Diminishing positional information did not change the pattern of associative asymmetry. These results suggest that associative asymmetry is modulated by cued recall and recognition manipulations, and that direction as a constituent part of a memory trace can facilitate associative memory. PMID:22924326
Task-dependent modulation of the visual sensory thalamus assists visual-speech recognition.
Díaz, Begoña; Blank, Helen; von Kriegstein, Katharina
2018-05-14
The cerebral cortex modulates early sensory processing via feed-back connections to sensory pathway nuclei. The functions of this top-down modulation for human behavior are poorly understood. Here, we show that top-down modulation of the visual sensory thalamus (the lateral geniculate body, LGN) is involved in visual-speech recognition. In two independent functional magnetic resonance imaging (fMRI) studies, LGN response increased when participants processed fast-varying features of articulatory movements required for visual-speech recognition, as compared to temporally more stable features required for face identification with the same stimulus material. The LGN response during the visual-speech task correlated positively with the visual-speech recognition scores across participants. In addition, the task-dependent modulation was present for speech movements and did not occur for control conditions involving non-speech biological movements. In face-to-face communication, visual speech recognition is used to enhance or even enable understanding what is said. Speech recognition is commonly explained in frameworks focusing on cerebral cortex areas. Our findings suggest that task-dependent modulation at subcortical sensory stages has an important role for communication: Together with similar findings in the auditory modality the findings imply that task-dependent modulation of the sensory thalami is a general mechanism to optimize speech recognition. Copyright © 2018. Published by Elsevier Inc.
Beneventi, Harald; Tønnessen, Finn Egil; Ersland, Lars
2009-01-01
Dyslexia is primarily associated with a phonological processing deficit. However, the clinical manifestation also includes a reduced verbal working memory (WM) span. It is unclear whether this WM impairment is caused by the phonological deficit or a distinct WM deficit. The main aim of this study was to investigate neuronal activation related to phonological storage and rehearsal of serial order in WM in a sample of 13-year-old dyslexic children compared with age-matched nondyslexic children. A sequential verbal WM task with two tasks was used. In the Letter Probe task, the probe consisted of a single letter and the judgment was for the presence or absence of that letter in the prior sequence of six letters. In the Sequence Probe (SP) task, the probe consisted of all six letters and the judgment was for a match of their serial order with the temporal order in the prior sequence. Group analyses as well as single-subject analysis were performed with the statistical parametric mapping software SPM2. In the Letter Probe task, the dyslexic readers showed reduced activation in the left precentral gyrus (BA6) compared to control group. In the Sequence Probe task, the dyslexic readers showed reduced activation in the prefrontal cortex and the superior parietal cortex (BA7) compared to the control subjects. Our findings suggest that a verbal WM impairment in dyslexia involves an extended neural network including the prefrontal cortex and the superior parietal cortex. Reduced activation in the left BA6 in both the Letter Probe and Sequence Probe tasks may be caused by a deficit in phonological processing. However, reduced bilateral activation in the BA7 in the Sequence Probe task only could indicate a distinct working memory deficit in dyslexia associated with temporal order processing.
Self-face Captures, Holds, and Biases Attention.
Wójcik, Michał J; Nowicka, Maria M; Kotlewska, Ilona; Nowicka, Anna
2017-01-01
The implicit self-recognition process may take place already in the pre-attentive stages of perception. After a silent stimulus has captured attention, it is passed on to the attentive stage where it can affect decision making and responding. Numerous studies show that the presence of self-referential information affects almost every cognitive level. These effects may share a common and fundamental basis in an attentional mechanism, conceptualized as attentional bias: the exaggerated deployment of attentional resources to a salient stimulus. A gold standard in attentional bias research is the dot-probe paradigm. In this task, a prominent stimulus (cue) and a neutral stimulus are presented in different spatial locations, followed by the presentation of a target. In the current study we aimed at investigating whether the self-face captures, holds and biases attention when presented as a task-irrelevant stimulus. In two dot-probe experiments coupled with the event-related potential (ERP) technique we analyzed the following relevant ERPs components: N2pc and SPCN which reflect attentional shifts and the maintenance of attention, respectively. An inter-stimulus interval separating face-cues and probes (800 ms) was introduced only in the first experiment. In line with our predictions, in Experiment 1 the self-face elicited the N2pc and the SPCN component. In Experiment 2 in addition to N2pc, an attentional bias was observed. Our results indicate that unintentional self-face processing disables the top-down control setting to filter out distractors, thus leading to the engagement of attentional resources and visual short-term memory.
Goghari, Vina M; Macdonald, Angus W; Sponheim, Scott R
2011-11-01
Temporal lobe abnormalities and emotion recognition deficits are prominent features of schizophrenia and appear related to the diathesis of the disorder. This study investigated whether temporal lobe structural abnormalities were associated with facial emotion recognition deficits in schizophrenia and related to genetic liability for the disorder. Twenty-seven schizophrenia patients, 23 biological family members, and 36 controls participated. Several temporal lobe regions (fusiform, superior temporal, middle temporal, amygdala, and hippocampus) previously associated with face recognition in normative samples and found to be abnormal in schizophrenia were evaluated using volumetric analyses. Participants completed a facial emotion recognition task and an age recognition control task under time-limited and self-paced conditions. Temporal lobe volumes were tested for associations with task performance. Group status explained 23% of the variance in temporal lobe volume. Left fusiform gray matter volume was decreased by 11% in patients and 7% in relatives compared with controls. Schizophrenia patients additionally exhibited smaller hippocampal and middle temporal volumes. Patients were unable to improve facial emotion recognition performance with unlimited time to make a judgment but were able to improve age recognition performance. Patients additionally showed a relationship between reduced temporal lobe gray matter and poor facial emotion recognition. For the middle temporal lobe region, the relationship between greater volume and better task performance was specific to facial emotion recognition and not age recognition. Because schizophrenia patients exhibited a specific deficit in emotion recognition not attributable to a generalized impairment in face perception, impaired emotion recognition may serve as a target for interventions.
Holdstock, J S; Mayes, A R; Roberts, N; Cezayirli, E; Isaac, C L; O'Reilly, R C; Norman, K A
2002-01-01
The claim that recognition memory is spared relative to recall after focal hippocampal damage has been disputed in the literature. We examined this claim by investigating object and object-location recall and recognition memory in a patient, YR, who has adult-onset selective hippocampal damage. Our aim was to identify the conditions under which recognition was spared relative to recall in this patient. She showed unimpaired forced-choice object recognition but clearly impaired recall, even when her control subjects found the object recognition task to be numerically harder than the object recall task. However, on two other recognition tests, YR's performance was not relatively spared. First, she was clearly impaired at an equivalently difficult yes/no object recognition task, but only when targets and foils were very similar. Second, YR was clearly impaired at forced-choice recognition of object-location associations. This impairment was also unrelated to difficulty because this task was no more difficult than the forced-choice object recognition task for control subjects. The clear impairment of yes/no, but not of forced-choice, object recognition after focal hippocampal damage, when targets and foils are very similar, is predicted by the neural network-based Complementary Learning Systems model of recognition. This model postulates that recognition is mediated by hippocampally dependent recollection and cortically dependent familiarity; thus hippocampal damage should not impair item familiarity. The model postulates that familiarity is ineffective when very similar targets and foils are shown one at a time and subjects have to identify which items are old (yes/no recognition). In contrast, familiarity is effective in discriminating which of similar targets and foils, seen together, is old (forced-choice recognition). Independent evidence from the remember/know procedure also indicates that YR's familiarity is normal. The Complementary Learning Systems model can also accommodate the clear impairment of forced-choice object-location recognition memory if it incorporates the view that the most complete convergence of spatial and object information, represented in different cortical regions, occurs in the hippocampus.
Lodder, Gerine M A; Scholte, Ron H J; Goossens, Luc; Engels, Rutger C M E; Verhagen, Maaike
2016-02-01
Based on the belongingness regulation theory (Gardner et al., 2005, Pers. Soc. Psychol. Bull., 31, 1549), this study focuses on the relationship between loneliness and social monitoring. Specifically, we examined whether loneliness relates to performance on three emotion recognition tasks and whether lonely individuals show increased gazing towards their conversation partner's faces in a real-life conversation. Study 1 examined 170 college students (Mage = 19.26; SD = 1.21) who completed an emotion recognition task with dynamic stimuli (morph task) and a micro(-emotion) expression recognition task. Study 2 examined 130 college students (Mage = 19.33; SD = 2.00) who completed the Reading the Mind in the Eyes Test and who had a conversation with an unfamiliar peer while their gaze direction was videotaped. In both studies, loneliness was measured using the UCLA Loneliness Scale version 3 (Russell, 1996, J. Pers. Assess., 66, 20). The results showed that loneliness was unrelated to emotion recognition on all emotion recognition tasks, but that it was related to increased gaze towards their conversation partner's faces. Implications for the belongingness regulation system of lonely individuals are discussed. © 2015 The British Psychological Society.
Clustered Multi-Task Learning for Automatic Radar Target Recognition
Li, Cong; Bao, Weimin; Xu, Luping; Zhang, Hua
2017-01-01
Model training is a key technique for radar target recognition. Traditional model training algorithms in the framework of single task leaning ignore the relationships among multiple tasks, which degrades the recognition performance. In this paper, we propose a clustered multi-task learning, which can reveal and share the multi-task relationships for radar target recognition. To further make full use of these relationships, the latent multi-task relationships in the projection space are taken into consideration. Specifically, a constraint term in the projection space is proposed, the main idea of which is that multiple tasks within a close cluster should be close to each other in the projection space. In the proposed method, the cluster structures and multi-task relationships can be autonomously learned and utilized in both of the original and projected space. In view of the nonlinear characteristics of radar targets, the proposed method is extended to a non-linear kernel version and the corresponding non-linear multi-task solving method is proposed. Comprehensive experimental studies on simulated high-resolution range profile dataset and MSTAR SAR public database verify the superiority of the proposed method to some related algorithms. PMID:28953267
Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica
2016-01-01
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high-low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sources of Interference in Recognition Testing
ERIC Educational Resources Information Center
Annis, Jeffrey; Malmberg, Kenneth J.; Criss, Amy H.; Shiffrin, Richard M.
2013-01-01
Recognition memory accuracy is harmed by prior testing (a.k.a., output interference [OI]; Tulving & Arbuckle, 1966). In several experiments, we interpolated various tasks between recognition test trials. The stimuli and the tasks were more similar (lexical decision [LD] of words and nonwords) or less similar (gender identification of male and…
Ease of Access to List Items in Short-Term Memory Depends on the Order of the Recognition Probes
ERIC Educational Resources Information Center
Lange, Elke B.; Cerella, John; Verhaeghen, Paul
2011-01-01
We report data from 4 experiments using a recognition design with multiple probes to be matched to specific study positions. Items could be accessed rapidly, independent of set size, when the test order matched the study order (forward condition). When the order of testing was random, backward, or in a prelearned irregular sequence (reordered…
Chatterjee, Monita; Peng, Shu-Chen
2008-01-01
Fundamental frequency (F0) processing by cochlear implant (CI) listeners was measured using a psychophysical task and a speech intonation recognition task. Listeners' Weber fractions for modulation frequency discrimination were measured using an adaptive, 3-interval, forced-choice paradigm: stimuli were presented through a custom research interface. In the speech intonation recognition task, listeners were asked to indicate whether resynthesized bisyllabic words, when presented in the free field through the listeners' everyday speech processor, were question-like or statement-like. The resynthesized tokens were systematically manipulated to have different initial-F0s to represent male vs. female voices, and different F0 contours (i.e. falling, flat, and rising) Although the CI listeners showed considerable variation in performance on both tasks, significant correlations were observed between the CI listeners' sensitivity to modulation frequency in the psychophysical task and their performance in intonation recognition. Consistent with their greater reliance on temporal cues, the CI listeners' performance in the intonation recognition task was significantly poorer with the higher initial-F0 stimuli than with the lower initial-F0 stimuli. Similar results were obtained with normal hearing listeners attending to noiseband-vocoded CI simulations with reduced spectral resolution.
Chatterjee, Monita; Peng, Shu-Chen
2008-01-01
Fundamental frequency (F0) processing by cochlear implant (CI) listeners was measured using a psychophysical task and a speech intonation recognition task. Listeners’ Weber fractions for modulation frequency discrimination were measured using an adaptive, 3-interval, forced-choice paradigm: stimuli were presented through a custom research interface. In the speech intonation recognition task, listeners were asked to indicate whether resynthesized bisyllabic words, when presented in the free field through the listeners’ everyday speech processor, were question-like or statement-like. The resynthesized tokens were systematically manipulated to have different initial F0s to represent male vs. female voices, and different F0 contours (i.e., falling, flat, and rising) Although the CI listeners showed considerable variation in performance on both tasks, significant correlations were observed between the CI listeners’ sensitivity to modulation frequency in the psychophysical task and their performance in intonation recognition. Consistent with their greater reliance on temporal cues, the CI listeners’ performance in the intonation recognition task was significantly poorer with the higher initial-F0 stimuli than with the lower initial-F0 stimuli. Similar results were obtained with normal hearing listeners attending to noiseband-vocoded CI simulations with reduced spectral resolution. PMID:18093766
Hua, Ying-Xi; Shao, Yongliang; Wang, Ya-Wen; Peng, Yu
2017-06-16
A series of fluorescence "turn-on" probes (PY, AN, NA, B1, and B2) have been developed and successfully applied to detect cyanide anions based on the Michael addition reaction and FRET mechanism. These probes demonstrated good selectivity, high sensitivity, and very fast recognition for CN - . In particular, the fluorescence response of probe NA finished within 3 s. Low limits of detection (down to 63 nM) are also obtained in these probes with remarkable fluorescence enhancement factors. In addition, fluorescence colors of these probes turned to blue, yellow, or orange upon sensing CN - . In UV-vis mode, all of them showed ratiometric response for CN - . 1 H NMR titration experiments and TDDFT calculations were taken to verify the mechanism of the specific reaction and fluorescence properties of the corresponding compounds. Moreover, silica gel plates with these probes were also fabricated and utilized to detect cyanide.
Baez, Sandra; Marengo, Juan; Perez, Ana; Huepe, David; Font, Fernanda Giralt; Rial, Veronica; Gonzalez-Gadea, María Luz; Manes, Facundo; Ibanez, Agustin
2015-09-01
Impaired social cognition has been claimed to be a mechanism underlying the development and maintenance of borderline personality disorder (BPD). One important aspect of social cognition is the theory of mind (ToM), a complex skill that seems to be influenced by more basic processes, such as executive functions (EF) and emotion recognition. Previous ToM studies in BPD have yielded inconsistent results. This study assessed the performance of BPD adults on ToM, emotion recognition, and EF tasks. We also examined whether EF and emotion recognition could predict the performance on ToM tasks. We evaluated 15 adults with BPD and 15 matched healthy controls using different tasks of EF, emotion recognition, and ToM. The results showed that BPD adults exhibited deficits in the three domains, which seem to be task-dependent. Furthermore, we found that EF and emotion recognition predicted the performance on ToM. Our results suggest that tasks that involve real-life social scenarios and contextual cues are more sensitive to detect ToM and emotion recognition deficits in BPD individuals. Our findings also indicate that (a) ToM variability in BPD is partially explained by individual differences on EF and emotion recognition; and (b) ToM deficits of BPD patients are partially explained by the capacity to integrate cues from face, prosody, gesture, and social context to identify the emotions and others' beliefs. © 2014 The British Psychological Society.
Recognizing Biological Motion and Emotions from Point-Light Displays in Autism Spectrum Disorders
Nackaerts, Evelien; Wagemans, Johan; Helsen, Werner; Swinnen, Stephan P.; Wenderoth, Nicole; Alaerts, Kaat
2012-01-01
One of the main characteristics of Autism Spectrum Disorder (ASD) are problems with social interaction and communication. Here, we explored ASD-related alterations in ‘reading’ body language of other humans. Accuracy and reaction times were assessed from two observational tasks involving the recognition of ‘biological motion’ and ‘emotions’ from point-light displays (PLDs). Eye movements were recorded during the completion of the tests. Results indicated that typically developed-participants were more accurate than ASD-subjects in recognizing biological motion or emotions from PLDs. No accuracy differences were revealed on two control-tasks (involving the indication of color-changes in the moving point-lights). Group differences in reaction times existed on all tasks, but effect sizes were higher for the biological and emotion recognition tasks. Biological motion recognition abilities were related to a person’s ability to recognize emotions from PLDs. However, ASD-related atypicalities in emotion recognition could not entirely be attributed to more basic deficits in biological motion recognition, suggesting an additional ASD-specific deficit in recognizing the emotional dimension of the point light displays. Eye movements were assessed during the completion of tasks and results indicated that ASD-participants generally produced more saccades and shorter fixation-durations compared to the control-group. However, especially for emotion recognition, these altered eye movements were associated with reductions in task-performance. PMID:22970227
Štillová, Klára; Jurák, Pavel; Chládek, Jan; Chrastina, Jan; Halámek, Josef; Bočková, Martina; Goldemundová, Sabina; Říha, Ivo; Rektor, Ivan
2015-01-01
To study the involvement of the anterior nuclei of the thalamus (ANT) as compared to the involvement of the hippocampus in the processes of encoding and recognition during visual and verbal memory tasks. We studied intracerebral recordings in patients with pharmacoresistent epilepsy who underwent deep brain stimulation (DBS) of the ANT with depth electrodes implanted bilaterally in the ANT and compared the results with epilepsy surgery candidates with depth electrodes implanted bilaterally in the hippocampus. We recorded the event-related potentials (ERPs) elicited by the visual and verbal memory encoding and recognition tasks. P300-like potentials were recorded in the hippocampus by visual and verbal memory encoding and recognition tasks and in the ANT by the visual encoding and visual and verbal recognition tasks. No significant ERPs were recorded during the verbal encoding task in the ANT. In the visual and verbal recognition tasks, the P300-like potentials in the ANT preceded the P300-like potentials in the hippocampus. The ANT is a structure in the memory pathway that processes memory information before the hippocampus. We suggest that the ANT has a specific role in memory processes, especially memory recognition, and that memory disturbance should be considered in patients with ANT-DBS and in patients with ANT lesions. ANT is well positioned to serve as a subcortical gate for memory processing in cortical structures.
Recognizing biological motion and emotions from point-light displays in autism spectrum disorders.
Nackaerts, Evelien; Wagemans, Johan; Helsen, Werner; Swinnen, Stephan P; Wenderoth, Nicole; Alaerts, Kaat
2012-01-01
One of the main characteristics of Autism Spectrum Disorder (ASD) are problems with social interaction and communication. Here, we explored ASD-related alterations in 'reading' body language of other humans. Accuracy and reaction times were assessed from two observational tasks involving the recognition of 'biological motion' and 'emotions' from point-light displays (PLDs). Eye movements were recorded during the completion of the tests. Results indicated that typically developed-participants were more accurate than ASD-subjects in recognizing biological motion or emotions from PLDs. No accuracy differences were revealed on two control-tasks (involving the indication of color-changes in the moving point-lights). Group differences in reaction times existed on all tasks, but effect sizes were higher for the biological and emotion recognition tasks. Biological motion recognition abilities were related to a person's ability to recognize emotions from PLDs. However, ASD-related atypicalities in emotion recognition could not entirely be attributed to more basic deficits in biological motion recognition, suggesting an additional ASD-specific deficit in recognizing the emotional dimension of the point light displays. Eye movements were assessed during the completion of tasks and results indicated that ASD-participants generally produced more saccades and shorter fixation-durations compared to the control-group. However, especially for emotion recognition, these altered eye movements were associated with reductions in task-performance.
Kavanagh, Paul; Leech, Dónal
2006-04-15
The detection of nucleic acids based upon recognition surfaces formed by co-immobilization of a redox polymer mediator and DNA probe sequences on gold electrodes is described. The recognition surface consists of a redox polymer, [Os(2,2'-bipyridine)2(polyvinylimidazole)(10)Cl](+/2+), and a model single DNA strand cross-linked and tethered to a gold electrode via an anchoring self-assembled monolayer (SAM) of cysteamine. Hybridization between the immobilized probe DNA of the recognition surface and a biotin-conjugated target DNA sequence (designed from the ssrA gene of Listeria monocytogenes), followed by addition of an enzyme (glucose oxidase)-avidin conjugate, results in electrical contact between the enzyme and the mediating redox polymer. In the presence of glucose, the current generated due to the catalytic oxidation of glucose to gluconolactone is measured, and a response is obtained that is binding-dependent. The tethering of the probe DNA and redox polymer to the SAM improves the stability of the surface to assay conditions of rigorous washing and high salt concentration (1 M). These conditions eliminate nonspecific interaction of both the target DNA and the enzyme-avidin conjugate with the recognition surfaces. The sensor response increases linearly with increasing concentration of target DNA in the range of 1 x 10(-9) to 2 x 10(-6) M. The detection limit is approximately 1.4 fmol, (corresponding to 0.2 nM of target DNA). Regeneration of the recognition surface is possible by treatment with 0.25 M NaOH solution. After rehybridization of the regenerated surface with the target DNA sequence, >95% of the current is recovered, indicating that the redox polymer and probe DNA are strongly bound to the surface. These results demonstrate the utility of the proposed approach.
Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory.
Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto
2015-08-06
Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer's disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory.
Using eye movements as an index of implicit face recognition in autism spectrum disorder.
Hedley, Darren; Young, Robyn; Brewer, Neil
2012-10-01
Individuals with an autism spectrum disorder (ASD) typically show impairment on face recognition tasks. Performance has usually been assessed using overt, explicit recognition tasks. Here, a complementary method involving eye tracking was used to examine implicit face recognition in participants with ASD and in an intelligence quotient-matched non-ASD control group. Differences in eye movement indices between target and foil faces were used as an indicator of implicit face recognition. Explicit face recognition was assessed using old-new discrimination and reaction time measures. Stimuli were faces of studied (target) or unfamiliar (foil) persons. Target images at test were either identical to the images presented at study or altered by changing the lighting, pose, or by masking with visual noise. Participants with ASD performed worse than controls on the explicit recognition task. Eye movement-based measures, however, indicated that implicit recognition may not be affected to the same degree as explicit recognition. Autism Res 2012, 5: 363-379. © 2012 International Society for Autism Research, Wiley Periodicals, Inc. © 2012 International Society for Autism Research, Wiley Periodicals, Inc.
Recall and recognition of verbal paired associates in early Alzheimer's disease.
Lowndes, G J; Saling, M M; Ames, D; Chiu, E; Gonzalez, L M; Savage, G R
2008-07-01
The primary impairment in early Alzheimer's disease (AD) is encoding/consolidation, resulting from medial temporal lobe (MTL) pathology. AD patients perform poorly on cued-recall paired associate learning (PAL) tasks, which assess the ability of the MTLs to encode relational memory. Since encoding and retrieval processes are confounded within performance indexes on cued-recall PAL, its specificity for AD is limited. Recognition paradigms tend to show good specificity for AD, and are well tolerated, but are typically less sensitive than recall tasks. Associate-recognition is a novel PAL task requiring a combination of recall and recognition processes. We administered a verbal associate-recognition test and cued-recall analogue to 22 early AD patients and 55 elderly controls to compare their ability to discriminate these groups. Both paradigms used eight arbitrarily related word pairs (e.g., pool-teeth) with varying degrees of imageability. Associate-recognition was equally effective as the cued-recall analogue in discriminating the groups, and logistic regression demonstrated classification rates by both tasks were equivalent. These preliminary findings provide support for the clinical value of this recognition tool. Conceptually it has potential for greater specificity in informing neuropsychological diagnosis of AD in clinical samples but this requires further empirical support.
Brébion, Gildas; David, Anthony S; Pilowsky, Lyn S; Jones, Hugh
2004-11-01
Verbal and visual recognition tasks were administered to 40 patients with schizophrenia and 40 healthy comparison subjects. The verbal recognition task consisted of discriminating between 16 target words and 16 new words. The visual recognition task consisted of discriminating between 16 target pictures (8 black-and-white and 8 color) and 16 new pictures (8 black-and-white and 8 color). Visual recognition was followed by a spatial context discrimination task in which subjects were required to remember the spatial location of the target pictures at encoding. Results showed that recognition deficit in patients was similar for verbal and visual material. In both schizophrenic and healthy groups, men, but not women, obtained better recognition scores for the colored than for the black-and-white pictures. However, men and women similarly benefited from color to reduce spatial context discrimination errors. Patients showed a significant deficit in remembering the spatial location of the pictures, independently of accuracy in remembering the pictures themselves. These data suggest that patients are impaired in the amount of visual information that they can encode. With regards to the perceptual attributes of the stimuli, memory for spatial information appears to be affected, but not processing of color information.
Bizot, Jean-Charles; Herpin, Alexandre; Pothion, Stéphanie; Pirot, Sylvain; Trovero, Fabrice; Ollat, Hélène
2005-07-01
The effect of a sulbutiamine chronic treatment on memory was studied in rats with a spatial delayed-non-match-to-sample (DNMTS) task in a radial maze and a two trial object recognition task. After completion of training in the DNMTS task, animals were subjected for 9 weeks to daily injections of either saline or sulbutiamine (12.5 or 25 mg/kg). Sulbutiamine did not modify memory in the DNMTS task but improved it in the object recognition task. Dizocilpine, impaired both acquisition and retention of the DNMTS task in the saline-treated group, but not in the two sulbutiamine-treated groups, suggesting that sulbutiamine may counteract the amnesia induced by a blockade of the N-methyl-D-aspartate glutamate receptors. Taken together, these results are in favor of a beneficial effect of sulbutiamine on working and episodic memory.
Social Recognition Memory Requires Two Stages of Protein Synthesis in Mice
ERIC Educational Resources Information Center
Wolf, Gerald; Engelmann, Mario; Richter, Karin
2005-01-01
Olfactory recognition memory was tested in adult male mice using a social discrimination task. The testing was conducted to begin to characterize the role of protein synthesis and the specific brain regions associated with activity in this task. Long-term olfactory recognition memory was blocked when the protein synthesis inhibitor anisomycin was…
Functional neuroanatomical correlates of episodic memory impairment in early phase psychosis
Hummer, Tom A.; Vohs, Jenifer L.; Yung, Matthew G.; Liffick, Emily; Mehdiyoun, Nicole F.; Radnovich, Alexander J.; McDonald, Brenna C.; Saykin, Andrew J.; Breier, Alan
2015-01-01
Studies have demonstrated that episodic memory (EM) is often preferentially disrupted in schizophrenia. The neural substrates that mediate EM impairment in this illness are not fully understood. Several functional magnetic resonance imaging (fMRI) studies have employed EM probe tasks to elucidate the neural underpinnings of impairment, though results have been inconsistent. The majority of EM imaging studies have been conducted in chronic forms of schizophrenia with relatively few studies in early phase patients. Early phase schizophrenia studies are important because they may provide information regarding when EM deficits occur and address potential confounds more frequently observed in chronic populations. In this study, we assessed brain activation during the performance of visual scene encoding and recognition fMRI tasks in patients with earlyphase psychosis (n=35) and age, sex, and race matched healthy control subjects (n = 20). Patients demonstrated significantly lower activation than controls in the right hippocampus and left fusiform gyrus during scene encoding and lower activation in the posterior cingulate, precuneus, and left middle temporal cortex during recognition of target scenes. Symptom levels were not related to the imaging findings, though better cognitive performance in patients was associated with greater right hippocampal activation during encoding. These results provide evidence of altered function in neuroanatomical circuitry subserving EM early in the course of psychotic illness, which may have implications for pathophysiological models of this illness. PMID:25749917
Age-related differences in listening effort during degraded speech recognition
Ward, Kristina M.; Shen, Jing; Souza, Pamela E.; Grieco-Calub, Tina M.
2016-01-01
Objectives The purpose of the current study was to quantify age-related differences in executive control as it relates to dual-task performance, which is thought to represent listening effort, during degraded speech recognition. Design Twenty-five younger adults (18–24 years) and twenty-one older adults (56–82 years) completed a dual-task paradigm that consisted of a primary speech recognition task and a secondary visual monitoring task. Sentence material in the primary task was either unprocessed or spectrally degraded into 8, 6, or 4 spectral channels using noise-band vocoding. Performance on the visual monitoring task was assessed by the accuracy and reaction time of participants’ responses. Performance on the primary and secondary task was quantified in isolation (i.e., single task) and during the dual-task paradigm. Participants also completed a standardized psychometric measure of executive control, including attention and inhibition. Statistical analyses were implemented to evaluate changes in listeners’ performance on the primary and secondary tasks (1) per condition (unprocessed vs. vocoded conditions); (2) per task (baseline vs. dual task); and (3) per group (younger vs. older adults). Results Speech recognition declined with increasing spectral degradation for both younger and older adults when they performed the task in isolation or concurrently with the visual monitoring task. Older adults were slower and less accurate than younger adults on the visual monitoring task when performed in isolation, which paralleled age-related differences in standardized scores of executive control. When compared to single-task performance, older adults experienced greater declines in secondary-task accuracy, but not reaction time, than younger adults. Furthermore, results revealed that age-related differences in executive control significantly contributed to age-related differences on the visual monitoring task during the dual-task paradigm. Conclusions Older adults experienced significantly greater declines in secondary-task accuracy during degraded speech recognition than younger adults. These findings are interpreted as suggesting that older listeners expended greater listening effort than younger listeners, and may be partially attributed to age-related differences in executive control. PMID:27556526
Within-person adaptivity in frugal judgments from memory.
Filevich, Elisa; Horn, Sebastian S; Kühn, Simone
2017-12-22
Humans can exploit recognition memory as a simple cue for judgment. The utility of recognition depends on the interplay with the environment, particularly on its predictive power (validity) in a domain. It is, therefore, an important question whether people are sensitive to differences in recognition validity between domains. Strategic, intra-individual changes in the reliance on recognition have not been investigated so far. The present study fills this gap by scrutinizing within-person changes in using a frugal strategy, the recognition heuristic (RH), across two task domains that differed in recognition validity. The results showed adaptive changes in the reliance on recognition between domains. However, these changes were neither associated with the individual recognition validities nor with corresponding changes in these validities. These findings support a domain-adaptivity explanation, suggesting that people have broader intuitions about the usefulness of recognition across different domains that are nonetheless sufficiently robust for adaptive decision making. The analysis of metacognitive confidence reports mirrored and extended these results. Like RH use, confidence ratings covaried with task domain, but not with individual recognition validities. The changes in confidence suggest that people may have metacognitive access to information about global differences between task domains, but not to individual cue validities.
Mitchnick, Krista A; Wideman, Cassidy E; Huff, Andrew E; Palmer, Daniel; McNaughton, Bruce L; Winters, Boyer D
2018-05-15
The capacity to recognize objects from different view-points or angles, referred to as view-invariance, is an essential process that humans engage in daily. Currently, the ability to investigate the neurobiological underpinnings of this phenomenon is limited, as few ethologically valid view-invariant object recognition tasks exist for rodents. Here, we report two complementary, novel view-invariant object recognition tasks in which rodents physically interact with three-dimensional objects. Prior to experimentation, rats and mice were given extensive experience with a set of 'pre-exposure' objects. In a variant of the spontaneous object recognition task, novelty preference for pre-exposed or new objects was assessed at various angles of rotation (45°, 90° or 180°); unlike control rodents, for whom the objects were novel, rats and mice tested with pre-exposed objects did not discriminate between rotated and un-rotated objects in the choice phase, indicating substantial view-invariant object recognition. Secondly, using automated operant touchscreen chambers, rats were tested on pre-exposed or novel objects in a pairwise discrimination task, where the rewarded stimulus (S+) was rotated (180°) once rats had reached acquisition criterion; rats tested with pre-exposed objects re-acquired the pairwise discrimination following S+ rotation more effectively than those tested with new objects. Systemic scopolamine impaired performance on both tasks, suggesting involvement of acetylcholine at muscarinic receptors in view-invariant object processing. These tasks present novel means of studying the behavioral and neural bases of view-invariant object recognition in rodents. Copyright © 2018 Elsevier B.V. All rights reserved.
EEG based topography analysis in string recognition task
NASA Astrophysics Data System (ADS)
Ma, Xiaofei; Huang, Xiaolin; Shen, Yuxiaotong; Qin, Zike; Ge, Yun; Chen, Ying; Ning, Xinbao
2017-03-01
Vision perception and recognition is a complex process, during which different parts of brain are involved depending on the specific modality of the vision target, e.g. face, character, or word. In this study, brain activities in string recognition task compared with idle control state are analyzed through topographies based on multiple measurements, i.e. sample entropy, symbolic sample entropy and normalized rhythm power, extracted from simultaneously collected scalp EEG. Our analyses show that, for most subjects, both symbolic sample entropy and normalized gamma power in string recognition task are significantly higher than those in idle state, especially at locations of P4, O2, T6 and C4. It implies that these regions are highly involved in string recognition task. Since symbolic sample entropy measures complexity, from the perspective of new information generation, and normalized rhythm power reveals the power distributions in frequency domain, complementary information about the underlying dynamics can be provided through the two types of indices.
Repetition and brain potentials when recognizing natural scenes: task and emotion differences
Bradley, Margaret M.; Codispoti, Maurizio; Karlsson, Marie; Lang, Peter J.
2013-01-01
Repetition has long been known to facilitate memory performance, but its effects on event-related potentials (ERPs), measured as an index of recognition memory, are less well characterized. In Experiment 1, effects of both massed and distributed repetition on old–new ERPs were assessed during an immediate recognition test that followed incidental encoding of natural scenes that also varied in emotionality. Distributed repetition at encoding enhanced both memory performance and the amplitude of an old–new ERP difference over centro-parietal sensors. To assess whether these repetition effects reflect encoding or retrieval differences, the recognition task was replaced with passive viewing of old and new pictures in Experiment 2. In the absence of an explicit recognition task, ERPs were completely unaffected by repetition at encoding, and only emotional pictures prompted a modestly enhanced old–new difference. Taken together, the data suggest that repetition facilitates retrieval processes and that, in the absence of an explicit recognition task, differences in old–new ERPs are only apparent for affective cues. PMID:22842817
Image-based deep learning for classification of noise transients in gravitational wave detectors
NASA Astrophysics Data System (ADS)
Razzano, Massimiliano; Cuoco, Elena
2018-05-01
The detection of gravitational waves has inaugurated the era of gravitational astronomy and opened new avenues for the multimessenger study of cosmic sources. Thanks to their sensitivity, the Advanced LIGO and Advanced Virgo interferometers will probe a much larger volume of space and expand the capability of discovering new gravitational wave emitters. The characterization of these detectors is a primary task in order to recognize the main sources of noise and optimize the sensitivity of interferometers. Glitches are transient noise events that can impact the data quality of the interferometers and their classification is an important task for detector characterization. Deep learning techniques are a promising tool for the recognition and classification of glitches. We present a classification pipeline that exploits convolutional neural networks to classify glitches starting from their time-frequency evolution represented as images. We evaluated the classification accuracy on simulated glitches, showing that the proposed algorithm can automatically classify glitches on very fast timescales and with high accuracy, thus providing a promising tool for online detector characterization.
ERIC Educational Resources Information Center
Farber, Ellen A.; Moely, Barbara E.
Results of two studies investigating children's abilities to use different kinds of cues to infer another's affective state are reported in this paper. In the first study, 48 children (3, 4, and 6 to 7 years of age) were given three different kinds of tasks (interpersonal task, facial recognition task, and vocal recognition task). A cross-age…
Tejeria, L; Harper, R A; Artes, P H; Dickinson, C M
2002-09-01
(1) To explore the relation between performance on tasks of familiar face recognition (FFR) and face expression difference discrimination (FED) with both perceived disability in face recognition and clinical measures of visual function in subjects with age related macular degeneration (AMD). (2) To quantify the gain in performance for face recognition tasks when subjects use a bioptic telescopic low vision device. 30 subjects with AMD (age range 66-90 years; visual acuity 0.4-1.4 logMAR) were recruited for the study. Perceived (self rated) disability in face recognition was assessed by an eight item questionnaire covering a range of issues relating to face recognition. Visual functions measured were distance visual acuity (ETDRS logMAR charts), continuous text reading acuity (MNRead charts), contrast sensitivity (Pelli-Robson chart), and colour vision (large panel D-15). In the FFR task, images of famous people had to be identified. FED was assessed by a forced choice test where subjects had to decide which one of four images showed a different facial expression. These tasks were repeated with subjects using a bioptic device. Overall perceived disability in face recognition did not correlate with performance on either task, although a specific item on difficulty recognising familiar faces did correlate with FFR (r = 0.49, p<0.05). FFR performance was most closely related to distance acuity (r = -0.69, p<0.001), while FED performance was most closely related to continuous text reading acuity (r = -0.79, p<0.001). In multiple regression, neither contrast sensitivity nor colour vision significantly increased the explained variance. When using a bioptic telescope, FFR performance improved in 86% of subjects (median gain = 49%; p<0.001), while FED performance increased in 79% of subjects (median gain = 50%; p<0.01). Distance and reading visual acuity are closely associated with measured task performance in FFR and FED. A bioptic low vision device can offer a significant improvement in performance for face recognition tasks, and may be useful in reducing the handicap associated with this disability. There is, however, little evidence for a correlation between self rated difficulty in face recognition and measured performance for either task. Further work is needed to explore the complex relation between the perception of disability and measured performance.
Tejeria, L; Harper, R A; Artes, P H; Dickinson, C M
2002-01-01
Aims: (1) To explore the relation between performance on tasks of familiar face recognition (FFR) and face expression difference discrimination (FED) with both perceived disability in face recognition and clinical measures of visual function in subjects with age related macular degeneration (AMD). (2) To quantify the gain in performance for face recognition tasks when subjects use a bioptic telescopic low vision device. Methods: 30 subjects with AMD (age range 66–90 years; visual acuity 0.4–1.4 logMAR) were recruited for the study. Perceived (self rated) disability in face recognition was assessed by an eight item questionnaire covering a range of issues relating to face recognition. Visual functions measured were distance visual acuity (ETDRS logMAR charts), continuous text reading acuity (MNRead charts), contrast sensitivity (Pelli-Robson chart), and colour vision (large panel D-15). In the FFR task, images of famous people had to be identified. FED was assessed by a forced choice test where subjects had to decide which one of four images showed a different facial expression. These tasks were repeated with subjects using a bioptic device. Results: Overall perceived disability in face recognition did not correlate with performance on either task, although a specific item on difficulty recognising familiar faces did correlate with FFR (r = 0.49, p<0.05). FFR performance was most closely related to distance acuity (r = −0.69, p<0.001), while FED performance was most closely related to continuous text reading acuity (r = −0.79, p<0.001). In multiple regression, neither contrast sensitivity nor colour vision significantly increased the explained variance. When using a bioptic telescope, FFR performance improved in 86% of subjects (median gain = 49%; p<0.001), while FED performance increased in 79% of subjects (median gain = 50%; p<0.01). Conclusion: Distance and reading visual acuity are closely associated with measured task performance in FFR and FED. A bioptic low vision device can offer a significant improvement in performance for face recognition tasks, and may be useful in reducing the handicap associated with this disability. There is, however, little evidence for a correlation between self rated difficulty in face recognition and measured performance for either task. Further work is needed to explore the complex relation between the perception of disability and measured performance. PMID:12185131
Task-Dependent Masked Priming Effects in Visual Word Recognition
Kinoshita, Sachiko; Norris, Dennis
2012-01-01
A method used widely to study the first 250 ms of visual word recognition is masked priming: These studies have yielded a rich set of data concerning the processes involved in recognizing letters and words. In these studies, there is an implicit assumption that the early processes in word recognition tapped by masked priming are automatic, and masked priming effects should therefore be invariant across tasks. Contrary to this assumption, masked priming effects are modulated by the task goal: For example, only word targets show priming in the lexical decision task, but both words and non-words do in the same-different task; semantic priming effects are generally weak in the lexical decision task but are robust in the semantic categorization task. We explain how such task dependence arises within the Bayesian Reader account of masked priming (Norris and Kinoshita, 2008), and how the task dissociations can be used to understand the early processes in lexical access. PMID:22675316
Zhang, Ran; Cheng, Meng; Zhang, Li-Ming; Zhu, Li-Na; Kong, De-Ming
2018-04-25
Porphyrins are promising candidates for nucleic acid G-quadruplex-specific optical recognition. We previously demonstrated that G-quadruplex recognition specificity of porphyrins could be improved by introducing bulky side arm substituents, but the enhanced protonation tendency limits their applications in some cases, such as under acidic conditions. Here, we demonstrated that the protonation tendency of porphyrin derivatives could be efficiently overcome by increasing molecular asymmetry. To validate this, an asymmetric, water-soluble, cationic porphyrin FA-TMPipEOPP (5-{4-[2-[[(2 E)-3-[3-methoxy-4-[2-(1-methyl-1-piperidinyl)ethoxy]phenyl]-1-oxo-2-propenyl]oxy]ethoxy]phenyl},10,15,20-tri{4-[2-(1-methyl-1-piperidinyl)ethoxy]-phenyl}porphyrin) was synthesized by introducing a ferulic acid (FA) unit at one side arm, and its structure was well-characterized. Unlike its symmetric counterpart TMPipEOPP that has a tendency to protonate under acidic conditions, FA-TMPipEOPP remained in the unprotonated monomeric form under the pH range of 2.0-8.0. Correspondingly, FA-TMPipEOPP showed better G-quadruplex recognition specificity than TMPipEOPP and thus might be used as a specific optical probe for colorimetric and fluorescent recognition of G-quadruplexes under acidic conditions. The feasibility was demonstrated by two proof-of-concept studies: probing structural competition between G-quadruplexes and duplexes and label-free and wash-free cancer cell-targeted bioimaging under an acidic tumor microenvironment. As G-quadruplex optical probes, FA-TMPipEOPP works well under acidic conditions, whereas TMPipEOPP works well under neutral conditions. This finding provides useful information for G-quadruplex probe research. That is, porphyrin-based G-quadruplex probes suitable for different pH conditions might be obtained by adjusting the molecular symmetry.
Influence of auditory attention on sentence recognition captured by the neural phase.
Müller, Jana Annina; Kollmeier, Birger; Debener, Stefan; Brand, Thomas
2018-03-07
The aim of this study was to investigate whether attentional influences on speech recognition are reflected in the neural phase entrained by an external modulator. Sentences were presented in 7 Hz sinusoidally modulated noise while the neural response to that modulation frequency was monitored by electroencephalogram (EEG) recordings in 21 participants. We implemented a selective attention paradigm including three different attention conditions while keeping physical stimulus parameters constant. The participants' task was either to repeat the sentence as accurately as possible (speech recognition task), to count the number of decrements implemented in modulated noise (decrement detection task), or to do both (dual task), while the EEG was recorded. Behavioural analysis revealed reduced performance in the dual task condition for decrement detection, possibly reflecting limited cognitive resources. EEG analysis revealed no significant differences in power for the 7 Hz modulation frequency, but an attention-dependent phase difference between tasks. Further phase analysis revealed a significant difference 500 ms after sentence onset between trials with correct and incorrect responses for speech recognition, indicating that speech recognition performance and the neural phase are linked via selective attention mechanisms, at least shortly after sentence onset. However, the neural phase effects identified were small and await further investigation. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Acquired prosopagnosia without word recognition deficits.
Susilo, Tirta; Wright, Victoria; Tree, Jeremy J; Duchaine, Bradley
2015-01-01
It has long been suggested that face recognition relies on specialized mechanisms that are not involved in visual recognition of other object categories, including those that require expert, fine-grained discrimination at the exemplar level such as written words. But according to the recently proposed many-to-many theory of object recognition (MTMT), visual recognition of faces and words are carried out by common mechanisms [Behrmann, M., & Plaut, D. C. ( 2013 ). Distributed circuits, not circumscribed centers, mediate visual recognition. Trends in Cognitive Sciences, 17, 210-219]. MTMT acknowledges that face and word recognition are lateralized, but posits that the mechanisms that predominantly carry out face recognition still contribute to word recognition and vice versa. MTMT makes a key prediction, namely that acquired prosopagnosics should exhibit some measure of word recognition deficits. We tested this prediction by assessing written word recognition in five acquired prosopagnosic patients. Four patients had lesions limited to the right hemisphere while one had bilateral lesions with more pronounced lesions in the right hemisphere. The patients completed a total of seven word recognition tasks: two lexical decision tasks and five reading aloud tasks totalling more than 1200 trials. The performances of the four older patients (3 female, age range 50-64 years) were compared to those of 12 older controls (8 female, age range 56-66 years), while the performances of the younger prosopagnosic (male, 31 years) were compared to those of 14 younger controls (9 female, age range 20-33 years). We analysed all results at the single-patient level using Crawford's t-test. Across seven tasks, four prosopagnosics performed as quickly and accurately as controls. Our results demonstrate that acquired prosopagnosia can exist without word recognition deficits. These findings are inconsistent with a key prediction of MTMT. They instead support the hypothesis that face recognition is carried out by specialized mechanisms that do not contribute to recognition of written words.
The Low-Frequency Encoding Disadvantage: Word Frequency Affects Processing Demands
ERIC Educational Resources Information Center
Diana, Rachel A.; Reder, Lynne M.
2006-01-01
Low-frequency words produce more hits and fewer false alarms than high-frequency words in a recognition task. The low-frequency hit rate advantage has sometimes been attributed to processes that operate during the recognition test (e.g., L. M. Reder et al., 2000). When tasks other than recognition, such as recall, cued recall, or associative…
Convolutional neural networks and face recognition task
NASA Astrophysics Data System (ADS)
Sochenkova, A.; Sochenkov, I.; Makovetskii, A.; Vokhmintsev, A.; Melnikov, A.
2017-09-01
Computer vision tasks are remaining very important for the last couple of years. One of the most complicated problems in computer vision is face recognition that could be used in security systems to provide safety and to identify person among the others. There is a variety of different approaches to solve this task, but there is still no universal solution that would give adequate results in some cases. Current paper presents following approach. Firstly, we extract an area containing face, then we use Canny edge detector. On the next stage we use convolutional neural networks (CNN) to finally solve face recognition and person identification task.
Multi-task learning with group information for human action recognition
NASA Astrophysics Data System (ADS)
Qian, Li; Wu, Song; Pu, Nan; Xu, Shulin; Xiao, Guoqiang
2018-04-01
Human action recognition is an important and challenging task in computer vision research, due to the variations in human motion performance, interpersonal differences and recording settings. In this paper, we propose a novel multi-task learning framework with group information (MTL-GI) for accurate and efficient human action recognition. Specifically, we firstly obtain group information through calculating the mutual information according to the latent relationship between Gaussian components and action categories, and clustering similar action categories into the same group by affinity propagation clustering. Additionally, in order to explore the relationships of related tasks, we incorporate group information into multi-task learning. Experimental results evaluated on two popular benchmarks (UCF50 and HMDB51 datasets) demonstrate the superiority of our proposed MTL-GI framework.
Štillová, Klára; Jurák, Pavel; Chládek, Jan; Chrastina, Jan; Halámek, Josef; Bočková, Martina; Goldemundová, Sabina; Říha, Ivo; Rektor, Ivan
2015-01-01
Objective To study the involvement of the anterior nuclei of the thalamus (ANT) as compared to the involvement of the hippocampus in the processes of encoding and recognition during visual and verbal memory tasks. Methods We studied intracerebral recordings in patients with pharmacoresistent epilepsy who underwent deep brain stimulation (DBS) of the ANT with depth electrodes implanted bilaterally in the ANT and compared the results with epilepsy surgery candidates with depth electrodes implanted bilaterally in the hippocampus. We recorded the event-related potentials (ERPs) elicited by the visual and verbal memory encoding and recognition tasks. Results P300-like potentials were recorded in the hippocampus by visual and verbal memory encoding and recognition tasks and in the ANT by the visual encoding and visual and verbal recognition tasks. No significant ERPs were recorded during the verbal encoding task in the ANT. In the visual and verbal recognition tasks, the P300-like potentials in the ANT preceded the P300-like potentials in the hippocampus. Conclusions The ANT is a structure in the memory pathway that processes memory information before the hippocampus. We suggest that the ANT has a specific role in memory processes, especially memory recognition, and that memory disturbance should be considered in patients with ANT-DBS and in patients with ANT lesions. ANT is well positioned to serve as a subcortical gate for memory processing in cortical structures. PMID:26529407
van Veluw, Susanne J; Chance, Steven A
2014-03-01
The perception of self and others is a key aspect of social cognition. In order to investigate the neurobiological basis of this distinction we reviewed two classes of task that study self-awareness and awareness of others (theory of mind, ToM). A reliable task to measure self-awareness is the recognition of one's own face in contrast to the recognition of others' faces. False-belief tasks are widely used to identify neural correlates of ToM as a measure of awareness of others. We performed an activation likelihood estimation meta-analysis, using the fMRI literature on self-face recognition and false-belief tasks. The brain areas involved in performing false-belief tasks were the medial prefrontal cortex (MPFC), bilateral temporo-parietal junction, precuneus, and the bilateral middle temporal gyrus. Distinct self-face recognition regions were the right superior temporal gyrus, the right parahippocampal gyrus, the right inferior frontal gyrus/anterior cingulate cortex, and the left inferior parietal lobe. Overlapping brain areas were the superior temporal gyrus, and the more ventral parts of the MPFC. We confirmed that self-recognition in contrast to recognition of others' faces, and awareness of others involves a network that consists of separate, distinct neural pathways, but also includes overlapping regions of higher order prefrontal cortex where these processes may be combined. Insights derived from the neurobiology of disorders such as autism and schizophrenia are consistent with this notion.
Familiarity and face emotion recognition in patients with schizophrenia.
Lahera, Guillermo; Herrera, Sara; Fernández, Cristina; Bardón, Marta; de los Ángeles, Victoria; Fernández-Liria, Alberto
2014-01-01
To assess the emotion recognition in familiar and unknown faces in a sample of schizophrenic patients and healthy controls. Face emotion recognition of 18 outpatients diagnosed with schizophrenia (DSM-IVTR) and 18 healthy volunteers was assessed with two Emotion Recognition Tasks using familiar faces and unknown faces. Each subject was accompanied by 4 familiar people (parents, siblings or friends), which were photographed by expressing the 6 Ekman's basic emotions. Face emotion recognition in familiar faces was assessed with this ad hoc instrument. In each case, the patient scored (from 1 to 10) the subjective familiarity and affective valence corresponding to each person. Patients with schizophrenia not only showed a deficit in the recognition of emotions on unknown faces (p=.01), but they also showed an even more pronounced deficit on familiar faces (p=.001). Controls had a similar success rate in the unknown faces task (mean: 18 +/- 2.2) and the familiar face task (mean: 17.4 +/- 3). However, patients had a significantly lower score in the familiar faces task (mean: 13.2 +/- 3.8) than in the unknown faces task (mean: 16 +/- 2.4; p<.05). In both tests, the highest number of errors was with emotions of anger and fear. Subjectively, the patient group showed a lower level of familiarity and emotional valence to their respective relatives (p<.01). The sense of familiarity may be a factor involved in the face emotion recognition and it may be disturbed in schizophrenia. © 2013.
Iconic gestures prime related concepts: an ERP study.
Wu, Ying Croon; Coulson, Seana
2007-02-01
To assess priming by iconic gestures, we recorded EEG (at 29 scalp sites) in two experiments while adults watched short, soundless videos of spontaneously produced, cospeech iconic gestures followed by related or unrelated probe words. In Experiment 1, participants classified the relatedness between gestures and words. In Experiment 2, they attended to stimuli, and performed an incidental recognition memory test on words presented during the EEG recording session. Event-related potentials (ERPs) time-locked to the onset of probe words were measured, along with response latencies and word recognition rates. Although word relatedness did not affect reaction times or recognition rates, contextually related probe words elicited less-negative ERPs than did unrelated ones between 300 and 500 msec after stimulus onset (N400) in both experiments. These findings demonstrate sensitivity to semantic relations between iconic gestures and words in brain activity engendered during word comprehension.
Does cortisol modulate emotion recognition and empathy?
Duesenberg, Moritz; Weber, Juliane; Schulze, Lars; Schaeuffele, Carmen; Roepke, Stefan; Hellmann-Regen, Julian; Otte, Christian; Wingenfeld, Katja
2016-04-01
Emotion recognition and empathy are important aspects in the interaction and understanding of other people's behaviors and feelings. The Human environment comprises of stressful situations that impact social interactions on a daily basis. Aim of the study was to examine the effects of the stress hormone cortisol on emotion recognition and empathy. In this placebo-controlled study, 40 healthy men and 40 healthy women (mean age 24.5 years) received either 10mg of hydrocortisone or placebo. We used the Multifaceted Empathy Test to measure emotional and cognitive empathy. Furthermore, we examined emotion recognition from facial expressions, which contained two emotions (anger and sadness) and two emotion intensities (40% and 80%). We did not find a main effect for treatment or sex on either empathy or emotion recognition but a sex × emotion interaction on emotion recognition. The main result was a four-way-interaction on emotion recognition including treatment, sex, emotion and task difficulty. At 40% task difficulty, women recognized angry faces better than men in the placebo condition. Furthermore, in the placebo condition, men recognized sadness better than anger. At 80% task difficulty, men and women performed equally well in recognizing sad faces but men performed worse compared to women with regard to angry faces. Apparently, our results did not support the hypothesis that increases in cortisol concentration alone influence empathy and emotion recognition in healthy young individuals. However, sex and task difficulty appear to be important variables in emotion recognition from facial expressions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cross, Laura; Brown, Malcolm W; Aggleton, John P; Warburton, E Clea
2012-12-21
In humans recognition memory deficits, a typical feature of diencephalic amnesia, have been tentatively linked to mediodorsal thalamic nucleus (MD) damage. Animal studies have occasionally investigated the role of the MD in single-item recognition, but have not systematically analyzed its involvement in other recognition memory processes. In Experiment 1 rats with bilateral excitotoxic lesions in the MD or the medial prefrontal cortex (mPFC) were tested in tasks that assessed single-item recognition (novel object preference), associative recognition memory (object-in-place), and recency discrimination (recency memory task). Experiment 2 examined the functional importance of the interactions between the MD and mPFC using disconnection techniques. Unilateral excitotoxic lesions were placed in both the MD and the mPFC in either the same (MD + mPFC Ipsi) or opposite hemispheres (MD + mPFC Contra group). Bilateral lesions in the MD or mPFC impaired object-in-place and recency memory tasks, but had no effect on novel object preference. In Experiment 2 the MD + mPFC Contra group was significantly impaired in the object-in-place and recency memory tasks compared with the MD + mPFC Ipsi group, but novel object preference was intact. Thus, connections between the MD and mPFC are critical for recognition memory when the discriminations involve associative or recency information. However, the rodent MD is not necessary for single-item recognition memory.
Recognition intent and visual word recognition.
Wang, Man-Ying; Ching, Chi-Le
2009-03-01
This study adopted a change detection task to investigate whether and how recognition intent affects the construction of orthographic representation in visual word recognition. Chinese readers (Experiment 1-1) and nonreaders (Experiment 1-2) detected color changes in radical components of Chinese characters. Explicit recognition demand was imposed in Experiment 2 by an additional recognition task. When the recognition was implicit, a bias favoring the radical location informative of character identity was found in Chinese readers (Experiment 1-1), but not nonreaders (Experiment 1-2). With explicit recognition demands, the effect of radical location interacted with radical function and word frequency (Experiment 2). An estimate of identification performance under implicit recognition was derived in Experiment 3. These findings reflect the joint influence of recognition intent and orthographic regularity in shaping readers' orthographic representation. The implication for the role of visual attention in word recognition was also discussed.
An uracil-linked hydroxyflavone probe for the recognition of ATP
Bojtár, Márton; Janzsó-Berend, Péter Zoltán; Mester, Dávid; Hessz, Dóra; Kállay, Mihály; Kubinyi, Miklós
2018-01-01
Background: Nucleotides are essential molecules in living systems due to their paramount importance in various physiological processes. In the past years, numerous attempts were made to selectively recognize and detect these analytes, especially ATP using small-molecule fluorescent chemosensors. Despite the various solutions, the selective detection of ATP is still challenging due to the structural similarity of various nucleotides. In this paper, we report the conjugation of a uracil nucleobase to the known 4’-dimethylamino-hydroxyflavone fluorophore. Results: The complexation of this scaffold with ATP is already known. The complex is held together by stacking and electrostatic interactions. To achieve multi-point recognition, we designed the uracil-appended version of this probe to include complementary base-pairing interactions. The theoretical calculations revealed the availability of multiple complex structures. The synthesis was performed using click chemistry and the nucleotide recognition properties of the probe were evaluated using fluorescence spectroscopy. Conclusions: The first, uracil-containing fluorescent ATP probe based on a hydroxyflavone fluorophore was synthesized and evaluated. A selective complexation with ATP was observed and a ratiometric response in the excitation spectrum. PMID:29719572
Bernard, Jean-Baptiste; Aguilar, Carlos; Castet, Eric
2016-01-01
Reading speed is dramatically reduced when readers cannot use their central vision. This is because low visual acuity and crowding negatively impact letter recognition in the periphery. In this study, we designed a new font (referred to as the Eido font) in order to reduce inter-letter similarity and consequently to increase peripheral letter recognition performance. We tested this font by running five experiments that compared the Eido font with the standard Courier font. Letter spacing and x-height were identical for the two monospaced fonts. Six normally-sighted subjects used exclusively their peripheral vision to run two aloud reading tasks (with eye movements), a letter recognition task (without eye movements), a word recognition task (without eye movements) and a lexical decision task. Results show that reading speed was not significantly different between the Eido and the Courier font when subjects had to read single sentences with a round simulated gaze-contingent central scotoma (10° diameter). In contrast, Eido significantly decreased perceptual errors in peripheral crowded letter recognition (-30% errors on average for letters briefly presented at 6° eccentricity) and in peripheral word recognition (-32% errors on average for words briefly presented at 6° eccentricity). PMID:27074013
Bernard, Jean-Baptiste; Aguilar, Carlos; Castet, Eric
2016-01-01
Reading speed is dramatically reduced when readers cannot use their central vision. This is because low visual acuity and crowding negatively impact letter recognition in the periphery. In this study, we designed a new font (referred to as the Eido font) in order to reduce inter-letter similarity and consequently to increase peripheral letter recognition performance. We tested this font by running five experiments that compared the Eido font with the standard Courier font. Letter spacing and x-height were identical for the two monospaced fonts. Six normally-sighted subjects used exclusively their peripheral vision to run two aloud reading tasks (with eye movements), a letter recognition task (without eye movements), a word recognition task (without eye movements) and a lexical decision task. Results show that reading speed was not significantly different between the Eido and the Courier font when subjects had to read single sentences with a round simulated gaze-contingent central scotoma (10° diameter). In contrast, Eido significantly decreased perceptual errors in peripheral crowded letter recognition (-30% errors on average for letters briefly presented at 6° eccentricity) and in peripheral word recognition (-32% errors on average for words briefly presented at 6° eccentricity).
Discovery of a novel calcium-sensitive fluorescent probe for α-ketoglutarate.
Gan, Lin-Lin; Chen, Lin-Hai; Nan, Fa-Jun
2017-12-01
α-Ketoglutarate (α-KG), a pivotal metabolite in energy metabolism, has been implicated in nonalcoholic fatty liver disease (NAFLD) and several cancers. It is recently proposed that plasma α-KG is a surrogate biomarker of NAFLD. Here, we report the development of a novel "turn-on" chemosensor for α-KG that contains a coumarin moiety as a fluorophore. Using benzothiazole-coumarin (BTC) as inspiration, we designed a probe for calcium ion recognition that possesses a unique fluorophore compared with previously reported probes for α-KG measurement. This chemosensor is based on the specific Schiff base reaction and the calcium ion recognition property of the widely used calcium indicator BTC. The probe was synthesized, and a series of parallel experiments were conducted to optimize the chemical recognition process. Compared to the initial weak fluorescence, a remarkable 7.6-fold enhancement in fluorescence intensity (I/I 0 at 495 nm) was observed for the conditions in which the probe (1 μmol/L), α-KG (50 μmol/L), and Ca 2+ (100 μmol/L) were incubated at 30 °C in EtOH. The probe displayed good selectivity for α-KG even in an environment with an abundance of amino acids and other interfering species such as glutaric acid. We determined that the quantitative detection range of α-KG in EtOH was between 5 and 50 μmol/L. Finally, probe in serum loaded with α-KG (10 mmol/L) showed a 7.4-fold fluorescence enhancement. In summary, a novel probe for detecting the biomarker α-KG through a typical Schiff base reaction has been discovered. With further optimization, this probe may be a good alternative for detecting the physiological metabolite α-KG.
Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J
2015-08-18
Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent examples from our laboratory and collaborations in which applications of chemical probes reveal that labile copper contributes to various physiologies. The first example shows that copper is an endogenous regulator of neuronal activity, the second illustrates cellular prioritization of mitochondrial copper homeostasis, and the third identifies the "cuprosome" as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition- and reactivity-based fluorescent probes have helped to uncover new biological roles for labile transition metals, and the further development of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors, will continue to reveal exciting and new biological roles for labile transition metals.
Oh, Jooyoung; Chun, Ji-Won; Kim, Eunseong; Park, Hae-Jeong; Lee, Boreom; Kim, Jae-Jin
2017-01-01
Patients with schizophrenia exhibit several cognitive deficits, including memory impairment. Problems with recognition memory can hinder socially adaptive behavior. Previous investigations have suggested that altered activation of the frontotemporal area plays an important role in recognition memory impairment. However, the cerebral networks related to these deficits are not known. The aim of this study was to elucidate the brain networks required for recognizing socially relevant information in patients with schizophrenia performing an old-new recognition task. Sixteen patients with schizophrenia and 16 controls participated in this study. First, the subjects performed the theme-identification task during functional magnetic resonance imaging. In this task, pictures depicting social situations were presented with three words, and the subjects were asked to select the best theme word for each picture. The subjects then performed an old-new recognition task in which they were asked to discriminate whether the presented words were old or new. Task performance and neural responses in the old-new recognition task were compared between the subject groups. An independent component analysis of the functional connectivity was performed. The patients with schizophrenia exhibited decreased discriminability and increased activation of the right superior temporal gyrus compared with the controls during correct responses. Furthermore, aberrant network activities were found in the frontopolar and language comprehension networks in the patients. The functional connectivity analysis showed aberrant connectivity in the frontopolar and language comprehension networks in the patients with schizophrenia, and these aberrations possibly contribute to their low recognition performance and social dysfunction. These results suggest that the frontopolar and language comprehension networks are potential therapeutic targets in patients with schizophrenia.
Zahabi, Maryam; Zhang, Wenjuan; Pankok, Carl; Lau, Mei Ying; Shirley, James; Kaber, David
2017-11-01
Many occupations require both physical exertion and cognitive task performance. Knowledge of any interaction between physical demands and modalities of cognitive task information presentation can provide a basis for optimising performance. This study examined the effect of physical exertion and modality of information presentation on pattern recognition and navigation-related information processing. Results indicated males of equivalent high fitness, between the ages of 18 and 34, rely more on visual cues vs auditory or haptic for pattern recognition when exertion level is high. We found that navigation response time was shorter under low and medium exertion levels as compared to high intensity. Navigation accuracy was lower under high level exertion compared to medium and low levels. In general, findings indicated that use of the haptic modality for cognitive task cueing decreased accuracy in pattern recognition responses. Practitioner Summary: An examination was conducted on the effect of physical exertion and information presentation modality in pattern recognition and navigation. In occupations requiring information presentation to workers, who are simultaneously performing a physical task, the visual modality appears most effective under high level exertion while haptic cueing degrades performance.
Sensitive fluorescence on-off probes for the fast detection of a chemical warfare agent mimic.
Khan, Muhammad Shar Jhahan; Wang, Ya-Wen; Senge, Mathias O; Peng, Yu
2018-01-15
Two highly sensitive probes bearing a nucleophilic imine moiety have been utilized for the selective detection of chemical warfare agent (CWA) mimics. Diethyl chlorophosphate (DCP) was used as mimic CWAs. Both iminocoumarin-benzothiazole-based probes not only demonstrated a remarkable fluorescence ON-OFF response and good recognition, but also exhibited fast response times (10s) along with color changes upon addition of DCP. Limits of detection for the two sensors 1 and 2 were calculated as 0.065μM and 0.21μM, respectively, which are much lower than most other reported probes. These two probes not only show high sensitivity and selectivity in solution, but can also be applied for the recognition of DCP in the gas state, with significant color changes easily observed by the naked eye. Copyright © 2017 Elsevier B.V. All rights reserved.
Recognition memory probes affect what is remembered in schizophrenia.
Schwartz, Barbara L; Parker, Elizabeth S; Rosse, Richard B; Deutsch, Stephen I
2009-05-15
Cognitive psychology offers tools to localize the memory processes most vulnerable to disruption in schizophrenia and to identify how patients with schizophrenia best remember. In this research, we used the University of Southern California Repeatable Episodic Memory Test (USC-REMT; Parker, E.S., Landau, S.M., Whipple, S.C., Schwartz, B.L., 2004. Aging, recall, and recognition: A study on the sensitivity of the University of Southern California Repeatable Episodic Memory Test (USC-REMT). Journal of Clinical and Experimental Neuropsychology 26(3), 428-440.) to examine how two different recognition memory probes affect memory performance in patients with schizophrenia and matched controls. Patients with schizophrenia studied equivalent word lists and were tested by yes-no recognition and forced-choice recognition following identical encoding and storage conditions. Compared with controls, patients with schizophrenia were particularly impaired when tested by yes-no recognition relative to forced-choice recognition. Patients had greatest deficits on hits in yes-no recognition but did not exhibit elevated false alarms. The data point to the importance of retrieval processes in schizophrenia, and highlight the need for further research on ways to help patients with schizophrenia access what they have learned.
Approach to recognition of flexible form for credit card expiration date recognition as example
NASA Astrophysics Data System (ADS)
Sheshkus, Alexander; Nikolaev, Dmitry P.; Ingacheva, Anastasia; Skoryukina, Natalya
2015-12-01
In this paper we consider a task of finding information fields within document with flexible form for credit card expiration date field as example. We discuss main difficulties and suggest possible solutions. In our case this task is to be solved on mobile devices therefore computational complexity has to be as low as possible. In this paper we provide results of the analysis of suggested algorithm. Error distribution of the recognition system shows that suggested algorithm solves the task with required accuracy.
Semantic Neighborhood Effects for Abstract versus Concrete Words
Danguecan, Ashley N.; Buchanan, Lori
2016-01-01
Studies show that semantic effects may be task-specific, and thus, that semantic representations are flexible and dynamic. Such findings are critical to the development of a comprehensive theory of semantic processing in visual word recognition, which should arguably account for how semantic effects may vary by task. It has been suggested that semantic effects are more directly examined using tasks that explicitly require meaning processing relative to those for which meaning processing is not necessary (e.g., lexical decision task). The purpose of the present study was to chart the processing of concrete versus abstract words in the context of a global co-occurrence variable, semantic neighborhood density (SND), by comparing word recognition response times (RTs) across four tasks varying in explicit semantic demands: standard lexical decision task (with non-pronounceable non-words), go/no-go lexical decision task (with pronounceable non-words), progressive demasking task, and sentence relatedness task. The same experimental stimulus set was used across experiments and consisted of 44 concrete and 44 abstract words, with half of these being low SND, and half being high SND. In this way, concreteness and SND were manipulated in a factorial design using a number of visual word recognition tasks. A consistent RT pattern emerged across tasks, in which SND effects were found for abstract (but not necessarily concrete) words. Ultimately, these findings highlight the importance of studying interactive effects in word recognition, and suggest that linguistic associative information is particularly important for abstract words. PMID:27458422
Semantic Neighborhood Effects for Abstract versus Concrete Words.
Danguecan, Ashley N; Buchanan, Lori
2016-01-01
Studies show that semantic effects may be task-specific, and thus, that semantic representations are flexible and dynamic. Such findings are critical to the development of a comprehensive theory of semantic processing in visual word recognition, which should arguably account for how semantic effects may vary by task. It has been suggested that semantic effects are more directly examined using tasks that explicitly require meaning processing relative to those for which meaning processing is not necessary (e.g., lexical decision task). The purpose of the present study was to chart the processing of concrete versus abstract words in the context of a global co-occurrence variable, semantic neighborhood density (SND), by comparing word recognition response times (RTs) across four tasks varying in explicit semantic demands: standard lexical decision task (with non-pronounceable non-words), go/no-go lexical decision task (with pronounceable non-words), progressive demasking task, and sentence relatedness task. The same experimental stimulus set was used across experiments and consisted of 44 concrete and 44 abstract words, with half of these being low SND, and half being high SND. In this way, concreteness and SND were manipulated in a factorial design using a number of visual word recognition tasks. A consistent RT pattern emerged across tasks, in which SND effects were found for abstract (but not necessarily concrete) words. Ultimately, these findings highlight the importance of studying interactive effects in word recognition, and suggest that linguistic associative information is particularly important for abstract words.
von Piekartz, H; Wallwork, S B; Mohr, G; Butler, D S; Moseley, G L
2015-04-01
Alexithymia, or a lack of emotional awareness, is prevalent in some chronic pain conditions and has been linked to poor recognition of others' emotions. Recognising others' emotions from their facial expression involves both emotional and motor processing, but the possible contribution of motor disruption has not been considered. It is possible that poor performance on emotional recognition tasks could reflect problems with emotional processing, motor processing or both. We hypothesised that people with chronic facial pain would be less accurate in recognising others' emotions from facial expressions, would be less accurate in a motor imagery task involving the face, and that performance on both tasks would be positively related. A convenience sample of 19 people (15 females) with chronic facial pain and 19 gender-matched controls participated. They undertook two tasks; in the first task, they identified the facial emotion presented in a photograph. In the second, they identified whether the person in the image had a facial feature pointed towards their left or right side, a well-recognised paradigm to induce implicit motor imagery. People with chronic facial pain performed worse than controls at both tasks (Facially Expressed Emotion Labelling (FEEL) task P < 0·001; left/right judgment task P < 0·001). Participants who were more accurate at one task were also more accurate at the other, regardless of group (P < 0·001, r(2) = 0·523). Participants with chronic facial pain were worse than controls at both the FEEL emotion recognition task and the left/right facial expression task and performance covaried within participants. We propose that disrupted motor processing may underpin or at least contribute to the difficulty that facial pain patients have in emotion recognition and that further research that tests this proposal is warranted. © 2014 John Wiley & Sons Ltd.
Facial emotion recognition is inversely correlated with tremor severity in essential tremor.
Auzou, Nicolas; Foubert-Samier, Alexandra; Dupouy, Sandrine; Meissner, Wassilios G
2014-04-01
We here assess limbic and orbitofrontal control in 20 patients with essential tremor (ET) and 18 age-matched healthy controls using the Ekman Facial Emotion Recognition Task and the IOWA Gambling Task. Our results show an inverse relation between facial emotion recognition and tremor severity. ET patients also showed worse performance in joy and fear recognition, as well as subtle abnormalities in risk detection, but these differences did not reach significance after correction for multiple testing.
fMRI characterization of visual working memory recognition.
Rahm, Benjamin; Kaiser, Jochen; Unterrainer, Josef M; Simon, Juliane; Bledowski, Christoph
2014-04-15
Encoding and maintenance of information in visual working memory have been extensively studied, highlighting the crucial and capacity-limiting role of fronto-parietal regions. In contrast, the neural basis of recognition in visual working memory has remained largely unspecified. Cognitive models suggest that recognition relies on a matching process that compares sensory information with the mental representations held in memory. To characterize the neural basis of recognition we varied both the need for recognition and the degree of similarity between the probe item and the memory contents, while independently manipulating memory load to produce load-related fronto-parietal activations. fMRI revealed a fractionation of working memory functions across four distributed networks. First, fronto-parietal regions were activated independent of the need for recognition. Second, anterior parts of load-related parietal regions contributed to recognition but their activations were independent of the difficulty of matching in terms of sample-probe similarity. These results argue against a key role of the fronto-parietal attention network in recognition. Rather the third group of regions including bilateral temporo-parietal junction, posterior cingulate cortex and superior frontal sulcus reflected demands on matching both in terms of sample-probe-similarity and the number of items to be compared. Also, fourth, bilateral motor regions and right superior parietal cortex showed higher activation when matching provided clear evidence for a decision. Together, the segregation between the well-known fronto-parietal activations attributed to attentional operations in working memory from those regions involved in matching supports the theoretical view of separable attentional and mnemonic contributions to working memory. Yet, the close theoretical and empirical correspondence to perceptual decision making may call for an explicit consideration of decision making mechanisms in conceptions of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Word position affects stimulus recognition: evidence for early ERP short-term plastic modulation.
Spironelli, Chiara; Galfano, Giovanni; Umiltà, Carlo; Angrilli, Alessandro
2011-12-01
The present study was aimed at investigating the short-term plastic changes that follow word learning at a neurophysiological level. The main hypothesis was that word position (left or right visual field, LVF/RH or RVF/LH) in the initial learning phase would leave a trace that affected, in the subsequent recognition phase, the Recognition Potential (i.e., the first negative component distinguishing words from other stimuli) elicited 220-240 ms after centrally presented stimuli. Forty-eight students were administered, in the learning phase, 125 words for 4s, randomly presented half in the left and half in the right visual field. In the recognition phase, participants were split into two equal groups, one was assigned to the Word task, the other to the Picture task (in which half of the 125 pictures were new, and half matched prior studied words). During the Word task, old RVF/LH words elicited significantly greater negativity in left posterior sites with respect to old LVF/RH words, which in turn showed the same pattern of activation evoked by new words. Therefore, correspondence between stimulus spatial position and hemisphere specialized in automatic word recognition created a robust prime for subsequent recognition. During the Picture task, pictures matching old RVF/LH words showed no differences compared with new pictures, but evoked significantly greater negativity than pictures matching old LVF/RH words. Thus, the priming effect vanished when the task required a switch from visual analysis to stored linguistic information, whereas the lack of correspondence between stimulus position and network specialized in automatic word recognition (i.e., when words were presented to the LVF/RH) revealed the implicit costs for recognition. Results support the view that short-term plastic changes occurring in a linguistic learning task interact with both stimulus position and modality (written word vs. picture representation). Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Bartko, Susan J.; Winters, Boyer D.; Cowell, Rosemary A.; Saksida, Lisa M.; Bussey, Timothy J.
2007-01-01
The perirhinal cortex (PRh) has a well-established role in object recognition memory. More recent studies suggest that PRh is also important for two-choice visual discrimination tasks. Specifically, it has been suggested that PRh contains conjunctive representations that help resolve feature ambiguity, which occurs when a task cannot easily be…
Acute Alcohol Effects on Repetition Priming and Word Recognition Memory with Equivalent Memory Cues
ERIC Educational Resources Information Center
Ray, Suchismita; Bates, Marsha E.
2006-01-01
Acute alcohol intoxication effects on memory were examined using a recollection-based word recognition memory task and a repetition priming task of memory for the same information without explicit reference to the study context. Memory cues were equivalent across tasks; encoding was manipulated by varying the frequency of occurrence (FOC) of words…
Recognition memory span in autopsy-confirmed Dementia with Lewy Bodies and Alzheimer's Disease.
Salmon, David P; Heindel, William C; Hamilton, Joanne M; Vincent Filoteo, J; Cidambi, Varun; Hansen, Lawrence A; Masliah, Eliezer; Galasko, Douglas
2015-08-01
Evidence from patients with amnesia suggests that recognition memory span tasks engage both long-term memory (i.e., secondary memory) processes mediated by the diencephalic-medial temporal lobe memory system and working memory processes mediated by fronto-striatal systems. Thus, the recognition memory span task may be particularly effective for detecting memory deficits in disorders that disrupt both memory systems. The presence of unique pathology in fronto-striatal circuits in Dementia with Lewy Bodies (DLB) compared to AD suggests that performance on the recognition memory span task might be differentially affected in the two disorders even though they have quantitatively similar deficits in secondary memory. In the present study, patients with autopsy-confirmed DLB or AD, and Normal Control (NC) participants, were tested on separate recognition memory span tasks that required them to retain increasing amounts of verbal, spatial, or visual object (i.e., faces) information across trials. Results showed that recognition memory spans for verbal and spatial stimuli, but not face stimuli, were lower in patients with DLB than in those with AD, and more impaired relative to NC performance. This was despite similar deficits in the two patient groups on independent measures of secondary memory such as the total number of words recalled from long-term storage on the Buschke Selective Reminding Test. The disproportionate vulnerability of recognition memory span task performance in DLB compared to AD may be due to greater fronto-striatal involvement in DLB and a corresponding decrement in cooperative interaction between working memory and secondary memory processes. Assessment of recognition memory span may contribute to the ability to distinguish between DLB and AD relatively early in the course of disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recognition Memory Span in Autopsy-Confirmed Dementia with Lewy Bodies and Alzheimer’s Disease
Salmon, David P.; Heindel, William C.; Hamilton, Joanne M.; Filoteo, J. Vincent; Cidambi, Varun; Hansen, Lawrence A.; Masliah, Eliezer; Galasko, Douglas
2016-01-01
Evidence from patients with amnesia suggests that recognition memory span tasks engage both long-term memory (i.e., secondary memory) processes mediated by the diencephalic-medial temporal lobe memory system and working memory processes mediated by fronto-striatal systems. Thus, the recognition memory span task may be particularly effective for detecting memory deficits in disorders that disrupt both memory systems. The presence of unique pathology in fronto-striatal circuits in Dementia with Lewy Bodies (DLB) compared to AD suggests that performance on the recognition memory span task might be differentially affected in the two disorders even though they have quantitatively similar deficits in secondary memory. In the present study, patients with autopsy-confirmed DLB or AD, and normal control (NC) participants, were tested on separate recognition memory span tasks that required them to retain increasing amounts of verbal, spatial, or visual object (i.e., faces) information across trials. Results showed that recognition memory spans for verbal and spatial stimuli, but not face stimuli, were lower in patients with DLB than in those with AD, and more impaired relative to NC performance. This was despite similar deficits in the two patient groups on independent measures of secondary memory such as the total number of words recalled from Long-Term Storage on the Buschke Selective Reminding Test. The disproportionate vulnerability of recognition memory span task performance in DLB compared to AD may be due to greater fronto-striatal involvement in DLB and a corresponding decrement in cooperative interaction between working memory and secondary memory processes. Assessment of recognition memory span may contribute to the ability to distinguish between DLB and AD relatively early in the course of disease. PMID:26184443
Harle, Marissa; Towns, Marcy H
2013-01-01
The interdisciplinary nature of biochemistry courses requires students to use both chemistry and biology knowledge to understand biochemical concepts. Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations in addition to a fragmented understanding of fundamental biochemistry concepts. This project focuses on students' understanding of primary and secondary protein structure and drawings (representations) of hydrogen-bonding in alpha helices and beta sheets. Analysis demonstrated that students can recognize and identify primary protein structure concepts when given a polypeptide. However, when asked to draw alpha helices and beta sheets and explain the role of hydrogen bonding their drawings students exhibited a fragmented understanding that lacked coherence. Faculty are encouraged to have students draw molecular level representations to make their mental models more explicit, complete, and coherent. This is in contrast to recognition and identification tasks, which do not adequately probe mental models and molecular level understanding. © 2013 by The International Union of Biochemistry and Molecular Biology.
Hyaluronan functionalizing QDs as turn-on fluorescent probe for targeted recognition CD44 receptor
NASA Astrophysics Data System (ADS)
Zhou, Shang; Huo, Danqun; Hou, Changjun; Yang, Mei; Fa, Huanbao
2017-09-01
The recognition of tumor markers in living cancer cells has attracted increasing interest. In the present study, the turn-on fluorescence probe was designed based on the fluorescence of thiolated chitosan-coated CdTe QDs (CdTe/TCS QDs) quenched by hyaluronan, which could provide the low background signal for sensitive cellular imaging. This system is expected to offer specific recognition of CD44 receptor over other substances owing to the specific affinity of hyaluronan and CD44 receptor ( 8-9 kcal/mol). The probe is stable in aqueous and has little toxicity to living cells; thus, it can be utilized for targeted cancer cell imaging. The living lung cancer cell imaging experiments further demonstrate its value in recognizing cell-surface CD44 receptor with turn-on mode. In addition, the probe can be used to recognize and differentiate the subtypes of lung cancer cells based on the difference of CD44 expression on the surface of lung cancer cells. And, the western blot test further confirmed that the expression level of the CD44 receptor in lung cancer cells is different. Therefore, this probe may be potentially applied in recognizing lung cancer cells with higher contrast and sensitivity and provide new tools for cancer prognosis and therapy. [Figure not available: see fulltext.
2018-01-01
Fluorogenic oligonucleotide probes that can produce a change in fluorescence signal upon binding to specific biomolecular targets, including nucleic acids as well as non-nucleic acid targets, such as proteins and small molecules, have applications in various important areas. These include diagnostics, drug development and as tools for studying biomolecular interactions in situ and in real time. The probes usually consist of a labeled oligonucleotide strand as a recognition element together with a mechanism for signal transduction that can translate the binding event into a measurable signal. While a number of strategies have been developed for the signal transduction, relatively little attention has been paid to the recognition element. Peptide nucleic acids (PNA) are DNA mimics with several favorable properties making them a potential alternative to natural nucleic acids for the development of fluorogenic probes, including their very strong and specific recognition and excellent chemical and biological stabilities in addition to their ability to bind to structured nucleic acid targets. In addition, the uncharged backbone of PNA allows for other unique designs that cannot be performed with oligonucleotides or analogues with negatively-charged backbones. This review aims to introduce the principle, showcase state-of-the-art technologies and update recent developments in the areas of fluorogenic PNA probes during the past 20 years. PMID:29507634
Wang, Rui; Wang, Lei; Zhao, Haiyan; Jiang, Wei
2016-12-15
MicroRNAs (miRNAs) are vital for many biological processes and have been regarded as cancer biomarkers. Specific and sensitive detection of miRNAs is essential for cancer diagnosis and therapy. Herein, a split recognition mode combined with cascade signal amplification strategy is developed for highly specific and sensitive detection of miRNA. The split recognition mode possesses two specific recognition processes, which are based on toehold-mediated strand displacement reaction (TSDR) and direct hybridization reaction. Two recognition probes, hairpin probe (HP) with overhanging toehold domain and assistant probe (AP), are specially designed. Firstly, the toehold domain of HP and AP recognize part of miRNA simultaneously, accompanied with TSDR to unfold the HP and form the stable DNA Y-shaped junction structure (YJS). Then, the AP in YJS can further act as primer to initiate strand displacement amplification, releasing numerous trigger sequences. Finally, the trigger sequences hybridize with padlock DNA to initiate circular rolling circle amplification and generate enhanced fluorescence responses. In this strategy, the dual recognition effect of split recognition mode guarantees the excellent selectivity to discriminate let-7b from high-homology sequences. Furthermore, the high amplification efficiency of cascade signal amplification guarantees a high sensitivity with the detection limit of 3.2 pM and the concentration of let-7b in total RNA sample extracted from Hela cells is determined. These results indicate our strategy will be a promising miRNA detection strategy in clinical diagnosis and disease treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Xutian; Yin, Yue; Deng, Junjie; Zhong, Huixian; Tang, Jian; Chen, Zhi; Yang, Liting; Ma, Li-Jun
2016-07-01
A new rhodamine B-benzofurazan based fluorescent probe (1) for Fe(3+) and Hg(2+) was synthesized. In aqueous solution containing 30% (v/v) ethanol, probe 1 shows a high selective fluorescent enhancement recognition to Fe(3+) with a binding ratio of 1:1 (probe 1: Fe(3+)), when the concentration of Fe(3+) is less than that of the probe. When the concentration of Fe(3+) is higher than that of the probe, it shows fluorescent "turn-on" response to Fe(3+) by opening the rhodamine spirolactam with a binding ratio of 1:2 (probe 1: Fe(3+)). Furthermore, probe 1 displays a high selectivity and a hypersensitivity (detection limit is 4.4nM) to Hg(2+) with a binding ratio of 1:1 in ethanol. NMR and UV-vis experiments indicate that the different fluorescent recognition signals to Fe(3+) and Hg(2+) are derived from different binding modes of 1-Fe(3+) and 1-Hg(2+). Copyright © 2016 Elsevier B.V. All rights reserved.
Test battery for measuring the perception and recognition of facial expressions of emotion
Wilhelm, Oliver; Hildebrandt, Andrea; Manske, Karsten; Schacht, Annekathrin; Sommer, Werner
2014-01-01
Despite the importance of perceiving and recognizing facial expressions in everyday life, there is no comprehensive test battery for the multivariate assessment of these abilities. As a first step toward such a compilation, we present 16 tasks that measure the perception and recognition of facial emotion expressions, and data illustrating each task's difficulty and reliability. The scoring of these tasks focuses on either the speed or accuracy of performance. A sample of 269 healthy young adults completed all tasks. In general, accuracy and reaction time measures for emotion-general scores showed acceptable and high estimates of internal consistency and factor reliability. Emotion-specific scores yielded lower reliabilities, yet high enough to encourage further studies with such measures. Analyses of task difficulty revealed that all tasks are suitable for measuring emotion perception and emotion recognition related abilities in normal populations. PMID:24860528
Validation of a novel attentional bias modification task: the future may be in the cards.
Notebaert, Lies; Clarke, Patrick J F; Grafton, Ben; MacLeod, Colin
2015-02-01
Attentional bias modification (ABM) is a promising therapeutic tool aimed at changing patterns of attentional selectivity associated with heightened anxiety. A number of studies have successfully implemented ABM using the modified dot-probe task. However others have not achieved the attentional change required to achieve emotional benefits, highlighting the need for new ABM methods. The current study compared the effectiveness of a newly developed ABM task against the traditional dot-probe ABM task. The new person-identity-matching (PIM) task presented participants with virtual cards, each depicting a happy and angry person. The task encourages selective attention toward or away from threat by requiring participants to make matching judgements between two cards, based either on the identities of the happy faces, or of the angry faces. Change in attentional bias achieved by both ABM tasks was measured by a dot-probe assessment task. Their impact on emotional vulnerability was assessed by measuring negative emotional reactions to a video stressor. The PIM task succeeded in modifying attentional bias, and exerting an impact on emotional reactivity, whereas this was not the case for the dot-probe task. These results are considered in relation to the potential clinical utility of the current task in comparison to traditional ABM methodologies. Copyright © 2014 Elsevier Ltd. All rights reserved.
The processing of auditory and visual recognition of self-stimuli.
Hughes, Susan M; Nicholson, Shevon E
2010-12-01
This study examined self-recognition processing in both the auditory and visual modalities by determining how comparable hearing a recording of one's own voice was to seeing photograph of one's own face. We also investigated whether the simultaneous presentation of auditory and visual self-stimuli would either facilitate or inhibit self-identification. Ninety-one participants completed reaction-time tasks of self-recognition when presented with their own faces, own voices, and combinations of the two. Reaction time and errors made when responding with both the right and left hand were recorded to determine if there were lateralization effects on these tasks. Our findings showed that visual self-recognition for facial photographs appears to be superior to auditory self-recognition for voice recordings. Furthermore, a combined presentation of one's own face and voice appeared to inhibit rather than facilitate self-recognition and there was a left-hand advantage for reaction time on the combined-presentation tasks. Copyright © 2010 Elsevier Inc. All rights reserved.
Weinstein, Yana; De Lima, Henry J; van der Zee, Tim
2018-04-01
The last decade has seen a dramatic rise in the number of studies that utilize the probe-caught method of collecting mind-wandering reports. This method involves stopping participants during a task, presenting them with a thought probe, and asking them to choose the appropriate report option to describe their thought-state. In this experiment we manipulated the framing of this probe, and demonstrated a substantial difference in mind-wandering reports as a function of whether the probe was presented in a mind-wandering frame compared with an on-task frame. This framing effect has implications both for interpretations of existing data and for methodological choices made by researchers who use the probe-caught mind-wandering paradigm.
Yamashita, Wakayo; Wang, Gang; Tanaka, Keiji
2010-01-01
One usually fails to recognize an unfamiliar object across changes in viewing angle when it has to be discriminated from similar distractor objects. Previous work has demonstrated that after long-term experience in discriminating among a set of objects seen from the same viewing angle, immediate recognition of the objects across 30-60 degrees changes in viewing angle becomes possible. The capability for view-invariant object recognition should develop during the within-viewing-angle discrimination, which includes two kinds of experience: seeing individual views and discriminating among the objects. The aim of the present study was to determine the relative contribution of each factor to the development of view-invariant object recognition capability. Monkeys were first extensively trained in a task that required view-invariant object recognition (Object task) with several sets of objects. The animals were then exposed to a new set of objects over 26 days in one of two preparatory tasks: one in which each object view was seen individually, and a second that required discrimination among the objects at each of four viewing angles. After the preparatory period, we measured the monkeys' ability to recognize the objects across changes in viewing angle, by introducing the object set to the Object task. Results indicated significant view-invariant recognition after the second but not first preparatory task. These results suggest that discrimination of objects from distractors at each of several viewing angles is required for the development of view-invariant recognition of the objects when the distractors are similar to the objects.
Non-native Listeners’ Recognition of High-Variability Speech Using PRESTO
Tamati, Terrin N.; Pisoni, David B.
2015-01-01
Background Natural variability in speech is a significant challenge to robust successful spoken word recognition. In everyday listening environments, listeners must quickly adapt and adjust to multiple sources of variability in both the signal and listening environments. High-variability speech may be particularly difficult to understand for non-native listeners, who have less experience with the second language (L2) phonological system and less detailed knowledge of sociolinguistic variation of the L2. Purpose The purpose of this study was to investigate the effects of high-variability sentences on non-native speech recognition and to explore the underlying sources of individual differences in speech recognition abilities of non-native listeners. Research Design Participants completed two sentence recognition tasks involving high-variability and low-variability sentences. They also completed a battery of behavioral tasks and self-report questionnaires designed to assess their indexical processing skills, vocabulary knowledge, and several core neurocognitive abilities. Study Sample Native speakers of Mandarin (n = 25) living in the United States recruited from the Indiana University community participated in the current study. A native comparison group consisted of scores obtained from native speakers of English (n = 21) in the Indiana University community taken from an earlier study. Data Collection and Analysis Speech recognition in high-variability listening conditions was assessed with a sentence recognition task using sentences from PRESTO (Perceptually Robust English Sentence Test Open-Set) mixed in 6-talker multitalker babble. Speech recognition in low-variability listening conditions was assessed using sentences from HINT (Hearing In Noise Test) mixed in 6-talker multitalker babble. Indexical processing skills were measured using a talker discrimination task, a gender discrimination task, and a forced-choice regional dialect categorization task. Vocabulary knowledge was assessed with the WordFam word familiarity test, and executive functioning was assessed with the BRIEF-A (Behavioral Rating Inventory of Executive Function – Adult Version) self-report questionnaire. Scores from the non-native listeners on behavioral tasks and self-report questionnaires were compared with scores obtained from native listeners tested in a previous study and were examined for individual differences. Results Non-native keyword recognition scores were significantly lower on PRESTO sentences than on HINT sentences. Non-native listeners’ keyword recognition scores were also lower than native listeners’ scores on both sentence recognition tasks. Differences in performance on the sentence recognition tasks between non-native and native listeners were larger on PRESTO than on HINT, although group differences varied by signal-to-noise ratio. The non-native and native groups also differed in the ability to categorize talkers by region of origin and in vocabulary knowledge. Individual non-native word recognition accuracy on PRESTO sentences in multitalker babble at more favorable signal-to-noise ratios was found to be related to several BRIEF-A subscales and composite scores. However, non-native performance on PRESTO was not related to regional dialect categorization, talker and gender discrimination, or vocabulary knowledge. Conclusions High-variability sentences in multitalker babble were particularly challenging for non-native listeners. Difficulty under high-variability testing conditions was related to lack of experience with the L2, especially L2 sociolinguistic information, compared with native listeners. Individual differences among the non-native listeners were related to weaknesses in core neurocognitive abilities affecting behavioral control in everyday life. PMID:25405842
ERIC Educational Resources Information Center
Golan, Ofer; Baron-Cohen, Simon; Golan, Yael
2008-01-01
Children with autism spectrum conditions (ASC) have difficulties recognizing others' emotions. Research has mostly focused on "basic" emotion recognition, devoid of context. This study reports the results of a new task, assessing recognition of "complex" emotions and mental states in social contexts. An ASC group (n = 23) was compared to a general…
The CC chemokine receptor 5 regulates olfactory and social recognition in mice.
Kalkonde, Y V; Shelton, R; Villarreal, M; Sigala, J; Mishra, P K; Ahuja, S S; Barea-Rodriguez, E; Moretti, P; Ahuja, S K
2011-12-01
Chemokines are chemotactic cytokines that regulate cell migration and are thought to play an important role in a broad range of inflammatory diseases. The availability of chemokine receptor blockers makes them an important therapeutic target. In vitro, chemokines are shown to modulate neurotransmission. However, it is not very clear if chemokines play a role in behavior and cognition. Here we evaluated the role of CC chemokine receptor 5 (CCR5) in various behavioral tasks in mice using Wt (Ccr5⁺/⁺) and Ccr5-null (Ccr5⁻/⁻)mice. Ccr5⁻/⁻ mice showed enhanced social recognition. Administration of CC chemokine ligand 3 (CCL3), one of the CCR5-ligands, impaired social recognition. Since the social recognition task is dependent on the sense of olfaction, we tested olfactory recognition for social and non-social scents in these mice. Ccr5⁻/⁻ mice had enhanced olfactory recognition for both these scents indicating that enhanced performance in social recognition task could be due to enhanced olfactory recognition in these mice. Spatial memory and aversive memory were comparable in Wt and Ccr5⁻/⁻ mice. Collectively, these results suggest that chemokines/chemokine receptors might play an important role in olfactory recognition tasks in mice and to our knowledge represents the first direct demonstration of an in vivo role of CCR5 in modulating social behavior in mice. These studies are important as CCR5 blockers are undergoing clinical trials and can potentially modulate behavior. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
2014-01-01
Myoelectric control has been used for decades to control powered upper limb prostheses. Conventional, amplitude-based control has been employed to control a single prosthesis degree of freedom (DOF) such as closing and opening of the hand. Within the last decade, new and advanced arm and hand prostheses have been constructed that are capable of actuating numerous DOFs. Pattern recognition control has been proposed to control a greater number of DOFs than conventional control, but has traditionally been limited to sequentially controlling DOFs one at a time. However, able-bodied individuals use multiple DOFs simultaneously, and it may be beneficial to provide amputees the ability to perform simultaneous movements. In this study, four amputees who had undergone targeted motor reinnervation (TMR) surgery with previous training using myoelectric prostheses were configured to use three control strategies: 1) conventional amplitude-based myoelectric control, 2) sequential (one-DOF) pattern recognition control, 3) simultaneous pattern recognition control. Simultaneous pattern recognition was enabled by having amputees train each simultaneous movement as a separate motion class. For tasks that required control over just one DOF, sequential pattern recognition based control performed the best with the lowest average completion times, completion rates and length error. For tasks that required control over 2 DOFs, the simultaneous pattern recognition controller performed the best with the lowest average completion times, completion rates and length error compared to the other control strategies. In the two strategies in which users could employ simultaneous movements (conventional and simultaneous pattern recognition), amputees chose to use simultaneous movements 78% of the time with simultaneous pattern recognition and 64% of the time with conventional control for tasks that required two DOF motions to reach the target. These results suggest that when amputees are given the ability to control multiple DOFs simultaneously, they choose to perform tasks that utilize multiple DOFs with simultaneous movements. Additionally, they were able to perform these tasks with higher performance (faster speed, lower length error and higher completion rates) without losing substantial performance in 1 DOF tasks. PMID:24410948
Mechanisms and neural basis of object and pattern recognition: a study with chess experts.
Bilalić, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang
2010-11-01
Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and novices performing chess-related and -unrelated (visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as there were no differences in a control task that used the same chess stimuli but did not require chess-specific recognition. The analysis of eye movements showed that experts immediately and exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant aspects. With random chess positions, when pattern knowledge could not be used to guide perception, experts nevertheless maintained an advantage. Experts' superior domain-specific parafoveal vision, a consequence of their knowledge about individual domain-specific symbols, enabled improved object recognition. Functional magnetic resonance imaging corroborated this differentiation between object and pattern recognition and showed that chess-specific object recognition was accompanied by bilateral activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with carefully chosen controls and multiple dependent measures, we identified object and pattern recognition as two essential cognitive processes in expert visual cognition, which may also help to explain the mechanisms of everyday perception.
Gardiner, John M; Brandt, Karen R; Vargha-Khadem, Faraneh; Baddeley, Alan; Mishkin, Mortimer
2006-09-01
We report the performance in four recognition memory experiments of Jon, a young adult with early-onset developmental amnesia whose episodic memory is gravely impaired in tests of recall, but seems relatively preserved in tests of recognition, and who has developed normal levels of performance in tests of intelligence and general knowledge. Jon's recognition performance was enhanced by deeper levels of processing in comparing a more meaningful study task with a less meaningful one, but not by task enactment in comparing performance of an action with reading an action phrase. Both of these variables normally enhance episodic remembering, which Jon claimed to experience. But Jon was unable to support that claim by recollecting what it was that he remembered. Taken altogether, the findings strongly imply that Jon's recognition performance entailed little genuine episodic remembering and that the levels-of-processing effects in Jon reflected semantic, not episodic, memory.
Direct electronic probing of biological complexes formation
NASA Astrophysics Data System (ADS)
Macchia, Eleonora; Magliulo, Maria; Manoli, Kyriaki; Giordano, Francesco; Palazzo, Gerardo; Torsi, Luisa
2014-10-01
Functional bio-interlayer organic field - effect transistors (FBI-OFET), embedding streptavidin, avidin and neutravidin as bio-recognition element, have been studied to probe the electronic properties of protein complexes. The threshold voltage control has been achieved modifying the SiO2 gate diaelectric surface by means of the deposition of an interlayer of bio-recognition elements. A threshold voltage shift with respect to the unmodified dielectric surface toward more negative potential values has been found for the three different proteins, in agreement with their isoelectric points. The relative responses in terms of source - drain current, mobility and threshold voltage upon exposure to biotin of the FBI-OFET devices have been compared for the three bio-recognition elements.
The posterior parietal cortex in recognition memory: a neuropsychological study.
Haramati, Sharon; Soroker, Nachum; Dudai, Yadin; Levy, Daniel A
2008-01-01
Several recent functional neuroimaging studies have reported robust bilateral activation (L>R) in lateral posterior parietal cortex and precuneus during recognition memory retrieval tasks. It has not yet been determined what cognitive processes are represented by those activations. In order to examine whether parietal lobe-based processes are necessary for basic episodic recognition abilities, we tested a group of 17 first-incident CVA patients whose cortical damage included (but was not limited to) extensive unilateral posterior parietal lesions. These patients performed a series of tasks that yielded parietal activations in previous fMRI studies: yes/no recognition judgments on visual words and on colored object pictures and identifiable environmental sounds. We found that patients with left hemisphere lesions were not impaired compared to controls in any of the tasks. Patients with right hemisphere lesions were not significantly impaired in memory for visual words, but were impaired in recognition of object pictures and sounds. Two lesion--behavior analyses--area-based correlations and voxel-based lesion symptom mapping (VLSM)---indicate that these impairments resulted from extra-parietal damage, specifically to frontal and lateral temporal areas. These findings suggest that extensive parietal damage does not impair recognition performance. We suggest that parietal activations recorded during recognition memory tasks might reflect peri-retrieval processes, such as the storage of retrieved memoranda in a working memory buffer for further cognitive processing.
The effect of the feeling of resolution and recognition performance on the revelation effect.
Miura, Hiroshi; Itoh, Yuji
2016-10-01
The fact that engaging in a cognitive task before a recognition task increases the probability of "old" responses is known as the revelation effect. We used several cognitive tasks to examine whether the feeling of resolution, a key construct of the occurrence mechanism of the revelation effect, is related to the occurrence of the revelation effect. The results show that the revelation effect was not caused by a visual search task, which elicited the feeling of resolution, but caused by an unsolvable anagram task and an articulatory suppression task, which did not elicit the feeling of resolution. These results suggest that the revelation effect is not related to the feeling of resolution. Moreover, the revelation effect was likely to occur in participants who performed poorly on the recognition task. The result suggests that the revelation effect is inclined to occur when people depend more on familiarity than on recollection process. Copyright © 2016 Elsevier Inc. All rights reserved.
Ease of identifying words degraded by visual noise.
Barber, P; de la Mahotière, C
1982-08-01
A technique is described for investigating word recognition involving the superimposition of 'noise' on the visual target word. For this task a word is printed in the form of letters made up of separate elements; noise consists of additional elements which serve to reduce the ease whereby the words may be recognized, and a threshold-like measure can be obtained in terms of the amount of noise. A word frequency effect was obtained for the noise task, and for words presented tachistoscopically but in conventional typography. For the tachistoscope task, however, the frequency effect depended on the method of presentation. A second study showed no effect of inspection interval on performance on the noise task. A word-frequency effect was also found in a third experiment with tachistoscopic exposure of the noise task stimuli in undegraded form. The question of whether common processes are drawn on by tasks entailing different ways of varying ease of recognition is addressed, and the suitability of different tasks for word recognition research is discussed.
Processing of Acoustic Cues in Lexical-Tone Identification by Pediatric Cochlear-Implant Recipients
Peng, Shu-Chen; Lu, Hui-Ping; Lu, Nelson; Lin, Yung-Song; Deroche, Mickael L. D.
2017-01-01
Purpose The objective was to investigate acoustic cue processing in lexical-tone recognition by pediatric cochlear-implant (CI) recipients who are native Mandarin speakers. Method Lexical-tone recognition was assessed in pediatric CI recipients and listeners with normal hearing (NH) in 2 tasks. In Task 1, participants identified naturally uttered words that were contrastive in lexical tones. For Task 2, a disyllabic word (yanjing) was manipulated orthogonally, varying in fundamental-frequency (F0) contours and duration patterns. Participants identified each token with the second syllable jing pronounced with Tone 1 (a high level tone) as eyes or with Tone 4 (a high falling tone) as eyeglasses. Results CI participants' recognition accuracy was significantly lower than NH listeners' in Task 1. In Task 2, CI participants' reliance on F0 contours was significantly less than that of NH listeners; their reliance on duration patterns, however, was significantly higher than that of NH listeners. Both CI and NH listeners' performance in Task 1 was significantly correlated with their reliance on F0 contours in Task 2. Conclusion For pediatric CI recipients, lexical-tone recognition using naturally uttered words is primarily related to their reliance on F0 contours, although duration patterns may be used as an additional cue. PMID:28388709
Ueno, Daisuke; Masumoto, Kouhei; Sutani, Kouichi; Iwaki, Sunao
2015-04-15
This study used magnetoencephalography (MEG) to examine the latency of modality-specific reactivation in the visual and auditory cortices during a recognition task to determine the effects of reactivation on episodic memory retrieval. Nine right-handed healthy young adults participated in the experiment. The experiment consisted of a word-encoding phase and two recognition phases. Three encoding conditions were included: encoding words alone (word-only) and encoding words presented with either related pictures (visual) or related sounds (auditory). The recognition task was conducted in the MEG scanner 15 min after the completion of the encoding phase. After the recognition test, a source-recognition task was given, in which participants were required to choose whether each recognition word was not presented or was presented with which information during the encoding phase. Word recognition in the auditory condition was higher than that in the word-only condition. Confidence-of-recognition scores (d') and the source-recognition test showed superior performance in both the visual and the auditory conditions compared with the word-only condition. An equivalent current dipoles analysis of MEG data indicated that higher equivalent current dipole amplitudes in the right fusiform gyrus occurred during the visual condition and in the superior temporal auditory cortices during the auditory condition, both 450-550 ms after onset of the recognition stimuli. Results suggest that reactivation of visual and auditory brain regions during recognition binds language with modality-specific information and that reactivation enhances confidence in one's recognition performance.
Jou, Jerwen
2014-10-01
Subjects performed Sternberg-type memory recognition tasks (Sternberg paradigm) in four experiments. Category-instance names were used as learning and testing materials. Sternberg's original experiments demonstrated a linear relation between reaction time (RT) and memory-set size (MSS). A few later studies found no relation, and other studies found a nonlinear relation (logarithmic) between the two variables. These deviations were used as evidence undermining Sternberg's serial scan theory. This study identified two confounding variables in the fixed-set procedure of the paradigm (where multiple probes are presented at test for a learned memory set) that could generate a MSS RT function that was either flat or logarithmic rather than linearly increasing. These two confounding variables were task-switching cost and repetition priming. The former factor worked against smaller memory sets and in favour of larger sets whereas the latter factor worked in the opposite way. Results demonstrated that a null or a logarithmic RT-to-MSS relation could be the artefact of the combined effects of these two variables. The Sternberg paradigm has been used widely in memory research, and a thorough understanding of the subtle methodological pitfalls is crucial. It is suggested that a varied-set procedure (where only one probe is presented at test for a learned memory set) is a more contamination-free procedure for measuring the MSS effects, and that if a fixed-set procedure is used, it is worthwhile examining the RT function of the very first trials across the MSSs, which are presumably relatively free of contamination by the subsequent trials.
Novelty preference in patients with developmental amnesia.
Munoz, M; Chadwick, M; Perez-Hernandez, E; Vargha-Khadem, F; Mishkin, M
2011-12-01
To re-examine whether or not selective hippocampal damage reduces novelty preference in visual paired comparison (VPC), we presented two different versions of the task to a group of patients with developmental amnesia (DA), each of whom sustained this form of pathology early in life. Compared with normal control participants, the DA group showed a delay-dependent reduction in novelty preference on one version of the task and an overall reduction on both versions combined. Because VPC is widely considered to be a measure of incidental recognition, the results appear to support the view that the hippocampus contributes to recognition memory. A difficulty for this conclusion, however, is that according to one current view the hippocampal contribution to recognition is limited to task conditions that encourage recollection of an item in some associated context, and according to another current view, to recognition of an item with the high confidence judgment that reflects a strong memory. By contrast, VPC, throughout which the participant remains entirely uninstructed other than to view the stimuli, would seem to lack such task conditions and so would likely lead to recognition based on familiarity rather than recollection or, alternatively, weak memories rather than strong. However, before concluding that the VPC impairment therefore contradicts both current views regarding the role of the hippocampus in recognition memory, two possibilities that would resolve this issue need to be investigated. One is that some variable in VPC, such as the extended period of stimulus encoding during familiarization, overrides its incidental nature, and, because this condition promotes either recollection- or strength-based recognition, renders the task hippocampal-dependent. The other possibility is that VPC, rather than providing a measure of incidental recognition, actually assesses an implicit, information-gathering process modulated by habituation, for which the hippocampus is also partly responsible, independent of its role in recognition. Copyright © 2010 Wiley Periodicals, Inc.
Sentence Verification, Sentence Recognition, and the Semantic-Episodic Distinction
ERIC Educational Resources Information Center
Shoben, Edward J.; And Others
1978-01-01
In an attempt to assess the validity of the distinction between episodic and semantic memory, this research examined the influence of two variables on sentence verification (presumably a semantic memory task) and sentence recognition (presumably an episodic memory task). ( Editor)
Mind-wandering, how do I measure thee with probes? Let me count the ways.
Weinstein, Yana
2018-04-01
In the past decade, a new field has formed to investigate the concept of mind-wandering, or task-unrelated thought. The state of mind-wandering is typically contrasted with being on-task, or paying attention to the task at hand, and is related to decrements in performance on cognitive tasks. The most widely used method for collecting mind-wandering data-the probe-caught method-involves stopping participants during a task and asking them where their attention is directed. In this review, 145 studies from 105 articles published between 2005 and 2015 were classified according to the framing and wording of the thought probe and response options. Five distinct methodologies were identified: neutral (in which counterbalancing was used to equally emphasize on-task and off-task states), dichotomous (say "yes" or "no" to one thought state), dichotomous (choose between two thought states), categorical, and scale. The review identifies at least 69 different methodological variants, catalogues the verbatim probes and response options used in each study, and suggests important considerations for future empirical work.
Relationship between listeners' nonnative speech recognition and categorization abilities
Atagi, Eriko; Bent, Tessa
2015-01-01
Enhancement of the perceptual encoding of talker characteristics (indexical information) in speech can facilitate listeners' recognition of linguistic content. The present study explored this indexical-linguistic relationship in nonnative speech processing by examining listeners' performance on two tasks: nonnative accent categorization and nonnative speech-in-noise recognition. Results indicated substantial variability across listeners in their performance on both the accent categorization and nonnative speech recognition tasks. Moreover, listeners' accent categorization performance correlated with their nonnative speech-in-noise recognition performance. These results suggest that having more robust indexical representations for nonnative accents may allow listeners to more accurately recognize the linguistic content of nonnative speech. PMID:25618098
Effective connectivity of visual word recognition and homophone orthographic errors
Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel; Zarabozo-Hurtado, Daniel; González-Garrido, Andrés A.; Gudayol-Ferré, Esteve
2015-01-01
The study of orthographic errors in a transparent language like Spanish is an important topic in relation to writing acquisition. The development of neuroimaging techniques, particularly functional magnetic resonance imaging (fMRI), has enabled the study of such relationships between brain areas. The main objective of the present study was to explore the patterns of effective connectivity by processing pseudohomophone orthographic errors among subjects with high and low spelling skills. Two groups of 12 Mexican subjects each, matched by age, were formed based on their results in a series of ad hoc spelling-related out-scanner tests: a high spelling skills (HSSs) group and a low spelling skills (LSSs) group. During the f MRI session, two experimental tasks were applied (spelling recognition task and visuoperceptual recognition task). Regions of Interest and their signal values were obtained for both tasks. Based on these values, structural equation models (SEMs) were obtained for each group of spelling competence (HSS and LSS) and task through maximum likelihood estimation, and the model with the best fit was chosen in each case. Likewise, dynamic causal models (DCMs) were estimated for all the conditions across tasks and groups. The HSS group’s SEM results suggest that, in the spelling recognition task, the right middle temporal gyrus, and, to a lesser extent, the left parahippocampal gyrus receive most of the significant effects, whereas the DCM results in the visuoperceptual recognition task show less complex effects, but still congruent with the previous results, with an important role in several areas. In general, these results are consistent with the major findings in partial studies about linguistic activities but they are the first analyses of statistical effective brain connectivity in transparent languages. PMID:26042070
Anodal tDCS targeting the right orbitofrontal cortex enhances facial expression recognition
Murphy, Jillian M.; Ridley, Nicole J.; Vercammen, Ans
2015-01-01
The orbitofrontal cortex (OFC) has been implicated in the capacity to accurately recognise facial expressions. The aim of the current study was to determine if anodal transcranial direct current stimulation (tDCS) targeting the right OFC in healthy adults would enhance facial expression recognition, compared with a sham condition. Across two counterbalanced sessions of tDCS (i.e. anodal and sham), 20 undergraduate participants (18 female) completed a facial expression labelling task comprising angry, disgusted, fearful, happy, sad and neutral expressions, and a control (social judgement) task comprising the same expressions. Responses on the labelling task were scored for accuracy, median reaction time and overall efficiency (i.e. combined accuracy and reaction time). Anodal tDCS targeting the right OFC enhanced facial expression recognition, reflected in greater efficiency and speed of recognition across emotions, relative to the sham condition. In contrast, there was no effect of tDCS to responses on the control task. This is the first study to demonstrate that anodal tDCS targeting the right OFC boosts facial expression recognition. This finding provides a solid foundation for future research to examine the efficacy of this technique as a means to treat facial expression recognition deficits, particularly in individuals with OFC damage or dysfunction. PMID:25971602
Huff, Mark J; Yates, Tyler J; Balota, David A
2018-05-03
Recently, we have shown that two types of initial testing (recall of a list or guessing of critical items repeated over 12 study/test cycles) improved final recognition of related and unrelated word lists relative to restudy. These benefits were eliminated, however, when test instructions were manipulated within subjects and presented after study of each list, procedures designed to minimise expectancy of a specific type of upcoming test [Huff, Balota, & Hutchison, 2016. The costs and benefits of testing and guessing on recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 1559-1572. doi: 10.1037/xlm0000269 ], suggesting that testing and guessing effects may be influenced by encoding strategies specific for the type of upcoming task. We follow-up these experiments by examining test-expectancy processes in guessing and testing. Testing and guessing benefits over restudy were not found when test instructions were presented either after (Experiment 1) or before (Experiment 2) a single study/task cycle was completed, nor were benefits found when instructions were presented before study/task cycles and the task was repeated three times (Experiment 3). Testing and guessing benefits emerged only when instructions were presented before a study/task cycle and the task was repeated six times (Experiments 4A and 4B). These experiments demonstrate that initial testing and guessing can produce memory benefits in recognition, but only following substantial task repetitions which likely promote task-expectancy processes.
HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.
Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye
2017-02-09
In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.
Auditory processing deficits in bipolar disorder with and without a history of psychotic features.
Zenisek, RyAnna; Thaler, Nicholas S; Sutton, Griffin P; Ringdahl, Erik N; Snyder, Joel S; Allen, Daniel N
2015-11-01
Auditory perception deficits have been identified in schizophrenia (SZ) and linked to dysfunction in the auditory cortex. Given that psychotic symptoms, including auditory hallucinations, are also seen in bipolar disorder (BD), it may be that individuals with BD who also exhibit psychotic symptoms demonstrate a similar impairment in auditory perception. Fifty individuals with SZ, 30 individuals with bipolar I disorder with a history of psychosis (BD+), 28 individuals with bipolar I disorder with no history of psychotic features (BD-), and 29 normal controls (NC) were administered a tone discrimination task and an emotion recognition task. Mixed-model analyses of covariance with planned comparisons indicated that individuals with BD+ performed at a level that was intermediate between those with BD- and those with SZ on the more difficult condition of the tone discrimination task and on the auditory condition of the emotion recognition task. There were no differences between the BD+ and BD- groups on the visual or auditory-visual affect recognition conditions. Regression analyses indicated that performance on the tone discrimination task predicted performance on all conditions of the emotion recognition task. Auditory hallucinations in BD+ were not related to performance on either task. Our findings suggested that, although deficits in frequency discrimination and emotion recognition are more severe in SZ, these impairments extend to BD+. Although our results did not support the idea that auditory hallucinations may be related to these deficits, they indicated that basic auditory deficits may be a marker for psychosis, regardless of SZ or BD diagnosis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The role of visual imagery in the retention of information from sentences.
Drose, G S; Allen, G L
1994-01-01
We conducted two experiments to evaluate a multiple-code model for sentence memory that posits both propositional and visual representational systems. Both sentences involved recognition memory. The results of Experiment 1 indicated that subjects' recognition memory for concrete sentences was superior to their recognition memory for abstract sentences. Instructions to use visual imagery to enhance recognition performance yielded no effects. Experiment 2 tested the prediction that interference by a visual task would differentially affect recognition memory for concrete sentences. Results showed the interference task to have had a detrimental effect on recognition memory for both concrete and abstract sentences. Overall, the evidence provided partial support for both a multiple-code model and a semantic integration model of sentence memory.
ERIC Educational Resources Information Center
Janning, Ruth; Schatten, Carlotta; Schmidt-Thieme, Lars
2016-01-01
Recognising students' emotion, affect or cognition is a relatively young field and still a challenging task in the area of intelligent tutoring systems. There are several ways to use the output of these recognition tasks within the system. The approach most often mentioned in the literature is using it for giving feedback to the students. The…
Veselis, Robert A; Pryor, Kane O; Reinsel, Ruth A; Li, Yuelin; Mehta, Meghana; Johnson, Ray
2009-02-01
Intravenous drugs active via gamma-aminobutyric acid receptors to produce memory impairment during conscious sedation. Memory function was assessed using event-related potentials (ERPs) while drug was present. The continuous recognition task measured recognition of photographs from working (6 s) and long-term (27 s) memory while ERPs were recorded from Cz (familiarity recognition) and Pz electrodes (recollection recognition). Volunteer participants received sequential doses of one of placebo (n = 11), 0.45 and 0.9 microg/ml propofol (n = 10), 20 and 40 ng/ml midazolam (n = 12), 1.5 and 3 microg/ml thiopental (n = 11), or 0.25 and 0.4 ng/ml dexmedetomidine (n = 11). End-of-day yes/no recognition 225 min after the end of drug infusion tested memory retention of pictures encoded on the continuous recognition tasks. Active drugs increased reaction times and impaired memory on the continuous recognition task equally, except for a greater effect of midazolam (P < 0.04). Forgetting from continuous recognition tasks to end of day was similar for all drugs (P = 0.40), greater than placebo (P < 0.001). Propofol and midazolam decreased the area between first presentation (new) and recognized (old, 27 s later) ERP waveforms from long-term memory for familiarity (P = 0.03) and possibly for recollection processes (P = 0.12). Propofol shifted ERP amplitudes to smaller voltages (P < 0.002). Dexmedetomidine may have impaired familiarity more than recollection processes (P = 0.10). Thiopental had no effect on ERPs. Propofol and midazolam impaired recognition ERPs from long-term memory but not working memory. ERP measures of memory revealed different pathways to end-of-day memory loss as early as 27 s after encoding.
Relational and item-specific influences on generate-recognize processes in recall.
Guynn, Melissa J; McDaniel, Mark A; Strosser, Garrett L; Ramirez, Juan M; Castleberry, Erica H; Arnett, Kristen H
2014-02-01
The generate-recognize model and the relational-item-specific distinction are two approaches to explaining recall. In this study, we consider the two approaches in concert. Following Jacoby and Hollingshead (Journal of Memory and Language 29:433-454, 1990), we implemented a production task and a recognition task following production (1) to evaluate whether generation and recognition components were evident in cued recall and (2) to gauge the effects of relational and item-specific processing on these components. An encoding task designed to augment item-specific processing (anagram-transposition) produced a benefit on the recognition component (Experiments 1-3) but no significant benefit on the generation component (Experiments 1-3), in the context of a significant benefit to cued recall. By contrast, an encoding task designed to augment relational processing (category-sorting) did produce a benefit on the generation component (Experiment 3). These results converge on the idea that in recall, item-specific processing impacts a recognition component, whereas relational processing impacts a generation component.
ERIC Educational Resources Information Center
Unsworth, Nash; Brewer, Gene A.
2009-01-01
The authors of the current study examined the relationships among item-recognition, source-recognition, free recall, and other memory and cognitive ability tasks via an individual differences analysis. Two independent sources of variance contributed to item-recognition and source-recognition performance, and these two constructs related…
Vision requirements for Space Station applications
NASA Technical Reports Server (NTRS)
Crouse, K. R.
1985-01-01
Problems which will be encountered by computer vision systems in Space Station operations are discussed, along with solutions be examined at Johnson Space Station. Lighting cannot be controlled in space, nor can the random presence of reflective surfaces. Task-oriented capabilities are to include docking to moving objects, identification of unexpected objects during autonomous flights to different orbits, and diagnoses of damage and repair requirements for autonomous Space Station inspection robots. The approaches being examined to provide these and other capabilities are television IR sensors, advanced pattern recognition programs feeding on data from laser probes, laser radar for robot eyesight and arrays of SMART sensors for automated location and tracking of target objects. Attention is also being given to liquid crystal light valves for optical processing of images for comparisons with on-board electronic libraries of images.
Emotional conditioning to masked stimuli and modulation of visuospatial attention.
Beaver, John D; Mogg, Karin; Bradley, Brendan P
2005-03-01
Two studies investigated the effects of conditioning to masked stimuli on visuospatial attention. During the conditioning phase, masked snakes and spiders were paired with a burst of white noise, or paired with an innocuous tone, in the conditioned stimulus (CS)+ and CS- conditions, respectively. Attentional allocation to the CSs was then assessed with a visual probe task, in which the CSs were presented unmasked (Experiment 1) or both unmasked and masked (Experiment 2), together with fear-irrelevant control stimuli (flowers and mushrooms). In Experiment 1, participants preferentially allocated attention to CS+ relative to control stimuli. Experiment 2 suggested that this attentional bias depended on the perceived aversiveness of the unconditioned stimulus and did not require conscious recognition of the CSs during both acquisition and expression. Copyright 2005 APA, all rights reserved.
Facial emotion recognition in patients with focal and diffuse axonal injury.
Yassin, Walid; Callahan, Brandy L; Ubukata, Shiho; Sugihara, Genichi; Murai, Toshiya; Ueda, Keita
2017-01-01
Facial emotion recognition impairment has been well documented in patients with traumatic brain injury. Studies exploring the neural substrates involved in such deficits have implicated specific grey matter structures (e.g. orbitofrontal regions), as well as diffuse white matter damage. Our study aims to clarify whether different types of injuries (i.e. focal vs. diffuse) will lead to different types of impairments on facial emotion recognition tasks, as no study has directly compared these patients. The present study examined performance and response patterns on a facial emotion recognition task in 14 participants with diffuse axonal injury (DAI), 14 with focal injury (FI) and 22 healthy controls. We found that, overall, participants with FI and DAI performed more poorly than controls on the facial emotion recognition task. Further, we observed comparable emotion recognition performance in participants with FI and DAI, despite differences in the nature and distribution of their lesions. However, the rating response pattern between the patient groups was different. This is the first study to show that pure DAI, without gross focal lesions, can independently lead to facial emotion recognition deficits and that rating patterns differ depending on the type and location of trauma.
Crowd Sourcing Data Collection through Amazon Mechanical Turk
2013-09-01
The first recognition study consisted of a Panel Study using a simple detection protocol, in which participants were presented with vignettes and, for...variability than the crowdsourcing data set, hewing more closely to the year 1 verbs of interest and simple description grammar . The DT:PS data were...Study RT: PS Recognition Task: Panel Study RT: RT Recognition Task: Round Table S3 Amazon Simple Storage Service SVPA Single Verb Present /Absent
The own-age face recognition bias is task dependent.
Proietti, Valentina; Macchi Cassia, Viola; Mondloch, Catherine J
2015-08-01
The own-age bias (OAB) in face recognition (more accurate recognition of own-age than other-age faces) is robust among young adults but not older adults. We investigated the OAB under two different task conditions. In Experiment 1 young and older adults (who reported more recent experience with own than other-age faces) completed a match-to-sample task with young and older adult faces; only young adults showed an OAB. In Experiment 2 young and older adults completed an identity detection task in which we manipulated the identity strength of target and distracter identities by morphing each face with an average face in 20% steps. Accuracy increased with identity strength and facial age influenced older adults' (but not younger adults') strategy, but there was no evidence of an OAB. Collectively, these results suggest that the OAB depends on task demands and may be absent when searching for one identity. © 2014 The British Psychological Society.
Preti, Emanuele; Richetin, Juliette; Suttora, Chiara; Pisani, Alberto
2016-04-30
Dysfunctions in social cognition characterize personality disorders. However, mixed results emerged from literature on emotion processing. Borderline Personality Disorder (BPD) traits are either associated with enhanced emotion recognition, impairments, or equal functioning compared to controls. These apparent contradictions might result from the complexity of emotion recognition tasks used and from individual differences in impulsivity and effortful control. We conducted a study in a sample of undergraduate students (n=80), assessing BPD traits, using an emotion recognition task that requires the processing of only visual information or both visual and acoustic information. We also measured individual differences in impulsivity and effortful control. Results demonstrated the moderating role of some components of impulsivity and effortful control on the capability of BPD traits in predicting anger and happiness recognition. We organized the discussion around the interaction between different components of regulatory functioning and task complexity for a better understanding of emotion recognition in BPD samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Parallel processing considerations for image recognition tasks
NASA Astrophysics Data System (ADS)
Simske, Steven J.
2011-01-01
Many image recognition tasks are well-suited to parallel processing. The most obvious example is that many imaging tasks require the analysis of multiple images. From this standpoint, then, parallel processing need be no more complicated than assigning individual images to individual processors. However, there are three less trivial categories of parallel processing that will be considered in this paper: parallel processing (1) by task; (2) by image region; and (3) by meta-algorithm. Parallel processing by task allows the assignment of multiple workflows-as diverse as optical character recognition [OCR], document classification and barcode reading-to parallel pipelines. This can substantially decrease time to completion for the document tasks. For this approach, each parallel pipeline is generally performing a different task. Parallel processing by image region allows a larger imaging task to be sub-divided into a set of parallel pipelines, each performing the same task but on a different data set. This type of image analysis is readily addressed by a map-reduce approach. Examples include document skew detection and multiple face detection and tracking. Finally, parallel processing by meta-algorithm allows different algorithms to be deployed on the same image simultaneously. This approach may result in improved accuracy.
Application of advanced speech technology in manned penetration bombers
NASA Astrophysics Data System (ADS)
North, R.; Lea, W.
1982-03-01
This report documents research on the potential use of speech technology in a manned penetration bomber aircraft (B-52/G and H). The objectives of the project were to analyze the pilot/copilot crewstation tasks over a three-hour-and forty-minute mission and determine the tasks that would benefit the most from conversion to speech recognition/generation, determine the technological feasibility of each of the identified tasks, and prioritize these tasks based on these criteria. Secondary objectives of the program were to enunciate research strategies in the application of speech technologies in airborne environments, and develop guidelines for briefing user commands on the potential of using speech technologies in the cockpit. The results of this study indicated that for the B-52 crewmember, speech recognition would be most beneficial for retrieving chart and procedural data that is contained in the flight manuals. Technological feasibility of these tasks indicated that the checklist and procedural retrieval tasks would be highly feasible for a speech recognition system.
Sign Perception and Recognition in Non-Native Signers of ASL
Morford, Jill P.; Carlson, Martina L.
2011-01-01
Past research has established that delayed first language exposure is associated with comprehension difficulties in non-native signers of American Sign Language (ASL) relative to native signers. The goal of the current study was to investigate potential explanations of this disparity: do non-native signers have difficulty with all aspects of comprehension, or are their comprehension difficulties restricted to some aspects of processing? We compared the performance of deaf non-native, hearing L2, and deaf native signers on a handshape and location monitoring and a sign recognition task. The results indicate that deaf non-native signers are as rapid and accurate on the monitoring task as native signers, with differences in the pattern of relative performance across handshape and location parameters. By contrast, non-native signers differ significantly from native signers during sign recognition. Hearing L2 signers, who performed almost as well as the two groups of deaf signers on the monitoring task, resembled the deaf native signers more than the deaf non-native signers on the sign recognition task. The combined results indicate that delayed exposure to a signed language leads to an overreliance on handshape during sign recognition. PMID:21686080
Christie, Lori-Ann; Saunders, Richard C.; Kowalska, Danuta, M.; MacKay, William A.; Head, Elizabeth; Cotman, Carl W.; Milgram, Norton W.
2014-01-01
To examine the effects of rhinal and dorsolateral prefrontal cortex lesions on object and spatial recognition memory in canines, we used a protocol in which both an object (delayed non-matching to sample, or DNMS) and a spatial (delayed non-matching to position or DNMP) recognition task were administered daily. The tasks used similar procedures such that only the type of stimulus information to be remembered differed. Rhinal cortex (RC) lesions produced a selective deficit on the DNMS task, both in retention of the task rules at short delays and in object recognition memory. By contrast, performance on the DNMP task remained intact at both short and long delay intervals in RC animals. Subjects who received dorsolateral prefrontal cortex (dlPFC) lesions were impaired on a spatial task at a short, 5-sec delay, suggesting disrupted retention of the general task rules, however, this impairment was transient; long-term spatial memory performance was unaffected in dlPFC subjects. The present results provide support for the involvement of the RC in object, but not visuospatial, processing and recognition memory, whereas the dlPFC appears to mediate retention of a non-matching rule. These findings support theories of functional specialization within the medial temporal lobe and frontal cortex and suggest that rhinal and dorsolateral prefrontal cortices in canines are functionally similar to analogous regions in other mammals. PMID:18792072
Updating schematic emotional facial expressions in working memory: Response bias and sensitivity.
Tamm, Gerly; Kreegipuu, Kairi; Harro, Jaanus; Cowan, Nelson
2017-01-01
It is unclear if positive, negative, or neutral emotional expressions have an advantage in short-term recognition. Moreover, it is unclear from previous studies of working memory for emotional faces whether effects of emotions comprise response bias or sensitivity. The aim of this study was to compare how schematic emotional expressions (sad, angry, scheming, happy, and neutral) are discriminated and recognized in an updating task (2-back recognition) in a representative sample of birth cohort of young adults. Schematic facial expressions allow control of identity processing, which is separate from expression processing, and have been used extensively in attention research but not much, until now, in working memory research. We found that expressions with a U-curved mouth (i.e., upwardly curved), namely happy and scheming expressions, favoured a bias towards recognition (i.e., towards indicating that the probe and the stimulus in working memory are the same). Other effects of emotional expression were considerably smaller (1-2% of the variance explained)) compared to a large proportion of variance that was explained by the physical similarity of items being compared. We suggest that the nature of the stimuli plays a role in this. The present application of signal detection methodology with emotional, schematic faces in a working memory procedure requiring fast comparisons helps to resolve important contradictions that have emerged in the emotional perception literature. Copyright © 2016 Elsevier B.V. All rights reserved.
Bastin, Christine; Van der Linden, Martial
2003-01-01
Whether the format of a recognition memory task influences the contribution of recollection and familiarity to performance is a matter of debate. The authors investigated this issue by comparing the performance of 64 young (mean age = 21.7 years; mean education = 14.5 years) and 62 older participants (mean age = 64.4 years; mean education = 14.2 years) on a yes-no and a forced-choice recognition task for unfamiliar faces using the remember-know-guess procedure. Familiarity contributed more to forced-choice than to yes-no performance. Moreover, older participants, who showed a decrease in recollection together with an increase in familiarity, performed better on the forced-choice task than on the yes-no task, whereas younger participants showed the opposite pattern.
Bennetts, Rachel J; Mole, Joseph; Bate, Sarah
2017-09-01
Face recognition abilities vary widely. While face recognition deficits have been reported in children, it is unclear whether superior face recognition skills can be encountered during development. This paper presents O.B., a 14-year-old female with extraordinary face recognition skills: a "super-recognizer" (SR). O.B. demonstrated exceptional face-processing skills across multiple tasks, with a level of performance that is comparable to adult SRs. Her superior abilities appear to be specific to face identity: She showed an exaggerated face inversion effect and her superior abilities did not extend to object processing or non-identity aspects of face recognition. Finally, an eye-movement task demonstrated that O.B. spent more time than controls examining the nose - a pattern previously reported in adult SRs. O.B. is therefore particularly skilled at extracting and using identity-specific facial cues, indicating that face and object recognition are dissociable during development, and that super recognition can be detected in adolescence.
Poor phonemic discrimination does not underlie poor verbal short-term memory in Down syndrome.
Purser, Harry R M; Jarrold, Christopher
2013-05-01
Individuals with Down syndrome tend to have a marked impairment of verbal short-term memory. The chief aim of this study was to investigate whether phonemic discrimination contributes to this deficit. The secondary aim was to investigate whether phonological representations are degraded in verbal short-term memory in people with Down syndrome relative to control participants. To answer these questions, two tasks were used: a discrimination task, in which memory load was as low as possible, and a short-term recognition task that used the same stimulus items. Individuals with Down syndrome were found to perform significantly better than a nonverbal-matched typically developing group on the discrimination task, but they performed significantly more poorly than that group on the recognition task. The Down syndrome group was outperformed by an additional vocabulary-matched control group on the discrimination task but was outperformed to a markedly greater extent on the recognition task. Taken together, the results strongly indicate that phonemic discrimination ability is not central to the verbal short-term memory deficit associated with Down syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.
O'Connor, Akira R; Moulin, Chris J A
2013-01-01
Recent neuropsychological and neuroscientific research suggests that people who experience more déjà vu display characteristic patterns in normal recognition memory. We conducted a large individual differences study (n = 206) to test these predictions using recollection and familiarity parameters recovered from a standard memory task. Participants reported déjà vu frequency and a number of its correlates, and completed a recognition memory task analogous to a Remember-Know procedure. The individual difference measures replicated an established correlation between déjà vu frequency and frequency of travel, and recognition performance showed well-established word frequency and accuracy effects. Contrary to predictions, no relationships were found between déjà vu frequency and recollection or familiarity memory parameters from the recognition test. We suggest that déjà vu in the healthy population reflects a mismatch between errant memory signaling and memory monitoring processes not easily characterized by standard recognition memory task performance.
O’Connor, Akira R.; Moulin, Chris J. A.
2013-01-01
Recent neuropsychological and neuroscientific research suggests that people who experience more déjà vu display characteristic patterns in normal recognition memory. We conducted a large individual differences study (n = 206) to test these predictions using recollection and familiarity parameters recovered from a standard memory task. Participants reported déjà vu frequency and a number of its correlates, and completed a recognition memory task analogous to a Remember-Know procedure. The individual difference measures replicated an established correlation between déjà vu frequency and frequency of travel, and recognition performance showed well-established word frequency and accuracy effects. Contrary to predictions, no relationships were found between déjà vu frequency and recollection or familiarity memory parameters from the recognition test. We suggest that déjà vu in the healthy population reflects a mismatch between errant memory signaling and memory monitoring processes not easily characterized by standard recognition memory task performance. PMID:24409159
Gilet, Estelle; Diard, Julien; Bessière, Pierre
2011-01-01
In this paper, we study the collaboration of perception and action representations involved in cursive letter recognition and production. We propose a mathematical formulation for the whole perception–action loop, based on probabilistic modeling and Bayesian inference, which we call the Bayesian Action–Perception (BAP) model. Being a model of both perception and action processes, the purpose of this model is to study the interaction of these processes. More precisely, the model includes a feedback loop from motor production, which implements an internal simulation of movement. Motor knowledge can therefore be involved during perception tasks. In this paper, we formally define the BAP model and show how it solves the following six varied cognitive tasks using Bayesian inference: i) letter recognition (purely sensory), ii) writer recognition, iii) letter production (with different effectors), iv) copying of trajectories, v) copying of letters, and vi) letter recognition (with internal simulation of movements). We present computer simulations of each of these cognitive tasks, and discuss experimental predictions and theoretical developments. PMID:21674043
Lind, Sophie E; Bowler, Dermot M
2009-09-01
This study investigated semantic and episodic memory in autism spectrum disorder (ASD), using a task which assessed recognition and self-other source memory. Children with ASD showed undiminished recognition memory but significantly diminished source memory, relative to age- and verbal ability-matched comparison children. Both children with and without ASD showed an "enactment effect", demonstrating significantly better recognition and source memory for self-performed actions than other-person-performed actions. Within the comparison group, theory-of-mind (ToM) task performance was significantly correlated with source memory, specifically for other-person-performed actions (after statistically controlling for verbal ability). Within the ASD group, ToM task performance was not significantly correlated with source memory (after controlling for verbal ability). Possible explanations for these relations between source memory and ToM are considered.
The locus of word frequency effects in skilled spelling-to-dictation.
Chua, Shi Min; Liow, Susan J Rickard
2014-01-01
In spelling-to-dictation tasks, skilled spellers consistently initiate spelling of high-frequency words faster than that of low-frequency words. Tainturier and Rapp's model of spelling shows three possible loci for this frequency effect: spoken word recognition, orthographic retrieval, and response execution of the first letter. Thus far, researchers have attributed the effect solely to orthographic retrieval without considering spoken word recognition or response execution. To investigate word frequency effects at each of these three loci, Experiment 1 involved a delayed spelling-to-dictation task and Experiment 2 involved a delayed/uncertain task. In Experiment 1, no frequency effect was found in the 1200-ms delayed condition, suggesting that response execution is not affected by word frequency. In Experiment 2, no frequency effect was found in the delayed/uncertain task that reflects the orthographic retrieval, whereas a frequency effect was found in the comparison immediate/uncertain task that reflects both spoken word recognition and orthographic retrieval. The results of this two-part study suggest that frequency effects in spoken word recognition play a substantial role in skilled spelling-to-dictation. Discrepancies between these findings and previous research, and the limitations of the present study, are discussed.
Herdman, Katherine A; Calarco, Navona; Moscovitch, Morris; Hirshhorn, Marnie; Rosenbaum, R Shayna
2015-10-01
Recent research has challenged classic theories of hippocampal function in spatial memory with findings that the hippocampus may be necessary for detailed representations of environments learned long ago, but not for remembering the gist or schematic aspects that are sufficient for navigating within those environments (Rosenbaum et al., 2000; Rosenbaum, Winocur, Binns, & Moscovitch, 2012). We aimed to probe further distinctions between detailed and schematic representations of familiar environments in three cases of hippocampal/medial temporal lobe (MTL) amnesia by testing them on a route description task and mental navigation tasks that assess the identity and location of landmarks, and distances and directions between them. The amnesic cases could describe basic directions along known, imagined routes, estimate distance and direction between well-known landmarks, and produce sketch maps with accurate layouts, suggestive of intact schematic representations. However, findings that their route descriptions lack richness of detail, along with impoverished sketch maps and poor landmark recognition, substantiates previous findings that detailed representations are hippocampus-dependent. Copyright © 2015 Elsevier Ltd. All rights reserved.
How Cross-Language Similarity and Task Demands Affect Cognate Recognition
ERIC Educational Resources Information Center
Dijkstra, Ton; Miwa, Koji; Brummelhuis, Bianca; Sappelli, Maya; Baayen, Harald
2010-01-01
This study examines how the cross-linguistic similarity of translation equivalents affects bilingual word recognition. Performing one of three tasks, Dutch-English bilinguals processed cognates with varying degrees of form overlap between their English and Dutch counterparts (e.g., "lamp-lamp" vs. "flood-vloed" vs. "song-lied"). In lexical…
A multimodal approach to emotion recognition ability in autism spectrum disorders.
Jones, Catherine R G; Pickles, Andrew; Falcaro, Milena; Marsden, Anita J S; Happé, Francesca; Scott, Sophie K; Sauter, Disa; Tregay, Jenifer; Phillips, Rebecca J; Baird, Gillian; Simonoff, Emily; Charman, Tony
2011-03-01
Autism spectrum disorders (ASD) are characterised by social and communication difficulties in day-to-day life, including problems in recognising emotions. However, experimental investigations of emotion recognition ability in ASD have been equivocal, hampered by small sample sizes, narrow IQ range and over-focus on the visual modality. We tested 99 adolescents (mean age 15;6 years, mean IQ 85) with an ASD and 57 adolescents without an ASD (mean age 15;6 years, mean IQ 88) on a facial emotion recognition task and two vocal emotion recognition tasks (one verbal; one non-verbal). Recognition of happiness, sadness, fear, anger, surprise and disgust were tested. Using structural equation modelling, we conceptualised emotion recognition ability as a multimodal construct, measured by the three tasks. We examined how the mean levels of recognition of the six emotions differed by group (ASD vs. non-ASD) and IQ (≥ 80 vs. < 80). We found no evidence of a fundamental emotion recognition deficit in the ASD group and analysis of error patterns suggested that the ASD group were vulnerable to the same pattern of confusions between emotions as the non-ASD group. However, recognition ability was significantly impaired in the ASD group for surprise. IQ had a strong and significant effect on performance for the recognition of all six emotions, with higher IQ adolescents outperforming lower IQ adolescents. The findings do not suggest a fundamental difficulty with the recognition of basic emotions in adolescents with ASD. © 2010 The Authors. Journal of Child Psychology and Psychiatry © 2010 Association for Child and Adolescent Mental Health.
The impact of task demand on visual word recognition.
Yang, J; Zevin, J
2014-07-11
The left occipitotemporal cortex has been found sensitive to the hierarchy of increasingly complex features in visually presented words, from individual letters to bigrams and morphemes. However, whether this sensitivity is a stable property of the brain regions engaged by word recognition is still unclear. To address the issue, the current study investigated whether different task demands modify this sensitivity. Participants viewed real English words and stimuli with hierarchical word-likeness while performing a lexical decision task (i.e., to decide whether each presented stimulus is a real word) and a symbol detection task. General linear model and independent component analysis indicated strong activation in the fronto-parietal and temporal regions during the two tasks. Furthermore, the bilateral inferior frontal gyrus and insula showed significant interaction effects between task demand and stimulus type in the pseudoword condition. The occipitotemporal cortex showed strong main effects for task demand and stimulus type, but no sensitivity to the hierarchical word-likeness was found. These results suggest that different task demands on semantic, phonological and orthographic processes can influence the involvement of the relevant regions during visual word recognition. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Learning task affects ERP-correlates of the own-race bias, but not recognition memory performance.
Stahl, Johanna; Wiese, Holger; Schweinberger, Stefan R
2010-06-01
People are generally better in recognizing faces from their own ethnic group as opposed to faces from another ethnic group, a finding which has been interpreted in the context of two opposing theories. Whereas perceptual expertise theories stress the role of long-term experience with one's own ethnic group, race feature theories assume that the processing of an other-race-defining feature triggers inferior coding and recognition of faces. The present study tested these hypotheses by manipulating the learning task in a recognition memory test. At learning, one group of participants categorized faces according to ethnicity, whereas another group rated facial attractiveness. Subsequent recognition tests indicated clear and similar own-race biases for both groups. However, ERPs from learning and test phases demonstrated an influence of learning task on neurophysiological processing of own- and other-race faces. While both groups exhibited larger N170 responses to Asian as compared to Caucasian faces, task-dependent differences were seen in a subsequent P2 ERP component. Whereas the P2 was more pronounced for Caucasian faces in the categorization group, this difference was absent in the attractiveness rating group. The learning task thus influences early face encoding. Moreover, comparison with recent research suggests that this attractiveness rating task influences the processes reflected in the P2 in a similar manner as perceptual expertise for other-race faces does. By contrast, the behavioural own-race bias suggests that long-term expertise is required to increase other-race face recognition and hence attenuate the own-race bias. Copyright 2010 Elsevier Ltd. All rights reserved.
Sassenrath, Claudia; Sassenberg, Kai; Ray, Devin G; Scheiter, Katharina; Jarodzka, Halszka
2014-01-01
Two studies examined an unexplored motivational determinant of facial emotion recognition: observer regulatory focus. It was predicted that a promotion focus would enhance facial emotion recognition relative to a prevention focus because the attentional strategies associated with promotion focus enhance performance on well-learned or innate tasks - such as facial emotion recognition. In Study 1, a promotion or a prevention focus was experimentally induced and better facial emotion recognition was observed in a promotion focus compared to a prevention focus. In Study 2, individual differences in chronic regulatory focus were assessed and attention allocation was measured using eye tracking during the facial emotion recognition task. Results indicated that the positive relation between a promotion focus and facial emotion recognition is mediated by shorter fixation duration on the face which reflects a pattern of attention allocation matched to the eager strategy in a promotion focus (i.e., striving to make hits). A prevention focus did not have an impact neither on perceptual processing nor on facial emotion recognition. Taken together, these findings demonstrate important mechanisms and consequences of observer motivational orientation for facial emotion recognition.
Acute fluoxetine modulates emotional processing in young adult volunteers.
Capitão, L P; Murphy, S E; Browning, M; Cowen, P J; Harmer, C J
2015-08-01
Fluoxetine is generally regarded as the first-line pharmacological treatment for young people, as it is believed to show a more favourable benefit:risk ratio than other antidepressants. However, the mechanisms through which fluoxetine influences symptoms in youth have been little investigated. This study examined whether acute administration of fluoxetine in a sample of young healthy adults altered the processing of affective information, including positive, sad and anger cues. A total of 35 male and female volunteers aged between 18 and 21 years old were randomized to receive a single 20 mg dose of fluoxetine or placebo. At 6 h after administration, participants completed a facial expression recognition task, an emotion-potentiated startle task, an attentional dot-probe task and the Rapid Serial Visual Presentation. Subjective ratings of mood, anxiety and side effects were also taken pre- and post-fluoxetine/placebo administration. Relative to placebo-treated participants, participants receiving fluoxetine were less accurate at identifying anger and sadness and did not show the emotion-potentiated startle effect. There were no overall significant effects of fluoxetine on subjective ratings of mood. Fluoxetine can modulate emotional processing after a single dose in young adults. This pattern of effects suggests a potential cognitive mechanism for the greater benefit:risk ratio of fluoxetine in adolescent patients.
NASA Astrophysics Data System (ADS)
Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Vanmeter, John
2011-01-01
Near-infrared spectroscopy (NIRS) is a developing technology for low-cost noninvasive functional brain imaging. With multichannel optical instruments, it becomes possible to measure not only local changes in hemoglobin concentrations but also temporal correlations of those changes in different brain regions which gives an optical analog of functional connectivity traditionally measured by fMRI. We recorded hemodynamic activity during the Go-NoGo task from 11 right-handed subjects with probes placed bilaterally over prefrontal areas. Subjects were detecting animals as targets in natural scenes pressing a mouse button. Data were low-pass filtered <1 Hz and cardiac/respiration/superficial layers artifacts were removed using Independent Component Analysis. Fisher's transformed correlations of poststimulus responses (30 s) were averaged over groups of channels unilaterally in each hemisphere (intrahemispheric connectivity) and the corresponding channels between hemispheres (interhemispheric connectivity). The hemodynamic response showed task-related activation (an increase/decrease in oxygenated/deoxygenated hemoglobin, respectively) greater in the right versus left hemisphere. Intra- and interhemispheric functional connectivity was also significantly stronger during the task compared to baseline. Functional connectivity between the inferior and the middle frontal regions was significantly stronger in the right hemisphere. Our results demonstrate that optical methods can be used to detect transient changes in functional connectivity during rapid cognitive processes.
NASA Astrophysics Data System (ADS)
Syryamkim, V. I.; Kuznetsov, D. N.; Kuznetsova, A. S.
2018-05-01
Image recognition is an information process implemented by some information converter (intelligent information channel, recognition system) having input and output. The input of the system is fed with information about the characteristics of the objects being presented. The output of the system displays information about which classes (generalized images) the recognized objects are assigned to. When creating and operating an automated system for pattern recognition, a number of problems are solved, while for different authors the formulations of these tasks, and the set itself, do not coincide, since it depends to a certain extent on the specific mathematical model on which this or that recognition system is based. This is the task of formalizing the domain, forming a training sample, learning the recognition system, reducing the dimensionality of space.
Perceptual fluency and affect without recognition.
Anand, P; Sternthal, B
1991-05-01
A dichotic listening task was used to investigate the affect-without-recognition phenomenon. Subjects performed a distractor task by responding to the information presented in one ear while ignoring the target information presented in the other ear. The subjects' recognition of and affect toward the target information as well as toward foils was measured. The results offer evidence for the affect-without-recognition phenomenon. Furthermore, the data suggest that the subjects' affect toward the stimuli depended primarily on the extent to which the stimuli were perceived as familiar (i.e., subjective familiarity), and this perception was influenced by the ear in which the distractor or the target information was presented. These data are interpreted in terms of current models of recognition memory and hemispheric lateralization.
Specific Impairments in the Recognition of Emotional Facial Expressions in Parkinson’s Disease
Clark, Uraina S.; Neargarder, Sandy; Cronin-Golomb, Alice
2008-01-01
Studies investigating the ability to recognize emotional facial expressions in non-demented individuals with Parkinson’s disease (PD) have yielded equivocal findings. A possible reason for this variability may lie in the confounding of emotion recognition with cognitive task requirements, a confound arising from the lack of a control condition using non-emotional stimuli. The present study examined emotional facial expression recognition abilities in 20 non-demented patients with PD and 23 control participants relative to their performances on a non-emotional landscape categorization test with comparable task requirements. We found that PD participants were normal on the control task but exhibited selective impairments in the recognition of facial emotion, specifically for anger (driven by those with right hemisphere pathology) and surprise (driven by those with left hemisphere pathology), even when controlling for depression level. Male but not female PD participants further displayed specific deficits in the recognition of fearful expressions. We suggest that the neural substrates that may subserve these impairments include the ventral striatum, amygdala, and prefrontal cortices. Finally, we observed that in PD participants, deficiencies in facial emotion recognition correlated with higher levels of interpersonal distress, which calls attention to the significant psychosocial impact that facial emotion recognition impairments may have on individuals with PD. PMID:18485422
Dissociation between recognition and detection advantage for facial expressions: a meta-analysis.
Nummenmaa, Lauri; Calvo, Manuel G
2015-04-01
Happy facial expressions are recognized faster and more accurately than other expressions in categorization tasks, whereas detection in visual search tasks is widely believed to be faster for angry than happy faces. We used meta-analytic techniques for resolving this categorization versus detection advantage discrepancy for positive versus negative facial expressions. Effect sizes were computed on the basis of the r statistic for a total of 34 recognition studies with 3,561 participants and 37 visual search studies with 2,455 participants, yielding a total of 41 effect sizes for recognition accuracy, 25 for recognition speed, and 125 for visual search speed. Random effects meta-analysis was conducted to estimate effect sizes at population level. For recognition tasks, an advantage in recognition accuracy and speed for happy expressions was found for all stimulus types. In contrast, for visual search tasks, moderator analysis revealed that a happy face detection advantage was restricted to photographic faces, whereas a clear angry face advantage was found for schematic and "smiley" faces. Robust detection advantage for nonhappy faces was observed even when stimulus emotionality was distorted by inversion or rearrangement of the facial features, suggesting that visual features primarily drive the search. We conclude that the recognition advantage for happy faces is a genuine phenomenon related to processing of facial expression category and affective valence. In contrast, detection advantages toward either happy (photographic stimuli) or nonhappy (schematic) faces is contingent on visual stimulus features rather than facial expression, and may not involve categorical or affective processing. (c) 2015 APA, all rights reserved).
Two processes support visual recognition memory in rhesus monkeys.
Guderian, Sebastian; Brigham, Danielle; Mishkin, Mortimer
2011-11-29
A large body of evidence in humans suggests that recognition memory can be supported by both recollection and familiarity. Recollection-based recognition is characterized by the retrieval of contextual information about the episode in which an item was previously encountered, whereas familiarity-based recognition is characterized instead by knowledge only that the item had been encountered previously in the absence of any context. To date, it is unknown whether monkeys rely on similar mnemonic processes to perform recognition memory tasks. Here, we present evidence from the analysis of receiver operating characteristics, suggesting that visual recognition memory in rhesus monkeys also can be supported by two separate processes and that these processes have features considered to be characteristic of recollection and familiarity. Thus, the present study provides converging evidence across species for a dual process model of recognition memory and opens up the possibility of studying the neural mechanisms of recognition memory in nonhuman primates on tasks that are highly similar to the ones used in humans.
Two processes support visual recognition memory in rhesus monkeys
Guderian, Sebastian; Brigham, Danielle; Mishkin, Mortimer
2011-01-01
A large body of evidence in humans suggests that recognition memory can be supported by both recollection and familiarity. Recollection-based recognition is characterized by the retrieval of contextual information about the episode in which an item was previously encountered, whereas familiarity-based recognition is characterized instead by knowledge only that the item had been encountered previously in the absence of any context. To date, it is unknown whether monkeys rely on similar mnemonic processes to perform recognition memory tasks. Here, we present evidence from the analysis of receiver operating characteristics, suggesting that visual recognition memory in rhesus monkeys also can be supported by two separate processes and that these processes have features considered to be characteristic of recollection and familiarity. Thus, the present study provides converging evidence across species for a dual process model of recognition memory and opens up the possibility of studying the neural mechanisms of recognition memory in nonhuman primates on tasks that are highly similar to the ones used in humans. PMID:22084079
Eye movements during object recognition in visual agnosia.
Charles Leek, E; Patterson, Candy; Paul, Matthew A; Rafal, Robert; Cristino, Filipe
2012-07-01
This paper reports the first ever detailed study about eye movement patterns during single object recognition in visual agnosia. Eye movements were recorded in a patient with an integrative agnosic deficit during two recognition tasks: common object naming and novel object recognition memory. The patient showed normal directional biases in saccades and fixation dwell times in both tasks and was as likely as controls to fixate within object bounding contour regardless of recognition accuracy. In contrast, following initial saccades of similar amplitude to controls, the patient showed a bias for short saccades. In object naming, but not in recognition memory, the similarity of the spatial distributions of patient and control fixations was modulated by recognition accuracy. The study provides new evidence about how eye movements can be used to elucidate the functional impairments underlying object recognition deficits. We argue that the results reflect a breakdown in normal functional processes involved in the integration of shape information across object structure during the visual perception of shape. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pitsikas, Nikolaos; Sakellaridis, Nikolaos
2007-10-01
The effects of the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist memantine on recognition memory were investigated in the rat by using the object recognition task. In addition, a possible interaction between memantine and the nitric oxide (NO) donor molsidomine in antagonizing extinction of recognition memory was also evaluated utilizing the same behavioral procedure. In a first dose-response study, post-training administration of memantine (10 and 20, but not 3 mg/kg) antagonized recognition memory deficits in the rat, suggesting that memantine modulates storage and/or retrieval of information. In a subsequent study, combination of sub-threshold doses of memantine (3 mg/kg) and the NO donor molsidomine (1 mg/kg) counteracted delay-dependent impairments in the same task. Neither memantine (3 mg/kg) nor molsidomine (1 mg/kg) alone reduced object recognition performance deficits. The present findings indicate a) that memantine is involved in recognition memory and b) support a functional interaction between memantine and molsidomine on recognition memory mechanisms.
Wu, Yushu; Yan, Ping; Xu, Xiaowen; Jiang, Wei
2016-03-07
Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses.
Interference with olfactory memory by visual and verbal tasks.
Annett, J M; Cook, N M; Leslie, J C
1995-06-01
It has been claimed that olfactory memory is distinct from memory in other modalities. This study investigated the effectiveness of visual and verbal tasks in interfering with olfactory memory and included methodological changes from other recent studies. Subjects were allocated to one of four experimental conditions involving interference tasks [no interference task; visual task; verbal task; visual-plus-verbal task] and presented 15 target odours. Either recognition of the odours or free recall of the odour names was tested on one occasion, either within 15 minutes of presentation or one week later. Recognition and recall performance both showed effects of interference of visual and verbal tasks but there was no effect for time of testing. While the results may be accommodated within a dual coding framework, further work is indicated to resolve theoretical issues relating to task complexity.
Early Visual Word Processing Is Flexible: Evidence from Spatiotemporal Brain Dynamics.
Chen, Yuanyuan; Davis, Matthew H; Pulvermüller, Friedemann; Hauk, Olaf
2015-09-01
Visual word recognition is often described as automatic, but the functional locus of top-down effects is still a matter of debate. Do task demands modulate how information is retrieved, or only how it is used? We used EEG/MEG recordings to assess whether, when, and how task contexts modify early retrieval of specific psycholinguistic information in occipitotemporal cortex, an area likely to contribute to early stages of visual word processing. Using a parametric approach, we analyzed the spatiotemporal response patterns of occipitotemporal cortex for orthographic, lexical, and semantic variables in three psycholinguistic tasks: silent reading, lexical decision, and semantic decision. Task modulation of word frequency and imageability effects occurred simultaneously in ventral occipitotemporal regions-in the vicinity of the putative visual word form area-around 160 msec, following task effects on orthographic typicality around 100 msec. Frequency and typicality also produced task-independent effects in anterior temporal lobe regions after 200 msec. The early task modulation for several specific psycholinguistic variables indicates that occipitotemporal areas integrate perceptual input with prior knowledge in a task-dependent manner. Still, later task-independent effects in anterior temporal lobes suggest that word recognition eventually leads to retrieval of semantic information irrespective of task demands. We conclude that even a highly overlearned visual task like word recognition should be described as flexible rather than automatic.
Comparing source-based and gist-based false recognition in aging and Alzheimer's disease.
Pierce, Benton H; Sullivan, Alison L; Schacter, Daniel L; Budson, Andrew E
2005-07-01
This study examined 2 factors contributing to false recognition of semantic associates: errors based on confusion of source and errors based on general similarity information or gist. The authors investigated these errors in patients with Alzheimer's disease (AD), age-matched control participants, and younger adults, focusing on each group's ability to use recollection of source information to suppress false recognition. The authors used a paradigm consisting of both deep and shallow incidental encoding tasks, followed by study of a series of categorized lists in which several typical exemplars were omitted. Results showed that healthy older adults were able to use recollection from the deep processing task to some extent but less than that used by younger adults. In contrast, false recognition in AD patients actually increased following the deep processing task, suggesting that they were unable to use recollection to oppose familiarity arising from incidental presentation. (c) 2005 APA, all rights reserved.
The adaptive use of recognition in group decision making.
Kämmer, Juliane E; Gaissmaier, Wolfgang; Reimer, Torsten; Schermuly, Carsten C
2014-06-01
Applying the framework of ecological rationality, the authors studied the adaptivity of group decision making. In detail, they investigated whether groups apply decision strategies conditional on their composition in terms of task-relevant features. The authors focused on the recognition heuristic, so the task-relevant features were the validity of the group members' recognition and knowledge, which influenced the potential performance of group strategies. Forty-three three-member groups performed an inference task in which they had to infer which of two German companies had the higher market capitalization. Results based on the choice data support the hypothesis that groups adaptively apply the strategy that leads to the highest theoretically achievable performance. Time constraints had no effect on strategy use but did have an effect on the proportions of different types of arguments. Possible mechanisms underlying the adaptive use of recognition in group decision making are discussed. © 2014 Cognitive Science Society, Inc.
Does the generation effect occur for pictures?
Kinjo, H; Snodgrass, J G
2000-01-01
The generation effect is the finding that self-generated stimuli are recalled and recognized better than read stimuli. The effect has been demonstrated primarily with words. This article examines the effect for pictures in two experiments: Subjects named complete pictures (name condition) and fragmented pictures (generation condition). In Experiment 1, memory was tested in 3 explicit tasks: free recall, yes/no recognition, and a source-monitoring task on whether each picture was complete or fragmented (the complete/incomplete task). The generation effect was found for all 3 tasks. However, in the recognition and source-monitoring tasks, the generation effect was observed only in the generation condition. We hypothesized that absence of the effect in the name condition was due to the sensory or process match effect between study and test pictures and the superior identification of pictures in the name condition. Therefore, stimuli were changed from pictures to their names in Experiment 2. Memory was tested in the recognition task, complete/incomplete task, and second source-monitoring task (success/failure) on whether each picture had been identified successfully. The generation effect was observed for all 3 tasks. These results suggest that memory of structural and semantic characteristics and of success in identification of generated pictures may contribute to the generation effect.
ERIC Educational Resources Information Center
Malmberg, Kenneth J.; Annis, Jeffrey
2012-01-01
Many models of recognition are derived from models originally applied to perception tasks, which assume that decisions from trial to trial are independent. While the independence assumption is violated for many perception tasks, we present the results of several experiments intended to relate memory and perception by exploring sequential…
Processing of Acoustic Cues in Lexical-Tone Identification by Pediatric Cochlear-Implant Recipients
ERIC Educational Resources Information Center
Peng, Shu-Chen; Lu, Hui-Ping; Lu, Nelson; Lin, Yung-Song; Deroche, Mickael L. D.; Chatterjee, Monita
2017-01-01
Purpose: The objective was to investigate acoustic cue processing in lexical-tone recognition by pediatric cochlear-implant (CI) recipients who are native Mandarin speakers. Method: Lexical-tone recognition was assessed in pediatric CI recipients and listeners with normal hearing (NH) in 2 tasks. In Task 1, participants identified naturally…
Visual Recognition Memory, Paired-Associate Learning, and Reading Achievement.
ERIC Educational Resources Information Center
Anderson, Roger H.; Samuels, S. Jay
The relationship between visual recognition memory and performance on a paired-associate task for good and poor readers was investigated. Subjects were three groups of 21, 21, and 22 children each, with mean IQ's of 98.2, 108.1, and 118.0, respectively. Three experimental tasks, individually administered to each subject, measured visual…
2015-01-01
Conspectus Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed “recognition” and “reactivity”. Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent examples from our laboratory and collaborations in which applications of chemical probes reveal that labile copper contributes to various physiologies. The first example shows that copper is an endogenous regulator of neuronal activity, the second illustrates cellular prioritization of mitochondrial copper homeostasis, and the third identifies the “cuprosome” as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition- and reactivity-based fluorescent probes have helped to uncover new biological roles for labile transition metals, and the further development of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors, will continue to reveal exciting and new biological roles for labile transition metals. PMID:26215055
Familiarity and Recollection in Heuristic Decision Making
Schwikert, Shane R.; Curran, Tim
2014-01-01
Heuristics involve the ability to utilize memory to make quick judgments by exploiting fundamental cognitive abilities. In the current study we investigated the memory processes that contribute to the recognition heuristic and the fluency heuristic, which are both presumed to capitalize on the by-products of memory to make quick decisions. In Experiment 1, we used a city-size comparison task while recording event-related potentials (ERPs) to investigate the potential contributions of familiarity and recollection to the two heuristics. ERPs were markedly different for recognition heuristic-based decisions and fluency heuristic-based decisions, suggesting a role for familiarity in the recognition heuristic and recollection in the fluency heuristic. In Experiment 2, we coupled the same city-size comparison task with measures of subjective pre-experimental memory for each stimulus in the task. Although previous literature suggests the fluency heuristic relies on recognition speed alone, our results suggest differential contributions of recognition speed and recollected knowledge to these decisions, whereas the recognition heuristic relies on familiarity. Based on these results, we created a new theoretical frame work that explains decisions attributed to both heuristics based on the underlying memory associated with the choice options. PMID:25347534
Familiarity and recollection in heuristic decision making.
Schwikert, Shane R; Curran, Tim
2014-12-01
Heuristics involve the ability to utilize memory to make quick judgments by exploiting fundamental cognitive abilities. In the current study we investigated the memory processes that contribute to the recognition heuristic and the fluency heuristic, which are both presumed to capitalize on the byproducts of memory to make quick decisions. In Experiment 1, we used a city-size comparison task while recording event-related potentials (ERPs) to investigate the potential contributions of familiarity and recollection to the 2 heuristics. ERPs were markedly different for recognition heuristic-based decisions and fluency heuristic-based decisions, suggesting a role for familiarity in the recognition heuristic and recollection in the fluency heuristic. In Experiment 2, we coupled the same city-size comparison task with measures of subjective preexperimental memory for each stimulus in the task. Although previous literature suggests the fluency heuristic relies on recognition speed alone, our results suggest differential contributions of recognition speed and recollected knowledge to these decisions, whereas the recognition heuristic relies on familiarity. Based on these results, we created a new theoretical framework that explains decisions attributed to both heuristics based on the underlying memory associated with the choice options. PsycINFO Database Record (c) 2014 APA, all rights reserved.
The role of color information on object recognition: a review and meta-analysis.
Bramão, Inês; Reis, Alexandra; Petersson, Karl Magnus; Faísca, Luís
2011-09-01
In this study, we systematically review the scientific literature on the effect of color on object recognition. Thirty-five independent experiments, comprising 1535 participants, were included in a meta-analysis. We found a moderate effect of color on object recognition (d=0.28). Specific effects of moderator variables were analyzed and we found that color diagnosticity is the factor with the greatest moderator effect on the influence of color in object recognition; studies using color diagnostic objects showed a significant color effect (d=0.43), whereas a marginal color effect was found in studies that used non-color diagnostic objects (d=0.18). The present study did not permit the drawing of specific conclusions about the moderator effect of the object recognition task; while the meta-analytic review showed that color information improves object recognition mainly in studies using naming tasks (d=0.36), the literature review revealed a large body of evidence showing positive effects of color information on object recognition in studies using a large variety of visual recognition tasks. We also found that color is important for the ability to recognize artifacts and natural objects, to recognize objects presented as types (line-drawings) or as tokens (photographs), and to recognize objects that are presented without surface details, such as texture or shadow. Taken together, the results of the meta-analysis strongly support the contention that color plays a role in object recognition. This suggests that the role of color should be taken into account in models of visual object recognition. Copyright © 2011 Elsevier B.V. All rights reserved.
Neumann, Dawn; McDonald, Brenna C; West, John; Keiski, Michelle A; Wang, Yang
2016-06-01
The neurobiological mechanisms that underlie facial affect recognition deficits after traumatic brain injury (TBI) have not yet been identified. Using functional magnetic resonance imaging (fMRI), study aims were to 1) determine if there are differences in brain activation during facial affect processing in people with TBI who have facial affect recognition impairments (TBI-I) relative to people with TBI and healthy controls who do not have facial affect recognition impairments (TBI-N and HC, respectively); and 2) identify relationships between neural activity and facial affect recognition performance. A facial affect recognition screening task performed outside the scanner was used to determine group classification; TBI patients who performed greater than one standard deviation below normal performance scores were classified as TBI-I, while TBI patients with normal scores were classified as TBI-N. An fMRI facial recognition paradigm was then performed within the 3T environment. Results from 35 participants are reported (TBI-I = 11, TBI-N = 12, and HC = 12). For the fMRI task, TBI-I and TBI-N groups scored significantly lower than the HC group. Blood oxygenation level-dependent (BOLD) signals for facial affect recognition compared to a baseline condition of viewing a scrambled face, revealed lower neural activation in the right fusiform gyrus (FG) in the TBI-I group than the HC group. Right fusiform gyrus activity correlated with accuracy on the facial affect recognition tasks (both within and outside the scanner). Decreased FG activity suggests facial affect recognition deficits after TBI may be the result of impaired holistic face processing. Future directions and clinical implications are discussed.
Fleming, Stephen A; Dilger, Ryan N
2017-03-15
Novelty preference paradigms have been widely used to study recognition memory and its neural substrates. The piglet model continues to advance the study of neurodevelopment, and as such, tasks that use novelty preference will serve especially useful due to their translatable nature to humans. However, there has been little use of this behavioral paradigm in the pig, and previous studies using the novel object recognition paradigm in piglets have yielded inconsistent results. The current study was conducted to determine if piglets were capable of displaying a novelty preference. Herein a series of experiments were conducted using novel object recognition or location in 3- and 4-week-old piglets. In the novel object recognition task, piglets were able to discriminate between novel and sample objects after delays of 2min, 1h, 1 day, and 2 days (all P<0.039) at both ages. Performance was sex-dependent, as females could perform both 1- and 2-day delays (P<0.036) and males could perform the 2-day delay (P=0.008) but not the 1-day delay (P=0.347). Furthermore, 4-week-old piglets and females tended to exhibit greater exploratory behavior compared with males. Such performance did not extend to novel location recognition tasks, as piglets were only able to discriminate between novel and sample locations after a short delay (P>0.046). In conclusion, this study determined that piglets are able to perform the novel object and location recognition tasks at 3-to-4 weeks of age, however performance was dependent on sex, age, and delay. Copyright © 2016 Elsevier B.V. All rights reserved.
Cognition and speech-in-noise recognition: the role of proactive interference.
Ellis, Rachel J; Rönnberg, Jerker
2014-01-01
Complex working memory (WM) span tasks have been shown to predict speech-in-noise (SIN) recognition. Studies of complex WM span tasks suggest that, rather than indexing a single cognitive process, performance on such tasks may be governed by separate cognitive subprocesses embedded within WM. Previous research has suggested that one such subprocess indexed by WM tasks is proactive interference (PI), which refers to difficulties memorizing current information because of interference from previously stored long-term memory representations for similar information. The aim of the present study was to investigate phonological PI and to examine the relationship between PI (semantic and phonological) and SIN perception. A within-subjects experimental design was used. An opportunity sample of 24 young listeners with normal hearing was recruited. Measures of resistance to, and release from, semantic and phonological PI were calculated alongside the signal-to-noise ratio required to identify 50% of keywords correctly in a SIN recognition task. The data were analyzed using t-tests and correlations. Evidence of release from and resistance to semantic interference was observed. These measures correlated significantly with SIN recognition. Limited evidence of phonological PI was observed. The results show that capacity to resist semantic PI can be used to predict SIN recognition scores in young listeners with normal hearing. On the basis of these findings, future research will focus on investigating whether tests of PI can be used in the treatment and/or rehabilitation of hearing loss. American Academy of Audiology.
Cultural differences in visual object recognition in 3-year-old children
Kuwabara, Megumi; Smith, Linda B.
2016-01-01
Recent research indicates that culture penetrates fundamental processes of perception and cognition (e.g. Nisbett & Miyamoto, 2005). Here, we provide evidence that these influences begin early and influence how preschool children recognize common objects. The three tasks (n=128) examined the degree to which nonface object recognition by 3 year olds was based on individual diagnostic features versus more configural and holistic processing. Task 1 used a 6-alternative forced choice task in which children were asked to find a named category in arrays of masked objects in which only 3 diagnostic features were visible for each object. U.S. children outperformed age-matched Japanese children. Task 2 presented pictures of objects to children piece by piece. U.S. children recognized the objects given fewer pieces than Japanese children and likelihood of recognition increased for U.S., but not Japanese children when the piece added was rated by both U.S. and Japanese adults as highly defining. Task 3 used a standard measure of configural progressing, asking the degree to which recognition of matching pictures was disrupted by the rotation of one picture. Japanese children’s recognition was more disrupted by inversion than was that of U.S. children, indicating more configural processing by Japanese than U.S. children. The pattern suggests early cross-cultural differences in visual processing; findings that raise important questions about how visual experiences differ across cultures and about universal patterns of cognitive development. PMID:26985576
Cultural differences in visual object recognition in 3-year-old children.
Kuwabara, Megumi; Smith, Linda B
2016-07-01
Recent research indicates that culture penetrates fundamental processes of perception and cognition. Here, we provide evidence that these influences begin early and influence how preschool children recognize common objects. The three tasks (N=128) examined the degree to which nonface object recognition by 3-year-olds was based on individual diagnostic features versus more configural and holistic processing. Task 1 used a 6-alternative forced choice task in which children were asked to find a named category in arrays of masked objects where only three diagnostic features were visible for each object. U.S. children outperformed age-matched Japanese children. Task 2 presented pictures of objects to children piece by piece. U.S. children recognized the objects given fewer pieces than Japanese children, and the likelihood of recognition increased for U.S. children, but not Japanese children, when the piece added was rated by both U.S. and Japanese adults as highly defining. Task 3 used a standard measure of configural progressing, asking the degree to which recognition of matching pictures was disrupted by the rotation of one picture. Japanese children's recognition was more disrupted by inversion than was that of U.S. children, indicating more configural processing by Japanese than U.S. children. The pattern suggests early cross-cultural differences in visual processing; findings that raise important questions about how visual experiences differ across cultures and about universal patterns of cognitive development. Copyright © 2016 Elsevier Inc. All rights reserved.
Anticipatory versus reactive spatial attentional bias to threat.
Gladwin, Thomas E; Möbius, Martin; McLoughlin, Shane; Tyndall, Ian
2018-05-10
Dot-probe or visual probe tasks (VPTs) are used extensively to measure attentional biases. A novel variant termed the cued VPT (cVPT) was developed to focus on the anticipatory component of attentional bias. This study aimed to establish an anticipatory attentional bias to threat using the cVPT and compare its split-half reliability with a typical dot-probe task. A total of 120 students performed the cVPT task and dot-probe tasks. Essentially, the cVPT uses cues that predict the location of pictorial threatening stimuli, but on trials on which probe stimuli are presented the pictures do not appear. Hence, actual presentation of emotional stimuli did not affect responses. The reliability of the cVPT was higher at most cue-stimulus intervals and was .56 overall. A clear anticipatory attentional bias was found. In conclusion, the cVPT may be of methodological and theoretical interest. Using visually neutral predictive cues may remove sources of noise that negatively impact reliability. Predictive cues are able to bias response selection, suggesting a role of predicted outcomes in automatic processes. © 2018 The British Psychological Society.
Zeintl, Melanie; Kliegel, Matthias
2010-01-01
Generally, older adults perform worse than younger adults in complex working memory span tasks. So far, it is unclear which processes mainly contribute to age-related differences in working memory span. The aim of the present study was to investigate age effects and the roles of proactive and coactive interference in a recognition-based version of the operation span task. Younger and older adults performed standard versions and distracter versions of the operation span task. At retrieval, participants had to recognize target words in word lists containing targets as well as proactive and/or coactive interference-related lures. Results show that, overall, younger adults outperformed older adults in the recognition of target words. Furthermore, analyses of error types indicate that, while younger adults were only affected by simultaneously presented distracter words, older adults had difficulties with both proactive and coactive interference. Results suggest that age effects in complex span tasks may not be mainly due to retrieval deficits in old age. Copyright 2009 S. Karger AG, Basel.
Local Navon letter processing affects skilled behavior: a golf-putting experiment.
Lewis, Michael B; Dawkins, Gemma
2015-04-01
Expert or skilled behaviors (for example, face recognition or sporting performance) are typically performed automatically and with little conscious awareness. Previous studies, in various domains of performance, have shown that activities immediately prior to a task demanding a learned skill can affect performance. In sport, describing the to-be-performed action is detrimental, whereas in face recognition, describing a face or reading local Navon letters is detrimental. Two golf-putting experiments are presented that compare the effects that these three tasks have on experienced and novice golfers. Experiment 1 found a Navon effect on golf performance for experienced players. Experiment 2 found, for experienced players only, that performance was impaired following the three tasks described above, when compared with reading or global Navon tasks. It is suggested that the three tasks affect skilled performance by provoking a shift from automatic behavior to a more analytic style. By demonstrating similarities between effects in face recognition and sporting behavior, it is hoped to better understand concepts in both fields.
ERIC Educational Resources Information Center
Alexander, Jennifer L.; Smith, Katie A.; Mataras, Theologia; Shepley, Sally B.; Ayres, Kevin M.
2015-01-01
The two most frequently used methods for assessing performance on chained tasks are single opportunity probes (SOPs) and multiple opportunity probes (MOPs). Of the two, SOPs may be easier and less time-consuming but can suppress actual performance. In comparison, MOPs can provide more information but present the risk of participants acquiring…
NASA Astrophysics Data System (ADS)
Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.
2014-09-01
Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology.
Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.
2014-01-01
Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology. PMID:25252596
Crowding by a single bar: probing pattern recognition mechanisms in the visual periphery.
Põder, Endel
2014-11-06
Whereas visual crowding does not greatly affect the detection of the presence of simple visual features, it heavily inhibits combining them into recognizable objects. Still, crowding effects have rarely been directly related to general pattern recognition mechanisms. In this study, pattern recognition mechanisms in visual periphery were probed using a single crowding feature. Observers had to identify the orientation of a rotated T presented briefly in a peripheral location. Adjacent to the target, a single bar was presented. The bar was either horizontal or vertical and located in a random direction from the target. It appears that such a crowding bar has very strong and regular effects on the identification of the target orientation. The observer's responses are determined by approximate relative positions of basic visual features; exact image-based similarity to the target is not important. A version of the "standard model" of object recognition with second-order features explains the main regularities of the data. © 2014 ARVO.
NASA Astrophysics Data System (ADS)
Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo
2016-04-01
In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation. Electronic supplementary information (ESI) available: Additional figures (Tables S1-S3 and Fig. S1-S6). See DOI: 10.1039/c6nr01072e
Animacy and real-world size shape object representations in the human medial temporal lobes.
Blumenthal, Anna; Stojanoski, Bobby; Martin, Chris B; Cusack, Rhodri; Köhler, Stefan
2018-06-26
Identifying what an object is, and whether an object has been encountered before, is a crucial aspect of human behavior. Despite this importance, we do not yet have a complete understanding of the neural basis of these abilities. Investigations into the neural organization of human object representations have revealed category specific organization in the ventral visual stream in perceptual tasks. Interestingly, these categories fall within broader domains of organization, with reported distinctions between animate, inanimate large, and inanimate small objects. While there is some evidence for category specific effects in the medial temporal lobe (MTL), in particular in perirhinal and parahippocampal cortex, it is currently unclear whether domain level organization is also present across these structures. To this end, we used fMRI with a continuous recognition memory task. Stimuli were images of objects from several different categories, which were either animate or inanimate, or large or small within the inanimate domain. We employed representational similarity analysis (RSA) to test the hypothesis that object-evoked responses in MTL structures during recognition-memory judgments also show evidence for domain-level organization along both dimensions. Our data support this hypothesis. Specifically, object representations were shaped by either animacy, real-world size, or both, in perirhinal and parahippocampal cortex, and the hippocampus. While sensitivity to these dimensions differed across structures when probed individually, hinting at interesting links to functional differentiation, similarities in organization across MTL structures were more prominent overall. These results argue for continuity in the organization of object representations in the ventral visual stream and the MTL. © 2018 Wiley Periodicals, Inc.
Iannaccone, Reto; Hauser, Tobias U; Ball, Juliane; Brandeis, Daniel; Walitza, Susanne; Brem, Silvia
2015-10-01
Attention-deficit/hyperactivity disorder (ADHD) is a common disabling psychiatric disorder associated with consistent deficits in error processing, inhibition and regionally decreased grey matter volumes. The diagnosis is based on clinical presentation, interviews and questionnaires, which are to some degree subjective and would benefit from verification through biomarkers. Here, pattern recognition of multiple discriminative functional and structural brain patterns was applied to classify adolescents with ADHD and controls. Functional activation features in a Flanker/NoGo task probing error processing and inhibition along with structural magnetic resonance imaging data served to predict group membership using support vector machines (SVMs). The SVM pattern recognition algorithm correctly classified 77.78% of the subjects with a sensitivity and specificity of 77.78% based on error processing. Predictive regions for controls were mainly detected in core areas for error processing and attention such as the medial and dorsolateral frontal areas reflecting deficient processing in ADHD (Hart et al., in Hum Brain Mapp 35:3083-3094, 2014), and overlapped with decreased activations in patients in conventional group comparisons. Regions more predictive for ADHD patients were identified in the posterior cingulate, temporal and occipital cortex. Interestingly despite pronounced univariate group differences in inhibition-related activation and grey matter volumes the corresponding classifiers failed or only yielded a poor discrimination. The present study corroborates the potential of task-related brain activation for classification shown in previous studies. It remains to be clarified whether error processing, which performed best here, also contributes to the discrimination of useful dimensions and subtypes, different psychiatric disorders, and prediction of treatment success across studies and sites.
2016-01-01
Objective: Memory deficits in patients with frontal lobe lesions are most apparent on free recall tasks that require the selection, initiation, and implementation of retrieval strategies. The effect of frontal lesions on recognition memory performance is less clear with some studies reporting recognition memory impairments but others not. The majority of these studies do not directly compare recall and recognition within the same group of frontal patients, assessing only recall or recognition memory performance. Other studies that do compare recall and recognition in the same frontal group do not consider recall or recognition tests that are comparable for difficulty. Recognition memory impairments may not be reported because recognition memory tasks are less demanding. Method: This study aimed to investigate recall and recognition impairments in the same group of 47 frontal patients and 78 healthy controls. The Doors and People Test was administered as a neuropsychological test of memory as it assesses both verbal and visual recall and recognition using subtests that are matched for difficulty. Results: Significant verbal and visual recall and recognition impairments were found in the frontal patients. Conclusion: These results demonstrate that when frontal patients are assessed on recall and recognition memory tests of comparable difficulty, memory impairments are found on both types of episodic memory test. PMID:26752123
MacPherson, Sarah E; Turner, Martha S; Bozzali, Marco; Cipolotti, Lisa; Shallice, Tim
2016-03-01
Memory deficits in patients with frontal lobe lesions are most apparent on free recall tasks that require the selection, initiation, and implementation of retrieval strategies. The effect of frontal lesions on recognition memory performance is less clear with some studies reporting recognition memory impairments but others not. The majority of these studies do not directly compare recall and recognition within the same group of frontal patients, assessing only recall or recognition memory performance. Other studies that do compare recall and recognition in the same frontal group do not consider recall or recognition tests that are comparable for difficulty. Recognition memory impairments may not be reported because recognition memory tasks are less demanding. This study aimed to investigate recall and recognition impairments in the same group of 47 frontal patients and 78 healthy controls. The Doors and People Test was administered as a neuropsychological test of memory as it assesses both verbal and visual recall and recognition using subtests that are matched for difficulty. Significant verbal and visual recall and recognition impairments were found in the frontal patients. These results demonstrate that when frontal patients are assessed on recall and recognition memory tests of comparable difficulty, memory impairments are found on both types of episodic memory test. (c) 2016 APA, all rights reserved).
Gaudelus, B; Virgile, J; Peyroux, E; Leleu, A; Baudouin, J-Y; Franck, N
2015-06-01
The impairment of social cognition, including facial affects recognition, is a well-established trait in schizophrenia, and specific cognitive remediation programs focusing on facial affects recognition have been developed by different teams worldwide. However, even though social cognitive impairments have been confirmed, previous studies have also shown heterogeneity of the results between different subjects. Therefore, assessment of personal abilities should be measured individually before proposing such programs. Most research teams apply tasks based on facial affects recognition by Ekman et al. or Gur et al. However, these tasks are not easily applicable in a clinical exercise. Here, we present the Facial Emotions Recognition Test (TREF), which is designed to identify facial affects recognition impairments in a clinical practice. The test is composed of 54 photos and evaluates abilities in the recognition of six universal emotions (joy, anger, sadness, fear, disgust and contempt). Each of these emotions is represented with colored photos of 4 different models (two men and two women) at nine intensity levels from 20 to 100%. Each photo is presented during 10 seconds; no time limit for responding is applied. The present study compared the scores of the TREF test in a sample of healthy controls (64 subjects) and people with stabilized schizophrenia (45 subjects) according to the DSM IV-TR criteria. We analysed global scores for all emotions, as well as sub scores for each emotion between these two groups, taking into account gender differences. Our results were coherent with previous findings. Applying TREF, we confirmed an impairment in facial affects recognition in schizophrenia by showing significant differences between the two groups in their global results (76.45% for healthy controls versus 61.28% for people with schizophrenia), as well as in sub scores for each emotion except for joy. Scores for women were significantly higher than for men in the population without psychiatric diagnosis. The study also allowed the identification of cut-off scores; results below 2 standard deviations of the healthy control average (61.57%) pointed to a facial affect recognition deficit. The TREF appears to be a useful tool to identify facial affects recognition impairment in schizophrenia. Neuropsychologists, who have tried this task, have positive feedback. The TREF is easy to use (duration of about 15 minutes), easy to apply in subjects with attentional difficulties, and tests facial affects recognition at ecological intensity levels. These results have to be confirmed in the future with larger sample sizes, and in comparison with other tasks, evaluating the facial affects recognition processes. Copyright © 2014 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Cross-modal working memory binding and word recognition skills: how specific is the link?
Wang, Shinmin; Allen, Richard J
2018-04-01
Recent research has suggested that the creation of temporary bound representations of information from different sources within working memory uniquely relates to word recognition abilities in school-age children. However, it is unclear to what extent this link is attributable specifically to the binding ability for cross-modal information. This study examined the performance of Grade 3 (8-9 years old) children on binding tasks requiring either temporary association formation of two visual items (i.e., within-modal binding) or pairs of visually presented abstract shapes and auditorily presented nonwords (i.e., cross-modal binding). Children's word recognition skills were related to performance on the cross-modal binding task but not on the within-modal binding task. Further regression models showed that cross-modal binding memory was a significant predictor of word recognition when memory for its constituent elements, general abilities, and crucially, within-modal binding memory were taken into account. These findings may suggest a specific link between the ability to bind information across modalities within working memory and word recognition skills.
False recall and recognition of brand names increases over time.
Sherman, Susan M
2013-01-01
Using the Deese-Roediger-McDermott (DRM) paradigm, participants are presented with lists of associated words (e.g., bed, awake, night). Subsequently, they reliably have false memories for related but nonpresented words (e.g., SLEEP). Previous research has found that false memories can be created for brand names (e.g., Morrisons, Sainsbury's, Waitrose, and TESCO). The present study investigates the effect of a week's delay on false memories for brand names. Participants were presented with lists of brand names followed by a distractor task. In two between-subjects experiments, participants completed a free recall task or a recognition task either immediately or a week later. In two within-subjects experiments, participants completed a free recall task or a recognition task both immediately and a week later. Correct recall for presented list items decreased over time, whereas false recall for nonpresented lure items increased. For recognition, raw scores revealed an increase in false memory across time reflected in an increase in Remember responses. Analysis of Pr scores revealed that false memory for lures stayed constant over a week, but with an increase in Remember responses in the between-subjects experiment and a trend in the same direction in the within-subjects experiment. Implications for theories of false memory are discussed.
Koelkebeck, Katja; Kohl, Waldemar; Luettgenau, Julia; Triantafillou, Susanna; Ohrmann, Patricia; Satoh, Shinji; Minoshita, Seiko
2015-07-30
A novel emotion recognition task that employs photos of a Japanese mask representing a highly ambiguous stimulus was evaluated. As non-Asians perceive and/or label emotions differently from Asians, we aimed to identify patterns of task-performance in non-Asian healthy volunteers with a view to future patient studies. The Noh mask test was presented to 42 adult German participants. Reaction times and emotion attribution patterns were recorded. To control for emotion identification abilities, a standard emotion recognition task was used among others. Questionnaires assessed personality traits. Finally, results were compared to age- and gender-matched Japanese volunteers. Compared to other tasks, German participants displayed slowest reaction times on the Noh mask test, indicating higher demands of ambiguous emotion recognition. They assigned more positive emotions to the mask than Japanese volunteers, demonstrating culture-dependent emotion identification patterns. As alexithymic and anxious traits were associated with slower reaction times, personality dimensions impacted on performance, as well. We showed an advantage of ambiguous over conventional emotion recognition tasks. Moreover, we determined emotion identification patterns in Western individuals impacted by personality dimensions, suggesting performance differences in clinical samples. Due to its properties, the Noh mask test represents a promising tool in the differential diagnosis of psychiatric disorders, e.g. schizophrenia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Prefrontal Engagement during Source Memory Retrieval Depends on the Prior Encoding Task
Kuo, Trudy Y.; Van Petten, Cyma
2008-01-01
The prefrontal cortex is strongly engaged by some, but not all, episodic memory tests. Prior work has shown that source recognition tests—those that require memory for conjunctions of studied attributes—yield deficient performance in patients with prefrontal damage and greater prefrontal activity in healthy subjects, as compared to simple recognition tests. Here, we tested the hypothesis that there is no intrinsic relationship between the prefrontal cortex and source memory, but that the prefrontal cortex is engaged by the demand to retrieve weakly encoded relationships. Subjects attempted to remember object/color conjunctions after an encoding task that focused on object identity alone, and an integrative encoding task that encouraged attention to object/color relationships. After the integrative encoding task, the late prefrontal brain electrical activity that typically occurs in source memory tests was eliminated. Earlier brain electrical activity related to successful recognition of the objects was unaffected by the nature of prior encoding. PMID:16839287
HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.
Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B
2017-07-01
This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.
Test-retest reliability and task order effects of emotional cognitive tests in healthy subjects.
Adams, Thomas; Pounder, Zoe; Preston, Sally; Hanson, Andy; Gallagher, Peter; Harmer, Catherine J; McAllister-Williams, R Hamish
2016-11-01
Little is known of the retest reliability of emotional cognitive tasks or the impact of using different tasks employing similar emotional stimuli within a battery. We investigated this in healthy subjects. We found improved overall performance in an emotional attentional blink task (EABT) with repeat testing at one hour and one week compared to baseline, but the impact of an emotional stimulus on performance was unchanged. Similarly, performance on a facial expression recognition task (FERT) was better one week after a baseline test, though the relative effect of specific emotions was unaltered. There was no effect of repeat testing on an emotional word categorising, recall and recognition task. We found no difference in performance in the FERT and EABT irrespective of task order. We concluded that it is possible to use emotional cognitive tasks in longitudinal studies and combine tasks using emotional facial stimuli in a single battery.
Facial Emotion Recognition in Bipolar Disorder and Healthy Aging.
Altamura, Mario; Padalino, Flavia A; Stella, Eleonora; Balzotti, Angela; Bellomo, Antonello; Palumbo, Rocco; Di Domenico, Alberto; Mammarella, Nicola; Fairfield, Beth
2016-03-01
Emotional face recognition is impaired in bipolar disorder, but it is not clear whether this is specific for the illness. Here, we investigated how aging and bipolar disorder influence dynamic emotional face recognition. Twenty older adults, 16 bipolar patients, and 20 control subjects performed a dynamic affective facial recognition task and a subsequent rating task. Participants pressed a key as soon as they were able to discriminate whether the neutral face was assuming a happy or angry facial expression and then rated the intensity of each facial expression. Results showed that older adults recognized happy expressions faster, whereas bipolar patients recognized angry expressions faster. Furthermore, both groups rated emotional faces more intensely than did the control subjects. This study is one of the first to compare how aging and clinical conditions influence emotional facial recognition and underlines the need to consider the role of specific and common factors in emotional face recognition.
Warmth of familiarity and chill of error: affective consequences of recognition decisions.
Chetverikov, Andrey
2014-04-01
The present research aimed to assess the effect of recognition decision on subsequent affective evaluations of recognised and non-recognised objects. Consistent with the proposed account of post-decisional preferences, results showed that the effect of recognition on preferences depends upon objective familiarity. If stimuli are recognised, liking ratings are positively associated with exposure frequency; if stimuli are not recognised, this link is either absent (Experiment 1) or negative (Experiments 2 and 3). This interaction between familiarity and recognition exists even when recognition accuracy is at chance level and the "mere exposure" effect is absent. Finally, data obtained from repeated measurements of preferences and using manipulations of task order confirm that recognition decisions have a causal influence on preferences. The findings suggest that affective evaluation can provide fine-grained access to the efficacy of cognitive processing even in simple cognitive tasks.
The involvement of emotion recognition in affective theory of mind.
Mier, Daniela; Lis, Stefanie; Neuthe, Kerstin; Sauer, Carina; Esslinger, Christine; Gallhofer, Bernd; Kirsch, Peter
2010-11-01
This study was conducted to explore the relationship between emotion recognition and affective Theory of Mind (ToM). Forty subjects performed a facial emotion recognition and an emotional intention recognition task (affective ToM) in an event-related fMRI study. Conjunction analysis revealed overlapping activation during both tasks. Activation in some of these conjunctly activated regions was even stronger during affective ToM than during emotion recognition, namely in the inferior frontal gyrus, the superior temporal sulcus, the temporal pole, and the amygdala. In contrast to previous studies investigating ToM, we found no activation in the anterior cingulate, commonly assumed as the key region for ToM. The results point to a close relationship of emotion recognition and affective ToM and can be interpreted as evidence for the assumption that at least basal forms of ToM occur by an embodied, non-cognitive process. Copyright © 2010 Society for Psychophysiological Research.
Recognition of emotion with temporal lobe epilepsy and asymmetrical amygdala damage.
Fowler, Helen L; Baker, Gus A; Tipples, Jason; Hare, Dougal J; Keller, Simon; Chadwick, David W; Young, Andrew W
2006-08-01
Impairments in emotion recognition occur when there is bilateral damage to the amygdala. In this study, ability to recognize auditory and visual expressions of emotion was investigated in people with asymmetrical amygdala damage (AAD) and temporal lobe epilepsy (TLE). Recognition of five emotions was tested across three participant groups: those with right AAD and TLE, those with left AAD and TLE, and a comparison group. Four tasks were administered: recognition of emotion from facial expressions, sentences describing emotion-laden situations, nonverbal sounds, and prosody. Accuracy scores for each task and emotion were analysed, and no consistent overall effect of AAD on emotion recognition was found. However, some individual participants with AAD were significantly impaired at recognizing emotions, in both auditory and visual domains. The findings indicate that a minority of individuals with AAD have impairments in emotion recognition, but no evidence of specific impairments (e.g., visual or auditory) was found.
Memory Asymmetry of Forward and Backward Associations in Recognition Tasks
ERIC Educational Resources Information Center
Yang, Jiongjiong; Zhao, Peng; Zhu, Zijian; Mecklinger, Axel; Fang, Zhiyong; Li, Han
2013-01-01
There is an intensive debate on whether memory for serial order is symmetric. The objective of this study was to explore whether associative asymmetry is modulated by memory task (recognition vs. cued recall). Participants were asked to memorize word triples (Experiments 1-2) or pairs (Experiments 3-6) during the study phase. They then recalled…
ERIC Educational Resources Information Center
Boot, Inge; Pecher, Diane
2008-01-01
Many models of word recognition predict that neighbours of target words will be activated during word processing. Cascaded models can make the additional prediction that semantic features of those neighbours get activated before the target has been uniquely identified. In two semantic decision tasks neighbours that were congruent (i.e., from the…
Some Memories Are Odder than Others: Judgments of Episodic Oddity Violate Known Decision Rules
ERIC Educational Resources Information Center
O'Connor, Akira R.; Guhl, Emily N.; Cox, Justin C.; Dobbins, Ian G.
2011-01-01
Current decision models of recognition memory are based almost entirely on one paradigm, single item old/new judgments accompanied by confidence ratings. This task results in receiver operating characteristics (ROCs) that are well fit by both signal-detection and dual-process models. Here we examine an entirely new recognition task, the judgment…
ERIC Educational Resources Information Center
Hsiao, Janet H.; Lam, Sze Man
2013-01-01
Through computational modeling, here we examine whether visual and task characteristics of writing systems alone can account for lateralization differences in visual word recognition between different languages without assuming influence from left hemisphere (LH) lateralized language processes. We apply a hemispheric processing model of face…
Ambiguity and Relatedness Effects in Semantic Tasks: Are They Due to Semantic Coding?
ERIC Educational Resources Information Center
Hino, Yasushi; Pexman, Penny M.; Lupker, Stephen J.
2006-01-01
According to parallel distributed processing (PDP) models of visual word recognition, the speed of semantic coding is modulated by the nature of the orthographic-to-semantic mappings. Consistent with this idea, an ambiguity disadvantage and a relatedness-of-meaning (ROM) advantage have been reported in some word recognition tasks in which semantic…
Face recognition by applying wavelet subband representation and kernel associative memory.
Zhang, Bai-Ling; Zhang, Haihong; Ge, Shuzhi Sam
2004-01-01
In this paper, we propose an efficient face recognition scheme which has two features: 1) representation of face images by two-dimensional (2-D) wavelet subband coefficients and 2) recognition by a modular, personalised classification method based on kernel associative memory models. Compared to PCA projections and low resolution "thumb-nail" image representations, wavelet subband coefficients can efficiently capture substantial facial features while keeping computational complexity low. As there are usually very limited samples, we constructed an associative memory (AM) model for each person and proposed to improve the performance of AM models by kernel methods. Specifically, we first applied kernel transforms to each possible training pair of faces sample and then mapped the high-dimensional feature space back to input space. Our scheme using modular autoassociative memory for face recognition is inspired by the same motivation as using autoencoders for optical character recognition (OCR), for which the advantages has been proven. By associative memory, all the prototypical faces of one particular person are used to reconstruct themselves and the reconstruction error for a probe face image is used to decide if the probe face is from the corresponding person. We carried out extensive experiments on three standard face recognition datasets, the FERET data, the XM2VTS data, and the ORL data. Detailed comparisons with earlier published results are provided and our proposed scheme offers better recognition accuracy on all of the face datasets.
Combinatorial approaches to gene recognition.
Roytberg, M A; Astakhova, T V; Gelfand, M S
1997-01-01
Recognition of genes via exon assembly approaches leads naturally to the use of dynamic programming. We consider the general graph-theoretical formulation of the exon assembly problem and analyze in detail some specific variants: multicriterial optimization in the case of non-linear gene-scoring functions; context-dependent schemes for scoring exons and related procedures for exon filtering; and highly specific recognition of arbitrary gene segments, oligonucleotide probes and polymerase chain reaction (PCR) primers.
Cui, Xiaoyu; Gao, Chuanji; Zhou, Jianshe; Guo, Chunyan
2016-09-28
It has been widely shown that recognition memory includes two distinct retrieval processes: familiarity and recollection. Many studies have shown that recognition memory can be facilitated when there is a perceptual match between the studied and the tested items. Most event-related potential studies have explored the perceptual match effect on familiarity on the basis of the hypothesis that the specific event-related potential component associated with familiarity is the FN400 (300-500 ms mid-frontal effect). However, it is currently unclear whether the FN400 indexes familiarity or conceptual implicit memory. In addition, on the basis of the findings of a previous study, the so-called perceptual manipulations in previous studies may also involve some conceptual alterations. Therefore, we sought to determine the influence of perceptual manipulation by color changes on recognition memory when the perceptual or the conceptual processes were emphasized. Specifically, different instructions (perceptually or conceptually oriented) were provided to the participants. The results showed that color changes may significantly affect overall recognition memory behaviorally and that congruent items were recognized with a higher accuracy rate than incongruent items in both tasks, but no corresponding neural changes were found. Despite the evident familiarity shown in the two tasks (the behavioral performance of recognition memory was much higher than at the chance level), the FN400 effect was found in conceptually oriented tasks, but not perceptually oriented tasks. It is thus highly interesting that the FN400 effect was not induced, although color manipulation of recognition memory was behaviorally shown, as seen in previous studies. Our findings of the FN400 effect for the conceptual but not perceptual condition support the explanation that the FN400 effect indexes conceptual implicit memory.
Söderlund, Göran B. W.; Jobs, Elisabeth Nilsson
2016-01-01
The most common neuropsychiatric condition in the in children is attention deficit hyperactivity disorder (ADHD), affecting ∼6–9% of the population. ADHD is distinguished by inattention and hyperactive, impulsive behaviors as well as poor performance in various cognitive tasks often leading to failures at school. Sensory and perceptual dysfunctions have also been noticed. Prior research has mainly focused on limitations in executive functioning where differences are often explained by deficits in pre-frontal cortex activation. Less notice has been given to sensory perception and subcortical functioning in ADHD. Recent research has shown that children with ADHD diagnosis have a deviant auditory brain stem response compared to healthy controls. The aim of the present study was to investigate if the speech recognition threshold differs between attentive and children with ADHD symptoms in two environmental sound conditions, with and without external noise. Previous research has namely shown that children with attention deficits can benefit from white noise exposure during cognitive tasks and here we investigate if noise benefit is present during an auditory perceptual task. For this purpose we used a modified Hagerman’s speech recognition test where children with and without attention deficits performed a binaural speech recognition task to assess the speech recognition threshold in no noise and noise conditions (65 dB). Results showed that the inattentive group displayed a higher speech recognition threshold than typically developed children and that the difference in speech recognition threshold disappeared when exposed to noise at supra threshold level. From this we conclude that inattention can partly be explained by sensory perceptual limitations that can possibly be ameliorated through noise exposure. PMID:26858679
Dewhurst, Stephen A; Knott, Lauren M
2010-12-01
Five experiments investigated the encoding-retrieval match in recognition memory by manipulating read and generate conditions at study and at test. Experiments 1A and 1B confirmed previous findings that reinstating encoding operations at test enhances recognition accuracy in a within-groups design but reduces recognition accuracy in a between-groups design. Experiment 2A showed that generating from anagrams at study and at test enhanced recognition accuracy even when study and test items were generated from different anagrams. Experiment 2B showed that switching from one generation task at study (e.g., anagram solution) to a different generation task at test (e.g., fragment completion) eliminated this recognition advantage. Experiment 3 showed that the recognition advantage found in Experiment 1A is reliably present up to 1 week after study. The findings are consistent with theories of memory that emphasize the importance of the match between encoding and retrieval operations.
Jurado-Berbel, Patricia; Costa-Miserachs, David; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Portell-Cortés, Isabel
2010-02-11
The present work examined whether post-training systemic epinephrine (EPI) is able to modulate short-term (3h) and long-term (24 h and 48 h) memory of standard object recognition, as well as long-term (24 h) memory of separate "what" (object identity) and "where" (object location) components of object recognition. Although object recognition training is associated to low arousal levels, all the animals received habituation to the training box in order to further reduce emotional arousal. Post-training EPI improved long-term (24 h and 48 h), but not short-term (3 h), memory in the standard object recognition task, as well as 24 h memory for both object identity and object location. These data indicate that post-training epinephrine: (1) facilitates long-term memory for standard object recognition; (2) exerts separate facilitatory effects on "what" (object identity) and "where" (object location) components of object recognition; and (3) is capable of improving memory for a low arousing task even in highly habituated rats.
Pope, Sarah M; Russell, Jamie L; Hopkins, William D
2015-01-01
Imitation recognition provides a viable platform from which advanced social cognitive skills may develop. Despite evidence that non-human primates are capable of imitation recognition, how this ability is related to social cognitive skills is unknown. In this study, we compared imitation recognition performance, as indicated by the production of testing behaviors, with performance on a series of tasks that assess social and physical cognition in 49 chimpanzees. In the initial analyses, we found that males were more responsive than females to being imitated and engaged in significantly greater behavior repetitions and testing sequences. We also found that subjects who consistently recognized being imitated performed better on social but not physical cognitive tasks, as measured by the Primate Cognitive Test Battery. These findings suggest that the neural constructs underlying imitation recognition are likely associated with or among those underlying more general socio-communicative abilities in chimpanzees. Implications regarding how imitation recognition may facilitate other social cognitive processes, such as mirror self-recognition, are discussed.
Pope, Sarah M.; Russell, Jamie L.; Hopkins, William D.
2015-01-01
Imitation recognition provides a viable platform from which advanced social cognitive skills may develop. Despite evidence that non-human primates are capable of imitation recognition, how this ability is related to social cognitive skills is unknown. In this study, we compared imitation recognition performance, as indicated by the production of testing behaviors, with performance on a series of tasks that assess social and physical cognition in 49 chimpanzees. In the initial analyses, we found that males were more responsive than females to being imitated and engaged in significantly greater behavior repetitions and testing sequences. We also found that subjects who consistently recognized being imitated performed better on social but not physical cognitive tasks, as measured by the Primate Cognitive Test Battery. These findings suggest that the neural constructs underlying imitation recognition are likely associated with or among those underlying more general socio-communicative abilities in chimpanzees. Implications regarding how imitation recognition may facilitate other social cognitive processes, such as mirror self-recognition, are discussed. PMID:25767454
Speaker recognition with temporal cues in acoustic and electric hearing
NASA Astrophysics Data System (ADS)
Vongphoe, Michael; Zeng, Fan-Gang
2005-08-01
Natural spoken language processing includes not only speech recognition but also identification of the speaker's gender, age, emotional, and social status. Our purpose in this study is to evaluate whether temporal cues are sufficient to support both speech and speaker recognition. Ten cochlear-implant and six normal-hearing subjects were presented with vowel tokens spoken by three men, three women, two boys, and two girls. In one condition, the subject was asked to recognize the vowel. In the other condition, the subject was asked to identify the speaker. Extensive training was provided for the speaker recognition task. Normal-hearing subjects achieved nearly perfect performance in both tasks. Cochlear-implant subjects achieved good performance in vowel recognition but poor performance in speaker recognition. The level of the cochlear implant performance was functionally equivalent to normal performance with eight spectral bands for vowel recognition but only to one band for speaker recognition. These results show a disassociation between speech and speaker recognition with primarily temporal cues, highlighting the limitation of current speech processing strategies in cochlear implants. Several methods, including explicit encoding of fundamental frequency and frequency modulation, are proposed to improve speaker recognition for current cochlear implant users.
Fast neuromimetic object recognition using FPGA outperforms GPU implementations.
Orchard, Garrick; Martin, Jacob G; Vogelstein, R Jacob; Etienne-Cummings, Ralph
2013-08-01
Recognition of objects in still images has traditionally been regarded as a difficult computational problem. Although modern automated methods for visual object recognition have achieved steadily increasing recognition accuracy, even the most advanced computational vision approaches are unable to obtain performance equal to that of humans. This has led to the creation of many biologically inspired models of visual object recognition, among them the hierarchical model and X (HMAX) model. HMAX is traditionally known to achieve high accuracy in visual object recognition tasks at the expense of significant computational complexity. Increasing complexity, in turn, increases computation time, reducing the number of images that can be processed per unit time. In this paper we describe how the computationally intensive and biologically inspired HMAX model for visual object recognition can be modified for implementation on a commercial field-programmable aate Array, specifically the Xilinx Virtex 6 ML605 evaluation board with XC6VLX240T FPGA. We show that with minor modifications to the traditional HMAX model we can perform recognition on images of size 128 × 128 pixels at a rate of 190 images per second with a less than 1% loss in recognition accuracy in both binary and multiclass visual object recognition tasks.
The word-frequency paradox for recall/recognition occurs for pictures.
Karlsen, Paul Johan; Snodgrass, Joan Gay
2004-08-01
A yes-no recognition task and two recall tasks were conducted using pictures of high and low familiarity ratings. Picture familiarity had analogous effects to word frequency, and replicated the word-frequency paradox in recall and recognition. Low-familiarity pictures were more recognizable than high-familiarity pictures, pure lists of high-familiarity pictures were more recallable than pure lists of low-familiarity pictures, and there was no effect of familiarity for mixed lists. These results are consistent with the predictions of the Search of Associative Memory (SAM) model.
Emotion Recognition in Frontotemporal Dementia and Alzheimer's Disease: A New Film-Based Assessment
Goodkind, Madeleine S.; Sturm, Virginia E.; Ascher, Elizabeth A.; Shdo, Suzanne M.; Miller, Bruce L.; Rankin, Katherine P.; Levenson, Robert W.
2015-01-01
Deficits in recognizing others' emotions are reported in many psychiatric and neurological disorders, including autism, schizophrenia, behavioral variant frontotemporal dementia (bvFTD) and Alzheimer's disease (AD). Most previous emotion recognition studies have required participants to identify emotional expressions in photographs. This type of assessment differs from real-world emotion recognition in important ways: Images are static rather than dynamic, include only 1 modality of emotional information (i.e., visual information), and are presented absent a social context. Additionally, existing emotion recognition batteries typically include multiple negative emotions, but only 1 positive emotion (i.e., happiness) and no self-conscious emotions (e.g., embarrassment). We present initial results using a new task for assessing emotion recognition that was developed to address these limitations. In this task, respondents view a series of short film clips and are asked to identify the main characters' emotions. The task assesses multiple negative, positive, and self-conscious emotions based on information that is multimodal, dynamic, and socially embedded. We evaluate this approach in a sample of patients with bvFTD, AD, and normal controls. Results indicate that patients with bvFTD have emotion recognition deficits in all 3 categories of emotion compared to the other groups. These deficits were especially pronounced for negative and self-conscious emotions. Emotion recognition in this sample of patients with AD was indistinguishable from controls. These findings underscore the utility of this approach to assessing emotion recognition and suggest that previous findings that recognition of positive emotion was preserved in dementia patients may have resulted from the limited sampling of positive emotion in traditional tests. PMID:26010574
Kliemann, Dorit; Rosenblau, Gabriela; Bölte, Sven; Heekeren, Hauke R.; Dziobek, Isabel
2013-01-01
Recognizing others' emotional states is crucial for effective social interaction. While most facial emotion recognition tasks use explicit prompts that trigger consciously controlled processing, emotional faces are almost exclusively processed implicitly in real life. Recent attempts in social cognition suggest a dual process perspective, whereby explicit and implicit processes largely operate independently. However, due to differences in methodology the direct comparison of implicit and explicit social cognition has remained a challenge. Here, we introduce a new tool to comparably measure implicit and explicit processing aspects comprising basic and complex emotions in facial expressions. We developed two video-based tasks with similar answer formats to assess performance in respective facial emotion recognition processes: Face Puzzle, implicit and explicit. To assess the tasks' sensitivity to atypical social cognition and to infer interrelationship patterns between explicit and implicit processes in typical and atypical development, we included healthy adults (NT, n = 24) and adults with autism spectrum disorder (ASD, n = 24). Item analyses yielded good reliability of the new tasks. Group-specific results indicated sensitivity to subtle social impairments in high-functioning ASD. Correlation analyses with established implicit and explicit socio-cognitive measures were further in favor of the tasks' external validity. Between group comparisons provide first hints of differential relations between implicit and explicit aspects of facial emotion recognition processes in healthy compared to ASD participants. In addition, an increased magnitude of between group differences in the implicit task was found for a speed-accuracy composite measure. The new Face Puzzle tool thus provides two new tasks to separately assess explicit and implicit social functioning, for instance, to measure subtle impairments as well as potential improvements due to social cognitive interventions. PMID:23805122
Bidirectional Modulation of Recognition Memory
Ho, Jonathan W.; Poeta, Devon L.; Jacobson, Tara K.; Zolnik, Timothy A.; Neske, Garrett T.; Connors, Barry W.
2015-01-01
Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects. For example, animals and humans with perirhinal damage are unable to distinguish familiar from novel objects in recognition memory tasks. In the normal brain, perirhinal neurons respond to novelty and familiarity by increasing or decreasing firing rates. Recent work also implicates oscillatory activity in the low-beta and low-gamma frequency bands in sensory detection, perception, and recognition. Using optogenetic methods in a spontaneous object exploration (SOR) task, we altered recognition memory performance in rats. In the SOR task, normal rats preferentially explore novel images over familiar ones. We modulated exploratory behavior in this task by optically stimulating channelrhodopsin-expressing perirhinal neurons at various frequencies while rats looked at novel or familiar 2D images. Stimulation at 30–40 Hz during looking caused rats to treat a familiar image as if it were novel by increasing time looking at the image. Stimulation at 30–40 Hz was not effective in increasing exploration of novel images. Stimulation at 10–15 Hz caused animals to treat a novel image as familiar by decreasing time looking at the image, but did not affect looking times for images that were already familiar. We conclude that optical stimulation of PER at different frequencies can alter visual recognition memory bidirectionally. SIGNIFICANCE STATEMENT Recognition of novelty and familiarity are important for learning, memory, and decision making. Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects, but how novelty and familiarity are encoded and transmitted in the brain is not known. Perirhinal neurons respond to novelty and familiarity by changing firing rates, but recent work suggests that brain oscillations may also be important for recognition. In this study, we showed that stimulation of the PER could increase or decrease exploration of novel and familiar images depending on the frequency of stimulation. Our findings suggest that optical stimulation of PER at specific frequencies can predictably alter recognition memory. PMID:26424881
Fast and accurate face recognition based on image compression
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2017-05-01
Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.
Li, Alexander D. Q. [Pullman, WA; Wang, Wei [Pullman, WA
2007-07-03
Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.
Li, Alexander D. Q. [Pullman, WA; Wang, Wei [Pullman, WA
2009-07-07
Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.
NASA Technical Reports Server (NTRS)
Baskaran, Subbiah; Ramachandran, Narayanan; Noever, David
1998-01-01
The use of probabilistic (PNN) and multilayer feed forward (MLFNN) neural networks are investigated for calibration of multi-hole pressure probes and the prediction of associated flow angularity patterns in test flow fields. Both types of networks are studied in detail for their calibration and prediction characteristics. The current formalism can be applied to any multi-hole probe, however the test results for the most commonly used five-hole Cone and Prism probe types alone are reported in this article.
Development and Testing of Prototype Commercial Gasifier Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelepouga, Serguei; Moery, Nathan; Wu, Mengbai
This report presents the results of the sensor development and testing at the Wabash River gasifier. The project work was initiated with modification of the sensor software (Task 2) to enable real time temperature data acquisition, and to process and provide the obtained gasifier temperature information to the gasifier operators. The software modifications were conducted by the North Carolina State University (NCSU) researchers. The modified software was tested at the Gas Technology Institute (GTI) combustion laboratory to assess the temperature recognition algorithm accuracy and repeatability. Task 3 was focused on the sensor hardware modifications needed to improve reliability of themore » sensor system. NCSU conducted numerical modeling of the sensor probe’s purging flow. Based on the modeling results the probe purging system was redesigned to prevent carbon particulates deposition on the probe’s sapphire window. The modified design was evaluated and approved by the Wabash representative. The modified gasifier sensor was built and installed at the Wabash River gasifier on May 1 2014. (Task 4) The sensor was tested from the startup of the gasifier on May 5, 2015 until the planned autumn gasifier outage starting in the beginning of October, 2015. (Task 5) The project team successfully demonstrated the Gasifier Sensor system’s ability to monitor gasifier temperature while maintaining unobstructed optical access for six months without any maintenance. The sensor examination upon completion of the trial revealed that the system did not sustain any damage.« less
Kornrumpf, Benthe; Sommer, Werner
2015-09-01
Due to capacity limitation, visual attention must be focused to a limited region of the visual field. Nevertheless, it is assumed that the size of that region may vary with task demands. We aimed to obtain direct evidence for the modulation of visuospatial attention as a function of foveal and parafoveal task load. Participants were required to fixate the center word of word triplets. In separate task blocks, either just the fixated word or both the fixated and the parafoveal word to the right should be semantically classified. The spatiotemporal distribution of attention was assessed with task-irrelevant probes flashed briefly at center or parafoveal positions, during or in between word presentation trials. The N1 component of the ERP elicited by intertrial probes at possible target positions increased with task demands within a block. These results suggest the recruitment of additional attentional resources rather than a redistribution of a fixed resource pool, which persists across trials. © 2015 Society for Psychophysiological Research.
ERIC Educational Resources Information Center
Rojahn, Johannes; And Others
1995-01-01
This literature review discusses 21 studies on facial emotion recognition by persons with mental retardation in terms of methodological characteristics, stimulus material, salient variables and their relation to recognition tasks, and emotion recognition deficits in mental retardation. A table provides comparative data on all 21 studies. (DB)
Thermal-to-visible face recognition using partial least squares.
Hu, Shuowen; Choi, Jonghyun; Chan, Alex L; Schwartz, William Robson
2015-03-01
Although visible face recognition has been an active area of research for several decades, cross-modal face recognition has only been explored by the biometrics community relatively recently. Thermal-to-visible face recognition is one of the most difficult cross-modal face recognition challenges, because of the difference in phenomenology between the thermal and visible imaging modalities. We address the cross-modal recognition problem using a partial least squares (PLS) regression-based approach consisting of preprocessing, feature extraction, and PLS model building. The preprocessing and feature extraction stages are designed to reduce the modality gap between the thermal and visible facial signatures, and facilitate the subsequent one-vs-all PLS-based model building. We incorporate multi-modal information into the PLS model building stage to enhance cross-modal recognition. The performance of the proposed recognition algorithm is evaluated on three challenging datasets containing visible and thermal imagery acquired under different experimental scenarios: time-lapse, physical tasks, mental tasks, and subject-to-camera range. These scenarios represent difficult challenges relevant to real-world applications. We demonstrate that the proposed method performs robustly for the examined scenarios.
Visual memory in unilateral spatial neglect: immediate recall versus delayed recognition.
Moreh, Elior; Malkinson, Tal Seidel; Zohary, Ehud; Soroker, Nachum
2014-09-01
Patients with unilateral spatial neglect (USN) often show impaired performance in spatial working memory tasks, apart from the difficulty retrieving "left-sided" spatial data from long-term memory, shown in the "piazza effect" by Bisiach and colleagues. This study's aim was to compare the effect of the spatial position of a visual object on immediate and delayed memory performance in USN patients. Specifically, immediate verbal recall performance, tested using a simultaneous presentation of four visual objects in four quadrants, was compared with memory in a later-provided recognition task, in which objects were individually shown at the screen center. Unlike healthy controls, USN patients showed a left-side disadvantage and a vertical bias in the immediate free recall task (69% vs. 42% recall for right- and left-sided objects, respectively). In the recognition task, the patients correctly recognized half of "old" items, and their correct rejection rate was 95.5%. Importantly, when the analysis focused on previously recalled items (in the immediate task), no statistically significant difference was found in the delayed recognition of objects according to their original quadrant of presentation. Furthermore, USN patients were able to recollect the correct original location of the recognized objects in 60% of the cases, well beyond chance level. This suggests that the memory trace formed in these cases was not only semantic but also contained a visuospatial tag. Finally, successful recognition of objects missed in recall trials points to formation of memory traces for neglected contralesional objects, which may become accessible to retrieval processes in explicit memory.
Optimizing estimation of hemispheric dominance for language using magnetic source imaging
Passaro, Antony D.; Rezaie, Roozbeh; Moser, Dana C.; Li, Zhimin; Dias, Nadeeka; Papanicolaou, Andrew C.
2011-01-01
The efficacy of magnetoencephalography (MEG) as an alternative to invasive methods for investigating the cortical representation of language has been explored in several studies. Recently, studies comparing MEG to the gold standard Wada procedure have found inconsistent and often less-than accurate estimates of laterality across various MEG studies. Here we attempted to address this issue among normal right-handed adults (N=12) by supplementing a well-established MEG protocol involving word recognition and the single dipole method with a sentence comprehension task and a beamformer approach localizing neural oscillations. Beamformer analysis of word recognition and sentence comprehension tasks revealed a desynchronization in the 10–18 Hz range, localized to the temporo-parietal cortices. Inspection of individual profiles of localized desynchronization (10–18 Hz) revealed left hemispheric dominance in 91.7% and 83.3% of individuals during the word recognition and sentence comprehension tasks, respectively. In contrast, single dipole analysis yielded lower estimates, such that activity in temporal language regions was left-lateralized in 66.7% and 58.3% of individuals during word recognition and sentence comprehension, respectively. The results obtained from the word recognition task and localization of oscillatory activity using a beamformer appear to be in line with general estimates of left hemispheric dominance for language in normal right-handed individuals. Furthermore, the current findings support the growing notion that changes in neural oscillations underlie critical components of linguistic processing. PMID:21890118
The effects of sleep deprivation on item and associative recognition memory.
Ratcliff, Roger; Van Dongen, Hans P A
2018-02-01
Sleep deprivation adversely affects the ability to perform cognitive tasks, but theories range from predicting an overall decline in cognitive functioning because of reduced stability in attentional networks to specific deficits in various cognitive domains or processes. We measured the effects of sleep deprivation on two memory tasks, item recognition ("was this word in the list studied") and associative recognition ("were these two words studied in the same pair"). These tasks test memory for information encoded a few minutes earlier and so do not address effects of sleep deprivation on working memory or consolidation after sleep. A diffusion model was used to decompose accuracy and response time distributions to produce parameter estimates of components of cognitive processing. The model assumes that over time, noisy evidence from the task stimulus is accumulated to one of two decision criteria, and parameters governing this process are extracted and interpreted in terms of distinct cognitive processes. Results showed that sleep deprivation reduces drift rate (evidence used in the decision process), with little effect on the other components of the decision process. These results contrast with the effects of aging, which show little decline in item recognition but large declines in associative recognition. The results suggest that sleep deprivation degrades the quality of information stored in memory and that this may occur through degraded attentional processes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
An information-processing model of three cortical regions: evidence in episodic memory retrieval.
Sohn, Myeong-Ho; Goode, Adam; Stenger, V Andrew; Jung, Kwan-Jin; Carter, Cameron S; Anderson, John R
2005-03-01
ACT-R (Anderson, J.R., et al., 2003. An information-processing model of the BOLD response in symbol manipulation tasks. Psychon. Bull. Rev. 10, 241-261) relates the inferior dorso-lateral prefrontal cortex to a retrieval buffer that holds information retrieved from memory and the posterior parietal cortex to an imaginal buffer that holds problem representations. Because the number of changes in a problem representation is not necessarily correlated with retrieval difficulties, it is possible to dissociate prefrontal-parietal activations. In two fMRI experiments, we examined this dissociation using the fan effect paradigm. Experiment 1 compared a recognition task, in which representation requirement remains the same regardless of retrieval difficulty, with a recall task, in which both representation and retrieval loads increase with retrieval difficulty. In the recognition task, the prefrontal activation revealed a fan effect but not the parietal activation. In the recall task, both regions revealed fan effects. In Experiment 2, we compared visually presented stimuli and aurally presented stimuli using the recognition task. While only the prefrontal region revealed the fan effect, the activation patterns in the prefrontal and the parietal region did not differ by stimulus presentation modality. In general, these results provide support for the prefrontal-parietal dissociation in terms of retrieval and representation and the modality-independent nature of the information processed by these regions. Using ACT-R, we also provide computational models that explain patterns of fMRI responses in these two areas during recognition and recall.
Recognition and Posing of Emotional Expressions by Abused Children and Their Mothers.
ERIC Educational Resources Information Center
Camras, Linda A.; And Others
1988-01-01
A total of 20 abused and 20 nonabused pairs of children of three-seven years and their mothers participated in a facial expression posing task and a facial expression recognition task. Findings suggest that abused children may not observe as often as nonabused children do the easily interpreted voluntary displays of emotion by their mothers. (RH)
ERIC Educational Resources Information Center
Moldovan, Cornelia D.; Sanchez-Casas, Rosa; Demestre, Josep; Ferre, Pilar
2012-01-01
Previous evidence has shown that word pairs that are either related in form (e.g., "ruc-berro"; donkey-watercress) or very closely semantically related (e.g., "ruc-caballo", donkey-horse) produce interference effects in a translation recognition task (Ferre et al., 2006; Guasch et al., 2008). However, these effects are not…
ERIC Educational Resources Information Center
Kambara, Toshimune; Tsukiura, Takashi; Shigemune, Yayoi; Kanno, Akitake; Nouchi, Rui; Yomogida, Yukihito; Kawashima, Ryuta
2013-01-01
This study examined behavioral changes in 15-day learning of word-picture (WP) and word-sound (WS) associations, using meaningless stimuli. Subjects performed a learning task and two recognition tasks under the WP and WS conditions every day for 15 days. Two main findings emerged from this study. First, behavioral data of recognition accuracy and…
ERIC Educational Resources Information Center
Yang, Mu; Lewis, Freeman C.; Sarvi, Michael S.; Foley, Gillian M.; Crawley, Jacqueline N.
2015-01-01
Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/-) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2…
Perspective taking in older age revisited: a motivational perspective.
Zhang, Xin; Fung, Helene H; Stanley, Jennifer T; Isaacowitz, Derek M; Ho, Man Yee
2013-10-01
How perspective-taking ability changes with age (i.e., whether older adults are better at understanding others' behaviors and intentions and show greater empathy to others or not) is not clear, with prior empirical findings on this phenomenon yielding mixed results. In a series of experiments, we investigated the phenomenon from a motivational perspective. Perceived closeness between participants and the experimenter (Study 1) or the target in an emotion recognition task (Study 2) was manipulated to examine whether the closeness could influence participants' performance in faux pas recognition (Study 1) and emotion recognition (Study 2). It was found that the well-documented negative age effect (i.e., older adults performed worse than younger adults in faux pas and emotion recognition tasks) was only replicated in the control condition for both tasks. When closeness was experimentally increased, older adults enhanced their performance, and they now performed at a comparable level as younger adults. Findings from the 2 experiments suggest that the reported poorer performance of older adults in perspective-taking tasks might be attributable to a lack of motivation instead of ability to perform in laboratory settings. With the presence of strong motivation, older adults have the ability to perform equally well as younger adults.
How few and far between? Examining the effects of probe rate on self-reported mind wandering
Seli, Paul; Carriere, Jonathan S. A.; Levene, Merrick; Smilek, Daniel
2013-01-01
We examined whether the temporal rate at which thought probes are presented affects the likelihood that people will report periods of mind wandering. To evaluate this possibility, we had participants complete a sustained-attention task (the Metronome Response Task; MRT) during which we intermittently presented thought probes. Critically, we varied the average time between probes (i.e., probe rate) across participants, allowing us to examine the relation between probe rate and mind-wandering rate. We observed a positive relation between these variables, indicating that people are more likely to report mind wandering as the time between probes increases. We discuss the methodological implications of this finding in the context of the mind-wandering literature, and suggest that researchers include a range of probe rates in future work to provide more insight into this methodological issue. PMID:23882239
Face-Name Association Learning and Brain Structural Substrates in Alcoholism
Pitel, Anne-Lise; Chanraud, Sandra; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V.
2011-01-01
Background Associative learning is required for face-name association and is impaired in alcoholism, but the cognitive processes and brain structural components underlying this deficit remain unclear. It is also unknown whether prompting alcoholics to implement a deep level of processing during face-name encoding would enhance performance. Methods Abstinent alcoholics and controls performed a levels-of-processing face-name learning task. Participants indicated whether the face was that of an honest person (deep encoding) or that of a man (shallow encoding). Retrieval was examined using an associative (face-name) recognition task and a single-item (face or name only) recognition task. Participants also underwent a 3T structural MRI. Results Compared with controls, alcoholics had poorer associative and single-item recognition, each impaired to the same extent. Level of processing at encoding had little effect on recognition performance but affected reaction time. Correlations with brain volumes were generally modest and based primarily on reaction time in alcoholics, where the deeper the processing at encoding, the more restricted the correlations with brain volumes. In alcoholics, longer control task reaction times correlated modestly with volumes across several anterior to posterior brain regions; shallow encoding correlated with calcarine and striatal volumes; deep encoding correlated with precuneus and parietal volumes; associative recognition RT correlated with cerebellar volumes. In controls, poorer associative recognition with deep encoding correlated significantly with smaller volumes of frontal and striatal structures. Conclusions Despite prompting, alcoholics did not take advantage of encoding memoranda at a deep level to enhance face-name recognition accuracy. Nonetheless, conditions of deeper encoding resulted in faster reaction times and more specific relations with regional brain volumes than did shallow encoding. The normal relation between associative recognition and corticostriatal volumes was not present in alcoholics. Rather, their speeded reaction time occurred at the expense of accuracy and was related most robustly to cerebellar volumes. PMID:22509954
Raymond, Jane E; O'Brien, Jennifer L
2009-08-01
Learning to associate the probability and value of behavioral outcomes with specific stimuli (value learning) is essential for rational decision making. However, in demanding cognitive conditions, access to learned values might be constrained by limited attentional capacity. We measured recognition of briefly presented faces seen previously in a value-learning task involving monetary wins and losses; the recognition task was performed both with and without constraints on available attention. Regardless of available attention, recognition was substantially enhanced for motivationally salient stimuli (i.e., stimuli highly predictive of outcomes), compared with equally familiar stimuli that had weak or no motivational salience, and this effect was found regardless of valence (win or loss). However, when attention was constrained (because stimuli were presented during an attentional blink, AB), valence determined recognition; win-associated faces showed no AB, but all other faces showed large ABs. Motivational salience acts independently of attention to modulate simple perceptual decisions, but when attention is limited, visual processing is biased in favor of reward-associated stimuli.
Face recognition and description abilities in people with mild intellectual disabilities.
Gawrylowicz, Julie; Gabbert, Fiona; Carson, Derek; Lindsay, William R; Hancock, Peter J B
2013-09-01
People with intellectual disabilities (ID) are as likely as the general population to find themselves in the situation of having to identify and/or describe a perpetrator's face to the police. However, limited verbal and memory abilities in people with ID might prevent them to engage in standard police procedures. Two experiments examined face recognition and description abilities in people with mild intellectual disabilities (mID) and compared their performance with that of people without ID. Experiment 1 used three old/new face recognition tasks. Experiment 2 consisted of two face description tasks, during which participants had to verbally describe faces from memory and with the target in view. Participants with mID performed significantly poorer on both recognition and recall tasks than control participants. However, their group performance was better than chance and they showed variability in performance depending on the measures introduced. The practical implications of these findings in forensic settings are discussed. © 2013 John Wiley & Sons Ltd.
Recognition Imaging with a DNA Aptamer
Lin, Liyun; Wang, Hongda; Liu, Yan; Yan, Hao; Lindsay, Stuart
2006-01-01
We have used a DNA-aptamer tethered to an atomic force microscope probe to carry out recognition imaging of IgE molecules attached to a mica substrate. The recognition was efficient (∼90%) and specific, being blocked by injection of IgE molecules in solution, and not being interfered with by high concentrations of a second protein. The signal/noise ratio of the recognition signal was better than that obtained with antibodies, despite the fact that the average force required to break the aptamer-protein bonds was somewhat smaller. PMID:16513776
Discourse Memory and Reading Comprehension Skill
ERIC Educational Resources Information Center
Perfetti, Charles A.; Goldman, Susan R.
1976-01-01
A study is reported in which short-term memory capacity, estimated by a probe digit task, and memory for structured language, measured by a probe discourse task, were investigated in an experiment with third and fifth grade IQ-matched children representing two levels of reading comprehension skill. (Author/RM)
Reverse control for humanoid robot task recognition.
Hak, Sovannara; Mansard, Nicolas; Stasse, Olivier; Laumond, Jean Paul
2012-12-01
Efficient methods to perform motion recognition have been developed using statistical tools. Those methods rely on primitive learning in a suitable space, for example, the latent space of the joint angle and/or adequate task spaces. Learned primitives are often sequential: A motion is segmented according to the time axis. When working with a humanoid robot, a motion can be decomposed into parallel subtasks. For example, in a waiter scenario, the robot has to keep some plates horizontal with one of its arms while placing a plate on the table with its free hand. Recognition can thus not be limited to one task per consecutive segment of time. The method presented in this paper takes advantage of the knowledge of what tasks the robot is able to do and how the motion is generated from this set of known controllers, to perform a reverse engineering of an observed motion. This analysis is intended to recognize parallel tasks that have been used to generate a motion. The method relies on the task-function formalism and the projection operation into the null space of a task to decouple the controllers. The approach is successfully applied on a real robot to disambiguate motion in different scenarios where two motions look similar but have different purposes.
Facial Expression Influences Face Identity Recognition During the Attentional Blink
2014-01-01
Emotional stimuli (e.g., negative facial expressions) enjoy prioritized memory access when task relevant, consistent with their ability to capture attention. Whether emotional expression also impacts on memory access when task-irrelevant is important for arbitrating between feature-based and object-based attentional capture. Here, the authors address this question in 3 experiments using an attentional blink task with face photographs as first and second target (T1, T2). They demonstrate reduced neutral T2 identity recognition after angry or happy T1 expression, compared to neutral T1, and this supports attentional capture by a task-irrelevant feature. Crucially, after neutral T1, T2 identity recognition was enhanced and not suppressed when T2 was angry—suggesting that attentional capture by this task-irrelevant feature may be object-based and not feature-based. As an unexpected finding, both angry and happy facial expressions suppress memory access for competing objects, but only angry facial expression enjoyed privileged memory access. This could imply that these 2 processes are relatively independent from one another. PMID:25286076
Facial expression influences face identity recognition during the attentional blink.
Bach, Dominik R; Schmidt-Daffy, Martin; Dolan, Raymond J
2014-12-01
Emotional stimuli (e.g., negative facial expressions) enjoy prioritized memory access when task relevant, consistent with their ability to capture attention. Whether emotional expression also impacts on memory access when task-irrelevant is important for arbitrating between feature-based and object-based attentional capture. Here, the authors address this question in 3 experiments using an attentional blink task with face photographs as first and second target (T1, T2). They demonstrate reduced neutral T2 identity recognition after angry or happy T1 expression, compared to neutral T1, and this supports attentional capture by a task-irrelevant feature. Crucially, after neutral T1, T2 identity recognition was enhanced and not suppressed when T2 was angry-suggesting that attentional capture by this task-irrelevant feature may be object-based and not feature-based. As an unexpected finding, both angry and happy facial expressions suppress memory access for competing objects, but only angry facial expression enjoyed privileged memory access. This could imply that these 2 processes are relatively independent from one another.
Set-relevance determines the impact of distractors on episodic memory retrieval.
Kwok, Sze Chai; Shallice, Tim; Macaluso, Emiliano
2014-09-01
We investigated the interplay between stimulus-driven attention and memory retrieval with a novel interference paradigm that engaged both systems concurrently on each trial. Participants encoded a 45-min movie on Day 1 and, on Day 2, performed a temporal order judgment task during fMRI. Each retrieval trial comprised three images presented sequentially, and the task required participants to judge the temporal order of the first and the last images ("memory probes") while ignoring the second image, which was task irrelevant ("attention distractor"). We manipulated the content relatedness and the temporal proximity between the distractor and the memory probes, as well as the temporal distance between two probes. Behaviorally, short temporal distances between the probes led to reduced retrieval performance. Distractors that at encoding were temporally close to the first probe image reduced these costs, specifically when the distractor was content unrelated to the memory probes. The imaging results associated the distractor probe temporal proximity with activation of the right ventral attention network. By contrast, the precuneus was activated for high-content relatedness between distractors and probes and in trials including a short distance between the two memory probes. The engagement of the right ventral attention network by specific types of distractors suggests a link between stimulus-driven attention control and episodic memory retrieval, whereas the activation pattern of the precuneus implicates this region in memory search within knowledge/content-based hierarchies.
Feng, Guangxue; Yuan, Youyong; Fang, Hu; Zhang, Ruoyu; Xing, Bengang; Zhang, Guanxin; Zhang, Deqing; Liu, Bin
2015-08-11
We report the design and synthesis of a red fluorescent AIE light-up probe for selective recognition, naked-eye detection, and image-guided photodynamic killing of Gram-positive bacteria, including vancomycin-resistant Enterococcus strains.
Biometric recognition via texture features of eye movement trajectories in a visual searching task.
Li, Chunyong; Xue, Jiguo; Quan, Cheng; Yue, Jingwei; Zhang, Chenggang
2018-01-01
Biometric recognition technology based on eye-movement dynamics has been in development for more than ten years. Different visual tasks, feature extraction and feature recognition methods are proposed to improve the performance of eye movement biometric system. However, the correct identification and verification rates, especially in long-term experiments, as well as the effects of visual tasks and eye trackers' temporal and spatial resolution are still the foremost considerations in eye movement biometrics. With a focus on these issues, we proposed a new visual searching task for eye movement data collection and a new class of eye movement features for biometric recognition. In order to demonstrate the improvement of this visual searching task being used in eye movement biometrics, three other eye movement feature extraction methods were also tested on our eye movement datasets. Compared with the original results, all three methods yielded better results as expected. In addition, the biometric performance of these four feature extraction methods was also compared using the equal error rate (EER) and Rank-1 identification rate (Rank-1 IR), and the texture features introduced in this paper were ultimately shown to offer some advantages with regard to long-term stability and robustness over time and spatial precision. Finally, the results of different combinations of these methods with a score-level fusion method indicated that multi-biometric methods perform better in most cases.
Biometric recognition via texture features of eye movement trajectories in a visual searching task
Li, Chunyong; Xue, Jiguo; Quan, Cheng; Yue, Jingwei
2018-01-01
Biometric recognition technology based on eye-movement dynamics has been in development for more than ten years. Different visual tasks, feature extraction and feature recognition methods are proposed to improve the performance of eye movement biometric system. However, the correct identification and verification rates, especially in long-term experiments, as well as the effects of visual tasks and eye trackers’ temporal and spatial resolution are still the foremost considerations in eye movement biometrics. With a focus on these issues, we proposed a new visual searching task for eye movement data collection and a new class of eye movement features for biometric recognition. In order to demonstrate the improvement of this visual searching task being used in eye movement biometrics, three other eye movement feature extraction methods were also tested on our eye movement datasets. Compared with the original results, all three methods yielded better results as expected. In addition, the biometric performance of these four feature extraction methods was also compared using the equal error rate (EER) and Rank-1 identification rate (Rank-1 IR), and the texture features introduced in this paper were ultimately shown to offer some advantages with regard to long-term stability and robustness over time and spatial precision. Finally, the results of different combinations of these methods with a score-level fusion method indicated that multi-biometric methods perform better in most cases. PMID:29617383
Algi, Melek Pamuk
2016-03-01
In this study, the synthesis of 7-((Hydroxyimino)methyl)-1,10-phenanthroline-4-carbaldehyde oxime (1) in two steps starting from 4,7-dimethyl-1,10-phenanthroline (2) is reported. It is found that compound 1 can be used as a fluorogenic probe for the detection of hypochlorite ion in aqueous solution. NMR and mass spectral analysis indicate that probe 1 undergoes a chemical transformation through its oxime units upon treatment with hypochlorite, which results in a remarkable enhancement of the emission intensity. Also, metal ion recognition properties of probe 1 is investigated. It is noted that compound 1 is responsive to Zn(2+), Cd(2+), Ni(2+) and Cu(2+) metal ions, which reduced the emission intensity under identical conditions. Graphical Abstract The design, synthesis and properties of a new fluorescent hypochlorite probe is described. It is found that probe 1 immediately undergoes an oxidation reaction with NaClO through its oxime units in 0.1 M Na2CO3-NaHCO3 buffer containing DMF (pH = 9.0, 30:1 v/v) at room temperature, which resulted in a remarkable enhancement of the emission intensity. It is noteworthy that this novel probe 1 is highly selective to hypochlorite ion when compared to some other ROS and anions. On the other hand, probe 1 also induces turn-off fluorogenic responses to metal ions such as Zn(2+), Cd(2+), Ni(2+) and Cu(2+) ions under identical conditions.
Age and measurement time-of-day effects on speech recognition in noise.
Veneman, Carrie E; Gordon-Salant, Sandra; Matthews, Lois J; Dubno, Judy R
2013-01-01
The purpose of this study was to determine the effect of measurement time of day on speech recognition in noise and the extent to which time-of-day effects differ with age. Older adults tend to have more difficulty understanding speech in noise than younger adults, even when hearing is normal. Two possible contributors to this age difference in speech recognition may be measurement time of day and inhibition. Most younger adults are "evening-type," showing peak circadian arousal in the evening, whereas most older adults are "morning-type," with circadian arousal peaking in the morning. Tasks that require inhibition of irrelevant information have been shown to be affected by measurement time of day, with maximum performance attained at one's peak time of day. The authors hypothesized that a change in inhibition will be associated with measurement time of day and therefore affect speech recognition in noise, with better performance in the morning for older adults and in the evening for younger adults. Fifteen younger evening-type adults (20-28 years) and 15 older morning-type adults with normal hearing (66-78 years) listened to the Hearing in Noise Test (HINT) and the Quick Speech in Noise (QuickSIN) test in the morning and evening (peak and off-peak times). Time of day preference was assessed using the Morningness-Eveningness Questionnaire. Sentences and noise were presented binaurally through insert earphones. During morning and evening sessions, participants solved word-association problems within the visual-distraction task (VDT), which was used as an estimate of inhibition. After each session, participants rated perceived mental demand of the tasks using a revised version of the NASA Task Load Index. Younger adults performed significantly better on the speech-in-noise tasks and rated themselves as requiring significantly less mental demand when tested at their peak (evening) than off-peak (morning) time of day. In contrast, time-of-day effects were not observed for the older adults on the speech recognition or rating tasks. Although older adults required significantly more advantageous signal-to-noise ratios than younger adults for equivalent speech-recognition performance, a significantly larger younger versus older age difference in speech recognition was observed in the evening than in the morning. Older adults performed significantly poorer than younger adults on the VDT, but performance was not affected by measurement time of day. VDT performance for misleading distracter items was significantly correlated with HINT and QuickSIN test performance at the peak measurement time of day. Although all participants had normal hearing, speech recognition in noise was significantly poorer for older than younger adults, with larger age-related differences in the evening (an off-peak time for older adults) than in the morning. The significant effect of measurement time of day suggests that this factor may impact the clinical assessment of speech recognition in noise for all individuals. It appears that inhibition, as estimated by a visual distraction task for misleading visual items, is a cognitive mechanism that is related to speech-recognition performance in noise, at least at a listener's peak time of day.
Recent Progress in Fluorescent Imaging Probes
Pak, Yen Leng; Swamy, K. M. K.; Yoon, Juyoung
2015-01-01
Due to the simplicity and low detection limit, especially the bioimaging ability for cells, fluorescence probes serve as unique detection methods. With the aid of molecular recognition and specific organic reactions, research on fluorescent imaging probes has blossomed during the last decade. Especially, reaction based fluorescent probes have been proven to be highly selective for specific analytes. This review highlights our recent progress on fluorescent imaging probes for biologically important species, such as biothiols, reactive oxygen species, reactive nitrogen species, metal ions including Zn2+, Hg2+, Cu2+ and Au3+, and anions including cyanide and adenosine triphosphate (ATP). PMID:26402684
Recent Progress in Fluorescent Imaging Probes.
Pak, Yen Leng; Swamy, K M K; Yoon, Juyoung
2015-09-22
Due to the simplicity and low detection limit, especially the bioimaging ability for cells, fluorescence probes serve as unique detection methods. With the aid of molecular recognition and specific organic reactions, research on fluorescent imaging probes has blossomed during the last decade. Especially, reaction based fluorescent probes have been proven to be highly selective for specific analytes. This review highlights our recent progress on fluorescent imaging probes for biologically important species, such as biothiols, reactive oxygen species, reactive nitrogen species, metal ions including Zn(2+), Hg(2+), Cu(2+) and Au(3+), and anions including cyanide and adenosine triphosphate (ATP).
NASA Astrophysics Data System (ADS)
Wang, Ying; Hu, Yuehua; Wu, Tao; Zhang, Lihua; Liu, Hua; Zhou, Xiaoshun; Shao, Yong
2016-01-01
Removal of a damaged base in DNA produces an abasic site (AP site) nanocavity. If left un-repaired in vivo by the specific enzyme, this nanocavity will result in nucleotide mutation in the following DNA replication. Therefore, selective recognition of AP site nanocavity by small molecules is important for identification of such DNA damage and development of genetic drugs. In this work, we investigate the fluorescence behavior of isoquinoline alkaloids including palmatine (PAL), berberine (BER), epiberberine (EPI), jatrorrhizine (JAT), coptisine (COP), coralyne (COR), worenine (WOR), berberrubine (BEU), sanguinarine (SAN), chelerythrine (CHE), and nitidine (NIT) upon binding with the AP nanocavity. PAL is screened out as the most efficient fluorophore-switched probe to recognize the AP nanocavity over the fully matched DNA. Its fluorescence enhancement occurs for all of the AP nanocavity sequence environments, which has not been achieved by the previously used probes. The bridged π conjugation effect should partially contribute to the AP nanocavity-specific fluorescence, as opposed to the solvent effect. Due to the strong binding with the AP nanocavity, PAL will find wide applications in the DNA damage recognition and sensor development.
ERIC Educational Resources Information Center
Annett, John
An experienced person, in such tasks as sonar detection and recognition, has a considerable superiority over a machine recognition system in auditory pattern recognition. However, people require extensive exposure to auditory patterns before achieving a high level of performance. In an attempt to discover a method of training people to recognize…
The MITLL NIST LRE 2015 Language Recognition System
2016-05-06
The MITLL NIST LRE 2015 Language Recognition System Pedro Torres-Carrasquillo, Najim Dehak*, Elizabeth Godoy, Douglas Reynolds, Fred Richardson...most recent MIT Lincoln Laboratory language recognition system developed for the NIST 2015 Language Recognition Evaluation (LRE). The submission...Task The National Institute of Science and Technology ( NIST ) has conducted formal evaluations of language detection algorithms since 1994. In
Music Recognition in Frontotemporal Lobar Degeneration and Alzheimer Disease
Johnson, Julene K; Chang, Chiung-Chih; Brambati, Simona M; Migliaccio, Raffaella; Gorno-Tempini, Maria Luisa; Miller, Bruce L; Janata, Petr
2013-01-01
Objective To compare music recognition in patients with frontotemporal dementia, semantic dementia, Alzheimer disease, and controls and to evaluate the relationship between music recognition and brain volume. Background Recognition of familiar music depends on several levels of processing. There are few studies about how patients with dementia recognize familiar music. Methods Subjects were administered tasks that assess pitch and melody discrimination, detection of pitch errors in familiar melodies, and naming of familiar melodies. Results There were no group differences on pitch and melody discrimination tasks. However, patients with semantic dementia had considerable difficulty naming familiar melodies and also scored the lowest when asked to identify pitch errors in the same melodies. Naming familiar melodies, but not other music tasks, was strongly related to measures of semantic memory. Voxel-based morphometry analysis of brain MRI showed that difficulty in naming songs was associated with the bilateral temporal lobes and inferior frontal gyrus, whereas difficulty in identifying pitch errors in familiar melodies correlated with primarily the right temporal lobe. Conclusions The results support a view that the anterior temporal lobes play a role in familiar melody recognition, and that musical functions are affected differentially across forms of dementia. PMID:21617528
Visual Word Recognition Across the Adult Lifespan
Cohen-Shikora, Emily R.; Balota, David A.
2016-01-01
The current study examines visual word recognition in a large sample (N = 148) across the adult lifespan and across a large set of stimuli (N = 1187) in three different lexical processing tasks (pronunciation, lexical decision, and animacy judgments). Although the focus of the present study is on the influence of word frequency, a diverse set of other variables are examined as the system ages and acquires more experience with language. Computational models and conceptual theories of visual word recognition and aging make differing predictions for age-related changes in the system. However, these have been difficult to assess because prior studies have produced inconsistent results, possibly due to sample differences, analytic procedures, and/or task-specific processes. The current study confronts these potential differences by using three different tasks, treating age and word variables as continuous, and exploring the influence of individual differences such as vocabulary, vision, and working memory. The primary finding is remarkable stability in the influence of a diverse set of variables on visual word recognition across the adult age spectrum. This pattern is discussed in reference to previous inconsistent findings in the literature and implications for current models of visual word recognition. PMID:27336629
"We all look the same to me": positive emotions eliminate the own-race in face recognition.
Johnson, Kareem J; Fredrickson, Barbara L
2005-11-01
Extrapolating from the broaden-and-build theory, we hypothesized that positive emotion may reduce the own-race bias in facial recognition. In Experiments 1 and 2, Caucasian participants (N = 89) viewed Black and White faces for a recognition task. They viewed videos eliciting joy, fear, or neutrality before the learning (Experiment 1) or testing (Experiment 2) stages of the task. Results reliably supported the hypothesis. Relative to fear or a neutral state, joy experienced before either stage improved recognition of Black faces and significantly reduced the own-race bias. Discussion centers on possible mechanisms for this reduction of the own-race bias, including improvements in holistic processing and promotion of a common in-group identity due to positive emotions.
Emotion recognition in frontotemporal dementia and Alzheimer's disease: A new film-based assessment.
Goodkind, Madeleine S; Sturm, Virginia E; Ascher, Elizabeth A; Shdo, Suzanne M; Miller, Bruce L; Rankin, Katherine P; Levenson, Robert W
2015-08-01
Deficits in recognizing others' emotions are reported in many psychiatric and neurological disorders, including autism, schizophrenia, behavioral variant frontotemporal dementia (bvFTD) and Alzheimer's disease (AD). Most previous emotion recognition studies have required participants to identify emotional expressions in photographs. This type of assessment differs from real-world emotion recognition in important ways: Images are static rather than dynamic, include only 1 modality of emotional information (i.e., visual information), and are presented absent a social context. Additionally, existing emotion recognition batteries typically include multiple negative emotions, but only 1 positive emotion (i.e., happiness) and no self-conscious emotions (e.g., embarrassment). We present initial results using a new task for assessing emotion recognition that was developed to address these limitations. In this task, respondents view a series of short film clips and are asked to identify the main characters' emotions. The task assesses multiple negative, positive, and self-conscious emotions based on information that is multimodal, dynamic, and socially embedded. We evaluate this approach in a sample of patients with bvFTD, AD, and normal controls. Results indicate that patients with bvFTD have emotion recognition deficits in all 3 categories of emotion compared to the other groups. These deficits were especially pronounced for negative and self-conscious emotions. Emotion recognition in this sample of patients with AD was indistinguishable from controls. These findings underscore the utility of this approach to assessing emotion recognition and suggest that previous findings that recognition of positive emotion was preserved in dementia patients may have resulted from the limited sampling of positive emotion in traditional tests. (c) 2015 APA, all rights reserved).
Using GOMS and Bayesian plan recognition to develop recognition models of operator behavior
NASA Astrophysics Data System (ADS)
Zaientz, Jack D.; DeKoven, Elyon; Piegdon, Nicholas; Wood, Scott D.; Huber, Marcus J.
2006-05-01
Trends in combat technology research point to an increasing role for uninhabited vehicles in modern warfare tactics. To support increased span of control over these vehicles human responsibilities need to be transformed from tedious, error-prone and cognition intensive operations into tasks that are more supervisory and manageable, even under intensely stressful conditions. The goal is to move away from only supporting human command of low-level system functions to intention-level human-system dialogue about the operator's tasks and situation. A critical element of this process is developing the means to identify when human operators need automated assistance and to identify what assistance they need. Toward this goal, we are developing an unmanned vehicle operator task recognition system that combines work in human behavior modeling and Bayesian plan recognition. Traditionally, human behavior models have been considered generative, meaning they describe all possible valid behaviors. Basing behavior recognition on models designed for behavior generation can offers advantages in improved model fidelity and reuse. It is not clear, however, how to reconcile the structural differences between behavior recognition and behavior modeling approaches. Our current work demonstrates that by pairing a cognitive psychology derived human behavior modeling approach, GOMS, with a Bayesian plan recognition engine, ASPRN, we can translate a behavior generation model into a recognition model. We will discuss the implications for using human performance models in this manner as well as suggest how this kind of modeling may be used to support the real-time control of multiple, uninhabited battlefield vehicles and other semi-autonomous systems.
ERIC Educational Resources Information Center
Naito, Mika; Suzuki, Toshiko
2011-01-01
This study investigated the development of the ability to reflect on one's personal past and future. A total of 64 4- to 6-year-olds received tasks of delayed self-recognition, source memory, delay of gratification, and a newly developed task of future-oriented action timing. Although children's performance on delayed self-recognition, source…
Method of determining the necessary number of observations for video stream documents recognition
NASA Astrophysics Data System (ADS)
Arlazarov, Vladimir V.; Bulatov, Konstantin; Manzhikov, Temudzhin; Slavin, Oleg; Janiszewski, Igor
2018-04-01
This paper discusses a task of document recognition on a sequence of video frames. In order to optimize the processing speed an estimation is performed of stability of recognition results obtained from several video frames. Considering identity document (Russian internal passport) recognition on a mobile device it is shown that significant decrease is possible of the number of observations necessary for obtaining precise recognition result.
Probing the Topological Properties of Complex Networks Modeling Short Written Texts
Amancio, Diego R.
2015-01-01
In recent years, graph theory has been widely employed to probe several language properties. More specifically, the so-called word adjacency model has been proven useful for tackling several practical problems, especially those relying on textual stylistic analysis. The most common approach to treat texts as networks has simply considered either large pieces of texts or entire books. This approach has certainly worked well—many informative discoveries have been made this way—but it raises an uncomfortable question: could there be important topological patterns in small pieces of texts? To address this problem, the topological properties of subtexts sampled from entire books was probed. Statistical analyses performed on a dataset comprising 50 novels revealed that most of the traditional topological measurements are stable for short subtexts. When the performance of the authorship recognition task was analyzed, it was found that a proper sampling yields a discriminability similar to the one found with full texts. Surprisingly, the support vector machine classification based on the characterization of short texts outperformed the one performed with entire books. These findings suggest that a local topological analysis of large documents might improve its global characterization. Most importantly, it was verified, as a proof of principle, that short texts can be analyzed with the methods and concepts of complex networks. As a consequence, the techniques described here can be extended in a straightforward fashion to analyze texts as time-varying complex networks. PMID:25719799
Cross-modal face recognition using multi-matcher face scores
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2015-05-01
The performance of face recognition can be improved using information fusion of multimodal images and/or multiple algorithms. When multimodal face images are available, cross-modal recognition is meaningful for security and surveillance applications. For example, a probe face is a thermal image (especially at nighttime), while only visible face images are available in the gallery database. Matching a thermal probe face onto the visible gallery faces requires crossmodal matching approaches. A few such studies were implemented in facial feature space with medium recognition performance. In this paper, we propose a cross-modal recognition approach, where multimodal faces are cross-matched in feature space and the recognition performance is enhanced with stereo fusion at image, feature and/or score level. In the proposed scenario, there are two cameras for stereo imaging, two face imagers (visible and thermal images) in each camera, and three recognition algorithms (circular Gaussian filter, face pattern byte, linear discriminant analysis). A score vector is formed with three cross-matched face scores from the aforementioned three algorithms. A classifier (e.g., k-nearest neighbor, support vector machine, binomial logical regression [BLR]) is trained then tested with the score vectors by using 10-fold cross validations. The proposed approach was validated with a multispectral stereo face dataset from 105 subjects. Our experiments show very promising results: ACR (accuracy rate) = 97.84%, FAR (false accept rate) = 0.84% when cross-matching the fused thermal faces onto the fused visible faces by using three face scores and the BLR classifier.
Development of the Ability to Foresee Consequences of Inept Communications.
ERIC Educational Resources Information Center
Johnson, Russell; And Others
This study is an initial investigation of the effects of grade level, item content and type of probe on children's understanding of communicative ineptness. It was hypothesized that children's recognition and avoidance of inept communications would increase as a function of age and that recognition of ineptness would precede the ability to avoid…
NASA Astrophysics Data System (ADS)
Bentaieb, Samia; Ouamri, Abdelaziz; Nait-Ali, Amine; Keche, Mokhtar
2018-01-01
We propose and evaluate a three-dimensional (3D) face recognition approach that applies the speeded up robust feature (SURF) algorithm to the depth representation of shape index map, under real-world conditions, using only a single gallery sample for each subject. First, the 3D scans are preprocessed, then SURF is applied on the shape index map to find interest points and their descriptors. Each 3D face scan is represented by keypoints descriptors, and a large dictionary is built from all the gallery descriptors. At the recognition step, descriptors of a probe face scan are sparsely represented by the dictionary. A multitask sparse representation classification is used to determine the identity of each probe face. The feasibility of the approach that uses the SURF algorithm on the shape index map for face identification/authentication is checked through an experimental investigation conducted on Bosphorus, University of Milano Bicocca, and CASIA 3D datasets. It achieves an overall rank one recognition rate of 97.75%, 80.85%, and 95.12%, respectively, on these datasets.
Evans, Julia L; Gillam, Ronald B; Montgomery, James W
2018-05-10
This study examined the influence of cognitive factors on spoken word recognition in children with developmental language disorder (DLD) and typically developing (TD) children. Participants included 234 children (aged 7;0-11;11 years;months), 117 with DLD and 117 TD children, propensity matched for age, gender, socioeconomic status, and maternal education. Children completed a series of standardized assessment measures, a forward gating task, a rapid automatic naming task, and a series of tasks designed to examine cognitive factors hypothesized to influence spoken word recognition including phonological working memory, updating, attention shifting, and interference inhibition. Spoken word recognition for both initial and final accept gate points did not differ for children with DLD and TD controls after controlling target word knowledge in both groups. The 2 groups also did not differ on measures of updating, attention switching, and interference inhibition. Despite the lack of difference on these measures, for children with DLD, attention shifting and interference inhibition were significant predictors of spoken word recognition, whereas updating and receptive vocabulary were significant predictors of speed of spoken word recognition for the children in the TD group. Contrary to expectations, after controlling for target word knowledge, spoken word recognition did not differ for children with DLD and TD controls; however, the cognitive processing factors that influenced children's ability to recognize the target word in a stream of speech differed qualitatively for children with and without DLDs.
Lawson, Rebecca
2004-10-01
In two experiments, the identification of novel 3-D objects was worse for depth-rotated and mirror-reflected views, compared with the study view in an implicit affective preference memory task, as well as in an explicit recognition memory task. In Experiment 1, recognition was worse and preference was lower when depth-rotated views of an object were paired with an unstudied object relative to trials when the study view of that object was shown. There was a similar trend for mirror-reflected views. In Experiment 2, the study view of an object was both recognized and preferred above chance when it was paired with either depth-rotated or mirror-reflected views of that object. These results suggest that view-sensitive representations of objects mediate performance in implicit, as well as explicit, memory tasks. The findings do not support the claim that separate episodic and structural description representations underlie performance in implicit and explicit memory tasks, respectively.
Age differences in accuracy and choosing in eyewitness identification and face recognition.
Searcy, J H; Bartlett, J C; Memon, A
1999-05-01
Studies of aging and face recognition show age-related increases in false recognitions of new faces. To explore implications of this false alarm effect, we had young and senior adults perform (1) three eye-witness identification tasks, using both target present and target absent lineups, and (2) and old/new recognition task in which a study list of faces was followed by a test including old and new faces, along with conjunctions of old faces. Compared with the young, seniors had lower accuracy and higher choosing rates on the lineups, and they also falsely recognized more new faces on the recognition test. However, after screening for perceptual processing deficits, there was no age difference in false recognition of conjunctions, or in discriminating old faces from conjunctions. We conclude that the false alarm effect generalizes to lineup identification, but does not extend to conjunction faces. The findings are consistent with age-related deficits in recollection of context and relative age invariance in perceptual integrative processes underlying the experience of familiarity.
Koutstaal, Wilma
2003-03-01
Investigations of memory deficits in older individuals have concentrated on their increased likelihood of forgetting events or details of events that were actually encountered (errors of omission). However, mounting evidence demonstrates that normal cognitive aging also is associated with an increased propensity for errors of commission--shown in false alarms or false recognition. The present study examined the origins of this age difference. Older and younger adults each performed three types of memory tasks in which details of encountered items might influence performance. Although older adults showed greater false recognition of related lures on a standard (identical) old/new episodic recognition task, older and younger adults showed parallel effects of detail on repetition priming and meaning-based episodic recognition (decreased priming and decreased meaning-based recognition for different relative to same exemplars). The results suggest that the older adults encoded details but used them less effectively than the younger adults in the recognition context requiring their deliberate, controlled use.
Gender differences in recognition of toy faces suggest a contribution of experience.
Ryan, Kaitlin F; Gauthier, Isabel
2016-12-01
When there is a gender effect, women perform better then men in face recognition tasks. Prior work has not documented a male advantage on a face recognition task, suggesting that women may outperform men at face recognition generally either due to evolutionary reasons or the influence of social roles. Here, we question the idea that women excel at all face recognition and provide a proof of concept based on a face category for which men outperform women. We developed a test of face learning to measures individual differences with face categories for which men and women may differ in experience, using the faces of Barbie dolls and of Transformers. The results show a crossover interaction between subject gender and category, where men outperform women with Transformers' faces. We demonstrate that men can outperform women with some categories of faces, suggesting that explanations for a general face recognition advantage for women are in fact not needed. Copyright © 2016 Elsevier Ltd. All rights reserved.
The time course of ventrolateral prefrontal cortex involvement in memory formation.
Machizawa, Maro G; Kalla, Roger; Walsh, Vincent; Otten, Leun J
2010-03-01
Human neuroimaging studies have implicated a number of brain regions in long-term memory formation. Foremost among these is ventrolateral prefrontal cortex. Here, we used double-pulse transcranial magnetic stimulation (TMS) to assess whether the contribution of this part of cortex is crucial for laying down new memories and, if so, to examine the time course of this process. Healthy adult volunteers performed an incidental encoding task (living/nonliving judgments) on sequences of words. In separate series, the task was performed either on its own or while TMS was applied to one of two sites of experimental interest (left/right anterior inferior frontal gyrus) or a control site (vertex). TMS pulses were delivered at 350, 750, or 1,150 ms following word onset. After a delay of 15 min, memory for the items was probed with a recognition memory test including confidence judgments. TMS to all three sites nonspecifically affected the speed and accuracy with which judgments were made during the encoding task. However, only TMS to prefrontal cortex affected later memory performance. Stimulation of left or right inferior frontal gyrus at all three time points reduced the likelihood that a word would later be recognized by a small, but significant, amount (approximately 4%). These findings indicate that bilateral ventrolateral prefrontal cortex plays an essential role in memory formation, exerting its influence between > or = 350 and 1,150 ms after an event is encountered.
Sticky-flares for in situ monitoring of human telomerase RNA in living cells.
Wu, Qilong; Liu, Zhengjie; Su, Lei; Han, Guangmei; Liu, Renyong; Zhao, Jun; Zhao, Tingting; Jiang, Changlong; Zhang, Zhongping
2018-05-17
Human telomerase RNA (hTR), a template of telomerase for telomeric repeat synthesis, was used to reflect the telomerase activity and act as a potential target of antitumor therapy. Here, we report a novel DNA-conjugated AuNP probe termed sticky-flares for the in situ detection of intracellular human telomerase RNA. The sticky-flares probe is capable of entering living cells directly without any auxiliary and recognizing the binding domain of human telomerase RNA. On recognition, the fluorophore-modified recognition flares can specifically bind to the target, separate from the sticky-flares and act as a fluorescent reporter to quantify and dynamically profile human telomerase RNA in living cells. We envision that the sticky-flares probe would be a valuable platform to investigate the function and regulation of hTR in antitumor therapy and hTR-related drug invention.
NASA Astrophysics Data System (ADS)
Zhu, Yu-Feng; Wang, Yong-Sheng; Zhou, Bin; Huang, Yan-Qin; Li, Xue-Jiao; Chen, Si-Han; Wang, Xiao-Feng; Tang, Xian
2018-01-01
We for the first time confirmed that the low concentrations of Ag(I) could induce a silver specific aptamer probe (SAP) from a random coil sequence form to G-quadruplex structure. Thereby, a novel highly sensitive fluorescence strategy for silver(I) assay was established. The designed multifunctional SAP could act as a recognition element for Ag(I) and a signal reporter. The use of such a SAP can ultrasensitively and selectively detect Ag(I), giving a detection limit down to 0.64 nM. This is much lower than those reported by related literatures. This strategy has been applied successfully for the detection of Ag(I) in real samples, further proving its reliability. Taken together, the designed SAP is not only a useful recognition and signal probe for silver, but also gives a platform to study the interaction of monovalent cations with DNA.
Majerus, Steve; Norris, Dennis; Patterson, Karalyn
2007-03-01
In this study, we explored capacities for three different aspects of short-term verbal memory in patients with semantic dementia. As expected, the two patients had poor recall for lexico-semantic item information, as assessed by immediate serial recall of word lists. In contrast, their short-term memory for phonological information was preserved, as evidenced by normal performance for immediate serial recall of nonword lists, with normal or increased nonword phonotactic-frequency effects, and increased sensitivity to phonological lures in a delayed probe recognition task. Furthermore, the patients appeared to have excellent memory for the serial order of the words in a list. These data provide further support for the proposal that language knowledge is a major determining factor of verbal STM capacity, but they also highlight the necessary distinction of processes involved in item and order recall, as proposed by recent models of STM.
Daini, Roberta; Comparetti, Chiara M.; Ricciardelli, Paola
2014-01-01
Neuropsychological and neuroimaging studies have shown that facial recognition and emotional expressions are dissociable. However, it is unknown if a single system supports the processing of emotional and non-emotional facial expressions. We aimed to understand if individuals with impairment in face recognition from birth (congenital prosopagnosia, CP) can use non-emotional facial expressions to recognize a face as an already seen one, and thus, process this facial dimension independently from features (which are impaired in CP), and basic emotional expressions. To this end, we carried out a behavioral study in which we compared the performance of 6 CP individuals to that of typical development individuals, using upright and inverted faces. Four avatar faces with a neutral expression were presented in the initial phase. The target faces presented in the recognition phase, in which a recognition task was requested (2AFC paradigm), could be identical (neutral) to those of the initial phase or present biologically plausible changes to features, non-emotional expressions, or emotional expressions. After this task, a second task was performed, in which the participants had to detect whether or not the recognized face exactly matched the study face or showed any difference. The results confirmed the CPs' impairment in the configural processing of the invariant aspects of the face, but also showed a spared configural processing of non-emotional facial expression (task 1). Interestingly and unlike the non-emotional expressions, the configural processing of emotional expressions was compromised in CPs and did not improve their change detection ability (task 2). These new results have theoretical implications for face perception models since they suggest that, at least in CPs, non-emotional expressions are processed configurally, can be dissociated from other facial dimensions, and may serve as a compensatory strategy to achieve face recognition. PMID:25520643
Daini, Roberta; Comparetti, Chiara M; Ricciardelli, Paola
2014-01-01
Neuropsychological and neuroimaging studies have shown that facial recognition and emotional expressions are dissociable. However, it is unknown if a single system supports the processing of emotional and non-emotional facial expressions. We aimed to understand if individuals with impairment in face recognition from birth (congenital prosopagnosia, CP) can use non-emotional facial expressions to recognize a face as an already seen one, and thus, process this facial dimension independently from features (which are impaired in CP), and basic emotional expressions. To this end, we carried out a behavioral study in which we compared the performance of 6 CP individuals to that of typical development individuals, using upright and inverted faces. Four avatar faces with a neutral expression were presented in the initial phase. The target faces presented in the recognition phase, in which a recognition task was requested (2AFC paradigm), could be identical (neutral) to those of the initial phase or present biologically plausible changes to features, non-emotional expressions, or emotional expressions. After this task, a second task was performed, in which the participants had to detect whether or not the recognized face exactly matched the study face or showed any difference. The results confirmed the CPs' impairment in the configural processing of the invariant aspects of the face, but also showed a spared configural processing of non-emotional facial expression (task 1). Interestingly and unlike the non-emotional expressions, the configural processing of emotional expressions was compromised in CPs and did not improve their change detection ability (task 2). These new results have theoretical implications for face perception models since they suggest that, at least in CPs, non-emotional expressions are processed configurally, can be dissociated from other facial dimensions, and may serve as a compensatory strategy to achieve face recognition.
Paris, Jason J; Frye, Cheryl A
2008-01-01
Ovarian hormone elevations are associated with enhanced learning/memory. During behavioral estrus or pregnancy, progestins, such as progesterone (P4) and its metabolite 5α-pregnan-3α-ol-20-one (3α,5α-THP), are elevated due, in part, to corpora luteal and placental secretion. During ‘pseudopregnancy’, the induction of corpora luteal functioning results in a hormonal milieu analogous to pregnancy, which ceases after about 12 days, due to the lack of placental formation. Multiparity is also associated with enhanced learning/memory, perhaps due to prior steroid exposure during pregnancy. Given evidence that progestins and/or parity may influence cognition, we investigated how natural alterations in the progestin milieu influence cognitive performance. In Experiment 1, virgin rats (nulliparous) or rats with two prior pregnancies (multiparous) were assessed on the object placement and recognition tasks, when in high-estrogen/P4 (behavioral estrus) or low-estrogen/P4 (diestrus) phases of the estrous cycle. In Experiment 2, primiparous or multiparous rats were tested in the object placement and recognition tasks when not pregnant, pseudopregnant, or pregnant (between gestational days (GDs) 6 and 12). In Experiment 3, pregnant primiparous or multiparous rats were assessed daily in the object placement or recognition tasks. Females in natural states associated with higher endogenous progestins (behavioral estrus, pregnancy, multiparity) outperformed rats in low progestin states (diestrus, non-pregnancy, nulliparity) on the object placement and recognition tasks. In earlier pregnancy, multiparous, compared with primiparous, rats had a lower corticosterone, but higher estrogen levels, concomitant with better object placement performance. From GD 13 until post partum, primiparous rats had higher 3α,5α-THP levels and improved object placement performance compared with multiparous rats. PMID:18390689
Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru; Naito, Eiichi
2017-04-21
Proprioception is somatic sensation that allows us to sense and recognize position, posture, and their changes in our body parts. It pertains directly to oneself and may contribute to bodily awareness. Likewise, one's face is a symbol of oneself, so that visual self-face recognition directly contributes to the awareness of self as distinct from others. Recently, we showed that right-hemispheric dominant activity in the inferior fronto-parietal cortices, which are connected by the inferior branch of the superior longitudinal fasciculus (SLF III), is associated with proprioceptive illusion (awareness), in concert with sensorimotor activity. Herein, we tested the hypothesis that visual self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal SLF III network. We scanned brain activity using functional magnetic resonance imaging while twenty-two right-handed healthy adults performed two tasks. One was a proprioceptive illusion task, where blindfolded participants experienced a proprioceptive illusion of right hand movement. The other was a visual self-face recognition task, where the participants judged whether an observed face was their own. We examined whether the self-face recognition and the proprioceptive illusion commonly activated the inferior fronto-parietal cortices connected by the SLF III in a right-hemispheric dominant manner. Despite the difference in sensory modality and in the body parts involved in the two tasks, both tasks activated the right inferior fronto-parietal cortices, which are likely connected by the SLF III, in a right-side dominant manner. Here we discuss possible roles for right inferior fronto-parietal activity in bodily awareness and self-awareness. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Detection of protease and protease activity using a single nanoscrescent SERS probe
Liu, Gang L.; Ellman, Jonathan A.; Lee, Luke P.; Chen, Fanqing Frank
2013-01-29
This invention pertains to the in vitro detection of proteases using a single peptide-conjugate nanocrescent surface enhanced Raman scattering (SERS) probes with at least nanomolar sensitivity. The probe enables detection of proteolytic activity in extremely small volume and at low concentration. In certain embodiments the probes comprise an indicator for the detection of an active protease, where the indicator comprises a nanocrescent attached to a peptide, where said peptide comprises a recognition site for the protease and a Raman tag attached to the peptide.
Detection of protease and protease activity using a single nanocrescent SERS probe
Liu, Gang L.; Ellman, Jonathan A.; Lee, Luke P.; Chen, Fanqing Frank
2015-09-29
This invention pertains to the in vitro detection of proteases using a single peptide-conjugate nanocrescent surface enhanced Raman scattering (SERS) probes with at least nanomolar sensitivity. The probe enables detection of proteolytic activity in extremely small volume and at low concentration. In certain embodiments the probes comprise an indicator for the detection of an active protease, where the indicator comprises a nanocrescent attached to a peptide, where said peptide comprises a recognition site for the protease and a Raman tag attached to the peptide.
Development of Fluorescent Protein Probes Specific for Parallel DNA and RNA G-Quadruplexes.
Dang, Dung Thanh; Phan, Anh Tuân
2016-01-01
We have developed fluorescent protein probes specific for parallel G-quadruplexes by attaching cyan fluorescent protein to the G-quadruplex-binding motif of the RNA helicase RHAU. Fluorescent probes containing RHAU peptide fragments of different lengths were constructed, and their binding to G-quadruplexes was characterized. The selective recognition and discrimination of G-quadruplex topologies by the fluorescent protein probes was easily detected by the naked eye or by conventional gel imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimizing estimation of hemispheric dominance for language using magnetic source imaging.
Passaro, Antony D; Rezaie, Roozbeh; Moser, Dana C; Li, Zhimin; Dias, Nadeeka; Papanicolaou, Andrew C
2011-10-06
The efficacy of magnetoencephalography (MEG) as an alternative to invasive methods for investigating the cortical representation of language has been explored in several studies. Recently, studies comparing MEG to the gold standard Wada procedure have found inconsistent and often less-than accurate estimates of laterality across various MEG studies. Here we attempted to address this issue among normal right-handed adults (N=12) by supplementing a well-established MEG protocol involving word recognition and the single dipole method with a sentence comprehension task and a beamformer approach localizing neural oscillations. Beamformer analysis of word recognition and sentence comprehension tasks revealed a desynchronization in the 10-18Hz range, localized to the temporo-parietal cortices. Inspection of individual profiles of localized desynchronization (10-18Hz) revealed left hemispheric dominance in 91.7% and 83.3% of individuals during the word recognition and sentence comprehension tasks, respectively. In contrast, single dipole analysis yielded lower estimates, such that activity in temporal language regions was left-lateralized in 66.7% and 58.3% of individuals during word recognition and sentence comprehension, respectively. The results obtained from the word recognition task and localization of oscillatory activity using a beamformer appear to be in line with general estimates of left hemispheric dominance for language in normal right-handed individuals. Furthermore, the current findings support the growing notion that changes in neural oscillations underlie critical components of linguistic processing. Published by Elsevier B.V.
Grossberg, Stephen; Markowitz, Jeffrey; Cao, Yongqiang
2011-12-01
Visual object recognition is an essential accomplishment of advanced brains. Object recognition needs to be tolerant, or invariant, with respect to changes in object position, size, and view. In monkeys and humans, a key area for recognition is the anterior inferotemporal cortex (ITa). Recent neurophysiological data show that ITa cells with high object selectivity often have low position tolerance. We propose a neural model whose cells learn to simulate this tradeoff, as well as ITa responses to image morphs, while explaining how invariant recognition properties may arise in stages due to processes across multiple cortical areas. These processes include the cortical magnification factor, multiple receptive field sizes, and top-down attentive matching and learning properties that may be tuned by task requirements to attend to either concrete or abstract visual features with different levels of vigilance. The model predicts that data from the tradeoff and image morph tasks emerge from different levels of vigilance in the animals performing them. This result illustrates how different vigilance requirements of a task may change the course of category learning, notably the critical features that are attended and incorporated into learned category prototypes. The model outlines a path for developing an animal model of how defective vigilance control can lead to symptoms of various mental disorders, such as autism and amnesia. Copyright © 2011 Elsevier Ltd. All rights reserved.
Heinz, Andrew J; Johnson, Jeffrey S
2017-01-01
Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band power (ABP) during the delay period of verbal and visual working memory (VWM) tasks. There have been various proposals regarding the functional significance of such increases, including the inhibition of task-irrelevant cortical areas as well as the active retention of information in VWM. The present study examines the role of delay-period ABP in mediating the effects of interference arising from on-going visual processing during a concurrent VWM task. Specifically, we reasoned that, if set-size dependent increases in ABP represent the gating out of on-going task-irrelevant visual inputs, they should be predictive with respect to some modulation in visual evoked potentials resulting from a task-irrelevant delay period probe stimulus. In order to investigate this possibility, we recorded the electroencephalogram while subjects performed a change detection task requiring the retention of two or four novel shapes. On a portion of trials, a novel, task-irrelevant bilateral checkerboard probe was presented mid-way through the delay. Analyses focused on examining correlations between set-size dependent increases in ABP and changes in the magnitude of the P1, N1 and P3a components of the probe-evoked response and how such increases might be related to behavior. Results revealed that increased delay-period ABP was associated with changes in the amplitude of the N1 and P3a event-related potential (ERP) components, and with load-dependent changes in capacity when the probe was presented during the delay. We conclude that load-dependent increases in ABP likely play a role in supporting short-term retention by gating task-irrelevant sensory inputs and suppressing potential sources of disruptive interference.
Heinz, Andrew J.; Johnson, Jeffrey S.
2017-01-01
Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band power (ABP) during the delay period of verbal and visual working memory (VWM) tasks. There have been various proposals regarding the functional significance of such increases, including the inhibition of task-irrelevant cortical areas as well as the active retention of information in VWM. The present study examines the role of delay-period ABP in mediating the effects of interference arising from on-going visual processing during a concurrent VWM task. Specifically, we reasoned that, if set-size dependent increases in ABP represent the gating out of on-going task-irrelevant visual inputs, they should be predictive with respect to some modulation in visual evoked potentials resulting from a task-irrelevant delay period probe stimulus. In order to investigate this possibility, we recorded the electroencephalogram while subjects performed a change detection task requiring the retention of two or four novel shapes. On a portion of trials, a novel, task-irrelevant bilateral checkerboard probe was presented mid-way through the delay. Analyses focused on examining correlations between set-size dependent increases in ABP and changes in the magnitude of the P1, N1 and P3a components of the probe-evoked response and how such increases might be related to behavior. Results revealed that increased delay-period ABP was associated with changes in the amplitude of the N1 and P3a event-related potential (ERP) components, and with load-dependent changes in capacity when the probe was presented during the delay. We conclude that load-dependent increases in ABP likely play a role in supporting short-term retention by gating task-irrelevant sensory inputs and suppressing potential sources of disruptive interference. PMID:28555099
Laurent, Agathe; Arzimanoglou, Alexis; Panagiotakaki, Eleni; Sfaello, Ignacio; Kahane, Philippe; Ryvlin, Philippe; Hirsch, Edouard; de Schonen, Scania
2014-12-01
A high rate of abnormal social behavioural traits or perceptual deficits is observed in children with unilateral temporal lobe epilepsy. In the present study, perception of auditory and visual social signals, carried by faces and voices, was evaluated in children or adolescents with temporal lobe epilepsy. We prospectively investigated a sample of 62 children with focal non-idiopathic epilepsy early in the course of the disorder. The present analysis included 39 children with a confirmed diagnosis of temporal lobe epilepsy. Control participants (72), distributed across 10 age groups, served as a control group. Our socio-perceptual evaluation protocol comprised three socio-visual tasks (face identity, facial emotion and gaze direction recognition), two socio-auditory tasks (voice identity and emotional prosody recognition), and three control tasks (lip reading, geometrical pattern and linguistic intonation recognition). All 39 patients also benefited from a neuropsychological examination. As a group, children with temporal lobe epilepsy performed at a significantly lower level compared to the control group with regards to recognition of facial identity, direction of eye gaze, and emotional facial expressions. We found no relationship between the type of visual deficit and age at first seizure, duration of epilepsy, or the epilepsy-affected cerebral hemisphere. Deficits in socio-perceptual tasks could be found independently of the presence of deficits in visual or auditory episodic memory, visual non-facial pattern processing (control tasks), or speech perception. A normal FSIQ did not exempt some of the patients from an underlying deficit in some of the socio-perceptual tasks. Temporal lobe epilepsy not only impairs development of emotion recognition, but can also impair development of perception of other socio-perceptual signals in children with or without intellectual deficiency. Prospective studies need to be designed to evaluate the results of appropriate re-education programs in children presenting with deficits in social cue processing.
Impaired recognition of scary music following unilateral temporal lobe excision.
Gosselin, Nathalie; Peretz, Isabelle; Noulhiane, Marion; Hasboun, Dominique; Beckett, Christine; Baulac, Michel; Samson, Séverine
2005-03-01
Music constitutes an ideal means to create a sense of suspense in films. However, there has been minimal investigation into the underlying cerebral organization for perceiving danger created by music. In comparison, the amygdala's role in recognition of fear in non-musical contexts has been well established. The present study sought to fill this gap in exploring how patients with amygdala resection recognize emotional expression in music. To this aim, we tested 16 patients with left (LTR; n = 8) or right (RTR; n = 8) medial temporal resection (including amygdala) for the relief of medically intractable seizures and 16 matched controls in an emotion recognition task involving instrumental music. The musical selections were purposely created to induce fear, peacefulness, happiness and sadness. Participants were asked to rate to what extent each musical passage expressed these four emotions on 10-point scales. In order to check for the presence of a perceptual problem, the same musical selections were presented to the participants in an error detection task. None of the patients was found to perform below controls in the perceptual task. In contrast, both LTR and RTR patients were found to be impaired in the recognition of scary music. Recognition of happy and sad music was normal. These findings suggest that the anteromedial temporal lobe (including the amygdala) plays a role in the recognition of danger in a musical context.
Hopkins, Michael E.; Bucci, David J.
2010-01-01
Physical exercise induces widespread neurobiological adaptations and improves learning and memory. Most research in this field has focused on hippocampus-based spatial tasks and changes in brain-derived neurotrophic factor (BDNF) as a putative substrate underlying exercise-induced cognitive improvements. Chronic exercise can also be anxiolytic and causes adaptive changes in stress reactivity. The present study employed a perirhinal cortex-dependent object recognition task as well as the elevated plus maze to directly test for interactions between the cognitive and anxiolytic effects of exercise in male Long Evans rats. Hippocampal and perirhinal cortex tissue was collected to determine whether the relationship between BDNF and cognitive performance extends to this non-spatial and non-hippocampal-dependent task. We also examined whether the cognitive improvements persisted once the exercise regimen was terminated. Our data indicate that 4 weeks of voluntary exercise every-other-day improved object recognition memory. Importantly, BDNF expression in the perirhinal cortex of exercising rats was strongly correlated with object recognition memory. Exercise also decreased anxiety-like behavior, however there was no evidence to support a relationship between anxiety-like behavior and performance on the novel object recognition task. There was a trend for a negative relationship between anxiety-like behavior and hippocampal BDNF. Neither the cognitive improvements nor the relationship between cognitive function and perirhinal BDNF levels persisted after 2 weeks of inactivity. These are the first data demonstrating that region-specific changes in BDNF protein levels are correlated with exercise-induced improvements in non-spatial memory, mediated by structures outside the hippocampus and are consistent with the theory that, with regard to object recognition, the anxiolytic and cognitive effects of exercise may be mediated through separable mechanisms. PMID:20601027
Visu-Petra, George; Varga, Mihai; Miclea, Mircea; Visu-Petra, Laura
2013-01-01
The possibility to enhance the detection efficiency of the Concealed Information Test (CIT) by increasing executive load was investigated, using an interference design. After learning and executing a mock crime scenario, subjects underwent three deception detection tests: an RT-based CIT, an RT-based CIT plus a concurrent memory task (CITMem), and an RT-based CIT plus a concurrent set-shifting task (CITShift). The concealed information effect, consisting in increased RT and lower response accuracy for probe items compared to irrelevant items, was evidenced across all three conditions. The group analyses indicated a larger difference between RTs to probe and irrelevant items in the dual-task conditions, but this difference was not translated in a significantly increased detection efficiency at an individual level. Signal detection parameters based on the comparison with a simulated innocent group showed accurate discrimination for all conditions. Overall response accuracy on the CITMem was highest and the difference between response accuracy to probes and irrelevants was smallest in this condition. Accuracy on the concurrent tasks (Mem and Shift) was high, and responses on these tasks were significantly influenced by CIT stimulus type (probes vs. irrelevants). The findings are interpreted in relation to the cognitive load/dual-task interference literature, generating important insights for research on the involvement of executive functions in deceptive behavior. PMID:23543918
Detection of active decay at groundline in utility poles
Alex L. Shigo; Walter C. Shortle; Julian Ochrymowych
1977-01-01
Active wood decay at groundline in in-service utility poles can be detected by a skilled inspector using: 1. A knowledge of basic patterns of decay. 2. Recognition of obvious signs of decay. 3. Proper interpretation of information obtained from a pulsed-current meter-Shigometer®-used with various probes and probing techniques.
NASA Astrophysics Data System (ADS)
Chen, Xia; Sun, Wei; Bai, Yinjuan; Zhang, Feifei; Zhao, Junxia; Ding, Xiaohu
2018-02-01
Three rhodamine schiff-base type fluorescent sensors R1-R3 for detecting iron ion (Fe3 +), 2-furanacrolein rhodamine hydrazone (R1), furfural rhodamine hydrazone (R2) and 2-furanacrolein rhodamine ethylenediamine (R3) have been synthesized by using rhodamine B derivatives and furan derivatives as staring materials. And their recognition abilities for Fe3 + were studied by fluorescence spectroscopy. The result showed that R1 is a best selective probe for Fe3 + over other metal ions in EtOH/H2O (1:1, v/v) due to having 2-furanacrolein for unique space coordination structural. The recognition of Fe3 + and mechanism of the sensor were characterized and determined by fluorescence spectra and Fukui function. And the fluorescence intensity of the probe R1 for Fe3 + was proportional to its concentration with the linear correlation coefficient of 0.9965 and the binding constant of 7.66 × 104 M- 1. And the cell imaging experiment indicated a successful application of the probe R1 for Fe3 + in living cell.
Tang, Yiwei; Gao, Ziyuan; Wang, Shuo; Gao, Xue; Gao, Jingwen; Ma, Yong; Liu, Xiuying; Li, Jianrong
2015-09-15
A novel fluorescence probe based on upconversion particles, YF3:Yb(3+), Er(3+), coating with molecularly imprinted polymers (MIPs@UCPs) has been synthesized for selective recognition of the analyte clenbuterol (CLB), which was characterized by scan electron microscope and X-ray powder diffraction. The fluorescence of the MIPs@UCPs probe is quenched specifically by CLB, and the effect is much stronger than the NIPs@UCPs (non-imprinting polymers, NIPs). Good linear correlation was obtained for CLB over the concentration range of 5.0-100.0 μg L(-1) with a detection limit of 0.12 μg L(-1) (S/N=3). The developed method was also used in the determination of CLB in water and pork samples, and the recoveries ranged from 81.66% to 102.46% were obtained with relative standard deviation of 2.96-4.98% (n=3). The present study provides a new and general tactics to synthesize MIPs@UCPs fluorescence probe with highly selective recognition ability to the CLB and is desirable for application widely in the near future. Copyright © 2015 Elsevier B.V. All rights reserved.
Behavioral and neural stability of attention bias to threat in healthy adolescents
Britton, Jennifer C.; Sequeira, Stefanie; Ronkin, Emily G.; Chen, Gang; Bar-Haim, Yair; Shechner, Tomer; Ernst, Monique; Fox, Nathan A.; Leibenluft, Ellen; Pine, Daniel S.
2016-01-01
Considerable translational research on anxiety examines attention bias to threat and the efficacy of attention training in reducing symptoms. Imaging research on the stability of brain functions engaged by attention bias tasks could inform such research. Perturbed fronto-amygdala function consistently arises in attention bias research on adolescent anxiety. The current report examines the stability of the activation and functional connectivity of these regions on the dot-probe task. Functional magnetic resonance imaging (fMRI) activation and connectivity data were acquired with the dot-probe task in 39 healthy youth (f =18, Mean Age = 13.71 years, SD = 2.31) at two time points, separated by approximately nine weeks. Intraclass-correlations demonstrate good reliability in both neural activation for the ventrolateral PFC and task-specific connectivity for fronto-amygdala circuitry. Behavioral measures showed generally poor test-retest reliability. These findings suggest potential avenues for future brain imaging work by highlighting brain circuitry manifesting stable functioning on the dot-probe attention bias task. PMID:27129757
Effect of tDCS on task relevant and irrelevant perceptual learning of complex objects.
Van Meel, Chayenne; Daniels, Nicky; de Beeck, Hans Op; Baeck, Annelies
2016-01-01
During perceptual learning the visual representations in the brain are altered, but these changes' causal role has not yet been fully characterized. We used transcranial direct current stimulation (tDCS) to investigate the role of higher visual regions in lateral occipital cortex (LO) in perceptual learning with complex objects. We also investigated whether object learning is dependent on the relevance of the objects for the learning task. Participants were trained in two tasks: object recognition using a backward masking paradigm and an orientation judgment task. During both tasks, an object with a red line on top of it were presented in each trial. The crucial difference between both tasks was the relevance of the object: the object was relevant for the object recognition task, but not for the orientation judgment task. During training, half of the participants received anodal tDCS stimulation targeted at the lateral occipital cortex (LO). Afterwards, participants were tested on how well they recognized the trained objects, the irrelevant objects presented during the orientation judgment task and a set of completely new objects. Participants stimulated with tDCS during training showed larger improvements of performance compared to participants in the sham condition. No learning effect was found for the objects presented during the orientation judgment task. To conclude, this study suggests a causal role of LO in relevant object learning, but given the rather low spatial resolution of tDCS, more research on the specificity of this effect is needed. Further, mere exposure is not sufficient to train object recognition in our paradigm.
Feature singletons attract spatial attention independently of feature priming
Yashar, Amit; White, Alex L.; Fang, Wanghaoming; Carrasco, Marisa
2017-01-01
People perform better in visual search when the target feature repeats across trials (intertrial feature priming [IFP]). Here, we investigated whether repetition of a feature singleton's color modulates stimulus-driven shifts of spatial attention by presenting a probe stimulus immediately after each singleton display. The task alternated every two trials between a probe discrimination task and a singleton search task. We measured both stimulus-driven spatial attention (via the distance between the probe and singleton) and IFP (via repetition of the singleton's color). Color repetition facilitated search performance (IFP effect) when the set size was small. When the probe appeared at the singleton's location, performance was better than at the opposite location (stimulus-driven attention effect). The magnitude of this attention effect increased with the singleton's set size (which increases its saliency) but did not depend on whether the singleton's color repeated across trials, even when the previous singleton had been attended as a search target. Thus, our findings show that repetition of a salient singleton's color affects performance when the singleton is task relevant and voluntarily attended (as in search trials). However, color repetition does not affect performance when the singleton becomes irrelevant to the current task, even though the singleton does capture attention (as in probe trials). Therefore, color repetition per se does not make a singleton more salient for stimulus-driven attention. Rather, we suggest that IFP requires voluntary selection of color singletons in each consecutive trial. PMID:28800369
Feature singletons attract spatial attention independently of feature priming.
Yashar, Amit; White, Alex L; Fang, Wanghaoming; Carrasco, Marisa
2017-08-01
People perform better in visual search when the target feature repeats across trials (intertrial feature priming [IFP]). Here, we investigated whether repetition of a feature singleton's color modulates stimulus-driven shifts of spatial attention by presenting a probe stimulus immediately after each singleton display. The task alternated every two trials between a probe discrimination task and a singleton search task. We measured both stimulus-driven spatial attention (via the distance between the probe and singleton) and IFP (via repetition of the singleton's color). Color repetition facilitated search performance (IFP effect) when the set size was small. When the probe appeared at the singleton's location, performance was better than at the opposite location (stimulus-driven attention effect). The magnitude of this attention effect increased with the singleton's set size (which increases its saliency) but did not depend on whether the singleton's color repeated across trials, even when the previous singleton had been attended as a search target. Thus, our findings show that repetition of a salient singleton's color affects performance when the singleton is task relevant and voluntarily attended (as in search trials). However, color repetition does not affect performance when the singleton becomes irrelevant to the current task, even though the singleton does capture attention (as in probe trials). Therefore, color repetition per se does not make a singleton more salient for stimulus-driven attention. Rather, we suggest that IFP requires voluntary selection of color singletons in each consecutive trial.
Akizuki, Kazunori; Ohashi, Yukari
2014-12-01
The influence of attention on postural control and the relationship between attention and falling has been reported in previous studies. Although a dual-task procedure is commonly used to measure attentional demand, such procedures are affected by allocation policy, which is a mental strategy to divide attention between simultaneous tasks. Therefore, we examined the effectiveness of salivary α-amylase, which is a physiological method for measuring attentional demand during postural control. Sixteen healthy participants performed a postural-control task using the Balance System, which is a device that can be calibrated to a specific stability level ("Level 1 = least stable" to "Level 8 = most stable"). Levels 1, 2, and 3 were used for this study. Dependent variables measured were overall stability index, which represents the variance of platform displacement in degrees from a horizontal plane; probe reaction time, which was measured using a sound stimulator and recorder; and salivary α-amylase, which was measured using a portable salivary amylase analyzer. As stability level of the test task decreased, both stability index and probe reaction time significantly increased. In addition, we identified a positive moderate correlation between probe reaction time and salivary α-amylase. Our results suggest that salivary α-amylase and probe reaction time reflect the change in attentional demands during a postural-control task and that salivary α-amylase may be an effective tool for evaluating attentional demands during postural control because it is noninvasive and simple to perform.
Automated road marking recognition system
NASA Astrophysics Data System (ADS)
Ziyatdinov, R. R.; Shigabiev, R. R.; Talipov, D. N.
2017-09-01
Development of the automated road marking recognition systems in existing and future vehicles control systems is an urgent task. One way to implement such systems is the use of neural networks. To test the possibility of using neural network software has been developed with the use of a single-layer perceptron. The resulting system based on neural network has successfully coped with the task both when driving in the daytime and at night.
Comparing the Verbal Self-Reports of Spelling Strategies Used by Children with and without Dyslexia
ERIC Educational Resources Information Center
Donovan, Jennifer L.; Marshall, Chlo? R.
2016-01-01
This study explores the ability of children with and without dyslexia to provide meaningful verbal self-reports of the strategies they used in a spelling recognition task. Sixty-six children aged 6 years 3 months-9 years 9 months were tested on a range of standardised measures and on an experimental spelling recognition task based on the work of…
Autonomic imbalance is associated with reduced facial recognition in somatoform disorders.
Pollatos, Olga; Herbert, Beate M; Wankner, Sarah; Dietel, Anja; Wachsmuth, Cornelia; Henningsen, Peter; Sack, Martin
2011-10-01
Somatoform disorders are characterized by the presence of multiple somatic symptoms. While the accuracy of perceiving bodily signal (interoceptive awareness) is only sparely investigated in somatoform disorders, recent research has associated autonomic imbalance with cognitive and emotional difficulties in stress-related diseases. This study aimed to investigate how sympathovagal reactivity interacts with performance in recognizing emotions in faces (facial recognition task). Using a facial recognition and appraisal task, skin conductance levels (SCLs), heart rate (HR) and heart rate variability (HRV) were assessed in 26 somatoform patients and compared to healthy controls. Interoceptive awareness was assessed by a heartbeat detection task. We found evidence for a sympathovagal imbalance in somatoform disorders characterized by low parasympathetic reactivity during emotional tasks and increased sympathetic activation during baseline. Somatoform patients exhibited a reduced recognition performance for neutral and sad emotional expressions only. Possible confounding variables such as alexithymia, anxiety or depression were taken into account. Interoceptive awareness was reduced in somatoform patients. Our data demonstrate an imbalance in sympathovagal activation in somatoform disorders associated with decreased parasympathetic activation. This might account for difficulties in processing of sad and neutral facial expressions in somatoform patients which might be a pathogenic mechanism for increased everyday vulnerability. Copyright © 2011 Elsevier Inc. All rights reserved.
Effects of short-term quetiapine treatment on emotional processing, sleep and circadian rhythms.
Rock, Philippa L; Goodwin, Guy M; Wulff, Katharina; McTavish, Sarah F B; Harmer, Catherine J
2016-03-01
Quetiapine is an atypical antipsychotic that can stabilise mood from any index episode of bipolar disorder. This study investigated the effects of seven-day quetiapine administration on sleep, circadian rhythms and emotional processing in healthy volunteers. Twenty healthy volunteers received 150 mg quetiapine XL for seven nights and 20 matched controls received placebo. Sleep-wake actigraphy was completed for one week both pre-dose and during drug treatment. On Day 8, participants completed emotional processing tasks. Actigraphy revealed that quetiapine treatment increased sleep duration and efficiency, delayed final wake time and had a tendency to reduce within-day variability. There were no effects of quetiapine on subjective ratings of mood or energy. Quetiapine-treated participants showed diminished bias towards positive words and away from negative words during recognition memory. Quetiapine did not significantly affect facial expression recognition, emotional word categorisation, emotion-potentiated startle or emotional word/faces dot-probe vigilance reaction times. These changes in sleep timing and circadian rhythmicity in healthy volunteers may be relevant to quetiapine's therapeutic actions. Effects on emotional processing did not emulate the effects of antidepressants. The effects of quetiapine on sleep and circadian rhythms in patients with bipolar disorder merit further investigation to elucidate its mechanisms of action. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Pothof, F.; Bonini, L.; Lanzilotto, M.; Livi, A.; Fogassi, L.; Orban, G. A.; Paul, O.; Ruther, P.
2016-08-01
Objective. Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localisation using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Approach. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are integrated with a minimal feature size of 5 μm. The polyimide foils are rolled into the cylindrical probe shape at a diameter of 0.8 mm. The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Main results. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. Significance. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localisation in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the brain of a monkey, which suggests the potential usefulness of this probe for human applications.
Pothof, F; Bonini, L; Lanzilotto, M; Livi, A; Fogassi, L; Orban, G A; Paul, O; Ruther, P
2016-08-01
Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localisation using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are integrated with a minimal feature size of 5 μm. The polyimide foils are rolled into the cylindrical probe shape at a diameter of 0.8 mm. The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localisation in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the brain of a monkey, which suggests the potential usefulness of this probe for human applications.
Higher-Order Neural Networks Applied to 2D and 3D Object Recognition
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Reid, Max B.
1994-01-01
A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.
Drapeau, Joanie; Gosselin, Nathalie; Peretz, Isabelle; McKerral, Michelle
2017-01-01
To assess emotion recognition from dynamic facial, vocal and musical expressions in sub-groups of adults with traumatic brain injuries (TBI) of different severities and identify possible common underlying mechanisms across domains. Forty-one adults participated in this study: 10 with moderate-severe TBI, nine with complicated mild TBI, 11 with uncomplicated mild TBI and 11 healthy controls, who were administered experimental (emotional recognition, valence-arousal) and control tasks (emotional and structural discrimination) for each domain. Recognition of fearful faces was significantly impaired in moderate-severe and in complicated mild TBI sub-groups, as compared to those with uncomplicated mild TBI and controls. Effect sizes were medium-large. Participants with lower GCS scores performed more poorly when recognizing fearful dynamic facial expressions. Emotion recognition from auditory domains was preserved following TBI, irrespective of severity. All groups performed equally on control tasks, indicating no perceptual disorders. Although emotional recognition from vocal and musical expressions was preserved, no correlation was found across auditory domains. This preliminary study may contribute to improving comprehension of emotional recognition following TBI. Future studies of larger samples could usefully include measures of functional impacts of recognition deficits for fearful facial expressions. These could help refine interventions for emotional recognition following a brain injury.
A steady state visually evoked potential investigation of memory and ageing.
Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard
2009-04-01
Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and latency associated with memory performance. Participants were 15 older (59-67 years) and 14 younger (20-30 years) adults who performed an object working memory (OWM) task and a contextual recognition memory (CRM) task, whilst the SSVEP was recorded from 64 electrode sites. Retention of a single object in the low demand OWM task was characterised by smaller frontal SSVEP amplitude and latency differences in older adults than in younger adults, indicative of an age-associated reduction in neural processes. Recognition of visual images in the more difficult CRM task was accompanied by larger, more sustained SSVEP amplitude and latency decreases over temporal parietal regions in older adults. In contrast, the more transient, frontally mediated pattern of activity demonstrated by younger adults suggests that younger and older adults utilize different neural resources to perform recognition judgements. The results provide support for compensatory processes in the aging brain; at lower task demands, older adults demonstrate reduced neural activity, whereas at greater task demands neural activity is increased.
Face-name association learning and brain structural substrates in alcoholism.
Pitel, Anne-Lise; Chanraud, Sandra; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V
2012-07-01
Associative learning is required for face-name association and is impaired in alcoholism, but the cognitive processes and brain structural components underlying this deficit remain unclear. It is also unknown whether prompting alcoholics to implement a deep level of processing during face-name encoding would enhance performance. Abstinent alcoholics and controls performed a levels-of-processing face-name learning task. Participants indicated whether the face was that of an honest person (deep encoding) or that of a man (shallow encoding). Retrieval was examined using an associative (face-name) recognition task and a single-item (face or name only) recognition task. Participants also underwent 3T structural MRI. Compared with controls, alcoholics had poorer associative and single-item learning and performed at similar levels. Level of processing at encoding had little effect on recognition performance but affected reaction time (RT). Correlations with brain volumes were generally modest and based primarily on RT in alcoholics, where the deeper the processing at encoding, the more restricted the correlations with brain volumes. In alcoholics, longer control task RTs correlated modestly with smaller tissue volumes across several anterior to posterior brain regions; shallow encoding correlated with calcarine and striatal volumes; deep encoding correlated with precuneus and parietal volumes; and associative recognition RT correlated with cerebellar volumes. In controls, poorer associative recognition with deep encoding correlated significantly with smaller volumes of frontal and striatal structures. Despite prompting, alcoholics did not take advantage of encoding memoranda at a deep level to enhance face-name recognition accuracy. Nonetheless, conditions of deeper encoding resulted in faster RTs and more specific relations with regional brain volumes than did shallow encoding. The normal relation between associative recognition and corticostriatal volumes was not present in alcoholics. Rather, their speeded RTs occurred at the expense of accuracy and were related most robustly to cerebellar volumes. Copyright © 2012 by the Research Society on Alcoholism.
Effects of visual and verbal interference tasks on olfactory memory: the role of task complexity.
Annett, J M; Leslie, J C
1996-08-01
Recent studies have demonstrated that visual and verbal suppression tasks interfere with olfactory memory in a manner which is partially consistent with a dual coding interpretation. However, it has been suggested that total task complexity rather than modality specificity of the suppression tasks might account for the observed pattern of results. This study addressed the issue of whether or not the level of difficulty and complexity of suppression tasks could explain the apparent modality effects noted in earlier experiments. A total of 608 participants were each allocated to one of 19 experimental conditions involving interference tasks which varied suppression type (visual or verbal), nature of complexity (single, double or mixed) and level of difficulty (easy, optimal or difficult) and presented with 13 target odours. Either recognition of the odours or free recall of the odour names was tested on one occasion, either within 15 minutes of presentation or one week later. Both recognition and recall performance showed an overall effect for suppression nature, suppression level and time of testing with no effect for suppression type. The results lend only limited support to Paivio's (1986) dual coding theory, but have a number of characteristics which suggest that an adequate account of olfactory memory may be broadly similar to current theories of face and object recognition. All of these phenomena might be dealt with by an appropriately modified version of dual coding theory.
The Wireless Ubiquitous Surveillance Testbed
2003-03-01
c. Eye Patterns.............................................................................17 d. Facial Recognition ..................................................................19...27). ...........................................98 Table F.4. Facial Recognition Products. (After: Polemi, p. 25 and BiometriTech, 15 May 2002...it applies to homeland security. C. RESEARCH TASKS The main goals of this thesis are to: • Set up the biometric sensors and facial recognition surveillance
Post-Training Reversible Inactivation of the Hippocampus Enhances Novel Object Recognition Memory
ERIC Educational Resources Information Center
Oliveira, Ana M. M.; Hawk, Joshua D.; Abel, Ted; Havekes, Robbert
2010-01-01
Research on the role of the hippocampus in object recognition memory has produced conflicting results. Previous studies have used permanent hippocampal lesions to assess the requirement for the hippocampus in the object recognition task. However, permanent hippocampal lesions may impact performance through effects on processes besides memory…
Influences on Facial Emotion Recognition in Deaf Children
ERIC Educational Resources Information Center
Sidera, Francesc; Amadó, Anna; Martínez, Laura
2017-01-01
This exploratory research is aimed at studying facial emotion recognition abilities in deaf children and how they relate to linguistic skills and the characteristics of deafness. A total of 166 participants (75 deaf) aged 3-8 years were administered the following tasks: facial emotion recognition, naming vocabulary and cognitive ability. The…
Development of Encoding and Decision Processes in Visual Recognition.
ERIC Educational Resources Information Center
Newcombe, Nora; MacKenzie, Doris L.
This experiment examined two processes which might account for developmental increases in accuracy in visual recognition tasks: age-related increases in efficiency of scanning during inspection, and age-related increases in the ability to make decisions systematically during test. Critical details necessary for recognition were highlighted as…
Adult Word Recognition and Visual Sequential Memory
ERIC Educational Resources Information Center
Holmes, V. M.
2012-01-01
Two experiments were conducted investigating the role of visual sequential memory skill in the word recognition efficiency of undergraduate university students. Word recognition was assessed in a lexical decision task using regularly and strangely spelt words, and nonwords that were either standard orthographically legal strings or items made from…
The Role of Antibody in Korean Word Recognition
ERIC Educational Resources Information Center
Lee, Chang Hwan; Lee, Yoonhyoung; Kim, Kyungil
2010-01-01
A subsyllabic phonological unit, the antibody, has received little attention as a potential fundamental processing unit in word recognition. The psychological reality of the antibody in Korean recognition was investigated by looking at the performance of subjects presented with nonwords and words in the lexical decision task. In Experiment 1, the…
Facial Emotion Recognition in Child Psychiatry: A Systematic Review
ERIC Educational Resources Information Center
Collin, Lisa; Bindra, Jasmeet; Raju, Monika; Gillberg, Christopher; Minnis, Helen
2013-01-01
This review focuses on facial affect (emotion) recognition in children and adolescents with psychiatric disorders other than autism. A systematic search, using PRISMA guidelines, was conducted to identify original articles published prior to October 2011 pertaining to face recognition tasks in case-control studies. Used in the qualitative…
NASA Astrophysics Data System (ADS)
Xu, Wen-Zhi; Liu, Wei-Yan; Zhou, Ting-Ting; Yang, Yu-Tao; Li, Wei
2018-03-01
We constructed a novel probe for hydrazine detection based on ICT and PET mechanism. Phthalimide and acetyl ester groups were used as the recognition units. Addition of hydrazine produced a turn-on fluorescence at 525 nm along with the fluorescent color change from dark to yellow. The probe could selectively detect hydrazine over other related interfering species. The detection limit of the probe for hydrazine was calculated to be 0.057 μM which was lower than the EPA standard (0.320 μM). Furthermore, the probe could also be applied for the imaging of hydrazine in living cells.
Direct Sequence Detection of Structured H5 Influenza Viral RNA
Kerby, Matthew B.; Freeman, Sarah; Prachanronarong, Kristina; Artenstein, Andrew W.; Opal, Steven M.; Tripathi, Anubhav
2008-01-01
We describe the development of sequence-specific molecular beacons (dual-labeled DNA probes) for identification of the H5 influenza subtype, cleavage motif, and receptor specificity when hybridized directly with in vitro transcribed viral RNA (vRNA). The cloned hemagglutinin segment from a highly pathogenic H5N1 strain, A/Hanoi/30408/2005(H5N1), isolated from humans was used as template for in vitro transcription of sense-strand vRNA. The hybridization behavior of vRNA and a conserved subtype probe was characterized experimentally by varying conditions of time, temperature, and Mg2+ to optimize detection. Comparison of the hybridization rates of probe to DNA and RNA targets indicates that conformational switching of influenza RNA structure is a rate-limiting step and that the secondary structure of vRNA dominates the binding kinetics. The sensitivity and specificity of probe recognition of other H5 strains was calculated from sequence matches to the National Center for Biotechnology Information influenza database. The hybridization specificity of the subtype probes was experimentally verified with point mutations within the probe loop at five locations corresponding to the other human H5 strains. The abundance frequencies of the hemagglutinin cleavage motif and sialic acid recognition sequences were experimentally tested for H5 in all host viral species. Although the detection assay must be coupled with isothermal amplification on the chip, the new probes form the basis of a portable point-of-care diagnostic device for influenza subtyping. PMID:18403607
The effect of non-visual working memory load on top-down modulation of visual processing
Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark
2009-01-01
While a core function of the working memory (WM) system is the active maintenance of behaviorally relevant sensory representations, it is also critical that distracting stimuli are appropriately ignored. We used functional magnetic resonance imaging to examine the role of domain-general WM resources in the top-down attentional modulation of task-relevant and irrelevant visual representations. In our dual-task paradigm, each trial began with the auditory presentation of six random (high load) or sequentially-ordered (low load) digits. Next, two relevant visual stimuli (e.g., faces), presented amongst two temporally interspersed visual distractors (e.g., scenes), were to be encoded and maintained across a 7-sec delay interval, after which memory for the relevant images and digits was probed. When taxed by high load digit maintenance, participants exhibited impaired performance on the visual WM task and a selective failure to attenuate the neural processing of task-irrelevant scene stimuli. The over-processing of distractor scenes under high load was indexed by elevated encoding activity in a scene-selective region-of-interest relative to low load and passive viewing control conditions, as well as by improved long-term recognition memory for these items. In contrast, the load manipulation did not affect participants' ability to upregulate activity in this region when scenes were task-relevant. These results highlight the critical role of domain-general WM resources in the goal-directed regulation of distractor processing. Moreover, the consequences of increased WM load in young adults closely resemble the effects of cognitive aging on distractor filtering [Gazzaley et al., (2005) Nature Neuroscience 8, 1298-1300], suggesting the possibility of a common underlying mechanism. PMID:19397858
Proactive Interference Slows Recognition by Eliminating Fast Assessments of Familiarity
ERIC Educational Resources Information Center
Oztekin, Ilke; McElree, Brian
2007-01-01
The response-signal speed-accuracy tradeoff (SAT) procedure was used to investigate how proactive interference (PI) affects retrieval from working memory. Participants were presented with 6-item study lists, followed immediately by a recognition probe. A variant of a release from PI design was used: All items in a list were from the same semantic…
NetVLAD: CNN Architecture for Weakly Supervised Place Recognition.
Arandjelovic, Relja; Gronat, Petr; Torii, Akihiko; Pajdla, Tomas; Sivic, Josef
2018-06-01
We tackle the problem of large scale visual place recognition, where the task is to quickly and accurately recognize the location of a given query photograph. We present the following four principal contributions. First, we develop a convolutional neural network (CNN) architecture that is trainable in an end-to-end manner directly for the place recognition task. The main component of this architecture, NetVLAD, is a new generalized VLAD layer, inspired by the "Vector of Locally Aggregated Descriptors" image representation commonly used in image retrieval. The layer is readily pluggable into any CNN architecture and amenable to training via backpropagation. Second, we create a new weakly supervised ranking loss, which enables end-to-end learning of the architecture's parameters from images depicting the same places over time downloaded from Google Street View Time Machine. Third, we develop an efficient training procedure which can be applied on very large-scale weakly labelled tasks. Finally, we show that the proposed architecture and training procedure significantly outperform non-learnt image representations and off-the-shelf CNN descriptors on challenging place recognition and image retrieval benchmarks.
Image processing and recognition for biological images
Uchida, Seiichi
2013-01-01
This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. PMID:23560739
Parker, Alison E.; Mathis, Erin T.; Kupersmidt, Janis B.
2016-01-01
The study examined children’s recognition of emotion from faces and body poses, as well as gender differences in these recognition abilities. Preschool-aged children (N = 55) and their parents and teachers participated in the study. Preschool-aged children completed a web-based measure of emotion recognition skills, which included five tasks (three with faces and two with bodies). Parents and teachers reported on children’s aggressive behaviors and social skills. Children’s emotion accuracy on two of the three facial tasks and one of the body tasks was related to teacher reports of social skills. Some of these relations were moderated by child gender. In particular, the relationships between emotion recognition accuracy and reports of children’s behavior were stronger for boys than girls. Identifying preschool-aged children’s strengths and weaknesses in identification of emotion from faces and body poses may be helpful in guiding interventions with children who have problems with social and behavioral functioning that may be due, in part, to emotional knowledge deficits. Further developmental implications of these findings are discussed. PMID:27057129
Segment-based acoustic models for continuous speech recognition
NASA Astrophysics Data System (ADS)
Ostendorf, Mari; Rohlicek, J. R.
1993-07-01
This research aims to develop new and more accurate stochastic models for speaker-independent continuous speech recognition, by extending previous work in segment-based modeling and by introducing a new hierarchical approach to representing intra-utterance statistical dependencies. These techniques, which are more costly than traditional approaches because of the large search space associated with higher order models, are made feasible through rescoring a set of HMM-generated N-best sentence hypotheses. We expect these different modeling techniques to result in improved recognition performance over that achieved by current systems, which handle only frame-based observations and assume that these observations are independent given an underlying state sequence. In the fourth quarter of the project, we have completed the following: (1) ported our recognition system to the Wall Street Journal task, a standard task in the ARPA community; (2) developed an initial dependency-tree model of intra-utterance observation correlation; and (3) implemented baseline language model estimation software. Our initial results on the Wall Street Journal task are quite good and represent significantly improved performance over most HMM systems reporting on the Nov. 1992 5k vocabulary test set.
Gonzalez-Gadea, Maria Luz; Herrera, Eduar; Parra, Mario; Gomez Mendez, Pedro; Baez, Sandra; Manes, Facundo; Ibanez, Agustin
2014-01-01
Emotion recognition and empathy abilities require the integration of contextual information in real-life scenarios. Previous reports have explored these domains in adolescent offenders (AOs) but have not used tasks that replicate everyday situations. In this study we included ecological measures with different levels of contextual dependence to evaluate emotion recognition and empathy in AOs relative to non-offenders, controlling for the effect of demographic variables. We also explored the influence of fluid intelligence (FI) and executive functions (EFs) in the prediction of relevant deficits in these domains. Our results showed that AOs exhibit deficits in context-sensitive measures of emotion recognition and cognitive empathy. Difficulties in these tasks were neither explained by demographic variables nor predicted by FI or EFs. However, performance on measures that included simpler stimuli or could be solved by explicit knowledge was either only partially affected by demographic variables or preserved in AOs. These findings indicate that AOs show contextual social-cognition impairments which are relatively independent of basic cognitive functioning and demographic variables. PMID:25374529
Pilling, Michael; Gellatly, Angus
2013-07-01
We investigated the influence of dimensional set on report of object feature information using an immediate memory probe task. Participants viewed displays containing up to 36 coloured geometric shapes which were presented for several hundred milliseconds before one item was abruptly occluded by a probe. A cue presented simultaneously with the probe instructed participants to report either about the colour or shape of the probe item. A dimensional set towards the colour or shape of the presented items was induced by manipulating task probability - the relative probability with which the two feature dimensions required report. This was done across two participant groups: One group was given trials where there was a higher report probability of colour, the other a higher report probability of shape. Two experiments showed that features were reported most accurately when they were of high task probability, though in both cases the effect was largely driven by the colour dimension. Importantly the task probability effect did not interact with display set size. This is interpreted as tentative evidence that this manipulation influences feature processing in a global manner and at a stage prior to visual short term memory. Copyright © 2013 Elsevier B.V. All rights reserved.
Development of Functional Fluorescent Molecular Probes for the Detection of Biological Substances
Suzuki, Yoshio; Yokoyama, Kenji
2015-01-01
This review is confined to sensors that use fluorescence to transmit biochemical information. Fluorescence is, by far, the most frequently exploited phenomenon for chemical sensors and biosensors. Parameters that define the application of such sensors include intensity, decay time, anisotropy, quenching efficiency, and luminescence energy transfer. To achieve selective (bio)molecular recognition based on these fluorescence phenomena, various fluorescent elements such as small organic molecules, enzymes, antibodies, and oligonucleotides have been designed and synthesized over the past decades. This review describes the immense variety of fluorescent probes that have been designed for the recognitions of ions, small and large molecules, and their biological applications in terms of intracellular fluorescent imaging techniques. PMID:26095660
Baijal, Shruti; Nakatani, Chie; van Leeuwen, Cees; Srinivasan, Narayanan
2013-06-07
Human observers show remarkable efficiency in statistical estimation; they are able, for instance, to estimate the mean size of visual objects, even if their number exceeds the capacity limits of focused attention. This ability has been understood as the result of a distinct mode of attention, i.e. distributed attention. Compared to the focused attention mode, working memory representations under distributed attention are proposed to be more compressed, leading to reduced working memory loads. An alternate proposal is that distributed attention uses less structured, feature-level representations. These would fill up working memory (WM) more, even when target set size is low. Using event-related potentials, we compared WM loading in a typical distributed attention task (mean size estimation) to that in a corresponding focused attention task (object recognition), using a measure called contralateral delay activity (CDA). Participants performed both tasks on 2, 4, or 8 different-sized target disks. In the recognition task, CDA amplitude increased with set size; notably, however, in the mean estimation task the CDA amplitude was high regardless of set size. In particular for set-size 2, the amplitude was higher in the mean estimation task than in the recognition task. The result showed that the task involves full WM loading even with a low target set size. This suggests that in the distributed attention mode, representations are not compressed, but rather less structured than under focused attention conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Reconciling change blindness with long-term memory for objects.
Wood, Katherine; Simons, Daniel J
2017-02-01
How can we reconcile remarkably precise long-term memory for thousands of images with failures to detect changes to similar images? We explored whether people can use detailed, long-term memory to improve change detection performance. Subjects studied a set of images of objects and then performed recognition and change detection tasks with those images. Recognition memory performance exceeded change detection performance, even when a single familiar object in the postchange display consistently indicated the change location. In fact, participants were no better when a familiar object predicted the change location than when the displays consisted of unfamiliar objects. When given an explicit strategy to search for a familiar object as a way to improve performance on the change detection task, they performed no better than in a 6-alternative recognition memory task. Subjects only benefited from the presence of familiar objects in the change detection task when they had more time to view the prechange array before it switched. Once the cost to using the change detection information decreased, subjects made use of it in conjunction with memory to boost performance on the familiar-item change detection task. This suggests that even useful information will go unused if it is sufficiently difficult to extract.
High confidence in falsely recognizing prototypical faces.
Sampaio, Cristina; Reinke, Victoria; Mathews, Jeffrey; Swart, Alexandra; Wallinger, Stephen
2018-06-01
We applied a metacognitive approach to investigate confidence in recognition of prototypical faces. Participants were presented with sets of faces constructed digitally as deviations from prototype/base faces. Participants were then tested with a simple recognition task (Experiment 1) or a multiple-choice task (Experiment 2) for old and new items plus new prototypes, and they showed a high rate of confident false alarms to the prototypes. Confidence and accuracy relationship in this face recognition paradigm was found to be positive for standard items but negative for the prototypes; thus, it was contingent on the nature of the items used. The data have implications for lineups that employ match-to-suspect strategies.
Almeida, Inês; van Asselen, Marieke; Castelo-Branco, Miguel
2013-09-01
In human cognition, most relevant stimuli, such as faces, are processed in central vision. However, it is widely believed that recognition of relevant stimuli (e.g. threatening animal faces) at peripheral locations is also important due to their survival value. Moreover, task instructions have been shown to modulate brain regions involved in threat recognition (e.g. the amygdala). In this respect it is also controversial whether tasks requiring explicit focus on stimulus threat content vs. implicit processing differently engage primitive subcortical structures involved in emotional appraisal. Here we have addressed the role of central vs. peripheral processing in the human amygdala using animal threatening vs. non-threatening face stimuli. First, a simple animal face recognition task with threatening and non-threatening animal faces, as well as non-face control stimuli, was employed in naïve subjects (implicit task). A subsequent task was then performed with the same stimulus categories (but different stimuli) in which subjects were told to explicitly detect threat signals. We found lateralized amygdala responses both to the spatial location of stimuli and to the threatening content of faces depending on the task performed: the right amygdala showed increased responses to central compared to left presented stimuli specifically during the threat detection task, while the left amygdala was better prone to discriminate threatening faces from non-facial displays during the animal face recognition task. Additionally, the right amygdala responded to faces during the threat detection task but only when centrally presented. Moreover, we have found no evidence for superior responses of the amygdala to peripheral stimuli. Importantly, we have found that striatal regions activate differentially depending on peripheral vs. central processing of threatening faces. Accordingly, peripheral processing of these stimuli activated more strongly the putaminal region, while central processing engaged mainly the caudate nucleus. We conclude that the human amygdala has a central bias for face stimuli, and that visual processing recruits different striatal regions, putaminal or caudate based, depending on the task and on whether peripheral or central visual processing is involved. © 2013 Elsevier Ltd. All rights reserved.
Sex Differences in Mental Rotation Tasks: Not Just in the Mental Rotation Process!
ERIC Educational Resources Information Center
Boone, Alexander P.; Hegarty, Mary
2017-01-01
The paper-and-pencil Mental Rotation Test (Vandenberg & Kuse, 1978) consistently produces large sex differences favoring men (Voyer, Voyer, & Bryden, 1995). In this task, participants select 2 of 4 answer choices that are rotations of a probe stimulus. Incorrect choices (i.e., foils) are either mirror reflections of the probe or…
Kumfor, Fiona; Irish, Muireann; Hodges, John R.; Piguet, Olivier
2013-01-01
Patients with frontotemporal dementia have pervasive changes in emotion recognition and social cognition, yet the neural changes underlying these emotion processing deficits remain unclear. The multimodal system model of emotion proposes that basic emotions are dependent on distinct brain regions, which undergo significant pathological changes in frontotemporal dementia. As such, this syndrome may provide important insight into the impact of neural network degeneration upon the innate ability to recognise emotions. This study used voxel-based morphometry to identify discrete neural correlates involved in the recognition of basic emotions (anger, disgust, fear, sadness, surprise and happiness) in frontotemporal dementia. Forty frontotemporal dementia patients (18 behavioural-variant, 11 semantic dementia, 11 progressive nonfluent aphasia) and 27 healthy controls were tested on two facial emotion recognition tasks: The Ekman 60 and Ekman Caricatures. Although each frontotemporal dementia group showed impaired recognition of negative emotions, distinct associations between emotion-specific task performance and changes in grey matter intensity emerged. Fear recognition was associated with the right amygdala; disgust recognition with the left insula; anger recognition with the left middle and superior temporal gyrus; and sadness recognition with the left subcallosal cingulate, indicating that discrete neural substrates are necessary for emotion recognition in frontotemporal dementia. The erosion of emotion-specific neural networks in neurodegenerative disorders may produce distinct profiles of performance that are relevant to understanding the neurobiological basis of emotion processing. PMID:23805313
Honey, Garry D; O'loughlin, Chris; Turner, Danielle C; Pomarol-Clotet, Edith; Corlett, Philip R; Fletcher, Paul C
2006-02-01
Ketamine is increasingly used to model the cognitive deficits and symptoms of schizophrenia. We investigated the extent to which ketamine administration in healthy volunteers reproduces the deficits in episodic recognition memory and agency source monitoring reported in schizophrenia. Intravenous infusions of placebo or 100 ng/ml ketamine were administered to 12 healthy volunteers in a double-blind, placebo-controlled, randomized, within-subjects study. In response to presented words, the subject or experimenter performed a deep or shallow encoding task, providing a 2(drug) x 2(depth of processing) x 2(agency) factorial design. At test, subjects discriminated old/new words, and recalled the sources (task and agent). Data were analyzed using multinomial modelling to identify item recognition, source memory for agency and task, and guessing biases. Under ketamine, item recognition and cued recall of deeply encoded items were impaired, replicating previous findings. In contrast to schizophrenia, there was a reduced tendency to externalize agency source guessing biases under ketamine. While the recognition memory deficit observed with ketamine is consistent with previous work and with schizophrenia, the changes in source memory differ from those reported in schizophrenic patients. This difference may account for the pattern of psychopathology induced by ketamine.
Zucco, Gesualdo M; Bollini, Fabiola
2011-12-30
Olfactory deficits, in detection, recognition and identification of odorants have been documented in ageing and in several neurodegenerative and psychiatric conditions. However, olfactory abilities in Major Depressive Disorder (MDD) have been less investigated, and available studies have provided inconsistent results. The present study assessed odour recognition memory and odour identification in two groups of 12 mild MDD patients (M age 41.3, range 25-57) and 12 severe MDD patients (M age, 41.9, range 23-58) diagnosed according to DSM-IV criteria and matched for age and gender to 12 healthy normal controls. The suitability of olfactory identification and recognition memory tasks as predictors of the progression of MDD was also addressed. Data analyses revealed that Severe MDD patients performed significantly worse than Mild MDD patients and Normal controls on both tasks, with these last groups not differing significantly from one another. The present outcomes are consistent with previous studies in other domains which have shown reliable, although not conclusive, impairments in cognitive function, including memory, in patients with MDD, and highlight the role of olfactory identification and recognition tasks as an important additional tool to discriminate between patients characterised by different levels of severity of MDD. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fragments of a larger whole: retrieval cues constrain observed neural correlates of memory encoding.
Otten, Leun J
2007-09-01
Laying down a new memory involves activity in a number of brain regions. Here, it is shown that the particular regions associated with successful encoding depend on the way in which memory is probed. Event-related functional magnetic resonance imaging signals were acquired while subjects performed an incidental encoding task on a series of visually presented words denoting objects. A recognition memory test using the Remember/Know procedure to separate responses based on recollection and familiarity followed 1 day later. Critically, half of the studied objects were cued with a corresponding spoken word, and half with a corresponding picture. Regardless of cue, activity in prefrontal and hippocampal regions predicted subsequent recollection of a word. Type of retrieval cue modulated activity in prefrontal, temporal, and parietal cortices. Words subsequently recognized on the basis of a sense of familiarity were at study also associated with differential activity in a number of brain regions, some of which were probe dependent. Thus, observed neural correlates of successful encoding are constrained by type of retrieval cue, and are only fragments of all encoding-related neural activity. Regions exhibiting cue-specific effects may be sites that support memory through the degree of overlap between the processes engaged during encoding and those engaged during retrieval.
Recognition of chemical entities: combining dictionary-based and grammar-based approaches.
Akhondi, Saber A; Hettne, Kristina M; van der Horst, Eelke; van Mulligen, Erik M; Kors, Jan A
2015-01-01
The past decade has seen an upsurge in the number of publications in chemistry. The ever-swelling volume of available documents makes it increasingly hard to extract relevant new information from such unstructured texts. The BioCreative CHEMDNER challenge invites the development of systems for the automatic recognition of chemicals in text (CEM task) and for ranking the recognized compounds at the document level (CDI task). We investigated an ensemble approach where dictionary-based named entity recognition is used along with grammar-based recognizers to extract compounds from text. We assessed the performance of ten different commercial and publicly available lexical resources using an open source indexing system (Peregrine), in combination with three different chemical compound recognizers and a set of regular expressions to recognize chemical database identifiers. The effect of different stop-word lists, case-sensitivity matching, and use of chunking information was also investigated. We focused on lexical resources that provide chemical structure information. To rank the different compounds found in a text, we used a term confidence score based on the normalized ratio of the term frequencies in chemical and non-chemical journals. The use of stop-word lists greatly improved the performance of the dictionary-based recognition, but there was no additional benefit from using chunking information. A combination of ChEBI and HMDB as lexical resources, the LeadMine tool for grammar-based recognition, and the regular expressions, outperformed any of the individual systems. On the test set, the F-scores were 77.8% (recall 71.2%, precision 85.8%) for the CEM task and 77.6% (recall 71.7%, precision 84.6%) for the CDI task. Missed terms were mainly due to tokenization issues, poor recognition of formulas, and term conjunctions. We developed an ensemble system that combines dictionary-based and grammar-based approaches for chemical named entity recognition, outperforming any of the individual systems that we considered. The system is able to provide structure information for most of the compounds that are found. Improved tokenization and better recognition of specific entity types is likely to further improve system performance.
Recognition of chemical entities: combining dictionary-based and grammar-based approaches
2015-01-01
Background The past decade has seen an upsurge in the number of publications in chemistry. The ever-swelling volume of available documents makes it increasingly hard to extract relevant new information from such unstructured texts. The BioCreative CHEMDNER challenge invites the development of systems for the automatic recognition of chemicals in text (CEM task) and for ranking the recognized compounds at the document level (CDI task). We investigated an ensemble approach where dictionary-based named entity recognition is used along with grammar-based recognizers to extract compounds from text. We assessed the performance of ten different commercial and publicly available lexical resources using an open source indexing system (Peregrine), in combination with three different chemical compound recognizers and a set of regular expressions to recognize chemical database identifiers. The effect of different stop-word lists, case-sensitivity matching, and use of chunking information was also investigated. We focused on lexical resources that provide chemical structure information. To rank the different compounds found in a text, we used a term confidence score based on the normalized ratio of the term frequencies in chemical and non-chemical journals. Results The use of stop-word lists greatly improved the performance of the dictionary-based recognition, but there was no additional benefit from using chunking information. A combination of ChEBI and HMDB as lexical resources, the LeadMine tool for grammar-based recognition, and the regular expressions, outperformed any of the individual systems. On the test set, the F-scores were 77.8% (recall 71.2%, precision 85.8%) for the CEM task and 77.6% (recall 71.7%, precision 84.6%) for the CDI task. Missed terms were mainly due to tokenization issues, poor recognition of formulas, and term conjunctions. Conclusions We developed an ensemble system that combines dictionary-based and grammar-based approaches for chemical named entity recognition, outperforming any of the individual systems that we considered. The system is able to provide structure information for most of the compounds that are found. Improved tokenization and better recognition of specific entity types is likely to further improve system performance. PMID:25810767
The Bayesian reader: explaining word recognition as an optimal Bayesian decision process.
Norris, Dennis
2006-04-01
This article presents a theory of visual word recognition that assumes that, in the tasks of word identification, lexical decision, and semantic categorization, human readers behave as optimal Bayesian decision makers. This leads to the development of a computational model of word recognition, the Bayesian reader. The Bayesian reader successfully simulates some of the most significant data on human reading. The model accounts for the nature of the function relating word frequency to reaction time and identification threshold, the effects of neighborhood density and its interaction with frequency, and the variation in the pattern of neighborhood density effects seen in different experimental tasks. Both the general behavior of the model and the way the model predicts different patterns of results in different tasks follow entirely from the assumption that human readers approximate optimal Bayesian decision makers. ((c) 2006 APA, all rights reserved).
Social Cognition Psychometric Evaluation: Results of the Initial Psychometric Study
Pinkham, Amy E.; Penn, David L.; Green, Michael F.; Harvey, Philip D.
2016-01-01
Measurement of social cognition in treatment trials remains problematic due to poor and limited psychometric data for many tasks. As part of the Social Cognition Psychometric Evaluation (SCOPE) study, the psychometric properties of 8 tasks were assessed. One hundred and seventy-nine stable outpatients with schizophrenia and 104 healthy controls completed the battery at baseline and a 2–4-week retest period at 2 sites. Tasks included the Ambiguous Intentions Hostility Questionnaire (AIHQ), Bell Lysaker Emotion Recognition Task (BLERT), Penn Emotion Recognition Task (ER-40), Relationships Across Domains (RAD), Reading the Mind in the Eyes Task (Eyes), The Awareness of Social Inferences Test (TASIT), Hinting Task, and Trustworthiness Task. Tasks were evaluated on: (i) test-retest reliability, (ii) utility as a repeated measure, (iii) relationship to functional outcome, (iv) practicality and tolerability, (v) sensitivity to group differences, and (vi) internal consistency. The BLERT and Hinting task showed the strongest psychometric properties across all evaluation criteria and are recommended for use in clinical trials. The ER-40, Eyes Task, and TASIT showed somewhat weaker psychometric properties and require further study. The AIHQ, RAD, and Trustworthiness Task showed poorer psychometric properties that suggest caution for their use in clinical trials. PMID:25943125
Braun, Moria D; Kisko, Theresa M; Vecchia, Débora Dalla; Andreatini, Roberto; Schwarting, Rainer K W; Wöhr, Markus
2018-05-23
The CACNA1C gene is strongly implicated in the etiology of multiple major neuropsychiatric disorders, such as bipolar disorder, major depression, and schizophrenia, with cognitive deficits being a common feature. It is unclear, however, by which mechanisms CACNA1C variants advance the risk of developing neuropsychiatric disorders. This study set out to investigate cognitive functioning in a newly developed genetic Cacna1c rat model. Specifically, spatial and reversal learning, as well as object recognition memory were assessed in heterozygous Cacna1c +/- rats and compared to wildtype Cacna1c +/+ littermate controls in both sexes. Our results show that both Cacna1c +/+ and Cacna1c +/- animals were able to learn the rewarded arm configuration of a radial maze over the course of seven days. Both groups also showed reversal learning patterns indicative of intact abilities. In females, genotype differences were evident in the initial spatial learning phase, with Cacna1c +/- females showing hypo-activity and fewer mixed errors. In males, a difference was found during probe trials for both learning phases, with Cacna1c +/- rats displaying better distinction between previously baited and non-baited arms; and regarding cognitive flexibility in favor of the Cacna1c +/+ animals. All experimental groups proved to be sensitive to reward magnitude and fully able to distinguish between novel and familiar objects in the novel object recognition task. Taken together, these results indicate that Cacna1c haploinsufficiency has a minor, but positive impact on (spatial) memory functions in rats. Copyright © 2018 Elsevier Inc. All rights reserved.
A host-guest-recognition-based electrochemical aptasensor for thrombin detection.
Fan, Hao; Li, Hui; Wang, Qingjiang; He, Pingang; Fang, Yuzhi
2012-05-15
A sensitive electrochemical aptasensor for thrombin detection is presented based on the host-guest recognition technique. In this sensing protocol, a 15 based thrombin aptamer (ab. TBA) was dually labeled with a thiol at its 3' end and a 4-((4-(dimethylamino)phenyl)azo) benzoic acid (dabcyl) at its 5' end, respectively, which was previously immobilized on one Au electrode surface by AuS bond and used as the thrombin probe during the protein sensing procedure. One special electrochemical marker was prepared by modifying CdS nanoparticle with β-cyclodextrins (ab. CdS-CDs), which employed as electrochemical signal provider and would conjunct with the thrombin probe modified electrode through the host-guest recognition of CDs to dabcyl. In the absence of thrombin, the probe adopted linear structure to conjunct with CdS-CDs. In present of thrombin, the TBA bond with thrombin and transformed into its special G-quarter structure, which forced CdS-CDs into the solution. Therefore, the target-TBA binding event can be sensitively transduced via detecting the electrochemical oxidation current signal of Cd of CdS nanoparticles in the solution. Using this method, as low as 4.6 pM thrombin had been detected. Copyright © 2012 Elsevier B.V. All rights reserved.
Automation of the novel object recognition task for use in adolescent rats
Silvers, Janelle M.; Harrod, Steven B.; Mactutus, Charles F.; Booze, Rosemarie M.
2010-01-01
The novel object recognition task is gaining popularity for its ability to test a complex behavior which relies on the integrity of memory and attention systems without placing undue stress upon the animal. While the task places few requirements upon the animal, it traditionally requires the experimenter to observe the test phase directly and record behavior. This approach can severely limit the number of subjects which can be tested in a reasonable period of time, as training and testing occur on the same day and span several hours. The current study was designed to test the feasibility of automation of this task for adolescent rats using standard activity chambers, with the goals of increased objectivity, flexibility, and throughput of subjects. PMID:17719091
Cingulo-opercular activity affects incidental memory encoding for speech in noise.
Vaden, Kenneth I; Teubner-Rhodes, Susan; Ahlstrom, Jayne B; Dubno, Judy R; Eckert, Mark A
2017-08-15
Correctly understood speech in difficult listening conditions is often difficult to remember. A long-standing hypothesis for this observation is that the engagement of cognitive resources to aid speech understanding can limit resources available for memory encoding. This hypothesis is consistent with evidence that speech presented in difficult conditions typically elicits greater activity throughout cingulo-opercular regions of frontal cortex that are proposed to optimize task performance through adaptive control of behavior and tonic attention. However, successful memory encoding of items for delayed recognition memory tasks is consistently associated with increased cingulo-opercular activity when perceptual difficulty is minimized. The current study used a delayed recognition memory task to test competing predictions that memory encoding for words is enhanced or limited by the engagement of cingulo-opercular activity during challenging listening conditions. An fMRI experiment was conducted with twenty healthy adult participants who performed a word identification in noise task that was immediately followed by a delayed recognition memory task. Consistent with previous findings, word identification trials in the poorer signal-to-noise ratio condition were associated with increased cingulo-opercular activity and poorer recognition memory scores on average. However, cingulo-opercular activity decreased for correctly identified words in noise that were not recognized in the delayed memory test. These results suggest that memory encoding in difficult listening conditions is poorer when elevated cingulo-opercular activity is not sustained. Although increased attention to speech when presented in difficult conditions may detract from more active forms of memory maintenance (e.g., sub-vocal rehearsal), we conclude that task performance monitoring and/or elevated tonic attention supports incidental memory encoding in challenging listening conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
Top-down modulation of ventral occipito-temporal responses during visual word recognition.
Twomey, Tae; Kawabata Duncan, Keith J; Price, Cathy J; Devlin, Joseph T
2011-04-01
Although interactivity is considered a fundamental principle of cognitive (and computational) models of reading, it has received far less attention in neural models of reading that instead focus on serial stages of feed-forward processing from visual input to orthographic processing to accessing the corresponding phonological and semantic information. In particular, the left ventral occipito-temporal (vOT) cortex is proposed to be the first stage where visual word recognition occurs prior to accessing nonvisual information such as semantics and phonology. We used functional magnetic resonance imaging (fMRI) to investigate whether there is evidence that activation in vOT is influenced top-down by the interaction of visual and nonvisual properties of the stimuli during visual word recognition tasks. Participants performed two different types of lexical decision tasks that focused on either visual or nonvisual properties of the word or word-like stimuli. The design allowed us to investigate how vOT activation during visual word recognition was influenced by a task change to the same stimuli and by a stimulus change during the same task. We found both stimulus- and task-driven modulation of vOT activation that can only be explained by top-down processing of nonvisual aspects of the task and stimuli. Our results are consistent with the hypothesis that vOT acts as an interface linking visual form with nonvisual processing in both bottom up and top down directions. Such interactive processing at the neural level is in agreement with cognitive and computational models of reading but challenges some of the assumptions made by current neuro-anatomical models of reading. Copyright © 2011 Elsevier Inc. All rights reserved.
A near-infrared fluorescent probe for rapid detection of carbon monoxide in living cells.
Yan, Liqiang; Nan, Ding; Lin, Cheng; Wan, Yi; Pan, Qiang; Qi, Zhengjian
2018-09-05
A near-infrared (NIR) and colorimetric fluorescent probe system was developed for Carbon Monoxide (CO) via a Pd 0 -mediated Tsuji-Trost reaction. In this probe, phenoxide anion formation (DPCO - ) was acted as the signal unit and an allyl carbonate group was used as the recognition unit. This non-fluorescent probe molecule can release the relevant fluorophore after conversion of Pd 2+ to Pd 0 by CO. The probe system including probe 1 and Pd 2+ can be used for "naked-eye" detection of CO, and exhibited high selectivity to CO over various other sensing objects. More importantly, the probe system has great potential for fluorescence imaging of intracellular CO in living cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Kosaka, H; Omori, M; Murata, T; Iidaka, T; Yamada, H; Okada, T; Takahashi, T; Sadato, N; Itoh, H; Yonekura, Y; Wada, Y
2002-09-01
Human lesion or neuroimaging studies suggest that amygdala is involved in facial emotion recognition. Although impairments in recognition of facial and/or emotional expression have been reported in schizophrenia, there are few neuroimaging studies that have examined differential brain activation during facial recognition between patients with schizophrenia and normal controls. To investigate amygdala responses during facial recognition in schizophrenia, we conducted a functional magnetic resonance imaging (fMRI) study with 12 right-handed medicated patients with schizophrenia and 12 age- and sex-matched healthy controls. The experiment task was a type of emotional intensity judgment task. During the task period, subjects were asked to view happy (or angry/disgusting/sad) and neutral faces simultaneously presented every 3 s and to judge which face was more emotional (positive or negative face discrimination). Imaging data were investigated in voxel-by-voxel basis for single-group analysis and for between-group analysis according to the random effect model using Statistical Parametric Mapping (SPM). No significant difference in task accuracy was found between the schizophrenic and control groups. Positive face discrimination activated the bilateral amygdalae of both controls and schizophrenics, with more prominent activation of the right amygdala shown in the schizophrenic group. Negative face discrimination activated the bilateral amygdalae in the schizophrenic group whereas the right amygdala alone in the control group, although no significant group difference was found. Exaggerated amygdala activation during emotional intensity judgment found in the schizophrenic patients may reflect impaired gating of sensory input containing emotion. Copyright 2002 Elsevier Science B.V.
Dissociation between facial and bodily expressions in emotion recognition: A case study.
Leiva, Samanta; Margulis, Laura; Micciulli, Andrea; Ferreres, Aldo
2017-12-21
Existing single-case studies have reported deficit in recognizing basic emotions through facial expression and unaffected performance with body expressions, but not the opposite pattern. The aim of this paper is to present a case study with impaired emotion recognition through body expressions and intact performance with facial expressions. In this single-case study we assessed a 30-year-old patient with autism spectrum disorder, without intellectual disability, and a healthy control group (n = 30) with four tasks of basic and complex emotion recognition through face and body movements, and two non-emotional control tasks. To analyze the dissociation between facial and body expressions, we used Crawford and Garthwaite's operational criteria, and we compared the patient and the control group performance with a modified one-tailed t-test designed specifically for single-case studies. There were no statistically significant differences between the patient's and the control group's performances on the non-emotional body movement task or the facial perception task. For both kinds of emotions (basic and complex) when the patient's performance was compared to the control group's, statistically significant differences were only observed for the recognition of body expressions. There were no significant differences between the patient's and the control group's correct answers for emotional facial stimuli. Our results showed a profile of impaired emotion recognition through body expressions and intact performance with facial expressions. This is the first case study that describes the existence of this kind of dissociation pattern between facial and body expressions of basic and complex emotions.
Cerami, Chiara; Dodich, Alessandra; Iannaccone, Sandro; Marcone, Alessandra; Lettieri, Giada; Crespi, Chiara; Gianolli, Luigi; Cappa, Stefano F.; Perani, Daniela
2015-01-01
The behavioural variant of frontotemporal dementia (bvFTD) is a rare disease mainly affecting the social brain. FDG-PET fronto-temporal hypometabolism is a supportive feature for the diagnosis. It may also provide specific functional metabolic signatures for altered socio-emotional processing. In this study, we evaluated the emotion recognition and attribution deficits and FDG-PET cerebral metabolic patterns at the group and individual levels in a sample of sporadic bvFTD patients, exploring the cognitive-functional correlations. Seventeen probable mild bvFTD patients (10 male and 7 female; age 67.8±9.9) were administered standardized and validated version of social cognition tasks assessing the recognition of basic emotions and the attribution of emotions and intentions (i.e., Ekman 60-Faces test-Ek60F and Story-based Empathy task-SET). FDG-PET was analysed using an optimized voxel-based SPM method at the single-subject and group levels. Severe deficits of emotion recognition and processing characterized the bvFTD condition. At the group level, metabolic dysfunction in the right amygdala, temporal pole, and middle cingulate cortex was highly correlated to the emotional recognition and attribution performances. At the single-subject level, however, heterogeneous impairments of social cognition tasks emerged, and different metabolic patterns, involving limbic structures and prefrontal cortices, were also observed. The derangement of a right limbic network is associated with altered socio-emotional processing in bvFTD patients, but different hypometabolic FDG-PET patterns and heterogeneous performances on social tasks at an individual level exist. PMID:26513651
Sleep deprivation impairs the accurate recognition of human emotions.
van der Helm, Els; Gujar, Ninad; Walker, Matthew P
2010-03-01
Investigate the impact of sleep deprivation on the ability to recognize the intensity of human facial emotions. Randomized total sleep-deprivation or sleep-rested conditions, involving between-group and within-group repeated measures analysis. Experimental laboratory study. Thirty-seven healthy participants, (21 females) aged 18-25 y, were randomly assigned to the sleep control (SC: n = 17) or total sleep deprivation group (TSD: n = 20). Participants performed an emotional face recognition task, in which they evaluated 3 different affective face categories: Sad, Happy, and Angry, each ranging in a gradient from neutral to increasingly emotional. In the TSD group, the task was performed once under conditions of sleep deprivation, and twice under sleep-rested conditions following different durations of sleep recovery. In the SC group, the task was performed twice under sleep-rested conditions, controlling for repeatability. In the TSD group, when sleep-deprived, there was a marked and significant blunting in the recognition of Angry and Happy affective expressions in the moderate (but not extreme) emotional intensity range; differences that were most reliable and significant in female participants. No change in the recognition of Sad expressions was observed. These recognition deficits were, however, ameliorated following one night of recovery sleep. No changes in task performance were observed in the SC group. Sleep deprivation selectively impairs the accurate judgment of human facial emotions, especially threat relevant (Anger) and reward relevant (Happy) categories, an effect observed most significantly in females. Such findings suggest that sleep loss impairs discrete affective neural systems, disrupting the identification of salient affective social cues.
ERIC Educational Resources Information Center
Tajeddin, Zia; Daraee, Dina
2013-01-01
The present study investigated the effect of form-focused and non-form-focused tasks on EFL learners' vocabulary learning through written input. The form-focused task aimed to draw students' attention to the word itself through word recognition activities. Non-form-focused tasks were divided into (a) the comprehension question task, which required…
Effects of Aging and IQ on Item and Associative Memory
ERIC Educational Resources Information Center
Ratcliff, Roger; Thapar, Anjali; McKoon, Gail
2011-01-01
The effects of aging and IQ on performance were examined in 4 memory tasks: item recognition, associative recognition, cued recall, and free recall. For item and associative recognition, accuracy and the response time (RT) distributions for correct and error responses were explained by Ratcliff's (1978) diffusion model at the level of individual…
ERIC Educational Resources Information Center
Smith, Kimberly G.; Fogerty, Daniel
2015-01-01
Purpose: This study evaluated the extent to which partial spoken or written information facilitates sentence recognition under degraded unimodal and multimodal conditions. Method: Twenty young adults with typical hearing completed sentence recognition tasks in unimodal and multimodal conditions across 3 proportions of preservation. In the unimodal…
Address entry while driving: speech recognition versus a touch-screen keyboard.
Tsimhoni, Omer; Smith, Daniel; Green, Paul
2004-01-01
A driving simulator experiment was conducted to determine the effects of entering addresses into a navigation system during driving. Participants drove on roads of varying visual demand while entering addresses. Three address entry methods were explored: word-based speech recognition, character-based speech recognition, and typing on a touch-screen keyboard. For each method, vehicle control and task measures, glance timing, and subjective ratings were examined. During driving, word-based speech recognition yielded the shortest total task time (15.3 s), followed by character-based speech recognition (41.0 s) and touch-screen keyboard (86.0 s). The standard deviation of lateral position when performing keyboard entry (0.21 m) was 60% higher than that for all other address entry methods (0.13 m). Degradation of vehicle control associated with address entry using a touch screen suggests that the use of speech recognition is favorable. Speech recognition systems with visual feedback, however, even with excellent accuracy, are not without performance consequences. Applications of this research include the design of in-vehicle navigation systems as well as other systems requiring significant driver input, such as E-mail, the Internet, and text messaging.
Scotland, Jennifer L; McKenzie, Karen; Cossar, Jill; Murray, Aja; Michie, Amanda
2016-01-01
This study aimed to evaluate the emotion recognition abilities of adults (n=23) with an intellectual disability (ID) compared with a control group of children (n=23) without ID matched for estimated cognitive ability. The study examined the impact of: task paradigm, stimulus type and preferred processing style (global/local) on accuracy. We found that, after controlling for estimated cognitive ability, the control group performed significantly better than the individuals with ID. This provides some support for the emotion specificity hypothesis. Having a more local processing style did not significantly mediate the relation between having ID and emotion recognition, but did significantly predict emotion recognition ability after controlling for group. This suggests that processing style is related to emotion recognition independently of having ID. The availability of contextual information improved emotion recognition for people with ID when compared with line drawing stimuli, and identifying a target emotion from a choice of two was relatively easier for individuals with ID, compared with the other task paradigms. The results of the study are considered in the context of current theories of emotion recognition deficits in individuals with ID. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recognizing Dynamic Faces in Malaysian Chinese Participants.
Tan, Chrystalle B Y; Sheppard, Elizabeth; Stephen, Ian D
2016-03-01
High performance level in face recognition studies does not seem to be replicable in real-life situations possibly because of the artificial nature of laboratory studies. Recognizing faces in natural social situations may be a more challenging task, as it involves constant examination of dynamic facial motions that may alter facial structure vital to the recognition of unfamiliar faces. Because of the incongruences of recognition performance, the current study developed stimuli that closely represent natural social situations to yield results that more accurately reflect observers' performance in real-life settings. Naturalistic stimuli of African, East Asian, and Western Caucasian actors introducing themselves were presented to investigate Malaysian Chinese participants' recognition sensitivity and looking strategies when performing a face recognition task. When perceiving dynamic facial stimuli, participants fixated most on the nose, followed by the mouth then the eyes. Focusing on the nose may have enabled participants to gain a more holistic view of actors' facial and head movements, which proved to be beneficial in recognizing identities. Participants recognized all three races of faces equally well. The current results, which differed from a previous static face recognition study, may be a more accurate reflection of observers' recognition abilities and looking strategies. © The Author(s) 2015.
Makeyev, Oleksandr; Sazonov, Edward; Schuckers, Stephanie; Lopez-Meyer, Paulo; Melanson, Ed; Neuman, Michael
2007-01-01
In this paper we propose a sound recognition technique based on the limited receptive area (LIRA) neural classifier and continuous wavelet transform (CWT). LIRA neural classifier was developed as a multipurpose image recognition system. Previous tests of LIRA demonstrated good results in different image recognition tasks including: handwritten digit recognition, face recognition, metal surface texture recognition, and micro work piece shape recognition. We propose a sound recognition technique where scalograms of sound instances serve as inputs of the LIRA neural classifier. The methodology was tested in recognition of swallowing sounds. Swallowing sound recognition may be employed in systems for automated swallowing assessment and diagnosis of swallowing disorders. The experimental results suggest high efficiency and reliability of the proposed approach.
Age- and sex-related disturbance in a battery of sensorimotor and cognitive tasks in Kunming mice.
Chen, Gui-Hai; Wang, Yue-Ju; Zhang, Li-Qun; Zhou, Jiang-Ning
2004-12-15
A battery of tasks, i.e. beam walking, open field, tightrope, radial six-arm water maze (RAWM), novel-object recognition and olfactory discrimination, was used to determine whether there was age- and sex-related memory deterioration in Kunming (KM) mice, and whether these tasks are independent or correlated with each other. Two age groups of KM mice were used: a younger group (7-8 months old, 12 males and 11 females) and an older group (17-18 months old, 12 males and 12 females). The results showed that the spatial learning ability and memory in the RAWM were lower in older female KM mice relative to younger female mice and older male mice. Consistent with this, in the novel-object recognition task, a non-spatial cognitive task, older female mice but not older male mice had impairment of short-term memory. In olfactory discrimination, another non-spatial task, the older mice retained this ability. Interestingly, female mice performed better than males, especially in the younger group. The older females exhibited sensorimotor impairment in the tightrope task and low locomotor activity in the open-field task. Moreover, older mice spent a longer time in the peripheral squares of the open-field than younger ones. The non-spatial cognitive performance in the novel-object recognition and olfactory discrimination tasks was related to performance in the open-field, whereas the spatial cognitive performance in the RAWM was not related to performance in any of the three sensorimotor tasks. These results suggest that disturbance of spatial learning and memory, as well as selective impairment of non-spatial learning and memory, existed in older female KM mice.
A shared representation of order between encoding and recognition in visual short-term memory.
Kalm, Kristjan; Norris, Dennis
2017-07-15
Many complex tasks require people to bind individual events into a sequence that can be held in short term memory (STM). For this purpose information about the order of the individual events in the sequence needs to be maintained in an active and accessible form in STM over a period of few seconds. Here we investigated how the temporal order information is shared between the presentation and response phases of an STM task. We trained a classification algorithm on the fMRI activity patterns from the presentation phase of the STM task to predict the order of the items during the subsequent recognition phase. While voxels in a number of brain regions represented positional information during either presentation and recognition phases, only voxels in the lateral prefrontal cortex (PFC) and the anterior temporal lobe (ATL) represented position consistently across task phases. A shared positional code in the ATL might reflect verbal recoding of visual sequences to facilitate the maintenance of order information over several seconds. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
SAR target recognition and posture estimation using spatial pyramid pooling within CNN
NASA Astrophysics Data System (ADS)
Peng, Lijiang; Liu, Xiaohua; Liu, Ming; Dong, Liquan; Hui, Mei; Zhao, Yuejin
2018-01-01
Many convolution neural networks(CNN) architectures have been proposed to strengthen the performance on synthetic aperture radar automatic target recognition (SAR-ATR) and obtained state-of-art results on targets classification on MSTAR database, but few methods concern about the estimation of depression angle and azimuth angle of targets. To get better effect on learning representation of hierarchies of features on both 10-class target classification task and target posture estimation tasks, we propose a new CNN architecture with spatial pyramid pooling(SPP) which can build high hierarchy of features map by dividing the convolved feature maps from finer to coarser levels to aggregate local features of SAR images. Experimental results on MSTAR database show that the proposed architecture can get high recognition accuracy as 99.57% on 10-class target classification task as the most current state-of-art methods, and also get excellent performance on target posture estimation tasks which pays attention to depression angle variety and azimuth angle variety. What's more, the results inspire us the application of deep learning on SAR target posture description.
Oyedotun, Oyebade K; Khashman, Adnan
2017-02-01
Humans are apt at recognizing patterns and discovering even abstract features which are sometimes embedded therein. Our ability to use the banknotes in circulation for business transactions lies in the effortlessness with which we can recognize the different banknote denominations after seeing them over a period of time. More significant is that we can usually recognize these banknote denominations irrespective of what parts of the banknotes are exposed to us visually. Furthermore, our recognition ability is largely unaffected even when these banknotes are partially occluded. In a similar analogy, the robustness of intelligent systems to perform the task of banknote recognition should not collapse under some minimum level of partial occlusion. Artificial neural networks are intelligent systems which from inception have taken many important cues related to structure and learning rules from the human nervous/cognition processing system. Likewise, it has been shown that advances in artificial neural network simulations can help us understand the human nervous/cognition system even furthermore. In this paper, we investigate three cognition hypothetical frameworks to vision-based recognition of banknote denominations using competitive neural networks. In order to make the task more challenging and stress-test the investigated hypotheses, we also consider the recognition of occluded banknotes. The implemented hypothetical systems are tasked to perform fast recognition of banknotes with up to 75 % occlusion. The investigated hypothetical systems are trained on Nigeria's Naira banknotes and several experiments are performed to demonstrate the findings presented within this work.
A Multidimensional Approach to the Study of Emotion Recognition in Autism Spectrum Disorders
Xavier, Jean; Vignaud, Violaine; Ruggiero, Rosa; Bodeau, Nicolas; Cohen, David; Chaby, Laurence
2015-01-01
Although deficits in emotion recognition have been widely reported in autism spectrum disorder (ASD), experiments have been restricted to either facial or vocal expressions. Here, we explored multimodal emotion processing in children with ASD (N = 19) and with typical development (TD, N = 19), considering uni (faces and voices) and multimodal (faces/voices simultaneously) stimuli and developmental comorbidities (neuro-visual, language and motor impairments). Compared to TD controls, children with ASD had rather high and heterogeneous emotion recognition scores but showed also several significant differences: lower emotion recognition scores for visual stimuli, for neutral emotion, and a greater number of saccades during visual task. Multivariate analyses showed that: (1) the difficulties they experienced with visual stimuli were partially alleviated with multimodal stimuli. (2) Developmental age was significantly associated with emotion recognition in TD children, whereas it was the case only for the multimodal task in children with ASD. (3) Language impairments tended to be associated with emotion recognition scores of ASD children in the auditory modality. Conversely, in the visual or bimodal (visuo-auditory) tasks, the impact of developmental coordination disorder or neuro-visual impairments was not found. We conclude that impaired emotion processing constitutes a dimension to explore in the field of ASD, as research has the potential to define more homogeneous subgroups and tailored interventions. However, it is clear that developmental age, the nature of the stimuli, and other developmental comorbidities must also be taken into account when studying this dimension. PMID:26733928
Han, Xu; Kim, Jung-jae; Kwoh, Chee Keong
2016-01-01
Biomedical text mining may target various kinds of valuable information embedded in the literature, but a critical obstacle to the extension of the mining targets is the cost of manual construction of labeled data, which are required for state-of-the-art supervised learning systems. Active learning is to choose the most informative documents for the supervised learning in order to reduce the amount of required manual annotations. Previous works of active learning, however, focused on the tasks of entity recognition and protein-protein interactions, but not on event extraction tasks for multiple event types. They also did not consider the evidence of event participants, which might be a clue for the presence of events in unlabeled documents. Moreover, the confidence scores of events produced by event extraction systems are not reliable for ranking documents in terms of informativity for supervised learning. We here propose a novel committee-based active learning method that supports multi-event extraction tasks and employs a new statistical method for informativity estimation instead of using the confidence scores from event extraction systems. Our method is based on a committee of two systems as follows: We first employ an event extraction system to filter potential false negatives among unlabeled documents, from which the system does not extract any event. We then develop a statistical method to rank the potential false negatives of unlabeled documents 1) by using a language model that measures the probabilities of the expression of multiple events in documents and 2) by using a named entity recognition system that locates the named entities that can be event arguments (e.g. proteins). The proposed method further deals with unknown words in test data by using word similarity measures. We also apply our active learning method for the task of named entity recognition. We evaluate the proposed method against the BioNLP Shared Tasks datasets, and show that our method can achieve better performance than such previous methods as entropy and Gibbs error based methods and a conventional committee-based method. We also show that the incorporation of named entity recognition into the active learning for event extraction and the unknown word handling further improve the active learning method. In addition, the adaptation of the active learning method into named entity recognition tasks also improves the document selection for manual annotation of named entities.
Honzel, Nikki; Justus, Timothy; Swick, Diane
2015-01-01
Patients with post-traumatic stress disorder (PTSD) can show declines in working memory. A dual-task design was used to determine if these impairments are linked to executive control limitations. Participants performed a Sternberg memory task with either one or four letters. In the dual-task condition, the maintenance period was filled with an arrow flanker task. PTSD patients were less accurate on the working memory task than controls, especially in the dual-task condition. In the single-task condition, both groups showed similar patterns of brain potentials from 300–500 ms when discriminating old and new probes. However, when taxed with an additional task, the event-related potentials (ERPs) of the PTSD group no longer differentiated old and new probes. In contrast, interference resolution processes in both the single- and dual-task conditions of the flanker were intact. The lack of differentiation in the ERPs reflects impaired working memory performance under more difficult dual-task conditions. Exacerbated difficulty in performing a working memory task with concurrent task demands suggests a specific limitation in executive control resources in PTSD. PMID:24165904
ERIC Educational Resources Information Center
Oztekin, Ilke; McElree, Brian
2010-01-01
The response-signal speed-accuracy trade-off (SAT) procedure was used to investigate the relationship between measures of working memory capacity and the time course of short-term item recognition. High- and low-span participants studied sequentially presented 6-item lists, immediately followed by a recognition probe. Analyses of composite list…
Kreitewolf, Jens; Friederici, Angela D; von Kriegstein, Katharina
2014-11-15
Hemispheric specialization for linguistic prosody is a controversial issue. While it is commonly assumed that linguistic prosody and emotional prosody are preferentially processed in the right hemisphere, neuropsychological work directly comparing processes of linguistic prosody and emotional prosody suggests a predominant role of the left hemisphere for linguistic prosody processing. Here, we used two functional magnetic resonance imaging (fMRI) experiments to clarify the role of left and right hemispheres in the neural processing of linguistic prosody. In the first experiment, we sought to confirm previous findings showing that linguistic prosody processing compared to other speech-related processes predominantly involves the right hemisphere. Unlike previous studies, we controlled for stimulus influences by employing a prosody and speech task using the same speech material. The second experiment was designed to investigate whether a left-hemispheric involvement in linguistic prosody processing is specific to contrasts between linguistic prosody and emotional prosody or whether it also occurs when linguistic prosody is contrasted against other non-linguistic processes (i.e., speaker recognition). Prosody and speaker tasks were performed on the same stimulus material. In both experiments, linguistic prosody processing was associated with activity in temporal, frontal, parietal and cerebellar regions. Activation in temporo-frontal regions showed differential lateralization depending on whether the control task required recognition of speech or speaker: recognition of linguistic prosody predominantly involved right temporo-frontal areas when it was contrasted against speech recognition; when contrasted against speaker recognition, recognition of linguistic prosody predominantly involved left temporo-frontal areas. The results show that linguistic prosody processing involves functions of both hemispheres and suggest that recognition of linguistic prosody is based on an inter-hemispheric mechanism which exploits both a right-hemispheric sensitivity to pitch information and a left-hemispheric dominance in speech processing. Copyright © 2014 Elsevier Inc. All rights reserved.
The low-frequency encoding disadvantage: Word frequency affects processing demands.
Diana, Rachel A; Reder, Lynne M
2006-07-01
Low-frequency words produce more hits and fewer false alarms than high-frequency words in a recognition task. The low-frequency hit rate advantage has sometimes been attributed to processes that operate during the recognition test (e.g., L. M. Reder et al., 2000). When tasks other than recognition, such as recall, cued recall, or associative recognition, are used, the effects seem to contradict a low-frequency advantage in memory. Four experiments are presented to support the claim that in addition to the advantage of low-frequency words at retrieval, there is a low-frequency disadvantage during encoding. That is, low-frequency words require more processing resources to be encoded episodically than high-frequency words. Under encoding conditions in which processing resources are limited, low-frequency words show a larger decrement in recognition than high-frequency words. Also, studying items (pictures and words of varying frequencies) along with low-frequency words reduces performance for those stimuli. Copyright 2006 APA, all rights reserved.
L2 Word Recognition: Influence of L1 Orthography on Multi-syllabic Word Recognition.
Hamada, Megumi
2017-10-01
L2 reading research suggests that L1 orthographic experience influences L2 word recognition. Nevertheless, the findings on multi-syllabic words in English are still limited despite the fact that a vast majority of words are multi-syllabic. The study investigated whether L1 orthography influences the recognition of multi-syllabic words, focusing on the position of an embedded word. The participants were Arabic ESL learners, Chinese ESL learners, and native speakers of English. The task was a word search task, in which the participants identified a target word embedded in a pseudoword at the initial, middle, or final position. The search accuracy and speed indicated that all groups showed a strong preference for the initial position. The accuracy data further indicated group differences. The Arabic group showed higher accuracy in the final than middle, while the Chinese group showed the opposite and the native speakers showed no difference between the two positions. The findings suggest that L2 multi-syllabic word recognition involves unique processes.
Hines, Jarrod C.; Touron, Dayna R.; Hertzog, Christopher
2009-01-01
The current study evaluated a metacognitive account of study time allocation, which argues that metacognitive monitoring of recognition test accuracy and latency influences subsequent strategic control and regulation. We examined judgments of learning (JOLs), recognition test confidence judgments (CJs), and subjective response time (RT) judgments by younger and older adults in an associative recognition task involving two study-test phases, with self-paced study in phase 2. Multilevel regression analyses assessed the degree to which age and metacognitive variables predicted phase 2 study time independent of actual test accuracy and RT. Outcomes supported the metacognitive account – JOLs and CJs predicted study time independent of recognition accuracy. For older adults with errant RT judgments, subjective retrieval fluency influenced response confidence as well as (mediated through confidence) subsequent study time allocation. Older adults studied items longer which had been assigned lower CJs, suggesting no age deficit in using memory monitoring to control learning. PMID:19485662
Face identity recognition in autism spectrum disorders: a review of behavioral studies.
Weigelt, Sarah; Koldewyn, Kami; Kanwisher, Nancy
2012-03-01
Face recognition--the ability to recognize a person from their facial appearance--is essential for normal social interaction. Face recognition deficits have been implicated in the most common disorder of social interaction: autism. Here we ask: is face identity recognition in fact impaired in people with autism? Reviewing behavioral studies we find no strong evidence for a qualitative difference in how facial identity is processed between those with and without autism: markers of typical face identity recognition, such as the face inversion effect, seem to be present in people with autism. However, quantitatively--i.e., how well facial identity is remembered or discriminated--people with autism perform worse than typical individuals. This impairment is particularly clear in face memory and in face perception tasks in which a delay intervenes between sample and test, and less so in tasks with no memory demand. Although some evidence suggests that this deficit may be specific to faces, further evidence on this question is necessary. Copyright © 2011 Elsevier Ltd. All rights reserved.
Word Spotting and Recognition with Embedded Attributes.
Almazán, Jon; Gordo, Albert; Fornés, Alicia; Valveny, Ernest
2014-12-01
This paper addresses the problems of word spotting and word recognition on images. In word spotting, the goal is to find all instances of a query word in a dataset of images. In recognition, the goal is to recognize the content of the word image, usually aided by a dictionary or lexicon. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. In this subspace, images and strings that represent the same word are close together, allowing one to cast recognition and retrieval tasks as a nearest neighbor problem. Contrary to most other existing methods, our representation has a fixed length, is low dimensional, and is very fast to compute and, especially, to compare. We test our approach on four public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks.
Influence of motion on face recognition.
Bonfiglio, Natale S; Manfredi, Valentina; Pessa, Eliano
2012-02-01
The influence of motion information and temporal associations on recognition of non-familiar faces was investigated using two groups which performed a face recognition task. One group was presented with regular temporal sequences of face views designed to produce the impression of motion of the face rotating in depth, the other group with random sequences of the same views. In one condition, participants viewed the sequences of the views in rapid succession with a negligible interstimulus interval (ISI). This condition was characterized by three different presentation times. In another condition, participants were presented a sequence with a 1-sec. ISI among the views. That regular sequences of views with a negligible ISI and a shorter presentation time were hypothesized to give rise to better recognition, related to a stronger impression of face rotation. Analysis of data from 45 participants showed a shorter presentation time was associated with significantly better accuracy on the recognition task; however, differences between performances associated with regular and random sequences were not significant.
McGonigle, John; Murphy, Anna; Paterson, Louise M; Reed, Laurence J; Nestor, Liam; Nash, Jonathan; Elliott, Rebecca; Ersche, Karen D; Flechais, Remy SA; Newbould, Rexford; Orban, Csaba; Smith, Dana G; Taylor, Eleanor M; Waldman, Adam D; Robbins, Trevor W; Deakin, JF William; Nutt, David J; Lingford-Hughes, Anne R; Suckling, John
2016-01-01
Objectives: We aimed to set up a robust multi-centre clinical fMRI and neuropsychological platform to investigate the neuropharmacology of brain processes relevant to addiction – reward, impulsivity and emotional reactivity. Here we provide an overview of the fMRI battery, carried out across three centres, characterizing neuronal response to the tasks, along with exploring inter-centre differences in healthy participants. Experimental design: Three fMRI tasks were used: monetary incentive delay to probe reward sensitivity, go/no-go to probe impulsivity and an evocative images task to probe emotional reactivity. A coordinate-based activation likelihood estimation (ALE) meta-analysis was carried out for the reward and impulsivity tasks to help establish region of interest (ROI) placement. A group of healthy participants was recruited from across three centres (total n=43) to investigate inter-centre differences. Principle observations: The pattern of response observed for each of the three tasks was consistent with previous studies using similar paradigms. At the whole brain level, significant differences were not observed between centres for any task. Conclusions: In developing this platform we successfully integrated neuroimaging data from three centres, adapted validated tasks and applied whole brain and ROI approaches to explore and demonstrate their consistency across centres. PMID:27703042
McGonigle, John; Murphy, Anna; Paterson, Louise M; Reed, Laurence J; Nestor, Liam; Nash, Jonathan; Elliott, Rebecca; Ersche, Karen D; Flechais, Remy Sa; Newbould, Rexford; Orban, Csaba; Smith, Dana G; Taylor, Eleanor M; Waldman, Adam D; Robbins, Trevor W; Deakin, Jf William; Nutt, David J; Lingford-Hughes, Anne R; Suckling, John
2017-01-01
We aimed to set up a robust multi-centre clinical fMRI and neuropsychological platform to investigate the neuropharmacology of brain processes relevant to addiction - reward, impulsivity and emotional reactivity. Here we provide an overview of the fMRI battery, carried out across three centres, characterizing neuronal response to the tasks, along with exploring inter-centre differences in healthy participants. Three fMRI tasks were used: monetary incentive delay to probe reward sensitivity, go/no-go to probe impulsivity and an evocative images task to probe emotional reactivity. A coordinate-based activation likelihood estimation (ALE) meta-analysis was carried out for the reward and impulsivity tasks to help establish region of interest (ROI) placement. A group of healthy participants was recruited from across three centres (total n=43) to investigate inter-centre differences. Principle observations: The pattern of response observed for each of the three tasks was consistent with previous studies using similar paradigms. At the whole brain level, significant differences were not observed between centres for any task. In developing this platform we successfully integrated neuroimaging data from three centres, adapted validated tasks and applied whole brain and ROI approaches to explore and demonstrate their consistency across centres.
Ballesteros, Soledad; Mayas, Julia
2014-01-01
In the present study, we investigated the effects of selective attention at encoding on conceptual object priming (Experiment 1) and old-new recognition memory (Experiment 2) tasks in young and older adults. The procedures of both experiments included encoding and memory test phases separated by a short delay. At encoding, the picture outlines of two familiar objects, one in blue and the other in green, were presented to the left and to the right of fixation. In Experiment 1, participants were instructed to attend to the picture outline of a certain color and to classify the object as natural or artificial. After a short delay, participants performed a natural/artificial speeded conceptual classification task with repeated attended, repeated unattended, and new pictures. In Experiment 2, participants at encoding memorized the attended pictures and classify them as natural or artificial. After the encoding phase, they performed an old-new recognition memory task. Consistent with previous findings with perceptual priming tasks, we found that conceptual object priming, like explicit memory, required attention at encoding. Significant priming was obtained in both age groups, but only for those pictures that were attended at encoding. Although older adults were slower than young adults, both groups showed facilitation for attended pictures. In line with previous studies, young adults had better recognition memory than older adults.
Ballesteros, Soledad; Mayas, Julia
2015-01-01
In the present study, we investigated the effects of selective attention at encoding on conceptual object priming (Experiment 1) and old–new recognition memory (Experiment 2) tasks in young and older adults. The procedures of both experiments included encoding and memory test phases separated by a short delay. At encoding, the picture outlines of two familiar objects, one in blue and the other in green, were presented to the left and to the right of fixation. In Experiment 1, participants were instructed to attend to the picture outline of a certain color and to classify the object as natural or artificial. After a short delay, participants performed a natural/artificial speeded conceptual classification task with repeated attended, repeated unattended, and new pictures. In Experiment 2, participants at encoding memorized the attended pictures and classify them as natural or artificial. After the encoding phase, they performed an old–new recognition memory task. Consistent with previous findings with perceptual priming tasks, we found that conceptual object priming, like explicit memory, required attention at encoding. Significant priming was obtained in both age groups, but only for those pictures that were attended at encoding. Although older adults were slower than young adults, both groups showed facilitation for attended pictures. In line with previous studies, young adults had better recognition memory than older adults. PMID:25628588
The relationships between trait anxiety, place recognition memory, and learning strategy.
Hawley, Wayne R; Grissom, Elin M; Dohanich, Gary P
2011-01-20
Rodents learn to navigate mazes using various strategies that are governed by specific regions of the brain. The type of strategy used when learning to navigate a spatial environment is moderated by a number of factors including emotional states. Heightened anxiety states, induced by exposure to stressors or administration of anxiogenic agents, have been found to bias male rats toward the use of a striatum-based stimulus-response strategy rather than a hippocampus-based place strategy. However, no study has yet examined the relationship between natural anxiety levels, or trait anxiety, and the type of learning strategy used by rats on a dual-solution task. In the current experiment, levels of inherent anxiety were measured in an open field and compared to performance on two separate cognitive tasks, a Y-maze task that assessed place recognition memory, and a visible platform water maze task that assessed learning strategy. Results indicated that place recognition memory on the Y-maze correlated with the use of place learning strategy on the water maze. Furthermore, lower levels of trait anxiety correlated positively with better place recognition memory and with the preferred use of place learning strategy. Therefore, competency in place memory and bias in place strategy are linked to the levels of inherent anxiety in male rats. Copyright © 2010 Elsevier B.V. All rights reserved.
Fakra, Eric; Jouve, Elisabeth; Guillaume, Fabrice; Azorin, Jean-Michel; Blin, Olivier
2015-03-01
Deficit in facial affect recognition is a well-documented impairment in schizophrenia, closely connected to social outcome. This deficit could be related to psychopathology, but also to a broader dysfunction in processing facial information. In addition, patients with schizophrenia inadequately use configural information-a type of processing that relies on spatial relationships between facial features. To date, no study has specifically examined the link between symptoms and misuse of configural information in the deficit in facial affect recognition. Unmedicated schizophrenia patients (n = 30) and matched healthy controls (n = 30) performed a facial affect recognition task and a face inversion task, which tests aptitude to rely on configural information. In patients, regressions were carried out between facial affect recognition, symptom dimensions and inversion effect. Patients, compared with controls, showed a deficit in facial affect recognition and a lower inversion effect. Negative symptoms and lower inversion effect could account for 41.2% of the variance in facial affect recognition. This study confirms the presence of a deficit in facial affect recognition, and also of dysfunctional manipulation in configural information in antipsychotic-free patients. Negative symptoms and poor processing of configural information explained a substantial part of the deficient recognition of facial affect. We speculate that this deficit may be caused by several factors, among which independently stand psychopathology and failure in correctly manipulating configural information. PsycINFO Database Record (c) 2015 APA, all rights reserved.